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ABSTRACT  

The development of this thesis is focused on the study of wheel–rail conformal 
contact in linear elastostatics. To this end, comprehensive numerical models 
have been developed. These include a version of Kalker’s exact contact theory 
extended for conformal contact, and detailed Finite Element (FE) models.  

One of the major difficulties of the extension of the exact contact theory for 
conformal contact is the departure from the half-space assumption. To address 
this, the compliance of surfaces of elastic solids has been studied. For non-
planar surfaces, the possibility of characterization by means of numerical 
analysis with FE models has been explored, and analytical approximations have 
been set out. New analytical results have been developed for the half-space as 
well.  

With the developed contact models, a detailed investigation of wheel–rail 3D 
frictional conformal contact has been carried out. This covers both the normal 
and tangential parts of static (compression, shift) and rolling contact problems. 
In contrast, most of the past published literature on conformal contact has dealt 
with either 2D contact, or with frictionless contact. As a result of the 
investigation carried out, particular contact mechanics features resulting from 
conformity are described, differences between conformal and non-conformal 
contacts are discussed, and the adequacy of the hypothesis of non-conformity is 
assessed in situations with different degrees of conformity.  

The developed detailed contact models have been further demonstrated in the 
rolling bearing application, contrasting with the much simpler contact 
mechanics models commonly used in this application. This has needed specific 
adaptations in the developed contact models. With these models, a study has 
been carried out of the roller–raceway rolling contact in a spherical roller 
bearing, only feasible by means of 3D partial slip contact models as the ones 
used in this work.  

An additional part of the work reported in this thesis deals with the study of 
vertical vehicle–track dynamics, in which the wheel–rail contact is of great 
importance, by means of integrated multibody–FE models including a 
representation of the track dynamics, developed with commercial multibody 
and FE software packages. Models with different degree of complexity have 
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been constructed, linear as well as non-linear, and their adequacy has been 
assessed in different situations. With these models, a comparative study has 
been conducted of the dynamic performance of a ballasted track and three types 
of slab tracks.  

 



 

RESUMEN  

Este resumen está dirigido a los lectores hispanohablantes, siendo más extenso 
que el Abstract (resumen en inglés).  

El contacto rueda-carril es uno de los elementos más diferenciadores de los 
vehículos ferroviarios, y el que determina en mayor medida su comportamiento 
dinámico. La elevada rigidez del contacto de acero sobre acero confiere al 
sistema rueda-carril una reducida resistencia a la rodadura y una alta capacidad 
portante. Por otra parte, esta elevada rigidez conduce a áreas de contacto 
pequeñas, del orden del centímetro, con niveles tensionales elevados. Esto 
implica una elevada exigencia en las condiciones de servicio de la interfaz 
rueda-carril, lo cual lleva a su vez a la necesidad de profundizar en su estudio y 
comprensión para mejorar sus capacidades y prestaciones. El análisis 
computacional es una parte importante de este proceso, máxime considerando la 
práctica imposibilidad de realizar mediciones reales detalladas de mecánica de 
contacto en condiciones realistas de operación de la interfaz rueda-carril.  

La simulación precisa del contacto rueda-carril entraña una dificultad elevada, 
tanto desde el punto de vista de la determinación de los parámetros relevantes 
que influyen en el comportamiento físico de la interfaz, como de la resolución 
matemática del problema, que se presenta como fuertemente no lineal. Con el 
fin de simplificar la solución del problema de contacto rueda-carril, se adoptan 
hipótesis simplificativas. Una de las hipótesis habitualmente adoptadas es la de 
no conformidad en el contacto, que implica planitud del área de contacto y la 
asimilación del comportamiento local de los sólidos en contacto al del 
semiespacio infinito.  

Si bien la hipótesis de no conformidad es a menudo adecuada, se presentan 
situaciones no poco habituales en condiciones realistas de operación en las que 
se dan condiciones de contacto conforme, comprometiendo la precisión de los 
resultados obtenidos mediante un análisis no conforme. Tal es el caso del 
contacto de la raíz de la pestaña de la rueda con la esquina de la cabeza del 
carril durante la inscripción en curvas cerradas, o el contacto entre perfiles de 
rueda y carril desgastados. Además, en estas situaciones frecuentemente se dan 
condiciones de contacto severas, con elevados niveles de tensión y 
deslizamiento, y se requieren soluciones de contacto precisas para evaluar 
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adecuadamente el daño resultante en la interfaz rueda-carril. Esto excede el 
alcance de los modelos de contacto rueda-carril utilizados habitualmente en 
simulaciones dinámicas, que priman la eficiencia computacional. Por otra parte, 
también se dan situaciones de contacto conforme en otras aplicaciones de gran 
interés tecnológico, como en rodamientos, en componentes de máquinas 
rotativas, y en uniones con bulones. Es por lo tanto de interés disponer de 
modelos que permitan hacer análisis de contacto conforme.  

El desarrollo de esta tesis se centra en el estudio del contacto rueda-carril 
conforme en el marco de la elasticidad lineal y con un comportamiento 
cuasiestático del material en las cercanías del contacto. Para tal fin, se han 
desarrollado modelos numéricos detallados, que incluyen una versión de la 
teoría exacta de contacto de Kalker extendida para contacto conforme, y 
modelos de Elementos Finitos (EF) locales.  

Una de las principales dificultades de la extensión de la teoría exacta a contacto 
conforme radica en que los sólidos en contacto dejan de verse como 
semiespacios infinitos. Esto representa un inconveniente importante, ya que las 
soluciones del semiespacio infinito sometido a cargas en su superficie están 
disponibles analíticamente, al contrario de lo que ocurre con sólidos con 
superficies no planas generales como los que se pueden tener en contacto 
conforme. Para tratar esta dificultad, se ha estudiado la flexibilidad de 
superficies de sólidos elásticos. Para superficies no planas, se ha explorado la 
posibilidad de caracterización mediante análisis numérico con modelos de EF, y 
se han planteado aproximaciones analíticas. Se han obtenido también nuevos 
resultados analíticos para el semiespacio infinito.  

Con los modelos de contacto desarrollados, se ha llevado a cabo una 
investigación detallada del contacto rueda-carril conforme 3D y con fricción. 
Esto abarca las partes normal y tangencial de problemas de contacto estáticos 
(compresión, desplazamiento tangencial) y de rodadura. Por el contrario, la 
mayor parte de la literatura anterior sobre contacto conforme ha abordado 
contactos 2D, o contactos sin fricción. Como resultado de esta investigación, se 
describen características de mecánica de contacto particulares que resultan de la 
conformidad, se tratan las diferencias entre contactos conformes y no 
conformes, y se evalúa la adecuación de análisis no conformes en casos con 
distintos grados de conformidad.  
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Se ha mostrado la aplicabilidad de los modelos de contacto desarrollados 
también para rodamientos, contrastando con los modelos mucho más sencillos 
comúnmente empleados en esta aplicación. Esto ha requerido de adaptaciones 
específicas en los modelos de contacto desarrollados. Con estos modelos, se ha 
realizado un estudio del contacto en rodadura rodamiento-pista en un 
rodamiento esférico, solo factible con modelos 3D de deslizamiento parcial 
como los usados en este trabajo.  

Las condiciones de contacto entre rodamientos y pistas determinan en gran 
medida los límites operacionales, prestaciones y vida de los rodamientos. La 
mecánica de contacto es por lo tanto una disciplina esencial en su diseño y 
análisis. Por su parte, las cuestiones relacionadas con la fricción en el contacto 
son importantes en diferentes aspectos del diseño y operación de los 
rodamientos, incluso con contactos adecuadamente lubricados, en los que las 
tensiones tangenciales transmitidas en el contacto son mucho menores que las 
presiones normales. Por ejemplo, la disipación friccional que se da en los 
contactos rodamiento-pista puede ser una fuente importante de calentamiento, y 
llevar a limitar la velocidad de operación para evitar un calentamiento excesivo 
del rodamiento. También es esencial para determinar el par de fricción y la 
evolución del desgaste de las superficies de rodadura del rodamiento.  

Una parte adicional del trabajo reportado en esta tesis ha versado sobre el 
estudio de la interacción dinámica vertical vehículo-vía, en la cual el contacto 
rueda-carril es de gran importancia. La interacción dinámica vehículo-vía juega 
un papel fundamental en muchos problemas relacionados con la vía y con el 
material rodante, como el fallo prematuro por fatiga de elementos de estos 
sistemas, la generación de ruido y la transmisión de vibraciones al terreno. En 
esta tesis se presentan modelos integrados multicuerpo-EF en el dominio del 
tiempo, que incluyen una representación de la dinámica de la vía, desarrollados 
con paquetes de software comerciales para análisis de sistemas multicuerpo y de 
EF. Se han construido modelos de diferente grado de complejidad, tanto lineales 
como no lineales, y se ha evaluado su adecuación en distintas situaciones. Con 
estos modelos, se ha llevado a cabo un estudio comparativo del comportamiento 
dinámico de una vía de balasto y de tres tipos de vías en placa ante la 
circulación a alta velocidad de un vehículo de pasajeros.  
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La tesis se estructura como sigue:  

- El Capítulo 1, Introducción, presenta los antecedentes y la motivación 
del trabajo, introduciendo el sistema rueda-carril, y particularmente el 
contacto rueda-carril, como posiblemente el elemento más distintivo e 
influyente en la interacción vehículo-vía, y entrañando también una 
complejidad considerable. Se habla también del contacto conforme, de 
la interacción vehículo-vía, y del análisis de contacto friccional en 
rodamientos. Siendo el desarrollo de modelos de mecánica de contacto 
rueda-carril avanzados el tema principal de esta tesis, se dedica un 
apartado de este capítulo a la formulación del problema de contacto. 
Estrechamente relacionado con esto, se trata asimismo el 
comportamiento mecánico del sólido elástico al nivel local del contacto. 
En los últimos apartados del capítulo, se listan los objetivos de la tesis, 
y se expone su estructura.  

- En el Capítulo 2, Estado del arte, se proporciona una revisión del estado 
del arte de los temas principales estudiados en esta tesis, enfocada en el 
desarrollo de modelos numéricos detallados con la capacidad para tratar 
el contacto conforme. Esto incluye modelos de contacto rueda-carril, 
funciones de influencia del sólido elástico, análisis numérico del 
contacto en rodadura, contacto conforme, y análisis de mecánica de 
contacto en rodamientos.  

- En el Capítulo 3, Interacción dinámica vehículo-vía en diferentes vías, 
se desarrollan modelos dinámicos para el estudio de la interacción 
vertical vehículo-vía con programas comerciales de análisis de sistemas 
multicuerpo y de EF. Se trata de modelos en el dominio del tiempo, con 
la capacidad para considerar características detalladas y no lineales 
tanto del vehículo como de la vía, como por ejemplo, traviesas con 
defecto de apoyo, y la interacción entre distintos ejes. Los modelos 
desarrollados se usan para llevar a cabo un estudio comparativo del 
comportamiento dinámico de distintas vías.  

- El Capítulo 4, Análisis numérico del contacto conforme rueda-carril, 
está dedicado al desarrollo de modelos numéricos de mecánica de 
contacto para el análisis de contacto conforme. Estos incluyen una 
versión de la teoría exacta del contacto que se ha llamado CECT 
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(Conformal Exact Contact Theory; Teoría Exacta del Contacto 
Conforme en inglés) y modelos de EF para análisis de mecánica de 
contacto detallados. Se dan descripciones detalladas de las extensiones 
para contacto conforme implementadas en CECT, y de los ajustes 
necesarios en los modelos de EF para unos resultados fiables. Este 
desarrollo está dirigido inicialmente al caso rueda-carril, pero en el 
Capítulo 7 se muestra la aplicación al caso de los rodamientos.  

- El Capítulo 5, Coeficientes de influencia del sólido elástico, trata del 
cálculo de los coeficientes de influencia para sólidos con superficies no 
planas, siendo esta una de las mayores dificultades asociadas a la 
aplicación de la teoría exacta del contacto al análisis del contacto 
conforme en lugar de concentrado. Los coeficientes de influencia 
caracterizan el comportamiento mecánico de los sólidos al nivel local 
del contacto, relacionando las tensiones transmitidas en el contacto con 
la respuesta elástica del sólido. El capítulo incluye nuevos resultados 
analíticos para el semiespacio infinito.  

- El Capítulo 6, Características del contacto conforme rueda-carril, 
presenta un estudio detallado del contacto conforme rueda-carril, 
abarcando las partes normal y tangencial del problema de contacto. El 
estudio se basa en análisis numéricos realizados con los modelos y 
coeficientes de influencia desarrollados en los Capítulos 4 y 5. Se 
evalúan las características que resultan de la conformidad y las 
diferencias con respecto al contacto no conforme. Se realiza también un 
análisis geométrico de la distancia indeformada entre dos superficies no 
planas de sólidos de revolución.  

- El Capítulo 7, Análisis de contacto en rodamientos, muestra la 
aplicación de los modelos numéricos de contacto desarrollados al 
análisis del contacto en rodadura en rodamientos. Esto contrasta con los 
modelos de mecánica de contacto mucho más simples comúnmente 
usados en esta aplicación. Con estos modelos, se lleva a cabo un estudio 
del contacto en rodadura rodamiento-pista en un rodamiento esférico.  

- Por último, en el Capítulo 8, Conclusión, se compilan los resultados de 
la investigación llevada a cabo, se esbozan perspectivas de líneas 
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futuras de investigación, y se listan las publicaciones que han resultado 
de este trabajo.  

 



 

ACRONYMS  

1D, 2D, 3D: one dimensional, two dimensional, three dimensional.  

ALE: arbitrary Lagrangian-Eulerian.  

AP: analysis point.  

BEM: Boundary Element Method.  

CECT: Conformal Exact Contact Theory.  

CEM: Contact Element Method.  

CWD: current working directory.  

DFT: Discrete Fourier Transform.  

DOF: degree of freedom.  

EMB, RMB: elastic multibody, rigid multibody.  

EST: elastic slip tolerance.  

FE, FEM: Finite Element, Finite Element Method, Finite Element Model.  

FFT: Fast Fourier Transform.  

H+C: ‘Hertz + Carter’.  

IC, IF: influence coefficient, influence function.  

MBS: multibody system.  

N-R: Newton-Raphson.  

PCS: potential contact surface.  

RCF: rolling contact fatigue.  

SAM: semi-analytical method.  

SDEC: simple double-elliptical contact.  

SRB : spherical roller bearing.  
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Chapter 1  

1. Introduction  

Chapter summary  

This chapter introduces the wheel–rail system, and particularly wheel–rail 
contact, as possibly the most distinctive and influential element in the railway 
vehicle–track interaction, and a one involving considerable complexity as well. 
Attention is drawn to issues related to frictional contact mechanics, playing an 
important role in wheel–rail interaction, and involving higher characterization 
and modelling complexity than frictionless contact. Conformal contact is also 
addressed, as a phenomenon occurring in the wheel–rail application and falling 
beyond the scope of the most usual contact models. Problems relevant to 
vehicle–track interaction are reviewed, and the importance of computer 
simulation as a way for their understanding and control is emphasized. The 
importance of frictional contact analysis in the rolling bearing application is 
also discussed. Being the development of advanced wheel–rail contact 
mechanics models the main topic of this thesis, a section of the chapter is 
devoted to the mathematical statement of the contact problem. Closely related 
to this, the mechanical behaviour of the contacting solid at the local contact 
level is also treated. In the last sections of the chapter, the objectives of this 
thesis are listed, and the organization of the thesis is set out.  



2 1.1 Background and motivation 

1.1 Background and motivation  

1.1.1 The wheel–rail system. Wheel–rail contact  

The railway is a land transportation system in which the vehicle is guided on 
rails. The wheel–rail system (Figure 1.1) connects the vehicle with the track, 
providing support, guidance and traction to the railway vehicle. The steel wheel 
on steel rail system is predominant over others such as rubber-tired wheels or 
the Maglev [Wikipedia Maglev www]. The guiding by the rail and the 
circulation in trains of vehicles are the two distinctive features of the railway 
vehicle.  

 

Figure 1.1. The wheel–rail system. Adapted from 
https://commons.wikimedia.org/wiki/File:Roue_ferro.jpg. List of authors in 

https://fr.wikipedia.org/w/index.php?title=Boudin%20(ferroviaire)&action=history. CC 
BY SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/deed.en).  

The high steel-on-steel wheel–rail contact stiffness provides the system a low 
rolling resistance and a high load bearing capacity, contributing to the high 
energy efficiency of railway transport. On the other hand, the high contact 
stiffness entails small contact patches and high contact stress levels. This 
implies severe operating conditions of the wheel–rail interface. The increasing 
vehicle speeds, axle loads and traffic densities, together with the demand for 
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reduced costs and environmental impact, and increased reliability and comfort, 
lead to more stringent quality and performance levels demanded to the wheel–
rail system. All this brings the need for investigation and development, together 
with observation and learning from operating experience, to be able to match up 
to these expectations. Computer simulation is part of this process.  

The wheel–rail interaction is the feature that determines to a greatest extent the 
dynamic behaviour of the railway vehicle. Its modelling is complex, due to the 
geometric non-linearities, as well as to the constitutive non-linearities of the 
contact itself. Contact problems are particularly highly non-linear and require 
significant computer resources to solve, as stated in the ANSYS Contact 
Technology Guide [ANSYS doc 2010]. Thus, the precise solution of the wheel–
rail contact involves a high difficulty. This is so not only from the standpoint of 
the mathematical solution of the problem, but also from the determination of the 
relevant parameters that influence the physical behaviour of the interface. At the 
same time, the practical impossibility to carry out detailed contact mechanics 
field measurements in realistic operating conditions of the wheel–rail interface 
reinforce the importance of wheel–rail contact modelling.  

To simplify the solution of the wheel–rail contact problem, simplifying 
assumptions are adopted. The wheel–rail contact problem usually conforms to 
the following hypotheses:  

- The contacting solids are homogeneous and isotropic.  

- The solids are massive, i.e., not hollow, at least around the contact.  

- The first-order theory of elasticity holds.  

- The contact is quasistatic. This implies that the effect of the inertia 
forces of the material of the solids near the contact is small in 
comparison with that of the stresses transmitted in the contact. That is, 
elastostatic contact problems are considered, in which the material of 
the solids near the contact has a quasistatic response under the action of 
the contact stresses, which are variable in time from the (Lagrangian) 
point of view of a material particle that traverses the contact even in 
steady-state contacts.  
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- The distance between the contacting surfaces is small compared to the 
contact patch dimensions. This follows from the assumption of linear 
elasticity, with small strains.  

- The contact is concentrated. In this type of contact, the contact patch or 
region C has much smaller dimensions than the curvature radii of the 
surfaces of the solids around the contact, and much smaller as well than 
the dimensions of the solids. With these conditions, the contact area is 
approximately flat. This also implies that the local mechanical 
behaviour of the contacting solids at the contact level can be assimilated 
to that of the half-space.  

Under these assumptions, the structural (global) problem of each solid is 
decoupled from the local contact problem. In other words, the general stress 
state of the solid does not produce appreciable changes in the local geometry of 
the contacting surfaces, and the overall geometry and supporting conditions of 
the solids do not influence their local mechanical behaviour around the contact.  

In the following subsections, some concepts of wheel–rail rolling contact are 
introduced, that have a relevant role in the wheel–rail interaction. The focus is 
put in issues related to contact mechanics, and issues related to the wheel–rail 
geometry are not covered. Geometry related issues include the contact 
geometrical search (cf. §4.2.3.1), and the characterization of the wheel–rail and 
wheelset–track contact pairs by means of parameters (e.g. the equivalent 
conicity) that describe important properties of the railway wheelset as the basic 
constitutive unit of the railway vehicle, such as its guidance ability, comprising 
the self-centering and curve inscription abilities.  

In the absence of plastic action, it is considered here that the term ‘rolling 
contact’ implies frictional interaction. The concepts reviewed next are related to 
this interaction.  

1.1.1.1 Creepages  

The creepages are defined as the relative rigid velocities between two bodies in 
rolling contact (known also as rigid slip velocities, cf. §1.2) divided by a 
reference speed, which is normally taken as the forward speed. The creep 
phenomenon is among the most essential concepts in frictional contact 
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mechanics, and particularly in rolling contact mechanics. Its first description is 
attributed to Reynolds [Reynolds 1875], who set out the coexistence of 
adhesion and slip areas in the contact patch of two bodies in rolling contact, as 
determined by the interrelationship between the friction forces and tangential 
strains.  

The creep phenomenon is illustrated here with the two examples shown in 
Figure 1.2. The first example, shown in Figure 1.2a, is a rolling wheel, in which 
a tractive moment is applied, and which is rolling without gross slip. As shown 
in the figure, the forward velocity of the wheel V is lower than its rigid solid 
velocity calculated as the wheel rotation velocity ω times the wheel radius R. 
The difference between V and ωR is generated due to the deformation of the 
contacting bodies in the rolling direction.  

The radial lines drawn around the wheel in Figure 1.2a give an indication of the 
deformation of the wheel material in its circumferential direction, with closer 
lines indicating compressive deformation, and more separated lines tensile 
deformation. In the shown example, the ground may be considered to be rigid 
for simplicity.  

The distance advanced by the wheel is determined by the deformed dimension 
in rolling direction of the portion of its perimeter in the adhesion part of the 
contact. In the case of the rolling wheel under traction of the example, the strain 
of the material about to enter in contact is compressive, and thus must remain in 
the adhesion (“locked”) part of the contact. So, the distance advanced in one 
revolution by the wheel of the example subject to traction is lower than its 
undeformed perimeter. The effect is similar to reducing the rolling radius of the 
wheel. In the case of a braking wheel, the deformations change sign, and the 
distance advanced by the wheel in one revolution is larger than its undeformed 
perimeter. As this example shows, rigid velocity differences are compensated or 
absorbed by deformations at the contact level, without gross slip. In this 
situation, adhesion and slip areas coexist in the contact patch, as happens in the 
next example, and as shown in §2.1.2 for solids in rolling contact. In this 
situation, the contact is said to be in partial slip.  
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(a) Rolling wheel. 

 
(b) Flexible transmission belt. Adapted from Fig. 8.1 of [Johnson 1987].  

Figure 1.2. Examples of motion with creep. 

Figure 1.2b shows a 1D example of motion with creep, corresponding to a 
flexible transmission belt. This example is shown in §8.1 of [Johnson 1987]. 
Here it is explained in a slightly different way. The belt connects two pulleys 
with the same radius R, the driving pulley being the one on the right, and the 
driven pulley the one on the left. The figure shows the moment M applied on 
each pulley, the frictional forces q transmitted from each pulley to the belt, the 
rotation velocities ω1 and ω2 of the driving and driven pulleys, respectively, and 
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the belt tensions. The tension on the tight side is T1 and the tension on the slack 
side T2. The belt tensions around the contact with each pulley are depicted by 
the red lines perpendicular to the contact surfaces. The figure also depicts the 
stick and slip arcs in each pulley. It is assumed that M is sufficiently small to 
not generate complete slip in the pulleys. Assuming the same coefficient of 
friction in the contact of the belt with both pulleys, the extension of the stick 
and slip arcs are the same in both pulleys.  

It is to be demonstrated that the disposition of the stick and slip arcs in the 
pulleys is necessarily as shown in Figure 1.2b, i.e., with just one stick part in the 
side where the belt runs onto the pulley (which may be called the leading edge 
side of each belt–pulley contact) and just one slip part in the side where the belt 
runs out of the pulley (which may be called the trailing edge side). For this 
purpose, the relationship of the belt tension T is considered with the friction 
forces q transmitted between the belt and each pulley on the one hand, and with 
the belt linear velocity v on the other, as explained next:  

- Regarding the belt as a massless funicular solid, the forces acting on a 
differential portion of belt in frictional contact with a pulley are shown 
in the free-body diagram of Figure 1.3. The belt tensions on its left and 
right sections are T and T + dT, respectively. These are almost collinear 
in a differential portion of belt. The normal and tangential force 
transmitted by the pulley to the belt differential are dN and dq, 
respectively. The equilibrium of forces in the longitudinal belt direction 
yields dT = –dq, according to positive directions shown for each force 
in the figure. I.e., the belt tension decreases in the direction of motion if 
the frictional forces push the belt forward, increases if the frictional 
forces drag the belt backwards, and is not changed if no frictional force 
is transmitted to it.  

- Defining the belt extensibility λ as ε / T, being ε the longitudinal strain 
of the belt, the belt linear density ρl may be written as ρl = ρl,o / (1 + λT), 
being ρl,o the linear density of the unstretched belt. Considering the 
mass balance of the belt in a control volume around one of the pulleys, 
Eq. (1.1) may be written:  
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In this equation, v1 and v2 are the velocities of the belt in the tight and 
slack sides, respectively. So, it is seen that the belt velocity is higher in 
the tight side, to comply with mass equilibrium. A similar conclusion 
may be reached by direct application of Eq. (1.7).  

 

Figure 1.3. Equilibrium of a differential portion of belt in frictional contact with a 
pulley.  

The evolution of the belt tension around the driving pulley is considered next, in 
the direction of motion, from the tight to the slack side. The rigid velocity of the 
driving pulley is v1. The belt velocity when running into the driving pulley may 
be either larger, smaller, or equal to v1. The first two possibilities are discarded 
by the following considerations:  

- If the belt velocity were larger than v1 at the leading edge, the belt 
would have a forward slip with respect to the pulley, and would receive 
a dragging frictional force from the pulley, as the frictional force must 
be opposing the relative slip (cf. §1.2). As a result of this frictional 
force, the belt tension would increase in the direction of motion, and 
consequently also the belt velocity. Therefore, there would be slip in the 
whole belt–pulley contact. Additionally, the frictional force transmitted 
by the belt to the pulley would be in the direction of motion in the 
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whole contact, so the moment M applied to the pulley to equilibrate it 
would have to be dragging, instead of driving. So, this is not possible 
for the driving pulley in steady state.  

- If the belt velocity were smaller than v1 at the leading edge, the belt 
would have a backwards slip with respect to the pulley, and would 
receive a forward frictional force from the pulley. This would make 
both the belt tension and velocity decrease in the direction of motion. 
Therefore, in this case again there would be slip in the whole belt–
pulley contact. In this case, the frictional force transmitted by the belt to 
the pulley would be opposing the movement, and the moment M on the 
pulley would be driving. This configuration is possible only after M 
exceeds a certain threshold. But, as it has been initially assumed that M 
is sufficiently small to not generate complete slip in the pulleys, this 
must be discarded as well.  

Therefore, it is concluded that the belt and pulley velocities must coincide at the 
leading edge, and therefore the adhesion arc must be located next to the leading 
edge. From the previous discussion, it may be seen as well that once there is a 
difference between the belt and pulley velocities, the belt velocity will keep 
diverging from the pulley velocity up to the trailing edge. In other words, once 
slip starts, slip will be maintained in the same direction up to the trailing edge.  

Applying similar considerations to the driven pulley, it is concluded that the 
arrangement of the stick and slip arcs is similar to the driving pulley, as shown 
in Figure 1.2b. This is another illustrative example of how the difference of 
velocities of two rigid bodies may be compensated with elastic deformation, 
without gross slip. The arrangement of stick and slip contact areas in rolling 
contact of elastically similar solids is the same as the one of this 1D example. 
On the other hand, the tangential stress in the adhesion part is zero in this 
example, unlike in the rolling contact of solids.  

Returning to the rolling wheel case, three creepages are defined, namely the 
longitudinal ξ, lateral η, and spin φ creepages. The first two describe 
translational relative movements in the longitudinal and lateral directions, and 
the spin rotational movement normal to the contact plane. In the wheel–rail 
case, the creepages may be approximated according to Eqs. (1.2)–(1.4).  
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In Eqs. (1.2)–(1.4), some magnitudes and coordinates that are used in §1.2 are 
introduced. They are defined briefly below, and some of them are shown in 
Figure 1.4, depicting the rolling motion of a railway wheelset along a straight 
track. The ± signs in Eqs. (1.2) and (1.4) refer to the right and left wheels, 
respectively, as seen in Figure 1.4a.  

- wx,o and wy,o: components in the longitudinal and lateral directions of the 
contact plane of the rigid velocity difference of the wheel with respect 
to the rail, in the central contact point. Deformations of the bodies are 
not included in this rigid velocity.  

- V: forward velocity of the wheelset.  

- ω: magnitude of the rotation velocity of the wheel. ωz is the component 
of ω perpendicular to the contact plane.  

- Rroll: rolling radius of the wheel. It is the distance from the revolution 
axis of the wheel to the contact point (see Figure 2.4).  

- l: half the wheel base. It is the distance between the contact point of 
each wheel of the wheelset with its respective rail.  

- δ: contact angle. It is the angle between the rotation axis of the wheel 
and the contact plane.  

- Y: lateral position of the wheelset in the track.  

- ψ: yaw angle of the wheelset. It is a small angle.  

In situations of partial slip, ξ, η, and φc (being c a characteristic dimension of 
the contact patch) are of the same order as the longitudinal strains of the 
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contacting surfaces. The surface strains are in turn much smaller than unity 
within linear elasticity.  

 

 

(a) Plan view.  (b) Front view. Detail of a wheel.  

Figure 1.4. Imperfect rolling of a railway wheelset.  

1.1.1.2 Tangential contact forces  

When rolling is not perfect (i.e., in the presence of non-zero rigid velocity 
differences in the contact), tangential stresses are transmitted by friction in the 
wheel–rail contact, leading to resultant tangential forces. Thus, these forces are 
a direct consequence of creepages.  

While the tangential wheel–rail contact forces are smaller in magnitude than the 
normal ones, they influence to a large extent the dynamic behaviour of the 
railway vehicle, its guidance and stability properties. They are dominant terms 
in the equations of motion of the railway wheelset, and are the primary 
responsible for wheelset steering [Wickens 2006]. As stated in [Wickens 2006], 
without consideration of these forces, very little can be deduced about the 
dynamical behaviour of railway vehicles apart from Redtenbacher’s formula for 
the inscription of a coned wheelset on a curve [Redtenbacher 1855] and 
Klingel’s formula for the kinematic oscillation of the wheelset [Klingel 1883]. 
The tangential contact stresses also play an important role in the degradation 
phenomena in the wheel–rail interface.  

An objective of solving the wheel–rail rolling contact problem is to get the 
relationships between the creepages and the tangential contact forces. These 
relationships commonly resemble the creepage–creep force curves shown in 
Figure 1.5. Figure 1.5a shows the resultant longitudinal force Fx as a function of 
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the longitudinal creepage, in the absence of other creepages. The lateral 
creepage–creep force curve would be similar. Figure 1.5b shows the resultant 
lateral force Fy as a function of the spin creepage.  

 

 

 

(a) Longitudinal or lateral creepage–creep force 
curve.  

 (b) Spin creepage–lateral force curve.  

Figure 1.5. Creepage–creep force curves.  

As may be seen both in Figure 1.5 a and b, the creepage–creep force curves may 
be approximated as linear for small creepages. For larger creepages, the curves 
are no longer linear, and are saturated. In the curve of Figure 1.5a, Coulomb’s 
law is considered with a constant coefficient of friction. In this case, the force 
maintains a constant value once it becomes saturated above a certain creepage 
value, which corresponds to the Coulomb limit value, i.e. the coefficient of 
friction µ times the contact normal load N. The curve of Figure 1.5b in turn 
represents an effect equivalent to that of camber thrust in tire–road contact. For 
high spin values, the relevance of the elastic deformations vanishes, and the 
problem may be treated as a contact between rigid bodies. With a symmetrical 
contact patch and in the absence of viscoelastic or dynamic effects, the resultant 
tangential forces tend to zero with high spin values.  

The tangential contact stresses and resultant forces depend on the creepages but 
not on the absolute velocities, as long as the coefficient of friction does not 
depend on the slip velocity. They also depend on the normal load and friction 
conditions.  

The non-linear creepage–creep force curve relationships, together with the 
contact geometric non-linearities, are the two sources of non-linearity in the 
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wheel–rail contact. These non-linearities are usually one of the main difficulties 
in rail vehicle dynamic simulations.  

1.1.2 Conformal contact  

The most usual wheel–rail rolling contact theories rely on simplifying 
assumptions, some of which are listed in §1.1.1. One of these assumptions is 
that the contact is concentrated. As previously introduced, this implies that the 
contact patch is planar, and that the contacting bodies can be regarded as half-
spaces at the local contact level. The latter brings an important advantage with 
regards to the mathematical solution of the contact problem, as the mechanical 
behaviour of the elastic half-space is known and there are closed-form solutions 
available (cf. §2.2.1), which can be applied in many different contact problems.  

In many wheel–rail contact situations, the assumption of concentrated contact is 
reasonable and enables a simplification of the contact problem without 
introducing appreciable error. However, in some cases significantly non-planar 
wheel–rail contact patches may be encountered in realistic operating conditions. 
One of these cases is the contact between the wheel flange root and the rail 
gauge corner during inscription in tight curves, where the dimensions of the 
contact patch can be of similar magnitude as the lateral radii of curvature of 
wheel and rail, giving rise to conformal contact. Conformal contact could also 
take place with worn wheel–rail profiles. In these cases, the contact patch may 
become significantly curved in the lateral direction, and the adequacy of a 
concentrated or non-conformal contact analysis is compromised. Moreover, in 
these situations usually severe contact conditions are encountered, with high 
tractions and slip velocities, and accurate determination of these are necessary 
to properly assess the wear and fatigue damage in the wheel–rail interface.  

Conformal contact is found in applications with technological relevance other 
than the wheel–rail case, as in rolling bearings, in piston and cylinder 
assemblies in reciprocating machines, in pinned joints, in ball–socket joints and 
in hip joints. It is therefore of interest to have methods for the solution of 
conformal contact problems.  

Conformal contact entails other difficulties, apart from non-flatness in the 
contact and compromising the half-space assumption. Conforming surfaces with 
small separations imply that a precise geometric analysis becomes necessary. It 
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implies as well that small displacements and deformations may alter 
considerably the local contact geometry. Deformations that happen at the global 
or structural level in the solids could alter the local contact geometry, bringing 
about the possibility of coupling between the structural and contact problems, in 
contrast to concentrated contact problems.  

This happens, for instance, in the contact problem of a slender flat plate on a 
plane or with a similar elastic plate, bending under the action of a load applied 
in its central part, illustrated in [Dundurs 1970] and [Ciavarella 2006]; cf. 
Figure 1.6. In this case, the contact extends initially in the whole surface of the 
plate, and as the load is increased and the plate bends, contact is lost in the 
borders of the plate. This type of conformal contact, in which the contact area 
decreases as the load increases, is called a receding contact. Another example of 
conformal contact in which the structural deformations influence the contact 
solution is shown in [Sundaram 2010a]. This is a 2D cylindrical contact, in 
which the contacting cavity deforms under the action of remote (structural) 
stresses, so that the contact stress distribution is altered.  

 

Figure 1.6. A receding conformal contact problem.  

The phenomena of the above mentioned examples will not be present in the 
contact problems studied in this thesis. Here, advancing contacts between 
massive solids will be studied. So, the sections of the contacting bodies are 
sufficiently consistent to ensure that the geometry of the surfaces at the contact 
level is not significantly altered by the global deformations of the solids. As a 
consequence, in these cases the contact (local) and structural (global) problems 
may be treated as uncoupled. This can be done even if the contact occupies a 
region that may be appreciable with respect to the size of the contacting solids, 
and there is not a clear separation between the local and global stress fields.  

Lastly, a distinction between conformal and non-planar is pertinent. Non-planar 
contact problems are necessarily conformal, in the framework of linear 



1 Introduction 15 

elasticity. On the other hand, conformal contacts may be either planar or not. 
An example of planar conformal contact is the receding contact case of the 
slender beam given above. There may also be advancing, planar and conformal 
contacts, as the case with Hertzian conforming geometry and low load shown in 
§4.3.1.  

1.1.3 Vehicle–track dynamic interaction  

Mathematical modelling of the railway vehicle–track interaction has been 
stimulated by a wide range of problems. Stability, curve inscription 
performance (including derailment risk, curving forces, and wear index 
assessments) and passenger comfort analysis are some of the issues related to 
the railway vehicle. These analyses are carried out at low frequencies, at which 
the track and unsprung masses are not dynamically excited. Therefore, usually 
the track elasticity is neglected or modelled in a very simplified way in this type 
of analyses, while the vehicle is represented with multibody models, including 
details of both the unsprung and sprung masses and of the connections between 
the different bodies.  

In the case of ride comfort analysis, the dynamics of the sprung masses of the 
vehicle are of primary interest, and these are uncoupled from the track dynamics 
by means of the primary and secondary suspensions. In the case of curve 
inscription analysis, the dynamics of the vehicle’s axles normally occur at 
frequencies too low for the track to be excited dynamically, and thus, they are 
determined by the vehicle’s dynamic properties, but not by the track’s. 
However, such analyses are only valid for very low frequencies, normally 
below around 20 Hz, where the track behaves as a relatively stiff spring 
[Knothe 1993], [Popp 1999], [Nielsen 2003].  

When phenomena at higher frequency ranges need to be studied, consideration 
of track dynamics becomes necessary. This phenomena includes wheel–rail 
interaction at short–wave irregularities such as welds ([Steenbergen 2008], 
[Correa 2015], [Correa 2018a], [Correa 2018b]) and irregular wear or 
corrugation ([Sato 2002], [Grassie 2009], [Baeza 2011], [Robles 2023b]), which 
can lead to increased wheel–rail forces. These in turn lead to increased 
deterioration of the rolling stock and track components —e.g., fatigue, loss of 
track geometry, and deterioration of the wheel and rail rolling surfaces in the 
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form of rolling contact fatigue (RCF) ([Ekberg 2002], [Ekberg 2005])—, and to 
environmental problems as increased rolling noise ([Thompson 2000], [Vincent 
2000], [Thompson 2009]) and ground-borne vibration ([Jones 2000], [Lombaert 
2006], [Xia 2010], [Galvín 2010b], [Alves Costa 2012]).  

There are commercial software packages that enable the development of 
multibody models fit for the development of railway vehicle dynamic 
simulations, e.g. for the homologation of new railway vehicles (see e.g. [EN 
14363 2017]), such as SIMPACK and VI-Rail, that are used both in the 
academy and in the industry. In contrast, integrated vehicle–track dynamic 
interaction models developed with commercial software packages are not so 
common. Traditionally, when there has been a need for models capable of 
considering the dynamic interaction between vehicle and track in a 
representative way, they have been developed exclusively by the interested 
research teams, tailored for each specific study. Many examples of this can be 
found in the literature, e.g., [Wu 2004], [Xie 2008], [Otero 2009], [Jin 2008], 
[Galvín 2010a], [Correa 2012], [Di Gialleonardo 2012], [Robles 2022], [Robles 
2023a].  

Comprehensive surveys of vehicle–track interaction modelling can be found in 
[Nielsen 2003] and [Popp 2005]. Detailed discussions on the vehicle and track 
modelling are provided in [Popp 1999] and [Knothe 1993], and on the 
utilization of FEM analysis for track models in [Dietz 2002]. [Bezin 2009] also 
provides a useful overview of the problem and summarizes the options available 
within commercial railway vehicle multibody (MBS) codes. [Bezin 2009], 
[Bezin 2010] and [Gonzalez 2008] show some interesting application examples 
in which multibody models including elastic bodies are used. ADAMS Rail 
(currently VI-Rail, [VI-grade www]) is used as the analysis software in [Bezin 
2009] and [Bezin 2010], and SIMPACK ([SIMPACK Wheel Rail doc 2007]) in 
[Gonzalez 2008].  

1.1.4 Frictional contact analysis in rolling bearin gs  

The contact conditions between rolling elements and raceways determine to a 
large extent the operational limits, performance and life of rolling bearings. 
Contact mechanics is thus an essential discipline in their design and analysis. In 
well-lubricated contacts, the tangential stresses are much lower than the normal 
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pressures in the contact. As a result, the precise solution of the normal contact 
problem has traditionally received more attention than the tangential contact 
problem in rolling bearings.  

However, even in well-lubricated contacts, the issues related to the tangential 
contact problem are relevant in several aspects of rolling bearing design and 
operation. For instance, the frictional dissipation occurring in the rolling 
element–raceway contacts may be an important heating source, and call for 
limiting the operating speed to avoid excessive temperature increase in the 
bearing. It is also essential for determining the rolling torque (as stated in §14 of 
[Harris 2001], of the many components that constitute the frictional resistance 
to motion in a ball–raceway contact, sliding is the most significant), the 
transmission efficiency and the wear evolution in the running surfaces of the 
bearing. This wear may alter the profiles of the contacting surfaces, possibly 
leading to increased peak normal pressures and reduced RCF life, as was shown 
in [Oloffson 2000]. As indicated in [Harris 2001], even though the shear 
stresses acting on the rolling elements and raceway surfaces in contact are small 
compared to the normal pressures, they cannot be neglected for the 
determination of the bearing endurance with regard to fatigue, and in many 
cases, they are the most significant factor in determining the endurance of a 
rolling bearing in a given application. By way of example, in [Slack 2010] it 
was shown how relatively small levels of friction can have a noticeable effect 
on the propagation pattern of RCF spalls. More recently, it was demonstrated 
that wear in grease-lubricated spherical roller bearings cause contamination of 
the grease, which in turn accelerates wear and degradation of the bearing to 
premature replacement [Pozzebon 2020], [Lin 2021]. The frictional contact 
analysis is an essential part of this process.  

1.2 Statement of the contact problem  

An elastostatic and concentrated contact between two massive, isotropic and 
homogeneous solids is considered. With these conditions, the contact area is 
approximately flat, as previously introduced.  

The different relevant magnitudes of the problem are expressed in a local 
contact Cartesian coordinate system, with {x, y, z} axes. The x and y axes are 
contained in the contact plane, and the z axis is normal to it. The x axis is 
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designated as longitudinal, and the y axis as the lateral axis. The x axis 
coincides with the rolling direction in rolling contact problems, and the forward 
or rolling velocity V is oriented along the positive x axis. The {x, y, z} system 
follows the contact, so it becomes an Eulerian coordinate system in rolling 
contact problems. In partial slip rolling contact problems within linear elasticity 
(with small deformations), the material particles of both contacting bodies flow 
through the {x, y, z} system at an approximate velocity of V in the negative x 
direction (cf. Figure 1.9b).  

The contact problem is set out on the basis of two configurations of the 
contacting solids:  

- Reference or undeformed configuration. It includes only the rigid body 
displacements of the solids. It may include structural deflections as 
well, which are produced at a global level in the solids, with much 
smaller spatial gradients than those produced at the local contact level.  

- Final or deformed configuration. It is obtained adding the local contact 
deformations to the reference configuration.  

Figure 1.7 depicts a section of the contacting solids, identified with numbers 1 
and 2, through a perpendicular plane to the contact, showing both 
configurations. The reference configuration is shown in dashed lines, and the 
final configuration in thicker solid lines. The same figure shows an additional 
configuration in dotted lines, which may be termed as the initial one. The 
difference between the initial and reference configurations is a rigid body 
displacement and rotation.  

To better appreciate the difference between the different configurations, the 
inclinations of the surfaces of the solids are exaggerated in the figure. Marked 
in the figure are different distances in the z axis from the contact plane to the 

surfaces of each contacting solid k, k ∈ {1, 2}, which will be referred to later. hk 
and ek are the distances from the contact plane to the surfaces in the reference 
and final configurations, respectively, uzk the displacements due to elastic 
deformation, and dk the normal approach of each solid (difference between the 
initial and reference configurations). The figure shows also the real contact area 
C, and the apparent contact area Ca. Ca is obtained as the intersection of both 
solids overlapped in the reference configuration.  
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Figure 1.7. Configurations of the contacting solids, and relevant distances in the normal 
problem.  

The contact problem is set out as follows:  

- Given:  

o The geometry of the surface of each solid k, k ∈ {1, 2}, around 
the contact, described by the distance of the undeformed 
surface to the contact plane, hk = hk (x, y).  

Under the adopted starting hypotheses, the relative 
displacements between the solids around the contact are much 
lower than the dimensions of the contact zone. Consequently, 
for each surface point in the surface of one of the solids, it is 
known beforehand the homonym point in the surface of the 
other solid which may enter in contact with it. This is the one 
with the same (x, y) coordinates in the local contact coordinate 
system. It is only necessary to consider the combined 
magnitudes of both solids (that is, the ones of a solid with 
respect to the other) in the formulation of the contact problem, 
not being necessary to consider the individual ones of each 
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solid. This applies to the distances, displacements and strains 
that enter in the contact problem, as well as to their derivatives. 
For this reason, in the remainder of this section the subindex k 
of each solid will be dropped, and combined magnitudes will be 
considered unless otherwise stated.  

o The relative movement between the solids.  

It is defined considering the reference configuration of each 
solid (that is, considering the solids as rigid), and in general 
will be given by a displacement and a rotation. In rolling 
problems, velocities have to be considered as well. Considering 
a linear elastic and quasiestatic material behaviour, the 
velocities are of interest only in the tangential plane of the 
contact. The relative velocity field in this plane w = (wx, wy)(x, 
y), called also the rigid slip velocity, may be defined by only 
three normalized parameters, namely the ξ, η, and φ creepages. 
In planar contact, w is expressed as a function of the creepages 
according to Eq. (1.5). The superposition of the ξ, η and φ 
creepages is shown schematically in Figure 1.8.  

   w / V = (wx, wy) / V = (ξ – φ y, η + φ x) (1.5) 

 

Figure 1.8. Superposition of longitudinal, lateral and spin creepages in the contact 
patch.  
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Alternatively, instead of part or all of the data of the relative 
movement, there may be the resultant loads transmitted in the 
contact in the specification of the problem.  

o The coefficient of friction µ in the contact.  

It may be given through more or less complex formulations. A 
single, constant value may be considered in the whole contact, a 
static value and another dynamic one, or there may be values 
which are variable in space or as a function of some magnitudes 
that are part of the solution of the problem as the slip velocities.  

- Find:  

o The contact area C, and its division into the adhesion A and slip 
D zones.  

o The distributions of the stresses transmitted in the contact, p = 

(pi)(x, y), with i ∈ {x, y, z}.  

Once these are obtained, other magnitudes of interest may be 
obtained as well, as the displacements due to elastic 

deformation u = (ui)(x, y), with i ∈ {x, y, z}, and the slip s = 

(si)(x, y) or its velocities v = (vi)(x, y), with i ∈ {x, y}.  

- So that:  

o pz > 0, e = 0 if (x, y) ∈ C; and pz = 0, e > 0 if (x, y) ∉ C.  

The constraints referred to the normal pressures pz reflect that 
these may only be positive or zero, considering compressive 
normal pressures as positive. Contacts with adhesion are 
therefore excluded. The constraints referred to the normal 
distance e between the deformed surfaces express that there 
may not be interpenetration or overlap between the surfaces of 
the solids. Therefore, the constraints related to pz and e are 

complementary, having that e ≥ 0; pz ≥ 0; and e × pz = 0 for ∀ 
(x, y) in the boundary Γ of the solids (inside as well as outside 
the contact).  
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The constraints expressed here correspond to a “hard” 
relationship between pz and e, in which no overlap is allowed 
for any pz value. Other normal pressure–overlap constitutive 
relationships may be defined, to include the influence of 
roughness at lower scales than that of the modelled surfaces, or 
to smooth the numerical singularity of the “hard” relationship 
in the (e, pz) = (0, 0) point (cf. §5.1.2 of [Wriggers 2006] and 
§4.2.1.3).  

o ||pt|| ≡ ||(px, py)|| = g, v ≡ (vx, vy) = – λ pt (λ > 0) if (x, y) ∈ D; and 

||pt|| < g, v = 0 if (x, y) ∈ A.  

The slip velocities v may be replaced by the slips s in these 
constraints. Here it has been chosen to use v, with a view to 
rolling contact problems.  

g is the adhesion limit for each contact point. It is defined as µ 
× pz according to Coulomb’s law for dry friction. According to 
Coulomb’s law as well, the slip takes place in the direction to 
the tangential stress pt in each point. This could be generalized 
to an anisotropic friction law, considering different coefficients 
of friction in each direction. This could be relevant for textured 
surfaces for instance, with directional roughness patterns.  

As the constraints related to pz and e, the constraints related to 

pt and v are complementary, having that ||v|| × (g – ||pt||) = 0 ∀ 

(x, y) ∈ C, and A ∩ D = ∅. Here also other constitutive 
relationships between pt and v may be defined, different to the 
“hard” one expressed by the preceding constraints.  

These constraints introduce higher difficulty in the contact 
problem that the ones of pz and e, because they are non-linear, 
and because in this case the number of unknowns is doubled as 
there are two-component vectors instead of scalars.  

To complete the formulation of the problem, it is also necessary to know the 
constitutive relationships between the elastic displacements u and the stresses p 
in the surface of the solids. These may be expressed generally according to Eq. 
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(1.6). In this equation, ιij are the influence functions (IFs) of the solids, which 

relate the displacements in i direction ui with the stresses in j direction pj; i, j ∈ 
{ x, y, z}. The integral in the equation is extended in the region C of the surface 
Γ of the solid which enters in contact, where the contact stresses pj in general 
are non-zero. In concentrated contacts, the half-space IFs are applicable. These 
concepts are further elaborated in §1.3.  

 ( ) ( ) ( ) ( )∫∫ ∑∈
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The contact problem is divided into the normal and tangential parts.  

- The normal part consists on obtaining the contact area C and the 
distribution of pz inside it, taking into account the constraints of pz and 
e. The fundamental inputs are the normal undeformed distance function 
h(x, y), and either the normal approach between the solids d or the 
resultant normal load transmitted in the contact.  

Inside C, the constraint e = 0 is fulfilled. Additionally, e = h – d + uz, as 
may be observed in Figure 1.7. Therefore, in C: uz = d – h.  

- The tangential part consists on obtaining the adhesion A and slip D 
areas inside C, and the distribution of pt in them, taking into account the 
constraints of pt and v. The fundamental inputs are the rigid slip 
velocity field w in the contact tangential plane, and the field of the 
adhesion limit g.  

The relative movement between the contacting solids may be 
decomposed into the solid rigid movement (corresponding to the 
reference configuration) and the one associated to the displacements 
due to elastic deformation (difference between the final and reference 
configurations). Then, Eq. (1.7) may be written for the total velocity v:  
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The derivative of the second term of the middle is written in capital D 
to denote that it is a Lagrangian derivative, i.e., associated to the 
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material particle. The rigid slip velocity w and total velocity v are 
represented for a material particle P in the reference and final 
configurations, respectively, in Figure 1.9a.  

When applied to the adhesion part of the contact (with v = 0), Eq. (1.7) 
states that rigid velocity differences are compensated or absorbed by 
deformations at the contact level, as illustrated in the rolling wheel 
example of Figure 1.2a. 

The approximation of the last term of Eq. (1.7) holds for partial slip 
contact problems with small deformations, in which case the velocity at 
which the material particles flow through the local contact system 
approaches V in the negative x direction, as previously stated and 
illustrated in Figure 1.9b. The convective term –V ∂u / ∂x appears in 
rolling contact problems, and is zero in static (compression or shift) 
contact problems. This term loses precision in rolling problems with 
gross slip. But in this case, the total velocity field is dominated by rigid 
slip as Kalker pointed out [Kalker 1990], [Kalker 2001], v ≈ w, and it is 
not critical to approach correctly the Du / Dt term.  

 

 

 

(a) Tangential velocities in the reference and final 
configurations of the solids.  

 
(b) Flow of material particles through 
the Eulerian local contact coordinate 
system in rolling contact problems.  

Figure 1.9. Tangential contact velocities.  

A major difficulty for the contact problem solution is that the previously stated 
contact conditions are applicable to different regions (contact and exterior areas 
for the normal problem, and adhesion and slip areas for the tangential problem), 
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which are not known beforehand. So, in general, some iteration is necessary to 
find the correct division of areas and consequently the correct set of equations 
that define the problem.  

In the most general case, the contact normal pressures cause tangential 
displacement differences ux, uy, in the contacting surfaces in addition to normal 
displacement differences uz. And vice versa, the contact tangential stresses 
cause normal displacement differences in addition to tangential ones. If this is 
the case, the normal and tangential contact problems are coupled. However, this 
is not the case of many technical applications, with concentrated contacts and 
elastically similar materials, as the wheel–rail case. In this case, due to 
similarity, the normal pressures do not cause tangential displacement 
differences, and the tangential stresses do not cause normal displacement 
differences. Consequently, the normal and the tangential contact problems are 
uncoupled, and may be solved independently. This facilitates the solution of the 
frictional contact problem. The mentioned similarity principle is known as 
quasiidentity, and is illustrated in Figure 1.10 for the case of two contacting 
surfaces transmitting a tangential contact force F. Here it is shown how normal 
elastic displacements uz caused in the surface of each solid cancel out with the 
corresponding uz displacements caused in the other surface by the reciprocal 
tangential force.  

 

Figure 1.10. Illustration of quasiidentity for elastically similar solids subject to contact 
tangential stresses.  

Due to the mentioned uncoupling between the normal and tangential contact 
problems, wheel–rail contact models are sometimes developed targeted at the 
solution of one of the parts of the contact problem, and may be designated as 
either normal or tangential contact models. Some of these models are reviewed 
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in §2.1.1 and 2.1.2, respectively. Normal contact models may be limited to the 
solution of the normal contact problem, while tangential contact models 
necessitate the previous solution of the normal contact problem to get the 
traction bound g.  

1.3 Contact mechanical behaviour of the elastic 
solid  

1.3.1 Influence functions and influence coefficient s  

As seen in §1.2, in the statement of the contact problem it is necessary to 
provide a relationship between the displacements due to elastic deformation in 
the contact surfaces and the stresses transmitted in the contact; cf. Eq. (1.6). ιij 
are the influence functions (IFs) which provide the constitutive relationship 
between the displacements and the stresses. Therefore, these functions 
characterize the mechanical behaviour of the elastic solid around the contact.  

For contact problems, the displacement differences or relative displacements in 
the surface of the contacting bodies are of especial interest, as stated in §1.2. 
Designating the contacting bodies with numbers 1 and 2, these displacement 
differences ui (with i = x, y or z) are defined according to Eq. (1.8), where uk

i (x, 
y) stands for the displacement in direction i of point (x, y) of the surface of body 
k (with k = 1 or 2). The positive direction of the z axis is defined here pointing 
into body number 2.  

 ui(x, y) = u2
i(x, y) − u1

i(x, y) (1.8) 

Accordingly, both combined ιij and individual ιkij IFs may be considered. The 
combined ιij IFs may be easily deduced from the ι

k
ij IFs, taking into account that 

the contact stresses act with opposite sign in each of the bodies (by Newton’s 3rd 
law).  

In general, the IFs ιkij depend at least on the geometry of the solid and the 
mechanical properties of the material, and change as a function of point x where 
the load is applied and point x'  where the displacements or other relevant 
magnitudes are observed. On the other hand, here it is considered that the 
material behaviour is linear elastic. In these conditions, the IFs do not depend 
on the stress levels nor on the applied loads in different points of the solid.  
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Moreover, the inertial effects in the vicinity of the contact are neglected. That is 
to say, it is considered that the stresses pk

j in the surface of solid k are applied 
quasi-statically, in such a way that the IFs ι

k
ij are independent of the rate of load 

change and of its movement velocity on the surface of the solid. For this 
hypothesis to be valid, it is necessary on one hand that the applied loads are not 
shock-like, with very high change rates. §11.4 of [Johnson 1987] deals with the 
conditions under which this hypothesis may be considered valid. On the other 
hand, it is necessary that the movement velocities of the loads over the surface 
of the solid are much lower than the wave propagation velocities in the elastic 
solid, as is explained in [Johnson 1987] (§11.6) and in [Wang G 1989]. Taking 
into account that the wave propagation velocities in steel are on the order of 
thousands of meters per second, this premise is fulfilled for the case of wheel–
rail contact at realistic travel speeds.  

Under the above assumptions, Eq. (1.6) expresses a linear and instantaneous 
superposition. The influence coefficients (ICs) are defined from the IFs, upon 
the spatial discretization of the integral of Eq. (1.6) (cf. Eq. (2.100)). They relate 
the response of the elastic solid with distributed loads applied in finite elements 
of its surface, and may be obtained integrating the product of the corresponding 
IFs and the shape function of the distributed load in the loaded element. Making 
use of the superposition principle at the loaded element level, it may be written:  

 ( ) ( ) ( )∫∫=
eS ij

k
ij

k dXdYYXTzYXzyxIC ,,,,, ι  (1.9) 

Being ICk
ij the IC associated to the IF ιkij (with i, j = x, y or z) and T(X, Y) the 

shape function which defines the distribution of the unitary load in the surface 
Se of the loaded element, which centre is in the point (x, y, 0). The observation 
point is defined here to be located at (x, y, z) = (0, 0, z). The ICs of the 
displacement differences, ICij, are obtained in a similar way from the ιij IFs.  

1.3.2 The elastic half-space  

The solid domain delimited just by a plane in its free surface is termed as elastic 
half-space. For this particular case, the Green’s functions or influence functions 
which provide the responses (displacements, strains or stresses) of the half-
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space to point loads applied in the surface are available analytically. The IFs of 
the surface displacements of the half-space are reviewed in §2.2.1.  

As previously stated, in concentrated contact problems between elastic solids in 
which the elastic displacements are sufficiently small for the linear theory of 
Elasticity to hold, the dimensions of the contact zone are much smaller than the 
characteristic dimensions of the contacting bodies and their curvature radii 
around the contact. In these conditions, the resulting elastic field is highly 
concentrated around the contact zone, so that the region of practical interest 
from the contact mechanics point of view is limited to this zone ([Johnson 
1987] §2.1). As the contact zone is much smaller than the curvature radii of the 
surfaces and the contacting solids, it may be considered that this zone, as well 
as the adjacent parts of both solids, are nearly flat. From this it follows that it is 
valid to assume that the solids behave like half-spaces in the vicinity of the 
contact, regardless of their global geometry and supporting conditions. This 
hypothesis, which is used (not exclusively) in the Hertzian contact theory, is 
very convenient, as it allows to use directly the IFs of the elastic half-space, 
known and available in analytical form, in a great variety of contact problems. 

1.4 Objectives  

The following objectives are set out for this thesis:  

• Develop comprehensive vehicle–track interaction models with 
commercial MBS and FE software packages. These models should 
provide a realistic representation of the track flexibility in a wide 
frequency range.  

• Develop accurate wheel–rail contact mechanics models with the 
capacity to treat conformal contact.  

• Carry out an analysis of the mechanical behaviour of non-planar elastic 
solids at the local contact level, assessing the differences with respect to 
the half-space. Related to this, the determination of ICs of solids with 
non-planar surfaces is to be addressed.  

• Conduct an in-depth analysis of wheel–rail conformal contact, 
identifying the distinctive features of conformal with respect to non-
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conformal contact. It is aimed as well to assess the errors incurred in 
different contact outputs when disregarding some of the effects of 
conformity in different conformal contact situations.  

• Demonstrate the application of the developed contact mechanics models 
in the rolling bearing case.  

1.5 Thesis layout  

The thesis is organized as follows.  

Chapter 2 provides a state-of-the-art review of the main topics studied in this 
thesis, focused on the development of comprehensive contact mechanics models 
with the ability to deal with conformal contact. This includes wheel–rail contact 
models, IFs of the elastic solid, numerical analysis of rolling contact, conformal 
contact, and contact mechanics analysis in rolling bearings.  

In Chapter 3, dynamic models for the study of vertical vehicle–track interaction 
are developed with commercial MBS and FEM analysis packages. These are 
time-domain models, and have the capability to consider detailed and non-linear 
characteristics of both the vehicle and the track, e.g., hanging sleepers, and 
interaction between different wheelsets. The developed models are used to 
conduct a comparative study of the dynamic performance of different tracks.  

Chapter 4 is devoted to the development of numerical contact mechanics 
models for conformal contact analysis. These include a version of Kalker’s 
exact contact theory that has been named as CECT (Conformal Exact Contact 
Theory), and Finite Element (FE) models for detailed contact mechanics 
analyses. Detailed descriptions are given of the extensions for conformal 
contact implemented in CECT, and of the necessary tuning of the FE models for 
reliable results. The development is initially aimed at the wheel–rail case, but in 
Chapter 7 the application to the rolling bearing case is demonstrated.  

Chapter 5 treats the calculation of ICs for non-planar solids, being this one of 
the major difficulties associated to the application of the exact contact theory to 
conformal contact analysis as opposed to concentrated contact. The chapter 
includes new analytical results for the half-space.  
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Chapter 6 presents a detailed study of wheel–rail conformal contact, covering 
both the normal and the tangential parts of the contact problem. The study is 
based on numerical analyses carried out with the models and ICs developed in 
Chapters 4 and 5. The characteristics brought about by conformity and the 
differences with respect to non-conformal contact are assessed. A geometrical 
analysis of the undeformed distance between two non-planar surfaces of bodies 
of revolution is also carried out.  

Chapter 7 demonstrates the application of the developed numerical contact 
models for the analysis of rolling contact in rolling bearings. This contrasts with 
the much simpler contact mechanics models commonly used in this application. 
With these models, a study is carried out of the roller–raceway rolling contact in 
a spherical roller bearing.  

Lastly, in Chapter 8 the outcomes from the investigation carried out in this 
thesis are compiled, perspectives for future works are outlined, and the 
publications that have resulted from this work are listed.  

 

 



 

Chapter 2  

2. State of the art  

Chapter summary  

This chapter provides a review of some contact mechanics analysis topics, 
mostly focused on the wheel–rail application. Firstly, the development of 
wheel–rail contact models is reviewed. Afterwards, an overview of known 
analytical solutions of influence functions for elastic solids is given. In addition, 
brief historical remarks are provided on the numerical analysis of rolling 
contact and on the analysis of conformal contact. Lastly, a review of contact 
mechanics analysis in rolling bearings is carried out.  



32 2.1 Wheel–rail contact models 

2.1 Wheel–rail contact models  

The rigorous solution of the contact problem involves considerable complexity, 
as discussed in §1.1.1. Wheel–rail contact models aim to simplify the contact 
problem solution, while retaining acceptable precision. The level of required 
precision and detail depends on the application and purpose of the study. A high 
level of detail and accurate contact stress and micro-slip distributions may be 
required for the study of contact degradation phenomena such as wear and 
rolling contact fatigue (RCF). On the other hand, in rail vehicle dynamic 
studies, usually interest for the output of the contact computation is limited to 
the resultant contact forces, getting reasonable representations of the creepage–
creepage force relationships (cf. Figure 1.5). Additionally, each dynamic 
simulation involves the solution of many wheel–rail contact problems. This is 
so because the high contact stiffness calls for short time steps to preserve 
stability of the numerical integration of the dynamic equations, and multiple 
wheel–rail contact problems have to be solved in each step (the corresponding 
to each wheel–rail contact pair of the simulated vehicle). So, in this case 
emphasis is placed on saving computational cost.  

Figure 2.1 shows the set out of the wheel–rail contact problem, having as inputs 
the wheel and rail geometries as well as their relative positions and velocities, 
and as final outputs the resultant contact forces. For its solution, the contact 
problem is usually split into its normal and tangential parts, as explained in 
§1.2. The normal problem is solved first, and subsequently the tangential 
problem. This is represented in the central part of Figure 2.1. The solution of the 
normal contact problem requires the previous solution of the contact search 
geometrical problem, to locate the wheel–rail contact patch. This review is 
focused on contact mechanics models, and algorithms for the geometric contact 
search are not covered. Some aspects of the geometric contact search are 
discussed in §4.2.3.1.  

The tangential problem has as inputs part of the solution of the normal problem, 
in addition to the wheel–rail relative kinematics. When there is some coupling 
between the normal and tangential contact problems, it may be necessary to 
solve the normal problem again taking into account the previous solution of the 
tangential problem. This is represented by the arrow in parenthesis from the 
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tangential to the normal problem. It may then be necessary to solve iteratively 
both problems, until the correct solution to the coupled normal-tangential 
contact problem is found.  

After the detailed solution of the normal and tangential contact problems, the 
resultant contact forces may be computed in a postprocessing step, by 
integration of the contact stresses. The resultant contact forces are represented 
in the right of Figure 2.1 by a normal force N, a tangential force T, and a 
moment Mz.  

Some wheel–rail contact models aim at computing the resultant contact forces 
directly, without going through the detailed solution of the normal and 
tangential contact problems. This is represented by the dashed arrow from the 
left to the right hand side of the figure.  

 

Figure 2.1. Set out of the wheel–rail contact problem. 

In the following subsections, models for the solution of the wheel–rail normal 
and tangential contact problems are reviewed. Some of the models are aimed at 
providing just resultant contact forces, and others provide contact stress 
distributions as well. Another review of wheel–rail contact models is provided 
in [Meymand 2016]. Earlier reviews and historical briefs may be found in 
[Kalker 1979a], [Kalker 1991], [Piotrowski 2005], [Ayasse 2006] and [Knothe 
2008].  

The contact {x, y, z} Cartesian coordinate system defined in §1.2 is used.  
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2.1.1 Normal contact  

The Hertz theory and three popular non-Hertzian contact models used for the 
solution of the wheel–rail normal contact problem are reviewed here. The Hertz 
theory is the first known contact mechanics theory, and it is an exact and fast 
model. It is widely used for contact calculations in many applications, e.g. in the 
verification of wheel–rail contacts in cranes in [EN 13001-3-3 2014].  

Non-Hertzian contact models arise for application in cases in which the Hertz 
theory cannot be accurately applied, i.e., with non-constant curvatures of the 
contact surfaces. The three non-Hertzian contact models reviewed in this 
section assume a semi-Hertzian representation of the undeformed normal 
distance h, with its principal directions aligned with the rolling (x) and lateral 
(y) directions of the contact coordinate system, described according to Eq. (2.1). 
In this equation, h0 may be a general (not necessarily quadratic) function. Rx is 
the combined curvature radius in x direction, calculated as 1 / Rx = 1 / Rx1 + 1 / 
Rx2, with Rx1 and Rx2 being the longitudinal curvature radius of each contacting 
surface.  
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2
,
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0 +=  (2.1) 

All the normal contact models presented here are applicable for frictionless 
contact, or in cases where quasiidentity may be applied.  

2.1.1.1 Hertz theory  

Contact mechanics is considered to have started with the publication of 
Heinrich Hertz’s paper “On the contact of elastic solids” [Hertz 1882]. In this 
work, the solution for the frictionless contact between two ellipsoids is given. 
Apart from the hypotheses for the contact problems set out in §1.1.1, it is 
considered that the contact surfaces are quadratic, i.e., with constant curvatures 
around the contact. The undeformed distance from the contact plane to the 
surface of each body, hk, is described then according to Eq. (2.2). In this 
equation, xk, yk are the principal axes of the surface of each body, and Ak and Bk 
are half of the corresponding principal curvatures. I.e., Ak = 1 / (2 Rxk), and Bk = 
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1 / (2 Ryk), being Rxk and Ryk the curvature radii of surface k (k ∈ {1, 2}) in x and 

y directions, respectively.  

 ( ) 22, kkkkkkk yBxAyxh += ;   k ∈ {1, 2} (2.2) 

It is assumed an elliptical contact area C with semi ellipsoidal contact pressure 
distribution pz according to Eqs. (2.3) and (2.4); see Figure 2.2. The x and y axes 
in these equations correspond to the principal directions of the contact ellipse, 
which are in general different from the xk, yk axes of each surface. Note also that 
these x, y axes are in general different from the contact x, y axes defined in §1.2.  
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(a) Elliptical contact patch.   
(b) Semi-ellipsoidal contact pressure 
distribution.  

Figure 2.2. Hertzian normal contact solution.  

The surface normal displacements are calculated applying Eq. (1.6), with the 
Boussinesq IF of the half-space (cf. Eqs. (2.107) and (2.112)) and the normal 
pressure distribution of Eq. (2.4). The resulting integral has a closed-form 
solution, as expressed in Eq. (2.5).  
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In this equation, νk, Gk and Ek are the coefficient of Poisson, the shear modulus, 
and the Young’s modulus of body k, respectively. KL, KM, and KN are given in 
Eqs. (2.6)–(2.8) in terms of elliptic integrals. In these equations, K (e) and E(e) 
are complete elliptic integrals of the first and second kind, respectively, and e is 
the eccentricity of the contact ellipse, given by Eq. (2.9). As can be seen in the 
equations, KL, KM and KN depend only on the size and shape of the contact 
ellipse and on the maximum contact pressure po (which are unknowns in the 
normal contact problem).  
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Eq. (2.10) gives the combined normal displacements uz. This is obtained 
applying Eq. (2.5) to the two contact surfaces. In this equation, E* is the 
combined effective Young’s modulus of the two bodies, given in Eq. (2.11).  
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On the other hand, applying the displacement compatibility equation for the 
normal contact problem (cf. §1.2), Eq. (2.12) is obtained. It is apparent in this 
equation that the principal axes of the normal undeformed distance function h 
are the same as the principal axes of the contact ellipse. The combined curvature 
parameters A and B are calculated according to Eqs. (2.20) and (2.21).  

 ( ) 22, ByAxdhdyxuz −−=−=  (2.12) 

Equating terms of Eqs. (2.10) and (2.12), the equalities of Eq. (2.13) are 
obtained, by which the normal contact problem is solved.  
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In these equations, the usual inputs are A, B, and either the normal approach d 
or the normal load N, and the usual outputs are a, b, and either N or d. The 
difficulty in these equations is that the unknowns appear in the right-hand terms 
in a non-linear form, inside elliptic integrals, which cannot be analytically 
solved for. In practice, precalculated tables are used, that give non-dimensional 
coefficients m, n, and r as a function of the single non-dimensional geometry 
parameter cos(θ), given in Eq. (2.14). cos(θ) varies between 1 and 0, i.e., θ 
varies between 0º and 90º. The outputs a, b and d are proportional to m, n, and 
r, according to Eqs. (2.15)–(2.17).  
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Precalculated tables for m, n, and r may be found e.g. in [Cooper 1968] (Table 
AI), [Roark’s 2002] (Table 14.1), [Pascal 2007b] (Tables 1 and 2, including 
only m and n values), and [Thompson 2009] (Table 5.1). Equations for these 
parameters in terms of the complete elliptical integrals K (e) and E(e) and the 
contact ellipse eccentricity e may be found in [Thompson 2009] (Eqs. 5.41, 
5.42, and 5.46 for m, n, and r, respectively).  

The a and b semiaxes of the contact ellipse must be assigned to the x and y 
directions as a function of the geometry, considering that if A > B, then the 
ellipse semiaxis along x is smaller than the one along y. Extended tables may be 
constructed with θ going from 0 to 180º, using the property m(A/B) = n(B/A) 
(and, obviously, r(A/B) = r(B/A)), with which it is not necessary to pay attention 
to this assignment. With these extended tables, a may be always assigned to the 
x axis, and b to the y axis.  

po is related to N and the size of the contact ellipse according to Eq. (2.18), 
where pm is the mean contact pressure. With this relation and Eqs. (2.15)–(2.17), 
other equations may be worked out relating po, N, E*, d, and the size of the 
contact ellipse. Some useful Hertzian relations for 2D and 3D contact, as well as 
results for subsurface stresses, may be found in [Johnson 1987], [Roark’s 2002] 
(§14), and [Pilkey 2005] (§9), for instance.  
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From the Hertzian equations (2.15) and (2.16), it may be observed that the 
geometry of the contact ellipse depends primarily on the curvatures of the 
contact surfaces, and not so much on the load, which appears elevated to the 
power of (1/3). The surface curvatures may change broadly, being equal to the 
second derivative of the surface profiles. Another observation is that the shape 
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of the contact ellipse (the ratio between its principal axes a / b) does not depend 
on the load nor on the elastic properties. It only depends on the A / B ratio, i.e., 
on the ratio of the principal curvatures of the combined undeformed distance. 
For not too eccentric contact ellipses, a / b may be approximated with Eq. 
(2.19). The exponent of 2/3 is replaced by 0.63 in [Ayasse 2006] (Eq. 4.8).  
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The parameters A and B, which define the combined undeformed distance as h 
= A x2 + B y2, are calculated from the individual curvatures of the contact 
surfaces and their relative orientation with Eqs. (2.20) and (2.21). The 
subindexed C variables in these equations are the individual principal 
curvatures of each body (i.e., the inverse of the corresponding curvature radii). 
Concave curvatures are negative. γ is the angle between the principal planes of 
curvature of both contacting bodies, as shown in Figure 2.3.  
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The angle β defining the principal planes of the combined undeformed distance 
may be obtained with the geometrical analysis shown in Appendix 2 of 
[Johnson 1987]. Following that analysis, Eqs. (2.22) and (2.23) are obtained.  
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Figure 2.3. Orientation of the principal curvature planes of two contacting quadratic 
surfaces, and of their combined normal undeformed distance.  

In the particular cases of a sphere of radius R on a plane, and of two crossed 
cylinders at 90º with the same radius R, 1 / R = A + B. In the case of two crossed 
cylinders with the same radius crossed at an angle γ, Cx1 = Cx2, and Cy1 = Cy2 = 
0. In this case, it may be shown with Eqs. (2.20) and (2.21) that the angle θ 
defined in Eq. (2.14) is equal to γ.  

In wheel–rail contact, see Figure 2.4, designating the rail as body 1 and the 
wheel as body 2, Rx1 = ∞, Rx2 = Rroll / cos(δ), and γ ≈ 0. Rroll and δ are the rolling 
radius and the contact angle, respectively. The approximation of Eq. (2.24) may 
be usually applied. In addition, as γ ≈ 0, β ≈ 0 may be assumed in some cases, 
implying that the principal directions of the undeformed distance function are 
assumed to be aligned with the principal directions of the wheel and rail 
surfaces, which are approximately aligned with the x and y directions of the 
contact coordinate system. These approximations are not precise in case of 
conformal contact in lateral direction, especially if the lateral curvature radii are 
much smaller than the longitudinal ones. The non-applicability of β ≈ 0 in 
conformal contact is further treated in §6.1.2 and §6.2.1.2.  
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Figure 2.4. Rolling radius and contact angle in wheel–rail contact. 

2.1.1.2 Kik & Piotrowski  

The Kik & Piotrowski model ([Kik 1996], [Piotrowski 2008]) computes the 
overlap of the undeformed surfaces with some corrections as shown 
schematically in Figure 2.5, assuming a semi-Hertzian geometry as given in Eq. 
(2.1). The mentioned corrections are done so that in Hertzian cases the resulting 
contact patch approaches as closely as possible the corresponding Hertzian 
ellipse, as follows:  

- Approach correction: a corrected, reduced approach, dc, is used, instead 
of the theoretical one d. This correction is intended to adjust the size of 
the contact patch, considering that the apparent contact area Ca 
(obtained with the undeformed overlapped surfaces) is bigger than the 
real contact area C (cf. Figure 1.7). It is verified empirically that an 
adequate value for dc is dc ≈ 0.55d, for not too eccentric contact ellipses. 
For a circular contact, it may be easily verified that the exact solution is 
obtained with dc = 0.50d.  

- Form correction: with a Hertzian undeformed distance function defined 
with its principal half curvatures A0 and B0 in x and y directions, the 
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width W to length L ratio of the obtained elliptical overlap with the 
uncorrected geometry complies with Eq. (2.25). On the other hand, the 
width to length ratio of the real contact patch is a different function of 
the A0 / B0 ratio, according to Hertzian theory (cf. §2.1.1.1), as 
expressed generically in Eq. (2.26). In this equation, n0 and m0 are the n 
and m Hertzian coefficients, respectively, defining each the size of each 
axis of the contact ellipse, corresponding to the Hertzian undeformed 
distance with A0 and B0 half curvatures.  
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The purpose of the form correction is to achieve an overlap with 
corrected width Wc and length Lc, with the same width to length ratio as 
the real contact patch. For a Hertzian case, this implies that Wc and Lc 
must comply with the relation given in Eq. (2.27).  
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The Wc and Lc values given in Eq. (2.28) comply with this relation, and 
in addition, Lc Wc = L W. Here, L and W are the dimensions of the 
overlap obtained with the uncorrected geometry and the corrected 
approach dc. In a general non-Hertzian case, the n0 / m0 ratio necessary 
to calculate Wc and Lc is obtained from Hertzian theory as a function of 
(W / L)2, i.e., replacing A0 / B0 with (W / L)2 in Eq. (2.26), according to 
Eq. (2.25).  

  00 mLWnWc = ; 00 nLWmLc =  (2.28) 

To obtain the corrected overlap with Wc and Lc overall dimensions, a 
modified undeformed distance function is used, with corrected 
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longitudinal curvature radius Rx,c, and lateral profile h0,c (y'), calculated 
according to Eqs. (2.29) and (2.30).  
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Eq. (2.29) is easily verified as follows. The distance from the x = 0 
position (i.e., the position with maximum overlap) to the leading and 
trailing limits of the contact patch, xl(y) and xt(y), is the same by 
symmetry along x, according to the assumed semi-Hertzian geometry. 
The longitudinal half curvature of the corrected geometry, Ac = 1 / (2 
Rx,c), multiplied by either xl

2 or xt
2, must be equal to dc – h0,c(y') in any 

lateral position. At the lateral position of maximum interpenetration, |xl| 
and |xt| are maximum and equal to Lc / 2, h0,c(y') = 0, and it is verified 
that Ac xl

2 = dc.  

In Eq. (2.30), the corrected lateral profile h0,c is calculated mapping the 
original profile h0 on a modified lateral coordinate y', which is obtained 
by factoring the original lateral coordinate y with the Wc / W ratio. yo in 
this equation is the lateral coordinate with maximum interpenetration.  

xl(y) and xt(y) are calculated in each lateral position applying Eq. (2.1) together 
with the condition dc = hc, with the corrected parameters Rx,c, dc, and h0,c(y'). 
This results in Eq. (2.31).  

 ( ) ( ) ( )( )yhdRyxyx cccxtl ,0, ;0max2 −×=−=  (2.31) 
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Figure 2.5. Computation of the contact patch as the interpenetration region of the 
undeformed surfaces with corrected approach, longitudinal and lateral dimensions in the 
Kik & Piotrowski normal contact model.  

The normal pressure distribution in the contact patch is calculated assuming 
elliptical variation in longitudinal direction, and Hertzian proportionality with 
the longitudinal dimension of the contact patch in each lateral position. I.e., 
being po the maximum normal pressure in the contact patch (which takes place 
at the point of maximum overlap), and xl(y) the half longitudinal dimension of 
the contact patch at lateral position y, the maximum normal pressure along the 
strip located at lateral position yi is given by Eq. (2.32). It follows that the 
pressure distribution throughout the contact patch is given by Eq. (2.33).  
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Once the form of the pressure variation is known, its maximum po may be 
determined by imposing the displacement compatibility condition that the 
elastic deformation at the point of maximum overlap (where h = 0) must be 
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equal to the approach d. For this purpose, the product of pz(x, y) with the 
Boussinesq IF of the normal surface displacements is integrated in the 
computed contact patch (for a general non-Hertzian case, this integration is 
carried out numerically), leaving po as the only unknown in the resulting linear 
equation. After determining po, the normal load N is determined by integration 
of the normal pressures. In this way, the relation between N and d is obtained.  

2.1.1.3 STRIPES  

In a similar way as the Kik & Piotrowski method, the STRIPES method 
([Ayasse 2005], [Quost 2006]) is based on the virtual interpenetration of the 
undeformed wheel and rail surfaces, with some corrections. In this case, the 
contact patch is discretized in longitudinal strips, and each strip i may have its 
particular values of longitudinal and lateral half-curvatures, Ai and Bi, and 
contact angle αi. Thus, non-planar contact areas may be considered.  

The Bi values are limited to a small positive value, so cases with concave lateral 
curvatures like the one shown in Figure 2.6 are out of the scope of this model.  

 

Figure 2.6. Contact surface with concave lateral curvature. 

Figure 2.7 shows schematically the division in strips of the undeformed 
overlapped contact surfaces, as well as the overlaps and surface inclinations α1, 
α2, of each strip.  
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Figure 2.7. Overlap and surface inclination of each contact patch strip in STRIPES 
method. Adapted from [Quost 2006].  

The corrected approach dc is defined as dc = ε d, being ε a factor depending on 
the geometry. The following two options for the approach and form corrections 
are proposed:  

- Correction of only longitudinal half-curvatures Ai, and filtering of the 
lateral curvatures Bi. This is carried out in such a way that the contact 
patch obtained with a Hertzian geometry corresponds exactly to the 
Hertzian contact ellipse. ε is calculated according to Eq. (2.34). The 
subscript 0 in this equation denotes parameters corresponding to the 
strip with maximum overlap. n and r are non-dimensionless Hertzian 
coefficients that together with m define the contact ellipse and the 
approach in the Hertzian theory according to Eqs. (2.15)–(2.17).  
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The corrected longitudinal curvature in each strip, Aci, is calculated 
according to Eq. (2.35). The subindex i denotes parameters calculated 
with the local geometry of each strip i.  
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The filtering on the lateral half-curvatures Bi is physically justified by 
the interaction between the different strips.  

- Compensation of longitudinal and lateral half-curvatures, Ai and Bi. 
This is carried out imposing that the sum of the corrected longitudinal 
and lateral curvatures in each strip is equal to the sum of the 
uncorrected values, i.e., Aci + Bci = Ai + Bi. Eqs. (2.36)–(2.38) give the 
expressions for ε, Aci and Bci.  
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The semi-Hertzian normal pressure distribution is given by Eq. (2.39).  
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poi in Eq. (2.39) is the maximum normal pressure in strip i. It is given in Eq. 
(2.40), which is based on the Hertzian relationship given in Eq. (2.41). In the 
latter equation, dNi / dy is the integrated normal load in strip i per unit strip 
width.  
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2.1.1.4 ANALYN  

The ANALYN method [Sichani 2014] is based on the virtual overlap between 
the wheel and rail semi-Hertzian surfaces. The correction of the undeformed 
normal distance function h(x, y) for the calculation of the virtual overlap is 
carried out adding a term ζ(x, y) which varies in the same proportion as h. This 
correction is defined generalizing the surface deformations for the Hertzian case 
(with h = A x2 + B y2) given in Eq. (2.5) to a semi-Hertzian case, in which h is 
given by h = A(y) x2 + h0(y). The correction term ζ and the corrected h function 
used for the calculation of the virtual overlap, hvo, are given in Eqs. (2.42) and 
(2.43), respectively.  
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2, βαζ +=  (2.42) 
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The α(y) and β(y) correction functions are given by Eqs. (2.44) and (2.45), 
respectively. These are calculated so that in a Hertzian case the obtained contact 
patch matches with the Hertzian contact ellipse. The contact patch half-length in 
each lateral position y is given by Eq. (2.46). The dependence of the different 
parameters with the lateral position y is indicated explicitly in the equations. 
The Hertzian coefficients m, n, and r are calculated accordingly with the local 
curvatures.  
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In this case, a correction for the approach d is not carried out. I.e., d in Eq. 
(2.46) corresponds directly to the approach, and coincides with the maximum 
overlap, as illustrated in Figure 2.8.  

The correction term ζ(x, y) is designated as an approximation of the surface 
deformations in [Sichani 2014], though this term is not really a deformation: it 
is 0 at the point of maximum overlap, increases with h, and the displacement 
compatibility condition (e = h – d + uz) inside the contact is not fulfilled with 
the deformations approached with this term.  

 

Figure 2.8. Corrected undeformed distance profile and overlap in ANALYN method. 

As in the STRIPES method, the contact patch is discretized in longitudinal 
strips. The Bi half-curvatures are also limited to a minimum positive value. The 
semi-Hertzian pressure distribution is defined with Eq. (2.39), with poi being 
given by Eq. (2.47) in this case.  
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2.1.2 Tangential contact  

The tangential contact problem is more difficult to solve than the normal 
problem, because the related constraints are non-linear and the number of 
involved unknowns is twice as much as in the normal problem, as stated in §1.2. 
Tangential contact models are therefore necessary in many wheel–rail 
interaction related studies.  

In this section, the evolution of theories for wheel–rail tangential contact is 
reviewed, from the first analytical solution due to Carter [Carter 1926] and 
Fromm [Fromm 1926] to some of the most commonly used models nowadays 
for rail vehicle dynamic simulation.  

Commonly adopted simplifying assumptions in wheel–rail tangential contact 
models are as follows:  

- Steady-state rolling contact. This implies that the ∂u / ∂t term in the 
right-hand side of Eq. (1.7) vanishes. This is justified because the 
distribution of contact stresses reaches a quasi-stationary state within 
very short rolling distances, on the order of few times the longitudinal 
contact patch dimension, as shown by experience [Kalker 1979b]. On 
the other hand, transient contact models may be necessary in the study 
of high-frequency phenomena such as may be encountered with short-
pitch corrugation, see e.g. [Baeza 2007], [Baeza 2011].  

- Quasiidentity (cf. Figure 1.10). This is justified because the material of 
both wheel and rail is steel.  

- The rigid slip velocity field is described with the creepages according to 
Eq. (1.5), corresponding to a planar contact area.  

- In some contact models, Hertzian geometry is assumed. I.e., the contact 
patch is assumed to be an ellipse, aligned with the contact x and y 
directions. This assumption, though directly related to the normal 
contact problem, also has implications in the tangential problem 
solution.  

The models revised in the following subsections adopt all these simplifying 
assumptions, unless otherwise stated. All these models, except for Kalker’s 
linear theory, are partial slip models, which imply that they consider the 
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coexistence of adhesion and slip areas in the contact patch, in addition to taking 
into account the effect of the contact surface deformations.  

2.1.2.1 Carter / Fromm’s theory  

Carter and Fromm’s theory ([Carter 1926], [Fromm 1926]) is an exact theory 
for 2D Hertzian steady rolling contact with similar materials, in the presence of 
a longitudinal creepage and Coulomb friction. In the 2D case, the number of 
unknowns of the tangential problem is the same as in the normal problem, and 
the tangential contact conditions are linear. Therefore, the solution of the 2D 
tangential problem presents less complication than in the 3D case. Additionally, 
there is an analytical solution for the steady-state contact with similar materials, 
given by this theory.  

The distribution of longitudinal stress in the contact px is found superposing two 
elliptical distributions pxi, of the form given in Eq. (2.48), as represented in 
Figure 2.9. The field of tangential displacement differences uxi caused by each 
of these distributions in a pair of quasiidentical half-spaces in plane strain has 
the analytical solution given in Eq. (2.49) within the domain where each 
distribution is applied, i.e., in |x – xoi| < ai. In these equations, τoi is a maximum 
value of tangential stress, xoi the point where the stress distribution is centred, 
and ai the half-width (in x direction) of the stress distribution. The subindex i 

refers to each stress distribution i, i ∈ {1, 2}. In Eq. (2.49), consti is a constant 
term for each stress distribution, and E* is the combined effective Young’s 
modulus of the two bodies (cf. Eq. (2.11)), which is equal to E / [2(1 – ν2)] for 
elastically similar materials in contact.  
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Figure 2.9. Tangential contact stresses in Carter’s 2D tangential contact solution.  

The Vc velocity in Figure 2.9 is the velocity at which the contact moves on the 
contacting surfaces. This coincides approximately with the forward velocity of 
the wheel V in the case of a wheel running on a straight rail.  

According to the kinematic equation for the tangential contact (Eq. (1.7)) 
particularized to steady contact with only longitudinal creepage, in the adhesion 
region (v = 0), the condition ξ = ∂ux / ∂x must be fulfilled. As ξ is constant in the 
whole contact, the quadratic terms with x of Eq. (2.49) must vanish in the 
adhesion region when superposing the effect of the two stress distributions. This 
is fulfilled when the ratio |τoi| / ai is the same in both pxi distributions. τo1 is 
determined from the saturation condition in the slip region, i.e., px = px1 = g, 
being g the traction bound, µ pz, and µ the coefficient of friction. Taking this 
into account, τo1 = µ pzo, being pzo the maximum normal contact pressure. The 
position of the adhesion zone, adjacent to the leading edge, is the only possible 
one that complies with the condition that the slip is in the opposite direction to 
the tangential stress in the slip region. The remaining condition for the 
determination of the necessary parameters of the tangential stress distribution is 
given by the equality ξ = ∂ux / ∂x.  
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Taking all this into account, it is verified that the contact conditions and 
constraints of the adhesion and slip regions are satisfied with the px = px1 + px2 
distribution with the following parameters: τo1 = µ pzo; xo1 = 0; a1 = a; 

zoo pa
c µτ −=2 ; a2 = c; and xo2 = d = a – c. a and c are the half-widths of the 

contact patch and of the adhesion zone, respectively. d is the distance from the 
centre of the contact patch to the centre of the adhesion zone (not to be confused 
with the normal approach, also designated as d). With these values, the solution 
of px is given in Eq. (2.50). The primed dimensions a', c', and d', and the 
coordinate x' are obtained dividing the corresponding non-primed quantities by 
a.  
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The relationship between ξ and the dimensions of the adhesion and slip zones is 
given by Eq. (2.51). The sign of ξ is chosen so that the rigid slip velocity is in 
the opposing direction to px.  
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The integration of the px distribution of Eq. (2.50) in the contact yields the 
resultant longitudinal force in the contact Fx, according to Eq. (2.52), where N is 
the total normal load. The c / a proportion may be solved for in this equation, 
with the result given in Eq. (2.53).  
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Taking into account the previous equations and Eq. (2.51), the creepage–creep 
force relationship is given in Eq. (2.54) and plotted in Figure 2.10 in normalized 
axes. In this equation, R is the combined longitudinal curvature radius. Figure 
2.10 includes the asymptote of the curve for small creepages. The slope of this 
asymptote, which is independent of µ, is given in Eq. (2.55). The saturation (full 
slip) condition is reached with a creepage equal to twice the value predicted 
with this initial slope.  
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Figure 2.10. Creepage–creep force curve of Carter’s rolling contact problem.  

To obtain the slip velocities in the slip region, the elastic deformations caused 
by an ellipsoidal px distribution of the form given in Eq. (2.48) are needed. Eq. 
(2.49) gives the elastic displacements caused by such stress distribution inside 
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its application region. The displacements outside the application region of px are 
obtained making the convolution of the px stress distribution with the Flamant 
IF [Flamant 1892] of the horizontal surface displacements of the elastic half-
plane under tangential loading. The displacement gradients are obtained using 
the derivative of the mentioned Flamant IF with respect to x. This convolution 
is expressed in Eq. (2.56). In this equation, an ellipsoidal px distribution with a 
maximum value of τo is assumed, applied in a region of half-width a centred at x 
= 0. The analytical solution of this equation is given in Eq. (2.57). Here, the 
change of variable X' = X / a is used.  
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Now, the ux displacement gradients caused by the px1 and the px2 stress 
distributions in the whole contact patch may be written, using Eq. (2.57) and the 
derivative with respect to x of Eq. (2.49), appropriately modified taking into 
account the centre, width and maximum value of each stress distribution. The 
gradients caused by px1 are given in Eq. (2.58), and the ones caused by px2 in Eq. 
(2.59). The subindices 1 and 2 in these equations are not to be interpreted as 
related to bodies 1 and 2 (what is being expressed are combined quantities of 
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both bodies), but as related to px1 and px2, respectively. The first line of Eq. 
(2.59) corresponds to the adhesion zone, and the second one to the slip zone.  
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The displacement gradients given in Eqs. (2.58) and (2.59) are plotted in Figure 
2.11, together with the total displacement gradient, for c / a = 0.70 (the same 
case for which the px distribution is shown in Figure 2.9). The K' value 
represented here is equal to K / a, being K defined in Eq. (2.54). 

 

Figure 2.11. Longitudinal displacement gradients in Carter / Fromm’s 2D tangential 
contact solution.  

The slip velocity is obtained applying the kinematical condition of the 
tangential problem (vx / Vc = ξ – ∂ux / ∂x) in the slip zone, and replacing the ξ 
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value from Eq. (2.51) and the displacement gradients from Eqs. (2.58) and 
(2.59). The slip velocity, of course, is 0 in the adhesion region. The result for 
the slip region is given in Eq. (2.60). This expression is valid only if there is 
some adhesion. An alternative form of this result is given in Eq. (2.61), with the 
normalized creepage ξ* being equal to ξ / K. ξ* is equal to d' (with the 
appropriate sign) in partial slip.  
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2.1.2.2 Johnson; Vermeulen & Johnson  

Johnson presented the first 3D tangential contact model. It was aimed to circular 
contacts with pure creepage [Johnson 1958b] or with spin [Johnson 1958a]. 
This was extended later for elliptical contacts without spin by Vermeulen and 
Johnson in [Vermeulen 1964].  

The model is based on an extrapolation of Carter / Fromm’s 2D theory (cf. 
§2.1.2.1) to 3D, assuming an elliptical adhesion area with the same shape as the 
contact patch and tangent to the leading edge, as represented in Figure 2.12. In a 
similar way as in Carter / Fromm’s theory, the tangential stress distribution is 
composed of two ellipsoidal stress distributions with contrary sign, one of them 
(the biggest in magnitude) acting in the whole contact patch, and the other one 
in the adhesion region. The assumed adhesion area is only approximate. The 
condition of opposing directions of the slip velocity and tangential stress vectors 
is not fulfilled in the shadowed region adjacent to the leading edge marked in 
Figure 2.12.  
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Figure 2.12. Assumed distribution of adhesion and slip areas in the contact patch in the 
Johnson and Vermeulen & Johnson tangential contact models.  

The model has the advantage of leading to simple closed-form expressions for 
the creepage–creep force curve, as well as for the distribution of tangential 
stresses. The main results of the model are revised next. Normalized creepages 
ξ' and η' are defined according to Eq. (2.62). In this equation, G is the shear 
modulus, and C11 and C22 are non-dimensional creepage coefficients, for which 
expressions are provided in [Vermeulen 1964]. A resultant normalized creepage 
ζ' is defined as ζ' = ||(ξ', η')||. The modulus of the resultant tangential contact 
force, ||Ft||, is defined as a function of ζ', according to Eq. (2.63). Ft has the 
same direction as the normalized creepage vector (ξ', η').  
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2.1.2.3 Strip theory  

The strip theory for contact mechanics was set out in [Haines 1963] and in 
[Halling 1964]. It consists on replacing the 3D contact mechanics problem for a 
set of 2D contact problems. For this purpose, the contact patch is divided in 
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longitudinal strips, and Carter / Fromm’s theory is applied in each strip. The 
basic assumption of this model is that there is not interaction between different 
strips of the contact patch. This works well for wide contact patches (in the 
direction transverse to rolling).  

The theory was originally set out for pure longitudinal creepage, and in [Kalker 
1967b] it was extended for lateral creepage and small spin. The former case is 
revised here. The same creepage is considered in the whole contact patch. The 
pzo / a ratio between the maximum normal pressure and longitudinal dimension 
of each strip is also the same in the whole contact patch, according to Hertzian 
proportionality. Then, according to Eq. (2.51), the distance d from the centre of 
the contact patch to the centre of the adhesion zone must be the same in the 
whole contact patch. Hence, the trailing edge of the adhesion zone is a 
reflection of the leading edge about the straight line crossing the contact patch 
at x = d, as illustrated in Figure 2.13. The most important advance of this theory 
is to be the first 3D contact model that properly approximates the correct form 
of the adhesion zone.  

 

Figure 2.13. Assumed distribution of adhesion and slip areas in the contact patch in the 
strip theory.  
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2.1.2.4 Kalker’s linear theory  

Kalker’s linear theory, developed in [Kalker 1967a], is the first exact theory for 
3D tangential contact. It is applicable for elliptical contact patches with 
infinitesimally small creepages (which may be a combination of longitudinal, 
lateral and spin creepage) or with infinite coefficient of friction, in which the 
whole contact patch is in adhesion. The theory is useful in linear analyses, and 
to calibrate simplified non-linear models.  

The development of the theory starts extracting the equations of the elastic 
displacement field in the contact patch, based on the kinematic equation of the 
tangential problem. The problem is reduced to its elasticity part, seeking for the 
stress distribution that leads to the previously formulated displacement field. 
The problem is solved combining stress distributions of polynomial form 
(truncating in a finite number of terms), which produce known displacement 
fields in the elliptical contact area (polynomial as well), and equating to 0 the 
stresses in a finite number of points on the leading edge of the contact patch.  

As an outcome of the theory, linear relationships between the resultant contact 
forces and creepages are obtained. These relationships are expressed in matrix 
form in Eq. (2.64).  
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Cij in Eq. (2.64) are dimensionless creepage coefficients, which depend on the 
eccentricity of the contact ellipse and on the coefficient of Poisson ν. They may 
be found tabulated e.g. in [Kalker 1967a], [Kalker 1990], [Garg 1984] and 
[Ayasse 2006] for ν values of 0, 0.25 and 0.5. They are also tabulated and 
plotted for ν = 0.30 in [Johnson 1987] and in [Thompson 2009], respectively, 
and a polynominal fit for the C11, C22 and C23 coefficients for ν = 0.27 is 
proposed in [Ayasse 2006]. In some references (e.g. in [Kalker 1991]), the C33 
coefficient is not tabulated, due to its reduced relevance in usual wheel–rail 
interaction problems.  
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As may be seen in Eq. (2.64), the longitudinal creepage only produces 
longitudinal resultant force, and the other creepages do not contribute to the 
longitudinal resultant force. This is due to the symmetries of the elliptical 
contact patch and of the rigid slip velocity field. In general, this is not the case 
for non-elliptical contact patches.  

The following analogies with the tyre–road case may be made of the terms 
related to the C23 coefficient:  

- The contribution of the spin to the lateral thrust is analogous to the 
camber thrust.  

- The contribution of the lateral creepage to the spin moment is 
analogous to the self-aligning torque, which the driver may feel in the 
steering wheel. In the wheel–rail application it is sometimes neglected, 
being on the order of tens of N.m.  

Eq. (2.64) may also be expressed in normalized form, normalizing both the 
creepages and the contact resultant forces. The normalized longitudinal and 
lateral creepages, ξ' and η', are given in Eq. (2.62), and the normalized spin, φ', 
is given in Eq. (2.65).  
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The normalized contact resultant forces, fx and fy, are calculated dividing the 
corresponding forces by µN. The normalized spin moment, mz, is calculated 
according to Eq. (2.66). Eq. (2.67) is the normalized form of Eq. (2.64).  
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2.1.2.5 Shen-Hedrick-Elkins’ heuristic method  

The Shen-Hedrick-Elkins’ heuristic method [Shen 1983] is a simple saturation 
law applied on Kalker’s linear theory. It is summarized in Eqs. (2.68) and 
(2.69). In this equation f l is the normalized contact resultant force obtained with 
Kalker’s linear theory, i.e., f l = Fl / (µN), with Fl = ||(Fl

x, F
l
y)||, being Fl

x and Fl
y 

the contact resultant longitudinal and lateral forces computed with Eq. (2.64).  
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This model is similar to the Vermeulen & Johnson model, but with correct Cij 
creepage coefficients, and taking into account the influence of the spin. The 
main advantage of the model is its simplicity. Its main drawback is its precision 
loss with high spin values (as may be encountered when there is contact in the 
wheel flange, which may happen during negotiation of tight curves), not being 
able to predict the decrease of the lateral force with high spin values.  

2.1.2.6 Simplified theory of rolling contact. FASTSIM  

The FASTSIM algorithm [Kalker 1982] of Kalker’s simplified rolling contact 
theory is a widely used tangential contact model in the wheel–rail application. It 
is able to handle situations with arbitrary combinations of creepages with 
satisfactory precision, including situations with high spin, while having a low 
enough computational cost for practical application in rail vehicle dynamic 
simulations.  

The simplification of this model consists in assuming that the elastic tangential 
displacement in each point in the contact patch depends only on the contact 
tangential stress at that point. Thus, the tangential behaviour of the contacting 
surfaces is considered equivalent to that of a bed of springs or ‘wire brush’ 
model, in which the individual bristles deform independently from one another. 
This is expressed in Eq. (2.70), and represented schematically in Figure 2.14. In 
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this equation, ut and pt are the tangential elastic displacement and stress vectors, 
respectively, and L is a tangential surface compliance.  

 ( ) ( )yxLyx ,, tt pu =  (2.70) 

 

Figure 2.14. ‘Wire brush’ tangential model of the contacting surfaces used in the 
simplified theory of rolling contact. Adapted from [Kalker 2001].  

The kinematic equation of the tangential problem (Eq. (1.7)) is discretized in 
time according to Eq. (2.71). In this equation, u and u'  are the elastic 
displacements of a particle in the contacting surface at the current and previous 
time instants, t and t', respectively, being t – t' = ∆t. The subindex t (of 
tangential) in u is omitted here for brevity.  
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For a particle occupying position P = (x, y) at t, u = u(x, y, t). The (x, y) 
coordinates are given in the Eulerian contact coordinate system described in 
§1.2. Considering the flow of material through this system (cf. Figure 1.9b), and 
considering the surface elastic displacements much smaller than the position 
change of the particle in the ∆t time interval, the position P' of the same particle 
at t', is approximately P' ≈ (x + V ∆t, y). I.e., from t' to t, the particle displaces 
approximately a distance of V ∆t along the negative x axis. So, the displacement 
u'  of the same particle may be written as u'  ≈ u(x + V ∆t, y, t – ∆t). The time 
dependence vanishes in steady-contact, so u = u(x, y), and u'  ≈ u(x + V ∆t, y).  

The tangential surface compliance L of Eq. (2.70) is determined so that the 
results of the simplified theory for vanishing creepages coincide with those of 
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the linear theory (cf. §2.1.2.4), as outlined next. Eq. (1.7) for no slip (v = 0) 
yields ∂u / ∂x = w / V = (ξ – φ y, η + φ x) (cf. also Eq. (1.5)). This is integrated 
with respect to x, obtaining Eq. (2.72). In this equation k(y) and l(y) are 
integration constants. They are determined in Eq. (2.73), imposing the no 
traction condition (pt = 0) at the leading edge, located at (x, y) = (xl (y), y). Here, 
use is made of the tangential constitutive relation of the simplified theory (Eq. 
(2.70)), which implies that ut = 0 where pt = 0.  
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Thus, Eqs. (2.72) and (2.73) determine the tangential elastic displacement field 
ut. From this, the tangential stress field is determined using Eq. (2.70), as pt = ut 
/ L. The contact resultant forces are determined integrating pt in the contact 
ellipse (of longitudinal and lateral semiaxes a and b, respectively), as indicated 
in Eq. (2.74). The results are given in Table 2.1, together with the results of the 
linear theory.  
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Table 2.1. Tangential contact resultant forces according to the simplified theory and to 
the linear theory. 

 Simplified theory Linear theory 
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L is determined equating the results of both theories given in Table 2.1. 
However, different L values result when considering the terms associated to the 
different creepages (ξ, η, or φ), as indicated in Eq. (2.75). A solution is to 
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calculate a weighted L value with the three possible L values given in this 
equation, as indicated in Eq. (2.76). Another possibility is to use different L 
values in x and y directions. This would still leave two L values to choose from 
for the y direction (the ones associated to the η and φ creepages). An additional 
drawback of using multiple L values is that the tangential stress and slip vectors 
are no longer parallel, as may be seen from the explanation that follows. 
Anyway, some versions of the simplified theory use 3 independent L values, 
each associated to a different creepage. In this way, better results may be 
obtained for small creepages. On the other hand, the saturation part of the 
curves (for large creepages) is not reproduced correctly with multiple L values, 
and this is achieved with a single L.  
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Using the described tangential constitutive model, the contact solution is 
obtained numerically, in a 2D grid of rectangular elements organized in parallel 
strips aligned with the rolling direction, as shown in Figure 2.15. The length of 
each strip of the mesh is equal to the length of the corresponding longitudinal 
strip of the contact ellipse, and each strip is divided into the same number of 
equal rectangular elements. Therefore, the length of the elements of the 
different strips is variable. In the same way, ∆t is variable across the contact, 
changing in proportion to the length of the mesh elements.  
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Figure 2.15. Mesh of the contact ellipse of the FASTSIM algorithm. 

The tangential stresses are computed along each strip in a recursive, non-
iterative way, moving from the leading to the trailing edge. Therefore, it is still 
much faster than exact contact models. This calculation is done applying Eq. 
(2.77), obtained inserting the relationship of the simplified model given in Eq. 
(2.70) on the kinematic equation (2.71). In Eq. (2.77), p' t is the tangential stress 
at instant t'. p' t is 0 at the leading edge.  
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The algorithm starts assuming adhesion (v = 0) in the first element of each strip, 
and calculating a tentative adhesion tangential stress, (pt)A, according to Eq. 
(2.78). The adhesion condition (||pt|| ≤ g) is checked with (pt)A. If ||(pt)A|| ≤ g, 
the adhesion assumption is correct, and pt = (pt)A. Otherwise (if ||(pt)A|| > g), the 
element is in slip, and its pt is calculated scaling down (pt)A so that ||pt|| = g. I.e., 
pt = (g / ||(pt)A||) (pt)A.  

 ( ) wp'p tt L

t
A

∆−=  (2.78) 

For elements in slip, Eq. (2.79) demonstrates that the slip condition that the slip 
velocity vector is in the opposite direction to the tangential stress vector is 
verified exactly only if a single L value is used. For an element in slip, as ||(pt)A|| 
> g, the (1 – g / ||(pt)A||) factor in the right-hand side of this equation is positive.  



2 State of the art 67 

 ( )( ) ( )
( ) 













−

∆
−=+−

∆
=

∆
−+≈

A

A
A

g

t
L

t

L

t
L

t

t
tt

tt

p

p
pp

p'p
wv 1   

 (2.79) 

The adhesion limit g used in this solution of the tangential problem is based on 
an assumed parabolic distribution of normal pressures, according to Eq. (2.80). 
The maximum normal pressure, pz,o, is equal to 2N / (πab) in this case. With 
this, there is an analogy between the normal and the tangential contact 
problems, assuming in both proportionality between the elastic displacements 
and contact stresses. Experience shows that considering the true Hertzian 
(ellipsoidal) normal pressure distribution to compute g leads to worse results of 
the simplified theory for tangential contact, especially with regards to predicting 
the correct limits between the adhesion and slip zones. The normal contact 
problem is otherwise solved with Hertzian theory. The direct application of the 
simplified theory for the normal contact problem does not work well.  
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FASTSIM achieves generally good precision in the contact force resultants, 
usually with errors below 15% with respect to the exact contact theory (§2.1.3), 
while being much faster. In this respect, FASTSIM has been considered to 
provide the best precision / cost compromise for rail vehicle dynamic 
simulations for many years.  

Though commonly used for planar contacts, the FASTSIM algorithm may be 
readily extended to non-planar contacts assigning a different orientation to each 
strip, provided the assumption of half-space-like elastic behaviour and elastic 
similarity of the contacting bodies is retained. Also, owing to the contact patch 
division into strips, it may be readily extended to non-elliptical contact patches 
as well, the main difficulty lying in the calculation of proper L parameters. 
These are some of the extensions set out for FASTSIM:  

- Non-elliptical contact patches: this is used for the tangential contact 
problem in [Kik 1996] and in [Ayasse 2005], with the normal contact 
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models explained in §2.1.1.2 and §2.1.1.3, respectively. Another 
extension for non-elliptical contact patches is also set out in [Alonso 
2007].  

- Variable coefficient of friction: the extension of FASTSIM for a friction 
coefficient variable with the slip velocity is introduced in [Giménez 
2005].  

- Transient rolling: a way to solve transient rolling contact problems with 
FASTSIM is proposed in [Guiral 2013].  

2.1.2.7 Polach’s method  

Polach’s method [Polach 1999] is based on integrating in the contact patch 
tangential stress distributions similar to those computed with FASTSIM, but 
with ellipsoidal adhesion limit g, as depicted in Figure 2.16 for a case without 
spin. The method is aimed at obtaining contact resultant forces, rather than 
stress distributions inside the contact patch.  

The integration in the contact ellipse of a stress distribution like the one shown 
in Figure 2.16 yields the resultant force vector of Eq. (2.81). The first term 
inside the parenthesis in the right-hand side of this equation is associated to the 
adhesion area, and the second one to the slip area. In this equation, ζc is a 
corrected effective creepage, equal to ||(ξ, ηc)||. ηc is a corrected lateral creepage; 
ηc = η + φ a if |η + φ a| > |η|, ηc = η otherwise. ε, which is equal to the 
longitudinal gradient of the resultant tangential stress in the adhesion region, is 
given in Eq. (2.82), with the weighted tangential contact rigidity C given in Eq. 
(2.83). ζ in Eq. (2.83) is equal to ||(ξ, η)||. The rest of the symbols in these 
equations are as previously defined.  
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Figure 2.16. Adhesion and slip areas and tangential stress distribution in Polach’s 
method for a rolling case with pure creepage. Adapted from [Polach 1999].  

Eq. (2.81) gives the components of the resultant tangential force associated to 
the ξ and η creepages. On the other hand, the component of the lateral force due 
to the spin, Fy,φ, is calculated according to Eq. (2.84). This equation results from 
the analytical solution for vanishing longitudinal dimension of the contact patch 
(a → 0), corrected empirically with the factor R given in Eq. (2.85). KM is given 
in Eq. (2.86), and the factors εφ and δ of this equation are given in Eqs. (2.87) 
and (2.88), respectively, with Cφ = 1 / L3 in Eq. (2.87).  
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The components of the resultant tangential force are calculated as Fx = Fx,1, and 
Fy = Fy,1 + Fy,φ.  

Polach’s method provides the resultant tangential forces through analytical 
expressions, as Shen-Hedrick-Elkins’ heuristic method, so it is very fast. A 
notable advance of Polach’s method is that it is able to predict the decay of the 
lateral contact force at high spin values. On the other hand, the results for 
certain combinations of creepages are less precise than those of Shen-Hedrick-
Elkins’ method.  

An extension of Polach’s method for variable friction coefficient with the slip 
velocity was presented in [Polach 2005].  

2.1.2.8 FASTRIP  

Sichani’s FASTRIP method ([Sichani 2016a], [Sichani 2016b]) is a 
combination of the strip theory to predict the non-linear growth of tangential 
stress along the x direction in the adhesion area, with a modified version of 
FASTSIM to determine the tangential stress direction in the slip area (the latter 
being necessary in cases with spin).  

The contact patch is discretized in longitudinal strips, as in the strip theory and 
FASTSIM. The tangential stress distribution along each strip is computed as the 
sum of two elliptical stress distributions of opposing signs (similar to the 
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distribution shown in Figure 2.9), according to a generalized version of the strip 
theory for combined creepage and a not necessarily much lower than b. This 
generalization is done in such a way that the results coincide with those of 
Kalker’s linear theory for small creepages. The components of tangential 

contact stress pj, j ∈ {x, y}, are calculated according to Eq. (2.89). The subindex 

i in this equation refers to strip i. pz,o,i is the maximum normal pressure in each 
strip, and ai the strip half-length. The factors kj,i and k'j,i are defined in Eq. (2.94) 
and (2.95), respectively.  
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di, the longitudinal distance from the centre of the contact patch to the centre of 
the adhesion region of strip i, is calculated according to Eq. (2.90). η

* and φ* are 
non-dimensional lateral and spin creepages, defined in Eqs. (2.91) and (2.92), 
respectively, together with the non-dimensional longitudinal creepage ξ*. Ξ is a 
non-dimensional longitudinal slip, which is defined together with the non-
dimensional lateral slip Η in Eq. (2.93).  
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In the slip area, a modified version of FASTSIM is used to determine the 
direction of the tangential stresses. Two features of this FASTSIM version are 
as follows:  

- Different effective tangential compliance L values are used in each 
strip, depending on the saturation condition of the strip: for strips 
completely in slip, a weighted L is used, calculated according to Eq. 
(2.76). Otherwise, individual L1, L2 and L3 values are used associated to 
each creepage (cf. Eq. (2.75)).  

- A correction is performed in the adhesion limit g for contact ellipses 
with a / b < 1, which is given by Eq. 16 of [Sichani 2016a]. This affects 
only in the calculation of the direction of the resultant tangential stress 
in the slip area, but not its magnitude, which is calculated as the actual 
normal pressure times the coefficient of friction.  

FASTRIP improves the precision of the contact resultant forces with respect to 
FASTSIM, and additionally provides realistic tangential stress distributions in a 
wide variety of creepage situations. As a drawback, the foreseen adhesion 
regions are always located in the leading part of the contact patch, while with 
high spin the adhesion region may be located in the central part, with the rest of 
the contact patch in slip. Nevertheless, in cases with high spin, the resultant 
contact forces are normally small.  

The application of FASTRIP to non-elliptical contact areas, together with 
ANALYN (§2.1.1.4) for the normal part, is shown in [Sichani 2016b]. 
However, details are not given on the calculation of the flexibility parameters Li 
and of the creepage coefficients Cij for non-elliptical contact areas.  

2.1.2.9 Books of tables  

Pre-calculated or look-up tables are used as well to provide quick and precise 
tangential contact resultant forces in rail vehicle dynamic simulations. The 
tables store tangential contact resultant forces for different wheel–rail contact 
situations. The tables are first built offline (before the dynamic simulation), 
which may be done with more precise (and computationally costly) models than 
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those normally used in the dynamic simulations, such as Kalker’s exact contact 
theory. Then, during the dynamic simulation, the tables are evaluated by some 
interpolation method. A drawback of this approach is that the tables are 
normally built storing just the resultant forces, so that it is not possible to 
retrieve more detailed information, like contact stress distributions.  

The first known book of tables for wheel–rail tangential contact was created by 
Kalker in the 1970s with his program DUVOROL, predecessor of the 
CONTACT program, where Kalker implemented his exact contact theory. 
These tables were created for British Rail, and were not published. In [Kalker 
1996], a book of tables for elliptical contact patches was presented. More 
recently, tables covering a broader range of contact patch shapes have been 
calculated in [Piotrowski 2017]. In this reference, so called “SDEC” (simple 
double-elliptical contact) regions are covered, which are made up of two half-
ellipses, as shown in Figure 2.17.  

 

Figure 2.17. SDEC or falling drop region. Adapted from [Piotrowski 2017]. 

The tables are multi-dimensional, as they need to cover different creepage 
situations and contact patch shapes. The involved variables are suitably 
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normalized, to minimize the number of table dimensions. Each independent 
variable involves a table dimension. In the case of the tables presented in 
[Piotrowski 2017], the number of table dimensions is 6, with the following set 
of independent variables: ξ*, η*, χ, ψ, a/b, and ν. ξ*, η*, and χ are normalized 
creepages defined in Eqs. (2.96) and (2.97), with the c and ρ dimensions being 
defined in Eqs. (2.98) and (2.99), respectively. ψ is a shape factor of the SDEC 
region, equal to yo / b. Ac in Eq. (2.99) is the contact patch area, and m and n are 
the Hertzian coefficients introduced in §2.1.1.1 for the best fitting ellipse. The 
data stored in each entry of the table are normalized tangential resultant forces fi 

= Fi / µN, i ∈ {x, y}.  
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For Hertzian contacts, and assuming a single value of the material coefficient of 
Poisson ν is of interest, the number of table dimensions may be reduced to 4: ξ*, 
η

*, χ, and a/b. In this case, the definition of ρ of Eq. (2.99) may be replaced by ρ 
= 4 / (Cx2 + Cy1 + Cy2) (assuming a straight rail, with Cx1 = 0).  

Given the number of table dimensions, the size of the table may easily become 
excessive. To avoid this, the number of points along each dimension has to be 
adequately adjusted, while maintaining an adequate resolution and range. A 
large table size translates into increased cost, not only for its offline calculation, 
but also for its later evaluation, in addition to increased memory requirements.  
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2.1.3 Exact contact theory  

Kalker developed the first numerical method aimed at solving the wheel–rail 
rolling contact problem [Kalker 1979b], [Kalker 1990]. It is known as the exact 
contact theory, because it uses the exact surface stress–elastic displacement 
constitutive relationship expressed in Eq. (1.6). The method is generally 
applicable to elastostatic contact problems, not being limited by the usual 
assumptions stated at the beginning of §2.1.2. Thus, it is valid for non-Hertzian 
and non-steady state contacts, and for contacts with dissimilar materials.  

The exact contact theory uses an Eulerian mesh of the contact surface, 
associated to the Eulerian coordinate system following the contact described in 
§1.2, in which the kinematic equations of the contact problem are set out. In this 
mesh, the exact integral relationships between surface stresses and elastic 
displacements are discretized, and the normal and tangential contact conditions 
are enforced.  

The meshed region is called the potential contact surface (PCS). It must 
circumscribe the contact patch(es), while being as adjusted in size as possible so 
that a fine spatial resolution can be provided. An estimate of an adequate size 
for it may be commonly obtained by means of the intersection of the 
undeformed contact surfaces in the reference configuration. As depicted in 
Figure 1.7, the apparent contact area given by this intersection encompasses the 
true contact area. 

The discretization of the PCS is commonly carried out with equal rectangular 
elements aligned with the x and y directions, as shown in Figure 2.18. 
Compared to discretizations with non-uniform meshes like the one used in the 
FASTSIM algorithm (cf. Figure 2.15), a uniform discretization, with equal 
elements, provides computational advantages in the calculation of the influence 
coefficients (ICs) and in their convolution with the contact stresses to obtain the 
elastic displacements, as explained in §4.1.1.4. Other element types are possible 
apart from the rectangular, maintaining regular mesh structure and associated 
advantages. For example in [Kalker 1972], triangular elements with linear 
pressure distributions are considered in a numerical solution to the frictionless 
contact problem.  
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Figure 2.18. Discretization of the PCS with equal rectangular elements. 

The space discretization of the exact surface stress–displacement relationship 
given in Eq. (1.6) leads to Eq. (2.100), used in the exact contact theory. 
Subindices I and J in this equation refer to elements of the mesh, and subindices 
i and j to directions of the contact coordinate system. ICIiJj is the IC that gives 
the displacement in i direction of element I due to a unitary load in j direction 
on element J. It is obtained integrating the product of the corresponding IF with 
the shape function of the distributed load in the loaded element, as explained in 
§1.3.1 (Eq. (1.9)) and §5.1.  
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In general, ICIiJj = ICIiJj (xI, xJ), i.e. ICIiJj generally depends on the position of 
both I and J. In the case of the half-space, due to the homogeneity and similarity 
of the medium in the direction parallel to the surface and to the regularity of the 
mesh, ICIiJj depends only on the relative position between I and J. So, it may be 
written ICIiJj = ICIiJj (xI – xJ). For a 3D contact problem, this implies reducing 
the number of ICIiJj ICs from O(N 4) to O(N 2), being N the number of elements 
in each direction of the mesh. Eq. (2.100) represents a matrix-vector 
multiplication between a matrix of ICs [IC ij ] and a vector of contact stresses 
{p j}.  

The points chosen to represent each element of the mesh will be designated here 
as analysis points (APs). These are the points for which the problem unknowns 
(contact stresses) are sought, and on which the contact conditions are checked. 
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The APs of the mesh form a regular pattern, like the elements. In the case of the 
commonly used rectangular elements with uniform load distribution, the AP of 
each element is its geometric centre, as depicted in Figure 2.18 with black 
circles. Then, in this case, the number of APs is the same as the number of 
elements. The APs of the contact mesh may be assigned a 2D numbering, 
defining their position along the x and y directions of the mesh. A 1D 
numbering for both the elements and APs may be defined as well, as illustrated 
in Figure 2.19. According to this, the number e corresponding to an AP located 
at position index (ix, iy) in the mesh is e = ix + nx × (iy – 1). nx and ny are the 
number of APs in x and y directions of the mesh, and ix and iy the position 
indices in each direction. The concept of AP is treated again in §4.1.1.1.  

 

Figure 2.19. Numbering of APs of the mesh of the PCS.  

The contact problem is divided into the normal and tangential parts for its 
solution. The algorithms for the solution of each part are called NORM and 
TANG, respectively.  

The algorithm NORM is summarized as follows:  

1. A set of APs inside the contact C is assumed. For each AP I in C, the 
displacement compatibility condition e = 0 is formulated, according to 
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Eq. (2.101), and making use of Eq. (2.100). The number of APs 
assumed to be in C is designated as NC.  
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The first term of the right-hand side of Eq. (2.101) is the contribution of 
the normal pressures to uIz, and the second term the contribution of the 
tangential stresses. Normally, the first term is dominant. If the 
tangential stresses were zero, or their contribution to uIz zero or known, 
Eq. (2.101) would represent a linear system of NC equations for the NC 
pIz unknowns of the normal contact problem (it is known that pIz = 0 
outside C). To facilitate the foregoing discussion, it will be assumed for 
the moment that the second term of the right-hand side of Eq. (2.101) is 
zero. This happens in cases where quasiidentity can be applied, as in 
concentrated wheel–rail contact. Afterwards, the solution process for 
the more general case in which this is not fulfilled will be outlined.  

2. The equation system (2.101) is solved, and the normal contact 
inequalities are checked: pIz > 0 in C, and eI > 0 outside C. If some AP 
does not fulfil its corresponding inequality, it is changed from set, 
adding or removing it from C as applicable.  

3. If the set of APs in C has changed in the previous step, the algorithm 
returns to step 1.  

Steps 1–3 are repeated until the correct set of APs in C is found, with which the 
applicable normal contact inequalities are fulfilled in all APs of the mesh. 
Kalker provided a rigorous mathematical proof of the convergence of the 
NORM algorithm when a single AP is changed from set in each iteration. In 
practice, it is observed that it also works changing at the same time all APs that 
do not fulfil their corresponding inequality in each iteration, as described here. 
The fact that the matrix of the system, formed by the ICIzJz ICs, is of dominant 
diagonal (in other words, due to the markedly local character of the influence of 
the stresses in the deformations of the solid), and positive in half-space contact 
problems, facilitates the convergence of the NORM algorithm.  
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Regarding the tangential contact problem, the particle time derivative of the 
elastic displacements that appears in the kinematic Eq. (1.7), Du / dt, is 
discretized in time considering the displacements u and u'  of the particle at two 
nearby time instants t and t', as in Eq. (2.71). Considering additionally the space 
discretization of the integral surface stress–displacement constitutive 
relationship expressed in (2.100), Eq. (2.102) is obtained. In this equation, the 
contributions of the normal pressures and tangential stresses to uIi are separated, 
as in Eq. (2.101). As done previously for the normal problem, it will be 
assumed that the contributions due to the normal pressures are known, to 
facilitate the explanation.  
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The primed quantities in Eq. (2.102) are referred to the previous time instant t'. 
p'Jj are the stresses acting on element J at t', and IC'IiJj are the ICs of element J 
over the position occupied at t' by the particle located at AP I at the current time 
instant t. The positions of the particles corresponding to a set of APs of a 
contact mesh at t and t' are depicted in Figure 2.20 with black circles and red 
squares, respectively; recall also the material flow through the Eulerian contact 
coordinate system illustrated in Figure 1.9b. From t' to t, the particles have a 
rigid body displacement ∆q = Vc (t – t') = Vc ∆t.  
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Figure 2.20. Rigid body displacement of material particles in the Eulerian contact 
coordinate system.  

Taking into account the equality conditions of the tangential problem for pt and 
v, there are two equations for each of the NC APs in contact. For the elements in 
adhesion, the condition v = 0 is used, developed according to Eqs. (1.7) and 
(2.102). For the elements in slip, the used conditions are ||pt|| = g, and px vy – py 
vx = 0. The latter condition, expressing the parallelism between pt and v, is used 
in place of v = – λ pt, avoiding adding new unknowns λ. So, there are 2×NC 
equations, and the 2×NC unknowns are the px and py components of the 
tangential stress of each AP. In transient problems, the stresses p' t of the 
previous instant t' must be known, and in steady rolling problems, pt = p' t in the 
Eulerian contact mesh.  

The division of the APs into the adhesion A and slip D sets is not known 
beforehand. Therefore, as in the normal problem, it is necessary to iterate until, 
in addition of fulfilling the previous equations, the inequalities corresponding to 
each AP are fulfilled: for the APs in A, ||pt|| < g; and for the APs in D, pt · v < 0. 
The steps of the TANG algorithm are similar to those of the NORM algorithm: 
based on assumed sets A and D, the corresponding system of equations is 
formed and solved, and subsequently the corresponding inequalities are checked 
in each AP, changing from set the non-compliant APs. This is repeated 
iteratively until convergence is achieved (i.e., until all APs fulfil their 
corresponding inequality or contact condition). Unlike in the normal problem, 
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in this case not all the equations are linear; the ones of the APs in slip are non-
linear. Convergence is also more difficult than in the normal problem.  

When the normal and tangential problems are coupled, a possibility is to solve 
them following the Panagiotopoulos process ([Panagiotopoulos 1975], [Antes 
1992]). This consists on solving the normal and the tangential problems 
alternatively until the last two normal-tangential solutions are close enough to 
consider that convergence has been achieved. In each Panagiotopoulos iteration, 
the normal problem is solved first, with tangential tractions fixed in the values 
obtained in the tangential solution of the previous iteration. Then the tangential 
problem is solved, with normal pressures fixed in the values obtained in the 
previous normal solution. The process is looped until convergence is achieved, 
which is not guaranteed.  

The Panagiotopoulos normal-tangential contact iteration is illustrated in Figure 
2.21, including the main inputs for both the normal and tangential problems that 
depend partly on the solution of the other problem, and hence change during the 
solution process. As depicted in the figure, the influence of the tangential 
stresses for the normal problem solution is collected in a modified undeformed 
distance h*, and the influence of the normal pressures for the tangential problem 
solution is collected in a modified rigid slip velocity w*. In transient contact 
problems, w* also includes the influence of the tangential stresses of the 
previous instant p' t (not depicted in the figure), which are known.  

 

Figure 2.21. Panagiotopoulos process for the solution of the coupled normal-tangential 
contact problem.  
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The complete normal-tangential coupled contact problem may also be solved at 
the same time. This involves setting up systems of equations which include the 
contact equations for the normal and the tangential contact problems. A method 
doing this named KOMBI was described in [Kalker 1990]. The method 
currently used in the exact contact theory implemented in the CONTACT 
program is the Panagiotopoulos process.  

More details on the solution algorithms of the exact contact theory are given in 
§4.1.4, as implemented in the version developed in this thesis for the solution of 
conformal contact problems. More efficient solvers than the NORM and TANG 
solvers described here have been developed by Vollebregt and co-workers; cf. 
[Vollebregt 2014b] and [Vollebregt 2014c] for the normal problem, and [Zhao J 
2015] for the tangential problem. A key of their efficiency is performing the 
convolutions of the ICs with the contact stresses in the Fourier domain (cf. 
§4.1.1.4.2), and they avoid the explicit formation of the entire systems of 
equations described here.  

In addition to providing accurate numerical solutions, the exact contact theory 
provides flexibility to model complex interfacial behaviours, that may not be 
readily accommodated in other simplified contact models. These include 
consideration of third body layer, and variable friction coefficient with slip 
velocity.  

At the software level, the consideration of the third body layer is quite 
straightforward, involving just the addition of constant ICIiIi  flexibility terms in 
the local direct ICs of each element with itself (under the common application 
to the third body layer of the ‘wire brush’ model depicted in Figure 2.14). A 
limiting shear stress may also be easily implemented, limiting if necessary the 
traction bound g.  

The consideration of a coefficient of friction dependent on the slip velocity is 
somewhat more involved. As the slip velocity is part of the solution, an 
additional, outer iteration becomes necessary for the solution of the tangential 
problem, updating the coefficient of friction in each position as successive, 
tentative slip velocities are computed. Implementations in the exact contact 
theory of this capability are reported in [Croft 2011] and in [CONTACT UG 
2013]. In the latter reference, it is shown that decaying friction laws with pure 
dependence on the local slip velocity lead to unwanted effects as dependence of 
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the contact solution in the initial estimate. To avoid this, the possibility for a 
memory effect in the friction law is implemented, by which the coefficient of 
friction depends on its previous history (in a small distance) in addition to the 
local slip velocity. It is shown that the mentioned unwanted effects and high-
frequency stick-slip oscillations are suppressed with this memory effect.  

2.2 Influence functions of the elastic solid  

In this section, the available analytical results of influence functions (IFs) of the 
elastic solid are introduced. To start with, the case of the elastic half-space is 
considered, as the reference case for which the theoretical foundations for its 
study have been developed to a greater extent, and of great practical relevance 
especially in concentrated contact problems. Afterwards, particular cases with 
non-planar surfaces are treated.  

In accordance with the hypotheses for the target contact problems set out in 
§1.1.1, particularly massive (i.e., not hollow) solids are considered, in which 
their smallest characteristic dimensions is at least of the same order of 
magnitude than the contact patch dimensions. In these cases, the stresses that 
appear as a consequence of the contact are highly concentrated around the 
contact zone, and the stress state in the vicinity of the contact typically presents 
a relatively high hydrostatic component.  

Additionally, attention is limited here to homogeneous and isotropic solids. In 
the literature studies have been carried out as well with solids made up of 
multiple layers of different elastic properties. In practice, sometimes cases are 
encountered of contact between solids that have applied coatings with different 
elastic properties from the substrate. In these cases, it is not valid to assume that 
the solids are homogeneous, if precise contact mechanics analyses are pursued. 
These cases are out of the scope of this thesis, and here only a small sample of 
the related literature is cited.  

In [Burmister 1945] the mathematical approach of the problem of elastic half-
spaces of 2 and 3 layers subject to normal and axisymmetric loads on the 
surface was developed. In [Chen 1971] the development was extended to non-
axisymmetric loads. Johnson introduces the contact problem between layered 
solids in [Johnson 1987] (§5.8), presenting some results for some particular 
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cases of elastic layers on rigid substrates in plane strain, and a bibliography 
review is carried out of contact problems with layered solids. In [O’Sullivan 
1988] the problem of a layered half-space under arbitrary normal and tangential 
surface loads was solved. The obtained formulation was applied to a contact 
problem with a rigid sphere in full slip, although the coupling between the 
normal and the tangential contact problems was not taken into account. In other 
works such as [Nogi 1997] and [Wang Z-J 2010], other application examples 
may be found including numerical contact calculations between an elastic half-
space with a top layer and a rigid solid. Nyqvist ([Nyqvist 2012], [Nyqvist 
2015]) studied the frictional non-conformal contact between multilayered solids 
with arbitrary number of layers. Analytical expressions have been obtained of 
the IFs of the layered half-space in the Fourier domain. In contrast to the case of 
the homogeneous half-space, it is not possible to express these IFs analytically 
in the space domain, and it is necessary to evaluate them numerically from the 
expressions in the Fourier domain, calculating the integrals which define the 
inverse transformation.  

2.2.1 The elastic half-space  

The influence functions (IFs) of the elastic homogeneous half-space related to 
point loads applied in the surface may be obtained analytically from the 
Boussinesq [Boussinesq 1885] and Cerruti [Cerruti 1882] potentials, as is cited 
in [Johnson 1987] (§3.1), and may be found in the literature about Elasticity and 
contact mechanics, see e.g. [Landau & Lifshitz 1986], [Johnson 1987], [Kalker 
1990] or [Popov 2010].  

The solutions for the half-space may also be used to solve quarter-space 
problems. Hetényi [Hetényi 1970] devised a way to superimpose the solutions 
of two half-spaces with perpendicular free surfaces to compute the elastic field 
in the quarter-space. Based on this concept, in [Zhang 2013] the procedure to 
obtain the IC matrices of the quarter-space was given, explicitly and with no 
iterations. Particularly the quarter-space with normal pressure applied on its free 
surface was considered in that reference, but the method may be readily applied 
with surface shear stresses as well.  

Next, the IFs of the elastic displacements of the half-space produced by unit 
point or concentrated surface forces are given. These are denoted here with 
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letter a. Here a homogeneous half-space is considered, with a single material of 
linear elastic and isotropic behaviour.  

The nomenclature followed to express these IFs is defined first. A Cartesian {x, 
y, z} coordinate system is considered, with its origin located in the free surface, 
the x and y axes parallel to this surface, and the z axis pointing into the half-
space, completing the right-handed Cartesian system. The x, y and z axes are 
designated as longitudinal, lateral and normal, respectively. The IF ak

ij (x, y, z) is 
defined as the displacement produced in i direction at the point (0, 0, z) of the 
half-space designated with number k, by a unit point load applied in direction j 
at point (x, y, 0) of its surface (with i, j = x, y, or z).  

The IFs ak
xx, a

k
xy, a

k
xz, a

k
zx and ak

zz are given in Eqs. (2.103)–(2.107).  
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Being Gk and νk the shear modulus and the coefficient of Poisson of the half-
space k, and ρ the distance between the point where the load is applied and the 
point where the displacements are observed:  

 222 zyx ++=ρ  (2.108) 
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The rest of the IFs may be obtained from the ones given above, interchanging 
the x and y coordinates in the corresponding equations. For example, the IFs ak

yy 
and ak

yz may be obtained from ak
xx and ak

xz respectively, changing the x variable 
for the y variable in Eqs. (2.103) and (2.105). It is verified that ak

xz / a
k
yz = x / y. 

That is to say, the projections in a plane parallel to the surface of the 
displacements caused by a point normal load are oriented radially with respect 
to the point where the load is applied, as it must be due to the axisymmetry of 
the problem with a point normal load.  

Clearly, for a homogeneous half-space, the IFs depend only on the relative 
positions in the x and y axes of the point where the load is applied with respect 
to the point where the displacements are observed, as well as on the coordinate z 
of the latter. That is to say, the displacements produced in any point (x', y', z) of 
the solid by a load applied at the point (x' + x, y' + y, 0) of its surface, are equal 
to the displacements produced at point (0, 0, z) of the solid by the same load 
applied at the point (x, y, 0). This property allows considerable computational 
savings in the computations related to the ICs in concentrated contact problems 
(in which additionally the elastic properties of the solids do not change in the 
direction parallel to the surface in the vicinity of the contact); cf. §4.1.1.4.  

Next, the IFs axx, axy, axz and azz of the relative surface displacements between 
two contacting elastic half-spaces are given. These are deduced from the 
corresponding ak

ij IFs in Eqs. (2.103)–(2.107), taking into account that in the 
surface z = 0.  
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In Eqs. (2.109)–(2.112), dealing with displacements in the surface (z = 0), the 

dependency of coordinate z is suppressed, and 22 yx +=ρ . The combined 

elastic constants G, ν and K used in these equations are defined as follows:  
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Again, the rest of the IFs may be obtained from the ones given above, changing 
x for y in the corresponding equations. For example, the IFs ayy and ayz may be 
obtained from axx and axz respectively, changing x for y in Eqs. (2.109) and 
(2.111). On the other hand, azx is deduced by reciprocity from axz:  

 azx (x, y) = axz (−x, −y) = −axz (x, y) (2.116) 

ICs derived from the above given IFs are given in §5.1, including results 
available in the literature, and new ones developed in this thesis.  

The half-plane is the 2D equivalent of the half-space. Eqs. (2.117)–(2.121) give 
the IFs for the surface displacements of the elastic half-plane subject to a unit 
concentrated line1 load on the surface (the remaining ones may be deduced by 

                                                      

1 Here line load means a distributed load applied in an infinite longitude in the direction 
perpendicular to the plane where the 2D geometry is located, uniformly as it 
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reciprocity). In these equations, the superindex “hp” stands for half-plane. A 
Cartesian coordinate system similar to the one used before for the half-space is 
considered: the x axis is contained in the plane and parallel to the surface, the z 
axis is normal to the surface and pointing to the inside of the half-plane, and the 
y axis completes the right-handed system.  

 
x

x

G
ahp

zz
0ln

1

π
ν−=  (2.117) 

 hp

zz

hp

xx aa =  (2.118) 

 
G

xahp

xz 4

21
)sgn(

ν−=  (2.119) 

The x0 variable in Eq. (2.117) is the necessary reference point in the x axis to 
define the origin of the normal displacements due to the normal line load, as in 
the case of the half-plane the absolute magnitude of these is undetermined.  

The following relations apply for the displacements normal to the plane, as 
developed in [Johnson 1987] (§2.9):  
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The ICs associated to line loads distributed uniformly or linearly in a surface 
element parallel to the x axis may be easily obtained integrating the previous IFs 
in the x coordinate, and may be found in [Johnson 1987], §2 (Eqs. (2.30), (2.32) 
and (2.37))2.  

                                                                                                                                  

corresponds to a 2D problem. The adjective “concentrated” or “point” is used when the 
zone where the load is applied is punctual inside the plane.  

2 Note that the cited reference gives the expressions for the displacements in x 
corresponding to loads applied in the origin (x = 0), while here the displacements 
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2.2.2 Non-planar solids with available analytical r esults  

In this section the cases of 2D cylindrical geometries and of the sphere are 
examined, for which analytical IFs are available. It is also worth mentioning the 
case of 3D infinitely long cylindrical geometries subject to axially periodic 
normal loading, studied by Chiu ([Chiu 1963], [Chiu 1964], [Chiu 1987]). In 
[Chiu 1987] the procedure for the computation of the ICs of the cylinder and the 
cylindrical cavity under the action of a uniform normal pressure distribution in a 
rectangular surface element is explained. In this case, there is no closed form 
solution available for the IFs, and the ICs are computed as a doubly infinite 
series of elemental solutions for bisinusoidal load in the cylindrical surface.  

2.2.2.1 Cylindrical geometries under line loads  

There are analytical solutions for the 2D geometries of the cylinder and the 
cylindrical cavity in the infinite space subject to line loads in the surface. These 
cases have great practical interest, as contacts between components with this 
geometry are frequently found in applications such as joints with pins and in 
diverse machine elements as pistons, shafts and bearings for instance.  

In this section, the case of plane strain will be considered. The solutions for 
plane stress are similar to those for plane strain, as the equations of linear 
elasticity in statics for homogeneous and isotropic bodies apply in a similar way 
for both states, with the only difference of the elastic constants that appear in 
them in each case (cf. [Muskhelishvili 1977], §25 and 26). The solutions for 
plane stress may therefore be obtained from those for plane strain, modifying 
the elastic constants in the following way, as explained e.g. in [Woodward 
1976] – app. I, [Ciavarella 2001a], or [Hou 2001]:  
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( )21

21
'

ν
ν

+
+= E

E  (2.122) 

                                                                                                                                  

produced in the origin by loads applied in x are considered. Therefore, it is necessary to 
change the sign of the expressions of Axz and Azx of the cited reference to obtain the 
expressions of the corresponding ICs as defined here.  
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This applies generally, not only in the particular case of cylindrical geometries. 
In the previous equations, E is the Young’s modulus and ν the coefficient of 
Poisson of the solid. E' and ν' are the modified elastic constants which may be 
used in the solutions for plane strain, replacing the original ones E and ν, to 
obtain the solutions for plane stress3. It is not necessary to modify the shear 
modulus G, as may be verified with the previous equations (2.122) and (2.123).  

[Muskhelishvili 1977], §80a gives the solution for the problem of the cylinder 
under the action of a couple of opposed and collinear (not necessarily radial) 
surface forces. The resulting expressions of the surface displacements are 
particularized in [Woodward 1976] for the case of diametrically opposed forces. 
The applicable solutions for the case of a single force, normal or tangential, 
applied in the surface of the cylinder, equilibrated with a point force and 
moment in the centre or with a uniformly distributed load in the whole section 
of the cylinder, may be found in [Sundaram 2010b]. The complex potentials4 for 

                                                      

3 Commonly, in practical situations neither the condition of plane strain nor that of 
plane stress is strictly fulfilled, as for example in pinned joints, in which typically the 
pin diameter is of the same order of magnitude as the thickness where the contact is 
produced. In these cases, the real solution will presumably be somewhere between the 
solutions for plane strain and for plane stress. Moreover, it may be verified that the 
differences between the solutions for plane strain and plane stress turn out to be not very 
big, mostly with small values of the coefficient of Poisson. So it is reasonable to assume 
that in these cases the hypothesis of plane strain as well as that of plane stress will lead 
to a good approximation of the real solution (without considering 3D effects as e.g. 
misalignments between the axes of both contacting bodies).  

4 The complex potentials are the complex representation of the stress function for 2D 
linear elasticity problems. The stress function or Airy function applicable in plane linear 
elasticity problems in the absence of volumetric forces or with conservative volumetric 
forces, is an auxiliary scalar function, which second order derivatives represent the 
stress components, and that considerably simplifies the treatment of these problems. In 
3D elasticity the displacement functions are more usual, being in general necessary at 
least three functions for a complete definition of the problem. More details may be 
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the case of the cylindrical cavity were derived in [Rothman 1950] for the first 
time, as cited in [Sundaram 2010a]. [Woodward 1976] gives the expression for 
the surface displacements in the cylindrical cavity due to a couple of opposed 
normal forces applied in two diametrically opposed points of the surface. On the 
other hand, in [Sundaram 2010a] the expressions for the displacements due to a 
single point force are given, normal or tangential, applied in the surface as well.  

Next, the IFs of the surface displacements for the previously cited 2D problems 
with cylindrical geometries are exposed. Figure 2.22 illustrates the different 
problems considered for the cylinder, and Figure 2.23 the ones corresponding to 
the cylindrical cavity.  

 

 

 

 

 

(a)  (b)  (c) 

Figure 2.22. 2D problems for the cylinder subject to point line forces in the surface. (a) 
Two normal, diametrically opposed forces. (b) and (c): a single force (decomposed into 
its normal N and tangential T components) equilibrated with a moment; and with an 

                                                                                                                                  

found about the principles and application of the stress functions and displacement 
functions in linear elasticity problems in the literature about Elasticity (e.g. [Love 
1906], [Timoshenko 1951], [Muskhelishvili 1977] or [Barber 2002]), as well as 
examples of their use to solve practical problems. [Muskhelishvili 1977], §5, presents a 
detailed development of the complex representation of the general solution of the 
equations of plane linear elasticity.  
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opposed force (b) in the centre of the cylinder or (c) uniformly distributed in the whole 
section of the cylinder.  

 

 

 

(a) Two normal, diametrically opposed forces.   (b) A single force.  

Figure 2.23. 2D problems for the cylindrical cavity subject to point line forces in the 
surface.  

The IFs, given in Eqs. (2.124)–(2.133), are expressed in a curvilinear reference 
system, tangent in each point to the surface of the cylinder or of the cylindrical 
cavity, with radial or normal coordinate n and lateral or tangential s. On the 
other hand, the surface points are located according to a polar reference system 
with origin in the centre of the cylinder or of the cylindrical cavity, with angular 
coordinate θ. The angular coordinate is defined positive clockwise, as the 
tangential displacements, and the positive direction of the normal displacements 
is defined towards the inside of the solid in each case. These IFs are designated 
with the a letter, as those of the half-space, because they are exact analytical. 
The aij(θ) IF, with i, j = n or s, represents the displacement produced in i 
direction in the surface point with 0 angular coordinate, due to a unitary line 
concentrated force (with dimension of force per unit length in the direction 
perpendicular to the plane) applied in j direction in the surface point with θ 
angular coordinate, and to the corresponding reactions that equilibrate it.  
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The first superindex that identifies the IFs in the left side of the previous 
equations indicates the considered solid (cylinder or cylindrical cavity), and the 
second (…,l; with l = a, b or c) the load and supporting condition, according to 
the sub-figure with the same letter in the previous figures. The constants K1 and 
K2 used in these equations are defined in the following way:  
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With κ being Kolosov’s constant, equal to 3 – 4ν in plane strain, and G the shear 

modulus of the cylinder or the cavity. The function ( )θ~F  is defined in Eq. 

(2.136), and the angle θ~  in Eq. (2.137).  
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The previous equations (2.124)–(2.133) differ slightly from the ones found in 
the literature (e.g. in [Woodward 1976], [Sundaram 2010 a and b], [Liu 2012] 
and [Liu 2013]), as explained next. In order to be able to use the previous 

expressions for any θ, the corresponding θ~  angle is defined inside the interval 

(–π, π), according to Eq. (2.137), where   indicates rounding towards –∞. 
Additionally, in the expressions for the cylinder and the cylindrical cavity 
subject to two normal, diametrically opposed forces, the absolute values of the 

tangents are taken, for the a

nna...,  IFs the absolute values of the sines are taken, 

and for the a

sna...,  IFs the cosines are multiplied by the sign of the θ~ angle. On the 

other hand, for the cylinder subject to two normal, diametrically opposed forces, 
with respect to the equations (4.36) or (B.10) and (4.37) or (B.11) of 
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[Woodward 1976], in the previous equations (2.124) and (2.127) the second 
term in the right side is corrected, omitting the division with π.  

Regarding the ass IFs, it is verified that ass = ann in each case, as it happens in the 
half-plane, except for a rigid body movement term for the cylinder, depending 
on the loading and supporting condition.  

2.2.2.2 Sphere under opposing radial loads  

The solution to the problem of the elastic sphere subject to a pair of normal and 
diametrically opposed point forces may be found in [Sternberg 1952], as cited 
in [Woodward 1976]. On the other hand, Titovich [Titovich 2012] presents a 
compact form of the IFs of the sphere loaded axisymmetrically, using quickly 
convergent series, and apart from the case of normal diametrically opposed 
point forces, the formulation for more general axisymmetric load distributions is 
developed. Next the IFs of the normal and tangential surface displacements of 
the sphere are reproduced, which may be found in [Woodward 1976] for the 
problem of the sphere loaded with a pair of normal and diametrically opposed 
point forces.  
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The IFs of Eqs. (2.138) and (2.139) are expressed in a curvilinear reference 
system, with direction n normal to the sphere in each point and pointing to the 
inside of the sphere, and the s direction tangential, meridional with respect to 
the “poles” defined by the points where the loads are applied, and with the same 
positive direction as the θ angle, which is the zenithal angle with respect to one 
of the points where the load is applied. The meaning of the aij(θ) IFs for the 
sphere is similar to that indicated in the previous section for the cylindrical 
geometries, being the θ angle bounded in this case in the (0, π) interval.  

In the previous equations, R is the radius of the sphere, G its shear modulus, and 
m the inverse of the coefficient of Poisson ν. P2k(cosθ) are the Legendre 
polynomials of degree 2k in the variable cosθ, and the coefficients A2k and B2k 
are defined in the following equations (2.140) and (2.141):  
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The variable ∆' that appears in the previous equations is defined as follows:  
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The Legendre polynomials Pn(x) of degree 0 and 1 are given by the functions 
P0(x) = 1 and P1(x) = x, and those of successive degrees may be calculated by 
their known recurrence law:  

 ( ) ( ) ( ) ( ) ( ) 0121 11 =++−+ −+ xPnxPxnxPn nnn  (2.143) 

On the other hand, the derivatives of the Legendre polynomials that appear in 
Eq. (2.139) may be evaluated differentiating the expression (2.143), which leads 
to Eq. (2.144):  
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2.3 Numerical analysis of rolling contact  

Generally, numerical methods lead to more precise contact solutions for 
problems that cannot be treated with analytical methods, at the expense of 
increased computational cost. Comprehensive surveys of numerical methods for 
general contact problems are provided in [Wriggers 1995], in the books 
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[Kikuchi 1988], [Laursen 2003], and [Wriggers 2006], and in the PhD Thesis of 
Yastrebov [Yastrebov 2011]. Here a brief review is provided focused on rolling 
contact problems.  

The numerical computation of rolling contact problems was pioneered by 
Kalker with his well-known exact contact theory [Kalker 1979b], [Kalker 
1990], introduced in §2.1.3. The method is aimed at solving contact problems in 
linear elastostatics, and was implemented first in the program DUVOROL and 
later in the program CONTACT. It is widely known in the railway community 
and used as a reference to validate simpler contact models. CONTACT has 
continued being developed by Vollebregt ([Vollebregt 2012], [CONTACT UG 
2013], [Vollebregt 2020], [Vollebregt 2021]), and several authors have 
programmed their implementations as well, [Jin 2005], [Baeza 2011] and 
[Kaiser 2012] being some examples.  

[Wang G 1993] and [Wang Z 2012] are other examples of methods similar to 
Kalker’s exact contact theory for rolling contact problems. In [Wang G 1993], 
the 2D problem of steady-state rolling of two viscoelastic cylinders was 
analysed. In [Wang Z 2012], 3D steady-state rolling problems with surfaces 
including micro-irregularities were analysed. The method used here was limited 
to cases with zero spin.  

Some authors classify the exact contact theory as a boundary element method 
(BEM). Others (e.g. [Wang Z 2012]) designate this type of method as a semi-
analytical method (SAM), referring to the calculation of the ICs, which relate 
surface displacements and stresses. This type of method is indeed commonly 
used for half-space contact problems, and the half-space ICs are calculated 
analytically. However, work has been done to extend the exact contact theory to 
more general geometries with numerically calculated ICs (see e.g. [Li Z 2002], 
[Vollebregt 2014a]), so the designation of SAM, in this case, is now less 
appropriate. Here, the designation of ‘contact element method’ (CEM) will be 
used for methods like Kalker’s exact contact theory, in which just the contact 
surface is discretized, to distinguish them from the BEM in which the whole 
surfaces of the contacting solids are discretized. The latter was done e.g. in 
[Abascal 2007], to solve the structural (global) and the contact (local) problems 
in a coupled way. The CEM designation encompasses methods in which the ICs 



2 State of the art 99 

are either known a priori or are fed as input data (not being necessarily 
calculated analytically), extending the SAM designation.  

Rolling contact problems have also been studied with BEM. In [González 1998] 
and [González 2000] a method was developed to analyse 2D steady rolling 
contact problems with BEM. This was subsequently extended to 3D, for a 
deformable wheel on a rigid base in [Abascal 2007], and allowing for the two 
contacting bodies to be deformable in [Rodríguez-Tembleque 2010]. In the 
latter work, each body could be meshed with either BEM or FEM. The 
methodology developed in these references allows for studying coupled 
structural and contact problems, though the development was aimed at linear 
elastostatic problems. In [González 1998], [González 2000] and in one of the 
procedures presented in [Abascal 2007], the equilibrium equations were 
condensed to the degrees of freedom in the PCS, which could be classified as a 
CEM wherein the ICs are calculated numerically with BEM.  

CEM methods are best suited to contact problems not coupled with the 
structural problem, as is the case in linear elastostatic problems in which the 
remote loads are not influenced by the specific distribution of contact stresses. 
In cases in which this premise is not fulfilled due e.g. to large displacements or 
inelastic material behaviour, FE models are used to get numerical solutions to 
rolling contact problems. FEM has found much wider application in the analysis 
of contact problems than BEM, being more suited to general non-linear 
problems. FEM for contact mechanics analyses commonly involve much more 
degrees of freedom than other contact analysis methods and higher 
computational costs, as the volume of the contacting solids has to be meshed, 
and not just the contact surface. In turn, they offer more versatility to include in 
the analysis complex material behaviour, non-linear geometry, and dynamic 
effects, for example.  

When the rolling is steady state, it is advantageous to set out the problem in a 
static mesh relative to the motion of the wheel axis of revolution, where the 
problem can be described in a purely spatial way, without explicit time 
dependence. In this setting, the displacement fields are decomposed into a part 
of rigid body motion, which is described in an Eulerian way, and a part of 
deformation, which is described in a Lagrangian way. This has the advantage of 
limiting the mesh refinement for detailed contact analysis to the region occupied 
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by the contact patch and of avoiding time stepping. This approach has been 
used mainly in the tire–road application. The tire undergoes large deformations 
and has a complex structure and inelastic material behaviour, while the road is 
commonly assumed to be rigid. This methodology was applied for 2D in [Zeid 
1981], [Padovan 1984], and [Oden 1986] and extended to 3D in [Bass 1987], 
[Padovan 1987], [Oden 1988], [Faria 1989, 1992], [Nackenhorst 1993], and [Le 
Tallec 1994]. In this framework, the inertial effects are accounted for, in 
addition to non-linear geometry and material behaviour. [Nackenhorst 1993] 
noted the relationship between this type of analysis and the Arbitrary 
Lagrangian Eulerian (ALE) methods ([Donea 2004]), widely used in fluid–
structure interaction problems, among others. [Kabe 2000], [Nackenhorst 2000], 
[Hu 2002], [Damme 2003], [Nackenhorst 2004], [Ziefle 2008], and [Rafei 
2018] are further examples of its development and application in 3D rolling 
contact problems. In [Kabe 2000], comparisons between solutions obtained for 
steady rolling contact with this methodology and with Lagrangian simulations 
were made, showing the substantial computational advantage of the former.  

In [Nackenhorst 2000] and [Damme 2003], the application of the ALE 
formulation for 3D wheel–rail rolling contact analyses was demonstrated, where 
the two contacting bodies have to be regarded as deformable. As stated in 
[Nackenhorst 2004], future work has to be spent on the development of reliable 
and efficient numerical algorithms. A difficulty of the ALE formulation for 
rolling contact problems, which is relevant also in the case of a single 
deformable body, is that the particle path-dependent variables are not computed 
inherently. This becomes necessary for the representation of the kinematics of 
the tangential contact problem and inelastic material behaviour. These issues 
were addressed in [Ziefle 2008], and the issue related to the tangential contact 
problem, viz the computation of the convective term of the contact slip 
velocities, in [Laursen 2006] as well. In later works using the ALE formulation 
([Suwannachit 2013], [Behnke 2015], [Draganis 2015], [Wollny 2016], 
[Draganis 2017]), thermo-mechanical rolling contact problems have been 
studied.  

For transient rolling contact problems, a total Lagrangian description seems 
preferable [Wriggers 2001]. [Telliskivi 2001], [Li Z 2008], [Chongyi 2010], 
[Zhao X 2011], [Bian 2013], [Pletz 2014b], [Vo 2014], [Vo 2015], [Zhao X 
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2014], [Zhao X 2015], [Yang 2016], [Toumi 2016], and [Gao 2022] are 
examples of Lagrangian 3D wheel–rail rolling contact analyses in which 
detailed frictional contact solutions were computed with FEM. This type of 
analysis involves a non-linear time-stepping solution, which is computationally 
costly.  

2.4 Conformal contact  

Early analyses of conformal contact are due to [Steuermann 1940] and [Persson 
1964]. They studied the two-dimensional problem of conformal contact of 
bodies with cylindrical geometry. In [Goodman 1965] the contact between a 
sphere and a spherical seat was studied. Being in this case the geometry 
axisymmetric, the problem is also 2D. 2D conformal cylindrical contact is 
characteristic of pinned joints, which are present in numerous engineering 
applications. Following the work of Persson, in [Ciavarella 2001] the 
formulation of the 2D conformal cylindrical contact without friction was 
developed, obtaining the load–contact angle variation relationship in closed 
form, and extending the range of validity of the formulation to any value of 
Dundurs’ first material parameter.  

The development presented in [Ciavarella 2001a] was extended for the case of 
non-zero Dundurs’ second material parameter in [Ciavarella 2001b], solving 
numerically the governing integral equations of the problem. Further, an 
analytical approximation was proposed for the load–contact angle variation 
relationship, based on the assumption, verified by the numerical calculations in 
the work, that the impact of Dundurs’ second material parameter on the pressure 
distribution (for a given contact angle variation) can be neglected. The 
analytical load–contact angle variation relationship was also derived in [Hou 
2001] for the case of identical materials in contact, and a fracture mechanics 
study was conducted considering a radial crack emanating from the surface of 
the circular hole of the plate. The main analytical results for 2D frictionless 
cylindrical contact of the above-cited references is summarized next.  

A cylinder of radius R1 is considered journalled in an infinite plate or cavity 
with a hole of radius R2, as shown in Figure 2.24. The difference in radius ∆R = 
R2 – R1 is positive for a clearance fit, and negative for an interference fit. The 
cylinder is designated as body 1, and the cavity as body 2. Being the Young’s 
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modulus of body k Ek and its coefficient of Poisson νk, the elastic constants Gk, 
E*

k and κk of the same body are calculated according to Eqs. (2.145)–(2.147). 
These are the shear modulus, the equivalent Young’s modulus for plane strain, 
and Kolosov’s constant for plane strain of body k, respectively.  

 

Figure 2.24. 2D cylindrical contact problem.  
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Dundurs’ first and second material parameters α and β for the pair of materials 
in contact are defined according to Eqs. (2.148) and (2.149).  
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When a radial load N is applied on the pin, a contact patch is formed spanning a 
total angle ∆θ. The resulting contact surface may be assumed to be cylindrical 
as well, with the radius R given in Eq. (2.150). A non-dimensional load 
parameter may be defined as E*

1 ∆R / N.  
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The contact angle spanned by the contact patch ∆θ is found by iterative solution 
of Eq. (2.151). In this equation, b = tan(∆θ/4).  
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As E*
1 ∆R / N goes to 0 (i.e., as N goes to infinity and/or ∆R goes to 0), ∆θ 

tends to a limiting value, being the same for clearance and interference contact. 
In the case of interference contact, the limiting value of the load, Nlim, at which 
the contact begins to recede at θ = π is given in Eq. (2.152).  
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The contact normal pressure pn around the cylindrical contact is given by Eq. 
(2.153) for N < Nlim in an interference contact, and by Eq. (2.154) for both a 
clearance contact and an interference contact with N > Nlim. In these equations, 
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b' = tan(θ/4). Eqs. (2.151)–(2.154) may be used in plane stress with appropriate 
modification of the elastic constants (cf. §2.2.2.1). For the case of clearance, the 
results for cylindrical contact converge towards the Hertzian solution for θ → 0. 
As θ increases, the cylindrical contact tends to become more concentrated than 
predicted with Hertzian theory.  
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Double conforming cylindrical contacts without friction, with an intermediate 
annular elastic body between the pin and the infinite elastic plate, were studied 
in [Liu 2012] and [Liu 2013]. The displacements of the pin and the plate were 
calculated making use of their corresponding Green’s functions, and those of 
the ring were calculated by means of a Fourier series technique. In [Liu 2013] 
the model was extended to cope with interference in the contact, and the 
influence of geometric irregularities on the resulting contact pressure 
distributions was studied.  

In [Sundaram 2010a] and [Sundaram 2010b] the formulation for the 2D 
conformal cylindrical contact problem with friction was developed, for the case 
of rigid and elastic pin, respectively. The influence of remote stresses in the 
plate was incorporated in the analysis. The analytical Green’s function of the 
displacements of the pin and the hole subject to boundary point loading were 
used, and a numerical method was proposed to solve the governing singular 
integral equations of the problem, valid provided the contact is not split in more 
than one contact patch.  

Other references of studies about 2D conformal contact may be found in [Fagan 
2001] and [Ciavarella 2006]. In [Fagan 2001], an overview is provided of 
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analytical and numerical methods to study conformal contact problems, and a 
few references of 3D conformal contact analyses are provided as well.  

The works about 3D conformal contact in the literature are comparatively few 
compared with 2D contact. [Woodward 1976], [Paul 1979] and [Paul 1981] are 
early examples of wheel–rail frictionless conformal contact studies. In 
[Marshek 1984], numerical solutions were obtained of 3D frictionless contact 
with cylindrical surfaces. In these works, a discretization of the non-planar 
contact surface was used, which can be classified as a CEM method. 
Considering only frictionless surfaces reduces the complexity of the contact 
problem significantly [Woodward 1976]. Thus, frictional contact has been less 
studied than frictionless contact.  

In [Piotrowski 1999] an analysis procedure for conformal rolling contact 
problems was presented. The normal contact problem was solved with a 
simplified procedure assuming an elastic behaviour of the contacting solids 
similar to the elastic half-space. The tangential contact problem was solved with 
FASTSIM, accounting for the non-flat geometry in the calculation of the rigid 
slip velocities. A simplified method based on the strip theory was used in §8.5 
of [Johnson 1987] to study conformal rolling contact problems as well. 
STRIPES (cf. §2.1.1.3) is another rolling contact algorithm, able to deal with 
non-planar contacts. A distinct approach is used by Pascal ([Pascal 2007a], 
[Pascal 2016], [Pascal 2019]), by means of a multi-Hertzian technique. More 
recently, other researchers have addressed the development of simplified 
wheel–rail conformal contact models for vehicle dynamics simulations 
([Boccini 2016], [Marques 2018], [Marini 2022]).  

A version of Kalker’s exact contact theory extended for conformal contact was 
developed by Li [Li Z 2002] and was used in [Burgelman 2014] in a case study 
of conformal rolling contact. Vollebregt has also extended Kalker’s exact 
contact theory implemented in the CONTACT programme for conformal 
contact ([Vollebregt 2014a], [Vollebregt 2018], [Vollebregt 2021]).  

Both in [Li Z 2002] and in [Vollebregt 2014a], comparisons were presented 
between rolling contact results obtained in cases with different conformity 
levels with the exact contact theory extended for conformal contact on the one 
hand, and with simpler analysis methods on the other hand. In [Li Z 2002], a 
wheel running on a conforming groove was considered, and the results obtained 
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with the strip theory were used for comparison. In [Vollebregt 2014a], 800 
wheel–rail contact cases with different combinations of longitudinal and lateral 
creepages were considered. In this work, the results obtained with the exact 
contact theory assuming planar Hertzian geometry were considered for 
comparison, and the contribution of different sources to the differences between 
the planar and the conformal results was studied.  

Other examples of 3D conformal contact analysis are cited in §2.5, referred to 
the rolling bearing application.  

2.5 Contact mechanics analysis in rolling bearings  

Contact analysis methods of different complexity are used in rolling bearings 
depending on the application and purpose of the study. [Oh 1976] and [Hartnett 
1979] are early examples of numerical solutions of the normal part of 3D 
contact problems in rolling bearings, based on a discretization of the contact 
surface. In these works, the PCS was taken as flat, and the contact surfaces were 
assumed to behave like half-spaces in the normal direction. The computational 
cost grew rapidly with the refinement of the mesh, as indicated in [Oh 1976].  

FE models are also used to obtain numerical contact solutions in rolling 
bearings. Some examples may be found in [Ju 2000], [Bomidi 2014], [Li F 
2018] and [Abdullah 2020]. In [Ju 2000], the contact pressure profiles in the 
roller–raceway contact obtained with rollers with different crowned profiles 
were studied with 3D FEM. In [Bomidi 2014], detailed simulations of the 
initiation and propagation of subsurface initiated rolling contact fatigue (RCF) 
cracks were carried out with 3D elastic-plastic FEM. Evolving contact pressure 
profiles between a flexible half-space with growing cracks simulating the 
raceway and a rigid roller were calculated, and it was shown how taking into 
account more realistic contact pressure profiles in the analysis instead of purely 
Hertzian prescribed ones could have a considerable impact in the computed 
RCF life, especially in heavily loaded contacts. The frictional contact between 
the crack faces was explicitly included in the simulations. On the other hand, a 
full slip situation was considered in the roller–raceway contact, prescribing the 
contact shear stresses as directly proportional to the normal pressures with an 
assumed coefficient of friction. In [Li F 2018], RCF simulations were carried 
out as well. In this case, a 2D explicit FE model was used to simulate the line 



2 State of the art 107 

contact between a cylindrical roller and a raceway in plane strain, modelling 
both bodies as elastic. A friction coefficient was specified for the contact in the 
analysis, but a situation of pure rolling was considered, so nearly frictionless 
contact solutions were obtained. In [Abdullah 2020], experimental and 
numerical results of a 4-ball RCF test were reported. The numerical results were 
obtained with a 3D FE model with which the frictionless contact between an 
elastic-plastic ball and rigid plates rotating over the contact track of the ball was 
simulated.  

Regarding the contact mechanics part of the simulation, the above-cited works 
dealt mainly with the solution of the normal part of the rolling element–raceway 
contact. Frictional contact problems involve a greater difficulty than frictionless 
contact problems, and simplified contact models are usually employed to 
facilitate their solution. A commonly used simplifying assumption is that of full 
slip, wherein the tangential stresses are determined as the normal pressures 
times a coefficient of friction. This is used for instance in [Houpert 1999], 
[Houpert 2002] and [Leblanc 2007], following [Jones 1959]. As explained in 
[Houpert 1999] and [Houpert 2002], the coefficient of friction is actually 
variable across the contact (see also [Kleckner 1982]). Still, a single value may 
be used for the full contact provided it is properly calculated according to the 
average contact pressure and sliding speeds in the contact. Besides the shearing 
of the lubricant film between the contact surfaces, the possible contribution of 
the solid direct contact between the surfaces should be considered. The full slip 
approach is also commonly used in rigid body dynamics simulations of other 
mechanical systems involving frictional contacts, to achieve fast computation of 
the contact resultant forces and moments ([Zhuravlev 1998], [Leine 2003], 
[Kireenkov 2008], [Karapetyan 2009], [Kudra 2013], [Zobova 2019]).  

The underlying assumption in full slip tangential contact solutions is that the 
elastic displacement gradients of the contacting surfaces are small in relation to 
the rigid slip velocities and can be neglected. The surfaces are thus regarded as 
rigid in the tangential direction of the contact. However, the effects of the 
tangential elasticity of the bodies may be significant in certain situations, as 
shown in [Halling 1966–67] and §8.5 of [Johnson 1987]. In these works, the 
tangential contact problem was solved with the strip theory (cf. §2.1.2.3). The 
strip theory was also used in [Oloffson 2000] and [Meehan 2017] to obtain 
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tangential contact solutions to calculate wear profiles in spherical roller thrust 
bearings and spherical roller bearings, respectively. This being an analytical 
solution, its computational costs are much lower than those of numerical 
methods. On the other hand, it is limited to cases in which the direction of the 
rigid slip velocities is approximately constant in the rolling direction, as it was 
initially conceived for situations with pure creepage.  

The FASTSIM algorithm [Kalker 1982] of Kalker’s simplified rolling contact 
theory is another simplified partial slip model for the tangential contact problem 
(cf. §2.1.2.6), which overcomes the limitation of constant direction of the rigid 
slip velocities along the contact. This model was applied in [Legrand 1995] and 
[Heras 2018] to different types of ball bearings, seeking to improve the 
tangential contact solutions obtained with the usual full slip approach.  

In more recent works ([Tonazzi 2017], [Heras 2017a], [Schwack 2018], 
[Schwack 2021], [Fallahnezhad 2019]), detailed frictional contact solutions in 
rolling bearings have been computed with FEM in Lagrangian, time-stepping 
simulations. In these works, it was relevant to obtain a detailed solution of the 
tangential contact problem in order to get representative friction torques, plastic 
or wear profiles in the computations. A relevant difficulty in rolling contact 
analyses of rolling bearings with respect to the wheel–rail or tire–road 
applications is that in many cases more than two contacting bodies have to be 
modelled.  

In [Tonazzi 2017], a 3D elastic-plastic FE model of the ball–raceway contact 
region of an oscillating ball bearing was used to simulate oscillating rolling 
contact cases with different levels of friction, focusing the analysis in the 
contact of the ball with the inner raceway. It was shown that the tangential 
contact stresses altered the equivalent plastic strain distributions around the 
contact. [Heras 2017a] studied the friction torque in four-point contact slewing 
bearings, comparing the results obtained with a detailed 3D FE model against 
the full-slip solution. In some of the studied cases significant differences were 
observed in the tangential stress and slip distributions computed with the 
different models, as well as non-negligible differences in the resulting friction 
torques. In [Schwack 2018], the patterns of slip and frictional dissipation which 
may lead to a fretting wear damage termed as “false brinelling” in stationary 
bearings subject to vibration or to oscillatory motion were studied in an angular 
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contact ball bearing under oscillatory motion with different coefficients of 
friction and bearing geometries. The study was carried out both numerically, 
with 3D elastic FE models, and experimentally, observing good correspondence 
between the computed frictional work distributions and the fretting marks 
observed in the physical tests. The same modelling approach has been used in 
[Schwack 2021] to study the effect of the bearing oscillation amplitude on the 
accumulated frictional work densities in the ball–raceway contacts. In 
[Fallahnezhad 2019], 2D FE models were used to study false brinelling in a 
cylindrical roller bearing under different oscillatory shift and rolling contact 
cases that could take place during transportation. The patterns of stick and slip 
areas in the contact were shown to influence the wear profiles, causing W-
shaped profiles in some of the studied cases.  

 





 

Chapter 3  

3. Vehicle–track dynamic interaction 
in different tracks  

Chapter summary  

In this chapter, models to study the vertical dynamic vehicle–track interaction 
in the time domain are developed. Two commercial analysis software packages 
are used for this purpose: a multibody system (MBS) analysis software, and a 
Finite Element Method (FEM) analysis software. As a result, a combined MBS-
FEM representation of the vehicle–track model is integrated into the MBS 
software, which allows for the study of dynamic phenomena in a wide frequency 
range. Other simpler approaches for modelling the dynamic vehicle–track 
interaction are also considered, such as pure multibody or FE representations 
of the whole vehicle–track system. The quality of the results obtained with the 
different types of models used is analysed, and some conclusions are put forth 
regarding the possible validity of simpler train–track interaction model types 
under certain conditions, as well as the most suitable configuration of the most 
complex models. The developed models are used to analyse and compare the 
dynamic performance of a ballasted track and three types of slab track.  
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3.1 Description of the studied track types  

Four track types have been considered in the studies presented here: a ballasted 
track, and three types of slab tracks: the RHEDA 2000 track, the STEDEF 
track, and a floating slab track. In the RHEDA 2000 and STEDEF tracks, the 
slab is directly supported on the soil, and in the floating slab track, the slab is 
isolated from the soil by means of an elastomeric mat.  

Ballast has been used since the beginning of railways to serve as a transition 
element between the sleepers and the soil, providing compliance and vibration 
damping, as well as surfacing and draining capabilities to the track. The 
increased maintenance costs and reduced life cycle of the track associated with 
higher transportation speeds, axle loads, and traffic densities led to the 
appearance of the slab track in the 1960s.  

Some of the advantages of the slab track with respect to the ballasted track are 
its higher geometric stability and reduced maintenance costs. The main 
disadvantage of the slab track is its higher installation cost. Apart from that, 
railway administrations and design engineers often prefer to use traditional 
ballasted track designs instead of newer slab track designs, because greater 
experience has been gained with the use of the former track type.  

Within the different slab track types, floating slab tracks provide and effective 
way to reduce vibration transmission form railway traffic to the ground 
[Lombaert 2006], [Hussein 2006], [Kuo 2008]. By adding an elastic layer 
beneath the slab, the natural frequency of the system is reduced at the expense 
of increasing its cost.  

The relevant parameters that have been used in the simulations for each of the 
studied track types are usual parameters of new high-performance tracks in 
Europe, and are listed in Table 3.1. These are typical values based on standard 
configurations of each type of track and may vary within a certain range. 
Consequently, the results and conclusions presented in this study must be 
understood as applicable specifically with the parameter values chosen here, 
and may not be extended straightforwardly to other possible configurations of 
each type of track.  
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Table 3.1. Parameters of the different track types considered in the simulations.  

Parameter Ballasted RHEDA 
2000 

STEDEF Floating  
slab 

Railpad vertical stiffness 
[kN/mm]  

100 24.6e 150 213.2 

Railpad vertical (relative) 
damping [kN s/m] or [%]  

15 10%f 10% 14.8 

Sleeper mass [kg]  320 138 221.7 — 
Rail support spacing [m]  0.60 0.65 0.60 0.60 
Sleeper support vertical 
stiffness [kN/mm]  

100 — 50 — 

Sleeper support vertical relative 
damping [%]  

20% — 10% — 

Slab cross-section dimensions 
(width×height) [m]  

— 3.2×0.24 2.9×0.49 2.5×0.55 

Slab support stiffness per unit 
area [kN/m3]  

— — — 15000 

Slab support damping per unit 
area [kN s/m3]  

— — — 30 

Slab concrete Young’s modulus 
[GPa]  

— 34 29 30 

Slab concrete shear modulus 
[GPa]  

— 14.2 12.1 11 

Slab concrete density [kg/m3]  — 2500 2500 2500 
Slab concrete relative viscous 
damping [%]  

— 1% 1% 1% 

                                                      

e Combined stiffness of the upper railpad and lower base plate pad in series. The 
stiffness values for each of the two pads are 450 kN/mm and 26 kN/mm, respectively.  

f For both the railpad and the base plate pad.  

In all the cases, the modelled tracks are considered to rest on an infinitely stiff 
soil. The parameters chosen for the ballasted track correspond to a high-
performance ballasted track adequate for high-speed traffic.  

The sleeper support vertical stiffness and relative damping in Table 3.1 refer to 
the properties of the elastic level below the sleeper, i.e. the ballast for the 
ballasted track and the elastomeric material above which each sleeper rests in 
the STEDEF track.  
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As for the rail properties, a 60E1 rail section is considered in all cases. The 
mechanical properties of the rail material and the geometric properties of the 
rail section are the same as those given in [Wu 2004].  

Figure 1.5 shows the dynamic models of the different track types studied. A 
brief description of the three studied slab track types is given in the following 
subsections.  

 

 

 

(a) Ballasted track.   (b) RHEDA 2000 track. 

 

 

 

(c) STEDEF track.   (d) Floating slab track. 

Figure 3.1. Cross-sections of the dynamic models of the studied tracks. 

3.1.1 RHEDA 2000 track  

This is the type of slab track that has been most used in Europe. The rails are 
discretely supported above each sleeper, and the sleepers are directly embedded 
in the slab, forming a monolithic assembly. Therefore, most of the vertical 
flexibility and damping of the track is provided in the rail fastening system, 
which is usually of the type VOSSLOH IOARV 300 [VOSSLOH www]. This 
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fastening system comprises two elastic levels: one is given by the railpad, 
located between the rail and the base plate, and the other by the base plate pad, 
located between the base plate and the sleeper. Therefore, for modelling this 
track, two elastic layers are considered between the rails and the slab. The base 
plate has a mass of 4.4 kg.  

The reinforced concrete slab of this track is continuous and is executed on the 
field. The slab rests on a layer of gravel and cement or lean concrete, which are 
materials of very high stiffness compared to the elements in other elastic levels 
of the track. Therefore, the slab can be considered to be directly supported on 
the soil with no elasticity beneath it.  

3.1.2 STEDEF track  

In the STEDEF slab track, there are two elastic levels above the slab. One, like 
in the other track types studied, is given in the rail fastening system. In this 
case, the rail is also discretely supported above each sleeper. Different options 
are available for the rail fastening system, the simplest being the NABLA type. 
This fastening system has a single elastic level.  

The second elastic level above the slab is given between the sleepers and the 
slab, since these are not directly built into the slab like in the RHEDA 2000 
track, but they rest above an elastomeric material.  

As in the case of the RHEDA 2000 track, the reinforced concrete slab of the 
STEDEF track is continuous and executed on the field. In this case again, the 
slab rests on a layer of gravel and cement or lean concrete, and no elastic level 
is considered beneath it.  

3.1.3 Floating slab track  

The application of floating slab tracks in mainly focused to reducing vibration 
transmission from railway traffic to the ground [Lombaert 2006], [Hussein 
2006], [Kuo 2008]. The slab is isolated from the ground by means of a resilient 
layer, which may consist of single support bearings, steel springs, or a 
continuous elastomeric mat. Therefore, unlike in the other two types of slab 
tracks previously described, in this type of track, an elastic layer is considered 
beneath the slab.  
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By maximizing the resilience of the elastic layer beneath the slab, the cut-on 
frequency of the system is reduced, and a more effective reduction in the 
transmission of vibrations to the ground can be achieved. The slab mat 
resilience, however, is limited by the maximum allowable static rail deflection 
[Lombaert 2006].  

Above the slab, the track has a single elastic level given by the discrete support 
pads between the rails and the slab.  

The parameters chosen for this track are taken from [Lombaert 2006]. These 
parameters correspond to a stiff pad for the rails and soft mat for the slab. This 
combination of parameters can be adequate to reduce wheel–rail force and track 
deflection, to ensure riding quality and train stability and to reduce force 
transmission to the subgrade due to environmental concerns [Kuo 2008].  

3.2 Description of the vehicle–track interaction 
models  

In this study, different types of models have been constructed for the study of 
vertical vehicle–track dynamic interaction in the time domain, that account for 
the elasticity of the track, combining the use of the commercial FEM software 
NASTRAN and the commercial multibody system (MBS) software SIMPACK. 
Three different approaches have been followed for this purpose, as explained in 
the next subsections. The use of a commercial MBS software makes it possible 
to include, in a reliable way, models of advanced non-linear wheel–rail contact 
as well as complex elements or joints in the vehicle model. On the other hand, 
the FEM allows taking into account the flexibility of continuous longitudinal 
track components (the rail and the slab).  

3.2.1 Rigid multibody models  

Rigid multibody (RMB) is the simplest approach to model a vehicle–track 
interaction model in a MBS environment, and is the standard option that is 
available in most MBS analysis programs, including SIMPACK, for modelling 
an elastic track.  

The idea consists of employing discrete elements of mass, stiffness, and 
damping for modelling the different elastic levels of the track in a way that is 
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similar to the one for the vehicle. A group of lumped mass, spring, and damper 
elements are placed below every axle of the vehicle, each of those groups 
always remaining below the axle to which it is associated [Bezin 2009]. 
Therefore, each of those groups travels along the running path of the vehicle at 
the same speed as each of the vehicle’s axles.  

The physical parameters of mass, stiffness, and damping assigned to each 
lumped element beneath the vehicle’s wheelsets are found in this study by 
adjusting the vertical receptance of the mass-spring-damper assembly beneath 
each wheelset to that of the track, the latter being calculated in a frequency 
analysis with a FE model of the track. The FE track models used for this 
purpose are the same as the ones used in the FE vehicle–track interaction 
models, described in §3.2.2.  

The models of all the tracks considered have two elastic levels. Therefore, the 
discrete assemblies representing the track beneath each wheelset are modelled 
as a two-degree of freedom (DOF) system, as depicted in Figure 3.2 (in the 
figure, the horizontal displacement is the only DOF of each of the two masses 
of the system; in the RMB models the DOF of each mass of the track model is 
the vertical displacement). The mass designated as m1 in the figure represents 
the rail level, and the mass designated as m2 the sleeper in the ballasted and 
STEDEF tracks, the base plate pad in the RHEDA 2000 track, and the slab in 
the floating slab track.  

 

Figure 3.2. 2-DOF dynamic system representing the track beneath each wheelset in the 
RMB models (depicted with horizontal instead of vertical displacement as the DOF of 
each mass).  

The dynamic matrix [D]  of the 2-DOF system shown in Figure 3.2 is given in 
Eq. (3.1). In this equation, [K] , [C]  and [M]  are the stiffness, damping and mass 

matrices, ω the forcing frequency, and i = 1− .  
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The receptance R(ω) is calculated as the steady-state displacement amplitude of 
m1 when a unitary sinusoidal force is applied on it, as depicted in Figure 3.2. 
Therefore, the force vector is (1, 0)T. Applying Cramer’s rule, R(ω) may be 
written analytically according to Eq. (3.2), where |D| stands for the determinant 
of [D] . The analytical expressions for the real and imaginary parts of |D| are 
given in Eqs. (3.3) and (3.4), respectively. For the undamped system, Im(|D|) = 
0, and the natural frequencies may be found as the two roots of the biquadratic 
equation Re(|D|) = 0.  
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For each track, the adjustment of parameters of the 2-DOF assemblies beneath 
each wheelset to approximate the corresponding reference track receptance 
calculated with a FE model of the track is carried out following these steps:  

- The parameters of mass, stiffness and damping of the track 
corresponding to a single sleeper bay are calculated. These parameters 
are identified with the appendix “,sb” in their subindex, and may be 
calculated with the data given in Table 3.1. For example, m1,sb is 
calculated as the mass of the two rails in the sleeper spacing length, and 
m2,sb is the mass of a sleeper in the case of the ballasted track, the mass 
of two base plate pads in the case of the RHEDA 2000 track (one for 
each rail of the track), and the mass of the slab in the sleeper spacing 
length in the floating slab track.  
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- An equivalent number of sleeper bays is defined for each elastic level of 
the 2-DOF system, n1 and n2. These may be interpreted as a measure of 
the track lengths participating in the track motion in the frequency 
range in which the receptance adjustment is carried out. The parameters 
of mass of the 2-DOF system are calculated as mi = ni × mi,sb, and 

similarly for ki and ci, with i ∈ {1, 2}.  

- n1 and n2 are adjusted iteratively, so that the track receptance of the 
equivalent 2-DOF system calculated analytically according to Eqs. 
(3.2)–(3.4) matches as well as possible the reference track receptance 
calculated with FEM. Specifically, it is aimed at adjusting the modulus 
of the track receptance, in the frequency range of roughly 0 to 500 Hz.  

- The relative damping of one or both levels of the equivalent 2-DOF 
system are modified if necessary to improve the receptance adjustment. 

Here, the relative damping ξi is defined as ξi = ci,sb ωi / (2 ki,sb), with i ∈ 

{1, 2}. ωi are the natural frequencies of the undamped 2-DOF system 
(with the parameters corresponding to a single sleeper bay), ω1 being 
the natural frequency at which m1 and m2 vibrate out of phase, and ω2 
the natural frequency at which m1 and m2 vibrate in phase. Another 

possibility could have been to define ξi as ( )sbisbiii mkc ,,2=ξ . For a 

system with more than one DOF, this not always renders similar results 
to the previous formula.  

With the described adjustment, a quite good correspondence between the 
receptance of the track calculated with a FE model and the receptance of the 2-
DOF assemblies beneath each wheelset can be achieved at low and mid 
frequencies up to a few hundred Hertz. Figure 1.2 shows the adjustment of 
receptances achieved for each track. The receptance of the track calculated with 
FEM shown in each graph corresponds to the position above a sleeper, not 
being large differences with the receptance calculated at mid-span in the 
frequency range shown.  
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(a) Ballasted track.  

 
(b) RHEDA 2000 track.  



3 Vehicle–track dynamic interaction in different tracks 121 

 
(c) STEDEF track. 

 
(d) Floating slab track. 

Figure 3.3. Comparison of the modulus of the receptance of each track calculated with 
a FE model and with an adjusted 2-DOF mass-spring-damper assembly.  

The parameters corresponding to the shown receptances are listed in Table 3.2. 
n1 and n2 are around 2.7 in the ballasted, RHEDA 2000 and STEDEF tracks. In 
the floating slab track, n1 = 2, and n2 = 9.92. This result is explained as follows. 
The reason for the higher n2 in this track is the high bending stiffness of the 
slab. The reason for the lower n1 is the low degree of rail bending allowed, as a 
result of both the high bending stiffness of the slab and high railpad stiffness 
(see also the pad forces in Figure 3.17 and related discussion).  
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Table 3.2. Parameters of the RMB track models.  

Parameter Ballasted RHEDA 2000 STEDEF Floating slab 
m1,sb [kg]  72.4 78.4 72.4 72.4 
k1,sb [kN/mm]  200 900 300 426.4 
ξ1 (original | adjusted) [-]  0.139 | 0.139 0.10 | 0.10 0.10 | 0.10 0.086 | 0.108 
c1,sb (adjusted) [kN s/m]  30.0 16.5 25.5 37.3 
m2,sb [kg]  320 8.8 221.7 2062.5 
k2,sb [kN/mm]  100 52.0 50.0 22.5 
ξ2 (original | adjusted) [-]  0.20 | 0.25 0.10 | 0.156 0.10 | 0.15 0.102 | 0.160 
c2,sb (adjusted) [kN s/m]  100 21.4 36.6 70.1 
ω1 [rad/s] 1857.3 10913 2356.7 2469.1 
ω2 [rad/s] 500.2 754.7 410.2 102.7 
n1 [-]  2.50 2.69 2.70 2.00 
n2 [-]  2.70 2.69 3.00 9.92 
m1 [kg]  181 211 195 145 
k1 [kN/mm]  500 2420 810 853 
c1 [kN s/m]  75 44.4 68.7 74.6 
m2 [kg]  864 23.7 665 20500 
k2 [kN/mm]  270 140 150 223 
c2 [kN s/m]  270 57.8 110 695 

The real behaviour of the longitudinally continuous elements of the track, 
namely the rails, and if it is the case, also the slab, cannot be properly 
represented with this type of model. The possible effect in the vehicle–track 
interaction of the rail bending between two consecutive sleepers in the case of 
discretely supported rails is also neglected. Local characteristics/imperfections 
in the track, such as voided sleepers, cannot be properly dealt with either.  

The contact condition between wheel and rail is achieved with the standard 
wheel–rail pair available in the SIMPACK rail environment [SIMPACK Wheel 
Rail doc 2007]. A Hertzian contact model is used with the possibility of 
multiple contact patches in the same wheel–rail pair. In this study, the tangential 
forces and torque in each contact are calculated with the FASTSIM algorithm 
with a discretization of the contact patch of 11×11 elements.  

A full three-dimensional (3D) model of the vehicle with 50 DOFs and a 
simplified model consisting of a single wheelset with a static force applied into 
it have been used with this type of train–track interaction model to obtain the 
results shown in §3.5and 3.6.  
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3.2.2 Finite element models  

In this type of model, both train and track are completely modelled in a FE 
environment. The elements used for modelling the different components of the 
track are similar to those used in the elastic multibody (EMB) vehicle–track 
models that are described in §3.2.3: BEAM elements are used for the rails, 
lumped linear viscoelastic elements for each railpad, sleeper support, and 
flexible material beneath slab, lumped masses for each sleeper, and either 1D 
BEAM or solid HEXA elements for the slab.  

The vehicle is modelled by means of lumped mass, spring and damper 
elements. A model of a quarter of the vehicle has been considered, that consists 
of three elastic levels (wheelset, bogie, and car body). The vertical displacement 
is the only DOF in each elastic level. As a variation to this single wheelset 
model, a model of two wheelsets has also been used, which consists simply of 
two of the assemblies described here for the single wheelset model, separated 
by the bogie wheelbase distance. With this second model, the possible effect of 
wave reflections between different wheelsets of the vehicle can be studied. 
These wave reflections can have a considerable effect on the wheel–rail contact 
forces, particularly at frequencies corresponding to vibration modes of the track 
with the rail vibrating with two, three, and upper multiple half-wavelengths 
between the two bogie’s wheelsets [Nielsen 2003]. The leading axle of the 
vehicle is placed at a rail location either directly above a sleeper, or at mid-
sleeper bay, in the different analyses that have been conducted. 

The contact between vehicle and track is accomplished by means of a linear 
BEAM element, that provides stiffness only in the vertical direction. The 
normal contact law is linearized according to the Eq. (3.5). In this equation, kH 
is the linearized contact stiffness, N and d the normal wheel–rail force and 
approach, respectively, N0 the reference normal wheel–rail force, taken as the 
wheel–rail force in static conditions, and CH the Hertzian contact constant, with 
which the normal force (N)–approach (d) relationship is expressed as N = CH 
d3/2. Taking into account the Hertzian relationship between N and d (cf. Eq. 
(2.17)), CH is given by Eq. (3.6), with nomenclature as indicated in §2.1.1.1. 
Here CH is taken as equal to 1.04E+11 N/m3/2. As this study is focused on 
vertical vehicle–track interaction, and given the small usual conicity values of 
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wheel–rail contact with the wheelset centred in the track, it is assumed that the 
normal wheel–rail approach takes place in the vertical direction.  

 31
0

32

2
3

d
d

0

NC
d

N
k H

NN
H ==

=

 (3.5) 

 
( )BAr

E
CH

+
=

3

*

3

4  (3.6) 

The FE models of vehicle and track are fully linear. Therefore, possible non-
linear effects in the vehicle–track system, like wheel or sleeper lift-off, and non-
linear characteristics of vehicle or track components, are not taken into account. 
However, it has been checked that with the level of excitation used in the 
simulations, wheel or sleeper lift-off does not occur. It would be possible to 
include non-linear characteristics in these FE vehicle–track models. This 
however would entail a considerable increase in computation costs, in these 
models that have a number of DOFs at least one order of magnitude higher than 
the other two types of multibody vehicle–track models that have been used.  

This type of vehicle–track interaction model is a moving irregularity model, 
since the vehicle remains static with respect to the track, while a strip of 
irregularity passes between wheel and rail. The irregularity is entered by means 
of a temperature excitation in the BEAM element that represents the vertical 
contact stiffness between wheel and rail: the rail irregularity at each point in 
time is converted to a temperature value, so that the thermal expansion of the 
BEAM element matches the desired value of rail irregularity.  

This type of model is simpler to build than the EMB vehicle–track models that 
are described in §3.2.3, and, since it is a linear model, its computational costs 
are considerably lower than in the EMB vehicle–track models, despite the 
higher number of DOF. Particularly, considerable savings in computation times 
are achieved, thanks to the substitution of the sophisticated contact algorithm 
inside the MBS models, that calculates both the contact position and the contact 
forces in a non-linear way, by a simple linear spring between two fixed nodes. 
In addition, the track can also be represented with a high level of detail.  
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However, with these FE models some capabilities are lost with respect to the 
EMB vehicle–track models described in §3.2.3. First, this model can only be 
used for the study of vertical dynamics, because wheel–rail contact pairs, 
necessary to properly account for the tangential forces at the wheel–rail 
interface, cannot be introduced (the contact condition is simplified by a linear 
spring, as previously indicated). Additionally, the possible effect of the 
parametric excitation resulting from the varying dynamic stiffness of the track 
at different points along each sleeper bay is dropped out of the analysis, since 
the vehicle remains stationary at one given position on the track. Finally, the 
same fact of the vehicle being stationary instead of moving with respect to the 
track, gives rise to another source of error; the rail vibration that reaches a 
moving wheel is not the same as the one that reaches a stationary wheel. This 
error is negligible if the wave propagation speed on the track is much higher 
than the train speed [Wu 2004], but it can be important if the two speeds are of 
the same order.  

3.2.3 Elastic multibody models  

These are the most comprehensive vehicle–track interaction models that have 
been built in this study. Like the RMB train–track models (§3.2.1), SIMPACK 
is the main modelling environment. The models of the vehicle are also the 
same. The track is modelled in a more realistic way, using continuous elastic 
bodies. In addition, the relative longitudinal motion of the vehicle with respect 
to the track is properly taken into account, because the track does not travel 
together with the vehicle as in the RMB models, and the vehicle is not 
stationary at one point on the track, as in the FEM models.  

In its 8.9 version, SIMPACK provides two main modules to integrate elastic 
bodies into MBS models, which are named FLEXBODY and FLEXTRACK. 
FLEXTRACK is oriented to the study of vehicle–track interaction at very low 
frequencies, e.g. the dynamic interaction of a vehicle with a flexible bridge 
structure. It has been checked in this study that it is not adequate to reproduce 
dynamic phenomena at higher frequencies. Therefore, in this study, 
FLEXBODY has been used to construct the EMB vehicle–track models, and the 
procedure followed to build the models with this module is explained.  
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By means of FLEXBODY, the rails and slab of the different tracks are 
represented as elastic bodies inside the EMB vehicle–track models. Each elastic 
body is represented within the MBS model by means of a number of its natural 
modes, which are obtained in a previous real eigenvalue modal analysis of a FE 
model of the elastic component. In this case, NASTRAN has been used as the 
FE processor to perform the required modal analyses.  

The output results of the modal analysis imported into the MBS model are the 
stiffness and mass matrices of the elastic track component, as well as its mode 
shapes. The dynamic behaviour of the elastic component is represented by 
means of modal superposition; i.e., each of the considered mode shapes of the 
elastic component is an additional DOF in the MBS model, and the equation of 
motion governing each of these DOFs is the uncoupled dynamic equation 
corresponding to that natural mode. For an elastic rail, the equation of motion 
for the ith mode can be written according to Eq. (3.7). In this equation, zi(t) is 
the modal displacement of the ith mode, ωi its natural frequency, mi its 
generalized mass, ξi its damping ratio, and Φi(x) its shape function; fwr,j(t) is the 
wheel–rail force at the jth wheel, xw,j the longitudinal location along the rail of 
the jth wheel, and m the number of wheelsets; fp,k is the force of the kth railpad, 
xp,k the location of that railpad along the rail, and n the total number of railpads 
in the modelled rail section.  
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The movement of the elastic rail is described by superposition of the 
movements of the q modes describing its elasticity, as expressed in Eq. (3.8). In 
this equation, uR describes the movement of one of the DOFs of the elastic rail 
as a function of the longitudinal coordinate x and time t, and Φi contains the 
displacements of mode shape i in that DOF. A similar equation can be written 
for each of the DOFs of the rail. In this study in which only vertical vibration is 
considered, and with 1D models of the rail, only vertical displacement and pitch 
rotation are taken as relevant DOFs of the rail.  
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In this way, a compact and efficient representation of the elastic component 
within the MBS model is achieved with relatively few DOFs —the considered 
normal modes of the elastic component. To increase the efficiency of the elastic 
body representation in the MBS model, it is convenient and often necessary to 
use some condensation techniques in the FE model. In this way, the size of the 
mass and stiffness matrices and the eigenvectors that will be imported into the 
MBS model can be reduced to a reasonable extent for efficient handling by the 
MBS integration algorithm. It has to be taken into account that the size of MBS 
models is much more limited than the size of FE models: while FE models 
usually reach sizes of hundreds of thousands of DOFs, the size of MBS models 
is typically limited to some few hundred DOFs.  

For the purposes of condensation, the generalized dynamic reduction available 
in NASTRAN [Herting 2004] has been used. It has been checked that this 
condensation method improves the results obtained with the static Guyan 
condensation [Guyan 1965] and that the error in the calculation of normal 
modes derived from the condensation step is small.  

As will be discussed in §3.2.3.1, both the necessary number of modes and 
number of nodes of the condensed model of each elastic component have been 
studied to obtain reasonable accuracy in its representation inside the EMB 
train–track models.  

Concerning the coupling between vehicle and track, the standard wheel–rail pair 
element available in the SIMPACK Rail module is used here again, but this 
time, some additional auxiliary elements need to be defined. The reason is that 
the wheel–rail pair element can only be defined between rigid bodies with no 
relative longitudinal motion, and the rails are modelled in this case as elastic 
bodies that do not travel along the track with the wheels.  

The additional elements defined are: one moved marker in the elastic rail bodies 
for each of the vehicle’s wheelsets, one dummy rigid rail body for each wheel–
rail pair, and one kinematic constraint for each dummy rigid rail body. Figure 
3.4a shows a schematic cross-section of this type of track model, that describes 
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the different elements used and their arrangement. A side view of the train–
track interaction model is depicted in Figure 3.4b, in which the described 
auxiliary elements are omitted and one bogie of the vehicle and the wheel–rail 
contact elements are added.  

 

(a) Track cross-section.  

 

(b) Side view.  

Figure 3.4. Sketch of the EMB vehicle–track interaction model, containing both elastic 
bodies and lumped elements (one bogie represented only in the side view).  
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The moved markers move along each elastic rail, their longitudinal motion 
being defined with the longitudinal motion of the wheelset to which they are 
associated, and their vertical motion by linear interpolation of the vertical 
displacements and pitch rotations of the two nearest interface nodes defined in 
the elastic rail.  

The dummy rigid rail bodies also move along the track together with each of the 
vehicle’s wheels. Their only purpose is to contain the rail profile geometry, and 
to transfer the load from each wheel to the rails, serving as the rail body in each 
wheel–rail pair. They are given a negligible mass, to not alter the dynamic 
properties of the track.  

The kinematic constraints are used to link the vertical displacement of each 
dummy rigid rail body to that of its corresponding moved marker. There is 
another option to couple the dummy rail bodies with the moved markers in the 
flexible rail, by means of stiff springs [Gonzalez 2008]. To not alter the 
dynamic properties of the model, a high value for the stiffness of this spring 
should be used. However, the high stiffness value of these springs, together with 
the low mass of the dummy rail bodies, introduces high-frequency oscillations 
in the simulation and compromises the stability of the numerical time-step 
integration process. These problems are avoided using the mentioned kinematic 
constraint, as is done in this study.  

The damping for each elastic body of the track is introduced by means of modal 
damping for each of the considered natural modes of the elastic component. As 
each elastic body is modelled separately, lumped force elements representing 
the concentrated stiffness and damping provided in each of the track’s discrete 
supports (i.e. railpads, sleeper supports, and ballast) can be defined between the 
different track bodies. Thus, the non-uniformly distributed and hence non-
proportional stiffness and damping properties of a discretely supported track 
can be adequately modelled without the need for a complex eigenvalue modal 
analysis.  

One limitation present in the EMB vehicle–track interaction models pertains to 
the length of flexible track simulated. While in the case of the previously 
described RMB vehicle–track models, the length of simulated elastic track is 
unlimited, here a finite length of elastic track has to be considered to limit 
excessive computational costs. The spurious effects from the boundaries can 
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affect the quality of the results in the middle of the track [Baeza 2006]. Those 
spurious effects can be eliminated by simulating a sufficient length of track. In 
the simulation results presented in this chapter, track lengths up to 200 sleeper 
bays have been considered.  

In the following subsections, the modelling of each individual component of the 
track is explained in more detail. Since computational costs can become very 
high in this kind of model [Bezin 2009], it is necessary to exercise proper 
judgement in defining the degree of detail that is going to be considered in each 
component of the model to achieve a reasonable precision–cost relationship. For 
this purpose, different options, with varying degree of complexity, have been 
considered for representing the elastic bodies inside the EMB vehicle–track 
models.  

3.2.3.1 Rails  

The rails are modelled as continuous elastic bodies by means of 1D FE models, 
based on Rayleigh–Timoshenko beam elements. This model allows for a 
reasonably good representation of the vertical dynamic rail properties up to 2.5 
kHz [Knothe 1993]. If lateral dynamics were to be considered, a more detailed 
representation of the cross-section of the rail could be necessary, since the level 
of the rail cross-section distortion in the lateral vibration modes is much higher 
than in the vertical vibration modes [Knothe 1993], [Nielsen 2003].  

The FE models of the rails contain 12–24 beam elements per sleeper bay, but 
the model is reduced by condensation. The number of chosen nodes for the 
condensed model depends on the frequency of the upper natural vibration mode 
of the rail that needs to be considered; with increasing natural frequencies, more 
nodes per sleeper bay need to be taken in the condensed model to be able to 
calculate the higher modes with little error. In the condensed models, at least the 
nodes above each sleeper position need to be included (i.e. one node per sleeper 
bay), to serve as connection points for the railpads. If more nodes need to be 
incorporated in the condensed model, these nodes should be taken equidistant, 
because in this way, the error in the calculation of eigenmodes with the 
condensed model is minimized.  

When calculating the rail’s eigenmodes, no intermediate support is considered 
in the finite length of the rail modelled; only simple supports are defined as 
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boundary conditions in each of its two ends. Additionally, the motion out of the 
vertical plane and twist of the rails is constrained. To represent adequately in 
the EMB vehicle–track models the dynamic behaviour of the rail under the 
influence of the multiple supports existing along its length, on the basis of the 
eigenmodes calculated for the rail without intermediate supports, the 
wavelength of the upper eigenmode considered has to be sufficiently small. As 
a consequence, a large number of eigenmodes need normally to be imported 
into the MBS models; the more eigenmodes the longer the distance of the 
flexible track modelled.  

The parametric excitation in tracks with discretely supported rails, resulting 
from the difference in the dynamic track stiffness between different positions 
along each sleeper bay, may have a significant effect in the wheel–rail contact 
forces [Wu 2004]. The difference in the dynamic track stiffness arises from the 
rail bending between supports. The wavelength of the upper eigenmode 
considered should be in the order of twice the sleeper distance at most, to be 
able to properly account for this rail bending. The resulting eigenfrequency of 
the upper vibration mode considered may be much higher than the upper 
frequency of interest in the analysis. As importing a large number of 
eigenmodes in the MBS models can entail a considerable rise in computational 
costs (it has to be remembered that each of the imported eigenmodes for the 
elastic bodies represents one more DOF in the MBS models), the upper 
frequency of the necessary eigenmodes for the rail has to be properly chosen to 
obtain reasonable precision in the frequency range of interest.  

As an example of this, Figure 3.5 compares the receptances of the STEDEF 
track above sleeper calculated with a FE model of the track (the reference result 
in this case), and with EMB models, the latter ones including the rail as a 
flexible body with natural modes up to 500 Hz in one case, and up to 2500 Hz 
in the other. The receptances are compared up to a frequency f of 2500 Hz. As 
could be expected, the EMB model in which more rail modes are included 
approaches the FEM result better. The EMB model including rail modes only 
up to 500 Hz does not represent the pinned-pinned anti-resonance at all, which 
takes place at a frequency slightly above 1000 Hz.  
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Figure 3.5. Comparison of the modulus of the receptance of the STEDEF track 
calculated with a FE model and with EMB models of the track with different number of 
rail modes.  

3.2.3.2 Discrete supports and sleepers  

The discrete supports and sleepers of the track are modelled as lumped 
elements. Their modelling is similar in the RMB, FE and EMB models, except 
that in the first case only equivalent mass-spring-damper assemblies are 
modelled beneath each wheelset, while in the other cases all the sleepers and 
discrete supports of the track are explicitly modelled (in the finite section of 
track modelled).  

Each discrete railpad and sleeper support in the track models is modelled as a 
lumped viscoelastic element. The sleeper supports represent the stiffness and 
damping of the ballast beneath each sleeper in the case of the ballasted track, 
and the stiffness and damping of the elastomeric material between the slab and 
each sleeper in the case of the STEDEF track. The elastomeric mat beneath the 
slab in the floating slab track is also represented by means of discrete 
independent viscoelastic elements.  

Even though a considerable degree of non-linear behaviour is typically 
observed in these elastomeric elements, with stiffness values changing with 
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preload level and frequency of excitation, the assumption of linear stiffness and 
damping properties is considered sufficient for the purposes of this study. 
Another possible source of non-linearity within the track may come from the 
possibility of sleeper lift-off. However, it has been checked that with the level 
of vertical excitation used in the simulations, this does not occur. Nevertheless, 
it has be noted that in this type of model, non-linear stiffness and damping 
properties depending on the load level can be assigned to each support, if 
desired.  

Each sleeper is modelled as a lumped rigid mass, with one DOF (vertical 
displacement). In the case of the RHEDA 2000 track, the base plates in each of 
the rail supports are also modelled as lumped rigid masses.  

3.2.3.3 Slab  

The slab is modelled as a continuous elastic body, like the rails. Two types of 
meshing have been considered for this element: (a) a 3D meshing, using 
HEXA8 solid elements, and (b) a 1D meshing, similar to that used for the rails, 
using BEAM2 elements. With a 3D mesh, the possible 2D vibration of the slab 
can be accounted for, as it is done in [Zhai 2009]. In many other references as 
[Lombaert 2006], [Hussein 2006], and [Kuo 2008], a 1D representation of the 
slab similar to the one proposed here is used.  

As in the case of the rails, no support condition is considered beneath or above 
the slab when calculating its eigenmodes. In the case of the 3D meshed slab 
models, a large number of nodes need to be considered to adequately calculate 
and represent the 3D vibration modes of the slab. On the contrary, in the case of 
the 1D meshed slab models, the number of needed nodes is much lower, as only 
1D vibration modes are calculated. Additionally, the number of calculated 
eigenmodes for a given frequency range is lower than in the 3D meshed slab 
models, as only the vibration modes contained in the longitudinal vertical plane 
are considered in the analysis.  
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3.3 Description of the vehicle model  

The railway vehicle considered in this chapter is a high-speed passenger car. 
The physical parameters for the vehicle used in the simulations are listed in 
Table 2.1. The suspension parameters have been taken from [Melis 2008].  

Table 3.3. Parameters of the considered high-speed vehicle.  

Parameter Value Units 
Car body mass (unloaded condition) 53500 kg 
Bogie mass 3500 kg 
Wheelset mass 1800 kg 
Wheel nominal rolling radius 0.46 m 
Bogie spacing 17.325 m 
Bogie wheelbase 2.5 m 
Primary vertical stiffness 1.83E+06a N/m 
Primary vertical damping 16000a N s/m 
Secondary vertical stiffness 0.14E+06a N/m 
Secondary vertical damping 12000a N s/m 

                                                      

a Value per wheelset.  

The vehicle is modelled as a MBS with discrete elements of mass, stiffness, and 
damping. The full 3D model of the vehicle that has been used in most of the 
simulations consists basically of car body, and two identical bogies, each of 
them having two wheelsets. The wheels have a S1002 profile. All these bodies 
are represented with rigid masses and are interconnected with different spring 
and damper elements, representing the primary and secondary suspensions. The 
complete vehicle model has 50 DOFs.  

Simpler models of the vehicle have also been used in some of the simulations, 
and the validity of the simplified models has been analysed in the different 
simulations. In some of the simulations, the vehicle model is reduced either to a 
single wheelset with a static force equivalent to the nominal axle load of the 
vehicle acting on it, or to three equivalent masses (one for the wheelset, another 
for the bogie, and another for the car body) with equivalent vertical stiffness 
and damping elements between them representing the primary and secondary 
suspensions.  
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3.4 Definition of track irregularities  

Numerical simulations of the vehicle running on straight track with vertical rail 
irregularities have been carried out with the track and vehicle models described 
in previous sections. The vehicle speed is fixed at 250 km/h in all the 
simulations presented in this chapter.  

Two types of rail irregularities have been considered as the vertical excitation 
input: a randomly distributed low frequency broadband rail irregularity on one 
hand, and a high-frequency irregularity on the other hand. The low frequency 
broadband irregularity used corresponds to low intensity vertical rail 
irregularities, according to [ERRI B 176/3 1993]. The high-frequency excitation 
is defined according to the power spectral density function given in Eq. (3.9), 
taken from [Zhai 2009]. The units of GV ( f ) in this equation are mm2/(1/m), and 
f is the spatial frequency in cycle/m. This type of high-frequency irregularity 
could represent a corrugated rail, which often provokes significant track 
vibrations and wheel–rail force fluctuations [Oyarzabal 2009]. Wavelengths 
between 40 and 200 mm are considered for this second type of excitation.  

 ( ) 15.3036.0 −= ffGV  (3.9) 

3.5 Comparison of results with different vehicle–
track models  

In this section, the results obtained with the different vehicle–track models are 
compared, and some conclusions are obtained in relation to the validity of the 
simpler vehicle–track models in some situations.  

3.5.1 Comparison between the RMB, FE, and EMB 
models  

Concerning the simulations with the low frequency broadband rail irregularity, 
comparable results are obtained with the simpler RMB and FEM vehicle–track 
models, and with the more complete EMB models, in the case of the ballasted, 
RHEDA 2000, and STEDEF tracks. Results obtained with the different vehicle–
track models for the case of the ballasted track are shown in Figure 3.6 as an 
example.  
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(a) Time histories.  

 
(b) Frequency spectra.  

Figure 3.6. Wheel–rail contact forces obtained with different vehicle–track models in 
the ballasted track with the low frequency broadband track irregularity.  
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These results are justified because the necessary conditions for these simpler 
models to be valid are fulfilled. On one hand, the influence of the parametric 
excitation in these tracks is small compared to the influence of the rail 
roughness. On the other hand, the interaction between different wheelsets of the 
vehicle is small in this frequency range, because the only longitudinal coupling 
between them is provided by the rails, with a relatively low bending stiffness. 
Finally, the influence of the relative longitudinal motion of the vehicle with 
respect to the track is also negligible, because the wave propagating speeds at 
25 Hz and above are much higher than the forward speed of the vehicle.  

It is particularly remarkable to see the high similarity between the results 
obtained with the RMB models, and those obtained with the much more costly 
EMB models, despite the great difference of the track modelling in both cases. 
It has to be taken into account, however, that a parameter adjustment for the 
discrete track elements in the RMB models has been necessary. This is based on 
a previous frequency analysis of a FEM model of the track as indicated in 
§3.2.1, to approximate the results obtained with the EMB models. With a proper 
parameter adjustment, a very good correspondence of the receptance of the 
discrete assembly representing the track beneath each of the vehicle’s 
wheelsets, to the receptance calculated with full FE models of the track, can be 
achieved. Consequently, the much simpler models of the track in the RMB 
models can well approximate the results obtained with the more detailed EMB 
models.  

In the case of the floating slab track, however, different results are obtained 
with the different vehicle–track models. The reason is that in this case, the 
influence of the parametric excitation is much higher than in the other tracks, 
due to the fact that the sleeper passing frequency is close to the frequency of the 
second vibration mode of the wheelset–track system, which is easily excited at 
this frequency range. Also, in this case, the relative difference of the track 
receptance at different positions inside a sleeper bay is higher than in the other 
tracks, and this contributes to further increase the influence of the parametric 
excitation.  

The wheel–rail contact forces calculated with the EMB vehicle–track models 
(including the full vehicle model) for the vehicle running on each of the tracks 
with no irregularities are plotted in Figure 3.7. Therefore, in this case, the only 
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dynamic effect comes from the parametric excitation. This effect is seen to be 
much higher in the case of the floating slab track than in the other tracks, as has 
been stated.  

 

Figure 3.7. Time histories of the wheel–rail contact forces with no rail irregularities for 
the different tracks.  

Concerning the simulations with the high frequency broadband rail irregularity, 
this time, different results are obtained with the different models, as can be seen 
in Figure 3.8, in which the wheel–rail forces obtained with the different 
vehicle–track models for the STEDEF track are depicted, both in time and 
frequency domain. The results for the other track types are qualitatively similar.  
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(a) Time histories.  

 
(b) Frequency spectra.  

Figure 3.8. Wheel–rail contact forces obtained with different vehicle–track models in 
the STEDEF track with the high frequency broadband track irregularity.  
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Referring to Figure 3.8, the most different results compared to those of the 
EMB models are obtained with the RMB models. In these models, as explained 
before, a reasonably good approximation of the track receptance can be 
obtained with the discrete assemblies representing the track beneath each 
wheelset, for frequencies up to a few hundred Hertz. At high frequencies, 
however, the receptances of these discrete assemblies do not approximate well 
the receptance calculated with the complete FE models of the tracks.  

The results obtained with the FE vehicle–track models approximate better those 
obtained with the EMB models, but still some differences are noted between the 
results of both types of models. These differences are due to the differences in 
the track receptance at different points along each sleeper bay, which are 
greatest around the pinned–pinned resonance frequency. The FE models used 
here do not account for this variation in the track receptance, because the 
vehicle is static at one point in the track. For this same reason, in this case, 
different results are obtained also within the FE models, depending on the 
locations of the vehicle’s wheelsets on the track; i.e., above sleeper or at mid-
sleeper bay, as can be noted in Figure 3.8.  

3.5.2 Comparison of models with single or multiple 
wheelsets  

With the low frequency broadband rail irregularity, similar results are obtained 
in the simulations with a single or with multiple wheelsets for the ballasted, 
RHEDA 2000 and STEDEF tracks. This is because the interaction between 
different wheelsets is small at low frequencies.  

On the other hand, in the case of the floating slab track, similar results are also 
obtained with a single wheelset or with multiple wheelsets. In this track, the 
floating slab couples the different wheelsets of the vehicle with much higher 
stiffness than the rails in the other tracks. However, this coupling only takes 
place at low frequencies. At higher frequencies, the vibration of the rail is 
decoupled from the vibration of the slab. Although the vibrations of the slab are 
transmitted along a great distance in the track due to its high stiffness, the 
vibration levels seen in the slab at frequencies above the natural frequency of 
the slab vibrating above the elastic mat beneath it are quite lower than those 
seen in the rails.  
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Figure 3.9 shows the frequency spectra of the dynamic displacement of the 
rails, obtained from simulations with a single vehicle wheelset. The 
displacements of the rail point beneath the vehicle’s wheelset, and the 
displacements of the rail point where the other wheelset of the same bogie 
would have been, are represented for the case of the ballasted and floating slab 
tracks. The results for the other two types of track are qualitatively similar to 
those of the ballasted track. It can be seen that the displacements of the point 
where the other wheelset of the bogie would have been are much smaller than 
the displacements beneath the modelled wheelset in the case of the ballasted 
track at all frequencies. In the case of the floating slab track, this is also true at 
frequencies above about 75 Hz. Below this frequency, the displacements of both 
points are of similar magnitude. However, at these lower frequencies the wheel–
rail contact forces are not being excited in this track, as will be seen in §3.6.1. 
From this, it is explained that the dynamic interaction between the different 
wheelsets of the vehicle is small for the studied track types with the low 
frequency broadband rail irregularity considered.  

 
(a) Ballasted track.  
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(b) Floating slab track.  

Figure 3.9. Frequency spectra of the dynamic rail displacements with the low frequency 
broadband track irregularity, obtained from simulations with the FE vehicle–track 
models and with a single vehicle wheelset.  

In the case of the simulations with the high frequency broadband rail 
irregularity, some differences can be seen between the results obtained with 
one, or with multiple wheelsets, though small. As an example, Figure 3.10 
compares the wheel–rail contact forces computed for the floating slab track with 
the EMB vehicle–track models, with a single and with multiple wheelsets, in 
the time domain. The differences seen in the frequency domain are much 
smaller. As seen in the figure, only moderate differences in the wheel–rail 
contact forces are noted in the time domain, but the amplitude and frequency 
content of the force oscillations is very similar with one or with multiple 
wheelsets. Therefore, in many applications regarding the study of tangent track 
with purely vertical dynamics, a single wheelset model can provide 
representative results of the vehicle–track interaction.  



3 Vehicle–track dynamic interaction in different tracks 143 

 

Figure 3.10. Time histories of the wheel–rail contact forces in the floating slab track 
with the high frequency broadband track irregularity, obtained from simulations with 
the EMB vehicle–track models with a single and with multiple wheelsets.  

3.5.3 Comparison of 1D and 3D mesh for the slab in the 
floating slab track  

Both 1D and 3D meshings for the slab have been tested in the FE and EMB 
vehicle–track models of the floating slab track.  

Figure 3.11 shows the time histories of the vertical displacements of three 
points of the slab during a bogie passage in the case of the floating slab track 
with 3D slab meshing. The three points considered belong to the same vertical 
transversal plane of the slab, and are located at different lateral distances from 
the track centre. It can be seen that the vibration of the slab is fundamentally 1D 
in the vertical direction, since the displacements of different points across its 
width are very similar.  
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Figure 3.11. Vertical displacement of the slab in the floating slab track model with 3D 
meshing of the slab.  

To further check the validity of the 1D meshing of the slab, FE models of the 
floating slab track have been constructed using both the 1D and the 3D 
meshings for the slab, and their receptances have been calculated in a frequency 
range from 0 to 2500 Hz. In these FE models, the errors associated to the mode 
truncation and condensation steps of the EMB models are avoided. The 
receptances calculated for this track with 1D and 3D meshings of the slab are 
compared in Figure 3.12, both above sleeper and at mid sleeper bay. As shown 
in the figure, the receptances calculated with the much simpler 1D meshing for 
the slab show very good agreement with those calculated with the 3D slab 
meshings in the whole frequency range. As an exception, in the 20–200 Hz 
frequency range an oscillation is noted in the receptances calculated with the 
model with solid slab meshing, which is not seen in the model with 1D slab 
meshing. This may be due to boundary effects of the former model, in which a 
shorter length of the track is modelled (71 sleeper bays are included in the 
model with 3D slab meshing, and 200 in the model with 1D slab meshing).  

Therefore, it can be concluded that a 1D representation of the slab is suitable for 
purely vertical vehicle–track interaction studies in tangent tracks, and that the 
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much more costly 3D meshing does not bring any additional characteristic not 
already discerned by the 1D meshing. However, this should be assessed in 
different cases if the characteristics of the slab (e.g. its cross-sectional 
dimensions) change significantly from those considered here.  

 

Figure 3.12. Receptances of the floating slab track calculated with FE models, with 1D 
and 3D meshings of the slab. The length of the models with 1D and 3D slab meshings 
are 200 and 71 sleeper bays, respectively.  

3.5.4 Comparison of computational costs  

In Figure 3.13, the computation times with different types of vehicle–track 
models are compared (note the logarithmic scale). The EMB models have the 
highest computational costs. The computational costs of the FE and RMB 
models are much lower, and of the same order, although it has to be said that 
their relative computational costs can vary substantially, depending, for 
example, on the number of DOFs of each model or on the type of wheel–rail 
contact model used. Note, for example, that the wheel–rail contact used in FE 
models is more simplistic than that used in the RMB models, and that including 
a complex wheel–rail contact model in the FE models could increase 
significantly the computation time. Within the EMB models, the computation 
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times can also vary substantially, depending on the degree of detail with which 
the elastic bodies are represented.  

 

Figure 3.13. Comparison of computational costs with different vehicle–track models.  

3.6 Comparison of vehicle–track interaction in 
different tracks  

In this section, the results obtained for the different track types studied are 
presented, with two types of broadband vertical rail irregularities as described 
previously, at low and at high frequencies. All the vehicle–track interaction 
results presented in this section have been obtained with the EMB vehicle–track 
models and the complete model of the vehicle.  

3.6.1 Wheel–rail contact forces  

Figure 3.14 shows the time histories and corresponding frequency spectra of the 
wheel–rail contact forces for the different track types studied with the low 
frequency broadband vertical rail irregularity.  
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(a) Time histories.  

 
(b) Frequency spectra.  

Figure 3.14. Wheel–rail contact forces with the low frequency broadband irregularity in 
the different tracks studied.  
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Fluctuations in the wheel–rail contact forces are larger in the RHEDA 2000 and 
floating slab tracks than in the ballasted and STEDEF tracks. In these latter two 
tracks, the first natural mode of the tracks, in which the sleepers vibrate in phase 
with the rails, is being excited. In the REDHA 2000 track as well, the first 
natural mode of the track is the one that is the most excited. In this mode, rails 
and base plates vibrate in phase above the lower elastic base plate pad. In the 
case of the floating slab track, the second mode of the track is being excited, in 
which the rails vibrate out of phase with the slab.  

In all four tracks, the frequencies at which peaks occur in the frequency spectra 
of the wheel–rail contact forces match well with the frequencies of the 
corresponding natural vibration modes of the track calculated analytically from 
equivalent two-DOF systems, similar to the ones that are employed to model the 
track in the RMB models as described previously. To calculate these 
frequencies, the mass of the wheelset is added to the mass of the elastic level 
representing the rails, to properly account for the vibration of the whole 
vehicle–track system.  

Figure 3.15 shows the time histories and corresponding frequency spectra of the 
wheel–rail contact forces for the case of the high frequency broadband vertical 
rail irregularity. In this case, the computed wheel–rail contact forces are very 
similar for the ballasted track, STEDEF track, and floating slab track. For these 
tracks, only significant differences are seen in the contact force spectra at 
frequencies related to the vibration modes of the different tracks and at the 
sleeper passing frequency. On the contrary, for the RHEDA 2000 track, 
differences in the wheel–rail forces are also noted at higher frequencies. To 
explain this, the receptances of the different tracks are compared in Figure 3.16.  
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(a) Time histories.  

 
(b) Frequency spectra.  

Figure 3.15. Wheel–rail contact forces with the high frequency broadband irregularity 
in the different tracks studied.  
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It is seen that for the ballasted, STEDEF, and floating slab tracks, for 
frequencies above about 500 Hz, once the different resonance frequencies of the 
tracks have been passed, the receptances are very similar. In these tracks, the 
receptances at high frequencies converge to that of the unsupported free rail 
(with the exception of the pinned–pinned resonance, characteristic of a 
discretely supported rail). In the case of the RHEDA 2000 track, the high 
frequency eigenmode related with the stiff railpad between the rail and the light 
base plate alters the track receptance at higher frequencies. Additionally, in this 
track, the pinned–pinned resonance happens at a slightly lower frequency than 
in the other tracks, due to the higher sleeper spacing (cf. Table 3.1).  

 

Figure 3.16. Receptances of the different tracks studied.  

3.6.2 Pad forces  

In this section, the pad forces are studied. Figure 3.17 shows the pad forces 
obtained for each type of track during a vehicle passage with low frequency 
broadband rail irregularity. For each type of track, the pad with the highest 
dynamic force is depicted.  

The pad forces obtained in the floating slab track are much larger than those 
obtained in the other types of tracks studied. In this track, a much lower degree 
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of rail bending is allowed due to the high stiffness of the railpad and the slab. 
As a result, the number of pads sharing the vehicle load at any given time is 
reduced, and the peak value of the force seen by each pad is increased.  

 

Figure 3.17. Time histories of the pad forces with the low frequency broadband 
irregularity in the different tracks studied.  

In Figure 3.18, the pad forces obtained with the high frequency broadband rail 
irregularity are shown. Similar tendencies to the ones observed with the low 
frequency rail irregularity are seen with the high frequency rail irregularity 
when comparing the peak forces obtained in each type of track. The slightly 
larger pad force seen in the RHEDA 2000 track compared to the ballasted and 
STEDEF tracks is justified because, in this track, the number of railpads per 
sleeper length is lower than in the other tracks. In the case of this track, the 
force in the upper stiff railpad has been plotted. In Figure 3.19, the forces in the 
upper stiff railpad and in the lower flexible base plate pad are compared. 
Obviously, the high-frequency content in the lower base plate pad is much 
lower, as it is filtered by the base plate.  
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Figure 3.18. Time histories of the pad forces with the high frequency broadband 
irregularity in the different tracks studied.  

 

Figure 3.19. Comparison of forces in the upper stiff railpad and lower flexible base 
plate pad in the RHEDA 2000 track with the high frequency broadband irregularity.  



 

Chapter 4  

4. Numerical analysis of wheel–rail 
conformal contact  

Chapter summary  

In this chapter, comprehensive numerical models developed for the study of 
wheel–rail elastic conformal contact are described. These are an 
implementation of Kalker’s exact contact theory with the necessary extensions 
for conformal contact, and FEM contact models. With these models it is aimed 
at producing detailed solutions of 3D frictional contact problems, both static 
and rolling. One of the main contributions of this thesis is the development of 
the version of the exact contact theory extended for conformal contact described 
here, which has been named CECT (Conformal Exact Contact Theory). The 
final part of the chapter includes several validation cases to demonstrate the 
numerical accuracy of the models.  
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4.1 Conformal Exact Contact Theory — CECT  

CECT is the implementation of the exact contact theory with extensions for 
non-planar conformal contact developed in this thesis. It has the capability to 
solve frictional contact problems, both static (compression, shift) and rolling, 
transient and steady state. It has been implemented in MATLAB [MATLAB 
www].  

Some coordinate systems used in the specification of the contact problem are 
defined next, which may be used both in planar and in non-planar contact.  

The wheel and rail profiles are described by a planar curve in local (yL, zL) 
Cartesian systems associated to each profile. Figure 4.1a shows an example 
profile of a railway wheel, with its associated local reference system. The origin 
of this system is typically chosen at the nominal contact point.  

The positions of the rail and the wheelset are expressed in a global or track {X, 
Y, Z} Cartesian coordinate system. Its origin is in the middle of the two rails, at 
the same height as the origin of the local system of the rail profile. The X axis is 
aligned with the rolling direction, the Y axis points laterally to the left rail, and 
the Z axis completes the right-handed system, pointing vertically upwards. The 
X and Y axes are contained in the (usually horizontal) track plane. In addition, a 
{ xw, yw, zw} coordinate system is defined associated to the wheelset, with origin 
in its centre, and with the yw axis aligned with the wheelset axis. Its orientation 
is obtained with a first yaw rotation ψ around the Z axis, followed by a roll 

rotation φ around the xw axis. The global and wheelset reference systems and 

these rotations are depicted in Figure 4.1b.  
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(a) Example wheel profile and associated local (yL, zL) Cartesian system.  

(b) Global and wheelset coordinate systems.  

Figure 4.1. Coordinate systems used for the specification of the contact problem. 

4.1.1 Extensions for non-planar contact  

The basic hypotheses of the target contact problems are the same as those set 
out in §1.1.1, except for the hypothesis of concentrated contact, which is now 
removed. The major extensions needed to accommodate this are a more 
elaborate geometrical analysis to obtain the normal undeformed distance and 
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rigid slip velocities accurately, and the influence coefficients (ICs) for non-
planar solids. These extensions are described in this section.  

4.1.1.1 Contact surface geometry, discretization and coordinate system  

A potential contact surface (PCS) is defined, which must encompass the contact 
patch as in planar contact. Figure 4.2 illustrates the geometry of the PCS, its 
discretization, and the local contact coordinate system in which the non-planar 
contact problem is formulated.  

The tangent contact plane used in planar contact is now generalized to a curved 
surface. The contact is assumed to be conformal only in the plane perpendicular 
to the rolling direction. Accordingly, the contact surface is assumed to be 
prismatic, i.e. extruded, along the rolling direction, as depicted in Figure 4.2b. 
This is a valid assumption in the wheel–rail case, and in other relevant rolling 
contact applications with both bodies having curvature in the rolling direction, 
such as in rolling bearings, as shown in Chapter 7. The profile of the PCS is 
located between the wheel and rail profiles, as may be seen in Figure 4.2a. This 
figure shows the profile of the PCS in red chain line. This profile is calculated 
as an interpolation between the wheel and rail profiles, weighted with the 
stiffness of each of the contacting bodies. The quantity Ek / (1 – νk

2) is taken as 
the measure of the stiffness of each contacting body k for this weighting. In 
Figure 4.2a the contact angle δ is represented as well, a relevant geometric 
parameter in the contact problem, which is variable in curved contact surfaces.  
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(a) Section perpendicular to rolling direction.  

 

(b) Perspective view including mesh (surface profile different to that shown in (a)).  

Figure 4.2. Non-planar PCS and local {x, s, n} curvilinear coordinate system. 

A curvilinear system with orthogonal {x, s, n} axes is defined associated to the 
PCS, as a generalization to the Cartesian {x, y, z} system used in planar contact. 
The local vectorial quantities in the contact such as surface displacements and 
stresses, as well as the ICs, are expressed in this coordinate system, with x, s, n 
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subindices. The s and n axes are tangent and normal respectively at each point 
to the PCS. The x axis is aligned with the rolling direction, and is also tangent to 
the PCS. The x and s directions define the tangent plane to the contact surface in 
each point. The direction of the s and n axes is generally different in each lateral 
position of the PCS, and the x axis has a constant direction, as shown in Figure 
4.2 a and b. Therefore, the orientation change of the s and n axes in two 
different lateral positions is produced by means of a rotation around the x axis. 
The origin of the x and s axes is arbitrarily defined, being most conveniently 
chosen at some point around the centre of the foreseen contact patch, such as 
the rigid contact point.  

Homologous contact points, i.e. pairs of points of the contacting surfaces which 
may come into contact, are defined beforehand as points with the same (x, s) 
coordinates, as in planar contact. This is adequate in the framework of linear 
elasticity, with elastic displacements much lower than the contact patch 
dimensions, and with smooth contact surfaces. The same criteria was used in 
[Marshek 1984], taking as homologous points those that lie at equal distances 
along the profiles of their respective surfaces from the initial contact point. In 
[Woodward 1976] a more elaborate, iterative approach was set out, termed as 
“point-mating procedure”, to find the correct pairs of contact points. In each 
iteration, the contact problem was solved with an assumed set of homologous 
points, and their precise locations were corrected for the next iteration according 
to their tangential displacements in the last obtained contact solution. In the first 
iteration, homologous points as defined here were considered, with the same (x, 
s) coordinates. The iteration could be repeated until meeting the desired 
tolerances on the tangential position differences of the homologous contact 
points.  

The discretization of the PCS is carried out with a regular pattern of equal 
rectangular elements aligned with the x and s directions, cf. Figure 4.2b, 
analogously to that shown in Figure 2.18 for planar contact. The necessary 
parameters for its definition are the upper and lower bounds in the longitudinal 
and lateral direction, and the number of elements in each direction.  

Based on the chosen discretization, the set of analysis points (APs) for the 
numerical formulation and solution of the contact problem is defined, as 
explained in §2.1.3. In this thesis two types of elements have been used, namely 
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elements with uniform and with bilinear stress shape functions. Expressions of 
the half-space ICs for both element types are given in §5.1. The APs are the 
centres of the elements in the case of the uniform elements, and the corners or 
nodes in the case of the bilinear elements. Therefore a number n of elements in 
the mesh in a given direction corresponds to n APs when using uniform 
elements, and to n + 1 APs when using bilinear elements. The number of APs in 
x and s directions are nx and ns, respectively8. The total number of APs is nx×ns 
= NE. The concept of IC is interpreted now as related with APs rather than with 
elements: the ICIiJj is the displacement along direction i caused at AP I due to 
the load distribution associated to a unit pressure along direction j at AP J (e.g. 
a “tent-shaped” distribution spanning 4 elements in the case of bilinear 
rectangular elements, c.f. §5.1.2). In foregoing discussions, the term “element” 
will be used in place of the term “analysis point” in some cases, when the 
distinction is not important for the subject discussed.  

4.1.1.2 Normal undeformed distance  

The normal undeformed distance h is the fundamental geometric input for the 
normal contact problem. Particularly in conformal contact, where the contacting 
surfaces are very close to one another, it is essential to carry out a precise 
geometric analysis to obtain a realistic representation of h. Small changes in the 
relative position or orientation of the contacting solids may lead to a substantial 
variation in the form of h.  

Here the wheel is assumed to be a perfect body of revolution, and the rail 
straight in the rolling direction. Both contacting surfaces, generally non-planar, 
are considered smooth, without roughness. Roughness could be considered 
superposing it in a final step to the normal undeformed distances computed 
following the process described below.  

The input data are as follows:  

                                                      

8 In some cases, the number of APs in each direction will be designated as mx and ms, 
while nx and ns will designate the number of elements.  
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a) Lateral profiles of both contacting bodies. These are given by a list of 
value pairs representing the coordinates of the set of points chosen to 
represent them, which in general do not obey any analytical expression.  

b) Widths of track and wheelset.  

c) Nominal rolling radius of the wheel.  

d) Position and orientation of the wheel with respect to the rail. This is 
generally given by lateral and vertical displacements uy and uz, a yaw 

angle ψ and a roll angle φ. A rail cant angle may be specified as well.  

The procedure followed to calculate h between two non-planar conforming 
surfaces is based on calculating the intersections of the solids with planes 
perpendicular to x. Afterwards the normal undeformed distance is calculated 
between homologous points in the obtained intersection curves for each solid 
belonging to the same plane. It is not necessary to calculate the intersection 
curves for the rail, as they are the same as its profile. For the wheel, the starting 
point is the development for the calculation of the contact locus of a yawed 
wheel with the rail due to Wang [Wang K 1984]. A description of it may be 
found in Appendix D of [Li Z 2002]. The key in this development is that the 
distance between the intersection of the wheel axis from the normal to the 
possible contact point on the wheel surface, to the centre of the rolling circle of 
that possible contact point, is known. Additionally, the possible contact point is 
in the same longitudinal position as the mentioned intersection, and therefore 
the longitudinal distance from the possible contact point to the centre of its 
rolling circle is known.  

The basis of this development is shown in Figure 4.3. The figure depicts a 

conical wheel with yaw angle ψ and roll angle φ. Given the orientation of the 

wheel, its conicity angle δ, and a rolling circle on its surface with radius R and 

centre at O, the problem consists on finding the possible contact point C with 
the rail on that rolling circle. The normal to the wheel surface on any point of 
the considered rolling circle intersects the wheel axis at point A. The distance 

from O to A, denoted as H in the figure, is equal to R tan(δ). The rail is 

prismatic in X direction, and therefore the normal to any point on its surface is 
contained in the YZ plane. Since the normals of both contacting surfaces must 
be aligned at the contact point, the normal to the wheel surface at point C is also 
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contained in the YZ plane, and points C and A have the same X coordinate. 

Therefore the distance from O to C is also R tan(δ). This, together with the 

known equation of the considered rolling circle, makes possible to determine 
the coordinates of point C in closed form.  

 

Figure 4.3. Wheel–rail contact locus. 

The wheel depicted in Figure 4.3 is conical, but this development is readily 
applicable to a body of revolution of any shape, because finding the possible 
contact point on a given rolling circle of a general surface of revolution is 
equivalent to finding it on the cone tangent to it. Next, this development is 
adapted to find the intersection of the rolling circle on the wheel surface with a 
plane i perpendicular to X. For this purpose, the only necessary change is 
replacing the projection on X of the distance H with the distance ∆xi from O to 
the considered intersection plane.  
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The considered rolling circle is the intersection of a sphere with radius R 
centred at O (Eq. (4.1)) and a plane perpendicular to the wheelset axis yw which 
passes through O (Eq. (4.2)).  

 ( ) ( ) ( ) 2222 Rzzyyxx OOO =−+−+−  (4.1) 

 ( ) ( ) ( ) 0=−+−+− OzOyOx zzlyylxxl  (4.2) 

In these equations, xO, yO and zO are the coordinates of O in the global {X, Y, Z} 
reference system. lx, ly and lz in Eq. (4.2) are the director cosines defining the 
orientation of the wheelset axis in the global reference system. They are given 
by Eq. (4.3).  

 ( ) ( )φφψφψ sin,coscos,cossin,, −=zyx lll  (4.3) 

Additionally, the distance from O to the intersection plane i is fixed:  

 Kxxx iO ≡∆=−  (4.4) 

With the above equations, the coordinates (x, y, z) = (xsc,i, ysc,i, zsc,i) of the 
intersection point of the rolling circle with the intersection plane may be 
calculated in closed form. From Eqs. (4.2) and (4.4):  
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Replacing Eqs. (4.4) and (4.5) in Eq. (4.1):  
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Eq. (4.7) is quadratic in (z – zO). Its two possible solutions are given by Eq. 
(4.8). According to the geometry, the solution with minus sign in front of the 
square root is considered.  

 ( )














+












−














+














+−±−

=−

2

2

22
2

2

2

2

4

222

2

12

114
4

2

y

z

y

x

y

z

y

zx

y

zx

O

l

l

RK
l

l

l

l

l

llK

l

ll
K

zz   

 (4.8) 

The term inside the square root of Eq. (4.8) is rewritten as follows:  
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The equality lx
2 + ly

2 + lz
2 = 1 has been used in Eq. (4.9). Eq. (4.8) is simplified 

into Eq. (4.10):  
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The quantity in the right hand side of Eq. (4.10) is now designated as R'. ( y – 
yO) is calculated replacing (z – zO) by R' in Eq. (4.5). The coordinates ( yO, zO) of 
O in the global reference system are given in Eqs. (4.11) and (4.12). In Eq. 
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(4.11), yw is the axial coordinate of O in the wheelset {xw, yw, zw} reference 
system. The origin of the wheelset system is initially located at coordinates (0, 
0, Rroll,n) in the global system, being Rroll,n the nominal rolling radius of the 
wheel. Its final position is obtained with translations (uy, uz) in the global Y and 
Z directions.  

 wyyO yluy ×+=  (4.11) 

 wzznrollO yluRz ×++= ,  (4.12) 

Finally, the (global) lateral and vertical coordinates of the intersection point 
with plane i of the rolling circle located at lateral position yw of the wheelset are 
given in Eqs. (4.13) and (4.14). This intersection is shown schematically in 
Figure 4.4, with some of the relevant parameters in the calculation. ∆xi, R and R' 
are in general variable with yw.  

 ( ) ( )
y

zwix
wyywisc l

Rlyxl
yluyy

'
,

−∆×
−×+=  (4.13) 

 ( ) ',, RyluRyz wzznrollwisc −×++=  (4.14) 

The equations in the original development for the wheel contact locus, 

reproduced in Eqs. (4.78)–(4.80), are singular for δ = 90º, due to the tan(δ) term 

in the distance H. This problem is not encountered in Eqs. (4.13) and (4.14), 
because the distance ∆xi is defined instead. So, the method explained here for 

the calculation of h may be used with unrestricted δ values, as e.g. in the 

cylindrical contact cases of §4.3.7. This method may also be used with large ψ 

and φ rotation angles.  
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Figure 4.4. Intersection of a rolling circle of the wheel with a plane perpendicular to the 
longitudinal direction.  

The main steps followed for the calculation of the normal undeformed distances 
between non-planar surfaces are listed below. These steps are repeated for each 
longitudinal position xi in the discretization of the PCS.  

1) Calculation of the signed longitudinal distance ∆xi (yw) from each 

longitudinal position i of the mesh (i ∈ {1, …, nx}), defining the 

location of each of the planes with which the intersection of the wheel 
surface is to be calculated, to the points in the revolution axis of the 
wheelset corresponding to each of the points representing the given 
profile of the wheel zw (yw). These points in the revolution axis of the 
wheel are the centres of the rolling circles of the wheel containing the 
points in which its profile is discretized. If Xi is the X coordinate of the 
longitudinal position i of the mesh in the global coordinate system (and 
also in the wheelset coordinate system), ∆xi (yw) = Xi – lx yw.  

2) Calculation of the intersection curve xsec_w (xi) of the wheel with the 
plane perpendicular to x located in the current longitudinal position xi of 
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the mesh, with Eqs. (4.13) and (4.14). This curve has as many points 
(ysc,i, zsc,i) as the input wheel profile.  

3) Parameterization of the calculated intersection curve xsec_w with the 
lateral curvilinear coordinate s, which represents its length. With this, 
the intersection curve is mapped in the s coordinate. s = 0 is assigned 
for the first point, and the s values for the rest of the points are 
calculated recursively, summing length increments of the curve 
between consecutive points. For a point j, sj = sj–1 + ∆l j, being sj and sj–1 
the s coordinates of consecutive points j and j–1, respectively, and ∆l j 
the distance between these points. The intersection curve is taken as 
piecewise linear in this calculation.  

4) Search for the origin of the s coordinate on the intersection curve 
xsec_w, which is defined to be on the point at the minimum distance 
from the chosen origin point of the local contact coordinate system. 
This is a search of zeros in a non-linear 1D curve, that is done 
iteratively. The s values obtained in the previous step are shifted so that 
s = 0 at the contact origin.  

5) Interpolation of the intersection curve xsec_w (xi) in the s coordinates of 
the APs of the mesh, obtaining the interpolated curve xsec_w_i (xi).  

Depending on the geometry and the sampling of the profiles with 
respect to the discretization of the PCS, attention hast to be paid to this 
interpolation to avoid noise in the solution of the normal problem, as 
this is sensitive to small variations in the underformed distance. As an 
example of this, Figure 4.5 shows a conformal contact case in which 
using linear interpolations in this step of the computation of h leads to 
some noise in the computed normal pressure (pn) distribution. This is 
the “circ. a.” case described in §6.2 (cf. Table 6.1). In this case, the 
lateral curvature radii of both contacting surfaces are constant in the 
contact patch, and smooth pn distributions are expected. Figure 4.5 
shows the pn profiles along s in a cross-section close to the centre of the 
contact patch, computed with CECT for this case using two 
interpolation types in this step. With spline interpolation, the noise in 
the computed pn distribution is avoided, as may be seen in the figure. In 
this computation, the contact patch was discretized with approximately 
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36 elements in the lateral direction, and the wheel and rail profiles were 
defined with approx. 85 and 150 points respectively in the same zone.  

 

Figure 4.5. Effect of interpolation for the calculation of h on the resulting distribution 
of pn in a conformal contact case.  

Steps 3) to 5) above are performed in a similar way for the rail. For a straight 
rail, they are performed only once and not at each longitudinal position, since 
the rail cross-section xsec_r does not change, and the intersection curve is given 
directly by the rail profile (with a rigid body translation and rotation if so 

defined, cf. incl_r  and hw_tr  input parameters in §4.1.2.1.1). For a curved 

rail, Eqs. (4.13) and (4.14) for the intersection are particularized for the case of 
zero yaw angle as explained in §7.2.2.1.1. The profile of the PCS, prf_pcs_i, is 
calculated as an average of the wheel and rail interpolated cross-sections 
obtained at x0, the longitudinal position where the origin of the local contact 
coordinate system is located, xsec_w_i (x0) and xsec_r_i (x0), weighted with the 
elastic constant Ek / (1 – νk

2) of each body k as indicated in §4.1.1.1.  

6) h is calculated as the projection over the local n direction of the PCS of 
the vector between homologous points of the intersection curves of the 
wheel and the rail. Figure 4.6 shows this calculation schematically. For 
two points on the wheel and rail surfaces located at coordinates (Yw,j, 
Zw,j) and (Yr,j, Zr,j) in the YZ plane, considering a n direction defined by 
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its cosine directors (–sin(αj), cos(αj)) in the same plane, h is equal to 
(Zw,j – Zr,j) cos(αj) – (Yw,j – Yr,j) sin(αj). This calculation is done for each 
lateral position of the discretization. This projection step serves to avoid 
jumps in h from non-zero positive to negative values in regions in 
which the undeformed surfaces change from separation (h > 0) to 
overlap (h < 0).  

 

Figure 4.6. Calculation of the normal undeformed distance h between non-planar 
surfaces.  

Two approaches are used to calculate the local n direction of the PCS in 
each lateral position of the mesh:  

a) If ns is higher than the number of points within the mesh range in s 
direction of both the wheel and rail reference cross-sections xsec_w 
(x0) and xsec_r (x0), the regularly discretized profile of the PCS 
calculated above prf_pcs_i is used directly. The n direction at 

lateral position is (is ∈ {1, …, ns}) is determined as the normal to 

the line joining the APs of the PCS at positions is – 1 and is + 1. As 
an exception, the n direction at is = 1 is determined with APs at 
positions 1 and 2, and the n direction at is = ns with APs at positions 
ns – 1 and ns. This calculation is shown schematically in Figure 4.7, 
where the circles mark positions of APs of the mesh in the YZ 
plane. This scheme is used both with uniform and with bilinear 
elements; thus, the lines joining adjacent positions of the mesh in 
the figure are element edges only for the case of bilinear elements, 
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in which the APs are located at the element corners. The n direction 
is defined with an angle α in the YZ plane in the [–π, π] range, being 
0 for n aligned with the positive Z axis, and increasing counter 
clock-wise as looked towards the negative X axis, as depicted in 
Figure 4.7.  

 

Figure 4.7. Calculation of the n direction at each lateral position of the mesh of the 
PCS.  

b) If ns is lower than the number of points within the mesh range in s 
direction of either cross-section xsec_w (x0) or xsec_r (x0), a more 
refined profile of the PCS is used, prf_pcs_ref. To calculate it, the s 
coordinates of the cross-section xsec_w (x0) or xsec_r (x0) with more 
points within the mesh range are used. The other cross-section is 
sampled at these s coordinates, and prf_pcs_ref is computed as a 
weighted average of the sampled cross-section and the other one, in 
a similar way as prf_pcs_i.  

The α angles defining the orientation of prf_pcs_ref in the YZ plane 
are then calculated at each point of prf_pcs_ref, in a similar way as 
depicted in Figure 4.7 for prf_pcs_i. In this way, a curve of angles 
αref (sref) is obtained on prf_pcs_ref. The α angles on prf_pcs_i are 
obtained by sampling (i.e. interpolating) αref (sref) on the s positions 
of the mesh. This interpolation is problematic if the point of 
discontinuity of α (i.e., the point at which α changes from –π to π, 



170 4.1 Conformal Exact Contact Theory — CECT 

which, according to the convention for α explained above, is where 
the n direction points in the negative Z axis) is within the range of 
the mesh. The problem is illustrated in Figure 4.8a, with linear 
interpolation. Here, the points of prf_pcs_ref are represented with 
filled circles, and the points of the mesh with red unfilled circles. If 
a point of the mesh falls between two discontinuous points of 
prf_pcs_ref, as the point marked with an arrow in the figure, the 
interpolated α may be very bad. This may lead to a large error in the 
computed undeformed distance at that s position of the mesh, and 
subsequently to a large peak in the normal pressure when solving 
the normal contact problem.  

 

 

 

(a) Interpolation error at discontinuity point.   (b) Redefinition of αref curve for continuity.  

Figure 4.8. Treatment of a discontinuous αref curve.  

To avoid this, the αref curve is made continuous by redefining it in 
an extended angular range, as in the example depicted Figure 4.8b. 
If a discontinuity is detected between two adjacent αi and αi+1 
values, αi+1 and subsequent α values up to the next discontinuity or 
to the end of the curve are modified, adding 2π if αi+1 < αi, or 
subtracting 2π otherwise. In the example of Figure 4.8b, there are 
two discontinuities, one from π to –π, and the other from –π to π. 
Translating the section of the curve between both discontinuities by 
+2π in the vertical axis, both discontinuities are resolved at once. 
Taking this into account, it could be thought of considering only the 
odd-numbered discontinuities in the curve as the starting points of 
the sections of the curve to be translated. But this would not be 
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correct; the possibility of having more than one consecutive 
discontinuity in the same direction (from –π to π or vice versa) has 
to be considered. This happens in a “heart-shaped” closed profile, 
for example.  

The algorithm to make the αref curve continuous is as follows:  

1. Detect the discontinuity points in the αref curve, as the ones in 
which the absolute difference between two adjacent angles is 
higher than π. The number of these discontinuities is denoted as 
ndiscn.  

2. Determine the sign sgn of each discontinuity. sgn = –1 for a 
discontinuity from –π to π, and sgn = 1 for a discontinuity from 
π to –π.  

3. Set counter i = 1. The following loop is carried out until i 
surpasses the number of discontinuities in the curve ndiscn:  

o Determine the position index in the curve of the current 
discontinuity i, and its sign sgn.  

o Search for the next discontinuity in the curve with 
opposite sign to the current one i. If there is such 
discontinuity, define i2 as its position index in the set of 
discontinuities. Otherwise, i2 = ndiscn + 1.  

o Set counter ii  = 0. If, in the search of the previous step, 
it is determined that there is one or more discontinuities 
adjacent to the current one with the same sign, the 
following is carried out i2 – i – 1 times:  

� Translate the section of the curve from the 
position of discontinuity i + ii  to the end by 
sgn×2π.  

� ii  += 1.  

o Translate the section of the curve between the 
discontinuity with index i + ii  and the next, which is the 
one with index i2 (or up to the end of the curve, if 
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discontinuity i + ii  is the last one of the curve), by 
sgn×2π.  

o i = i2 + 1.  

After making αref continuous, the interpolation for α is carried out 
safely. In a final step, the interpolated α values are bounded again to 
the [–π, π] range.  

In 2D problems with ns = 1, the n direction points towards the positive Z 
axis.  

Homologous contact points are defined as points with the same (x, s) 
coordinates, as indicated before. By using the s coordinate for the location of 
homologous contact points in the YZ plane, multi-valued wheel and rail profiles 
(i.e. profiles with more than one point in a given lateral position, or profiles 
with vertical sections) may be handled without problem. But, in order for pairs 
of points with common s coordinates to really be homologous points, both 
contacting surfaces have to be close to one another in the whole PCS, and they 
have to be smooth, i.e., without roughness or waviness at a scale lower than the 
contact dimensions. Figure 4.9 illustrates two examples that do not fulfil these 
conditions. These cases cannot be correctly treated in CECT. It would be 
relatively straightforward to include roughness, superposing it in a final step to 
the “smooth” h previously calculated following the method described above.  

 

 

 

(a) Profiles that separate and join again (adapted 
from [Vollebregt 2021]).  

 (b) Profiles with waviness.  

Figure 4.9. Pairs of profiles not valid for the location of homologous contact points as 
those with common s coordinates.  
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The above referenced normal undeformed distance h corresponds to the initial 
configuration (cf. §1.2). The undeformed distance in the reference 
configuration, i.e. after application of the approach d between the contacting 
bodies, is also of interest. This will be designated as h'. Figure 4.10 illustrates 
the effect of the approach in h'. In a non-planar contact surface, this effect is 
variable with the surface orientation. Following the figure, h' is calculated from 

h and d according to Eq. (4.15). In this equation, ∆α is the angular difference in 

the YZ plane between the direction in which the approach is applied and the 
local normal of the contact surface.  

 h' = h – d cos(∆α) (4.15) 

 

Figure 4.10. Effect of the approach in the normal undeformed distance.  

4.1.1.3 Rigid slip velocities  

The rigid slip velocities w or imposed rigid shifts are the fundamental kinematic 
input for the tangential contact problem. In planar contact surfaces the field of 

w may be described in terms of the longitudinal, lateral and spin creepages, ξ, η 

and ϕ, according to Eq. (1.5). In non-planar contact surfaces, the notion of 
creepages as applicable to the whole contact area loses its sense (though it is 
still possible to consider creepages referred to particular points in the contact 
patch), and it becomes necessary to compute the local rigid shifts or slip 



174 4.1 Conformal Exact Contact Theory — CECT 

velocities at each point, as explained in [Piotrowski 1999]. This is done 
computing the rigid body velocities of all the APs of the mesh of the PCS as 
belonging to each of the contacting solids, and projecting the resulting velocity 
difference vector of each AP on the PCS. The projection at a point I on a curved 
surface is equal to the projection on the plane tangent to that surface at I.  

The necessary input data for this calculation are as follows:  

- ωωωω, the angular velocity vector of the wheel, with components ωX, ωY, 

and ωZ in the global {X, Y, Z} system.  

- vP, the linear velocity vector of a point P of the wheel, as well as the 
position of that point. vP has components vP,X, vP,Y and vP,Z in the {X, Y, 
Z} system.  

- The points of the mesh of the PCS on which the rigid slip velocities are 
to be computed. The vector from point P to an AP I in the PCS is r I–P.  

- The angles of inclination α of the PCS in the YZ plane. The angle at AP 
I is αI. These angles are measured from the Y axis to the tangent to the 
PCS directed in the positive s direction, counter clock-wise as viewed 
looking towards the negative x direction. They have the same value as 
the α angle defining the direction of the local normal depicted in Figure 
4.7. As the PCS is prismatic, the α angles vary only in the s direction.  

The above data does not include rail velocities, because the rail is considered to 
have no rigid body motion. This does not imply any loss of generality; if the rail 
is moving, the wheel motion relative to the rail is considered to define the 
necessary kinematic input, and the problem is solved as if the rail were at rest.  

A new coordinate system {u', v', w'} is defined, with its v' axis parallel to ωωωω. 

This system is obtained from the global system {X, Y, Z} with the following 
steps:  

- Rotation of ψω around the Z axis. After this rotation the orientation of 

the u' axis, which is obtained from the X axis, is attained.  

- Rotation of φω around the u' axis.  

- The origin of the system {u', v', w'} is translated to point P on which the 
velocity vP is given.  
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The angles ψω and φω, which define the orientation of ωωωω, are analogous to the 

angles ψ and φ associated to the orientation of the revolution axis of the wheel, 

shown in Figure 4.1b. These angles, depicted in Figure 4.11, may be computed 

from the components of ωωωω according to Eqs. (4.16) and (4.17):  

 ( )Yωωψ ω Xatan−=  (4.16) 
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According to the defined rotations, the relationship between the unitary vectors 
along the axes of the systems {u', v', w'} and {X, Y, Z} is given by Eq. (4.18). i, 
j , k are the unitary vectors along the axes of the global system, and i' , j' , k'  the 
unitary vectors along the axes of the system {u', v', w'}. [Ra(γ)] is the rotation 
matrix of angle γ around axis a (see also §7.1.1), [A] T is the transpose of matrix 
[A] , and sγ and cγ are the sine and the cosine of γ.  
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Figure 4.11 illustrates the projection of a velocity vector vI/P on an xs plane with 
inclination αI with respect to the XY plane. vI/P is the velocity of a point I 
relative to point P, considering both points as solidary to the wheel. Thus vI/P = 

ωωωω×r I-P, and the equalities of Eq. (4.19) hold.  
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 ( )k'i'rωrωrωv P'-IP'-IP-II/P II
sc θθ −−⋅⋅=×=×=  (4.19) 

r I-P'  is the projection of r I-P on a plane perpendicular to ωωωω, and P' is the 

projection of P on the plane perpendicular to ωωωω passing through I. θI is the 

azimuthal coordinate of point I in the {u', v', w'} system, measured as shown in 
Figure 4.11, with origin in the negative w' axis, and positive clock-wise while 
looking towards the negative v' direction. The circumference centred at P', 

perpendicular to ωωωω and with radius r I-P'  is represented in dashed line in the 

figure. vI/P is tangent to this circumference at I.  

 

Figure 4.11. Projection of rigid slip velocity on tangent xs plane. Isometric view.  

The transformation between the systems {x, s, n} and {X, Y, Z} is defined with 
the rotation matrix [RX(αI)] according to Eq. (4.20). The unitary vectors along 
the axes of the system {x, s, n} are e1, e2 and e3.  
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Combining Eqs. (4.18)–(4.20), vI/P is written on the axes {x, s, n}. The total 
rigid velocity of point I of the wheel, vI, is the sum vP and vI/P. As the rail is 
considered at rest, this is equal to the rigid slip velocity at the same point I, wI. 
The components of wI along axes x and s, wI,x and wI,s, are given in Eqs. (4.21) 
and (4.22). The terms in the right-hand side of these equations multiplied by 

||ωωωω||·||r I-P' || are due to vI/P. These are represented in Figure 4.11 as components 
vI/P,x and vI/P,s. The component of wI in normal direction, wI,n, is accommodated 
by normal deformations, and does not enter in the specification of linear 
elastostatic contact problems. For a continuous contact, wI,n is small, otherwise 
the contacting surfaces would be colliding or separating.  

 ( )
ωωω φψθψθ sssccvw

IIXPxI −−⋅⋅+= −P'Irω,,  (4.21) 

 P'Irω −⋅++=
II

svcvw ZPYPsI αα ,,,   

  ( )
ωωωω φθαφψθαψθα cssscscscc

IIIIII
−+−×  (4.22) 

Besides the rigid slip velocities due to the rigid body motion of the contacting 
solids, in transient contact problems the rigid shifts or slip velocities due to the 
change in the (normal) approach between the solids have to be considered as 
well. As illustrated in Figure 4.12, a change in the approach of ∆d causes a rigid 
shift in s direction WI,s equal to –∆d × sin(∆αI-d), ∆αI-d being the angle between 
the direction of ∆d and the normal of the PCS at I. This is a form of coupling 
between the normal and the tangential parts of the contact problem, which does 
not appear in planar contact. Related examples are shown in §6.2.1.5.  
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Figure 4.12. Contribution of the variation of the approach to the rigid tangential shift.  

In transient rolling contact problems, this rigid shift WI,s is divided by the time 
increment ∆t = t – t' between the previous and the current time step and added 
to the velocity wI,s of Eq. (4.22). In static contact problems, the relative motion 
between the contacting surfaces is assumed to be composed of the approach d 
(which may be in any direction in the sn plane), a shift in x direction Sftx, and a 
pivoting rotation Ωs. The axis of the rotation Ωs is assumed to be aligned with 
the direction of ∆d, and its pole is assumed to be the origin o of the local contact 
x, s coordinates. The total rigid displacement differences or shifts in the 
tangential directions of the contact surface, WI,x and WI,s, are computed 
according to Eqs. (4.23) and (4.24).  

 IsxxI lSftW ⋅Ω−=,  (4.23) 

 ( ) ( )dIIsdIsI xdW −− ∆⋅⋅Ω+∆⋅∆−= αα cossin,  (4.24) 
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l I in Eq. (4.23) is the signed distance from the contact origin o to I, measured 
perpendicular to the direction of the approach as shown in Figure 4.12. It is 
calculated according to Eq. (4.25), where YI, ZI, Yo, Zo are the coordinates of 
points I and o in the YZ plane, and αd is the angle defining the direction of the 
approach measured from the vertical as shown in Figure 4.12. The quantities 
that are passed to the tangential contact solver are the increments of rigid 
displacement differences W I between the previous and the current time step, as 
explained in §4.1.4.2.  

 ( ) ( ) ( ) ( )doIdoII ZZYYl αα sincos −+−=  (4.25) 

4.1.1.3.1 Rolling radii for the calculation of rigid velocities  

The rigid slip velocities are usually a small fraction of the rolling velocities in 
practical linear elastic rolling contact problems. The rigid velocities of the 
wheel are the superposition of its translation and rotation. For points on the 
contact surface and with no gross slip, the velocities due to the rotational 
motion have approximately the same magnitude as the translation velocity, and 
opposite direction. That is, the velocities due to wheel translation and rotation 
nearly cancel out each other. For given wheel translational and rotational 
velocities, small differences in the rolling radii may then lead to considerable 
variations in the resulting wheel rigid slip velocities. So it is necessary to define 
precisely the geometry for an accurate calculation of the rigid slip velocities. 
This is not specific of conformal contact; in fact, it is relevant mostly in planar 
rolling contact problems with low levels of rigid slip.  

It has been stated that the rigid slip velocities are calculated at points on the 
PCS, and projected on the PCS. This is further elaborated here. Figure 4.13 
shows the undeformed surface of a cylindrical wheel of radius R rolling on a 
plane. The wheel rolls along the positive X direction with translation velocity V 

and rotation velocity ωωωω, with its rotation and revolution axis parallel to the Y 

direction. With no gross slip, V ≈ ωR. Considering a point P on the wheel axis 

of revolution, the relative velocity of a point IW on the wheel surface with 

respect to P, vIW/P, is ωωωω×r IW -P. Its magnitude is ωR at any point on the wheel 

surface. On the other hand, its projection on the PCS changes with the cosine of 
the azimuthal coordinate of IW, θIW = θI + εI. For non-conformal contact in 
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rolling direction, xIW – xP << R for any point IW inside the contact, θIW is small, 
and cos(θIW) ≈ cos(θI) ≈ 1 – θI

2 / 2 ≈ 1 – ((xIW – xP) / R)2 / 2 ≈ 1. The projected 

rigid slip velocity of IW along x, wIW,x, is equal to V – ωR cos(θIW). For the 

particular case of V = ωR (i.e. with nominally no rigid slip), wIW,x = V (1 – 

cos(θIW)). The difference 1 – cos(θIW), though small, is not negligible with 
respect to creepages usually encountered in wheel–rail rolling contact problems. 
For example, for xIW – xP = 10 mm and R = 460 mm, 1 – cos(θIW) ≈ 0.02%.  

So if the rigid velocities of the wheel are calculated at points IW of its 
undeformed surface and then projected on the PCS, there is a component of the 
rigid slip velocity changing in proportion to cos(θIW) along the contact. It is 
considered that this variation, which comes from the difference between the 
undeformed geometry of the wheel and the PCS on which the rigid velocities 
are projected, is not realistic and has to be corrected. This is done in CECT by 
computing the rigid velocities of the wheel at points I on the PCS instead of at 
points on the actual undeformed wheel surface. Referring to Figure 4.13, this 
means that the rigid slip velocities of the wheel are computed at points I instead 

of at points IW. It is verified that vI/P,x = –||vI/P|| cos(θI) = –ω ||r I-P|| cos(θI) = –ω 

(R / cos(θI)) cos(θI) = –ωR, constant along the PCS. The variation with cos(θIW) 
which appears if the calculation is carried out at point IW is thus avoided. Also, 

when V = ωR, wI,x = V + vI/P,x = 0, as expected.  

In [Vollebregt 2021], the exposed unintended variation of the rigid velocity of 
the wheel along the contact is avoided in a different way, introducing a so-
called “mid-plane correction”. This consists on considering a plane midway 
between the undeformed wheel and rail surfaces (and thus with variable 
inclination in the XZ plane along the contact), in place of the prismatic PCS, for 
projection of the rigid velocities.  
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Figure 4.13. Calculation of wheel rigid velocities on the PCS as opposed to on the 
wheel surface.  

Another question is which geometry should be considered for the calculation of 
the rigid velocities. Should it be the undeformed or the deformed geometry? 
Figure 4.14 illustrates the difference between the undeformed and the deformed 
rolling radii of a wheel rolling on a plane, R(ud) and R(d). The axis of revolution 
of the wheel is located at point P in the undeformed configuration, and moves to 
point P' in the deformed configuration. In elastic contact of steel wheel on steel 
rail, the difference between the undeformed and the deformed rolling radii of 
the wheel in the contact patch is of order 0.01%. This is not negligible with 
respect to the magnitude of the creepages in practical wheel–rail rolling contact 
problems.  

Bearing this in mind, here it has been questioned whether the w term in Eq. 
(1.7) should be computed on the deformed rather than on the undeformed 
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configuration of the wheel. That is, considering a purely linear superposition of 
velocities between the rigid body motion of the solids and the local contact 
field, such as is done with the normal displacements in the normal part of the 
contact problem, might not be completely correct. Tests have been done with 
FE models to try to clarify this issue. These are described in §4.3.9.1. These 
tests have not proved that the deformed geometry should be used instead of the 
undeformed one. Currently the field of rigid velocities w is computed in CECT 
using the initial undeformed configuration of the contacting bodies.  

 

Figure 4.14. Rolling radii in the undeformed and deformed configurations. 

4.1.1.4 Influence coefficients  

The non-flatness of the contact surface has consequences in the mechanical 
behaviour of the contacting solids, which are no longer seen as half-spaces as in 
planar concentrated contact. This represents an important difficulty, as the ICs 
for solids with general non-planar surfaces are not available analytically, as 
there are those of the half-space.  
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The ICs for non-planar solids may be calculated numerically, with FE models 
for example. However, the process for this calculation is involved, and the 
validity of the numerically calculated ICs is limited to a particular geometry, a 
coefficient of Poisson and to a mesh of the PCS. In this thesis an analytical 
approximation of the ICs for non-planar solids is proposed, in order to avoid 
their numerical calculation. These topics are dealt with in Chapter 5. Here the 
structure of the IC matrices of non-planar solids is discussed and contrasted 
with the planar case (i.e. the half-space). Along this, implications in the scope of 
the required calculations to obtain the complete IC matrices, and in their 
convolution with the contact stresses to obtain the elastic displacements, are 
addressed.  

As was seen in Chapter 2, the spatial discretization of the integral equation 
(1.6), which provides the constitutive relationship between elastic 
displacements and stresses in the contact surface, leads to a matrix equation in 
which the vector {u i} of elastic displacements in all the mesh points is obtained 
as the product of the IC matrices [IC ij ] and the vectors {p j} with the stresses in 
each principal direction in all the mesh points (Eq. (2.100)). In 3D problems, the 
subindices i, j of these vectors and matrices may have three possible values; one 
for each direction of the coordinate system defined for the problem. In planar 
contacts, i, j = x, y, or z, and in non-planar contacts i, j = x, s, or n. Therefore 
there will be three vectors {u i} and {p j}, and 9 matrices [IC ij ].  

Designating as NE the total number of APs in the mesh, the vectors {u i} and 
{p j} have NE elements, and [IC ij ] is a square matrix with dimension NE×NE. 
Element (I, J) of this matrix is the displacement ui obtained in the I th AP of the 
mesh, due to a unit pressure in direction j applied in the Jth AP. Each complete 
[IC ij ] matrix has therefore NE2 values, but they are not all independent, as 
explained next. In what follows, the [IC ij ] matrices of the current time instant t 
are considered. Afterwards additional considerations for the [IC' ij ] matrices of 
the previous time instant t' (cf. §2.1.3) are set out, which apply similarly in 
planar and in non-planar contact.  

In the case of the half-space, the ICs between any two I, J APs depend on the 
relative position between those two APs in each direction of the surface, but not 
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on the absolute position of each of the points, as explained in §2.1.3. 
Consequently, only NE values of each complete [IC ij ] matrix are independent9, 
and the rest are equal to one of these, with the same or with changed sign, due 
to similarity and (anti)symmetry. By way of example, the ICs between 
elements10 I0 and J0 of Figure 4.15a are equal to the ICs between elements I1 and 
J1, as the relative position between each of these pairs of elements is the same. 
On the other hand, referring to the ICs for the current time instant t, the ICs 
between elements I1 and J2 have the same absolute value as the ICs between 
elements I0 and J0, and will have the same or the contrary sign depending on the 
particular IC being symmetric or antisymmetric in the longitudinal direction.  

The mentioned NE necessary values for each IC matrix may be obtained by 
means of a single load case, observing the resulting displacements in the NE 
elements of the mesh when the element in one of the corners of the mesh is 
loaded. That is, the loaded element is one of the four elements highlighted in 
red in Figure 4.15a, so that between that element and the rest of the elements of 
the mesh there are all the possible combinations of relative positions in both 
mesh directions that may occur between any pair of elements of the mesh11. The 
necessary values for the nine [IC ij ] matrices may be obtained in a similar way, 
observing the displacements of the NE elements of the mesh in each of the 3 
space directions under 3 different load cases, with the load applied in a different 
direction in each of them. Taking into account the reciprocity relations ICIiJj = 
ICJjIi, it is not necessary to store the 9×NE values thus obtained, but only 6×NE. 

                                                      

9 Roughly, without discounting the zero values, which are ny in [IC xz], nx in [IC yz] and 
nx+ny–1 in [IC xy]; idem in their reciprocals.  

10 “Element” is being used in place of “analysis point” here. In Figure 4.15 uniform 
elements are assumed, without loss of generality.  

11 If the calculation of the ICs is carried out analytically, in such a way that it costs the 
same evaluating the displacements in the NE elements of the mesh in a single load case, 
or evaluating the displacements in a single element in NE load cases, alternatively the 
displacements of one of the four corner elements may be evaluated loading each time a 
different element of the mesh in NE different load cases, to obtain the NE necessary ICs 
for a matrix.  
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This may be reduced to 4×NE in meshes with square elements (i.e. with ∆x = 
∆y), storing for example only the ICxx, ICzz, ICxy and ICxz ICs.  

 

(a) Plane contact surface.  

 

(b) Curved contact surface.  

Figure 4.15. Similarities of ICs in regular meshes, and possible load cases to compute 
the necessary values for each [IC ij ] matrix.  

The NE independent values of each [IC ij ] matrix may be stored in a vector 

v_IC , with element e of the array being equal to IC(e)i(1)j. e is the 1D index of 

the AP in the 2D grid of the PCS, as illustrated in Figure 2.19. This numbering 
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is applied similarly in curved contact surfaces. A possible generic code to 

construct the complete NE×NE [IC ij ] matrix from v_IC  is shown in Figure 

4.16. The [IC ij ] matrix is stored in the ICij  variable in this code. The 

exponents fx, fy depend on the (anti)symmetry of the ICij in question along 
directions x and y with respect to the loaded AP, as given in Table 4.1. fj = 2 if 
the ICij is symmetric, and fj = 1 if the ICij is anti-symmetric along direction j (j = 
x or y). It has to be noted that the size of each of these matrices is of O(nj

4); j = x 
or y, assuming nx ≈ ny. The construction of these complete [IC ij ] matrices may 
be avoided as explained in §4.1.1.4.2.  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

 
15 

 
16 

NE = nx * ny;  
sz = [nx ny];  
v_ei = 1:NE;  
[sub_x_ei, sub_y_ei] = ind2sub(sz, v_ei');  
ICij = zeros(NE, NE);  
for ej=1:NE  
   [sub_x_ej, sub_y_ej] = ind2sub(sz, ej);  
   dif_sub_x = sub_x_ei - sub_x_ej;  
   sgn_dx = sign(dif_sub_x);  
   sgn_dx(abs(sgn_dx)<0.1) = 1;  
   dif_sub_y = sub_y_ei - sub_y_ej;  
   sgn_dy = sign(dif_sub_y);  
   sgn_dy(abs(sgn_dy)<0.1) = 1;  
   inds = sub2ind(sz, abs(dif_sub_x)+1, ...  
                      abs(dif_sub_y)+1);  
   ICij(:, ej) = v_IC(inds) .* sgn_dx.^fx .* ...  
                 sgn_dy.^fy;  
end % for ej=1:NE   

Figure 4.16. Possible MATLAB code to construct a complete half-space [ICij] matrix. 

Table 4.1. Factors fx and fy for each ICij.  

IC_ fx fy 
xx, yy, zz 2 2 
xy, yx 1 1 
xz, zx 1 2 
yz, zy 2 1 
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Due to the similarities in x and y directions of the mesh, the [IC ij ] matrix is 
Block Toeplitz12 with Toeplitz Blocks (BTTB), with ny independent Toeplitz 
blocks, each of which has nx independent values, according to the numbering of 
APs adopted. Figure 4.17 shows the structure of this matrix. Each of the 
represented cells is a Toeplitz matrix of dimension nx×nx, which is symmetric 
for the ICs which are symmetric in x, and anti-symmetric with zeros in its main 
diagonal for the ICs which are anti-symmetric in x. The whole cells in the main 
diagonal of the [IC ij ] matrix are also zero for the ICs which are anti-symmetric 
in y. Each cell is related to a pair of rows of APs in the mesh, and is numbered 
with two iy_I, iy_J indices, indicating the lateral positions of each of these rows 
in the mesh. The first one corresponds to the row of APs where the 
displacements are observed, and the second one to the row of loaded APs. The 
factor ky is 1 for ICs which are symmetric in y, and –1 for ICs which are anti-
symmetric in y.  

 

Figure 4.17. BTTB structure of a half-space [ICij] matrix.  

                                                      

12 A N×N matrix [T]  is Toeplitz when all the elements in each of its (upper-left to 
lower-right) diagonals are equal; i.e. when each element of the matrix T(i, j) = hi–j, for 

all i, j ∈ {1, … , N}, with a given set of 2N – 1 scalars {h–N+1, … , h0, … , hN–1}.  
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Figure 4.18 shows example half-space [IC xs] and [IC nn] matrices for a mesh 
with nx×ns = 10×6 APs, with bilinear elements, and with a ratio of lateral to 
longitudinal dimensions of the elements, b/a, of 0.70. These have been 
computed for a half-space with a coefficient of Poisson ν of 0.30. The data in 
the figure are normalized with the Young’s modulus E1 of the half-space and 
with the longitudinal dimension of the loaded element a. More details about the 
dimension of the ICs are given in Chapter 5, and in Figure 5.2 and subsequent 
figures similar magnitudes are plotted.  

 

 

 

(a) ICxs.   (b) ICnn.  

Figure 4.18. Example half-space [IC ij ] matrices of a mesh with 10×6 APs.  

Figure 4.19 shows an alternative code to build each complete [IC ij ] matrix, 
which exploits the BTTB structure of the matrix. This code is found to be about 
8-10 times faster than the code in Figure 4.16 on a 60×60 mesh, with the factor 
increasing for smaller meshes. Once built, these matrices are reused many times 
in the solution process of the contact problem, and the time required to build 
one of them (with the less efficient algorithm shown) is usually small in relation 
to the total time for the solution of a contact problem. So, the benefit of this 
efficiency gain in the whole contact solution process may be limited, depending 
among other things on the number of complete matrices to be built.  
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ICij = zeros(NE, NE);  
if fy>1.5, ky=1; else ky=-1; end  
for iy=1:ny  
   col = v_IC(1+(iy-1)*nx:iy*nx);  
   if fx>1.5  
      toep = toeplitz(col, col);  
   else  
      row = -col; row(1) = col(1);  
      toep = toeplitz(col, row);  
   end  
   for i=1:ny-iy+1  
      c = 1+(i-1)*nx;  
      r = c + (iy-1)*nx;  
      ICij(r:r+nx-1, c:c+nx-1) = toep;  
      if iy>1.1  
         ICij(c:c+nx-1, r:r+nx-1) = ky * toep;  
      end  
   end  
end % for iy=1:ny 

Figure 4.19. MATLAB code to construct a complete half-space [IC ij ] matrix exploiting 
its BTTB structure.  

In the case of conformal contact, the similarity related to the relative position of 
a pair of elements in the lateral direction is lost. Therefore, the ICs between 
elements I0 and J0 of Figure 4.15b are no longer equal to the ICs between 
elements I1 and J1, despite both pairs of elements have the same relative 
position in the mesh in its both principal directions (x and s). That is, the ICs 
between two elements will depend in general not only on their relative positions 
in the mesh, but also on their absolute positions in lateral direction. On the other 
hand, the ICs between elements I1 and J2 continue being the same in absolute 
value as the ICs between elements I1 and J1 (having the same or the contrary 
sign depending on whether the particular IC is symmetric or antisymmetric in 
longitudinal direction), as in the plane case, because in this case the lateral 
positions in the mesh of both pairs of elements does not change, and the 
similarity in the longitudinal direction is maintained13. In the case of contact 

                                                      

13 In this thesis, contacts between bodies which are either prismatic or of revolution are 
studied (or at least which may be approached as such around the contact). Considering 
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surfaces with circular profile, it may be assumed as a first approximation that 
there is also similarity in the lateral direction as in the plane case, according to 
the surface orientation based approximation of ICs for non-planar solids 
exposed in §5.2.3.1. The most general case of no lateral similarity is assumed in 
what follows.  

According to the previous discussion, the necessary data for each [IC ij ] matrix 
may no longer be obtained with a single load case as in the plane case, but in 
general ns load cases will be necessary (ns = 7 in Figure 4.15b). These load 
cases are defined loading each time an element located in each of the ns lateral 
positions of the mesh, and in one of the extreme positions in longitudinal 
direction; see the elements marked in red in Figure 4.15b. To obtain the 
necessary data for the 9 IC matrices of each of the contacting bodies, 3×ns load 
cases are necessary, as indicated in [Li Z 2002] (one for each loading direction 
and lateral position of the mesh). As these calculations have to be carried out for 
each of the two contacting bodies, a total of 6×ns load cases are necessary to 
obtain the IC matrices of the displacement differences in the contact surface. 
The number of lateral positions ns to be considered here can be reduced in cases 
where symmetries or similarities can be used in the lateral direction.  

                                                                                                                                  

that the longitudinal direction is aligned with the axis of the prismatic body or with the 
circumferential direction of the body of revolution, there is similarity in the IFs in 
longitudinal direction for each of the bodies separately. But if there is a yaw angle 
between both contacting bodies, so that their respective longitudinal directions are no 
longer aligned, strictly speaking this similarity would be lost in the combined ICs of 
both solids (the ones related to the displacement differences of both in the contact 
surface), associated to the common mesh of the PCS. However, given the small 
magnitude of the yaw angle in practical wheel–rail contact problems (on the order of 
tens of mrad at the highest), it may be assumed with little error that there is similarity of 
the combined ICs in longitudinal direction regardless of this angle. Besides, in order for 
a conformal contact to be actually feasible between prismatic bodies and/or bodies of 
revolution, with a curved surface in lateral direction, in linear elasticity problems where 
the displacements are small, the yaw angle must necessarily be small. With big yaw 
angles, the possible contacts are concentrated, and in this case it applies again the 
similarity of the ICs in both directions of the (plane) contact surface.  
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The number of independent values in each [IC ij ] matrix is NE×ns = nx×ns
2 in the 

case of the crossed ICij-s with i ≠ j; i, j ∈ {x, s, n}. In the case of the 3 direct 

ICii-s this is reduced to nx×ns×(ns+1)/2 on account of reciprocity. Additionally, 
only 3 out of the 6 sets of crossed ICij-s need to be calculated, being able to 
deduce the remaining ones by reciprocity as in the plane case. This makes a 
total of 3×nx×ns×(3ns+1)/2 independent values of ICs, in place of the 6×nx×ns of 
the plane case.  

The independent values of each [IC ij ] matrix may be stored in an array a_IC , 

with element (e, is) of the array being equal to IC(e)i(e1_is)j, where e1_is is the 1D 
index of the first AP in the isth lateral position of the mesh, i.e. e1_is = 1 + 

nx×(is – 1). The chosen loaded APs here are those with indices e1_is. All a_IC  

arrays are defined with the same size of NE×ns for convenience, so e = 1, …, 
NE; is = 1, …, ns, in all these arrays. In the current implementation of CECT, 

arrays a_IC  may be either computed numerically (outside CECT), cf. §5.2.2, 

or approximated analytically within CECT, cf. §5.2.3. In the latter case, 

previously calculated vectors v_IC  with ICs of the half-space are used, each 

with NE values.  

The resulting [IC ij ] matrix is no longer BTTB, as a result of the lack of 
similarity in the lateral direction. Each of the ns×ns blocks of the matrices of the 
crossed ICij-s (each of them, with dimension nx×nx, corresponding to a pair of 
lateral positions in the mesh with indexes is_I, is_J) is different in general. On 
the other hand, the matrices of the ICii direct ICs have a symmetric block 
structure due to reciprocity between different rows of the mesh, i.e. block (is_I, 

is_J) is the same as block (is_J, is_I), for all is_I, is_J ∈ {1, …, ns}. According 
to the surface orientation based approximation of ICs exposed in §5.2.3, in a 
general case it could be assumed as a first approximation for all the [IC ij ] 
matrices that all the (is, is) blocks in the main diagonal are equal. Regarding the 
structure of each nx×nx block, as there is similarity in the longitudinal direction 
as in the planar case, each of the blocks of all the [IC ij ] matrices is also a 
Toeplitz matrix, with nx independent values and symmetric or anti-symmetric.  

Figure 4.20 shows a code to build a [IC ij ] matrix for a curved contact surface 

from the NE×ns a_IC  array, taking into account its characteristics described 

above. The sym variable in this code is set to 1 for matrices of the direct ICii-s, 
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with symmetric block structure. Some rough comparative values of the times 
required to build these matrices are given next, based on a mesh with 60×60 
APs. With smaller meshes, it is observed that the relative differences between 
the different times increase. In the case of the block-symmetric [IC ii] matrices, 
the time taken by the algorithm in Figure 4.20 is approx. twice as much as the 
corresponding algorithm shown in Figure 4.19 for the planar case. In this case 
the algorithm in Figure 4.20 is around 3 times faster than the less efficient code 
(not shown here), similar to that shown Figure 4.16 for the planar case. In the 

case of the non block-symmetric [IC ij ] matrices (i.e. with sym = 0) this 

advantage is reduced to a factor of 2. The less efficient code is somewhat faster 

(around 10-20%) working with the a_IC  array than the code in Figure 4.16 

working with the v_IC  vector of NE values.  
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ICij = zeros(NE, NE);  
if fx>1.5, kx=1; else kx=-1; end  
nsc=ns;  
for isr=1:ns  
   r = 1+(isr-1)*nx;  
   if sym, nsc=isr; end  
   for isc=1:nsc  
      c = 1+(isc-1)*nx;  
      col = a_IC(1+(isr-1)*nx:isr*nx, isc);  
      row = kx*col; row(1) = col(1);  
      toep = toeplitz(col, row);  
      ICij(r:r+nx-1, c:c+nx-1) = toep;  
      if sym && isr-0.1>isc  
         ICij(c:c+nx-1, r:r+nx-1) = toep;  
      end  
   end % for isc=1:nsc  
end % for isr=1:ns  

Figure 4.20. MATLAB code to construct a complete [IC ij ] matrix for a curved contact 
surface taking into account that it is composed of Toeplitz blocks.  

4.1.1.4.1 IC matrices of the previous time instant  

Up to now, the matrices [IC ij ] for the current time instant t have been 
considered. In rolling contact problems, [IC' ij ] matrices for the previous time 
instant t' have to be computed as well. In general, a higher number of 
independent values of ICs are necessary to construct these matrices than the 
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[IC ij ] matrices, because more longitudinal position differences (xI – xJ) between 
pairs of elements I, J in the mesh have to be considered.  

For the [IC ij ] matrices, the number of differences (xI – xJ) to be considered is 
equal to the number of elements in the longitudinal direction nx. A possible set 
of these is (xix – x1) = (ix – 1)×∆x, with ix = 1, 2, …, nx; xix being the 
longitudinal coordinate of the ixth longitudinal position of the discretization, and 
∆x the longitudinal dimension of the elements of the mesh. The other nx – 1 
possible differences with reversed sign (x1 – xix) are omitted here, because the 
ICs for them may be deduced from the ones for the differences (xix – x1) by 
(anti)symmetry, as indicated before.  

For the [IC' ij ] matrices, the discretization parameter ∆q, cf. Figure 2.20 in 
§2.1.3, takes part in the longitudinal position differences. For any two elements 
I, J, being J the loaded element, the difference to be considered is (xI + ∆q – xJ). 
As a result, there are up to 2×nx – 1 different values of |xI + ∆q – xJ| = |(ix_I – 

ix_J)×∆x + ∆q| (with ix_I, ix_J ∈ {1, 2, …, nx}), in place of the nx different 

values for the [IC ij ] matrices. Consequently, the number of independent values 
of ICs in these matrices is increased by a maximum factor of (2×nx – 1) / nx. For 
the most general case, all the necessary longitudinal position differences are 

covered with the sets (xI + ∆q – x1) and (xI + ∆q – xnx), i.e. with ix_I ∈ {1, 2, …, 

nx} and ix_J ∈ {1, nx}. If ∆q is a multiple of ∆x/2 special cases arise. If ∆q = 

∆x/2, the number of different |xI + ∆q – xJ| values in the mesh is reduced to nx, 

and they are covered with the set (xI + ∆q – x1), i.e. with ix_I ∈ {1, 2, …, nx} 
and ix_J = 1, as for the [IC ij ] matrices. If ∆q = ∆x, the number of different |xI + 
∆q – xJ| values is nx + 1. Also in this case a similar set of data as for the [IC ij ] 
matrices may suffice for the [IC' ij ] matrices, provided a complete row of 
elements is left out of the contact either at the trailing or at the leading edge of 
the mesh.  

The [IC' ij ] matrices have the same block structure as with ∆q = 0, in the planar 
as well as in the non-planar case. As a difference, now each block is a Toeplitz 
matrix with 2nx – 1 independent values in the most general case. With ∆q = ∆x 
the diagonals are shifted upwards one position, so that e.g. for the direct ICii-s 
the dominant diagonal is the first one (above the main), instead of the main.  
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A complete [IC' ij ] matrix for a non-planar contact surface may be constructed 

with a code similar to that in Figure 4.20, changing the definition of the col  

and row  variables to form each Toeplitz block as shown in the code of Figure 

4.21. Thus, lines 9 and 10 of the code in Figure 4.20 are substituted with the 
code in Figure 4.21. The if–else block of the code in this figure covers the cases 
of ∆q ≠ 0 for the [IC' ij ] matrices (line 11), and that of ∆q = 0 for the [IC ij ] 
matrices (line 13). The arrays a_IC_a  and a_IC_b  used in this code are 

similar to the array a_IC  introduced before for the [IC ij ] matrices. Each of 

these arrays have NE×ns elements, and contain the ICs associated to xJ positions 
in the first and last longitudinal positions of the mesh respectively. Element (e, 

is) of array a_IC_a  is equal to IC'(e)i(e1_is)j, i.e. it gives the influence of the first 

AP of the isth lateral position of the mesh (the position indices of which are (ix, 
is) = (1, is)) over the position occupied by the eth AP at the previous time instant 

t'. Element (e, is) of array a_IC_b  is equal to IC'(e)i(enx_is)j, i.e. it gives the 

influence of the last AP of the isth lateral position of the mesh (the position 
indices of which are (ix, is) = (nx, is)) over the position occupied by the eth AP at 
the previous time instant t'.  
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col = a_IC_a(1+(isr-1)*nx:isr*nx, isc);  
if dq  
   row = a_IC_b(isr*nx:-1:1+(isr-1)*nx, isc);  
else  
   row = kx*col;  
end  
row(1) = col(1);   

Figure 4.21. MATLAB code to define the elements of each Toeplitz block of a 
complete [IC' ij ] matrix for a curved contact surface. The complete [IC' ij ] matrix is built 
up with such Toeplitz blocks according to the code of Figure 4.20.  

If the ICs are approached analytically as explained in §5.2.3, arrays a_IC_a  

and a_IC_b  may be formed using vectors v_IC_a  and v_IC_b  in the most 

general case. These are similar to the vector v_IC  introduced before for the 

[IC ij ] matrices, each with the NE half-space ICs over the positions occupied at t' 

by all APs. v_IC_a  has the ICs of the first AP of the mesh over all APs, and 

v_IC_b  has the ICs of the last AP of the mesh over all APs.  
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For ∆q = i×∆x with integer i, arrays a_IC_a  and a_IC_b  may be formed from 

array a_IC  with the ICs for the current time instant t as shown in the code of 

Figure 4.22, reducing the number of longitudinal positions of the mesh in i. 

That is, if array a_IC  contains the ICs for a mesh with nx longitudinal 

positions, arrays a_IC_a  and a_IC_b  that may be formed from it contain the 

ICs for a mesh with (nx – i) longitudinal positions at most.  
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rq = dq/dx;  
i_rq = round(rq);  
ai_rq = abs(i_rq);  
c_IC = reshape(a_IC, nx, ns, ns);  
nx = nx - ai_rq;  
NE = nx * ns;  
if dq > 0  
   a_IC_a = reshape(c_IC(1+ai_rq:end, :, :), NE, ns );  
   c_IC_b = zeros(nx, ns, ns);  
   c_IC_b(end-ai_rq:end, :, :) = ...  
              c_IC(1:ai_rq+1, :, :);  
   if ai_rq < nx-1.1  
      c_IC_b(end-ai_rq-1:-1:1, :, :) = ...  
        c_IC(2:nx-ai_rq, :, :) * kx;  
   end  
   a_IC_b = reshape(c_IC_b, NE, ns);  
elseif dq < 0  
   a_IC_b = kx * ...  
         reshape(c_IC(end:-1:1+ai_rq, :, :), NE, ns );  
   c_IC_a = zeros(nx, ns, ns);  
   c_IC_a(1:1+ai_rq, :, :) = ...  
      c_IC(1+ai_rq:-1:1, :, :) * kx;  
   if ai_rq < nx-1.1  
      c_IC_a(2+ai_rq:end, :, :) = ...  
           c_IC(2:nx-ai_rq, :, :);  
   end  
   a_IC_a = reshape(c_IC_a, NE, ns);  
end  

Figure 4.22. MATLAB code to form a_IC_a  and a_IC_b  arrays for code in Figure 
4.21 from array a_IC  with ICs for current time instant, for the case that ∆q is a 
multiple of ∆x.  

Both the cases of ∆q > 0 and ∆q < 0 are considered in the code of Figure 4.22. 

The constant kx  used here is 1 for IC symmetric in x and –1 for ICs anti-
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symmetric in x, as defined in line 2 of the code of Figure 4.20 from the value fx 
of the particular IC considered (cf. Table 4.1).   

4.1.1.4.2 Convolution with contact stresses  

Surface elastic displacements have to be computed many times during the 
solution of contact problems with the exact contact theory. This may be done 
directly in the space domain following Eq. (2.100), multiplying the complete 
(NE×NE) [IC ij ] matrices with the vectors of contact stresses {p j}. But making 
use of the similarities of ICs in a regular mesh, it may be done more efficiently 
in the Fourier domain, using fast Fourier transforms (FFTs), and without 
building the complete [IC ij ] matrices, as explained here. FFT algorithms are 
widely described in the literature, see e.g. [Brigham 1988], [Chu 2000] and §12 
of [Press 2007]. Multilevel methods are also used to perform efficiently this 
type of matrix multiplications. These are not covered here. [Brandt 1990], 
[Polonsky 1999], [Polonsky 2000], [Venner 2000] and [Sainsot 2011] are some 
references on the subject.  

The discrete convolution theorem states that given two discrete signals {r}  and 
{s}, one of them periodic with period N, and the other of finite duration N, the 

discrete Fourier transform (DFT) of their cyclic convolution {r} ⊗{s} is equal to 
the element-wise product of the DFT of each of them. This is expressed in Eq. 
(4.26). The signal {r}  may be identified as the response or echo function, and 
the signal {s} as the excitation or input function. rk is the effect produced on 
channel J+k by the unit input of channel J, sJ.  

 { } { }( ) { }( ) { }( )srsr DFTDFTDFT ⋅=⊗  (4.26) 

The cyclic convolution of the two described discrete signals is defined in Eq. 
(4.27), where N1 and N are integers. The I subindex in the equation refers to the 
point for which the output of the convolution (surface displacements in the case 
of contact analyses) is calculated. Due to the periodicity of {s}, sk = sk+iN for any 

integer i. Convolutions are commutative, so that {r} ⊗{s} = {s}⊗{r} . The cost of 
computing the convolution according to Eq. (4.27) in N points I (e.g. I = 1, …, 
N) is O(N2). The cost of computing it in the Fourier domain using the discrete 
convolution theorem (Eq. (4.26)) is reduced to O(N logN), including the cost of 
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the transformation and inverse transformation operations, thanks to the 
efficiency of FFT algorithms.  
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Cyclic convolutions arise in the analysis of domains with circular geometry, e.g. 
bolted flanges and rolling bearings. But this is not the case of the linear 
convolutions appearing in concentrated contact problems as that expressed by 
Eq. (2.100). In contact problems, {r}  is identified as the ICs, and {s} as the 
contact surface stresses. {s} is not periodic, but extends over a finite duration 
NE, according to the chosen discretization of the PCS with NE elements. Still, 
the discrete convolution theorem may be applied to perform the convolution 
expressed in Eq. (2.100) in the Fourier domain exactly, with a proper 
arrangement of {r}  and {s}. This is explained e.g. in §13.1 of [Press 2007] for 
1D signals, and Liu [Liu 2000] illustrates the application of this process to 2D 
integrals of ICs with contact surface stresses in concentrated contact problems.  

This process is demonstrated now for a 1D (line) contact computed on a PCS 
meshed with N APs, which are numbered in order from 1 to N, located in an x 
axis. Note that here 1 is chosen as the starting index, in order to keep 
consistency with previously shown equations and code excerpts. In contrast, 0 is 
often chosen as the starting index in the related literature. The starting point are 
the vectors {IC}  and {p}  given in space domain, containing each one the 
necessary values of ICs and contact stresses in a given direction (subindices x, s, 
n indicating directions are omitted for clarity). pk is the contact stress in AP k. 
ICk is the influence of the load on AP in position J over the AP in position J + k. 
In a 1D mesh with N APs, k ranges from –N + 1 to N – 1 to complete the vector 
{IC} . Therefore {IC}  has 2N – 1 values, IC–N+1, …, IC0, …, ICN–1, 
corresponding to the 2N – 1 different relative distances (sign included) between 
APs in the mesh. Not always all of these ICs are independent: as discussed 
previously, in the most general case of ICs for the previous time instant t', the 
2N – 1 ICs are all independent; on the other hand, in the case of ICs for the 
current time instant t, there are just N independent values, and the remaining N 
– 1 are symmetric/anti-symmetric, among other cases.  

Firstly, vectors {IC}  and {p}  are arranged according to the following steps:  
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- Extend {p}  from N to M elements, with M ≥ 2N – 1, filling with zeros 

the new elements of {p}  (zero padding). That is, set pk = 0 for k = N + 1, 
…, M in the extended vector.  

In choosing the new dimension M, it is advisable to round up the 
minimum necessary 2N – 1 to the nearest integer power of 2, for greater 
efficiency in subsequent FFT operations.  

- Arrange {IC}  in wraparound order, and extend it if necessary to M 
elements. This means values IC0, …, ICN–1 are placed in the first N 
positions of the vector, and values IC–N+1, …, IC–1 in positions M – N + 
2, …, M (in the stated order). Any additional elements between the first 
N and the last N – 1 are left as zero.  

In the case of the ICs for the current time instant t, the (anti)symmetry 
relations ICM–k+1 = kx ICk+1 may be applied for k = 1, …, N – 1. Here M–
k+1 and k+1 subindices denote position indices in the vector, starting 

from 1. The constant kx has the same meaning as kx  in the codes of 

Figure 4.20 and Figure 4.21, i.e. it is 1 for ICs which are symmetric and 
–1 for ICs which are anti-symmetric in the considered axis.  

The described arrangement of vectors {IC}  and {p}  is illustrated in Figure 4.23. 
In the figure, the particular cases of symmetric/antisymmetric ICs are 
represented, but this is not necessary to apply the discrete convolution theorem. 
It is neither necessary to have symmetry in the duration of the response function 
{IC} , with N elements at the beginning of the vector and N – 1 at the end, 
though this happens to be the case in the problem at hand.  
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Figure 4.23. Extension and zero padding of vectors {IC}  and {p}  in a line contact 
analysis, so that the cyclic convolution in the extended domain is equivalent to the 
linear convolution in the original domain. Adapted from Figure 13.1.4 of [Press 2007].  

The cyclic convolution of {IC}  and {p}  in the extended domain of length M 
may be written according to Eq. (4.28), where H is the Heaviside unit step 

function, H(x) = 0 for x ≤ 0 and H(x) = 1 for x > 0. It may be easily verified that 

the portion of this cyclic convolution located within the original domain of 
length N is equal to the desired linear convolution in the original domain, 
expressed by Eq. (4.29).  
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Firstly, the summation in the right hand side of Eq. (4.28) may be restricted to k 
= 1, …, N, since pk = 0 for k = N + 1, …, M as a result of zero padding. 
Secondly, the element in the position I – k + (M+1) H(k – I) of the extended 
vector {IC}  in Eq. (4.28) is equal to ICI–k for I, k = 1, …, N; I – k = –N + 1, …, 
N – 1, as a result of the wraparound arrangement of the extended vector {IC} . 
The subindexed IC element in the right hand side of Eq. (4.28) refers to the 
element of the extended vector {IC}  located in the position indicated by the 
index. Conversely, the subindex of the IC element in the right hand side of Eq. 
(4.29) is not referred to a position in a vector of ICs, but rather identifies an IC 
itself, ICI–k denoting the effect of the load on AP k over AP I. Note that the 
cyclic convolution of Eq. (4.28) is done with the same extended {IC}  vector for 
all I elements, while the linear convolution of Eq. (4.29) is done for a different 
set of ICs for each I element. E.g., given N = 10, the set of ICs used for I = 2 is 
{ IC1, IC0, …, IC–8}; and for I = 6 is {IC5, IC4, …, IC–4}.  

The differences between the intended linear convolution and the cyclic 
convolution are sketched in Figure 4.23. On the one hand, an incorrect influence 
is carried from the pressures applied in positions M – N + 2, …, M at the right 
side of the extended domain to positions 1,…, N – 1 of the original domain, as if 
those pressures were applied in the left side adjacent to the original domain. But 
as those pressures are zero due to zero padding, this incorrect influence is also 
zero. This is shown with the green marks in the figure. On the other hand, an 
incorrect influence is carried from the pressures applied in positions 1, …, N – 1 
in the original domain to positions M – N + 2, …, M at the right side of the 
extended domain, as if those pressures were applied in the right side adjacent to 
the extended domain (marked as non-existent in the figure). This is shown with 
the purple marks in the figure. These are non-zero pressures which effectively 
carry an incorrect influence to the right side of the extended domain. The APs 
closer to the right end receive more incorrect influences: the AP at position M is 
influenced by N – 1 non-existent pressures, the AP at position M – 1 by N – 2, 
and so on. The incorrect influences do not reach the original domain, so this is 
solved by just disregarding the results of the convolution outside the original 
domain, which are not needed for the solution of the contact problem.  
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In conclusion, by extending {IC}  and {p}  to M ≥ 2N – 1 elements, zero padding 

{p}  and arranging {IC}  in wraparound order, the contributions of the non-
existent “wraparound” pressures from both ends of the extended domain are 
suppressed in the original (target) domain, thereby achieving the equivalence 
between the cyclic convolution and the linear convolution in the original 
domain.  

Once {IC}  and {p}  are properly arranged, the surface elastic displacements {u}  
in the original domain are calculated by efficient computation of the 

convolution {IC} ⊗{p} , applying the discrete convolution theorem:  

- The individual DFTs of the extended {IC}  and {p}  are calculated, 
DFT({IC} ) and DFT({p} ).  

- The convolution is done in the Fourier domain by element-wise 
multiplication of DFT({IC} ) and DFT({p} ). The result is DFT({u} ).  

- {u}  is calculated by performing the inverse DFT of the vector obtained 
in the previous step. Only the elements of {u}  within the original 
domain (numbered from 1 to N) are retained as the sought surface 
displacements.  

The described process is analogous for multiple dimensions. In the case of 3D 
planar contact, the convolutions of the ICs with the contact stresses, as well as 
the FFT operations, are 2D. Figure 4.24 depicts the preparation of the arrays of 
ICs [m_IC]  and contact stresses [m_p], including the padding with zeros of 
[m_p] and the wraparound arrangement of [m_IC] . These arrays have a similar 
meaning to the vectors {IC}  and {p}  seen for the 1D case. The original [m_IC]  
and [m_p] arrays have nx×ns elements, coinciding with the dimension of the 

contact mesh. [m_IC]  is a reshaped version of the vector v_IC  used in the 

codes of Figure 4.16 and Figure 4.19. The original portion of each array is 
enclosed inside a dashed red rectangle in Figure 4.24. The figure shows only the 
subindices of the elements of the extended [m_IC]  and [m_p] matrices. The 
subindices for [m_IC]  in Figure 4.24a denote position differences in directions 
(x, s) of the mesh. A subindex (kx, ks) makes reference to the IC of an AP 
located at position (ix, is) over another located at position (ix+kx, is+ks). On the 
other hand, the subindices for [m_p] in Figure 4.24b denote the absolute 
position in the contact mesh (starting with index 1).  
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(a) [m_IC] .  

 

(b) [m_p].  

Figure 4.24. Preparation of the arrays of ICs and contact stresses in 3D contact for the 
efficient computation of their 2D linear convolution in the Fourier domain.  
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[m_IC]  and [m_p] are extended to dimension Mx×Ms, with Mx ≥ 2nx – 1 and Ms 

≥ 2ns – 1. Normally both Mx, Ms << nx×ns = NE. So, apart from the 

computational efficiency, the convolution of ICs with contact stresses in the 
Fourier domain provides an advantage regarding memory usage, because the 
construction of the complete NE×NE [IC ij ] matrix is avoided, using [m_IC]  in 
its place. The row and column shadowed in grey in Figure 4.24a represents the 
intermediate rows and/or columns which may be present if Ms > 2ns – 1 and/or 
Mx > 2nx – 1. The values of those possible additional rows and columns are left 
as zero in the extended [m_IC]  and [m_p] matrices.  

In the general non-planar case, the similarity of the ICs in the s direction of the 
mesh is lost, i.e. the ICs between two lateral positions sI and sJ no longer depend 
only on the difference sI – sJ. Therefore, the linear convolution of ICs with 
contact stresses may be performed only in longitudinal direction. The above 
described process for the planar case is adapted according to the code in Figure 
4.25 for the non-planar case.  

1 
2 
3 
4 
5 
6 
7 
8 

 
9 

10 
11 
12 
13 
14 

Mx = 2^ceil(log2(2*nx-1));  
m_p = [m_p; zeros(Mx-nx, ns)];  
ft_m_p = fft(m_p);  
m_u = zeros(nx, ns);  
for i = 1:ns  
   m_IC = zeros(Mx, ns);  
   m_IC(1:nx, :) = a_IC_a(1+(i-1)*nx:i*nx, :);  
   m_IC(Mx-nx+2:end, :) = ...  
        a_IC_b(1+(i-1)*nx:i*nx-1, :);  
   ft_m_IC = fft(m_IC);  
   ft_m_u = ft_m_IC .* ft_m_p;  
   ft_v_u = sum(ft_m_u, 2);  
   v_u = ifft(ft_v_u);  
   m_u(:, i) = v_u(1:nx);  
end % for i = 1:ns  

Figure 4.25. MATLAB code to perform the linear convolution of the contact stresses 
and ICs in the Fourier domain in non-planar contact.  

The process is explained next, with reference to the code of Figure 4.25:  

- Line 1: Mx is calculated as the minimum integer power of 2 greater than 
2nx – 1.  



204 4.1 Conformal Exact Contact Theory — CECT 

- Line 2: [m_p] is expanded only in longitudinal direction, with zero 
padding in longitudinal positions ix = nx+1, …, Mx. The expanded 
[m_p] has Mx×ns elements. Thus it has rows 1 to ns in the s direction of 
the matrix [m_p] shown in Figure 4.24b.  

- Line 3: The 1D DFT of [m_p] is calculated, column-wise. Thus, 

column j of the result ft_m_p  contains the 1D DFT of the contact 

stress vector in longitudinal strip j of the contact mesh.  

- Line 4: The matrix [m_u] of the sought displacements in the contact 
mesh is initialized.  

- for  loop for each strip i  of the contact mesh (i  = 1, …, ns):  

o Lines 6–8: [m_IC]  is defined, expanded only in longitudinal 
direction. This matrix, with Mx×ns elements as [m_p], contains 
the ICs of all the strips of the contact mesh over the current 

strip i . A given column j of the matrix contains the ICs of strip 

j over strip i .  

The ordering in the x subindex of the matrix is the same as that 
shown in Figure 4.24a for the planar case. So, the first (x) 
subindex of each element of the matrix is the same as in Figure 
4.24a. Note that the matrices are represented in Figure 4.24 
with the x axis horizontal, while the x direction runs through the 
first dimension, i.e. column-wise, in the matrices of the code of 
Figure 4.25.  

The second (s) subindex of each element of the matrix is i  – j 

in each column j of the matrix. But this subindex may not be 
interpreted in the same general sense as explained for matrix 
[m_IC]  in Figure 4.24a. In this case, as there are not 

similarities in the lateral direction, ICs with the same (i  – j) s 

subindex are in general different for different i  or j values.  

o Line 9: The 1D DFT of [m_IC]  is calculated, column-wise. The 

result is stored in matrix ft_m_IC .  
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o Line 10: The DFT of the 1D circular convolution in the 
longitudinal direction of each column of [m_IC]  with each 
column of [m_p] is computed as the element-wise 

multiplication of ft_m_IC  and ft_m_p . Column j of the 

resulting matrix ft_m_u  contains the 1D DFT of the 

contribution of the loads on strip j to the displacements of strip 

i .  

o Line 11: The 1D DFT of the total displacements of strip i  is 

computed as the sum of the contributions of all strips j of the 

contact mesh, summing the ns columns of ft_m_u  in a single 

vector ft_v_u  of Mx elements.  

o Line 12: ft_v_u  is transformed to the space domain 

computing its inverse DFT. The result is stored in vector v_u , 

of Mx elements.  

o Line 13: The first nx elements of v_u  are retrieved as the 

displacements of strip i .  

Evidently, this process for the general non-planar case, calculating the 
influences between each pair of contact strips with 1D convolutions, is 
computationally more expensive than the process for the planar case, where a 
single 2D convolution is carried out for the whole contact mesh.  

In the case of 2D non-planar contact problems with one AP in x direction, it is 
not possible to take advantage of convolutions in the Fourier domain to 
compute the surface elastic displacements. In this case, complete [IC ij ] matrices 
are formed (of dimension NE×NE = ns×ns), and the surface displacements are 
computed by multiplication of [IC ij ] with the contact stresses. In the current 
implementation of the program, this is done also with nx > 1 for some of the 
ICs. Table 4.2 indicates which IC matrix is formed in each case, for the current 
and previous time instants, t and t'. Some details on the use of the complete 
[IC ij ] matrices in the normal and tangential solvers of this implementation are 
given in §4.1.4.  
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 Table 4.2. IC matrices formed in the current implementation of CECT for nx > 1.  

IC_ t t' 
xx, ss, xs, sx [ICij] [m_IC'] 
nn [ICij] None 
xn, sn [m_IC] [m_IC'] 
nx, ns [m_IC] None 

4.1.1.4.3 Change of contact mesh during analysis  

In a transient contact analysis with changing load, whether planar or not, it may 
be interesting to change the contact mesh in different steps during the analysis, 
adjusting it to the contact patch size at different stages of the analysis. Here it is 
described how this is implemented in CECT. Currently, the capability of mesh 
change during the analysis is implemented only for ICs calculated analytically 
in CECT.  

Figure 4.26 shows contact meshes for two consecutive steps k – 1 and k in a 
contact analysis. The elements and nodes of each mesh are shown, the latter 
marked with circles. The mesh of step k – 1 is drawn in red, and the mesh of 
step k in black and grey.  

  

Figure 4.26. Change of contact mesh in transient contact analysis. 

It is necessary to calculate the tangential elastic displacements on the APs of the 

mesh of step k, u'τ, τ ∈ {x, s}, due to the contact stresses acting in the previous 
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step k – 1, which have been computed in a different mesh. If the mesh of step k 
is circumscribed in the mesh of step k – 1, this may be done directly 
interpolating the (discrete) displacement field obtained in the mesh of step k – 1 
at the APs of the mesh of step k. But this is not possible if the mesh of step k is 
not circumscribed in the mesh of step k – 1, as in the example shown in Figure 
4.26. The procedure followed to cover this case is based on mapping the contact 
stresses obtained in step k – 1 into the mesh of step k, as described next.  

- The mesh of step k is extended as necessary to circumscribe the mesh of 
step k – 1. In the example shown in the figure, this is accomplished by 
adding one column of elements in the right part of the mesh (i.e. in the 
positive x direction). The added elements and nodes are labelled as “k, 
exp.”. The original (not extended) mesh of step k is labelled as “k”.  

The numbers of new columns of elements to be added in the negative 
and positive x directions, nadd,x– and nadd,x+, are computed according to 
Eqs. (4.30) and (4.31). Xinf and Xsup are the lower and upper boundaries 
of the mesh in the global X axis, and the terms inside parenthesis (k) 

and (k – 1) indicate the step to which each value is referred.   indicates 

rounding towards +∞. Similar equations are used for the expansion of 
the mesh in the s direction.  

 ( ) ( ) ( )






 ∆






 −−=− kxkXkXn xadd 1;0max infinf,
 (4.30) 

 ( ) ( ) ( )






 ∆






 −−=+ kxkXkXn xadd supsup, 1;0max  (4.31) 

The number of APs of the original mesh of step k is nx×ns = NE, and the 
number of elements of the extended mesh is nx,e×ns,e = NEe.  

The indices of the APs of the original mesh of step k in the extended 
mesh are collected in a vector ie_e. The number of these elements is 
evidently NE.  

- The contact stresses of step k – 1 are interpolated in the APs of the 

extended mesh of step k, forming matrices [p j,o,e], j ∈ {x, s, n} (the _e 

suffix refers to the extended mesh, and the _o suffix to quantities of 
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step k – 1). Stepwise (‘nearest’) interpolation is done with uniform 
elements, and bilinear with bilinear elements. 0 values of stress in the 
[pj,o.e] matrices are assumed for the APs outside the domain of the mesh 
of step k – 1.  

- According to the previously obtained [p j,o,e] matrices, the APs of the 
extended mesh of step k that were in contact in step k – 1 are 
determined as those where the normal pressure pn,o,e is non-zero. The 
number of these elements is NEC_o_e, and their indices in the extended 
mesh of step k are collected in a vector iec_o_e. This is used in the 
construction of complete [IC' ij ] matrices in the case of contact problems 
with one AP in x direction.  

- The arrays of ICs for the previous time instant t' (t' corresponding to 
step k – 1) are generated for the APs of the extended mesh of step k. 

Arrays a_IC_a  and a_IC_b , of dimension NEe×ns,e, are generated 

from vectors of half-space ICs v_IC_a  and v_IC_b , of length NEe, 

see §4.1.1.4.1.  

The sought tangential displacements u'τ are calculated by convolutions 
of the ICs with matrices [p j,o,e], all magnitudes being expressed in the 
extended mesh of step k. The necessary values corresponding to the NE 
APs of the original mesh of step k, with indices ie_e, are retained for 
use in the tangential problem solution.  

The relevant ICs for this calculation are IC'xx, IC'xs, IC'sx, IC'ss, IC'xn and 
IC'sn. Since the normal contact problem is instantaneous in linear 
elastostatics, previous normal displacements u'n are not needed, and ICs 

IC'nj, j ∈ {x, s, n}, are not computed.  

In the case of 2D contact problems with one AP in x direction, complete 

[IC' ij ] matrices are constructed instead of arrays a_IC_a  and a_IC_b . 

The displacements u'τ are calculated multiplying matrices [IC' ij ] with 

matrices [p j,o,e]. Each [IC' ij ] matrix, of dimension NE×NEC_o_e, is 

formed from vectors v_IC_a  and v_IC_b . The rows of the matrix 

correspond to the APs of the original mesh of step k, and the columns to 
the APs of the extended mesh of step k that were in contact in step k – 
1.  
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With this procedure, the calculation of ICs between elements of different 
meshes is avoided. This would be expensive, since in general there are not 
similarities in the relative positions between elements belonging to different 
meshes (with different element sizes) neither in longitudinal nor in lateral 
direction. So it would be necessary to compute complete NE×NEC_o [IC' ij ] 
matrices (NEC_o being the number of elements in contact in the mesh of step k 
– 1), and calculate the displacements by direct multiplication of [IC' ij ] with the 
contact stresses of step k – 1.  

In addition to the calculation of u'τ, the following quantities initially computed 

in the mesh of step k – 1 are mapped into the mesh of step k, for use in the 
solution of the tangential contact problem:  

- The elements that were in slip in step k – 1, to be fed as initialization 
values for the tangential contact solver. The array of the binary flag 
[slip/no slip] obtained in step k – 1 is interpolated in the APs of the 
extended mesh of step k, by means of stepwise interpolation. The state 
of adhesion is initially assigned for the APs outside the domain of the 
mesh of step k – 1.  

- In the case of static or shift (not rolling) contact problems, the rigid 
shifts of step k – 1, by means of spline interpolation.  

4.1.2 Input and output files  

In this section the structure, contents and format of the CECT input and output 
files is explained.  

4.1.2.1 Input files  

The input for CECT is provided in text files. The following format conventions 
apply to all input files:  

- Any number of blank and comment lines may be introduced, anywhere 
in the file. Comments may also be added in the right part of any line. 
The beginning of comments is marked with ‘%’.  

- Numbers may be introduced in any format commonly admitted. For 
example, 1 may be introduced as 1, 1., 1.0, 1E+0, … In the case of the 
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main input file, equivalent operations may be also introduced, e.g. 2/2 
in place of 1.  

- The different elements of a line may be separated with spaces (one or 
several consecutive) or commas.  

- Any number of blank spaces may be introduced at the beginning and at 
the end of a line.  

- String type data must be enclosed in single quotes ('…').  

The different input files are explained in the following subsections. The units in 
which each input parameter must be provided are specified where applicable. 

4.1.2.1.1 Main input file  

Multiple analysis cases may be specified in a single input file. Each case refers 
to a time step in a transient contact analysis (shift or rolling), or to a steady 
rolling contact analysis. The main input file has a first section with common 
data for all analysis cases, followed by the data for each case. The input 
variables are organized in a defined order throughout the file, according to 
Table 4.3 and Table 4.4. The lines from which input data is read by CECT are 
numbered in the left side of these tables. Some of the items are mandatory (must 
be always supplied) and others are optional. This is indicated in these tables in 
the following way:  

- In bold: mandatory items.  

- Within brackets ([]): optional items.  

- Otherwise: items that are mandatory for particular values of previous 
items.  

Next each variable of the input file is explained.  
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Common data  

Table 4.3. Structure of CECT main input file I: common data for all analysis cases.  

 1 2 3 4 5 6 7 8 

1 Ncases c_o_n [ics]      

2 E_w E_r nu_w nu_r 
[mat_ 
 dgt] 

   

 % If mat_dgt = 1:  

3 G_inf 
r_inf_  
G 

exp1_ 
G 

exp2_ 
G 

nu_ 
inf 

r_inf_  
nu 

exp1_ 
nu 

exp2_ 
nu 

4 K_inf 
r_inf_  
K 

exp1_ 
K 

exp2_ 
K 

[dum] [dum] [dum] [dum] 

 % If mat_dgt = 2:  

3 
E_w_ 
inf 

r_inf_  
E_w 

exp1_ 
E_w 

exp2_ 
E_w 

nu_w_ 
inf 

r_inf_  
nu_w 

exp1_ 
nu_w 

exp2_ 
nu_w 

4 
E_r_ 
inf 

r_inf_  
E_r 

exp1_ 
E_r 

exp2_ 
E_r 

nu_r_ 
inf 

r_inf_  
nu_r 

exp1_ 
nu_r 

exp2_ 
nu_r 

- 1st line.  

Ncases : total number of cases to be calculated. The input file must 

contain data at least for this number of cases. If there are data for more 
cases, the data for the excess cases is not used.  

c_o_n : bit indicating if the mesh will use uniform or bilinear elements 

(see §5.1). The APs are the centres (c) of the elements in the case of 
the uniform elements, and the corners or nodes (n) in the case of the 
bilinear elements. Possible values:  

 0: uniform elements.  

 1: bilinear elements.  

ics  (optional): digit or string defining the influence coefficients (ICs) for 

the generally non-planar contacting bodies. The same definition is 
used for all the ICs. Default: 0. Options:  

0: surface orientation-based analytical approximation, according to 
Eq. (5.72) in §5.2.3.1.  

1: half-space ICs. The curvilinear s coordinate is used in place of the 
lateral y coordinate of a plane contact surface.  
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2: similar to option 0, adding a factor of |π – |α|| / π (with the angle α 

defined in Figure 5.28) in the term Asn or Ans of the approximated 
ICs Bss, Bnn, Bsn and Bns, cf. §5.2.3.3.  

3: B̂  variant of surface orientation-based analytical approximation, 
according to Eq. (5.77) in §5.2.3.4.  

4: similar to option 3, adding the |π – |α|| / π factor as in option 2.  

i + 10: similar to i, with i ∈ {1, 2, 3, 4}, except for ICxn and ICnx, 

which are equated to the half-space Axn and Anx, respectively.  

20, 21, 22: 2D cylindrical ICs, cf. §5.2.1.1. The different options 
specify different support and loading conditions for the cylinder. 
The cavity is single-loaded in all cases.  

o 20: central restriction, and unique load on cylinder (cf. Figure 
2.22b).  

o 21: uniformly distributed restriction in whole section, and 
unique load on cylinder (cf. Fig. Figure 2.22c).  

o 22: two diametrically opposed loads on cylinder (cf. Figure 
2.22a).  

The following limitations apply for ics  = 20–22:  

o c_o_n  = 0  

o mat_dgt  = 0  

o nx  = 1  

o tdgt  = 0  

o The wheel and rail profiles (prf_w  and prf_r ) must be 

defined with 3 or more points. The profiles should be circular or 
close to circular for correct results.  

If any of these conditions is not fulfilled, CECT prints an error 
message and aborts execution.  
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Character string: root, without extension, of the names of the files 

containing the IC arrays (a_IC , cf. §4.1.1.4) calculated 

numerically beforehand. CECT will search for 9 txt files with this 

root and suffixes _Bij, with i, j ∈ {x, n, s}. The structure of these 
files is explained in §4.1.2.1.2.  

- 2nd line. Elastic properties of materials.  

E_w, E_r : Young’s modulus of wheel (w) and rail (r). [GPa]  

nu_w, nu_r : coefficient of Poisson of wheel (w) and rail (r). [-]  

mat_dgt  (optional): digit specifying space variation model for effective 

elastic properties of contacting bodies. Cf. §5.2.3.5. Default: 0. 
Options:  

0: uniform elastic properties.  

1: spatially variable elastic properties, specified for the combined 
elastic properties of both bodies.  

2: spatially variable elastic properties, specified for the individual 
elastic properties of each body.  

- 3rd and 4th lines (optional; must be provided if mat_dgt  = 1 or 2). 

Parameters defining the space variations of the elastic properties of the 

contacting bodies. If mat_dgt  = 1, the numbers in columns 5 to 8 of 

line 4 are not used. Designating generically the different elastic properties 

as f ; f  ∈ {G, nu , K, E_r , nu_r , E_w, nu_w}, and with reference to 

Eqs. (5.78) and (5.79):  

f_inf : effective elastic property f  far from the loaded zone. Equal to f ∞ 

in Eq. (5.78). Units: GPa for G and E* , dimensionless for nu*  and K.  

r_inf_f : limit distance for the variation function of the elastic property 

f . Beyond this distance from the loaded zone, f  does not change and 

is equal to f_inf . Equal to r∞,f in Eq. (5.79). [mm]  

exp1_f , exp2_f : exponents for the variation function of f . Equal to mf 

and nf in Eq. (5.78), respectively. [-]  
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Data for each case  

Table 4.4. Structure of CECT main input file II: particular data for each analysis case.  

 1 2 3 4 5 6 7 8 9 

0 CASE c r       
 % Geometry  

1 gdgt prf_w  prf_r  
mtd_ 
intrp  

incl_
r 

r_nom
_w 

[r_nom
_r] 

hw_ws hw_tr  

2 
despl
_y 

despl
_z 

psi phi      

 % Mesh  
3 mdgt x_0 s_0 x_inf  x_sup  s_inf  s_sup  nx ns 
 % Normal  

4 ndgt d_o_N dir_d 
r_d_ 
ini 

     

 % Tangential  

5 tdgt dq 
sftx_
o_vel 

omega f 
[bit_  
 l6] 

   

6 x_v y_v z_v 
dir_ 
vx 

dir_ 
vy 

dir_ 
vz 

dir_ 
omx 

dir_ 
omy 

dir_ 
omz 

- 0th line. The beginning of the specification of a case is marked with the 

keyword CASE. This line is completed with the following two 

parameters:  

c : integer number of the current case. It must follow the progression 1, 2, 

3, … for all the cases given in the input file. This number is used as 
part of the output .mat and .prf file names for the case, if they are 
created.  

r : bit specifying if .mat output file (cf. §4.1.2.2.1) with detailed results 

for the current case is to be printed (1) or not (0).  

- 1st line. Geometry.  

gdgt : bit specifying if new geometry is specified for the current case (1) 

or not (0). If gdgt  = 0, no more data must be provided in the 1st and 

2nd lines, and the data of the last case in which gdgt  was 1 is used. If 

gdgt  = 1, the rest of the parameters of the 1st and 2nd lines must be 

specified, except for r_nom_r  which may optionally be omitted. 

gdgt  must be 1 in the 1st case. 
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Note: no transition is carried out between the data of different cases. If 
new data are introduced in a case, it is assumed that they apply to 
the whole PCS, and the data from the previous case are 
“forgotten”.  

prf_w , prf_r : character strings specifying the names of the text files 

defining the wheel (w) and rail (r) profiles, file extension included. Cf. 
§4.1.2.1.3.  

Note: Attention: currently the program is not prepared to deal with 

changes in the input file for the rail profile prf_r  during transient 

analyses, either shift (tdgt  = 0) or rolling (tdgt  = 1). The reason 

is that the possible changes in the absolute spatial position that may 

take place in the PCS, even when its origin in lateral direction s_0  

is not changed (note that s_0  is measured over the input rail 

profile), would not be correctly taken into account when the input 
rail profile is changed.  

mtd_intrp : string specifying the interpolation method for the 

extraction of points from the given wheel and rail profiles, for the 
calculation of the normal undeformed distances. Options (see 
documentation of MATLAB interp1 and interp1q functions): [], 

'nearest' , 'linear' , 'spline' , 'pchip' , 'cubic' , 

'v5cubic' . If an empty value is given ([]), the quick linear 

interpolation method of MATLAB is used (interp1q). The 'spline'  

method is recommended for best results.  

incl_r : tangent of the rail inclination (cant) angle. Positive towards the 

track centre. The rail profile defined in the prf_r  file is rotated the 

angle defined with this parameter with respect to the (0, 0) point of the 
profile. The rail inclination angle is in the [–90º, 90º] range.  

r_nom_w : nominal rolling radius of the wheel. It must be always 

positive; that is, the wheel is always convex in the rolling direction. 

Rroll(yL) = r_nom_w  – zL(yL); being Rroll(yL) the local rolling radius of 

the wheel at a lateral position yL in its local coordinate system (cf. 
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Figure 4.1a), and zL(yL) the vertical coordinate of the wheel profile in 
the same lateral position. [mm]  

r_nom_r  (optional): nominal rolling radius of the rail or raceway. 

Positive if convex and negative if concave in rolling direction. If 
omitted or 0, a straight rail is assumed. [mm]  

Note: the revolution axis of the rail is parallel to the global Y axis. 

Vertically it is located at Z = –r_nom_r . Longitudinally it is 

located at x = 0 of the local contact coordinate system. incl_r  

does not have any effect over its orientation.  

hw_ws: half-width of the wheelset. It is the lateral distance between the 

centre of the wheelset and the origin of the local wheel profile 
coordinate system. [mm]  

hw_tr : half-width of the track. It is the lateral distance between the 

centreline of the track and the origin of the local rail profile coordinate 

system, which is positioned at (hw_tr , 0) in the global YZ plane. 

[mm]  

- 2nd line. Geometry; definition of the wheel position and orientation. 
Before the displacements and rotations defined in this line, the origin of 

the local wheel profile coordinate system is located at (0, hw_ws, 0), and 

the centre of the wheelset at (0, 0, r_nom_w), in the global {X, Y, Z} 

coordinate system.  

despl_y, despl_z : displacements of the wheelset centre in the YZ 

plane. After these displacements, the centre of the wheelset is located 

at (0, despl_y , r_nom_w  + despl_z ) in the global coordinate 

system. [mm]  

psi : wheelset yaw angle. Cf. ψ in Figure 4.1b. [rad]  

phi : wheelset roll angle. Cf. φ in Figure 4.1b. [rad]  

Note: the parameters of this line are intended to define the position of the 
wheel in the undeformed, unloaded configuration. The wheel should 
be positioned so that it is just touching the rail in the undeformed 
configuration. For this purpose, the geometric contact search problem 
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is solved as outlined in §4.2.3.1. The final wheel position may change 
from the position defined in this line as a result of the specification of 
the normal and tangential problems. The most directly related 

parameters are d_o_N, dir_d , and sftx_o_vel  (the latter mostly 

for tdgt  = 0).  

- 3rd line. Mesh; definition of the domain of the PCS and its discretization.  

mdgt : bit specifying if a new domain and discretization of the PCS is 

defined (1) or not (0). If mdgt  = 0, no more data must be provided in 

this line, and the data of the last case in which mdgt  was 1 is used. If 

mdgt  = 1, the rest of the parameters of this line must be specified. 

mdgt  must be 1 in the 1st case.  

x_0 : position in global X axis of the origin of the local contact coordinate 

system. [mm]  

s_0 : lateral curvilinear coordinate on the rail profile of the origin of the 

local contact coordinate system. It is measured from the first point 

defining the rail profile given in the prf_r  file. The point defined 

with x_0  and s_0  should normally be at or around the position of the 

initial or geometric contact point. [mm]  

x_inf , x_sup : limits of the domain of the PCS (between element 

borders) in the local contact x axis. [mm]  

s_inf , s_sup : limits of the domain of the PCS (between element 

borders) in the local contact s axis. [mm]  

nx , ns : number of elements of the mesh of the PCS, in the longitudinal 

and lateral directions, respectively. The number of APs in each 

direction is equal to nx  + c_o_n  and ns  + c_o_n .  

- 4th line. Normal contact.  

ndgt : digit specifying the type of input d_o_N and output N_o_d (cf. 

§4.1.2.2.1). Options: 0, 1.  

d_o_N:  

If ndgt  = 0: approach, d. [mm]  
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If ndgt  = 1: normal load, N. [kN]  

Note: the normal load is the integral of the normal pressures in the 
contact area, which do not have a common direction. Its direction 

is not known beforehand. If ndgt  = 1, what is given as input 

through d_o_N is the projection of the normal load on the 

direction defined by dir_d , and not its magnitude. On the other 

hand, if ndgt  = 0, the output N_o_d is the magnitude of the 

normal load.  

dir_d : angle defining the direction of the approach. It is measured from 

the Z axis, counter clock-wise while looking towards the negative X 
direction (cf. the αd angle in Figure 4.12). A value of 0 stands for the 
vertical descending direction. [rad]  

r_d_ini : factor multiplying the approach, to obtain the initial guess of 

the set of elements in contact in the first iteration of the normal 
solution. More details are given in §4.1.4.1. Recommended value 
around 0.55. [-]  

- 5th line. Tangential contact.  

tdgt : digit specifying the type of tangential problem. Options:  

0: shift, static.  

1: transient rolling.  

2: steady rolling.  

dq : in rolling problems, longitudinal distance travelled between the 

previous and the current time instants. It should have a value around 

the longitudinal dimension of the elements of the contact mesh dx . 

[mm]  

Note 1: in shift problems (tdgt  = 0) this parameter is not used, and 

the program sets dq  = 0.  

Note 2: in steady rolling problems (tdgt  = 2), CECT tries to use the 

SteadyGS tangential solver (cf. §4.1.4.2). For this purpose, dq 



4 Numerical analysis of wheel–rail conformal contact 219 

must be equal to dx . If it is not, CECT prints a warning message 

and changes the value of dq  to dx .  

Note 3: if the rail has curvature in the longitudinal direction (i.e. if 

r_nom_r  ≠ 0), dq  will in general be variable in the s direction. In 

this case, the dq  value specified as input is assigned to the s = 0 

position. More details are given in §7.2.2.1.2.  

sftx_o_vel : if tdgt  = 0, imposed rigid shift on the wheel in x 

direction [mm]. If tdgt  = 1 or 2, velocity of the wheelset [m/s].  

Note 1: it is assumed that the rail has no rigid body motion.  

Note 2 (applicable for tdgt  = 0): this input represents the imposed 

displacement (shift) to the wheel in the longitudinal direction. In 

the YZ plane, the imposed displacement is determined by d_o_N 

and dir_d . The imposed displacements have to be introduced 

with respect to the initial undeformed position at the beginning of 

the first case of a consecutive series of cases with tdgt  = 0.  

Note 3 (applicable for tdgt  = 1 or 2): this input is the velocity of a 

point of the wheel. If bit_l6  = 0, it is assumed that its direction 

is along positive x, and that it corresponds to a point in the 
wheelset axis; i.e., it is the travelling velocity of the wheelset. If 

bit_l6  = 1, this velocity corresponds to the point of the wheelset 

located in the position (x_v , y_v , z_v ) in the local coordinate 

system of the wheelset {xw, yw, zw}, and its direction is defined by 

the cosine directors (dir_vx , dir_vy , dir_vz ).  

omega:  

If tdgt  = 0: pivoting rotation imposed to the wheel with respect to 

the rail (total with respect to the initial undeformed position of the 

first case of a consecutive series of cases with tdgt  = 0). It is 

equal to Ωs in Eqs. (4.23) and (4.24). The direction of the rotation 

axis is defined with dir_d , the positive sense pointing into the 

wheel. The pivoting point is the origin of the local contact 

coordinate system, defined with x_0  and s_0 . [rad]  
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If tdgt  = 1 or 2: rotation velocity of the wheelset. If bit_l6  = 0, it 

is assumed to be aligned with the wheelset axis, i.e. with the yw 
axis. If bit_l6 = 1, its direction is defined by the cosine directors 

(dir_omx , dir_omy , dir_omz ). [rad/s]  

f : coefficient of friction. A number or a string is expected. If a number is 

input, this is the uniform value of the coefficient of friction in the 
whole PCS. If a string is input, it is the name of a file (extension 
included) in which spatially variable coefficients of friction may be 
defined. The format of this file is specified in 4.1.2.1.4. [-]  

bit_l6  (optional): bit indicating if a 6th line is provided in the case. 

Default: 0.  

- 6th line. Tangential contact; specification of general velocity and rotation 

velocity vectors. This line must be provided only if bit_l6  = 1, and is 

taken into account only in rolling problems (tdgt  = 1 or 2).  

x_v , y_v , z_v : coordinates in the wheelset local coordinate system {xw, 

yw, zw} of the point for which the velocity (sftx_o_vel ) is given. 

[mm]  

dir_vx , dir_vy , dir_vz : cosine directors, in the global coordinate 

system, of the velocity vector of the wheelset point located at 

(dir_vx , dir_vy , dir_vz ) in the wheelset local coordinate 

system {xw, yw, zw}. [-]  

dir_omx , dir_omy , dir_omz : cosine directors, in the global 

coordinate system, of the rotation velocity vector of the wheel. [-]  

4.1.2.1.2 Files of externally calculated ICs  

These files contain a_IC  arrays of ICs calculated outside CECT. These ICs 

may be calculated numerically with FE models. The process of such calculation 

is detailed in §5.2.2. 9 of these files (one for each ICij, with i, j ∈ {x, n, s}) must 

be supplied when the ics  parameter in the main input file is a character string. 

The structure of these files is as follows.  
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- 7 first lines (comment lines excluded): head lines with the data 
specified in Table 4.5 and Table 4.6. The first two lines are padded with 

zeros to the right summing up a total of ns  numbers in each line (this 

padding is not shown in Table 4.5).  

Note 1: generally, these lines have to be equal in the 9 IC files. 
Otherwise, CECT will print an error message and abort execution. As 
an exception, differences between the Young’s and shear moduli are 
permitted, if the coefficients of Poisson and the K constant are equal to 
the data provided in the main input file. If there are differences in the 
Young’s and shear moduli, CECT will scale the imported ICs to 
correspond to the elastic constants given in the main input file.  

Note 2: the data of the mesh of the PCS given in these IC files (dx , nx , 

x_sup  – x_inf , s_inf , s_sup , ns , ds , c_o_n ) must match with 

the data of the mesh of the PCS given in the main input file (c_o_n , 

x_inf , x_sup , s_inf , s_sup , nx , ns ). Otherwise, CECT will print 

an error message and abort execution.  

Table 4.5. Structure of the first two head lines of the files containing the externally 
calculated IC arrays for CECT input.  

 1 2 3 4 5 6 7 8 9 

 % Elastic constants of the bodies:  
1 E_r nu_r G_r E_w nu_w G_w G nu K 

 % Data of the objective mesh:  

2 
x_sup – 
x_inf 

nx dx s_inf s_sup ns ds c_o_n cor 
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Table 4.6. Structure of the 3rd to 7th head lines of the files containing the externally 
calculated IC arrays for CECT input.  

 1 2 ... ns 

 % s [mm]  
3 s_1 s_2 ... s_ns 

 % yr [mm]  
4 yr_1 yr_2 ... yr_ns 

 % zr [mm]  
5 zr_1 zr_2 ... zr_ns 

 % yw [mm]  
6 yw_1 yw_2 ... yw_ns 

 % zw [mm]  
7 zw_1 zw_2 ... zw_ns 

o 1st line: elastic constants of the bodies. E: Young’s modulus 

[GPa]; nu : coefficient of Poisson [-]; G: shear modulus 

(redundant) [GPa]. Subindex r  for the rail and w for the wheel. 

The last G, nu  and K are the combined elastic constants of the 

two bodies.  

o 2nd line: data of the discretization:  

� x_sup – x_inf : longitudinal dimension of the 

mesh (between leading and trailing element borders). 
[mm] 

� nx , ns : number of elements in x and s directions.  

� dx , ds : dimension of each element in x and s 

directions. [mm]  

� s_inf , s_sup : lower and upper limits of the mesh in 

s direction (between element borders). [mm]  

� c_o_n : bit to indicate if the elements are uniform (0) 

or bilinear (1).  

� cor : bit to indicate if the ICs of the file need to be 

corrected (0) or if they are ready for use in CECT as 
they are (1). In the former case, the correction for the 
ICs at the loaded and surrounding elements described 
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in Figure 5.24 (§5.2.2) is applied inside CECT to the 
imported ICs.  

o 3rd line: local contact curvilinear s coordinate at each lateral 
position of the mesh. [mm]  

o 4th to 7th lines: local contact y and z Cartesian coordinates of the 
rail and wheel cross-sections in the plane perpendicular to the x 
direction, at each lateral position of the mesh. [mm]  

Note: a profile is calculated as a weighted interpolation of the 
wheel and rail cross-sections defined in these lines, in a similar 
way as it is done in the calculation process of the normal 
undeformed distances with the wheel and rail geometry data 
provided in the main input file (cf. §4.1.1.2). CECT prints a 
warning message in the .log file if the difference between the 
coordinates of the profile calculated with this data and the 

profile of the PCS is larger than 1 µm.  

- Rest: a_IC  array, with dimension ((nx+c_o_n)*(ns+c_o_n), 

ns+c_o_n) . Its structure is as indicated in §4.1.1.4. [mm/GPa]  

4.1.2.1.3 Files of wheel and rail profiles  

The files specified with the prf_w  and prf_r  strings in the main input file 

contain the definition of the wheel (w) and rail (r) profiles. These are specified 
as a set of points in the {yL, zL} coordinate system of each profile. The structure 
of the files containing wheel and rail profiles is identical. It is illustrated in 
Table 4.7.  

Table 4.7. Structure of input file with a wheel or rail profile.  

 1 2 

 % Profile description (optional)  
1 yL,1 zL,1 
2 yL,2 zL,2 

...  ... ... 
Np yL,Np zL,Np 

Each file contains a set of data lines. Each data line contains two numbers, 
which are the (yL,i, zL,i) coordinates of a point i of the profile defined in the file. 
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Any number of Np points may be chosen to discretize the profile; the number of 

data lines in the file is equal to the number of these points. The coordinates 
must be given in mm. The following notes apply:  

- The points in the file have to be given in consecutive order.  

- Neither the yL nor the zL coordinates need be monotonically increasing 
or decreasing; there may be vertical sections for example.  

- The direction of the local contact s coordinate is determined based on 
the order of the given points of the profiles. This order must be 
consistent in the wheel and rail profiles, taking into account the relative 
position of both profiles in the contact analysis, so that the direction of 
the s coordinate in both profiles matches. Figure 4.27 shows examples 
of definition of rail and wheel profiles defined with sets of points Pi and 
Qi, with consistent and inconsistent order.  

 

 

 

(a) Consistent order.   (b) Inconsistent order.  

Figure 4.27. Examples of pairs of rail and wheel profiles with consistent and 
inconsistent order.  

- The input profiles have to be smooth, with no measurement noise and 
roughness, so that the s curvilinear coordinate over both profiles 
represents similar distances in the sn plane. In this way, it is possible to 
define homologous points as those with the same (x, s) coordinates, as 
explained in §4.1.1.1. Figure 4.9b illustrates a case in which this 
condition is not fulfilled.  

- For non-zero hw_ws and hw_tr  values, the profiles correspond to a 

right wheel/rail pair as viewed looking towards the negative X direction, 
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according to the positioning of the profiles in the global coordinate 

system explained under the definition of hw_tr  and the 2nd line with 

the geometry data for each case in §4.1.2.1.1.  

4.1.2.1.4 File with coefficients of friction  

Spatially variable coefficients of friction may be defined by means of this file. 
The coefficients of friction defined here depend only on the position; they do 
not depend on other field variables like slip velocities for example.  

The file contains a numerical matrix that represents the field of the coefficient 
of friction. The data are given in a rectangular mesh, with coordinates Xa, Sa:  

- Xa: longitudinal coordinate, parallel to the global X axis. Its origin is the 
position of the wheelset centre in the first case of the input file. It is 
different from the global X coordinate in that its origin does not move 
along the track with the wheelset centre; it remains in the same point. In 
this way, variable coefficients of friction may be readily defined for a 
length of track in the file. This is useful for a set of transient rolling 
cases for example, in which the wheelset travels over a track spot with 
different friction conditions.  

- Sa: lateral curvilinear coordinate on the rail profile, with origin in the 

first point of the rail profile given in the prf_r  file of each case.  

The matrix of coefficients of friction given in the file is rectangular, with 

(NS+1)×(NX+1) elements. Its structure is depicted in Table 4.8. NX and NS are 

the number of points discretizing the field of the coefficient of friction in Xa and 
Sa directions, in a grid of rectangular elements with sides aligned with these 
directions.  

Table 4.8. Structure of input file with spatially variable coefficients of friction.  

 1 2 3 ... NX+1 

 % Description (optional) 
1 0 Xa_1 Xa_2 ... Xa_NX 
2 Sa_1 f_1_1 f_2_1 ... f_NX_1 
3 Sa_2 f_1_2 f_2_2 ... f_NX_2 

...  ... ... ... ... ... 
NS+1 Sa_NS f_1_NS f_2_NS ... f_NX_NS  
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The first row of the matrix contains the Xa coordinates of the mesh, starting in 
the second column; and the first column contains the Sa coordinates, starting in 
the second row. The coordinates have to be given in consecutive increasing 
order in each direction, and they may be not uniformly spaced. So, the elements 
of the mesh may have different sizes. The coordinates are given in mm, and the 

coefficient of friction is non-dimensional. Position (i+1 , j+1 ) of the matrix 

contains the coefficient of friction at point with coordinates (Xa_j , Sa_i ). The 

value in the position (1, 1) of the matrix is not used, but this position has to be 
filled with some numerical value. The field described by this matrix is mapped 
into the APs of the mesh of the PCS of each analysis case by means of bilinear 
interpolation in CECT. Zero coefficient of friction is assumed for the APs 
falling outside the domain of this matrix.  

4.1.2.2 Output files  

The output from CECT is printed to different text files. All the files begin with 
three or four similar header lines, which include the name of the main input file, 
the CECT version, and the date/time of creation of the output file.  

The root name of all the output files is the same as that of the main input file. In 
addition, the names of the .mat and .prf files, which have data for a single case, 
have the number of the case included in %04d format (i.e. zero-padded to the 
left to four digits). For example, the name of the .mat file for the 12th case of a 

main input file with name file_name.txt  would be 

file_name.0012.mat . If upon creation of a new file, CECT detects that a 

file with the same name as the one initially assigned to the new file already 
exists in the current working directory (CWD), the current system date is 
appended to the name of the new file in yyyy-mm-dd format. Continuing with 
the previous example, the name of the new .mat file would have the following 

structure: file_name.yyyy-mm-dd.0012.mat . If a file with this latter 

name already exists as well in the CWD, CECT overwrites it when creating the 
new file.  

These are the sign conventions of the returned output quantities:  

- The resultant forces and stresses are those acting on the wheel.  
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- Displacement, velocity and elastic deformation differences are defined 
as those of the wheel with respect to the rail.  

In addition to the printed output, the following output variables are returned to 
the MATLAB workspace:  

- sol : structure including solution arrays with data for each AP of the 

PCS, and some mesh and input data. The following scalars and vectors 
are included:  

o c_o_n : cf. §4.1.2.1.1.  

o mx, ms: number of APs of the PCS in x and s directions, 

respectively. mi  = ni  + c_o_n , with i  ∈ {x , s}.  

o x , s : vectors with the coordinates of the APs of the mesh in x 

and s directions, with mx and ms elements, respectively. [mm]  

o tdgt : cf. §4.1.2.1.1.  

o veloc :  

� If tdgt  = 0: sftx_o_vel  (cf. §4.1.2.1.1). [mm]  

� If tdgt  = 1 or 2: contact velocity over rail surface, Vc,r 

(cf. §7.2.2.1.2). For a straight rail, equal to 

sftx_o_vel  if bit_l6  = 0 (cf. §4.1.2.1.1). [m/s]  

Note: presently, only positive contact velocities are 
admitted (i.e. contact advancing along positive x axis).  

The following arrays complete the structure. The dimensions of each 

array are mx×ms. Position (ix, is) of each array contains the data for the 

AP located in the ixth longitudinal position and isth lateral position of the 
mesh.  

o eldiv : integer specifying the state. Outside contact (0), inside 

contact and sticking (1), or inside contact and sliding (2). [-]  

o h: undeformed distance, before application of approach. [mm]  

o mu: coefficient of friction. [-]  



228 4.1 Conformal Exact Contact Theory — CECT 

o pn , px , ps : contact stresses in n, x and s directions. [MPa]  

o un : normal elastic displacement differences due to normal 

pressures. [mm]  

o ux , us : tangential elastic displacement differences in x and s 

directions due to all contact stresses (normal and tangential). As 
an exception, if the ConvexGS solver (cf. §4.1.4.2) is used with 

tdgt  = 2, what is output are the increments between the 

previous and the current time instant of these tangential elastic 
displacement differences. [mm]  

o srel :  

� If tdgt  = 0:  

• If sftx_o_vel  = 0: absolute slipped distance 

between previous and current time instants. 
[mm]  

• If sftx_o_vel  ≠ 0: absolute slipped distance 

between previous and current time instants 

divided by sftx_o_vel . [-]  

� If tdgt  = 1 or 2: non-dimensional relative slip velocity 

vrel. vrel = ||v|| / Vc, being v the slip velocity and Vc the 
contact velocity. [-]  

o wx, ws:  

� If tdgt  = 0: rigid shift increments between previous 

and current time instants in x and s directions. [mm]  

� If tdgt  = 1 or 2: rigid slip velocities in x and s 

directions. [m/s]  

- prf_pcs : matrix with the (Y, Z) coordinates of the profile of the PCS, 

with dimensions ms×2. The first column of the matrix contains the Y 

coordinates, and second column the Z coordinates. Row is of the matrix 
corresponds to the isth lateral position of the mesh. [mm]  
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- ang_prf_pcs : angles of the profile of the PCS in the YZ plane. 

Column vector with ms elements. The angles are in the range (–π, π), 

and are measured counter clock-wise while looking towards the 
negative X direction, with origin in the positive Y axis. An angle of 0 
corresponds to a horizontal tangent in which the wheel is above the rail, 

and an angle of –π or π to a horizontal tangent in which the wheel is 

below the rail. [rad]  

- N_o_d: complementary to d_o_N input, cf. §4.1.2.1.1:  

o If ndgt  = 0: normal load, N. It is the magnitude of the resultant 

of the normal pressures acting on the PCS. [kN] 

o If ndgt  = 1: approach, d. [mm]  

- dir_N : angle of N in the YZ plane. It is in the range (–π, π), and is 

measured positive clock-wise while looking towards the negative X 
direction, with origin in the positive Z axis (like the α angle shown in 
Figure 4.7). [rad]  

- Fx : signed resultant force along the x axis due to the contact tangential 

stresses. [kN]  

- Flat : modulus of the resultant force in the YZ plane due to the contact 

tangential stresses. [kN]  

- dir_Flat : angle of Flat  in the YZ plane. It is in the range (–π, π), 

and is measured positive counter clock-wise while looking towards the 
negative X direction, with origin in the positive Y axis. [rad]  

- Msp: modulus of the resultant moment due to the contact tangential 

stresses about the origin of the local contact coordinate system. [N.m]  

- dir_Msp : cosine directors of Msp in the global coordinate system. 

Vector with 3 components. [-]  

The sol , prf_pcs  and ang_prf_pcs  variables are returned only for the 

last analyzed case of the main input file. The rest of the variables are returned as 
arrays, including the values for each of the analyzed cases.  
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4.1.2.2.1 .mat file  

This is the main output file from CECT. Its structure is based on that of the .mat 
output file from CONTACT [CONTACT UG 2013]. It consists of three head 
lines that include aggregated results for the whole PCS and some of the input 
variables, and the main body which contains the solution arrays with AP data. 

Each .mat file contains data for a single case, and it is created only when input r  

(cf. line 0 in Table 4.4) = 1 for the case, and a converged solution has been 
achieved for the case.  

The structure of the head lines is shown in Table 4.9 and Table 4.10.  

Table 4.9. Structure of the head lines of the .mat output file. First 6 columns.  

 1 2 3 4 5  6 

1 mx ms xl sl dx ds 
2 c_o_n gdgt ndgt mdgt tdgt G_w 
3 veloc - N_o_d dir_N Fx Flat 

Table 4.10. Structure of the head lines of the .mat output file. Last 7 columns.  

 7 8 9 10 11 12 13 

1 chi dq idgt mat_dgt fmt r_nom_r  -  
2 G_r nu_w  nu_r d_o_N dir_d - -  
3 dir_Flat  Msp dir_Msp_1  dir_Msp_2  dir_Msp_3  - -  

A commented line precedes each head line, with the identifiers of the data 
included in the line and their units. The content of each head line is described 
next. Most of the variables have been already introduced in §4.1.2.1.1 and 
beginning of §4.1.2.2. Here only not previously introduced variables are 
described. Zeros are printed in the positions without identifier in Table 4.9 and 
Table 4.10.  

- 1st  line. It includes the contact mesh description.  

o xl , sl : (x, s) coordinates of the 1st AP of the contact mesh. For 

c_o_n  = 1, they are equal to inputs x_inf  and s_inf , 

respectively (cf. §4.1.2.1.1). [mm]  

o dx , ds : size of each element of the mesh in x and s directions. 

[mm]  

o chi : currently not used. 0 is printed.  
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o idgt : ics , if ics  is integer. Else, –1.  

o fmt : integer specifying the format of the .mat file. For use by 

loader function.  

- 2nd line. It includes some input digits and elastic constants. Cf. 
§4.1.2.1.1.  

- 3rd line. It includes resultant forces and moments.  

The AP variables listed in Table 4.11 are printed in the main body of the file. 

Only results for the NEC APs falling inside the contact (eldiv  = 1 or 2) are 

printed. Each line contains the data corresponding to one AP. The variable I  

printed in the 1st column is the index of the AP (1D numbering, according to 
Figure 2.19). The rest of the data is as explained at the beginning of §4.1.2.2 

under the solution arrays of the sol  output variable (except that the arrays in 

sol  include the data for all APs of the mesh, not only for the ones inside the 

contact). A commented line preceding the main body is printed as well, with the 
identifier and units of the data in each column.  

Table 4.11. Content of the main body of the .mat output file.  

 1 2 3 4 5  6 7  8 9 10 11 12 13 
1 

...  
NEC 

I eldiv h  mu pn px  ps  un ux  us  srel wx  ws 

4.1.2.2.2 .prf file  

The .prf file contains the profile of the PCS. The printed data lines are arranged 

in a ms×3 matrix. The first two columns correspond to the prf_pcs  variable, 

and the 3rd column to the ang_prf_pcs  variable; both of them described at 

the beginning of §4.1.2.2.  

CECT prints a new .prf file for a case when the following two conditions are 
met, and in addition a converged solution has been achieved for the case:  

- Input bit r  = 1 in the current case AND  

- gdgt  = 1 OR mdgt  = 1 (i.e. either the geometry or the mesh have 

changed) in any case since the one after the previous .prf file was 
printed to the current one.  
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4.1.2.2.3 .log file  

This file is created as soon as the main input file is read, and is printed along the 
execution of the cases included in the main input file. A single .log file is 
created for a main input file, including information of the execution of all cases 
read from the input file.  

Information messages related to the main steps of the execution of each case are 
printed in the file, together with elapsed times. In addition, different warning 
and error messages are printed.  

Information about the following steps is included:  

- Loading of data from the main input file.  

- Calculation of normal undeformed distances.  

- Calculation of IC matrices (except for tangential contact).  

- Normal problem solution. Information for each NORM iteration: 
number of elements 1) in contact, 2) changing from exterior to interior 
and 3) changing from interior to exterior.  

- Calculation of IC matrix of current time instant for tangential contact.  

- Tangential problem solution. Information for each TANG iteration: 
number of elements in slip, error norms (slip, adhesion limit, slip 
direction) and corresponding tolerances.  

- Panagiotopoulos loop. Information for each iteration: error norms and 
corresponding tolerances.  

- Completion of each case. Number of APs in contact, slipping and total.  

In addition, the head lines of the .mat file (cf. Table 4.9 and Table 4.10) are 

printed at the end of each analysis case, regardless of the value of r .  

These are some of the cases in which error messages are printed. CECT aborts 
execution when an error message is printed.  

- Some necessary input file not found.  

- Incorrect type/value of some input parameter.  
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- ics  = 20 to 22 (cylindrical ICs) used with some non-allowed c_o_n , 

mat_dgt , nx  or tdgt  value, or with incorrectly defined wheel and 

rail profiles (cf. §4.1.2.1.1).  

- Data of input files of ICs not matching data in main input file or in 
other input files of ICs (cf. §4.1.2.1.2).  

- Incorrect definition of wheel or rail profile (with a single point; with 
two adjacent coincident points).  

- Some AP out of the range of the wheel or rail profile in s direction.  

- Negative contact velocity.  

These are some of the cases in which warning messages are printed. CECT 
continues running when a warning message is printed, and a solution may be 
achieved, but the solution may not be valid and it may be necessary to revise 
some input data.  

- dq  not equal to dx  (if tdgt  = 2).  

- Shear modulus in input file of ICs different from shear modulus in main 
input file.  

- bit_l6  = 1 with tdgt  = 0. Data of 6th line of the case (cf. Table 4.4) 

is ignored.  

- Wheel or rail profile far from circular. This is applicable for ics  = 20 

to 22 (cylindrical ICs), and is printed when the difference between the 
calculated maximum and minimum profile radii exceeds 3% of the 
calculated best-fit profile radius.  

- Absolute value of minimum normal undeformed distance bigger than 1 

µm.  

- Distance between the profiles of the PCS calculated with the input 
wheel and rail profiles and with the data in the files of ICs bigger than 1 

µm.  

- Maximum number of NORM iterations reached.  

- Not possible to use SteadyGS tangential solver because there is some 
element inside contact in the trailing edge of the mesh of the PCS.  
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- Within the tangential solver:  

o Maximum number of Newton-Raphson iterations reached in the 
solution of the non-linear equations for an AP in slip.  

o Maximum number of outer iterations reached.  

- Maximum number of iterations reached in Panagiotopoulos loop. 

Restarting with slight increase in d_o_N.  

- Panagiotopoulos process appears to be diverging. Restarting loop with 
slow method.  

- Tangential problem not converged in current Panagiotopoulos iteration. 

Restarting with slight increase in d_o_N.  

- Contact border reached some border of the domain of PCS. Consider if 
it is necessary to extend the domain. This is applicable if the number of 
APs in the concerned mesh direction is greater than 2.  

4.1.3 Program structure  

Table 4.12 outlines the program execution pipeline, with the main steps of the 
solution process of the contact problem. Related sections of this chapter are also 
shown for some of the steps.  
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Table 4.12. Main steps of the solution process of the contact problem in CECT.  

No. Step Reference Notes 
1 Read input  §4.1.2.1.1   
2 Load a_IC  arrays from file  §4.1.2.1.2 (1) 
 For each case c :   

3  
With cylindrical ICs, calculate transverse profile 
radii  

 (2) 

4  Construct rectangular contact mesh §4.1.1.1 (3) 
5  Calculate h §4.1.1.2 (4) 
6  Load µ data  §4.1.2.1.4 (5) 

7  Calculate ICij-s  
§4.1.1.4, 

§5 
(6) 

8  Update W'  §4.1.1.3 (7) 

9  
If mdgt (c )=1: map results of case c–1  to current 
mesh  

§4.1.1.4.3 (8) 

10  Calculate IC'ij-s  §4.1.1.4.1 (9) 
11  Calculate ut'

*  §4.1.4.2 (10) 
12  Calculate Vc, ∆t, {∆q}  §7.2.2.1.2 (11) 
13  Panagiotopoulos loop  §4.1.4.3  
14  Organize output arrays and print output files  §4.1.2.2  
15  Update values of previous instant for next case   (12) 

Notes to Table 4.12:  

(1) Applicable if ics  is a string.  

(2) Applicable for ics  = 20 to 22, in each case in which gdgt(c)  > 0.9. 

The transverse profile radii are used to calculate the ICs. These are the 
main steps followed to calculate the transverse radius of a profile given by 
a set of (yL, zL) points:  

a. Calculate the intersection c0 between the normals to the lines la, lb 
formed by the first and mid point, and by the mid and last point of 
the profile, passing through the mid-point of each line. This is a 
first estimate of the centre of the circumference cir which best 
approaches the given profile. If both normals are parallel (which 
should not happen for a circular profile), the mid point of the line 
joining the mid points of lines la, lb is calculated instead.  

b. Calculate the centre c of cir. This is done searching for c as the 
centre of a polar coordinate system, with respect to which the 
difference between the maximum and the minimum radial 
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coordinates Ri of the points i of the given profile is minimized. This 
is a two-variable unconstrained minimization problem, where the 
two variables are the coordinates of c. The previously calculated c0 
point is used as starting point.  

c. The radius R of cir is calculated as the value with which the rms of 
the differences (R – Ri) is minimized.  

(3) If mdgt(c)  > 0.9.  

(4) If mdgt(c)  > 0.9 OR gdgt(c)  > 0.9. min(|hI|) should be near zero. If 

min(|hI|) > 1 µm, a warning message is printed.  

(5) If f  is a string.  

(6) If mdgt(c)  > 0.9 OR gdgt(c)  > 0.9 OR c  < 1.1. If ics  is not a string, 

v_IC  vectors are calculated for each IC. Matrices of ICxn, ICsn, ICnx, ICns 

and ICnn ICs are formed.  

(7) The total rigid shift of the previous time instant, W' , is assigned the value 

of W of the previous case (or zero if c=1). This is relevant only if 

tdgt(c) =0. The quantities passed to the tangential solver are ∆W = W 

– W'  if tdgt(c) =0, and ∆W = w ∆t otherwise.  

(8) If mdgt(c)  > 0.9 AND c  > 1.1.  

(9) Calculation of IC'ij-s.  

a. If mdgt(c)<0.1 AND (NOT(dq(c)*tdgt(c) = 

dq(c_o)*tdgt(c_o)) OR mdgt(c_o)>0.9 OR 

tdgt(c_o)>1.9) AND tdgt(c)<1.9 : calculation of IC'xx, IC'xs, 

IC'sx, IC'ss, IC'xn and IC'sn ICs.  

b. If tdgt(c)>1.9 AND (mdgt(c)>0.9 OR gdgt(c)>0.9 

OR NOT(dq(c)=dq(c_o)) OR tdgt(c_o)<1.9 OR 

c<1.1) : calculation of IC'xn and IC'sn ICs.  

Note: c_o  = max(c–1 , 1).  

(10) Calculation of elastic displacements of previous instant ut'
* in all the APs 

of the current mesh. If tdgt(c)<1.9 AND c>1.1 . Otherwise, ut'
* = 

0 in this step, and a different ut'
*, with the influence of only the current 
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normal pressures (cf. Table 4.13), is calculated inside the Panagiotopoulos 
loop.  

(11) ∆t = 1 if tdgt(c) <0.1, and ∆t = dq  / Vc,o otherwise. Vc,o is the contact 

velocity Vc at s=0. The calculation of {∆q} is relevant for large rolling 

radii variations in the contact patch, cf. §7.2.2.1.2. If |r_nom_r| > 

0 AND tdgt(c)=1 AND c>1.1 : u'* Ii values are interpolated at 

points xI + ∆qI (s), from available values at points xI + ∆qo, as explained in 
§7.2.2.1.2.  

(12) Previous instant quantities for the next case (c+1 ) are updated with the 

values computed in the current case c . The updated previous instant 

values include the contact stresses, the C set, the slopes (α angles) of the 

PCS, and the longitudinal and lateral mesh positions.  

4.1.4 Solution algorithms  

In this section, some details are given about the contact solution algorithms 
currently implemented in CECT. Most of the material discussed here applies 
similarly to planar and to non-planar contact, but some of the equations have to 
be adapted for non-planar contact.  

4.1.4.1 Normal contact  

As described in §1.2, the solution of the normal problem consists in finding the 
set of APs in contact C and the distribution of normal pressures pIn in it, subject 
to the normal contact restrictions:  

 pIn > 0, eI = 0 if I ∈ C  (4.32) 

 pIn = 0, eI > 0 if I ∉ C  (4.33) 

The normal contact solver is roughly the same as the NORM solver described in 
[Kalker 2001]. Figure 4.28 shows the main steps of the algorithm.  
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Figure 4.28. Flowchart of normal solver. 

Each step of the algorithm is detailed next.  

1. Initialization of the set of APs in contact.  

A good initialization serves to reduce the number of iterations and hence 
the time required to solve the normal problem. The following situations 
are distinguished:  

- c > 1.1 AND ite_p < 1.1 AND gdgt(c) = 0 AND 

mdgt(c) = 0 AND ndgt(c) = ndgt(c_o) AND 

d_o_N(c) = d_o_N(c_o) AND dir_d(c) = dir_d(c_o)  

This condition states that the first normal contact solution is being 

carried out for the current case c  (i.e. the first Panagiotopoulos 

iteration ite_p  is running, cf. §4.1.4.3), and the geometry, mesh and 

input data for the normal problem in the current case c  are the same as 

in the previous case c_o .  

In this situation, the starting C set is defined as the final C set obtained 
in the previous case.  

- ite_p > 1.1  
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The starting C set is defined as the one obtained in the previous 

Panagiotopoulos iteration ite_p–1 .  

- Otherwise:  

The overlap between the undeformed contacting surfaces is 
calculated, considering a scaled approach dsc. That is, an undeformed 

distance h'I,sc is calculated for each of the I ∈ {1, NE} APs, in a virtual 
reference configuration with an approach dsc, as:  

 h'I,sc = h*
I – (dsc + h*

I,m / cos(∆αI,m-d)) cos(∆αI-d)  (4.34) 

h*
I is the modified initial undeformed distance that incorporates the 

effect of the tangential stresses; cf. Figure 2.21. The tangential stresses 

are prescribed (fixed) during the solution of the normal problem. ∆αI-d 
is as defined in Figure 4.12, cf. also Eq. (4.15). The term h*

I,m / 

cos(∆αI,m-d) accompanying dsc in Eq. (4.34) is meant to cancel out the 

minimum h*
I, h

*
I,m, if it is non-zero. The AP with h*

I = h*
I,m is located 

at coordinates (x, s) = (xI,m, sI,m), and ∆αI,m-d is the particular value of 

∆αI-d for that AP.  

The starting C set is formed with the APs in which h'I,sc is negative, 
i.e. where there is overlap. This is a simplified approach of the virtual 
penetration methods for the normal contact problem discussed in 
§2.1.1.  

dsc is calculated as follows:  

o If ndgt  = 0:  

dsc = r_d_ini  × d_o_N  

o If ndgt  = 1:  

The quadratic undeformed distance which best fits h*
I – h*

I,m 

cos(∆αI-I,m) is calculated, being ∆αI-I,m the α angle between each 

AP I and the AP with h*
I = h*

I,m. For this purpose, the profiles of h*
I 

– h*
I,m cos(∆αI-I,m) in x and s directions, and passing through (xIm, 

sIm), are extracted, and the best fitting parabola for each profile is 
found. The coefficients of these parabolas are designated as AHz 
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and BHz. A quadratic undeformed distance h*
Hz is assumed with 

these coefficients, as:  

h*
Hz = AHz (x – xI,m)2 + BHz (s – sI,m)2  

The Hertzian approach dHz corresponding to h*
Hz, the input load 

d_o_N, and material elastic constants is calculated. Finally, the 

scaled approach dsc is calculated as:  

dsc = r_d_ini  × dHz  

2. Set-up and solution of the system of equations for APs in C.  

The system of equations is based on the condition eI = 0 for the NEC APs 
I in C (I = c1, c2, …, cNEC), cf. Eq. (4.32). This leads to the following 
equation for each AP in C:  

  ( ) 0cos* =+∆−= − IndIII udhe α  (4.35) 

uIn is calculated summing up the contributions of all elements in C, as in 
planar contact:  

  ∑=
∈CCCCJ

JnInJnIn pICu  (4.36) 

Eqs. (4.35) and (4.36) define NEC linear equations. The unknowns in 
these equations are the NEC pJn pressures for all APs in C, and also the 

approach d for ndgt  = 1. Thus the resulting system of equations, of the 

form [A]{x}  = {b} , changes slightly for each ndgt  value:  

- For ndgt  = 0:  

The matrix [A]  of the system is the part of the complete [IC nn] matrix 
corresponding to the APs in C, with dimension NEC×NEC. From Eq. 
(4.35), the independent vector {b}  is made with the quantities d 

cos(∆αI-d) – h*
I for each AP in C.  

- For ndgt  = 1:  

An additional equation is needed to complete the system of equations 
with the additional unknown d. This is given by the condition of 
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normal force equilibrium along the direction defined by dir_d . The 

integral of the projection of normal pressures along that direction must 

equal the given input normal force projection d_o_N = N. This leads 

to Eq. (4.37), where AE is the element area (equal to dx×ds):  

  ( ) E
J

dIJn ANp /cos =∑ ∆
∈

−
CCCC

α  (4.37) 

Eqs. (4.35)–(4.37) result in the following linear system of equations:  
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The subindex n is omitted in Eq. (4.38) for brevity. The matrix of this 
system is of (NEC+1) × (NEC+1) dimension. The sign of the last 
equation is reversed, so that the matrix is kept symmetric, as with 

ndgt  = 0. The NEC×NEC first elements of the matrix are the same as 

the matrix for ndgt  = 0.  

In the current implementation in CECT, the entire system of equations is 
formed explicitly, and solved with the MATLAB mldivide operator (\), 

both for ndgt  = 0 and 1.  

3. Check of contact conditions.  

Both inequalities of Eqs. (4.32) and (4.33) are checked for the solution 
obtained in the preceding step, i.e. pn > 0 for all APs in C (the contact 
pressures are compressive), and e > 0 for all APs outside C (there is no 
interpenetration of the deformed surfaces). As a difference with the 
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algorithm described in [Kalker 2001], both conditions are checked 
simultaneously, and the C set is updated accordingly in the same 
iteration. The APs inside C in which the pn > 0 condition is not fulfilled 
are removed from C, and the elements outside C in which the e > 0 
condition is not fulfilled are included in C for the next iteration.  

If there has been any change in the C set, the previous step 2 and this one 
are repeated with the new C set. Otherwise, the solution of the normal 
problem is finished. In the latter case, the modulus of the resultant normal 

force and its direction in the YZ plane dir_N  are computed in a final 

step, through the vector sum of the contributions of all elements.  

Profiling of the version of the NORM algorithm described here shows that most 
of the time is spent in the solution of the linear system of equations in step 2 
above. With this solver, it is more efficient in terms of computation time to have 
the complete [IC nn] matrix (of NE×NE dimension) from the beginning than to 

work with the a_IC  array (of NE×ns dimension, cf. §4.1.1.4). In the latter case, 

considerably more effort is needed to form the matrix of the system of equations 
in each iteration.  

In contrast with non-conformal contact, the [IC nn] matrix is not necessarily 
positive. This is not favourable with regard to the solution of the normal 
problem. Nevertheless, the matrix is of dominant diagonal, and no convergence 
difficulties have been experienced in the solution of the normal part of the 
contact problems encountered during the elaboration of this thesis. The situation 
is more complicated for the tangential part. Details about how the ICnn ICs 
change in non-planar surfaces are given in §5.2.3.6.1 and other parts of Chapter 
5.  

4.1.4.2 Tangential contact  

As described in §1.2, the solution of the tangential problem consists in finding 
the division of APs in C into adhesion A and slip D, and the distribution of 
tangential stresses pIt  = (pIx, pIs) in C, subject to the tangential contact 
restrictions:  

 ||pIt || ≤ gI, SIt  = 0 if I ∈ A  (4.39) 
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 ||pIt || = gI, SIt  = –λI pIt  (λI > 0) if I ∈ D  (4.40) 

In these equations, the slip velocity v used in §1.2 is replaced with the slipped 
distance St = (Sx, Ss) in a time increment ∆t; St = v ∆t; with the aim of obtaining 
a common formulation valid for the different types of tangential problems 
studied (static, transient rolling and steady rolling). The equations are developed 
as follows.  

For the APs in adhesion (A):  

 SIi = ∆WIi + uIi – u'Ii = 0,   i ∈ {x, s}  (4.41) 

For the APs in slip (D):  

 gI 
2 – pIx

2 – pIs
2 = 0 (4.42) 

 pIx SIs – pIs SIx = 0  (4.43) 

∆WIi in Eq. (4.41) is the increment of the rigid slip in the time increment ∆t = t 
– t' from the previous to the current time instant. In rolling contact problems, it 
is obtained multiplying the rigid slip velocity wIi by ∆t. Eqs. (4.21) and (4.22) 
provide the expressions for wIi, together with the additional component –∆d × 
sin(∆αI-d) for transient problems given next to them. The rigid slip WIi for static 
problems is defined in Eqs. (4.23) and (4.24).  

The variations of the tangential elastic displacement differences uIi – u'Ii in Eq. 
(4.41) are computed according to Eq. (4.44). The meaning of the terms IC*

IiJj 
and u'* Ii of this equation is different for the different types of tangential 
problems, as specified in Table 4.13. In all cases, these terms are fixed and 
known at the beginning of the solution of the tangential problem.  

 *

,

* '' Ii
J

JnIiJn
sxj J

JjIiJjIiIi upICpICuu −+=− ∑∑∑
∈= ∈ CCCCCCCC

,   i ∈ {x, s}  (4.44) 
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Table 4.13. Terms for the calculation of uIi – u'Ii in Eq. (4.44).  

tdgt  IC*
IiJj u'* Ii (i ∈ {x, s}) 

0 or 1 ICIiJj ∑ ∑
= ∈nsxj J

JjIiJj pIC
,,

''
CCCC

 

2 ICIiJj – IC'IiJj ∑
∈CCCCJ

JnIiJn pIC ''  

p'Jj are the contact stresses of the previous time instant; i.e. the pJj values 
computed in the previous case (interpolated if necessary to the current mesh; cf. 

§4.1.1.4.3). As indicated in Table 4.13, for tdgt  = 2, the u'* Ii term only 

includes the influence of the normal pressures (and in this case, p'Jn = pJn). This 
is because the tangential stresses of the previous time instant are initially 

unknown (form part of the solution) in this case. The IC*
IiJj term for tdgt  = 2 

shown in the table does not apply for the SteadyGS solver treated in §4.1.4.2.3. 
In that case, the differences uIi – u'Ii are computed convolving ICs with 
differences of stresses, instead of differences of ICs with stresses, as explained 
in that section.  

The normal pressures are prescribed (fixed) during the solution of the tangential 
problem. The traction bounds gI in Eq. (4.42) are also fixed. These are defined 

as a prescribed coefficient of friction µI times the normal pressure pIn. Some 

friction models consider the dependence of the coefficient of friction on the slip 
velocity. Currently this is not provided for in CECT.  

Eq. (4.43) is used to express the parallelism between the pIt  and SIt  vectors. It is 

used in place of the SIt  = –λI pIt  condition in Eq. (4.40), to avoid the 

introduction of new unknowns λI and related constraints (λI > 0). The first 

equality of Eq. (4.41), together with Eq. (4.44), which apply anywhere in the 
contact, is used to replace the quantities SIi in Eq. (4.43). The resulting 
expression is given in Eq. (4.45). This is applicable only for the APs in slip, as 
Eq. (4.43).  

  






 −∑+∑ ∑+∆
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Eqs. (4.41)–(4.45) define the system of equations for the tangential part of the 
contact problem. They are 2×NEC equations with 2×NEC unknowns, which are 
the pIx and pIs tangential stresses for each AP I in contact. Together with these, 
the inequality constraints of Eqs. (4.39) and (4.40) have to be considered, 
developed as follows:  

 pIx
2 + pIs

2 ≤ 1.0012 gI
2, if I ∈ A  (4.46) 

 pIx SIx + pIs SIs ≤ εps, if I ∈ D  (4.47) 

In Eqs. (4.46) and (4.47) small tolerance values are introduced, instead of 
forcing the exact inequalities of Eqs. (4.39) and (4.40), to avoid possible 
chattering problems in the iterative search for the A and D sets (i.e. APs 
changing alternately from one set to the other in successive iterations). These 
are realized by the 1.0012 factor introduced in the right-hand side of Eq. (4.46) 
(in place of 1.0), and the εps value introduced in the right-hand side of Eq. (4.47) 
(in place of 0). εps is assigned a fixed value equal to 
0.001×max(||∆W I||)×max(gI). max(||∆W I||) and max(gI) are the maximum 
||∆W I || and gI values of all APs in contact.  

In the current implementation of CECT, Eqs. (4.41)–(4.47) are applied in the 
same set of APs where the unknowns pIt  are computed. It would be possible to 
check the contact conditions in a different set of APs. For example, checking 
the adhesion condition (Eq. (4.41)) at points with longitudinal coordinates xI + 
∆q/2 would be more precise than at xI, because the increments of elastic 
displacement differences uIi – u'Ii would be calculated by central differences 
instead of by backward differences. I.e., (uIi – u'Ii)(xI + ∆q/2, sI, t) ≈ uIi (xI, sI, t) – 
uIi (xI + ∆q, sI, t') would be more precise than (uIi – u'Ii)(xI, sI, t) ≈ uIi (xI, sI, t) – 
uIi (xI + ∆q, sI, t'). However, this may be worse for the elements in slip. In the 
particular case of having ∆WIi much larger than uIi – u'Ii, it would be clearly 
better to evaluate the parallelism condition between pIt  and SIt  (Eq. (4.43)) at 
the same positions xI where pIt  are calculated. In the case of evaluating this at 
points xI + ∆q/2 with an averaged value of pt, an incorrect trivial solution could 
appear. E.g. with ∆q = ∆x, the averaged pt would be calculated as pt (xI + ∆q/2) 
= (pt (xI) + pt (xI+1)) / 2 = (pIt  + pI+1t) / 2, where the subindex I+1 expresses the 
position in the mesh adjacent to I towards the positive x axis. In this case, a 
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solution with pIt  = –pI+1t would lead to zero averaged pt (xI + ∆q/2), with which 
the parallelism condition of Eq. (4.43) would be trivially fulfilled.  

The equations for the tangential problem involve a greater difficulty than those 
of the normal problem, because the equations corresponding to the APs in slip 
are non-linear, and because the system size is doubled, as now the unknowns 
are vectors with (x, s) components, instead of scalars. Additionally, the matrix 
of ICs for the tangential part, including the ICxx, ICss, ICxs and ICsx ICs, is less 
favourable for convergence in the iterative search for the correct division of C 
into the A and D sets than the matrix of ICnn ICs for the normal problem. The 
ICxs and ICsx crossed ICs introduce more coupling and complexity in the 
relationship between the fields of contact surface stresses and elastic 
displacements. The ICs have changing signs, and a less local characteristic than 

the direct ICii (i ∈ {x, s, n}) ICs. On the other hand, they are considerably 

smaller in magnitude. The ICIiJj – IC'IiJj IC differences arising in steady rolling 
problems involve further difficulties, as explained in [Vollebregt 1995]. This 
motivated the development of the SteadyGS solver [Vollebregt 2010], treated 
here in §4.1.4.2.3.  

The non-linear set of equations for the tangential problem defined above are 
solved with a Newton-Raphson procedure. The Jacobian of these equations is 
needed for this purpose. Next the necessary expressions are given, derived 
analytically from the preceding equations. The equations for an AP I are 
designated as follows:  

o FI1 ≡ Eq. (4.41) with i = x  

o FI2 ≡ Eq. (4.41) with i = s  

o FI3 ≡ Eq. (4.42)  

o FI4 ≡ Eq. (4.43) (developed to Eq. (4.45))  

 *1
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I IC
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∂
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The following subsections describe the different tangential solvers implemented 
in CECT. The first tangential solver implemented, described in §4.1.4.2.1, has 
been found to be quite ineffective in conformal contact problems, failing to 
converge not infrequently. The failure rate in conformal problems has been 
observed to be considerably higher than in non-conformal problems. It is 
believed that the more rapid variations in the direction of the slip velocities 
encountered in conformal contact, coming from the variable rolling radii and 
geometric spin, is a factor contributing to the increased convergence difficulties 
in the tangential part. As a result of these difficulties, this first solver was 
abandoned soon, in favour of the more robust algorithms ConvexGS and 
SteadyGS, described in §4.1.4.2.2 and §4.1.4.2.3.  

The biggest difficulties have been experienced in the solution of frictional 
contact problems in rolling bearings (Chapter 7), where the changes in the slip 
velocities are more abrupt (particularly around the zero slip lines), as a result of 
the bigger relative variations of rolling radii. New difficulties were found in the 
tangential problem when frictional contact problems in rolling bearings where 
tackled with the initial versions of the ConvexGS and SteadyGS algorithms 
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implemented in CECT, and also in the outer iteration for the coupled normal-
tangential problem (§4.1.4.3). The initial versions of these algorithms, which 
worked relatively well in the wheel–rail application, were found to be less 
effective for contact in rolling bearings. This promoted the improvement of the 
initial versions of the code, and currently most of these difficulties have been 
overcome, at least in the type of smooth contact problems treated in this thesis. 
Relevant features of the algorithms that provide for better robustness are 
described in the corresponding sections.  

These are common aspects for all solvers:  

- Initialization of A and D sets and {p t}.  

As for the normal solver, an initial estimate of the A and D sets is passed 
to the tangential solver, with the aim of speeding up the iterative search 
of the correct A and D sets. In this case, also initial values of the 
tangential stresses are provided. The tangential stresses are gathered in 
the vector {p t}, which has 2×NEC elements (the tangential stress 
components pIx and pIs for each AP in C). The initial estimates are based 
on the solution of the previous calculated tangential problem.  

If no tangential problem has been previously calculated (i.e. if the case 
being run is the first one, the Panagiotopoulos iteration is the first one, 
and the Panagiotopoulos loop has not been restarted), {p t} is inizialized as 
{0}, and all the APs are assumed to be initially in adhesion. It has to be 
noted that it is necessary to place in the A set all I APs with pIt  = {0}, 
because otherwise the Jacobian would be singular due to Eq. (4.50).  

If a previous solution for the tangential problem is available:  

• {p t} is initialized with the previous available value, scaled down 
element-wise if necessary to ensure that ||pIt || ≤ gI for all APs.  

• The A and D sets are initialized with the previous available solution, 
updated if necessary to account for possible changes in the traction 
bound:  

o The APs for which pIt  has been scaled down so that ||pIt || = gI, are 
placed in the initial D set.  
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o The APs for which ||pIt || ≤ 0.90 gI, are placed in the initial A set.  

- Maximum number of iterations.  

There are two iterative loops in the solvers: an inner loop for the solution 
of the non-linear systems of equations (Newton-Raphson), and an outer 
loop for the search of the division of APs into the A and D sets. The 
parameters maxite_nr and maxite_t are defined, limiting the maximum 
number of iterations in inner and outer loops, respectively. Their values 
are fixed at maxite_nr = 25 and maxite_t = 200 for the TANG, ConvexGS 
and SteadyGS solvers.  

- Tolerances for the whole contact equality constraints.  

A {p t} vector is the solution to a given tangential problem if the following 
conditions are fulfilled, in addition to the inequality constraints of Eqs. 
(4.46) and (4.47):  

  FI1({p t}) = 0, FI2({p t}) = 0,   ∀I ∈ A (4.54) 

  FI3({p t}) = 0, FI4({p t}) = 0,   ∀I ∈ D (4.55) 

In practice, numerically exact solutions are not achieved for the non-
linear systems of equations that arise when there is some AP in slip. The 
preceding “hard” solution conditions (4.54)–(4.55) are replaced by the 
following “weak” ones:  

  norm({F1,2({p t})} A) < tols (4.56) 

  norm({F3({p t})} D) < tolg (4.57) 

  norm({F4({p t})} D ./ {||pIt ||}D) < tolds (4.58) 

The norm(·) function in Eqs. (4.56)–(4.58) is the Euclidean norm. The 
vector {F1,2}A contains the values FI1 and FI2 of all the APs in A, and the 
vectors {F3}D and {F4}D contain, respectively, the values FI3 and FI4 of all 
the APs in D. The ./ operator in Eq. (4.58) stands for the element-wise 
division of two vectors. tols, tolg and tolds are different tolerance limits, 
which are defined as follows:  
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  ( ) NECtol ss ⋅= ⋅ I∆Wmaxε  (4.59) 

  ( ) NECgtol Igg ⋅⋅= ⋅
2max2 ε  (4.60) 

  ( ) NECtol dsds ⋅= ⋅ I∆Wmaxε  (4.61) 

The factors εs, εg and εds in Eqs. (4.59)–(4.61) currently have the 
following fixed values: εs = 5.0E–5; εg = 1.0E–4; εds = 5.0E–4.  

The error metrics and tolerance criteria of Eqs. (4.56)–(4.61), as defined 
in these equations, apply to the TANG solver, treated in §4.1.4.2.1. In 
this solver, each equation system has 2×NEC equations, corresponding to 
the NEC APs in C. In the ConvexGS and SteadyGS solvers treated in 
§4.1.4.2.2 and §4.1.4.2.3, each equation system corresponds to a single 
AP. So, each equation system has 2 equations. In this case, the error 
metric of Eq. (4.56) and associated tolerance tols, corresponding to APs in 
A, disappears, because the equations for the APs in A are linear and are 
solved in a numerically exact way; they do not require tolerances. And 
the error metrics of Eqs. (4.57) and (4.58), for the APs in D, now are 
calculated on a single equation at a time. So the norm(·) operator in them 
amounts to the absolute value of each equation. The tolerance criteria in 
Eqs. (4.59)–(4.61) are applied similarly in the different solvers, replacing 

the NEC  factor by 1 for the ConvexGS and SteadyGS solvers.  

- Relaxation of Newton-Raphson (N-R) tolerances in the solution of non-
linear equations in the first iterations for the search of the correct A and D 
sets.  

In the iterative search for the correct division of APs in contact into the A 
and D sets, it is likely that several iterations will be needed before finding 
the correct A and D sets. Changing the A and D sets implies building and 
solving a new system of equations. Taking this into account, variable 
tolerances are considered in the N-R solution procedure of the non-linear 
equations. The idea is to use more relaxed tolerances in the first 
iterations, with the aim of spending less effort in solving non-linear 
equations which are unlikely to be the correct ones. But this relaxation of 
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tolerances should not be too strong, because too degraded solutions of the 
equations could hinder the search for the A and D sets and even cause 
divergence in this search.  

Here the relaxation of tolerances is implemented through a factor tf by 
which all tolerance limits (Eqs. (4.59)–(4.61)) are equally scaled, and 
which is varied in each iteration as a function of some metric related to 
the change of the solution between the last two iterations. The change 
metric used for this purpose in the different solvers is as follows:  

- In the TANG solver is the ratio (neid + neqd) / NEC, neid being the 
number of APs changed from set A to D (the ones which do not 
comply with the inequality of Eq. (4.46)), and neqd the number of 
APs changed from D to A (the ones which do not comply with the 
inequality in Eq. (4.47)) in the last iteration.  

- In the ConvexGS and SteadyGS solvers it is the ratio ||{p t}
(n) – {p t}

(n–

1)|| / max(1.0E–12, ||{p t}
(n–1)||), {p t}

(n) and {p t}
(n–1) being the tangential 

stress vectors computed for the whole C set in the current (n) and the 
previous (n–1) iteration.  

tf varies with the change metric according to a linear function with lower 
and upper bounds, as shown in Figure 4.29. The parameters of this 
function, depicted in the figure, are fixed at the following values: min_cm 
= 0.01; max_cm = 0.2; max_tf = 10 for ConvexGS and SteadyGS solvers 
and max_tf = 1.0 for TANG solver (i.e. no tolerance scaling is currently 
applied in the TANG solver). In any case, a necessary condition to 
validate a solution for the tangential problem is that tf = 1.0 in the last 
iteration.  
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Figure 4.29. tf tolerance scaling factor for the Newton-Raphson solution of the non-
linear equations of the tangential problem.  

After a solution to the tangential problem is achieved, obtaining the tangential 
stress field {p t}, in a final step the tangential resultant forces and moment and 
elastic displacement differences are computed. The basic formulas for the 
resultant forces and moment are given next. Flat,Y and Flat,Z are the components 

in the Y and Z axes of the resultant Flat  force, and Msp,X, Msp,Y and Msp,Z the 

components in the global axes of the resultant moment Msp. Fx , Flat  and 

Msp are defined in §4.1.2.2. xI, YI, ZI are the coordinates of each AP I in the 

contact x axis and global Y and Z axes, respectively; and Y0, Z0 are the Y and Z 
coordinates of the origin of the contact reference system.  

 ∑=
I

IxEx pAF  (4.62) 

 ∑=
I

IIsEYlat pAF αcos,
 (4.63) 

 ∑=
I

IIsEZlat pAF αsin,
 (4.64) 

 ( ) ( )( )∑ −−−=
I

IIIsIIIsEXsp ZZpYYpAM 00, cossin αα  (4.65) 
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 ( )( )∑ −−=
I

IIIsIxEYsp xpZZpAM αsin0,
 (4.66) 

 ( )( )∑ −−=
I

IxIIIsEZsp YYpxpAM 0, cosα  (4.67) 

4.1.4.2.1 TANG solver  

Figure 4.30 shows the basic steps of the TANG solver. This algorithm is similar 
to the TANG algorithm described in [Kalker 2001]. The basic steps are 
analogous to the one for the normal solver depicted in Figure 4.28. A major 
difference now is that the matrix equation to be solved for each division of APs 
in A and D sets is non-linear if there is any AP in slip, and has to be solved 
iteratively.  

 

Figure 4.30. Flowchart of TANG solver.  
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In the outer loop of the algorithm, the adhesion and slip conditions (Eqs. (4.46) 
and (4.47), respectively) are checked at the same time for all the APs in each 
iteration, in a similar way as the inequalities for the APs in and outside C of 
Eqs. (4.32) and (4.33) are checked at the same time in the normal solver, as 
explained in §4.1.4.1. The APs which do not fulfil the inequality of their current 
set (A or D) are changed to the other set.  

As mentioned previously, this solver has turned out to be ineffective in the 
application to conformal contact problems. On the contrary, it has been found to 
be more effective than the ConvexGS and SteadyGS solvers in 1D rolling 

contact problems with fine meshes (say nx  > 500, and ns  = 1), in which the 

tangential contact stresses have only longitudinal component and the tangential 
contact constraints are linear. The following features, not shown in Figure 4.30, 
have been implemented trying to improve its robustness:  

- Scaling of the equations.  

Eqs. FI1 to FI4 compute different physical variables, which may have 
very different orders of magnitude. Eqs. FI1 and FI2 compute increments 
of slip, Eq. FI3 computes a tangential stress squared, and Eq. FI4 the 
scalar product of an increment of slip and a tangential stress. A scaling 
of the equations is optionally carried out, with the aim of avoiding large 
magnitude differences between the different equations and potential 
numerical conditioning problems of the resulting Jacobian matrices. 
This scaling is carried out dividing each equation by the following 
factors:  

o FI1 and FI2: max(||∆W I ||)  

o FI3: max(gI)
2  

o FI4: max(gI) × max(||∆W I ||)  

This scaling, if applied, is compensated when comparing the norms of 
the residuals of the equations with their tolerances (Eqs. (4.56)–(4.58)).  

- Relaxation in the Newton-Raphson process for the solution of the non-
linear systems of equations.  

The equation for the update of {p t} in each N-R iteration shown in 
Figure 4.30 is modified as follows: 
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  {p t}
(n+1) = {p t}

(n) – rf [JAC] (n){F} (n)  (4.68) 

The factor rf in this equation may be 1 (no relaxation), smaller (under-
relaxation) or greater (over-relaxation). In [Vollebregt 2009] it is 
indicated that, in its application in the ConvexGS solver, it is better to 
perform the relaxation in a different way for the APs in slip, 
maintaining the modulus of the stress vector and applying the relaxation 
in the change of its direction instead. This has not been implemented in 
this solver.  

- Restarts of the N-R loop for the solution of the non-linear system of 
equations.  

If the N-R loop (inner loop in Figure 4.30) fails to achieve a converged 
solution in the specified maximum number of iterations maxite_nr, two 
restarts are attempted, from different initial points, in the following 
order:  

o Restart assuming all APs in A and zero initial tangential 
stresses {p t}

(0). This restart is only attempted if in the current 
iteration all APs are not in A.  

o Restart assuming all APs in D and pIt  = –gI ∆W I / ||∆W I||. This 
restart is only attempted if in the current iteration all APs are 
not in D.  

The program does not stop if no converged solution to the non-linear 
system of equations has been achieved after consuming the maximum 
number of N-R iterations and all possible restarts. It continues with the 
check of the adhesion and slip conditions using the available (non-
converged, potentially bad) tangential solution in a new outer iteration, 
in the same way as if a converged solution had been achieved in the 
inner loop.  

These modifications have not served to solve the convergence problems of this 
solver.  
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4.1.4.2.2 ConvexGS solver  

This algorithm was published in [Vollebregt 1995]. The fundamental difference 
between the ConvexGS and SteadyGS solvers on the one hand, and the TANG 
solver on the other, is in the inner loop of Figure 4.30 for the solution of the 
generally non-linear equations of the tangential problem. In the ConvexGS and 
SteadyGS solvers, individual equation systems for each AP are set-up and 
solved each time, instead of systems with 2×NEC simultaneous equations for 
the whole contact.  

These are the basic steps of the algorithm:  

1. Initialize A and D sets, and {p t}.  

Cf. §4.1.4.2.  

2. For each AP: solve the individual equations of the tangential problem.  

Individual systems of 2 equations are set-up and solved sequentially for 
each AP. The unknowns are the tangential stresses pIx and pIs. The 2×2 
Jacobian of each system is formed with Eqs. (4.48) and (4.49) (setting J = 
I) for APs in A, and with Eqs. (4.50), (4.52) and (4.53) for APs in D. 
During the solution of the equations for each AP, the stresses of the rest 
of APs are held constant. This implies that the matrix-vector product of 

the tangential ICs and stresses ∑∑
= ∈

=
sxj J

JjIiJjIi pICICp
,

*

CCCC
 (cf. Eq. (4.44) and 

Table 4.13) may be split in a variable term due to the influence of the 
current AP I, and a constant term due to all other APs J (J≠I), ICpkIi. 
ICpkIi is computed at the beginning of the individual solution process for 
each AP, according to Eq. (4.69). To facilitate computations, also the 
constant component of the slip in the AP I due to the influence of all 
other APs, SkIi, is computed. This is done following Eqs. (4.41) and 
(4.44), replacing ICpIi with ICpkIi in Eq. (4.44).  

  ∑
=

−=
sxj

IjIiIjIiIi pICICpICpk
,

,   i ∈ {x, s}  (4.69) 

In each outer iteration, all the APs are visited, in an order determined by 
the quantity ||pIt

(n) – pIt
(n–1)|| (i.e. the modulus of the vector difference 
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between the tangential stress in the AP in the last two outer iterations). 
The APs with higher ||pIt

(n) – pIt
(n–1)|| value are visited first. It has been 

observed that this ordering is relevant for the effectiveness of the 
algorithm.  

Each individual system of equations is solved directly for APs in A, and 
iteratively (with N-R) for APs in D. In the latter case, the previously 
introduced tf factor is applied for the relaxation of tolerances of the non-
linear system. After solving each individual system, the applicable 
inequality constraint (Eq. (4.46) for adhesion, and Eq. (4.47) for slip) is 
checked for the AP in question.  

- If the condition is fulfilled, the solution is correct for the AP.  

- Otherwise, the AP is changed to the other set, and the individual 
system of 2 equations corresponding to the new set is set-up and 
solved. For APs which are changed here from A to D, the initial pIt  for 
the individual N-R loop of the AP is defined as the one from the 
previous solution (which does not fulfil the adhesion condition), 
scaled down so that ||pIt || = gI. The inequality constraint for this second 
solution is checked only for APs that were changed from A to D. If an 
AP initially in D is changed to A, it is maintained in A regardless of 
fulfilling the adhesion condition or not.  

o If the slip condition is fulfilled, this second solution (with the 
AP in D) is retained for the AP.  

o Otherwise, the previously obtained first solution is recovered, 
and the AP is returned to A.  

For APs that are initially in D in a given outer iteration, the parallelism 
between the tangential stress and slip vectors of the AP is checked in each 
iteration of the (inner) N-R loop. If in any iteration after iteration number 
maxite_nr / 2 the angle between the two vectors is lower than 0.1 rad, the 
individual N-R loop of the AP is aborted, and the AP is changed to A. It 
has been observed that frequently the N-R loop for an AP initially in D 
fails to converge when the correct state of the AP is A.  
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The program does not stop if the individual N-R loop for an AP in D fails 
to converge (either if the AP was initially in D in the current outer 
iteration, or if it was changed from A to D). Additionally, the last tried 
stress vector for the AP is retained, even if the convergence criteria were 
not fulfilled with it. On the other hand, a non-convergence flag, 
converg_nr, is reset to 0 for the current outer iteration. Resetting 
converg_nr to 0 implies that the overall solution for the tangential 
problem will not be validated in the current outer iteration. converg_nr is 
set to 1 at the beginning of each outer iteration.  

After achieving a new solution for an AP, the variables {ICp} , (pIt
(n) – 

pIt
(n–1)), and ||{p t}

(n) – {p t}
(n–1)|| are updated. {ICp}  is the vector containing 

the 2×NEC ICpIi values for the whole contact. This variable, as well as 
||{p t}

(n) – {p t}
(n–1)||, are updated taking into account that only the stress pIt  

for the current AP has changed, avoiding needless computations. This is 
done according to Eqs. (4.70) and (4.71), where ∆I(·) represents the 
change in the concerned quantity when pIt  is updated in an AP I. The full 
computation of {ICp}  at a time is carried out only once, at the beginning 
of the program.  

 ( ) ( ) ( )( )∑
=

−−=∆
sxj

n
Ij

n
IjIiIjIiI ppICICp

,

1* , ∀I ∈ C; i ∈ {x, s}  (4.70) 

  ∆I(||{p t}
(n) – {p t}

(n–1)||2) = (pIx
(n) – pIx

(n–1))2 + (pIs
(n) – pIs

(n–1))2  

  – (pIx
(n–1) – pIx

(n–2))2 – (pIs
(n–1) – pIs

(n–2))2  (4.71) 

Afterwards, the loop continues with the next AP, until having visited all 
the APs in the current outer iteration.  

3. Check error tolerances of the whole tangential solution.  

Cf. Eqs. (4.56)–(4.58). No tf scaling is applied in the tolerance limits of 
Eqs. (4.59)–(4.61) in this global check. If all the tolerances are not 
fulfilled or if converg_nr = 0, return to step 2 (outer iteration). Otherwise, 
the calculation is finished.  
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A more efficient tangential solver than ConvexGS has been developed, named 
TangCG [Zhao J 2015].  

4.1.4.2.3 SteadyGS solver  

This algorithm, which was published in [Vollebregt 2010], is used for steady 
rolling problems. It is differenced from ConvexGS in the computation of the 
variations of elastic displacement differences uIi – u'Ii. ConvexGS uses the 
differences of ICs ICIiJj – IC'IiJj for this purpose, cf. Eq. (4.44) and Table 4.13. 
As explained in [Vollebregt 1995], this brings some difficulties for the 
convergence of the algorithm, especially for small values of ∆q. Setting ∆q = 
∆x, and taking into account the similarity of the ICs in longitudinal direction 
(cf. Figure 4.15b and related discussion), it is possible to reorganize the first 
term in the right-hand side of Eq. (4.44) (ICpIi) according to Eq. (4.72). In this 
way, the use of the differences ICIiJj – IC'IiJj is avoided, and only the ICs for the 
current time instant, ICIiJj, are used. ∆pJj in this equation is equal to the stress pJj 

(j ∈ {x, s}) at AP J, with position indices (ix, is) = (ixJ, isJ) in the mesh of the 

PCS, minus pJ'j at the AP J' adjacent to it towards the leading edge, with 

position indices (ixJ + 1, isJ). For APs at the leading edge of the mesh (ixJ = mx) 

or at a leading edge of C, ∆pJj = pJj – 0 = pJj.  
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The sought unknowns in the APs in A are now the differences ∆pIj, instead of 
pIj. Accordingly, Eqs. (4.48) and (4.49) are replaced by Eqs. (4.73) and (4.74).  
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A necessary condition for the use of this algorithm is that all APs at the trailing 
edge of the mesh (ixJ = 1) are outside C. This is because the ICs that provide the 
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influences of the APs at the trailing edge on the APs at the leading edge for the 
previous instant t' are not available within the set of ICIiJj ICs for the current 
instant t. This limitation is manifested in Eq. (4.72) in that the summation over 
the J influencing APs is now extended to a new set C*, instead of the contact set 
C. C* is equal to the union of C with the set of adjacent APs in the trailing edge, 
T. This is exemplified in Figure 4.31. There may be more than one AP in T in a 
given lateral position of the mesh, as illustrated in the figure. It would be 
feasible to use this algorithm also in the case of having some APs at the trailing 
edge of the mesh inside C and all APs at the leading edge outside C.  

 

Figure 4.31. C* set, equal to the C set plus the adjacent APs in the trailing edge T.  

Some features of SteadyGS which are not shared with ConvexGS are 
commented next:  

- The APs are visited ordered by entire rows or strips (a strip is formed by 
the set of APs located in the same s position), from the trailing to the 
leading edge, as advised in [Vollebregt 2010]. The ordering of the strips 
in each outer iteration is determined by the change metric ∆pt(is), defined 
in Eq. (4.75). C(is) in this equation is the subset of APs in C located in 
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the isth lateral position of the mesh. The rows with higher ∆pt(is) are 
visited first.  
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- The unknown variables are now different for the APs in A on the one 
hand, and for those in D on the other hand. The unknowns for APs in A 
are the differences ∆pIj, and the ones for APs in D are pIj. The values of 
each of these variables for all the APs of C are collected in vectors {∆pt} 
and {p t}, respectively. The values of both vectors are updated in unison, 
so that the equality ∆pIj = pIj – pI'j  is fulfilled (I' is the AP adjacent to I 
towards the leading edge). Each time the individual problem for an AP I 
is solved, both vectors are updated in the following way:  

o APs in A: new ∆pIj (j ∈ {x, s}) values are obtained. With these, the 
positions corresponding to AP I of {∆pt} are updated, and the 
following additional modifications are carried out:  

� The values in {p t} of AP I are updated, as pIj = pI'j + ∆pIj. The 
adhesion condition is checked with these values.  

� The values in {p t} of the APs J located between I and the nearest 
trailing edge in the same row are updated recursively, going from I 
towards the trailing edge, to try to maintain their current ∆pJj 
values. After updating the pJj values for each J AP, the adhesion 
condition is checked for that AP. If it is not fulfilled, the pJj values 
are scaled down so that ||pJt|| = gJ, and the values ∆pJj are updated 
accordingly. Additionally, that AP J is changed to D.  

� The values ∆pITj in {∆pt} of AP IT, the trailing edge nearest to I in 
the same row, are updated. If, after the previous update of {p t}, no 
AP has changed to D, the change in ∆pITj is equal to the change in 
∆pIj with contrary sign.  

It has to be noted that, due to the changes in {∆pt} additional to the 
changes of the ∆pIj values of the current AP I, the Jacobian defined by 
Eqs. (4.73) and (4.74) is not exact. If no APs changed to D (i.e., reach 
saturation) after the updates in {p t}, an exact Jacobian could be 



262 4.1 Conformal Exact Contact Theory — CECT 

obtained as ICIiJj – ICITiJj, i, j ∈ {x, s}. But these differences of ICs are 

precisely what are wanted to be avoided in this solver. Additionally, it 
is not known beforehand if more values will change in {∆pt} as a 
result of reaching saturation in some AP between I and IT.  

o APs in D: new pIj (j ∈ {x, s}) values are obtained. With these, the 
values in {∆pt} of AP I and the one preceding it in the same row 
(adjacent to I towards the trailing edge) are updated.  

Apart from these features, the algorithm is differenced from ConvexGS also in 
the way in which not small rolling radii variations across the contact are 
handled, as explained in §7.2.2.1.2.  

4.1.4.3 Coupled normal-tangential contact  

The coupled normal tangential contact problem is solved through the so called 
Panagiotopoulos process ([Panagiotopoulos 1975], [Antes 1992]), wherein the 
normal and tangential problems are solved alternately, as explained in §2.1.3 
and shown schematically in Figure 2.21. The main steps of the process are 
shown in Figure 4.32. It has to be mentioned that in conformal contact, the 
normal and tangential contact problems are coupled even with elastically 
similar materials as in the wheel–rail case; i.e. elastic quasiidentity does not 
apply.  
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Figure 4.32. Flowchart of the Panagiotopoulos algorithm.  

Some details of the algorithm as implemented in CECT are given next.  

- Factor fN for modification of d_o_N.  

A factor fN is defined, which is initialized with a value of 1.0. In the event 
of any of the following convergence failure cases, fN is increased by a 
step ∆fN, and the whole Panagiotopoulos process is restarted with the 

input d_o_N modified with fN as shown in the first step of Figure 4.32.  

o A converged tangential solution has not been achieved by the 
tangential solver.  

o The maximum number of allowed Panagiotopoulos iterations 
(maxite_p) has been reached without achieving a converged solution 
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for the coupled normal-tangential contact problem. maxite_p has 
currently a fixed value of 15.  

∆fN is given a small value, and a maximum number of such restarts is 

allowed, so that the modified d_o_N is kept close to the original one. 

The maximum number of restarts is defined by a maximum value fN,max 
that fN is allowed to reach. These parameters have the following fixed 

values. If ndgt =1, ∆fN = 0.0005, and fN,max = 0.002. If ndgt =0, Hertzian 

proportionality is applied to obtain equivalent load variations. That is, ∆fN 
= (1.0005)(1/3) – 1, and similarly for fN,max.  

If, after consuming all possible restarts, no converged solution has been 
achieved, CECT does not print any .mat nor .prf files for the current case, 
and continues with the next case in the input file. However, in transient 

problems (tdgt =0 or 1), in which the solution of a case depends on the 

previous one, the solutions obtained for cases after a case for which no 
converged solution has been achieved may not be correct.  

- The normal solver uses modified normal undeformed distances h* as 
input, which incorporate the effect of the tangential stresses, as indicated 
in §4.1.4.1 (cf. also Figure 2.21). h* is updated in each Panagiotopoulos 
iteration, with the tangential solution obtained in the previous iteration.  

- The following quantities which are inputs for the tangential solver are 
calculated for each AP in C:  

o ∆W. Eqs. (4.23)–(4.25) are used for static problems (tdgt =0), and 

Eqs. (4.21)–(4.22) for rolling problems (tdgt =1 or 2). A –∆d × 

sin(∆αI-d) / ∆t term is added in Eq. (4.22) if tdgt =1, cf. Figure 4.12. 

The calculation of the rigid slips has been implemented inside the 
Panagiotopoulos loop so that deformed geometry could be used in the 
computation (cf. §4.1.1.3.1 and Figure 4.14). Currently the rigid slips 
are calculated with the undeformed geometry, and this calculation 
could be carried out outside the Panagiotopoulos loop.  

o Traction bound. gI = µI pIn.  

o Tangential elastic displacement differences of the previous time 
instant, ut'

*. Cf. Eq. (4.44) and Table 4.13. The calculation itself is 
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carried out here only for tdgt =2. If tdgt =0 or 1, the ut'
* values are 

calculated before the Panagiotopoulos loop for the whole PCS, and in 
this step the values corresponding to the C set are selected. In the first 

case (c=1 ), if tdgt =0 or 1, ut'
* = 0.  

o Tangential elastic displacement differences ut due to current normal 

pressures; i.e. ∑
∈CCCCJ

JnIiJn pIC  term in Eq. (4.44).  

o [IC *
ij ] complete IC matrices for the tangential problem, with i, j ∈ {x, 

s}; cf. Eq. (4.44) and Table 4.13. These matrices are formed for 
different sets of APs for the TANG and ConvexGS solvers on the one 
hand, and for the SteadyGS solver on the other (cf. §4.1.4.2). Each of 
these matrices has NEC×NEC elements for the TANG and ConvexGS 
solvers, and NEC×NECT for the SteadyGS solver. NECT is the 
number of APs in the C* set (cf. Figure 4.31). These matrices are 
calculated only under the following conditions (otherwise, previously 
calculated matrices are used, avoiding their redundant calculation):  

� NOT(((mdgt(c)<0.1 AND gdgt(c)<0.1) OR ite_p > 

1.1) AND NOT var_C) , OR  

� c < 1.1 AND ite_p < 1.1 , OR  

� (tdgt(c)>1.9 OR tdgt(c-1)>1.9) AND 

ABS(tdgt(c)-tdgt(c-1))>0.1  

The first condition states that in the first Panagiotopoulos iteration of a 

case (ite_p =1), new IC*
ij-s are calculated if either the mesh, the 

geometry or the C set have changed from the previous case. For next 
Panagiotopoulos iterations, new IC*

ij -s are calculated if the C set has 
changed from the previous iteration. The condition of change of the C 

set is checked with the var_C  bit, which is set to 1 if the C set is 

different from the one with which the last IC*
ij-s were calculated.  

If tdgt =2 and the SteadyGS solver is not used, IC*
ij = ICIiJj – IC'IiJj. 

In this case, two further necessary conditions to avoid the calculation 
of the IC'IiJj-s in the first Panagiotopoulos iteration of the case is that 

dq(c) = dq(c_o) AND tdgt(c-1) = 2 .  
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- The tangential solver is run only if there is friction anywhere inside C in 
the current Panagiotopoulos iteration. Initial estimates of tangential 
stresses {p t} and AP division into the A and D sets are passed to the 
tangential solver, based on the previous available tangential solution, as 
explained in §4.1.4.2. The previous available tangential solution is that of 

the previous case (c_o ) for the first Panagiotopoulos iteration of a case 

c , and that of the previous Panagiotopoulos iteration with converged 

tangential solution otherwise.  

- The following conditions are used to check the convergence of the 
coupled normal-tangential solution:  

 ||{p} (n) – {p} (n–1)|| / max(1.0E–12, ||{p} (n)||) < tol_p_norm (4.76) 

 max(|{p} (n) – {p} (n–1)|) / max(1.0E–12, max(|{p} (n)|))   

      < tol_p_max (4.77) 

{p}  is a 3×NE element vector that collects the contact stresses (pn, px and 
ps) for the whole PCS. tol_p_norm and tol_p_max have the following 
fixed values: tol_p_norm = 1.0E–5; tol_p_max = 1.0E–4.  

These conditions are checked only if there is friction somewhere inside 
C, or if the difference between the h and h* values of the current iteration 
is non-zero. If Eqs. (4.76) and (4.77) are fulfilled, or if they are not 
checked, the solution to the coupled normal-tangential problem is 
considered to have converged, and the Panagiotopoulos loop is finished.  

4.2 Finite element models  

The FE models constructed for contact mechanics analyses of wheel–rail 
conformal contact are described in this section. These have served to contrast 
and validate the results obtained with CECT, and to study aspects of the 
subsurface stress field in conformal contact that could not be studied with 
simpler models. As the FE models are the most comprehensive contact models 
used in this thesis, the FEM results are considered generally the reference. 
However, from this description (especially from §4.2.2) it will become apparent 
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that the FE models, being more complex, generally involve greater simulation 
cost and difficulties. They have more numerical and tolerance settings and 
simulation setup possibilities, and they may require considerable tuning to 
achieve reliable results as well as robustness and affordable simulations; see 
[Toumi 2016] for example. Even after their tuning, some degree of inaccuracy 
in the FEM has to be allowed to get results at reasonable cost. This being so, in 
non-conformal contact problems with well-established numerical solutions, in 
which the exact contact theory is known to yield precise results, the CECT 
results have been taken as the reference for tuning and validation of the FEM.  

4.2.1 Description of models  

These FE models have been constructed with the commercial FE package 
Abaqus/Standard [Abaqus doc 2012]. Some FE models were also constructed 
with the commercial FE package ANSYS [ANSYS doc 2010], with which some 
initial non-conformal, static contact test cases were solved. The description 
given here refers mostly to the Abaqus models, but the analysis methodology 
used with the ANSYS models was similar.  

A major difficulty of the contact FE models described here is the high 
computational cost. This results from the large size of the models and the 
numerous substeps in each simulation. Each rolling contact simulation with 
these models has taken typically on the order of a few tens of hours on a high 
performance computer, with an Intel Xeon E5-2687W @ 3.10 GHz eight-core 
processor and memory of 128 GB (8×16 GB), using 5 cores in parallel.  

4.2.1.1 Geometry and mesh  

Only a portion of the wheel and the rail including the contact zone is meshed, 
with sufficient extension to ensure that the boundaries of the model are far 
enough not to affect the local stress field in the contact. In some wheel–rail 
contact related studies with finite element models, e.g. [Chongyi 2010], [Bian 
2013], [Zhao X 2014], [Vo 2015] and [Yang 2016], the entire wheel and a 
larger section of the rail are modelled, and details of the vehicle and of the track 
structure are included. This is avoided in the models described here because 
they are intended to focus on the local contact problem, and it is not aimed at 
including the general structural behaviour of the contacting bodies in the study.  
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Two of the constructed FE models, designated as A and B, are shown in Figure 
4.33 and Figure 4.34. Model A has a total of 322,162 elements and 347,415 
nodes, and model B 435,552 elements and 466,698 nodes.  

 

 

(a) General isometric view.   (b) Cross-section. Zoomed view in the contact area.  

Figure 4.33. FE model A for wheel–rail conformal contact analysis.  

 

 

(a) General isometric view.   (b) Cross-section. Zoomed view in the contact area.  
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(c) Detail of the mesh of the rail surface (with the wheel hidden).  

Figure 4.34. FE model B for wheel–rail conformal contact analysis.  

The meshes are Lagrangian. The modelled domains include the whole wheel 
tyre and rail head as may be seen in Figure 4.33, or comparatively larger 
volumes in the case of other geometries like the one in Figure 4.34. The 
geometry of model A is similar to a S1002 wheel on a 60E1 rail. The modelled 
dimensions in the rolling direction are enough for the distances between the 
contact patch and model boundaries to be above five times the longitudinal 
contact patch dimension. Thus, the wheel and rail portions included in the 
model are much larger than the contact patch.  

The volumes of the modelled portion of the contacting bodies are meshed with 
linear hexahedron elements. In most of the models C3D8 elements have been 
used, and in some cases C3D8R elements have been used instead. The C3D8R 
elements work well when the mesh of the contact patch is sufficiently fine, but 
may exhibit hourglassing problems if very few nodes enter in contact or if there 
are large discontinuities in the contact forces between adjacent nodes; cf. §5.2.2.  

The rail is aligned with the global X axis of the model, defining the rolling 
direction. The contact surfaces are considered smooth, without irregularities. 
The mesh of the rail is extruded along the rolling direction, and the mesh of the 
wheel is swept or rotated around its axis. Thus, the surfaces of the bodies are 
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discretized in rectangular element faces (nearly rectangular in the case of the 
wheel), aligned with the rolling direction.  

The mesh is heavily focused in the contact zone, as may be seen in Figure 4.33 
and Figure 4.34, and the element size is increased rapidly out of the contact 
vicinity to minimize the mesh size. The mesh refinement is similar in both 
contacting bodies. The element size in the most refined zone is defined to have 
a resolution of at least 8-10 elements along each semiaxis of the contact patch in 
each contacting surface, and typically around 20. The most refined zone is 
meshed with elements of uniform size, and in rolling contact simulations it is 
extended for a length of 2–3 times the foreseen contact patch length in rolling 
direction. The element size defined in the depth direction is of the same order as 
the most refined surface sizes, though the degree of refinement is decreased 
faster in this direction. Based on the study presented in [Zhao X 2011], it is 
considered that the defined mesh density should suffice to avoid significant 
discretization errors. This refinement is considered also adequate to allow the 
representation of the local contact field in sufficient detail for the purposes of 
contrasting the most relevant features of conformal and non-conformal contact 
mechanics at the macroscopic level, with smooth surfaces.  

In most of the models, a few layers of structured mesh are provided in the depth 
direction in the contact surfaces of both bodies, with parallelepiped elements 
with nearly rectangular faces. These may be appreciated in Figure 4.34b for 
model B. They are not present in model A. It is advisable to have elements with 
regular shape at the contact surface to get smoother contact solutions. 
Numerical noise in the contact solutions is more prone to appear with more 
irregular elements, mostly in the tangential part of the contact problem. 
Elements with nearly right angles also tolerate better large aspect ratios, with 
less impact in their accuracy. In this way, the element dimensions may be 
defined according to the contact patch size in each surface direction, without 
having to keep an aspect ratio close to 1.  

Appropriate mesh sizing is required to achieve the desired resolution in the 
contact vicinity, and at the same time contain the mesh size within affordable 
limits. The mesh size is determined primarily by the element size in the most 
refined zone, and the distance in which the refined zone is extended in the 
rolling direction to allow a sufficient rolled length (cf. §4.2.1.5 and §4.2.2.1). 
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The size of the modelled wheel and rail portions is of secondary importance to 
the mesh size. Variable element sizes are defined in the rolling direction, as may 
be appreciated in Figure 4.34c. The most refined zone is placed where the 
contact patch will be located in the final part of the simulation. This most 
refined zone is sized to accommodate just one or two contact patch widths, to 
limit the mesh size.  

4.2.1.2 Material  

Steel is considered as the material for the wheel and the rail, with homogeneous 
properties in the modelled domains. The material behaviour is modelled as 
isotropic and linear elastic. In this way, the FEM and CECT simulations are 
comparable. The values assigned to the elastic constants are E (Young’s 
modulus) = 210 GPa and ν (coefficient of Poisson) = 0.30, unless otherwise 
noted.  

4.2.1.3 Contact definition  

Wheel–rail contact is defined with a mechanical contact pair in 

Abaqus/Standard, using the *Contact Pair  keyword. These contact pairs 

provide capability for contact between two deformable bodies and finite sliding.  

Surface-to-surface contact discretization is used. This usually produces more 
accurate contact stress solutions than node-to-surface discretization, but with 
fine meshes like the ones in the models described here, the differences should 
be small. The convex body is designated as the slave, and the concave as the 
master. The rail is always the convex body in these models. Finite-sliding 
contact tracking is used, which is the most general formulation, with the default 
path-based tracking algorithm.  

Regarding the contact interfacial constitutive behaviour, hard pressure-
overclosure and tangential stress-slip relationships are considered in the normal 
and tangential contact, respectively. These are illustrated in Figure 4.35. In the 
tangential part, the basic, isotropic Coulomb friction model is used, with a 
prescribed constant coefficient of friction, equal in all directions. These 
constitutive behaviours are analogous to the ones implemented in CECT.  
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(a) Normal contact.   (b) Tangential contact.  

Figure 4.35. Hard contact interface constitutive relationships.  

The contact constraints are enforced with the penalty method, with the default 
linear behaviour (i.e. with constant stiffness). In this way, regularisation of the 
hard interfacial behaviour laws (see e.g. Chapter 36 of the Abaqus Analysis 
User’s Manual [Abaqus doc 2012]) is achieved, as depicted in Figure 4.36 —
specifically, a piecewise polynomial regularisation as described in §5.2.3 of 
[Wriggers 2006].  

 

 

 

(a) Normal contact.   (b) Tangential contact.  

Figure 4.36. Regularization of the hard contact interface constitutive relationships with 
the penalty method.  

The penalty stiffness values have to be defined so that a good compromise 
between precision and ease of convergence is achieved. The contact 
relationships are fulfilled more closely with a high penalty stiffness, but at the 
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expense of increasing the computational cost, because the convergence is made 
more difficult and more iterations are needed in each substep to achieve a 
converged solution. The adjustment of the penalty stiffness values in these 
models is discussed in §4.2.2.3.  

The frictional contact conditions produce unsymmetric terms in the stiffness 
matrix of the system. Unsymmetric matrix storage and solution scheme are used 
in the FEM simulations, as recommended in §36.1.5 of the Abaqus Analysis 
User’s Manual [Abaqus doc 2012], to improve the convergence rate of these 
simulations.  

4.2.1.4 Loads and boundary conditions  

Figure 4.37 shows schematically the loads and boundary conditions applied in 
these FE models. Global bending of the bodies in the vertical plane is inhibited 
with these boundary conditions, so that the local contact field under mainly 
vertical loads is practically independent of the size of the modelled wheel and 
rail portions, considering that these are considerably larger than the contact 
patch dimensions as explained in §4.2.1.1.  

 

Figure 4.37. Loads and boundary conditions in the FE model of wheel–rail contact.  
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The lower surface of the rail is built-in, i.e. the nodes in this surface have all 
their degrees of freedom (DOF-s) constrained to zero. The vertical cut surfaces 
of the rail (one at each extreme in longitudinal direction of the modelled rail 
portion) are also built-in in some of the models, while in others they have only 
their longitudinal displacement constrained. Almost the same contact results are 
obtained with either conditions, due to the long distance between the contact 
patch and these cut surfaces.  

A reference point is defined for the wheel, located in its axis of revolution. This 
point is rigidly tied to the cut surfaces of the wheel. The loads (F) and the rigid 
body motion of the wheel (displacements U and rotations UR) are applied 
through this point.  

4.2.1.5 Simulation steps  

Static contact, transient, or steady state rolling contact cases may be simulated 
with these FE models. This is accomplished with non-linear static simulations 
in all cases, with implicit solver, and following a step-by-step technique. 
Rolling contact is simulated applying prescribed displacements and rotations to 
the wheel in a plurality of small increments or substeps, representing the desired 
rigid body motion of the wheel on the rail. Non-linear geometry is used in the 
simulations, to accommodate finite wheel motions.  

In the previously cited works [Chongyi 2010], [Bian 2013], [Zhao X 2014], [Vo 
2015] and [Yang 2016], explicit dynamic transient models are used. With those 
models, inertial forces in the rolling contact process are taken into account, and 
the explicit integration is effective in dealing with the severe nonlinearities 
associated with the contact conditions. The use of static models in this work is 
justified because here it is not intended to study any dynamic phenomena, and 
the local behaviour of the contacting bodies can be assumed to be unaffected by 
inertial effects at conventional rolling speeds, as stated in §1.1.1. In this way, 
some drawbacks associated with transient dynamic models are avoided (e.g. the 
transient vibrations at the beginning of the simulation, and the need to model 
longer sections in the rolling direction and to simulate the rolling through a 
longer distance until these are faded out), and quite detailed results are achieved 
in the contact zone without incurring in too high computational costs. [Pletz 
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2014a] is another example in which a quasistatic 3D FE model is used in a 
detailed wheel–rail contact mechanics study.  

The main steps making up a FEM contact simulation as carried out in this work 
are illustrated in Figure 4.38.  

 

 

 

 

 

(a) Initial approach.   (b) Load.   (c) Rolling.  

Figure 4.38. Main simulation steps of rolling contact with FEM. 

Each step is explained next:  

- Initial approach.  

Starting from a state with no contact between wheel and rail, an initial 
approach di is applied to the wheel towards the rail, so that an initial 
contact patch is formed. This displacement-controlled step is necessary 
because before achieving the initial contact closure the system is singular 
if the rigid body motion of the wheel is not constrained.  

The wheel is translated and oriented previously so that at the beginning of 
this step it is nearly touching the rail at the intended location and with the 
intended orientation. The necessary wheel position is calculated 
beforehand, solving the wheel–rail geometric contact search problem as 
outlined in §4.2.3.1. In some cases, the wheel orientation is applied after 
the loading step, when it is possible to reuse the same contact solution 
obtained after the loading step in different rolling contact runs.  
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A small value is given to di, so that the resulting wheel–rail contact load 
in this step is small and the majority of the contact load is built-up in the 
next step. The wheel DOF-s not involved in the application of the initial 
approach are constrained to zero.  

The longitudinal position and pitch angle of the wheel in this step depend 
on the type of simulation carried out. These are defined so that the most 
refined zone of the meshes of both contacting surfaces match, and to have 
the contact patch positioned in the most refined zone of the mesh in the 
final part of the simulation, as indicated in §4.2.1.1. In static contact 
simulations, the contact patch is formed right in the centre of the most 
refined zone of the mesh in this step. In rolling contact simulations it is 
formed upstream of this zone, taking into account that it will translate 
(longitudinally over the rail and circumferentially over the wheel surface) 
during the rolling step of the simulation.  

- Load.  

In this step, the displacement DOF-s in the reference point of the wheel in 
which the approach di was applied in the previous step are released, and 
the wheel–rail normal load is applied in these DOF-s. The wheel remains 
stationary on the rail, with the rest of its DOF-s constrained to zero.  

The way the normal wheel–rail load is increased in this step and the 
chosen incrementation (number of substeps) are relevant mostly in static 
frictional contact problems. In Hertzian contact, a constant rate of 
increase of the linear dimensions of the contact patch is achieved with a 
cubic load increase. This proportion changes in conformal contact. With 
circular cross-sections, as the total contact angle variation in the contact 
patch ∆δ (cf. Figure 6.9) increases, the longitudinal dimension increases 
faster, and the lateral dimension slower. Bearing this in mind, in these 
models usually a quadratic load increase is applied in this step, as a 
compromise between avoiding large increases of the contact patch size in 
the first substeps, and large increases of the load in the last substeps. The 
number of substeps must be enough to adequately represent the rigid shift 
increments in each point of the contact patch from the moment of 
entering in contact, and the evolution of the elastic displacement 
differences in the contact surface. This step is usually divided in a 
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number between 20 and 40 substeps in static frictional contact problems. 
This number is normally chosen in proportion to the mesh resolution in 
the contact patch. These considerations apply equally to static frictional 
contact problems computed with CECT. In steady rolling contact 
problems they are much less relevant, because the tangential stress field 
developed in the contact patch in this step is washed away in the rolling 
step of the simulation.  

Sometimes a second load step is defined, to add longitudinal or lateral 
preload in the contact. This helps to accelerate the convergence to the 
steady rolling state in rolling contact simulations. The value of the 
preload is defined as a fraction of the foreseen resultant contact tangential 
force in the final steady state, usually between 50% and 75%. To apply 
the preload, the concerned displacement DOF-s of the wheel reference 
point are released, and the preload is applied along the wanted direction. 
This second load step is divided in up to five substeps.  

It has to be considered that in rolling contact problems with lateral forces, 
the final contact result may change appreciably depending on the 
magnitude of the lateral preload introduced in this step. As in conformal 
contact the contacting surfaces are close to one another, relatively small 
deflections or displacements of the bodies may produce significant 
changes in the position of the contact patch in the s direction. This in turn 
may change the spin creepages and resultant frictional contact lateral 
force Flat, as a result of the different contact surface orientations.  

Figure 4.39 illustrates how the lateral position of the contact patch may 
change with the lateral preload and global deflections of the contacting 
bodies. The figure shows an upper concave body on a lower convex body 
in rolling contact, with a Flat force that pushes the upper body to the right 
and the lower body to the left. The undeformed configurations of the 
bodies are shown in dashed lines, and the deformed configurations, which 
are obtained adding the global deflections to the undeformed 
configurations, in solid lines. A point in each body is represented in both 
configurations, to better visualize the changes in the relative position of 
the surfaces. These are point P for the lower body and point Q for the 
upper body. Subindex i refers to the undeformed configuration, and 
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subindex f to the deformed configuration. The bodies considered in this 
example have a lateral symmetry plane, and points P and Q lie in this 
plane.  

 

(a) No lateral preload applied.  

 

(b) Lateral preload applied.  

Figure 4.39. Change of lateral position of the contact patch with the lateral preload 
applied in the load step.  

In Figure 4.39a both bodies are initially positioned with their lateral 
symmetry planes aligned, and no lateral preload is applied before the 
rolling step. In the rolling step, the upper body bends to the right and the 
lower body to the left, under the action of Flat. As a result, the central 
contact point C shifts to the left. In Figure 4.39b a lateral preload is 
applied before the rolling step, in the same direction as the Flat force 
developed in the rolling step, and lower in magnitude. Upon the 
introduction of this preload, the undeformed configuration of the upper 
body is translated to the left, as may be observed by the lateral translation 
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of Qi with respect to Pi. Combining this translation with the lateral 
bending of the bodies, the shift of the contact point C is now lower than 
with no lateral preload. 

- Rolling.  

In this step, simultaneous translations and rotations are applied to the 
reference point of the wheel in multiple small increments (substeps), to 
simulate the rolling motion of the wheel along the rail.  

For a wheel running on a straight rail in steady rolling, the following 
applies in relation to the wheel axis of revolution:  

o Its direction remains fixed.  

o It is aligned with the axis of rotation of the wheel.  

o It translates along the global X direction.  

The necessary boundary condition in the reference point of the wheel to 
define its prescribed motion may be readily defined either with the 

type=velocity  option or without it (the default is 

type=displacement ) in the *Boundary  entry defining the motion 

of the reference point of the wheel in the Abaqus input deck, taking into 
account the first point above. The magnitude of the total rotation applied 
to the wheel in the rolling step, ||∆Ω|| is calculated as ||∆Ω|| = ∆Ux / R0 × 
(1 – ξ0), being ∆Ux the total translation of the wheel in the rolling step, R0 
the rolling radius of a given point in the wheel, and ξ0 the longitudinal 
creepage prescribed for that point (negative if tractive). The components 
of ∆Ω in the global coordinate system are proportional to the cosine 
directors defining the orientation of the axis of revolution of the wheel in 
the same system, taking into account the second point above.  

The displacement DOF-s of the reference point of the wheel in the YZ 
plane may be constrained at the values attained at the end of the loading 
step if the normal wheel–rail load remains constant during rolling, or they 
may be left free, bound by the wheel–rail normal load and contact pair. 
The first option, restraining more the wheel motion, has the advantage of 
facilitating the convergence of the FEM solution. Its downside is that the 
normal wheel–rail load will have some uncontrolled change as the 
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tangential stress field evolves during the rolling step, due to normal–
tangential contact coupling. This unintended change is avoided with the 
second option.  

The rolling phase of the simulation may be split into several rolling steps, 
to traverse regions of the surface with different mesh densities in the 
longitudinal direction. The number of increments in each step is then 
defined according to the element lengths in the rolling direction. The 
criteria followed here to define the number of increments in each rolling 
step is to make the advanced distance by the wheel in each increment 
similar to the mean longitudinal dimension of the mesh elements in the 
surface section traversed during the step. This is analogous to the criteria 

for the definition of dq  in the CECT analyses set out in §4.1.2.1.1. A 

sensitivity to this incrementation in a particular case is presented in 
§4.2.2.2.  

For steady rolling, the applied load and creepages are held constant in the 
whole rolling phase of the simulation, and the wheel is rolled over the rail 
in a sufficiently long distance to allow the local contact field to stabilize. 
This is analogous to the method used by Kalker in DUVOROL to solve 
steady rolling problems with the exact contact theory [Kalker 1979b], 
wherein the steady rolling contact problem is solved as a sequence of 
transient rolling cases with constant loads and creepages, until the steady 
state sets in. Experience with the exact contact theory shows that the 
steady state may be achieved after a rolled distance of 1–2 contact lengths 
[Kalker 1979b]. A larger rolled distance may be necessary with the FE 
models used here, because of the global deflections that develop during 
the rolling phase. These influence the rigid body motion at the local 
contact level, delaying the convergence to the steady rolling state. The 
rolled distance to reach the steady rolling state is one of the aspects in the 
tuning of these FE models, as discussed in §4.2.2.  

4.2.2 Tuning  

These aspects of the tuning of the contact FE models are discussed in the 
following subsections:  

- Total rolled distance.  
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- Size of each rolling substep.  

- Penalty stiffness.  

These subsections refer to the FE contact models developed in Abaqus, with 
which most of the investigation presented here has been carried out. Afterwards, 
the most important points are compiled in §4.2.2.4. In this last subsection, the 
conclusions reached in the tuning of the FE contact models constructed in 
ANSYS are also included.  

4.2.2.1 Total rolled distance  

In a steady rolling contact simulation, the total rolled distance has to be long 
enough to ensure that the contact field has approached sufficiently the steady 
state. On the other hand, the total rolled distance has a significant influence on 
the cost of the contact FEM simulation. Firstly, because it implies a longer 
distance with a refined mesh, and hence a bigger mesh, and secondly, because 
more rolling substeps are needed. So, this is one of the most important aspects 
to adjust. Additionally, it has to be considered right from the preprocessing 
phase, when constructing the FE mesh.  

Figure 4.40 shows the evolution of the contact resultant frictional forces with 
the rolled distance in different FEM steady rolling contact simulations. The 
trends of these resultant forces (CFSn, n = 1, 2, 3, history output variables in 
Abaqus contact FE models, cf. §4.2.1 of Abaqus Analysis User’s Manual 
[Abaqus doc 2012]) are good indicators of the stabilization of the contact 
solution in these simulations. They are revised in each rolling contact FEM 
simulation to check the stationarity of the solution. Figure 4.40a corresponds to 
the non-conformal 3D rolling case studied in §4.3.9, with geometric and load 
parameters given in Table 4.28. Figure 4.40b corresponds to the conformal 
rolling case with geometry designated as “circ. s.” studied in §6.2.4.1, with the 
same N and µ as the previous case, cf. Table 6.1 for other related data. Different 
steady rolling situations are simulated in each case, with pure longitudinal (ξ) or 
lateral (η) creepage as indicated in the legend of each figure. The creepages in 
Figure 4.40b are referred to the rigid contact point.  

The abscissa axis of each graph is the rolled distance Ux divided by the 
longitudinal dimension of the contact patch 2a. The ordinate axis is the 
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difference of the contact resultant frictional force during the FEM simulation Fi, 
with its corresponding reference value Fi,ref, divided by the coefficient of 
friction µ times the normal contact load N. The considered Fi is the longitudinal 
resultant frictional force Fx in the cases with pure longitudinal creepage, and the 
resultant frictional force in the YZ plane Flat in the cases with pure lateral 
creepage. Their reference values have been calculated with CONTACT 
[CONTACT UG 2013] in the non-conformal case of Figure 4.40a, and with 
CECT in the conformal case of Figure 4.40b.  

 

 

 

(a) Case of non-conformal rolling.   (b) Case of conformal rolling.  

Figure 4.40. Evolution of contact resultant forces in FEM rolling contact simulations.  

The rolling phase in the cases shown in the figure is started with a preload of 
about 75% of the reference Fx and 50% of the reference Flat in each case. 
Referring to Figure 4.40a, it is observed that the cases with longitudinal 
creepage converge to the steady state considerably faster than the cases with 
lateral creepage. This is attributed to the influence of the global lateral 
deflections of the bodies present in the cases with lateral creepage, which are 
bigger than the longitudinal ones in the cases with longitudinal creepage. A 
second aspect observed in these results is that stabilization is reached earlier in 
the cases with higher saturation level. This is mostly observed in the cases with 
lateral creepage. Similar comments are made to Figure 4.40b, except that the 
cases with longitudinal creepage and lower saturation level take more time to 
stabilize. Also, there are higher deviations between the Flat values obtained from 
the FEM simulations and the reference values.  
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The necessary rolled distances in these simulations to get rolling contact 
solutions close to steady may be quoted in less than 2 times the contact patch 
length for the cases with longitudinal creepage, and between 2 and 3 times for 
the cases with lateral creepage.  

The vertical dashed lines in the graphs of Figure 4.40 mark different rolling 
steps in the rolling phase of the simulations. Thus, there are up to 3 rolling 
steps. The mesh density and size of the substeps are different in each of the 
steps. The finest mesh density and substep size are those of the 2nd step. The 
size of each element of the mesh in rolling direction in the zone traversed in this 
step is such that the longitudinal axis of the contact patch accommodates about 
36 elements in the two cases considered in the figure. The distance advanced by 
the wheel in each rolling substep of the 2nd rolling step equals the element 
length in the case of Figure 4.40a, and 0.96 times the element length in the case 
of Figure 4.40b. The substep size in the other steps is bigger than that of the 2nd 
step by a factor of 2.1 times in the case of Figure 4.40a, and 1.2 times in the 
case of Figure 4.40b. Performing rolling steps with coarser meshes and substep 
sizes prior to the most refined one in which the steady contact solutions are 
attained serves to minimize the rolled distance in the most refined step, which 
accounts for the greatest part of the cost of the simulation. The coarser mesh 
and biggest substep size in the 1st and 3rd rolling steps of the first case has an 
effect on the resultant frictional forces that may be appreciated in the right part 
of Figure 4.40a. It can be seen that the trends of the resultant forces change at 
the beginning of the 3rd step: after having reached stable values during the 2nd 
step, in the 3rd step they increase by about 2% of the µN value. The effect of the 
substep size on the contact results is discussed in more detail in §4.2.2.2.  

4.2.2.2 Size of each rolling substep  

The effect of the substep size in the rolling phase of the simulation on the 
computed FEM rolling contact solutions is studied here for a conformal contact 
case. The considered case has the “circ. a.” geometry defined in Table 6.1, with 
µ = 0.30, N = 80 kN, zero yaw angle, and zero reference longitudinal and lateral 
creepages. Different simulations are run for this case on the same mesh and 
with the same rolled distance, with different number of substeps in the rolling 
phase.  



284 4.2 Finite element models 

Figure 4.41 shows the resultant Flat force obtained at the end of the different 
simulations, after a rolled distance of 32 mm, which is about 1.9 times the 
contact patch length. It is plotted against the relative substep size, expressed as 
the distance advanced by the wheel in each substep, ∆Ux, divided by the length 
∆x of each element in the most refined zone of the mesh, where the rolling is 
simulated. ∆x equals 0.372 mm, with which the longitudinal axis of the contact 
patch is discretized in about 45 elements.  

Flat decreases as the substep size is reduced, as may be seen in Figure 4.41. It is 
considered that the results obtained with higher ∆Ux / ∆x above 1 are less 
precise, because the material elastic deformation velocities (the term Du / Dt in 
Eq. (1.7)) is less well discretized. The difference between the obtained Flat for 
∆Ux / ∆x = 1 and the extrapolated value for ∆Ux / ∆x = 0 is about 2.5% (or 1.5% 
of the µN value). It is not clear whether the extrapolated value for ∆Ux / ∆x = 0 

is more precise than the value for ∆Ux / ∆x = 1. Tests with CECT with tdgt =2 

in a 1D Carter / Fromm rolling problem suggest that the ∆Ux / ∆x value to obtain 
the most precise solution could be around the range of 0.5–1. In this work ∆Ux / 
∆x values around 1 are used, as previously mentioned.  

 

Figure 4.41. Flat at the end of FEM rolling contact simulations with different substep 
sizes in rolling phase.  
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Figure 4.42 shows more detail of the frictional contact stress results of some of 
the FEM simulations considered here. The figure shows the profiles of the px 
and ps components of tangential stress along the contact patch, close to its 
centreline, obtained after a rolled length of about 1.4–1.5 times the contact 
patch length. In this case, the saturation level is high and most of the contact 
patch is in slip, due to the high contact angle and associated spin. In 
consequence, the differences between the different solutions are rather limited. 
In cases with lower saturation, the substep size could have a greater impact on 
the results.  

 

 

 

(a) px.   (b) ps.  

Figure 4.42. Tangential contact stresses along the contact patch at s = –0.18 mm. 

4.2.2.3 Penalty stiffness  

In this section, the sensitivity of the FEM contact results to the penalty stiffness 
for the tangential contact is investigated. This penalty stiffness is defined in 
terms of an elastic slip tolerance (EST), which specifies the allowable elastic 
slip (cf. Figure 4.36b) as a fraction of a characteristic contact element 
dimension. Regarding the normal contact, the default penalty stiffness setting 
provided in the Abaqus FE models has been found to yield precise results, so no 
sensitivity has been carried out with it.  

The case of conformal rolling studied in §6.2.4.2 is considered, with the “circ. 
l.” geometry defined in Table 6.1, with reference creepages ξ0 = 0, η0 = 0.001 

and ϕ0 = 0. The curvatures in the central contact point are the same as in the 

case considered in §4.2.2.2, so the overall contact patch dimensions are similar 



286 4.2 Finite element models 

to that case. As a difference, in this case the contact patch is symmetric both 
longitudinally and laterally for zero yaw angle. The same total rolled distance 
and a similar mesh refinement as in the simulations reported in §4.2.2.2 are 
used here.  

Figure 4.43 shows the normalized flat force, flat = Flat / µN, obtained at the end of 
the FEM rolling contact simulations with different EST, namely EST = 0.0025, 
0.0005 and 0.0001. The default value of the EST in the Abaqus contact FE 
models is 0.005. The EST values are plotted in the abscissa axis of the graph in 
logarithmic scale. As shown in the figure, Flat decreases when increasing the 
EST. The longitudinal resultant Fx, smaller in magnitude in this case and not 
shown in the figure, follows a similar trend.  

The differences between the solutions with EST of 0.0001 and 0.0005 are much 
smaller than those between the solutions with EST of 0.0005 and 0.0025. Still, 
the flat value obtained with the most stringent EST of 0.0001 falls far from the 
flat value computed with CECT for this case, which is 0.49. The differences 
between the CECT and FEM results in different conformal rolling contact cases 
with lateral creepage are examined further in §6.2.4. The drawback of 
increasing the penalty stiffness is increasing the number of iterations for 
convergence, as indicated in §4.2.1.3. This is illustrated in Table 4.14, which 
lists the number of iterations taken to complete the FEM rolling contact 
simulations with different EST values. The severe discontinuity iterations are 
related to the enforcement of the contact conditions, the equilibrium iterations 
to the fulfilment of the force equilibrium, and the total iterations are the sum of 
the former two. The highest increment is produced in the severe discontinuity 
iterations when reducing the EST from 0.0005 to 0.0001.  
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Figure 4.43. flat at the end of FEM rolling contact simulations with different EST. 

Table 4.14. Iterations to complete FEM rolling contact simulations with different EST 
values.  

EST 
Severe 

discontinuity 
iterations 

Equilibrium 
iterations 

Total 
iterations 

0.0025 306 114 420 
0.0005 348 132 480 
0.0001 485 138 623 

Figure 4.44a shows the adhesion and slip areas in the contact patch obtained 
from the FEM simulations after a rolled distance of about 1.5 times the contact 
patch length, with the different EST values. The contact patches are shown as 
viewed from the top of the rail. The rolling (x) direction is also shown in the 
figure. Higher EST values result in more extended adhesion areas. The 
differences are noted mainly at the sides of the leading edge of the slip area. 
Figure 4.44b shows the adhesion and slip areas for the same steady rolling 
contact case computed with CECT. The slip area in the rear part of the contact 
patch obtained with CECT is larger than the slip area in the same zone of the 
FEM solutions. Otherwise, the adhesion and slip area distribution computed 
with CECT compares well with the FEM solutions obtained with the lower EST 
values.  
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(a) FEM solutions.   (b) CECT solution.  

Figure 4.44. Adhesion (in red) and slip (in green) areas obtained with different EST. 

Considering these results, the EST has been set to 0.0005 in the FE contact 
models used in this thesis. The FEM contact results previously presented have 
been obtained with this setting as well.  

4.2.2.4 Summary  

The most relevant aspects which have been seen necessary to pay attention to 
for a proper tuning of the FE contact mechanics models described here are 
summarized in Table 4.15 for the Abaqus models, and in Table 4.16 for the 
ANSYS models. Suggested values for some numerical parameters are included, 
particularly when the values considered appropriate have been found to be 
considerably different from the program default ones. All these are to be 
regarded as orientative guidelines, and specific to the particular contact 
problems and objectives pursued here.  
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Table 4.15. Settings in Abaqus FE wheel–rail contact mechanics models.  

Concept Suggested  
setting / action 

Notes 

Contact 
constraint 

enforcement 
Penalty (default).   

Initial contact 
closure 

Define 
displacement-

controlled step.  
 

Normal load 
incrementation 

- No. increments ≈ 
no. elms in contact 
patch semi-axis.  
- Quadratic/cubic 

load ramp.  

Relevant in static frictional contact 
analyses.  

Rolled distance Ux / (2a) ≈ 2 

- Lower distances may suffice with pure 
long. creep / higher saturation levels; 

longer distances may be necessary with lat. 
creep / lower saturation levels.  

- Tangential preload prior to rolling may 
help accelerate convergence to steady state.  

- Check evolution of frictional contact 
forces.  

Substep size ∆Ux / ∆x ≈ 1 

- Define rolling step(s) with coarser mesh / 
incrementation prior to the most refined 
one to minimize rolled distance in the 

latter.  

Penalty stiffness 

- Normal: default is 
OK.  

- Tangential: EST ≈ 
0.0005.  

Lower EST values may be necessary in 2D 
contact analyses (1 or 2 orders of 

magnitude).  

Table 4.16. Settings in ANSYS FE wheel–rail contact mechanics models.  

Concept Settings 

KEYOPTS  

2: 0  
5: 0 or 1  

6: 0  
10: 0 or 2  

Real Constants (1)  

FKN (3): 1–3  
FTOLN (4): 0.03–0.1  

ICONT (5): 0  
FKT (12): 1–1.5 (2)  

SLTO (23): 3E–5 – 1 E–4 (3)(4) 
TNOP (24): 0  

Solver  NROPT,UNSYM  



290 4.2 Finite element models 

(1) Indicated values are factors applied on the default values.  

(2) Even though seen as <auto> in the Friction menu of the Contact 
Wizard, the used value if left unchanged is 0, and not 1 which 
is its default value according to the Contact Technology Guide 
[ANSYS doc 2010]. It is important to ensure a correct setting 
for this parameter, because with a value of 0 the quality of the 
tangential solution may be seriously degraded.  

(3) With the KEYOPT 10 of the CONTA174 elements set to 0, this 
setting is irrelevant.  

(4) Convergence failed in a case in which this parameter was 
decreased to 1E–5.  

The KEYOPTS and Real Constants listed in Table 4.16 apply to the 
CONTA174 contact (slave) elements. These are 3D 8-node elements which are 
used with TARGE170 “target” (master) elements to define surface-to-surface 
contact pairs. A brief description of the listed KEYOPTS and Real Constants is 
given below. More information may be found in the ANSYS Element 
Reference and Contact Technology Guide [ANSYS doc 2010].  

- KEYOPTS:  

o 2: contact algorithm. Options:  

� 0: augmented Lagrangian.  

� 1: penalty.  

� 2: internal MPC.  

� 3: Lagrange multiplier on normal, penalty on tangent.  

� 4: pure Lagrange multiplier on normal and tangent.  

o 5: CNOF/ICONT automated adjustment. Options:  

� 0: no automated adjustment.  

� 1: close gap with auto CNOF.  

� 2: reduce penetration with auto CNOF.  

� 3: close gap / reduce penetration with auto CNOF.  
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� 4: auto ICONT.  

o 6: contact stiffness variation. Options:  

� 0: use default range for stiffness updating.  

� 1: make a nominal refinement to the allowable stiffness range.  

� 2: make an aggressive refinement to the allowable stiffness range.  

o 10: contact stiffness update. Options:  

� 0: each load step if FKN is redefined during load step (pair based).  

� 1: each substep based on mean stress of underlying elements from 
the previous substep (pair based).  

� 2: each iteration based on current mean stress of underlying 
elements (pair based).  

� 3: each load step if FKN is redefined during load step (individual 
element based).  

� 4: each substep based on mean stress of underlying elements from 
the previous substep (individual element based).  

� 5: each iteration based on current mean stress of underlying 
elements (individual element based).  

- Real constants:  

o FKN (3): normal penalty stiffness factor.  

o FTOLN (4): penetration tolerance factor.  

o ICONT (5): initial contact closure.  

o FKT (12): tangent penalty stiffness factor.  

o SLTO (23): allowable elastic slip.  

o TNOP (24): maximum allowable tensile contact pressure.  

One of the differences between the Abaqus and the ANSYS models has been 
the adjustment of the penalty stiffness values. In the ANSYS models it was 
necessary to adjust the normal penalty stiffness settings (particularly the 
FTOLN Real Constant) to obtain precise results in the normal part.  
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Another issue experienced both with the Abaqus and with the ANSYS FEM 
contact models has been a relatively high level of noise in the tangential contact 
stress distributions. The following actions have mitigated the problem:  

- Refine and increase mesh quality in contact area. Provide some layers 
of parallelepiped elements with nearly rectangular faces.  

- Increase number of substeps.  

4.2.3 Some pre- and post-processing calculations  

4.2.3.1 Geometric contact search  

It is necessary to solve the geometric wheel–rail contact search problem as a 
previous step to the solution of the contact mechanics problem, either if the 
contact mechanics problem is solved with FEM or with other contact models. In 
some cases, the wheel position relative to the rail is given as input, and the 
contact search is carried out to define the contact mesh (or the mesh of the PCS 
for CECT, for instance). In other cases, the intended location of the rigid 
contact point is the input, and some DOF of the wheel (normally its lateral 
position) has to be determined to produce the contact at that location. In these 
cases, the contact search problem is solved for a number of tentative wheel 
lateral positions, until the rigid contact point is found where intended.  

Except for very simple wheel and rail geometries, the geometric contact search 
problem has to be carried out numerically. For a wheel with non-zero yaw 
angle, the contact search is 3D, but it may be reduced to 2D calculating the 
contact locus on the wheel surface as explained in [Wang K 1984]. This applies 
for the contact of a wheel on a straight rail. This procedure has been 
implemented as explained below. An extended procedure to calculate the wheel 
contact locus with a curved rail may be found in §4.2 of [Vollebregt 2022]. The 
2D contact search problem consists on finding the minimum vertical distance 
between two curves; the rail profile, and the curve defined by the wheel contact 
locus. This is represented schematically in Figure 4.45.  



4 Numerical analysis of wheel–rail conformal contact 293 

 

Figure 4.45. Geometric wheel–rail contact search. 

The necessary data for the definition of the contact search problem are the 
parameters that define the geometry of the wheelset–track pair, and the 
necessary independent DOF-s of the wheel with respect to the rail. The 
geometry of the wheelset–track pair is defined by the wheel and rail profiles, 
the rail inclination, the nominal rolling radius of the wheel, and the track and 
wheelset widths (cf. the 1st line for each case in the main input file for CECT, 
§4.1.2.1.1). The relevant DOF-s of the wheel are given by the displacements uy 

and uz in the YZ plane, and the roll and yaw angles φ and ψ. Two calculation 

types are implemented:  

- Wheel–rail pair. A single wheel–rail contact pair is taken into account 

(left or right). In this case, the independent (input) wheel DOF-s are uy, φ, 

and ψ; and uz is to be determined. The main steps of the calculation are as 
follows:  

o Calculate the wheel contact locus with Wang’s method. The 
coordinates in the global system of the possible contact point C of the 
rolling circle located at the lateral position yw in the wheelset local 
coordinate system are given by Eqs. (4.78)–(4.80).  
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  ( ) δtan××−×= Rlylyx xwxwC  (4.78) 

  ( ) [ ]χδ zx
y

wyywC ll
l

R
yluyy −+×+= tan2  (4.79) 

  ( ) χRyluRyz wzznrollwC +×++= ,  (4.80) 

The angle δ in these equations is the contact angle of the wheel profile 
in its local coordinate system, positive as depicted in Figure 4.3 (the 
corresponding angle δ for the other wheel of the wheelset, not shown 
in the figure, is also positive). The quantity χ used in Eqs. (4.79) and 
(4.80) is given in Eq. (4.81), and the rest of the parameters are as 
explained for Eqs. (4.1)–(4.14) in §4.1.1.2. These equations are valid 
for the wheel located in the positive yw side, as the one shown in 
Figure 4.3. For the other wheel, these equations are applied changing 
the sign of δ. In Eq. (4.78) it is assumed that the wheelset centre is 
located at x = 0 along the global X axis. 
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o Position the rail profile in the global coordinate system. The 
coordinates {y, z} in the YZ plane of a point with coordinates {yL, zL} 
in the rail profile local coordinate system are given by Eqs. (4.82) and 
(4.83). In these equations, the ± sign applies to the rails located in the 
positive and negative side of the Y axis, respectively. It is applied to 
the yL coordinate to mirror the rail profile in the negative side of the Y 
axis, assuming that the profile given in the local { yL, zL} coordinates 

corresponds to the positive side. φr is the rail inclination angle, and 

hw_tr the track half-width (cf. the input parameters incl_r  and 

hw_tr  in §4.1.2.1.1). Normally φr will have nominally equal and 

opposite values for both rails.  
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  ( ) ( ) trhwzyy rLrL _sincos ±−±= φφ  (4.82) 

  ( ) ( )rLrL zyz φφ cossin +±=  (4.83) 

o Map the wheel contact locus and rail profile to common yi positions in 
the global Y axis, interpolating as necessary from the sets of { y, z} 
coordinates given by Eqs. (4.79) and (4.80) for the wheel, and (4.82) 
and (4.83) for the rail. Other quantities like the slopes and curvatures 
associated to each point may likewise be interpolated. These may 
serve to estimate the extent of the contact patch.  

o Calculate the vertical distance ∆zi between both profiles at each yi 
position, as depicted in Figure 4.45. The position yi at which the 
contact takes place is found as the one with the minimum ∆zi value. 
The contact condition is that the minimum ∆zi = 0, so the wheel 
vertical displacement uz to comply contact in the wheel–rail pair is 
equal to its current value minus the minimum ∆zi.  

The contact location may be refined beyond the resolution provided 
by the chosen set of yi lateral positions, using the condition that at the 
rigid contact point the slopes in the YZ plane of the wheel contact 
locus and the rail profile coincide. If the exact Y coordinate of the 
rigid contact point is y*, in the neighbourhood of y* the slope tan(α) = 
dz / dy of the upper profile (the wheel contact locus) in the global 
coordinate system must be equal or lower than that of the lower 
profile for y < y*, and equal or higher for y > y*, for the contact point 
to be feasible. This enables to determine the pair of yi points between 
which y* may be found by interpolation. The calculation of the angles 

α of the rail profile is straightforward, as αr = ±αL,r + φr; being αL,r the 
angle of the rail profile in its local {yL, zL} system; i.e. αL,r = atan(dzL / 
dyL), and αr the angle in the global system. αL,r is used with + sign for 
the rail in the positive side of the Y axis, and with – sign for the rail in 
the negative side, as yL in Eqs. (4.82) and (4.83), so that the rail profile 
is mirrored as explained before.  

The slopes tan(αw) for the wheel may be approached by finite 
differences ∆z / ∆y, or else they may be calculated more precisely 



296 4.2 Finite element models 

based on the formulation of the normal n to the wheel surface, 
depicted in Figure 4.46. Here a conical wheel is depicted for ease of 
illustration, but this formulation is applicable to any surface of 
revolution, as the normal to a surface of revolution of any shape is 
equal to the normal to the tangent cone to it at the considered point. n 
is seen in true magnitude only in view A of the figure.  

 

Figure 4.46. Normal to the wheel surface.  

n is given in the wheelset {xw, yw, zw} coordinate system according to 
Eq. (4.84). Here iw, j w and kw are the unitary vectors along the axes xw, 
yw and zw.  

  n = cδ (sθ iw – cθ kw) + sδ j w  (4.84) 

The transformation between the {xw, yw, zw} and {X, Y, Z} coordinates 

is similar to that given in Eq. (4.18), with angles φ and ψ in place of 

φω and ψw (cf. Figure 4.3). The components of n in the {X, Y, Z} axes, 
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nX, nY, and nZ, are given in Eqs. (4.85)–(4.87). Eqs. (4.84)–(4.87) 
apply for the wheel located in the positive yw axis. For the other wheel, 
the sign of δ is changed.  

  nX = cδ sθ cψ – sδ sψ cφ – cθ cδ sφ sψ  (4.85) 

  nY = cδ sθ sψ + sδ cψ cφ + cθ cδ sφ cψ  (4.86) 

  nZ = sδ sφ – cθ cδ cφ  (4.87) 

At the possible contact point C, the normal to the wheel surface is 
aligned with the normal to the rail surface, which is contained in the 
YZ plane at any point for a straight rail. So, nX must be 0. Eq. (4.85) 
with this condition could also be used to calculate the wheel contact 
locus. But this equation requires iterative solution, so it would be less 
efficient than using the closed form solution given directly by Eqs. 
(4.78)–(4.80).  

Finally, the slopes tan(αw) are calculated as tan(αw) = –nY / nZ.  

- Wheelset–track pair. Both wheel–rail contact pairs of the wheelset are 
taken into account. In this case, the independent (input) wheel DOF-s are 

uy and ψ. uz and φ are to be determined so that each wheel contacts with 

the corresponding rail. This is done solving both individual wheel–rail 

pairs as outlined above with fixed tentative φ (k) values, which are iterated 

until the same minimum ∆zi value results in both wheel–rail pairs. Figure 
4.47 shows the flowchart with the basic steps of the process.  

The + and – subindices refer to the wheel–rail pair in the + and – sides of 
the Y axis, and the superindices in parentheses to the iteration number. 
The first step in each iteration is solving both wheel–rail pairs (each of 

them individually), with a tentative φ. This yields the lateral position of 
the contact point (y*) and the minimum vertical distance (min(∆zi)) in 
each wheel–rail contact pair. In this step, the wheelset is not moved. In 
the next step, the vertical displacement uz of the wheelset is updated, so 
that contact is achieved in one of the wheel–rail pairs, without 
interpenetration in the other. If, after this movement, the new minimum 
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vertical distances are within a small tolerance value (e.g. 2.0E–3 µm) in 
both wheel–rail pairs, the solution of the wheelset–track pair has been 

accomplished. Otherwise, φ is updated, trying to equalize the minimum 

vertical distances of both wheel–rail pairs, and a new iteration is carried 
out.  

 

Figure 4.47. Flowchart of the geometrical contact problem solution for a wheelset–
track pair.  

Figure 4.48 shows an example graphical output of the solution of the geometric 
contact search in a wheel–rail contact pair. This includes the representation of 
the contacting rail profile and wheel contact locus in the YZ plane, the location 
of the rigid contact point, and the vertical distances between both profiles.  
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Figure 4.48. Graphical representation of the solution to the geometric contact search in 
a wheel–rail pair.  

4.2.3.2 Adaptation of output to CECT format  

Part of the post-processing of the FEM results consists of arranging the nodal 
contact surface results in a format similar to the CECT output, so that the results 
from the different sources can be compared side by side. Table 4.17 lists the 
contact surface nodal field output quantities from the Abaqus FE models that 
are used for this purpose, and their correspondence with the CECT output arrays 
(cf. §4.1.2.2.1). These are retrieved from the rail (prismatic) surface for 
convenience in these wheel–rail contact FEM models, which is defined to be the 
slave surface in the contact pair with the wheel. On the other hand, in the rolling 
element–raceway contact FEM model for rolling bearings described in §7.2.3, 
the results are retrieved from the rolling element surface, defined as the slave 
surface in those models.  
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Table 4.17. Correspondence of Abaqus contact surface nodal field outputs with CECT 
output arrays.  

Abaqus(1) CECT 
CPRESS pn 

CSHEARn(2) px , ps  
CSTATUS eldiv  
CSLIPn(2)(3) srel 

Notes to Table 4.17:  

(1) See §4 of Abaqus Analysis User’s Manual [Abaqus doc 2012].  

(2) n = 1, 2. The correspondence of the 1 and 2 directions of the contact 
surface with the x and s directions is determined based on the 
orientation of the contact surface in the global coordinate system; cf. 
§35.3.1, 37.1.1, 1.2.2, and Figure 1.2.2-1 of the Abaqus Analysis 
User’s Manual [Abaqus doc 2012].  

(3) The calculation of the slip velocities based on the FEM output CSLIPn 
is explained below.  

Having the sides of the rectangular element faces in the FEM contact surface 
aligned with the contact x and s directions facilitates the post-processing of the 
tangential results, as the main directions of the surface correspond directly to 
the x and s directions. Consequently, no transformation is necessary of the FEM 
tangential contact results, given by their two components in the contact surface 
main directions, except for a sign change in some cases. The arrangement of the 
contact surface element faces also facilitates the numbering of nodes and 
elements, which is done in a similar way as in the mesh used in the exact 
contact theory (cf. Figure 2.19), though in this case the mesh may not be 
uniform.  

The derivation of some relevant tangential contact quantities from the FEM 
simulations is explained next.  

- Slip velocities.  

The tangential slip velocities vx, vs are calculated using the contact nodal 
field outputs CSLIPn. CSLIPn are the accumulated slipped distances in 
each node. Therefore, the slip velocities are proportional to the 
increments of CSLIPn. These increments are calculated subtracting the 
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CSLIPn values of two consecutive simulation substeps at each node. The 
slip velocities are then calculated dividing these increments by the time 
increment between the two substeps. In a rolling contact simulation, this 
time increment is equal to ∆Ux / Vc. Vc is defined arbitrarily, externally to 
the FEM simulation (it is not used in the FEM simulation, which is 
static).  

- Frictional work.  

In some contact wear models, wear is assumed to be directly related to 
the frictional work density, see e.g. [Popov 2010]. Therefore, this 
magnitude is of primary interest in the study of wear in the contact 
interface. The frictional power density at each point (x, s) in the contact 
surface, Pfric, is equal to ||pt||·||v||. This is defined in units of power per 
unit area. The frictional work in the rail after one wheel passage, Wfric, is 
calculated integrating Pfric along x according to Eq. (4.88). In this 
equation xledg and xtredg are the x coordinates of the leading and trailing 
edge of the contact patch.  
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The discretization of this equation leads to Eq. (4.89). The summation in 
this equation is extended over the contact surface elements e with nodes 
in a given si lateral position of the mesh. x1(e) and and x2(e) are the 
longitudinal coordinates of the leading and trailing nodes of an element e.  
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This computation is done similarly with the CECT results. In the case of 

CECT, (x1 – x2) = dx  is constant. On the other hand, for c_o_n  = 0, the 

averaging on Pfric expressed in Eq. (4.89) is avoided, using instead the 
value computed at the centre of each element, assumed uniform in the 
whole element.  
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Calculating Pfric as ||pt|| · vrel · Vc,r instead of ||pt||·||v||, the dependence  of 
Wfric on Vc,r is seen to vanish in Eqs. (4.88) and (4.89).  

- Rigid slip velocities.  

These are not derived from the FEM contact outputs, but they are 
calculated externally based on the defined rigid body motion for the 
wheel. The calculation is carried out as explained in §4.1.1.3, starting for 
convenience from a point P on the wheel axis of revolution (which is 
defined as the reference point of the wheel), of which its position along 
the simulation is output.  

Some of the contact surface FEM results are written to a .mat text file, similar in 
format to the CECT .mat output file (cf. §4.1.2.2.1). The following arrays are 

written to this file: I , eldiv , s , mu, pn , px , ps , X_def , Y_def , Z_def , 

srel , wx, ws. X_def , Y_def  and Z_def  are the deformed coordinates of 

each node, in a coordinate system with origin in the contact reference point and 
axes aligned with the global {X, Y, Z} system. The contact reference point is 
prescribed externally, being normally the rigid contact point or some point near 

the centre of the contact patch. Its global coordinates are (Xref, Yref, Zref). s  is the 

lateral (s) coordinate, with origin as well in the contact reference point, and 
calculated with deformed coordinates as explained below. The rest of the arrays 

are as explained in §4.1.2.2.1 for CECT. X_def , Y_def , Z_def  and s  are 

output for all the nodes of the contact patch, because with deformed coordinates 

they are in general unique for each node. E.g., with ms lateral mesh positions, 

there are not only ms unique values of s . However, being the surface element 

faces rectangular, or nearly so, and the displacement gradients small, all the 

nodal coordinates will fall near one of the mx values in longitudinal direction, or 

ms values in lateral direction, defining a mesh of rectangular elements.  

The necessary data to produce this results file are as follows:  

- FEM nodal data:  

o The coordinates (at least the undeformed and optionally also the 
deformed ones) of each node in the contact patch.  

o The contact field outputs listed in Table 4.17.  
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- Specified rigid body kinematics of the wheel: forward velocity, rotation 
velocity, yaw and roll angles, and position of a point of the wheel axis of 
revolution.  

- The size of each substep.  

- The position of the contact reference point, and angle of the contact 
surface in the YZ plane at that point.  

All these data is retrieved for the substep of interest, and in the case of CSLIPn, 
also for the previous substep, if slip velocities are to be calculated. The main 
steps for the production of the .mat file with the FEM outputs are listed next.  

- Selection of the set of nodes in the rail (slave) surface covering the whole 
contact patch, and export of the tables containing the nodal coordinates 
and contact field output data. The data of these tables is then brought 
together to a single table.  

- Extraction of the profile in the YZ plane of the contact surface 
encompassing the whole contact patch, similar to the PCS shown in 

Figure 4.2b. This profile is represented with ms points in the YZ plane. 

The extraction of these points is carried out in the following steps:  

o Location of the node with the maximum contact pressure in the 
contact patch. This node has coordinates (Xc, Yc, Zc) in the global 
coordinate system. With a smooth contact pressure distribution, the 
longitudinal and lateral cross-sections of the contact patch passing 
through this node are normally the longest ones in each direction, or 
close to the longest.  

o Retrieval of the coordinates in the YZ plane (both undeformed and 
deformed) of all the nodes with undeformed longitudinal coordinate 
within the range Xc ± ∆xmin, being ∆xmin the smallest longitudinal 
dimension of the elements of the contact patch. That is, the profile of 
the contact surface passing through X = Xc is extracted.  

o It must be taken into account that for contact patches that may not be 
symmetric in x nor in s directions, like the ones that may arise in 
conformal contact (e.g. like those shown in §6.2.1.1 and 6.2.1.2), the 
entire profile of the contact surface circumscribing the whole contact 
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patch may not be covered by the set of nodes contained in a single 
longitudinal position. An example is shown in Figure 4.49, marking a 
cross-section of the contact patch in red, and the entire range in the s 
direction spanned by the contact patch. So, all the nodes are checked, 
to make sure that all existing mesh positions in the YZ plane are 
covered. For each node, the following steps are carried out for this 
purpose:  

� Check if the undeformed global Y coordinate of the current node, 
Yi, already exists in the set of Y coordinates of the nodes extracted 
in the previous step around X = Xc.  

• If it exists (within a predefined small tolerance value), no 
further action is carried out on this node and the loop continues 
with the next node.  

• Otherwise, new YZ coordinates are added to the profile of the 
contact surface. For this purpose, first the set of nodes with 
(approximately) the same undeformed Y coordinate as the 
current node is retrieved. From this set, the node closest to X = 
Xc is selected, and the YZ coordinates of that node are added to 
the set of YZ coordinates representing the profile of the contact 
surface.  

 

Figure 4.49. Example in which the entire range of the contact patch in the s direction 
cannot be covered by a single cross-section.  
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o Sorting of the set of YZ coordinates representing the profile of the 
contact surface by ascending Y coordinate.  

o Computation of the s coordinates on this profile (both undeformed and 
deformed). The s coordinates are computed incrementally, considering 
a piecewise linear representation of the profile, according to Eq. 
(4.90). In this equation, the subindices i and i+1 refer to the node 
number, in ascending Y coordinate order. In a first step, the s = 0 
coordinate is located in the first node of the profile. Secondly, the sref 
coordinate of the contact reference point is calculated, interpolating on 
the s(Y) curve with its Yref lateral coordinate. Finally, the origin of the 
s coordinate is located on the contact reference point, subtracting sref 
to the s values calculated firstly.  

  ( ) ( )2
1

2
11 iiiiii ZZYYss −+−+= +++  (4.90) 

In the case of the rolling bearing FEM contact models described in 
§7.2.3, the process for the extraction of the profile of the contact surface 
is similar to that described here, but it is done in a cylindrical system 
aligned with the axis of revolution of the rolling element, instead of the 
global {X, Y, Z} system. In this process, nodal coordinates given in the 
{ X, Y, Z} system are transformed to the mentioned cylindrical system of 
the rolling element, using the formulation presented in §7.1.1.  

- Calculation of the si coordinate for all the nodes, interpolating in the s(Y) 
profile obtained in the previous step with the Yi coordinate of each node. 
This is done both with deformed and undeformed coordinates. The si 
values computed with deformed coordinates are written to the .mat output 

file as the previously listed s  values. The si values computed with 

undeformed coordinates are used to determine the is index of each node, 
i.e. its lateral position index in the rectangular mesh. This is equal to the 
node number on the profile computed in the previous step having the 
nearest s coordinate.  

- Extraction of the set of x coordinates circumscribing the contact patch. A 
first set of x coordinates is extracted from the is lateral position 
(longitudinal strip) of the mesh having more nodes. As in the lateral 
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direction, all the existing x positions may not be covered by the set of 
nodes in a single is position. Therefore, the coordinates of all nodes are 
checked to form the entire set of x positions of the mesh, in a similar way 
as explained above for the s positions.  

- Calculation of the 1D I  index for each node. Firstly, its ix index is 

determined, in a similar way as for the is index explained above. Then I  

is computed as I  = ix + (is – 1)mx, with mx being the number of x 

positions of the mesh.  

4.3 Validation of models  

This section shows results obtained with CECT and FEM for different contact 
test cases for which results are available in the literature, with the aim of 
validating the numerical contact models described in this chapter. Test cases 
with different characteristics have been considered for this purpose, as listed in 
Table 4.18. The following features are specified in the table for each case:  

- Dim.: dimensionality of the problem, 2D or 3D. If 2D, the contact 
surface direction in which the contact is analyzed is indicated in 
parenthesis (the contact is considered infinite in the other direction, i.e., 
plane strain is considered).  

- tdgt : cf. §4.1.2.1.1. A new integer value of –1 is added here, to 

distinguish problems with and without friction. Thus, in this table tdgt  

= –1 stands for frictionless contact problems, and tdgt  = 0 for static 

problems with friction.  

- Sim. mat.: elastically similar materials. Yes (Y) or No (N).  

- Conformal: conformal contact. Yes (Y) or No (N). Non-conformal 
contacts are always planar, while conformal contacts may be planar or 
non-planar. A P in parenthesis is added in this column for conformal 
contacts that are planar.  
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Table 4.18. Validation cases for numerical contact models.  

Test case Dim. tdgt Sim. mat. Conformal 
Hertzian conformal 3D –1 Y Y (P) 

Cattaneo shift 3D 0 Y N 
Oblique compression 3D 0 Y N 
Spence compression 3D 0 N N 

2D rolling 2D (x) 2 Y N 
Cattaneo to Carter 3D 1 Y N 
Cylindrical contact 2D (s) –1 Y Y 

3D rolling without slip 3D 2 Y N 
Steady rolling 3D / 2D 2 Y N 

In the next subsections results for each test case are reported. Except where 
noted, steel is the considered material for both contacting bodies, with E 
(Young’s modulus) = 210 GPa and ν (coefficient of Poisson) = 0.30.  

4.3.1 Hertzian conformal contact  

This is a Hertzian case, in which the contacting surfaces are conformal in lateral 
(s) direction, and in which the normal load N is small enough to have a nearly 
planar contact patch. A small yaw angle is applied to the wheel (the upper 
body), so that the principal curvature planes of both contacting bodies are not 
aligned. The parameters of the case are listed in Table 4.19. Convex curvature 
radii are positive, and concave ones negative.  

Table 4.19. Input parameters of Hertzian conformal test case.  

Parameter Description Value Units 
Rsr Lateral radius of curvature of rail 10.0 mm 
Rxw Longitudinal radius of curvature of wheel 500 mm 
Rsw Lateral radius of curvature of wheel –10.5 mm 
N Normal load 100 N 
γ Yaw angle 20 mrad 
δ Contact angle 0 mrad 

As δ = 0, the yaw rotation is perpendicular to the contact surface, and coincides 
with the angle between the principal planes of curvature of both contacting 
bodies. The principal curvatures of the resulting combined undeformed distance 
between the two surfaces, and the orientation of the planes containing them, 
may be computed with Eqs. (2.20)–(2.23).  
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Figure 4.50 shows the contour of the contact patch computed with CECT and 
the corresponding Hertzian ellipse, which closely matches it. The maximum 
normal pressure and the approach computed with CECT are 57.0356 MPa and 
0.206689 µm, respectively. These values are also in close agreement with the 
Hertzian results, which are 57.0160 MPa and 0.206695 µm. It is verified as well 
that the normal pressure distribution computed with CECT is very close to 
ellipsoidal.  

 

Figure 4.50. Contact patch of Hertzian conformal case computed with CECT and with 
Hertzian formulae. 

A noteworthy point in this example is the large angle β of the contact ellipse 
with respect to the rotation γ applied to the wheel (cf. Figure 2.3). In this case, β 
≈ –23.5γ. This effect is discussed further in §6.2.1.2.  

4.3.2 Cattaneo shift  

This is a shift contact problem, in which two elastically similar bodies of 
Hertzian geometry are first brought into contact by a normal load N, and 
subsequently pulled tangentially. While the tangential force is below the 
limiting value µN, part of the contact area remains in adhesion, while the other 
part undergoes a small slip. The solution to the 2D problem was first presented 
by Cattaneo [Cattaneo 1938]. The tangential stress distribution is found as the 
superposition of two concentric and proportionally scaled elliptical 
distributions, as depicted in Figure 4.51. There is a central stick region, and slip 
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regions in the adjacent to the borders of the contact patch, which grow 
progressively towards the centre as the tangential load increases. The 
component px1 shown in the figure is equal to the traction bound g. This 
tangential stress distribution resembles the one for 1D steady rolling (cf. 
§2.1.2.1), with the stick region being in the central part of the contact patch 
instead of adjacent to the leading edge.  

The solution for the 3D case may be found similarly, superposing two 
ellipsoidal tangential stress distributions aligned with the shift direction, as 
explained in §7.2(d) of [Johnson 1987] for the case of a circular contact. The 
contact patch is divided in a central adhesion region and a peripheral slip 
region, similar to the 2D case. This solution produces uniform tangential elastic 
displacement differences in the adhesion region, with values ux = Wx, us = 0, and 
thus complies exactly with the stick condition. Not only the tangential 
displacement differences, but also the tangential displacements uk

x of each body 
k = 1, 2 are uniform, and uk

s = 0, inside the stick region14. On the other hand, the 
slip condition is not fulfilled exactly, since the lateral displacement differences 
us are non-zero in the slip region, and thus the slip is not aligned with the 
tangential stress. Nevertheless, these lateral displacements, and the associated 
error, are small, and this analytical solution is a good approximation of the exact 
solution.  

                                                      

14 This, which is evident for contact between elastically similar solids, as well as 
between an elastic solid and a rigid solid, is also fulfilled for the general case of two 
elastic solids with different elastic constants. It is evident for two elastically similar 
solids, because any non-uniform distribution of tangential elastic displacements in both 
solids, fulfilling the necessary (anti)symmetries, would result in a non-uniform 
displacement difference distribution (twice the value of the individual distributions). In 
the case of non-similar elastic solids, the tangential elastic displacements are taken as 
the differences from the base state of normal compression before the tangential shift, 
assumed to have been attained without friction. The uniformity in the tangential elastic 
displacements is fulfilled taking into account the contributions of the tangential stresses, 
and the difference of normal pressures from the base state of normal compression to the 
final state after applying the shift with friction.  
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Figure 4.51. Tangential stress solution of the Cattaneo shift contact problem.  

Eqs. (4.91)–(4.93) describe the analytical solution of the tangential stresses for a 
circular contact. In these equations r' is equal to the radial coordinate from the 
centre of the contact patch divided by the contact patch radius a, c' is the radius 
of the central adhesion region c divided by a, and pno is the maximum Hertzian 
normal pressure, which is found in the contact centre. Gr and Gw are the shear 
moduli of each contacting body, and νr and νw their coefficients of Poisson. The 
maximum tangential stress is found at the limit between the adhesion and slip 

zones (cf. Figure 4.51), and is equal to 2'1 cpno −µ .  
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The contact of a sphere on a plane is considered for this test case, with the input 
parameters given in Table 4.20.  

Table 4.20. Input parameters of circular contact shift test case.  

Parameter Description Value Units 
Rx, Rs Combined principal radii of curvature 500.0 mm 
d Approach 6.0 µm 
Wx Tangential shift 1.0; 2.0 µm 
µ Coefficient of friction  0.30 - 

The case is computed with CECT and with FEM. The used FEM in this case is 
built in ANSYS. As a difference with the models described in §4.2.1, in this 
case the volume is meshed with quadratic tetrahedron elements (SOLID187). 
Only half of the geometry is meshed, making use of the longitudinal symmetry 
plane. Figure 4.52 shows part of the mesh of the FE model near the contact.  
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(a) Side view.  

 

(b) Plan view.  

Figure 4.52. Mesh around the contact of the FE model for the sphere-on-plane shift test 
case.  
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The computation with CECT is carried out in a single step or increment for the 
normal loading and another one for each of the two tangential shifts indicated in 
Table 4.20. In the FEM analysis, each step is divided in two substeps. The 
numerical results obtained with CECT and FEM are compared with the 
reference (Cattaneo) analytical results in Figure 4.53 and Table 4.21. Where 
two values are given in the table, these correspond to each of the Wx values 
listed in Table 4.20. The agreement of the CECT results with the reference is 
excellent, while the FEM results show higher differences, mostly in the 
tangential part for the case with higher Wx. In this case, the differences in the 
magnitude of the tangential stresses with respect to the reference results are 
around 4%.  

 

Figure 4.53. Comparison of px along the contact centreline computed for the circular 
contact shift test case.  

 

 

 

 



314 4.3 Validation of models 

Table 4.21. Results of circular contact shift test case.  

Result Units Cattaneo CECT FEM 

N kN 1.5988 1.59932  1.6034 
pno MPa 254.46 254.52 254.70 
Fx N 288.0 | 467.8 288.2 | 468.0 286.2 | 469.2 

max(px) MPa 51.35 | 72.94 51.47 | 73.03 47.28 | 70.15 

4.3.3 Oblique compression  

This case is differenced from the Cattaneo shift in that the normal and tangential 
loads change simultaneously. In the most general form, there is an initial normal 
load N0, and after it, a force F is applied, inclined at an angle α with respect to 
the contact plane normal, as depicted in Figure 4.54.  

 

Figure 4.54. Oblique compression contact problem. 

The solution to this problem may be found in §7.3 of [Johnson 1987]. The 
solution for the case with N0 = 0 is derived in problem 2 of §8 of [Popov 2010] 
as well. The solution of this problem resembles that of the Cattaneo shift, the 
tangential stress field being composed of two concentric ellipsoidal distributions 
superposed. If tan α < µ, there is no slip in the contact area. The test case 
considered here fulfils this condition. The parameters of this test case are listed 
in Table 4.22. As in the Cattaneo shift test case of §4.3.2, the contact of a sphere 
on a plane is considered.  
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Table 4.22. Input parameters of circular contact oblique compression test case.  

Parameter Description Value Units 
Rx, Rs Combined principal radii of curvature 500.0 mm 
N0 Initial normal load 3.342 kN 
F Inclined load 23.705 kN 
α Angle of inclination of F 0.1639 rad 
µ Coefficient of friction  0.30 - 

This test case has been solved with CECT in 1+40 steps, 1 for the application of 
N0 and 40 for the application of F. The PCS has been discretized in a 50×50 
element mesh, and it has been changed two times during the analysis, adapting 
it to the contact patch size. In step 1 it has been defined with a 6×6 mm size, in 
step 11 it has been increased to 8×8 mm, and in step 26 to 10×10 mm. This 
serves to test the mesh change functionality treated in §4.1.1.4.3.  

The problem has been specified in two different ways in the CECT input, as 
listed in Table 4.23 (cf. §4.1.2.1.1 for the meaning of the different input 
parameters). These different input specifications are designated as 1 and 2. In 
input 1, the inclined load is specified to be in the YZ plane, and in input 2, in the 
XZ plane. So, the obtained solutions for each input are rotated 90º with respect 
to each other. In both cases, the loads are not specified directly, but through 

imposed displacements, with the parameters d_o_N, and either dir_d  (in 

input 1) or sftx_o_vel  (in input 2). It is necessary to determine the 

magnitude and direction of these imposed displacements. This is 
straightforward, because the ratio of the tangential to normal contact 
compliances, CT / CN, is independent of the load in this case with no slip, and 
equal to (2–ν) / 2(1– ν); cf. Eqs. (7.43) and (7.44) of [Johnson 1987]. So, the 
direction of the resultant imposed displacements (the increments with respect to 
the state after the application of N0) remains constant. The angle αd which 
defines their direction with respect to the vertical (similar to α for F in Figure 
4.54) is given by Eq. (4.94). In this equation ∆Wh is the increment of rigid shift 
in the plane of contact, and ∆d the increment of normal approach. ∆Wh is equal 

to the increment of d_o_N sin(dir_d ) in input 1, and to the increment of 

sftx_o_vel  in input 2. ∆d is equal to d_o_N cos(dir_d ) in both inputs.  
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Table 4.23. CECT input specification for oblique compression test case.  

Value Parameter 
Input 1 Input 2 

ndgt 0 0 
f  (1) 0 0.3 
f  (2:) 0.3 0.3 
dir_d αd 0 

d_o_N 
( )

d

N FNC

α
α

cos
cos0 +  ( )αcos0 FNCN +  

sftx_o_vel  (0) 0 0 
sftx_o_vel  (2:) 0 dN FC αα tancos  

The numbers in parenthesis in the first column of Table 4.23 denote the steps of 
the analysis. The applied displacements have been increased following a 
quadratic function from the second to the last step, so that the rate of change of 
the contact patch radius is constant. This leads to a cubic increase of the load.  

In input 1, dir_d  is set to αd from the first step. In this way, the direction of the 

total applied displacement d_o_N from the beginning of the analysis remains 

constant, and it is not necessary to calculate a different αd for each step. To 

avoid tangential stresses in the first step, f  is set to 0 in this step.  

Figure 4.55 shows the tangential stress solutions obtained for this test case. 
Figure 4.55a shows the tangential stress field in the whole contact patch 
computed with CECT for input 2. Figure 4.55b shows the directional tangential 
stresses along perpendicular central sections of the contact patch computed with 
CECT for both inputs (ps along s for input 1, and px along x for input 2), 
together with the theoretical result. The traction bound is shown as well, in 
magenta chain line. The agreement of the numerical results with the theoretical 
is very good, as can be seen in the figure. The CECT result for input 1 shows a 
slight asymmetry, which is due to the slight non-flatness of the profile of the 
PCS. In the CECT solutions a few APs appear in slip in the perimeter of the 
contact area (32 out of 1557 in contact for solution 2).  
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(a) CECT solution for input 2. pt magnitude and 
direction.  

 
(b) Tangential stresses along the contact 
centrelines.  

Figure 4.55. Tangential stresses in the oblique compression test problem. 

The numerical computation of this case with CECT is more troublesome than 
the previous cases, especially for the limit case with N0 = 0. In the first 
compression steps, the tangential stresses exhibit a rippled pattern, where each 
ripple is associated to a compression step. This is a numerical artefact caused by 
the fact that the new APs that enter in contact accumulate excessive rigid slip, 
because the increment of rigid slip between the previous t' and current t instants 
is calculated for all APs in contact in instant t as if they had been in contact in 
the whole t'–t interval. So, for example, in the case of solving the oblique 
compression problem with N0 = 0 in a single step, the obtained solution with the 
current implementation of CECT would be the same as for a Cattaneo shift 
problem. Figure 4.56 shows an example of the ripples arising in the first steps 
of an oblique compression case with similar parameters as the one calculated 
above, except for N0, which is set to 0. In this case, F is also increased 
cubically, reaching a value of 27.2 N in the step shown. Figure 4.56a shows the 
tangential stress field computed with CECT in the whole contact patch and the 
contours of the adhesion and slip zones. Figure 4.56b shows the lateral 
tangential stresses ps along s at x = 0, computed with CECT and analytically, 
together with the traction bound shown in magenta chain line. In addition to the 
ripples, in Figure 4.56a it is observed that there is a considerable number of APs 
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slipping in the whole perimeter in the CECT solution (377 out of 1557 APs in 
contact), while in the theoretical solution all the contact is in adhesion.  

 

 

 

(a) pt magnitude and direction.   (b) ps across the contact centreline.  

Figure 4.56. CECT solution for oblique compression case with N0 = 0, in step 4 of the 
analysis.  

The error in the solution is progressively reduced as the contact grows and the 
influence of the new elements that enter in contact in the overall solution 
decreases (as long as the prescribed load incrementation does not lead to an 
accelerating growth of the contact patch), but a relatively high number of steps 
is necessary to achieve a sufficiently smooth solution. It could be interesting to 
investigate the possibility to reduce this numerical error, by adequately scaling 
down the inter-step increments of rigid slip and elastic displacement differences 
for the new APs that enter in contact in each step. This could be done on the 
basis of the precise instant (in the (t'–t) interval) in which each new AP enters in 
contact. An estimate of this instant could be achieved using the deformed 
contact surfaces of t'.  

4.3.4 Spence compression  

In this compression case there is no net tangential load, but tangential stresses 
appear due to the elastic dissimilarity of the contacting bodies. A solution to this 
problem was presented in [Spence 1975].  
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The parameters of the test case considered are listed in Table 4.24. This test 
case is the same as the Spence compression test case supplied with the 
CONTACT software [CONTACT UG 2013].  

Table 4.24. Input parameters of circular contact compression test case with dissimilar 
materials.  

Parameter Description Value Units 
Er Young’s modulus of plane 200 GPa 
Ew Young’s modulus of sphere 0.001 GPa 
νr Coefficient of Poisson of plane 0.0 - 
νw Coefficient of Poisson of sphere 0.0 - 
Rx, Rs Combined principal radii of curvature 121.5 mm 
N Normal load 0.4705 N 
µ Coefficient of friction  0.2986 - 

This case has been solved with CECT and with CONTACT (free version v13.1; 
[CONTACT UG 2013]). The same mesh and incrementation has been used in 
both cases. The PCS is a square with 9 mm side discretized in a 45×45 mesh, 
and the load is increased cubically in 35 steps. As in the oblique compression 
case, it is necessary to use a high number of steps to obtain a correct solution.  

 

 

 

(a) CECT solution. pt magnitude and direction.  (b) Stresses along contact centreline.  

Figure 4.57. Stresses in the compression test problem with dissimilar materials.  

The computed tangential stresses are shown in Figure 4.57, together with the 
contours of the adhesion and slip zones. Figure 4.57b compares the tangential 
stresses computed with CECT and with CONTACT, which are seen to agree 
almost exactly. The non-Hertzian traction bound, g, and the Hertzian one, gHz, 
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are also included in this graph, showing that the normal–tangential coupling 
alters the normal pressure profile significantly.  

4.3.5 2D steady rolling  

The steady rolling of a cylinder on a plane is considered, which results in a 2D 
Hertzian contact. This problem has analytical solution, that has been reviewed 
in §2.1.2.1. The parameters of the test case considered are listed in Table 4.25. 
With these parameters, 30% of the contact area is in slip according to the 
analytical solution, and the traction ratio tx = Fx / N is equal to 0.1530.  

Table 4.25. Input parameters of 2D steady rolling test case.  

Parameter Description Value Units 
R Cylinder radius 500 mm 
N Normal load 4.53 kN/mm 
ξ Longitudinal creepage –0.0009 - 
µ Coefficient of friction  0.30 - 

The 2D problem is specified in the CECT input setting c_o_n  = 0, ns  = 1, and 

the lateral dimension of the mesh much larger than the longitudinal (in this case, 
it has been set about 180 times larger). The rigid contact point has to be located 
in the defined unique position of the mesh in s direction; the wheel and rail 

profiles are not relevant as long as this condition is fulfilled. ndgt  = 1 is used 

for the normal problem, and d_o_N is defined as the desired normal load per 

unit length N multiplied by the lateral mesh dimension (s_sup–s_inf ). It has 

to be taken into account that in 2D half-plane contact problems the absolute 
value of the approach is undefined. In the numerical approximation to the 2D 
problem carried out here, this is reflected in that for a fixed load per unit length 

N, the value of the approach changes with the dimension (s_sup–s_inf ). So, 

it would not be appropriate to use ndgt  = 0 in this case.  

The tangential stresses and slip velocities computed with CECT are compared 
with the analytical Carter / Fromm solution (cf. §2.1.2.1) in Figure 4.58. The 
CECT solution has been obtained with approx. 200 elements in contact. The 
agreement of both solutions is very good. The traction ratio calculated with 
CECT is equal to 0.1532, also very close to the analytical result.  



4 Numerical analysis of wheel–rail conformal contact 321 

 

 

 

(a) Tangential stresses.   (b) Slip velocities.  

Figure 4.58. Solution of 2D steady rolling test case. 

4.3.6 3D transient rolling: from Cattaneo to Carter   

This is a 3D transient rolling case of a sphere on a plane. Starting from a state of 
static contact with a resultant longitudinal contact force Fx,0, the sphere starts 
rolling, with a pure longitudinal creepage ξ which is kept constant. ξ is 
calculated to produce a steady Fx equal to Fx,0. The parameters of the test case 
considered are listed in Table 4.26.  

Table 4.26. Input parameters of Cattaneo to Carter test case.  

Parameter Description Value Units 
Rx, Rs Combined principal radii of curvature 200 mm 
N Normal load 6.25 kN 
Fx,0 Initial tangential force –1.193 kN 
ξ Longitudinal creepage 0.001 - 
µ Coefficient of friction  0.4013 - 

This test case has been computed with CECT and with CONTACT, with the 
same discretization. The PCS is defined as a 4.59 mm side square discretized in 

51×51 uniform elements (c_o_n  = 1), and a step ∆q = ∆x = 0.09 mm is used. 

Figure 4.59 shows the tangential stresses computed after 20 rolling steps, which 
corresponds to a rolled distance of about 0.45 times the contact patch diameter 
in this case. Figure 4.59a shows the tangential stress field and contours of 
adhesion and slip zones computed with CECT. The solution computed with 
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CONTACT is similar. Figure 4.59b compares the px stresses along the contact 
centreline computed with CECT and with CONTACT, together with the 
traction bound in dotted line. It is verified that the results obtained with both 
programs are similar.  

 

 

 

(a) CECT solution. pt magnitude and direction.  (b) px along contact centreline.  

Figure 4.59. Tangential stresses in 3D transient rolling test case after 20 rolling steps. 

Figure 4.60 shows the evolution of the normalized resultant longitudinal force fx 
= Fx / µN in the transient rolling simulation. The simulation has been run for a 
total rolled distance Ux of approximately 2.3 times the contact patch diameter 
2a. The solution has almost reached a steady state at the end of the simulation. 
It is observed that there is a slight difference in the final fx values obtained with 
CECT and with CONTACT, of about 0.2% with respect to the traction bound 
µN, which is possibly due to the slight non-flatness of the profile of the PCS.  
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Figure 4.60. Evolution of fx in transient rolling test case.  

4.3.7 Cylindrical contact  

This is a 2D cylindrical conformal contact case without friction. Details of the 
analytical solution of this problem are given in §2.4. This problem has been 
solved with CECT, considering a cavity radius of 100 mm and two different 
cylinder radii: 99.8 mm (clearance fit) and 100.1 mm (interference fit). Both 
cases have been solved for different load levels.  

dir_d  has been set to 0 in the first case, and to π/2 in the second. I.e., the load 

is applied towards the negative Z axis in the first case, and towards the positive 
Y axis in the second. In the first case, the profiles are positioned so that the 
undeformed distance is 0 at the initial contact point, as usual. In the second 

case, both profiles are positioned concentrically. A discretization with ns  = 720 

elements has been used in both cases. The mesh has been changed twice during 
each analysis case, spanning sectors of 60º, 120º and 180º of the circumference 
in the clearance fit case, and 360º, 280º and 200º in the interference fit case. The 

2D mesh for the problem is defined with c_o_n  = 0 and nx  = 1. In this case 

exact 2D cylindrical ICs are used with ics =20 (cf. §4.1.2.1.1), so the 

longitudinal dimension of the contact mesh may be set to an arbitrary value. 

The normal problem is specified with ndgt =1, and the total load d_o_N has to 

be defined as the desired load per unit thickness N multiplied by the 
longitudinal mesh dimension.  
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The results obtained with CECT are compared with the analytical solution in 
Figure 4.61 and Figure 4.62. Figure 4.61 shows the contact patch size as a 
function of the non-dimensional load parameter E*

w |∆R| / N, where E*
w is the 

equivalent Young’s modulus of the cylinder for plane strain (E_w / (1 – 

nu_w2)), ∆R the radial clearance between the cylinder and the cavity (negative 

for interference fit) and N the load per unit thickness. The results of both the 
clearance fit and of the interference fit cases are shown in the figure. The 
contact patch size is expressed as the total angle spanned in the cavity 
circumference, ∆θ (cf. Figure 2.24)15. It is verified that ∆θ tends asymptotically 
to the same limit value in both cases. This limit value depends only on the two 
Dundurs’ material parameters α and β for the pair of contacting materials, as 
indicated in §2.4.  

 

Figure 4.61. Contact patch size as a function of load in frictionless cylindrical contact.  

In Figure 4.62, the normal pressure distributions in the contact patch are 
graphed for two different load levels in the clearance fit and interference fit 
cases for half the contact surface (the results being symmetric in the other half). 
The abscissa axis shows the angle θ with respect to the direction of application 
of the load. The load per unit thickness N corresponding to each case is 
annotated in the figure in kN/mm. It is verified that the CECT solutions match 

very well the theoretical solutions. The results obtained with ics =21 are 

                                                      

15 ∆θ is also called the total contact angle variation, designated as ∆δ in this thesis.  
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similar to the ones obtained with ics =20. The results are different with 

ics =22.  

 

 

 

(a) Clearance fit case.   (b) Interference fit case.  

Figure 4.62. pn distributions for different loads in frictionless cylindrical contact.  

In the interference fit case, the mesh is initially defined spanning the whole 360º 
of the circumference, as previously mentioned. In this case, it is intended to 
model a contact surface with closed profile. No special treatment is done for 
this case in the current implementation of CECT, and the extent of the mesh in s 
direction has to be defined with caution to get correct results if some of the 
borders of the mesh in s direction is in contact. This should be done so that the 
distance between the first and last positions of the mesh in s direction, ∆sns–1, is 
equal to the distance between any other two adjacent s positions of the mesh, 

∆s. This is achieved approximately in this case by defining the s_sup , s_inf  

limits of the mesh as equal to ±πRm, being Rm the average radius of the cavity 
and cylinder. The profile defining the smallest circumference has to be extended 
as necessary to accommodate this s range. If ∆sns–1 is larger than ∆s, the borders 
of the mesh will exhibit a pressure peak if there is contact in them; and if ∆sns–1 
is smaller than ∆s, they will exhibit a pressure valley. Noticeable pressure 
perturbations in the mesh borders are prone to be caused by small deviations 
between ∆sns–1 and ∆s. For the CECT computations, the cylinder and cavity 
profiles are defined so that the mesh borders are located at the point which first 
loses contact when the load is increased sufficiently. In this way, this problem is 
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not present after contact is first lost. Small pressure perturbations are observed 
in the mesh borders of the CECT solutions for the cases in which there is 
contact in the full circumference, which are due to this problem, though this is 
not appreciated in Figure 4.62b.  

4.3.8 3D steady rolling without slip  

Here the 3D steady rolling with Hertzian geometry and no slip is considered. 
The no-slip condition is approached with a high coefficient of friction of 1.0 
and low creepage levels in the computations with CECT. The reference results 
are provided by Kalker’s linear theory of rolling [Kalker 1967].  

The chosen surface curvature radii are Rsw = Rsr = 300 mm (transverse curvature 
radii of wheel and rail) and Rxw = 323.3 mm (longitudinal curvature radius of 
wheel). As the same convex transverse curvatures are defined for both bodies, 
the resulting profile of the contact surface is exactly planar, and no rigid slip is 
generated due to contact surface curvature. The normal load N is set to 30 kN. 
With these inputs, the dimensions of the Hertzian contact ellipse are a = 4.48 
mm and b = 2.69 mm. The lateral b to longitudinal a semi-axis ratio of the 
contact ellipse is 0.60.  

3 cases with different creepages are computed: pure longitudinal (ξ), pure lateral 
(η) and pure spin (φ) creepage. The applied values in each case are ξ = –1.0E–
05, η = –1.0E–05, and φ = tan(0.003) / 323.3 = 9.27933E–06 mm–1. In the cases 
with pure longitudinal and lateral creepages, the mean contact angle δ0 is zero. 
The longitudinal creepage is imposed in the CECT input by defining 

sftx_o_vel  and omega so that omega = sftx_o_vel  / Rroll × (1 – ξ), 

being Rroll the wheel rolling radius, equal to Rxw in this case. The lateral 

creepage is imposed by setting the wheel yaw angle psi  = 1.0E–05 rad. The 

spin creepage is imposed by displacing the wheel with respect to the rail so that 

δ0 = 3 mrad. In all the cases, the wheel forward velocity sftx_o_vel  is 

aligned with the x axis.  

The numerical results computed with CECT are compared with the reference 
results in terms of the contact resultant forces and moment. The numerical and 
reference results are listed in Table 4.27, in the form of the creepage 
coefficients Cij, computed according to Eq. (2.64). The pure longitudinal, lateral 
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and spin creepage situations considered are identified in the table as i = 1, 2, and 
3, respectively. Two values are given in each case in the table, the first being 
the numerical value computed with CECT, and the second the reference 
tabulated value. The numerical results have been obtained on a PCS of 

approximately 10×6 cm, discretized in 60×50 elements with c_o_n  = 1 for i = 

1 and 2, and in 90×54 elements for i = 3. The reference Cij values may be found 
tabulated e.g. in [Kalker 1967] and [Kalker 1990] for ν = 0, 0.25 and 0.50. The 
values for the ν value considered here of 0.30 have been taken from Appendix 5 
of [Johnson 1987]. They may also be found graphed in Figure 5-11 of 
[Thompson 2009].  

The best agreement between the CECT and reference values is found for C11 
and C22, and the highest discrepancy is found in C33, with a difference above 
6%. This case has been computed with CONTACT as well, obtaining similar 
results. The numerical value for C33 (i.e. for the resultant moment due to spin) is 
found to converge slowly towards the reference value with mesh refinement.  

Table 4.27. Creepage coefficients of Kalker’s linear theory computed with CECT for 
b/a = 0.60 and ν = 0.30 (computed | reference tabulated values).  

 i=1 (ξ) i=2 (η) i=3 (φ) 
Cii [-] 5.01 | 4.99 4.67 | 4.65 0.92 | 0.86 

C23 (–C32) [-]   2.26 | 2.29 2.27 | 2.29 

4.3.9 Steady rolling  

In this section a case of 3D partial-slip steady rolling with Hertzian geometry is 
considered, with parameters listed in Table 4.28. The contact angle δ0 is zero, so 
there is no spin creepage. Problems with pure longitudinal or lateral creepage 
are solved, changing the creepage in one direction while maintaining the 
creepage in the other direction at zero.  

Table 4.28. Input parameters of 3D steady rolling test case.  

Parameter Description Value Units 
Rxw Longitudinal radius of curvature of wheel 500 mm 
Rsw Lateral radius of curvature of wheel ∞ mm 
Rsr Lateral radius of curvature of rail 300 mm 
N Normal load 80 kN 
µ Coefficient of friction  0.30 - 
δ0 Contact angle  0 º 
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CECT, FEM and CONTACT are used to solve equivalent problems. The PCS is 
meshed with 0.25×0.20 mm bilinear elements in the case of CECT, with 
0.375×0.30 mm elements in the case of FEM, and with 0.246×0.20 mm uniform 
elements in the case of CONTACT (longitudinal × lateral dimension).  

The longitudinal creepage is imposed as explained in §4.3.8 in the CECT input. 
The lateral creepage is imposed differently in CECT in this case, changing the 
direction of the wheel forward velocity instead of defining a wheel yaw angle. 

For this purpose, bit_l6  is set to 1, and the direction of the wheel velocity 

vector is defined as (dir_vx , dir_vy , dir_vz ) = (1, η, 0), with (x_v , y_v , 

z_v ) = (0, 0, 0) and (dir_omx , dir_omy , dir_omz ) = (0, 1, 0). On the 

other hand, in FEM the lateral creepage is imposed through the wheel yaw 
angle.  

Figure 4.63 shows the computed longitudinal and lateral creepage–creep force 
curves, with fx and fs being the contact resultant forces in x and s directions 
normalized with µN. There is an excellent agreement between the curves 
obtained with CECT and with CONTACT. The curves obtained with FEM fall 
slightly below. The greatest differences are found in the longitudinal curve, with 
a maximum difference of about 0.027 µN between the FEM and the other two 
curves.  

 

 

 

(a) Longitudinal.   (b) Lateral.  

Figure 4.63. Creep force curves in 3D steady rolling test case.  
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The different solutions for ξ = 0 and η = –0.1% are compared in more detail 
hereafter. Figure 4.64 to Figure 4.66 show the contours of adhesion and slip 
zones in the contact patch, with the distributions of tangential stresses and 
relative slip velocities, computed with CECT, FEM and CONTACT, 
respectively. Some relevant quantities of the contact solutions are listed in 
Table 4.29.  

The correspondence between the results of the different models is very good. 
The maximum differences are seen in the magnitudes related to the tangential 
part of the contact problem. The maximum difference in the results shown in 
the table occurs in the maximum Wfric value, and is around 10% between FEM 
and CONTACT. As can be seen in the table, the magnitudes related to the 
tangential part of the contact problem computed with FEM are slightly lower 
than those computed with CONTACT and CECT. This is attributed mostly to 
the use of the penalty formulation in the FE model to enforce the contact 
constraints, which introduces some flexibility in the contact interface that is not 
present in CECT and CONTACT; cf. §4.2.2.3. Another part of the differences 
are attributed to the coarser discretization used in the FEM analyses. The FEM 
solutions have been obtained with an elastic slip tolerance value of 0.0005, and 
with a rolling substep size ∆Ux / ∆x (cf. §4.2.2.2) of 1.0. Both the contact 
resultant forces and the contact solution of Figure 4.65 and Table 4.29 for FEM 
are reported after a rolled distance of about three times the longitudinal contact 
patch dimension 2a. After this rolled distance, the contact resultant forces are 
stabilized, cf. Figure 4.40a. Regarding the contact patch dimensions, it has to be 
noted that the accuracy of the results is limited by the element size. 
Nevertheless, the contact patch shapes obtained with the different analysis 
methods are nearly coincident when plotted one over the other.  
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(a) pt.  

 

(b) vrel.  

Figure 4.64. CECT solution for 3D steady rolling test case with ξ = 0 and η = –0.1%.  
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(a) pt.  

 

(b) vrel.  

Figure 4.65. FEM solution for 3D steady rolling test case with ξ = 0 and η = –0.1%.  
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(a) pt.  

 

(b) vrel.  

Figure 4.66. CONTACT solution for 3D steady rolling test case with ξ = 0 and η = –
0.1%.  
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Table 4.29. Results of 3D steady rolling test case with ξ = 0 and η = –0.1%.  

Result Hertz CECT FEM CONTACT 
a [mm] 6.923 6.875 6.932 7.011 
b [mm] 4.927 4.900 4.945 4.900 
d [µm] 88.39 88.38 88.74 88.39 
max(pn) [MPa] 1120 1120 1121 1120 
max(||pt||) [MPa]  259.6 243.0 258.3 
max(||vrel||) × 103 [-]   5.313 5.064 5.435 
max(Wfric) [mJ/mm2]  1.469 1.336 1.486 

4.3.9.1 Free rolling  

Additional free rolling tests have been carried out with FEM, to try to elucidate 
the question set out in §4.1.1.3.1 of whether the rigid slip velocities should be 
computed using the undeformed or the deformed geometry (cf. Figure 4.14). 
For this purpose, the 3D FE model built for the case specified in Table 4.28 has 
been used on the one hand, and on the other, a new 2D FE model has been built.  

The 2D model represents a wheel with 500 mm radius rolling on a plane in 
plane strain. The load in the 3D case is 80 kN as specified in Table 4.28. In the 
2D case, the load is 20 kN/mm, and the resulting contact patch half-length is 
10.5 mm. The element size in the 2D model is 0.3 mm in the contact zone.  

The slip velocities computed in these FEM analyses are to be compared with the 
rigid slip velocities calculated taking into account both the undeformed and the 
deformed geometry. The FEM analyses are carried out with non-linear 
geometry (cf. §4.2.1.5), so they gather the influence of deformations. The free 
rolling condition, with nominally null rigid slip velocities, has been chosen for 
these tests to focus on the relatively small slip velocity differences object of this 
study. Additionally, frictionless contact has been considered in these analyses, 
to facilitate the retrieval of the interesting slip velocities aside from the 
influence of the tangential tractions and numerical elastic slip tolerance present 
with friction.  

Figure 4.67 shows the relative slip velocities vrel calculated in the 2D and 3D 
free rolling test cases along x, together with the relative rigid slip velocities 
calculated with the deformed geometry, designated as ξ (d). The results of Figure 
4.67b for the 3D case correspond to the contact longitudinal centreline (at s = 
0). The lateral slip velocities are zero in the results shown for both the 2D and 
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3D cases. vrel is calculated with the FEM contact outputs CSLIPn, as outlined in 
§4.2.3.2. ξ (d) is calculated projecting the rigid slip velocities calculated with the 
deformed rolling radii of the wheel on the deformed contact surface, taking into 
account the non-flatness of the deformed contact surface in the longitudinal 
direction, according to Eq. (4.95). αx in this equation is the inclination of the 
deformed contact surface in longitudinal direction, as represented in Figure 
4.68. The rest of the quantities of Eq. (4.95) are represented in this figure as 
well. The P' point is the wheel centre in the deformed configuration, as shown 
in Figure 4.14.  
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(a) 2D case.   (b) 3D case.  

Figure 4.67. Slip velocities calculated with FEM in free rolling test cases.  

Figure 4.67 includes the relative velocities associated to the elastic 
deformations, that in steady rolling are equal to the –∂u / ∂x term of Eq. (1.7). In 
these frictionless test cases, the elastic deformations are caused only by the 
contact normal pressures pn. The associated elastic displacement differences, 
though small, are not zero in these concentrated contact cases with elastically 
similar materials, because the deformed contact surfaces are slightly non-planar. 
The longitudinal gradient –∂u / ∂x is approximated with the differences between 
adjacent nodes in longitudinal direction as –∆u / ∆x. Both the horizontal and 
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vertical displacements are taken into account, and they are projected onto the 
deformed contact surface (with inclination αx in longitudinal direction) similar 
to what is done in Eq. (4.95). I.e., ∆ux is calculated as ∆ux = ∆uX cos αx + ∆uZ 
sin αx, being ∆uX and ∆uZ the differences between adjacent nodes in longitudinal 
direction of elastic displacement differences in X and Z directions, respectively, 
and ∆ux the resulting difference in the longitudinal direction of the deformed 
contact surface.  

 

Figure 4.68. Elastic wheel rolling on an elastic plane, with the deformed geometry 
parameters for the calculation of rigid slip velocities.  

To confirm that the rigid slip velocities should be calculated with the deformed 
geometry, vrel should match with ξ (d) – ∆u / ∆x. Both in the 2D and 3D test 
cases, the best match of vrel is with –∆u / ∆x. This seems to indicate that the 
rigid slip velocities should be calculated with the undeformed geometry. These 
being zero in the considered test cases leads to the equality vrel = –∆u / ∆x. To 
obtain the match of vrel with –∆u / ∆x in the results of these FEM test cases, it is 
important to take into account both ∆uX and ∆uZ in the calculation of ∆u, and to 
carry out the projection on the deformed contact surface as explained before.  

 

 





 

Chapter 5  

5. Influence coefficients of the elastic 
solid  

Chapter summary  

In this chapter, the determination of the influence coefficients (ICs) of the 
elastic solid is tackled. To start with, the case of the elastic half-space is 
treated, of great practical relevance as a wide variety of problems in contact 
mechanics may be solved assuming that the mechanical behaviour of the 
contacting solids is similar to that of the half-space around the contact. 
Available analytical results are reviewed, and new ones are developed for 
rectangular surface elements with bilinear load distribution. On the other hand, 
more general cases of solids with non-planar surfaces are addressed, as the 
ones that may be found in conformal contact, with no analytical solution. For 
these cases, the numerical calculation is considered, and an approximation is 
proposed to avoid the numerical calculation.  
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5.1 The elastic half-space  

In this section, the ICs of the elastic half-space are calculated following Eq. 
(1.9), and starting from the IFs given in §2.2.1. The same {x, y, z} Cartesian 
coordinate system defined in that section is considered. Now these axes are 
designated with uppercase letters in the formulae that follows, and the 
corresponding lowercase letters are used for particular coordinates along them. 
The following integral expressions are defined with the shape function T(X, Y) 
in the surface Se of the element in which the distributed load is applied, 
generalizing the development presented in [Kalker 2001] to arbitrary load 
distributions:  
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In these equations, 22 YX +=ρ . In view of Eqs. (2.109)–(2.112) and (1.9), 

the combined ICs of the elastic half-space may be expressed as a function of 
these integral expressions J1 to J6 according to the following equations:  
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Here the exact analytical ICs of the half-space are denoted with upper case letter 
A. The remaining ICs may be deduced by reciprocity, as indicated next:  

 Ayx = Axy (5.13) 

 Azx = −Axz (5.14) 

 Azy = −Ayz (5.15) 

In the next sections the analytical expressions of the half-space ICs for two 
particular cases with different shape functions T(X, Y) are developed, both of 
them with the distributed load applied in rectangular surface elements aligned 
with the X and Y axes of the adopted Cartesian reference system. Taking the 
loaded rectangular element aligned with the X and Y axes does not imply 
generality loss, as the expressions of the ICs in other coordinate systems may be 
obtained with a coordinate transformation from their expressions in this 
coordinate system, and combining appropriately as necessary the ICs associated 
to loads along the X and Y directions.  
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Expressions will be given for some of the ICs, being able to deduce the 
remaining ones with the following considerations:  

- The Ayy and Ayz ICs may be obtained by means of similarity 
relationships from the Axx and Axz ICs respectively, taking into account 
the (anti)symmetry of the geometry and loads in longitudinal and lateral 
direction with respect to the central point of the loaded domain.  

- The reciprocity relationships (5.13)–(5.15) may be applied for the Ayx, 
Azx and Azy ICs.  

5.1.1 Uniform rectangular elements  

A rectangular element centred in the point (x, y) of the surface is considered. 
The dimension of the half-side of the rectangle aligned with the X axis is a, and 
that of the half-side aligned with the Y axis is b. There is a unitary distributed 
load pj applied in this element in direction j (with j = x, y or z), which is uniform 
inside the element and zero outside it; that is, pj = 1 in all (X, Y) where x–a ≤ X 
≤ x+a and y–b ≤ Y ≤ y+b, and pj = 0 outside the rectangle.  

The analytical expressions for this type of element may be found in [Kalker 
2001] for instance. The expressions for the Axx, Axy, Axz and Azz ICs are given 
next.  
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The double brackets [[ ]] in the previous equations (5.16)–(5.19) denote the 
evaluation of the integral expression f inside them in the limit points (–x–a, –
x+a) in X and (–y–b, –y+b) in Y (ρ is also evaluated in each of the limit points), 
i.e.:  

  [[ f ]] = f (−x+a, −y+b) – f (−x−a, −y+b)  

  – f (−x+a, −y−b) + f (−x−a, −y−b) (5.20) 

Each term in Eqs. (5.16)–(5.19) tends to 0 at the singularity points. The Ayy and 
Ayz ICs may be deduced by similarity from Axx and Axz, according to the 
following equations:  

 Ayy(x, y, a, b) = Axx(y, x, b, a) (5.21) 

 Ayz(x, y, a, b) = Axz(y, x, b, a) (5.22) 

Being Aij(x, y, a, b) the Aij IC of the element centred in (x, y) with longitudinal 
half-side a and lateral b. That is to say, the ICs Ayy and Ayz may be obtained 
applying Eq. (5.20) to the expressions of the Axx and Axz ICs respectively, and 
interchanging x with y, and a with b.  

5.1.2 Bilinear rectangular elements  

In this section the analytical expressions of the ICs for rectangular elements 
with bilinearly varying load distribution are given. These expressions have been 
developed in this thesis, not having found them published in the literature 
before. It is interesting to have these analytical expressions and avoid the 
numerical integration of the ICs, which presents difficulties due to the 
singularity of the IFs at the origin. This is a common difficulty in the Boundary 
Element Method, due to which usually adaptive quadratures are necessary to 
obtain valid results in the numerical integration of the ICs.  

In [Svec 1971] and [Kalker 1972] analytical expressions of the Azz IC for 
triangular elements with non-uniform load distributions may be found. In [Svec 
1971] polynomial pressure distributions are considered (which may be 
particularized to uniform and linear for example), and in [Kalker 1972] linear 
pressure distributions are considered. In [Li J 2001] the necessary expressions 
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for all the ICs of triangular elements with uniform, linear and bilinear load 
distributions are given.  

In [Kaiser 2012] rectangular elements with bilinear load distribution are used, 
although the expressions of the ICs are not given. This type of element is also 
used in [Vollebregt 2009], where the calculation of the ICs is carried out 
numerically, subdividing each element in turn in a mesh of sub-elements, each 
of them with uniform load. The ICs are obtained as the sum of the contributions 
of each of the sub-elements, which may be expressed analytically with the 
formulae of the previous Section 5.1.1.  

 [Dydo 1995] provides the ICs for the displacements and stresses in any point of 
the elastic half-space due to uniform, linear and bilinear load distributions in a 
surface rectangle, in terms of harmonic functions which have to be 
differentiated to obtain the sought ICs. However, the differentiation of these 
harmonic functions is not an easy task.  

As it is mentioned in [Zhao J 2016], it is difficult to obtain the expressions of 
the ICs for rectangular elements with bilinear load distribution. The procedure 
followed here to obtain these expressions has consisted on performing directly 
the analytical integration of Eqs. (5.1)–(5.6) in a rectangular element, inserting 
the bilinear load distribution function T(X, Y) in them. For this purpose, use has 
been made of handbooks of tables of integrals, as those which may be found in 
[Jeffrey 2008] and [Spiegel 2009]. During this integration, functions with 
multiple branches appear, and care must be taken to choose the appropriate 
branch in the primitive function in each case. To assist in this task, the different 
integrals have been carried out both analytically and numerically, and the 
resulting primitive functions have been graphed together for different positions 
of the loaded domain in the x-y plane. Details of the integrals are provided in 
the Appendix. Here the final analytical expressions are provided, with which the 
ICs are completely defined. These expressions have been published in [Blanco-
Lorenzo 2016]. More recently, expressions of the ICs of the subsurface stresses 
for this type of bilinear element have been published in [van der Wekken 2019].  
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Rectangular elements of the surface with longitudinal dimension a and lateral b 
are considered16. A unitary load in a node located in the coordinates (x, y) 
results in a bilinear load distribution in each of the four rectangular elements 
surrounding the node, which has unit value in that node and zero value in the 
rest of the nodes of the four elements. The situation is depicted in Figure 5.1.  

 

Figure 5.1. Definition of the coordinate system and element dimensions for the 
calculation of the ICs for rectangular elements with bilinearly varying load 
distributions.  

For example, the bilinear load distribution T(X, Y) in element number 1 of 
Figure 5.1 due to a unit nodal load on the node at (x, y) follows Eq. (5.23):  
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The contributions J2
1, J3

1 and J5
1 of element 1 to the integral expressions J2, J3 

and J5 of Eqs. (5.1)–(5.6) associated to the unit nodal load on the node at (x, y) 
are given in the following equations. The integral expressions for J4 and J6 may 

                                                      

16 Note that in this section the dimensions of the sides of the rectangles are a and b, 
while in the previous section 5.1.1 a and b designated the dimensions of the half-sides. 
However, in both cases the dimensions of the domain with non-zero load is the same, 2a 
× 2b.  
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be obtained from the ones corresponding to J2 and J5 respectively, interchanging 
x with y and a with b.  
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The sgn() function that appears in Eq. (5.26) gives the sign of the argument; i.e. 
1 for argument equal to or greater than 0, and –1 for negative arguments.  
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The double brackets in Eqs. (5.24)–(5.26) have a different meaning from that in 
Eqs. (5.16)–(5.19): in this case they denote the evaluation of the integral 
expression f inside them at the limit points (x, x+a) for X and (y, y+b) for Y (ρ is 
also evaluated in each of the limit points, but calculated with the X and Y 
variables, instead of with x and y as it appears in Eq. (2.108)), i.e.:  

 [[ f ]] = f (x+a, y+b) – f (x, y+b) – f (x+a, y) + f (x, y) (5.27) 

Each term of Eqs. (5.24)–(5.26) tends to 0 at the singularity points.  

The superindex 1 in the left term of Eqs. (5.24)–(5.26) denotes the contribution 
of element number 1. The contributions of the other elements surrounding the 
node are deduced easily by similarity considerations as a function of the 
respective contributions of the element number 1, according to the following 
equations:  

 ( ) ( )bayxJbayxJ ,,,,,, 1
2

2
2 −=  (5.28) 

 ( ) ( )bayxJbayxJ ,,,,,, 1
2

3
2 −−=  (5.29) 

 ( ) ( )bayxJbayxJ ,,,,,, 1
2

4
2 −=  (5.30) 

 ( ) ( )bayxJbayxJ ,,,,,, 1
3

2
3 −−=  (5.31) 

 ( ) ( )bayxJbayxJ ,,,,,, 1
3

3
3 −−=  (5.32) 

 ( ) ( )bayxJbayxJ ,,,,,, 1
3

4
3 −−=  (5.33) 

 ( ) ( )bayxJbayxJ ,,,,,, 1
5

2
5 −−=  (5.34) 

 ( ) ( )bayxJbayxJ ,,,,,, 1
5

3
5 −−−=  (5.35) 

 ( ) ( )bayxJbayxJ ,,,,,, 1
5

4
5 −=  (5.36) 



346 5.1 The elastic half-space 

The total integral expressions Ji due to the unit nodal load in the node located at 
(x, y) are obtained adding the contributions of the four elements surrounding the 
node, as it is indicated in the following equation:  
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After evaluating the previous integral expressions (5.24)–(5.26) in the four 
elements surrounding the node according to Eqs. (5.27)–(5.37), simplifying and 
grouping terms, one arrives to the following expressions for each of the 
integrals:  
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The following auxiliary functions and variables are defined for Eqs. (5.38)–
(5.40):  
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5.1.3 Comparisons between uniform and bilinear 
rectangular elements  

In this section, some comparisons are made of the half-space ICs of rectangular 
surface elements with uniform and bilinear load distributions. On the other 
hand, the precision of some results of the normal and the tangential parts of the 
contact problem obtained with the exact contact theory with both types of 
elements are compared.  

In order to perform a more direct comparison between the ICs with both types 
of load distribution, the unit load is multiplied by four in the case of the bilinear 
distribution, so that the total applied force is equal to the case of uniform load 
distribution. The ICs are presented in non-dimensional form, multiplied by the 
Young’s modulus of the half-space E1 and divided by the longitudinal 
dimension a of the loaded element. A value of the coefficient of Poisson ν1 of 
0.30 is considered, and a b/a ratio of the sides of the loaded element of 0.70.  

In the following figures the A1
xx, A

1
xy, A

1
xz and A1

zz ICs are graphed as a function 
of the position of the centre of the loaded domain in the surface. In each figure 
one of the ICs is shown, with both types of load distribution, only in the first 
quadrant of the surface, indicating in each case the symmetry or antisymmetry 
relations in the rest of quadrants.  

 

 

 

(a) Uniform load distribution.   (b) Bilinear load distribution.  

Figure 5.2. A1
xx IC with ν1 = 0.30, symmetric with respect to x = 0 and y = 0. 

Rectangular loaded element with b/a = 0.70.  
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(a) Uniform.   (b) Bilinear.  

Figure 5.3. A1
xy IC with ν1 = 0.30, antisymmetric with respect to x = 0 and y = 0. 

Rectangular loaded element with b/a = 0.70.  

 

 

 

(a) Uniform.   (b) Bilinear.  

Figure 5.4. A1
xz IC with ν1 = 0.30, antisymmetric with respect to x = 0 and symmetric 

with respect to y = 0. Rectangular loaded element with b/a = 0.70.  
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(a) Uniform.   (b) Bilinear.  

Figure 5.5. A1
zz IC with ν1 = 0.30, symmetric with respect to x = 0 and y = 0. 

Rectangular loaded element with b/a = 0.70.  

In order to better appreciate the differences between the ICs with both load 
distribution types, in the Figure 5.6 the ICs shown in the previous figures are 
plotted together with both load distribution types in each case, as a function of 
the non-dimensional longitudinal coordinate x/a, in the given y/a lateral 
positions.  

 

 

 

(a) A1
xx.   (b) A1

xy.  
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(c) A1
xz.   (d) A1

zz.  

Figure 5.6. Comparison of the ICs with uniform (solid blue lines) and bilinear (dashed 
red lines) load distribution, as a function of the longitudinal position x/a of the centre of 
the loaded domain, for lateral positions y/a indicated in each case.  

As may be seen in Figure 5.6, the variations of the ICs inside the loaded domain 
are more pronounced with the bilinear load distribution, in line with the 
variation of the applied load inside the element. On the other hand, as the 
loaded domain is moved away, the ICs with both load distributions tend to 
become equal, as may be expected by Saint-Venant’s principle. Another point 
which may be appreciated in the previous figures is that the direct ICs (the ones 
which provide the displacements in a given direction due to loads applied in the 
same direction) are considerably larger than the crossed ICs (the ones which 
provide the displacements in a given direction due to loads applied in a different 
direction). This may also be seen in the following figures, which show the 
magnitude and direction of the horizontal displacements A1_hori generated in 
the origin by elements centred in different (x, y) positions, loaded with unitary 
stresses acting in different i = x, y or z directions.  
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(a) Uniform.   (b) Bilinear.  

Figure 5.7. A1_horx horizontal displacement generated at the origin of the half-space 
with ν1 = 0.30 by a distributed load acting in x direction, antisymmetric with respect to x 
= 0 and symmetric with respect to y = 0. Rectangular loaded element with b/a = 0.70.  

 

 

 

(a) Uniform.   (b) Bilinear.  

Figure 5.8. A1_hory horizontal displacement generated at the origin of the half-space 
with ν1 = 0.30 by a distributed load acting in y direction, symmetric with respect to x = 0 
and antisymmetric with respect to y = 0. Rectangular loaded element with b/a = 0.70.  
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(a) Uniform.   (b) Bilinear.  

Figure 5.9. A1_horz horizontal displacement generated at the origin of the half-space 
with ν1 = 0.30 by a distributed load acting in z direction, symmetric with respect to x = 0 
and y = 0. Rectangular loaded element with b/a = 0.70.  

Next a comparison is presented of the performance of both types of elements in 
the solution of a frictional contact problem with CECT, the implementation of 
the exact contact theory developed in this thesis (cf. §4.1). The problem 
considered for the comparison is a Cattaneo shift. The input data of the 
considered case are as follows:  

- Material of the contacting bodies: steel, with Young’s modulus E of 
210 MPa and coefficient of Poisson ν of 0.30.  

- Combined curvature radii of the contacting surfaces, Rx and Ry: 300 mm 
in both principal directions. The contact patch is therefore circular.  

- Normal load, N: 50 kN.  

- Tangential shift, Wx: 0.01 mm.  

- Coefficient of friction, µ: 0.30.  

The theoretical radius of the contact patch in this case is 4.603 mm. To obtain 
the numerical solution of the problem with the exact contact theory, the PCS is 
defined as a square with 10 mm side, and is discretized in an equal number of 
elements in both directions. Results are computed for different mesh densities. 
With each mesh density, the meshes are adjusted to have the same number of 
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analysis points17 (APs) and the same element size with both uniform and 
bilinear element types, and are located so that the central AP is located on the 
central position of the contact patch18.  

Figure 5.10 shows some theoretical and numerical results of this problem.  

 

 

(a) Contact patch contours of adhesion and slip 
zones, and magnitude and direction of the 
tangential stresses pt. Numerical solution 
obtained with uniform elements and mx,y = 61 
APs in each direction.  

 

(b) Distribution of longitudinal tangential 
stresses px along the contact patch centreline. 
Theoretical (“Theo.”) and numerical (“Num.”) 
solutions with different element types and 
mesh densities as indicated in the legend.  

Figure 5.10. Results of a Cattaneo shift problem.  

Table 5.1 shows some representative results of the normal part of the contact 
problem, and Table 5.2 some of the tangential part. Results obtained with 
different mesh densities are presented, defined with the number of APs in each 
direction mx,y, and with uniform and bilinear elements (indicated in the tables as 
“Unif.” and “Bilin.”, respectively). The results are presented in non-dimensional 

                                                      

17 The APs are the centres of the elements in the case of the uniform elements, and the 
nodes in the case of the bilinear elements, as explained in §4.1.1.1.  

18 Therefore, with the uniform elements meshes with an odd number of elements in each 
direction are used here, and with the bilinear elements meshes with an even number of 
elements (one less in each direction than the number of the corresponding mesh with 
uniform elements).  
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form, divided by the corresponding analytically calculated theoretical result 
indicated in the captions of the tables.  

Table 5.1. Ratios between numerical and theoretical results of the normal contact 
problem for the considered Cattaneo shift, with different mesh densities and element 
types. pn_max: maximum normal pressure; δ: approach. Theoretical results: pn_max = 
1127 MPa; δ = 7.061E–02 mm.  

 pn_max δ 
mx,y [-] Unif. Bilin. Unif. Bilin. 

5 1.0059 1.0042 0.9893 0.9860 
7 1.0039 1.0117 0.9950 0.9924 
9 1.0043 1.0067 0.9990 0.9969 
11 1.0027 1.0053 0.9991 0.9985 
15 1.0018 1.0024 0.9999 0.9988 
21 1.0006 1.0009 0.9995 0.9989 
31 1.0005 1.0008 0.9998 0.9997 
41 1.0004 1.0005 1.0000 0.9998 
51 1.0002 1.0003 0.9999 0.9999 
61 1.0005 1.0006 1.0000 0.9999 

 

Table 5.2. Ratios between numerical and theoretical results of the tangential contact 
problem for the considered Cattaneo shift, with different mesh densities and element 
types. Fx: resultant tangential force; pt_centr: tangential stress at the contact patch 
centre. pt_max: maximum tangential stress in the contact patch. Approximate 
theoretical results: Fx = 7.832 kN; pt_centr = 73.76 MPa; pt_max = 210.8 MPa.  

 Fx pt_centr pt_max 
mx,y [-] Unif. Bilin. Unif. Bilin. Unif. Bilin. 

5 1.0204 1.0006 0.9582 0.9005 0.6899 0.7419 
7 0.9957 0.9911 1.0072 1.0401 0.7055 0.8034 
9 0.9952 0.9962 1.0018 0.9887 0.8499 0.9651 
11 1.0024 0.9996 0.9961 0.9961 0.9562 1.0080 
15 0.9976 0.9986 1.0020 0.9996 0.9318 0.9943 
21 1.0002 1.0003 0.9995 1.0011 0.9694 0.9882 
31 1.0003 1.0003 1.0001 0.9949 0.9783 0.9997 
41 1.0003 1.0002 1.0021 1.0000 0.9887 1.0000 
51 1.0003 1.0003 1.0013 1.0014 0.9974 1.0002 
61 1.0003 1.0004 1.0004 1.0045 0.9998 1.0019 

The numerical results of both the normal and the tangential parts tend to 
approach their theoretical values as the mesh is refined, with both element 
types. As may be seen in Table 5.1, the results obtained in the normal part are 
good with both element types, with errors below 2% in the normal pressures 
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and approaches even with the coarsest meshes. The errors of the numerical 
results in the tangential part are somewhat higher, as may be observed in Table 
5.2, especially those of maximum tangential stress pt_max. This is related with 
the highly localized character of the maximum tangential stress in this problem, 
which may be appreciated in Figure 5.10. The errors in pt_max are lower with 
bilinear elements. However, the tangential stresses obtained with bilinear 
elements tend to present a somewhat higher oscillation or noise than those 
obtained with uniform elements, as may be seen in Figure 5.10b. Regarding the 
values of the resultant longitudinal force Fx and the tangential stress at the 
centre pt_centr, no clear improvement is observed with the bilinear elements 
with respect to the uniform elements.  

On the other hand, when applying the exact contact theory with each of these 
types of elements, in general more convergence difficulties have been observed 
in the iterative algorithms for the solution of the tangential part of contact 
problems with bilinear than with uniform elements. This may possibly be 
related to the fact that the direct ICs reach higher values in the centre of the 
loaded domain with respect to the rest of the mesh with uniform elements, as 
may be observed in Figure 5.11. In each curve of this figure, the ICs at the 
centre of the loaded domain (at x/a = 0), and at the adjacent AP of the mesh 
along the x axis (at x/a = 1) are marked. In this way, the terms in the diagonal of 
the matrices of ICs turn out to be more dominant with uniform elements, and 
this contributes to a better numerical conditioning of the matrices.  

In conclusion, no significant precision improvement has been verified in the 
results obtained in the contact surface when using the exact contact theory with 
bilinear elements, with respect to the uniform elements. This is in line with the 
results reported in [Vollebregt 2009]. On the other hand, van der Wekken [van 
der Wekken 2019] shows that the bilinear elements have the merit of avoiding 
the numerical artefacts in the computed stresses near the surface present with 
the uniform elements close to the element boundaries.  
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Figure 5.11. Comparison of A1
xx ICs of the half-space with ν1 = 0.30, with uniform and 

bilinear rectangular elements. b/a = 0.70. In this case a and b are the total longitudinal 
and lateral dimensions for both element types19.  

5.2 Solids with non-planar surfaces  

In conformal contact problems, the dimensions of the contact zone may no 
longer be much smaller than the curvature radii of the contacting surfaces, and 
may reach a comparable size. In these conditions, the contact surfaces are no 
longer flat, and the hypothesis that the contacting bodies behave as half-spaces 
around the contact becomes questionable. In this section, the elastic behaviour 
of solids with non-planar surfaces is studied. As in the case of the half-space, 
particularly the IFs and ICs of the surface displacements of the solid due to 
surface loads are considered. Firstly, two particular cases with available 

                                                      

19 In this figure, the same size is considered for both element types, with the aim of 
locating the APs in the same positions for both of them. In contrast, in the previous 
figures of this chapter where the different ICs are shown, it has been chosen to consider 
the same size of the loaded domain for both types of load distribution, being said 
domain composed by a single element in the case of the uniform load distribution, and 
by 4 elements (two in x direction by two in y direction) in the case of the bilinear load 
distribution.  
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analytical results are studied. Afterwards the numerical calculation of the ICs 
for general cases is undertaken. Lastly, an analytical approximation to avoid the 
generally costly numerical calculation is proposed.  

The characteristics of the solids considered set out in §2.2 are summarized and 
specified for the non-planar case as follows:  

- The solids are massive (not hollow) around the contact, and the contact 
is far from surface borders or constraint locations as compared to 
contact patch dimensions. In this way, the load transmission beneath the 
contact surfaces resembles that of the half-space.  

- The solids are homogeneous, isotropic, and with linear elastic 
behaviour.  

- The surfaces are approximately prismatic (i.e. extruded in one 
direction) around the contact.  

- The surfaces are smooth, not having local curvature radii small in 
relation to the contact patch dimensions.  

These assumptions are usually fulfilled in relevant rolling contact applications, 
like in the wheel–rail case or in rolling bearings.  

5.2.1 Cases with available analytical results  

The cases of 2D cylindrical geometries and of the sphere introduced in §2.2.2 
are considered. Comparisons of the IFs and ICs of these geometries with those 
of the corresponding planar geometries are presented, identifying common 
features in their differences that will be a basis for the analytical approximation 
proposed in §5.2.3.1.  

5.2.1.1 Cylindrical geometries under linear loads  

In this section, the ICs derived from the IFs given in §2.2.2.1 are worked out. 
The superindexes used for the different ICs follow the same notation as in 
§2.2.2.1, identifying the considered solid (cylinder or cylindrical cavity) and the 
load and supporting condition, making reference to Figure 2.22 and Figure 2.23.  

The Aij(θ) ICs associated to a distributed line load (with units of pressure) 
uniformly in a surface element with angular dimension ∆θ (not to be confused 
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with the total contact angle in 2D cylindrical contact, designated as well as ∆θ 
in §2.4) and centred in θ are obtained evaluating the primitive functions I ij(θ) of 
the aij(θ) IFs given in §2.2.2.1, at the points (θ + ∆θ/2) and (θ – ∆θ/2), as 
indicated in Eq. (5.55):  

 [ ] ( ) ( )( )222

2
θθθθθθ

θθ
∆−−∆+×=×= ∆+

∆− ijijijij IIRIRA  (5.55) 

In this equation R is the radius of the cylinder or of the cylindrical cavity.  

The following equations provide the primitive functions for the different IFs 
given in previously. In each case, appropriate additional terms are introduced in 
order for the resulting primitive functions to be continuous, so that they may 
directly be used in the evaluation of the integral expressions that define the ICs 
according to Eq. (5.55).  
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The previous primitive functions include terms with singularity points when θ 
tends to 0. Finite limits are obtained in all cases, and these are given in Eqs. 
(5.66)–(5.69):  
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Next, some comparisons are shown of the ICs associated to uniformly 
distributed line loads. Figure 5.12 compares the Ak

nn ICs (with k equal to cyl, 
cav or hp) of the cylinder and cylindrical cavity with those of the half-plane, 
and in Figure 5.13 similar comparisons are made for the Ak

sn ICs. The ICs are 
presented in non-dimensional form, multiplied by the Young’s modulus E and 
divided by the half-width a = R× ∆θ/2 of the loaded band. The total angle of the 
loaded band ∆θ is fixed at 20 mrad. A value of the coefficient of Poisson of 
0.30 is considered. For the case of the half-plane, the angular distances and 
coordinates are converted to their linear counterparts multiplying them by the 
considered unit radius R.  

In Figure 5.12 x0 = R is taken as the origin point for the normal displacements of 
the half-plane, so that the normal displacement in the central position of the 
loaded band (θ = 0) of the half-plane coincides with that of the cavity. On the 
other hand, an additional curve is included for the case of the cylinder with a 
point restriction in its centre, adding the necessary rigid body displacement for 
the normal displacement in θ = 0 to coincide with that of the cavity and of the 
half-plane. In this way, a more direct comparison between the different curves 
may be made. The added rigid body displacement in the additional curve for the 
cylinder with punctual centre restriction is indicated in the equation included in 
the figure.  
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(a) Variation in the whole circumference (Ak
nn

symmetrical in θ = 0, and in the cases of the 
cylinder and cavity also in θ = π rad).  

 (b) Detail from θ = 0 to 0.3 rad.  

Figure 5.12. Ak
nn ICs of cylindrical geometries and of the half-plane, with a single 

uniformly distributed line load in a total angular range ∆θ of 20 mrad, and with ν = 
0.30.  

 

 

 

(a) Variation in the whole circumference (Ak
sn

antisymmetric in θ = 0, and in the cases of the 
cylinder and cavity also in θ = π rad).  

 (b) Detail from θ = 0 to 0.3 rad.  

Figure 5.13. Ak
sn ICs of cylindrical geometries and of the half-plane, with a single 

uniformly distributed line load in a total angular range ∆θ of 20 mrad, and with ν = 
0.30.  

As may be seen in Figure 5.12b, for small angular distances between the point 
of load application and the point where the displacements are observed, the 
trends of the Ak

nn of cylindrical geometries are similar to the case of the half-



5 Influence coefficients of the elastic solid 365 

plane. The Ann ICs of the cylinder exhibit a slightly lower decrease than those of 
the half-plane around the loaded zone, while the decrease for those of the cavity 
is somewhat higher. The latter are the ones that present bigger differences with 
respect to the Ann ICs of the half-plane.  

However in the case of the the Asn ICs, the differences between the cylindrical 
geometries and the half-plane are much more pronounced, as may be seen in 
Figure 5.13. Already for θ values of 25 mrad, differences above 20% are 
reached between the Ak

sn ICs of the cylindrical geometries and those of the half-
plane. Near the loaded zone, the Ak

sn of the cavity are bigger than those of the 
half-plane, and the ones of the cylinder are smaller. Additionally, considering a 
conformal contact problem between a cylinder and a cylindrical cavity, these 
differences are added up when calculating the Asn ICs associated to the 
displacement differences between both bodies. In contrast, in the case of the Ann 
ICs, the differences between the Ak

nn of the cylinder and the cavity with respect 
to the half-plane tend to cancel each other. On the other hand, comparing the 
values of Figure 5.12 with those of Figure 5.13, it is seen that the magnitude of 
the Ak

sn ICs is considerably smaller than that of the Ak
nn ICs, in line with what 

was seen in §5.1.3 for the half-space.  

According to the above observations, it may be anticipated that with not too 
high conformity levels, the use of the Ann ICs of the half-plane (in 2D) or of the 
half-space (in 3D) may be a good approximation for the study of frictionless 
conformal contact problems in which only the normal part of the contact is of 
interest (where only the Ak

nn ICs take part). On the contrary, in the tangential 
part of the contact problem, the use of the solutions corresponding to the half-
plane or to the half-space for ICs such as the Asn may lead to appreciable errors 
already with relatively low conformity levels, as is seen in §6.2.2.2.  

5.2.1.2 Sphere under opposing radial loads  

Figure 5.14 represents the a k
nn IFs, and Figure 5.15 the a k

sn IFs, of the sphere 
and of the half-space. Equations for them have been given in §2.2.2.2. The IFs 
are represented in non-dimensional form, multiplied by the Young’s modulus E 
and by the radius of the sphere R. For the case of the half-space, two unitary 
point loads are considered acting in normal direction in points of the surface 
separated by a distance of πR. In this case, the displacements produced in the 
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line joining those two points are represented, dividing by the unitary value of 
the considered radius R to convert from linear to angular distances in the 
abscissa of the graphs.  

 

 

 

(a) Variation from θ = 0 to π/2 rad (ak
nn

symmetric with respect to θ = π/2 rad).  
 (b) Detail from θ = 0 to 0.15 rad.  

Figure 5.14. a esf
nn IF of the sphere, with two diametrically opposed normal point forces, 

together with the equivalent IF for the half-space. ν = 0.30.  

 

 

 

(a) Variation from θ = 0 to π/2 rad (ak
sn

antisymmetric with respect to θ = π/2 rad).  
 (b) Detail from θ = 0 to 0.15 rad.  

Figure 5.15. a esf
sn IF of the sphere, with two diametrically opposed normal point forces, 

together with the equivalent IF for the half-space. ν = 0.30.  

The previous figures show several curves of the sphere IFs, calculated with 
different values of the maximum degree N of the Legendre polynomials at 
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which the infinite summations that appear in the final part of Eqs. (2.138) and 
(2.139) are truncated, as indicated in the figure legends, up to a maximum N 
value of 100. It may be seen that the a esf

nn IF converges quickly with N, having 
already with N=4 nearly undistinguishable differences with respect to N = 100, 
while for the aesf

sn IF the convergence with N is somewhat slower (in Figure 
5.15 the curves for N = 4 and N = 8 may be distinguished, but the curves for N = 
16 and higher are superposed with that for N = 100).  

As it happens with the IFs of cylindrical geometries, in the case of the sphere 
also the differences with respect to the half-space are much more pronounced in 
the a esf

sn IF than in the a esf
nn, and already from relatively reduced θ values.  

5.2.2 Numerical calculation with FEM  

In the case of general geometries for which no analytical solutions for the ICs 
are available, their calculation may be carried out by means of some numerical 
method, like the Finite Element Method. This section details the procedure 
followed in this thesis to calculate numerically with FEM the IC matrices 
necessary as input for the exact contact theory. The numerically calculated ICs 
will be designated here with the C letter.  

5.2.2.1 Arrangement of FE models  

Next, some practical questions are treated about the construction of the 
necessary FE models for the numerical calculation of the ICs. Li [Li Z 2002] 
presented an analysis of the influence of different aspects of the FE models in 
the obtained numerical values of the ICs, as the necessary dimensions of the 
meshed domain to avoid alteration of the results by the proximity of the limits 
of the mesh, the boundary conditions in the limit surfaces of the mesh, the order 
of the elements (linear or quadratic) and the size of the elements in the loaded 
zone. Some important aspects to be taken into account in the computation of the 
ICs were pointed out as well, as the need to remove the global displacements 
from the FE solution, and the need to correct the FE solution in the vicinity of 
the loaded element. The possibility of truncating the influence region at each 
point in the contact patch discretization to reduce the computational cost of the 
subsequent contact analysis with the exact contact theory, i.e., taking into 
account at each element only the influence from the nearest elements around it, 



368 5.2 Solids with non-planar surfaces 

was also briefly discussed. The need for improvement of the FE models used 
for the calculation of the ICs was set out as a possible topic for further research, 
this need arising from computer hardware limitations at the time that work was 
carried out.  

In [Vollebregt 2014a] and in [Zhao J 2016], the numerical calculation of ICs for 
non-planar solids with FE models was further investigated. The effect on the 
precision and computation cost of the ICs of factors as the size of the model 
with respect to the loaded zone, the type of solid element (hexahedron or 
wedge) and its order (linear or quadratic), the degree of local refinement around 
the loaded element, and the rate of element size increase out of the loaded zone 
was studied in detail. In [Vollebregt 2014a], the propagation of the errors in the 
calculated ICs to the final numerical results of contact problems was assessed, 
as well as the effect of truncating the influence region in the contact patch. 
Additionally, individual ICs for both convex and concave contacting bodies 
were shown, and the consequences of their combined differences for the contact 
problem were pointed out. With this, it was recognized that in conformal 
contact, there is some coupling between the normal and tangential parts of the 
contact problem even with elastically similar materials, in addition to the 
coupling at the global equilibrium level already shown in [Li Z 2002].  

Here some comparisons will be presented between the Cnn ICs obtained 
numerically with FEM with different types of elements and forms of application 
of the unit load, for a prismatic body with a non-planar cross-section as the one 
shown in Figure 5.16. It is a convex section, symmetric with respect to the 
vertical symmetry axis shown in the figure, with a central circular part flanked 
by two straight parts. Table 5.3 lists some of the relevant data of the different 
FE models used in these calculations, including the values of the dimensions 
represented in the figure. The second to fourth columns of the table include the 
following data:  

- 2: element type used in the mesh.  

- 3: Number of elements NEC in which the rectangular zone loaded with a 
uniform pressure is discretized in each principal direction of the surface 
(longitudinal×lateral), together with the number of nodes NNC in which 
the load is distributed 
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- 4: Longitudinal (a) and lateral (b) half-sides of the rectangular surface 
of the element nearest to the loaded zone.  

The FE models have been constructed with the commercial FE software Abaqus 
[Abaqus doc 2012]. In all the cases the total longitudinal dimension of the 
models is 600 mm (but in all the cases except for the last one listed in Table 5.3, 
use is made of symmetries in the longitudinal and lateral direction, and the 
longitudinal dimension of the meshed domain is 300 mm), big enough in 
comparison with the dimensions of the zone of interest where the variations of 
the ICs are studied, so as to avoid the results being altered by the boundaries of 
the model.  

 

Figure 5.16. Cross-section of the considered prismatic body to compare the ICs 
obtained numerically with different FE models. 

In the comparisons shown below, only cases in which the loaded zone is centred 
in the convex surface of the model are considered, symmetrically located with 
respect to the longitudinal and lateral symmetry planes of the model. As an 
exception, in test no. 6 the loaded zone is located with two of its sides contained 
in the symmetry planes, instead of centred with respect to these; but this detail 
is not relevant in the results shown. The load is applied on a single node in tests 
nos. 1 and 3, and by means of a uniform stress distributed on a rectangular zone 
of the surface (which is translated to point loads applied on the nodes of the free 
faces of the loaded elements), either on 4 elements (2 in each direction) in tests 
2, 4 and 5, or on a single element in test 6.  
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Table 5.3. Parameters of the different FE models used to calculate the ICs of the 
prismatic body of Figure 5.16.  

Test no. Elm. type NEC / NNC [-] a×b [mm] R [mm] δ [º]  H [mm] 
1 C3D8R - / 1 0.060×0.052 40 100 
2 C3D8R 2×2 / 9 0.060×0.052 40 100 
3 C3D8 - / 1 0.060×0.052 40 100 
4 C3D8 2×2 / 9 0.060×0.052 40 100 
5 C3D20 2×2 / 21 0.120×0.105 40 100 
6 C3D8 1 / 4 0.167×0.158 

10 

65 150 

In all the cases, the meshes have been built with solid hexahedral elements, 
being the surface divided in faces of rectangular elements, as the solid meshes 
are made by extrusion in the longitudinal direction of the mesh of the cross-
section. Additionally, in the zones of interest of the surface where the 
displacements are observed, and up to a certain depth, structured meshes are 
used, with nearly parallelepiped hexahedra. The topology of these meshes is the 
same as that of the FE models constructed for detailed contact analyses 
described in §4.2.1. Figure 5.17 shows two views of the mesh near the loaded 
zone of one of the constructed FE models. The elements of the loaded zone and 
the ones adjacent to them are similar to the rest of the nearby mesh; there is not 
a local refinement in the loaded domain with respect to the adjacent meshing.  

 

(a) Isometric view of the convex surface.  
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(b) Cross-section.  

Figure 5.17. Details of one of the meshes used in the calculation of the ICs of the 
prismatic body of Figure 5.16.  

From the variables related to the mesh listed in Table 5.3, the ones which have 
an appreciable influence on the quality of the calculated ICs are the type of 
element on the one hand, and the number of elements or nodes in which the 
loaded zone is discretized on the other. The dimensions of the elements of the 
mesh around the loaded zone, being in all the cases much lower than the 
characteristic dimensions of the solid (including the curvature radius of the 
circular zone in the central part of the cross-section), have nearly no influence in 
the precision of the results. Regarding the parameters related to the geometry of 
the solid listed in the table, once fixed the radius R, neither the angle δ nor the 
total section height H have an appreciable influence in the variations20 of the Cnn 

                                                      

20 The mentioned geometric features do influence in the total computed displacements. 
But the main ICs obtained in test no. 6 of Table 5.3, which geometric parameters are 
different from those of the rest of the tests listed in the table, differ from those obtained 
in the rest of tests in a global displacement term in each case, which has nearly no 
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in the zone of interest that is considered here, of similar dimension to the radius 
R.  

As may be seen in Table 5.3, in these comparisons three solid hexahedra 
element types have been considered. The C3D8R is a linear element with 
reduced integration, the C3D8 is a linear element with full integration21, and the 
C3D20 is of quadratic order and full integration.  

The next figures compare the Cnn obtained in the different tests listed in Table 
5.3, along the vertical longitudinal plane of symmetry. The values obtained in 
the nodes of the mesh used in each test are marked with markers in each curve. 
Each figure includes as well the curves for the half-space ICs. For x/R << 1, the 
variations along the longitudinal direction of the Cnn of the considered prismatic 
solid with non-planar surface are similar to those of the half-space.  

The results are presented in non-dimensional axes: the longitudinal coordinate, 
with origin in the centre of the loaded domain, is divided by the longitudinal 
half-side of the loaded domain a; and the elastic displacements are expressed as 
ICs (with units of displacement per unit pressure) multiplied by the Young’s 
modulus E1 and divided by a. This normalization is adequate near the loaded 
domain, and for values of x/R << 1, to keep the geometric similarity with 
respect to the loaded zone. Far from the loaded zone, and for x/R values of order 
unity or higher, it would be more adequate to keep the geometric similarity with 
respect to the cross-section or global geometry of the solid; while the 

                                                                                                                                  

variation in the studied zone of interest, and which may therefore be considered in this 
context as a rigid body displacement. Considering as relevant in contact mechanics the 
variations or gradients of the surface displacements around the contact, rather than the 
total displacements, the Cnn obtained in test no. 6 are comparable to the ones obtained in 
the other tests (leaving aside the fact that the sides ratio a/b is slightly different from 
that of the rest of tests), compensating with the appropriate rigid body displacement 
term.  

21 Actually, these elements use selectively reduced integration. Reduced integration is 
used on the volumetric terms, replacing the real volume changes at the Gauss points of 
the element by the average volume change of the element (cf. §3.2.4-7 of the Abaqus 
Theory Manual [Abaqus doc 2012]).  
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dimensions of the loaded zone are no longer relevant, neither the related 
geometric similarity, according to Saint-Venant’s principle. In that case, the x 
coordinate could be made non-dimensional dividing it by the curvature radius of 
the cross-section R; and the elastic displacements, by division by the total load 
applied and multiplication by E1 R.  

 

 

 

(a) General view for x/a in the (0, 15) interval.   
(b) Detail of results of test 3 in the same 
interval.  

Figure 5.18. cnn IFs of tests 1 and 3 of Table 5.3, with point load, together with the ann. 

 

 

 

(a) Nearest part to loaded zone, for x/a in the (0, 
5) interval.  

 
(b) Detail for x/a in the (4, 15) interval (the Ann

curve is hidden behind the curves of tests 4 and 
5).  

Figure 5.19. Cnn ICs of tests 2, 4 and 5 of Table 5.3, with load distributed in four 
elements, together with the corresponding Ann.  
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(a) Nearest part to loaded zone, for x/a in the (0, 
9) interval.  

 (b) Detail for x/a in the (9, 32) interval. 

Figure 5.20. Cnn ICs of test 6 of Table 5.3, with load distributed in a single element, 
together with the corresponding Ann at lateral positions s/b = 1 (where the Cnn are 
calculated), and s/b = 0.  

Figure 5.18 shows the cnn IFs of tests 1 and 3, in which the load is applied in a 
single node. In this figure, the half-space ann curve represents the product 
4×a1

nn×b×E1. The results obtained with the C3D8R elements are very irregular, 
presenting big oscillations that propagate strongly in the mesh in a considerable 
distance from the loaded node, which render them almost useless. This is a 
consequence of a numerical instability phenomenon termed hourglassing, which 
is related to the zero energy deformation modes of the element. This is a 
pathology of reduced integration elements, mostly of those of linear order; and 
as mentioned in the Abaqus Theory Manual [Abaqus doc 2012], is much more 
likely to originate with concentrated than with distributed loads. The results 
obtained with the C3D8 elements exhibit an appreciable oscillation in the nodes 
adjacent to the loaded one, as may be appreciated in Figure 5.18b, but two or 
three nodes beyond it the trend of the ann is correctly reproduced.  

Figure 5.19 shows the Cnn obtained in tests 2, 4 and 5, where the applied load is 
distributed in 4 elements. In this case, the results obtained with the C3D8R 
elements (test 2) are much more regular than in test 1, although they still present 
a certain level of numeric oscillation, which gradually diminishes with the 
distance to the loaded domain. In spite of the observed bad performance of the 
C3D8R for the calculation of the ICs (mostly in test 1), it has to be mentioned 
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that good results have been obtained with these elements in contact problems in 
which the contact patch encompasses a considerable number of elements and 
the contact stresses vary smoothly inside it. These results have been validated 
with available analytical solutions and with results obtained with C3D8 
elements. With respect to the C3D8 elements, the results of test 4 in the zone 
nearest to the loaded domain also improve with respect to the results obtained 
with the same type of element in test 3, as can be seen comparing Figure 5.19a 
with Figure 5.18b. The best results are obtained with quadratic elements, as was 
to be expected: in test 5, there is a difference of just about 1.5% in the Cnn 
obtained in the centre of the loaded zone, with respect to the theoretical Ann 
value.  

The Cnn obtained in test 6 are graphed in Figure 5.20. The precision achieved in 
the nearest node to the centre of the loaded zone, at x/a = s/b = 1, is not much 
worse than that obtained in test 4 at the centre of the loaded zone, in spite that 
the load changes from being distributed in 9 nodes in test 4, to just 4 in test 6. 
The deviation with respect to the theoretical value for the half-space is of 8.8% 
in test 6 at x/a = s/b = 1, and of 6.5% in test 4 at x/a = s/b = 0. As in test 4, the 
precision improves quickly with the distance to the loaded zone. Additionally, 
the errors in the nodes nearest to the centre of the loaded zone have alternating 
signs (being the Cnn obtained in the nearest zone bigger than the corresponding 
Ann, and smaller in the adjacent node), so that it may be thought that they will 
tend to compensate each other.  

On the other hand, it has to be considered that the APs where the ICs are 
necessary in a surface mesh in the exact contact theory based on elements with 
uniform load distribution, are located at even values of x/a and s/b, whereas in 
test 6 the ICs are obtained at odd values of x/a and s/b. Therefore, it is necessary 
to deduce somehow the ICs at the even values of the non-dimensional 
coordinates, from the values originally obtained at the odd coordinates. This 
may be done by means of interpolations, which is equivalent to averaging in 
each element the results of its 4 nodes, as the positions where the results are 
sought are the centres of the surface faces of each element, and these faces are 
rectangular. But in the loaded element, the interpolation of its nodal values 
(equal the 4 of them, by symmetry), amounts to translating directly those values 
to the centre. In this way, the error obtained in the Cnn of the loaded element 
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increases up to 46% (error of the value at x/a = 1 of the curve of test 6 in Figure 
5.20a, with respect to the Ann at x/a = s/b = 0), being the interpolated value just 
above half the correct value. The ICs obtained with this interpolation are not 
valid for use in the solution of contact problems with the exact contact theory, 
but they are valid after applying a correction on them, as described later.  

Far from the loaded zone, the curve obtained in test 6 follows the same trend as 
the curve of the half-space, but it is above it, as may be seen in Figure 5.20b. 
However, the difference between both curves is nearly constant in a wide range 
of distances from the loaded zone, so it does not have consequences in the 
results which may be obtained with these ICs in a contact problem (cf. footnote 
no. 20).  

5.2.2.2 Computation of numerical IC matrices  

Next, it is explained the procedure followed to obtain the IC matrices for solids 
with non-planar surfaces with FE models like those described in §5.2.2.1. These 
IC matrices will be used as input in the exact contact theory to solve conformal 
contact problems. Specifically the relevant parameters of the mesh of the FE 
model which has been used to produce a complete set of IC matrices are those 
of test 6 of Table 5.3. Therefore, models with C3D8 elements have been used, 
and the loaded zone is represented with a single element. These models use 
directly the same meshing as the one successfully used to obtain detailed 
contact solutions with FEM contact analyses.  

As explained in §4.1.1.4, in general it will be necessary to load each one of the 
ns lateral positions in which the PCS is discretized, to get the necessary data for 
the [C ij ] matrices of solids with non-planar cross-section and regular geometry 
in longitudinal direction.  

In the case of prismatic solids, the 3D mesh is built extruding the cross-section 
mesh in longitudinal direction. In the case of solids of revolution, if the 
variation of the local radius of revolution in the zone of interest of the surface is 
much smaller than the mean radius of revolution in that zone, as is typically the 
case of the wheel in the railway application, the simplest way is to do something 
similar to the case of the prismatic solid, sweeping in this case the mesh around 
the axis of revolution. In both cases, the nodes of the surface are distributed in a 
rectangular pattern (or nearly rectangular in the case of the solid of revolution), 
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as may be seen in Figure 5.17a, being located at the corners of the elements. 
The dimensions of the sides of the surface rectangular faces of the elements will 
not be necessarily equal in the whole mesh, neither in longitudinal nor in lateral 
direction, and the FE meshes of each body in general will not be equal. It would 
not be necessary to have the surface nodes arranged in a rectangular pattern 
either, but this facilitates the interpolations that have to be done later.  

After finishing the calculations with the FE model of the two solids that take 
part in the contact, the nodal displacements in the complete mesh of each solid 
for each computed load case will be available, in the three space directions. For 
the calculation of the IC matrices, only the surface displacements are of interest, 
in a region enclosing the potential contact surfaces of the contact problems 
foreseen to be solved with these matrices. This region will be rectangular, as the 
PCS. In the lateral direction it will be delimited by the set of lateral positions of 
the mesh (adjacent or not) that have been loaded in the computed load cases. It 
will not be possible to obtain complete IC matrices in other lateral positions. In 
the longitudinal direction, a region as broad as the mesh of the model allows 
may be taken, even though later the PCS and corresponding IC matrices are 
limited to a smaller zone. Taking into account the symmetry in the longitudinal 
direction, it will be necessary to retrieve the displacements in one of the sides of 
the loaded zone, being possible to deduce the ones of the other side by 
symmetry or antisymmetry relations. With the displacements of a region located 
at a distance between 0 and Lx in the longitudinal direction with respect to the 
centre of the loaded zone, it will be possible to build IC matrices for PCS-s up 
to a total longitudinal dimension of Lx (remind the set of possible loaded 
elements for a mesh of a laterally curved PCS marked in red in Figure 4.15b).  

It must be mentioned that the displacements obtained from a FE analysis 
include the structural or global displacements of the meshed part of each solid. 
To produce valid IC matrices for a contact model to be incorporated in an 
analysis which takes into account the structural flexibility of the bodies out of 
the contact itself (for example, including its natural modes in a multibody 
model, as explained in Chapter 3), it would be necessary to subtract the 
structural displacements (already taken into account outside the contact model) 
from the total ones that are obtained in the FE models, to avoid accounting for 
them twice in the analysis, as noted in [Li Z 2002] and [Vollebregt 2014a]. 
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However, for an independent local contact analysis, it is not necessary to make 
this separation, and the total displacements obtained with the FE models may be 
retained (as in contact mechanics the relevant quantities are the variations of the 
surface displacements around the contact, rather than the total displacements, as 
mentioned in the footnote no. 20).  

Once selected for each solid the set of nodes of which the displacements will be 
taken, each node is indexed according to its position in the longitudinal and 
lateral directions of the set. For each row of nodes, according to its lateral 
position in the mesh, a {x, s, n} local curvilinear coordinate system is defined, 
taking into account the coordinates in the transversal plane of the nodes of the 
adjacent elements. The displacements obtained normally in a common global 
system of the FE model will be transformed to this local curvilinear system.  

From this point on, a number of search operations, transformations between 
coordinate systems, interpolations, scaling operations, superpositions and 
corrections are carried out, with the aim of translating the displacements 
available at the nodes of the FE meshes to the APs of the regular objective mesh 
of the PCS (the objective mesh from now on; composed of equal rectangular 
elements) and of obtaining finally the combined ICs of both solids in that mesh. 
As the FEM results are obtained with single first order loaded elements with 
uniform load, the elements of the objective mesh are also taken as uniform, with 
the APs located at the element centres.  

The next steps are repeated for each load case to be computed in the objective 
mesh, for the two solids that participate in the contact:  

1. The two loaded elements of the FE mesh which centres are nearest at 
each side in the lateral direction from the centre of the loaded element 
in the objective mesh are searched. Figure 5.21 illustrates this search, 
for a given loaded element of the objective mesh. In the figure also the 
longitudinal and lateral dimensions of the elements of the objective 
mesh are indicated, ∆x and ∆s.  
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Figure 5.21. Possible FE mesh (in dashed red lines) and objective mesh (in solid black 
lines). A loaded element of the objective mesh is marked in grey, and the two nearest 
loaded elements of the FE mesh at each side in red with transparency. The longitudinal 
position of the centres of the loaded elements xcload_elm is marked as well, coincident in 
both meshes, and the lateral positions of each of the marked elements.  

For the two corresponding load cases of the FE model, the 
displacements are transformed to the local curvilinear coordinate 
system of each node of the FE mesh, which defines its principal 
directions {x, s, n}.  

2. With the displacements of the previous step, calculated at the nodes of 
the FE mesh of each body, the necessary interpolations are carried out 
to obtain the displacements at the APs of the objective mesh, in two 
steps. Firstly, the displacements of the FE mesh are translated by means 
of two-dimensional interpolation to a grid of points with the same 
arrangement as the APs of the objective mesh, but laterally shifted 
according to the vector going from the centre of the loaded element of 
the objective mesh to the centre of the loaded element of the FE mesh. 
This in turn is carried out in two steps: firstly, the FE nodal 
displacements are translated to the centres of the elements of the FE 
mesh, averaging the four nodal displacements of each element. 
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Secondly, the displacements at the APs of the objective mesh are 
interpolated from the displacements at the centres of the elements of the 
FE mesh. Figure 5.22 illustrates this interpolation, which can be carried 
out easily thanks to the rectangular arrangement of the nodes of the FE 
mesh. In this case, it has been opted for bilinear interpolations. The 
displacements at the APs of the objective mesh could also be directly 
interpolated from the nodal FE displacements.  

 

Figure 5.22. 2D interpolation to obtain the displacements in the pattern of APs of the 
objective mesh, from the displacements calculated at the nodes of the FE mesh.  

The interpolation is carried out in relative coordinates with respect to 
the centre of the loaded element. On the other hand, the displacements 
are scaled with the area ratio between the elements of the objective 
mesh and the current loaded element of the FE mesh. In other words, 
the displacements are scaled in proportion to the applied forces in the 
element in each mesh, as the ICs are calculated per unit stress, and the 
applied force is then proportional to the area of the loaded element. In 
this way, the possibility of having elements with different sizes and 
proportions in each mesh is allowed for. However, to obtain good 
results, the loaded elements of both meshes should be of not too 
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different sizes and proportions, as obviously this simple scaling will not 
reproduce correctly the displacement field near the loaded element in 
the objective mesh, when this is of a different size from the loaded 
element with which the displacements were originally calculated. A 
more sophisticated scaling could be devised, taking into account the 
changes of the half-space ICs with each element for example. But this 
would increase the complexity of this step, as it would imply 
calculating a scaling factor for each AP of the objective mesh, and for 
each IC matrix. Additionally, it would be necessary to separate 
adequately the scaling of the global displacement component (which 
would scale in direct proportion to the total applied force), and that of 
the variable displacement at the contact zone scale.  

The 2D interpolation described above is done for the displacements of 
the two load cases of the FE model identified in the previous step, each 
time applying a different lateral shift to the pattern of APs of the 
objective mesh as explained above.  

Secondly, a linear interpolation is carried out in relation to the lateral 
position of the loaded element. This second interpolation, one-
dimensional, is done between the two sets of interpolated displacements 
obtained above, corresponding to the two loaded elements of the FE 
mesh adjacent in the lateral direction to the current loaded element of 
the objective mesh, to obtain the displacements in the actual positions 
of the APs of the objective mesh, associated to said loaded element of 
the objective mesh. This interpolation is expressed in Eq. (5.70), 
designating with superindices FE,k and FE,k+1 the two sets of 
interpolated displacements obtained above, and with superindex OB,i 
the set of displacements resulting from this last one-dimensional 
interpolation. The different lateral coordinates s that appear in the 
equation are illustrated in Figure 5.21.  
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This interpolation must be done as well in relative coordinates (xr, sr) 
with respect to the centre of the loaded element corresponding to each 
set of displacements as indicated in Eq. (5.70), and not in absolute 
coordinates. In Figure 5.23 it may be easily visualized the error incurred 
when doing the interpolations of the displacements from the FE mesh to 
the objective mesh in absolute coordinates, instead of in relative 
coordinates with respect to the centre of the loaded element. The figure 
shows the displacement fields uFE,k and uFE,k+1 obtained when loading 
separately the elements of the FE mesh with centres located at scFE,k and 
scFE,k+1, respectively. Typical trends of some of the direct ICs near the 
loaded element are represented, which reach their maximum in the 
centre of the loaded element and decrease rapidly in magnitude outside 
it. To simplify, it is assumed in this explanation that the two loaded 
elements of the FE mesh as well as the element of the objective mesh 
are of the same size and shape, that the same displacement curves are 
obtained loading those two elements of the FE mesh, and that the centre 
of the loaded element of the objective mesh is located midway between 
the two elements of the FE mesh. Considering for instance the 
displacement in the centre of the loaded element of the objective mesh 
itself, it may be seen that if it is calculated interpolating with the values 
of the FE mesh corresponding to its same absolute position, the 
obtained value will be considerably lower than the two obtained in the 
centres of the loaded elements of the FE mesh. However, the correct 
result is an intermediate value between these two.  
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Figure 5.23. Incorrect interpolation of the two sets of displacements obtained for the 
two elements of the FE mesh adjacent to the loaded element of the objective mesh, in 
absolute instead of relative coordinates with respect to the centre of the loaded element.  

3. The ICs are obtained superposing, with positive or negative sign 
depending on the case, the displacements obtained in the previous step 
for the two bodies in contact, divided by the applied pressure in each 
case. That is, the surface displacement differences between the two 
bodies are calculated with Eq. (1.8), taking into account that the stress 
acts in opposite direction in each body (Newton’s third law) to define 
correctly the sign to be used in each case. The obtained results are 
tabulated as a function of the absolute coordinates of the objective 
mesh.  

4. As previously discussed, when using a single first order element to 
represent the loaded zone, a very high error is made in estimating the 
displacement at the central point of the loaded zone by direct averaging 
of the available displacements at the nodes, located at the four corners 
of the loaded zone.  

In [Zhao J 2016] careful attention is paid to the precision of the 
calculated displacements in the loaded zone, and that zone is locally 
refined with the aim of achieving a good precision there. In this way, on 
the one hand there is the discretization of the PCS, formed by equal 
rectangular elements, each of which is equivalent to a loaded zone. On 
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the other hand, there is the discretization of the FE models used for the 
calculation of the ICs, in which what could be called a sub-meshing of 
the loaded zone is done, subdividing it in more elements in turn. After 
performing a sensitivity analysis with different FE meshes, some 
recommendations related to different meshing parameters are given, 
aimed at getting an error below 1% in the computed displacement at the 
centre of the loaded zone. Regarding the local refinement of the loaded 
zone, it is recommended to subdivide it in at least 4 elements in each 
direction, and to extend the region of this local refinement at least a 
25% beyond the loaded zone. Additionally, it is recommended to use 
quadratic elements.  

The approach of locally refining the loaded zone has as a drawback, 
apart from the increase in the computational cost, the need to build a 
different FE mesh for each lateral position to be loaded, refining a 
loaded zone each time (unless all the lateral positions to be loaded are 
refined simultaneously, assuming the additional computational cost). 
The procedure followed here, without this local refinement, avoids 
these drawbacks. For this purpose, instead of using a high mesh density 
in the loaded zone to explicitly reproduce in the FE solution the high 
displacement gradients existing in that zone, what is done is to 
extrapolate the displacement at the centre of the loaded zone from the 
available values at the nodes, using the known variation patterns of the 
half-space. This is justified because with an adequate refinement (at the 
PCS level, not at the local level of the loaded zone which represents one 
of its elements), the size of the loaded zone is considerably smaller than 
the characteristic dimensions of the cross-section of the solid (even in 
the study of conformal contact between solids with non-planar 
surfaces). In this way, it is possible to assume without much error a 
half-space-like behaviour within the loaded zone itself; i.e. it may be 
assumed that the variations of the displacements inside the loaded zone 
are not very different to those of the half-space.  

With this idea, the displacements previously obtained by interpolating 
from the nodal values of the FE model, are corrected with the 
differences between the theoretical values of the half-space at the points 
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where the interpolations are done, and the interpolated values (with the 
same type of interpolation as previously used with the FEM nodal 
values, bilinear in this case) at the same points from the theoretical 
values of the half-space (not from the numerical FEM values) at the 
corners of the elements of the PCS. In this way, the errors due to the 
interpolations from the nodal positions of the FE mesh to the positions 
of the APs of the objective mesh are compensated.  

Figure 5.24 illustrates this correction, which is done for the loaded 
element of the PCS, and for its adjacent elements as well. Therefore, 
four correction types are done for each IC: one for the loaded element, 
and other three for the three types of elements adjacent to the loaded 
element. The related elements are shown in Figure 5.24a. The 
corrections for the rest of elements adjacent to the loaded one that are 
not shown in the figure are obtained from those of the represented 
elements, by means of (anti)symmetry relations. By way of example, 
Figure 5.24b represents the corrections for elements 1 and 4, numbered 
with the same subindex as the element number. The theoretical half-
space curve of one of the direct ICs along the diagonal xr/a = sr/b is 
shown, together with the curve obtained by bilinear interpolation from 
the theoretical half-space values of the nodes.  

The most important corrections are those of the direct ICs of the loaded 
element. The corrections for the crossed ICs of the loaded element are 
zero, because the theoretical half-space value at the centre of the loaded 
element, and the value interpolated bilinearly from its four nodal values, 
are zero.  
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(a) Identification of the loaded element (shaded in red) and their adjacent elements. The nodal 
positions are marked with red circles, and the APs with blue squares.  

 

(b) Schematic representation of the corrections for elements 1 and 4. Marked with red circles the 
nodal values with which the interpolations are done, with red points the interpolated values at the 
APs of the objective mesh, and with blue squares the theoretical half-space values at the same 
points.  

Figure 5.24. Corrections of the errors due to the bilinear interpolations from the nodal 
positions of the FE mesh to the APs of the objective mesh.  
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Here it is assumed that the loaded and adjacent elements of the FE mesh 
are similar to the elements of the objective mesh, so that the nodal 
positions of the FE mesh correspond approximately to the corners of the 
elements of the objective mesh. A more refined procedure could be set 
out for this correction, interpolating directly the displacements of the 
APs of the objective mesh from the FEM nodal displacements in the 
previous step 2, and defining the corrections from the FEM nodal 
positions to the APs of the objective mesh. In general, this would result 
in different corrections for each lateral position of the objective mesh. 
Moreover, in the most general case, there would be six different 
corrections to cover each loaded element of the objective mesh and its 
neighbouring elements, as the symmetries in s direction between the FE 
and objective meshes would no longer apply, and only the symmetries 
in x direction would remain.  

The steps listed above may be repeated as many times as wished to produce sets 
of IC matrices for different meshes of the PCS, without the need to repeat FEM 
calculations and starting from the same nodal displacement result files of the FE 
analyses. In the next Section 5.2.3 some curves of ICs of solids with non-planar 
surfaces are shown, numerically calculated with FEM following the procedure 
described here, together with ICs estimated by analytical approximations 
detailed in that section.  

Figure 5.26 demonstrates the importance of the correction described in step 4 of 
the above list to be able to use the ICs obtained with FE models as described 
here (without local refinement in the loaded zone) in the exact contact theory. 
The figure shows two lateral profiles of normal pressures in the central section 
of the contact patch of a simple conformal contact problem obtained with 
CECT, with two sets of numerically calculated IC matrices. The only difference 
between both sets of IC matrices is that in one of them this correction is 
included, and in the other it is not. The considered problem is a frictionless 
contact case between a prismatic solid (designated as rail) and a solid of 
revolution (designated as wheel), with transversal circular profiles in the contact 
zone, with a convex radius of 10.0 mm and a concave radius of 10.1 mm. Figure 
5.25 shows schematically the geometry of the zone of interest of the cross-
sections of the solids, and Table 5.4 lists the relevant geometric parameters and 
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elastic properties. Figure 5.25 shows as well the orientation of the X, Y and Z 
axes of the global Cartesian coordinate system.  

 

Figure 5.25. Cross-section geometry of the two solids for the frictionless conformal 
contact problem considered in Figure 5.26.  

Table 5.4. Geometric parameters and elastic properties of the solids for the frictionless 
conformal contact problem considered in Figure 5.26.  

Parameter Units Value Description 
Rw mm –10.1 Radius of circular part of cross-section of wheel.  
Rr mm 10.0 Radius of circular part of cross-section of rail.  

Rroll mm 500 
Rolling radius of the wheel in the central contact 
point.  

δw º 60 Geometric parameter of the wheel cross-section.  
δr º 65 Geometric parameter of the rail cross-section.  
δ0 º 0 Contact angle at the central contact point.  
Ew, Er GPa 210 Young’s modulus of the material of the solids.  
νw, νr - 0.30 Coefficient of Poisson of the material of the solids.  

The normal load between both solids is 80 kN. The mean contact angle is zero, 
as well as the yaw angle between both solids. In this way, the contact has a 
longitudinal symmetry plane, and a lateral one. Advantage has been taken of the 
lateral symmetry of the geometry in this case to cut to half the number of 
necessary load cases in the FE analyses to produce the IC matrices. For this 
purpose, the ICs associated to half of the lateral positions of the objective mesh 
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have been inferred from symmetry and antisymmetry relations from the ICs 
associated to the corresponding positions symmetrically located with respect to 
the longitudinal symmetry plane.  

  

Figure 5.26. Lateral profiles of normal pressures pn in the central cross-section of the 
contact patch in a frictionless conformal contact problem obtained with CECT, with two 
sets of Cnn matrices, with and without the previously described correction to compensate 
the errors resulting from the interpolations in the loaded element and its adjacent ones.  

These results have been obtained with a mesh of a similar density to the ones 
used to produce the majority of the contact numerical solutions shown in this 
thesis, both with FE models and with the exact contact theory, with around 40 
elements in each direction of the contact patch. As can be seen in the figure, the 
results obtained with the set of ICs without correction are not valid. The Cnn 
matrix without correction leads to a numerically ill conditioned problem 
(probably because the terms in the matrix diagonal become much less 
dominant), and a highly irregular normal pressure distribution is obtained, with 
large variations between adjacent elements. On the other hand, the result 
obtained with the set of ICs with correction, is good, and has been validated 
with FEM. It is easily understandable the importance of a good estimation of 
the ICs of the loaded element with respect to itself, particularly in the case of 
the direct ICs, as they are the greatest in magnitude. Consider that in the 
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simplified contact theory it is assumed that the elastic displacements in each 
element depend only on the load in the same element, ignoring the influence of 
other elements; in other words, the IC matrices in the simplified contact theory 
are diagonal, with the ICs of the loaded element with respect to itself (properly 
scaled) as the only non-zero terms.  

Figure 5.27 gives an idea of the precision obtained in the numerical calculation 
of the ICs with the models and procedure described in this section. The figure 
represents the differences between the numerically calculated combined direct 
Cii ICs of the two solids with geometries and elastic properties described in 
Figure 5.25 and Table 5.4, and the corresponding half-space Aii ICs, in the 
centre of the loaded element and in the next three adjacent in longitudinal 
direction. The loaded element is located in the longitudinal symmetry plane of 
the cross-section of the solids, where the origin of the lateral s coordinate is 
positioned. The dimensions a and b of the elements of the objective mesh where 
the ICs have been calculated are the same as those of the loaded elements in the 
FE models used in the calculation, indicated in Table 5.3 (test 6). The total 
longitudinal dimension 2a of the loaded element is 0.333 mm, so the distance 
from the centre of the loaded element to the third adjacent element is 1 mm. As 
this distance is quite below the minimum curvature radius of the surfaces in the 
zone where the loaded element is located (10 mm), it is assumed that the 
behaviour of the direct ICs in the considered elements is approximately 
equivalent to that of the corresponding half-space ICs. Therefore, the half-space 
ICs provide a reference to assess the precision of the numerically obtained ICs.  

For comparison with the Aii, in the Cii the necessary global displacement is 
subtracted. This global displacement is calculated in each case so that the 
resulting Cii equates the Aii in the fourth element adjacent to the loaded one in 
longitudinal direction. This distance is used as a compromise between big 
enough so that the numerical errors in the computed Cii may be considered low, 
and yet small enough so that the variations of the Cii and the Aii may still be 
assumed equivalent. Table 5.5 lists these global displacements in non-
dimensional form. These are expressed in the {X, Y, Z} global Cartesian system. 
For the considered loaded element, the directions of the local s lateral and n 
normal axes coincide with the directions of the Y and Z axes, so it is understood 
that the load directions Y and Z reference the load cases with the stress applied 
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in s and in n directions in that element. As a result of the geometry and load 
symmetry conditions, in each case the global displacement is aligned with the 
applied load; that is, there is a single component of the global displacement in 
each load case, in the same direction as the applied load.  

  

Figure 5.27. Differences between the Cii direct ICs obtained with FEM for the 
geometry described in Figure 5.25 and Table 5.4, and the corresponding half-space ICs. 
The differences are given in normalized form, on the one hand with respect to the half-
space value of each element (with the narrower and lighter bars), and on the other hand 
with respect to the half-space value of the loaded element (with the wider and darker 
bars).  

Table 5.5. Non-dimensionalized global displacements, ui,g×E/(p×a), in the Cii ICs 
calculated with the FE models of test 6 of Table 5.3 for the solids with the geometries 
and elastic properties described in Figure 5.25 and Table 5.4. E is the Young’s modulus, 
p the uniform pressure and a the longitudinal half-side of the loaded element. i = X, Y or 
Z. The longitudinal and lateral half-sides a and b of the elements of the objective mesh 
are respectively 0.167 and 0.158 mm.  

ui,g×E/(p×a) Direction of load and global displacement 
 Longitudinal (X) Lateral (Y) Vertical (Z) 

RAIL 3.03E–02 1.88E–01 4.67E–03 
WHEEL –1.31E–02 –9.12E–04 –8.32E–03 

The positive values in Table 5.5 indicate that the FE model of the solid in 
question is more flexible in the direction and under the considered load than the 
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half-space, and the negative values that it is more rigid. As could be expected, 
the convex solid is more flexible than the half-space in the three directions, 
especially in lateral direction; and the concave solid, more rigid. Therefore, the 
stiffness differences of each solid with respect to the half-space tend to cancel 
each other in the combined direct ICs of the two solids.  

As may be seen in Figure 5.27, the errors of each Cii change sign at least once in 
the considered elements, so it is reasonable to think that they will tend to 
compensate between them at least in part. The biggest error with respect to the 
theoretical value of the loaded element is of 4%, and is found in the Cnn of the 
loaded element itself. However, the relative error in the second adjacent element 
is bigger. On the other hand, and contrary to what could be expected, in the case 
of the Cxx and Css the errors are bigger in the first and second adjacent elements 
than in the loaded element; both the relative to the Cii of each element, and the 
relative ones to the Cii of the loaded element. In any case, except for the 
mentioned error in the Cnn of the loaded element, the rest of the errors relative to 
the Cii of the loaded element are on the order of 1% or lower.  

An alternative to calculate the ICs with the FE models used here, is based on 
applying the loads punctually, in a single node each time. In this way, the 
loaded elements become directly APs in the objective mesh, and the 
interpolations from the nodes to the centres of the elements are avoided, with 
the large associated errors that have been seen previously. The ICs thus 
obtained would in principle be valid to be used in contact problems with the 
exact contact theory without the need of any correction. Even if they had 
significant errors around the singular loaded node22 (cf. the considerable 
oscillation in the nodes adjacent to the loaded one that may be seen in the curve 
of test 3 in Figure 5.18b), with an adequate mesh density in the PCS these errors 
should tend to compensate each other. After all, the IC matrices thus obtained 
are a condensation of the complete matrix of the FE model in the APs of the 
objective mesh. So it seems reasonable to think that if with some given FE 

                                                      

22 The nodal values obtained applying the load “distributed” in a single element 
(translating to four nodal loads) also have non-negligible errors around the loaded zone, 
due to the coarseness of the discretization of the variation of the load in the surface, as 
has been seen in Figure 5.27.  
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models good contact solutions are obtained, the ICs obtained by loading the 
individual degrees of freedom of the same FE models should also be valid to 
obtain good results in contact analyses with the exact contact theory. 
Nevertheless, in this thesis the calculation of the ICs has not been performed in 
this way. The considerable irregularity in the curve of the ICs around the loaded 
node that may be seen in Figure 5.18b might give rise to some numerical 
problem or instability when using these ICs in the exact contact theory.  

5.2.3 Analytical approximation  

5.2.3.1 Background  

While the ICs may be numerically calculated with FEM precisely for any 
geometry as has been explained in the previous section, this is an arduous task, 
and additionally the results obtained in each case are limited to a particular 
geometry of the contacting bodies, to a given coefficient of Poisson and to an 
analysis mesh with elements of specific dimensions or which may vary only in a 
narrow range. Therefore, it is of interest to develop analytical expressions that 
allow at least approximating the real ICs in a sufficiently precise way to be used 
satisfactorily in detailed contact analysis with the exact contact theory, and 
avoid its numerical calculation.  

In this section, an approach is presented for the analytical approximation of the 
ICs for 3D non-planar solids. The aim is to get a simple way of approximating 
their ICs. The proposed approach is based in a simple concept of force 
decomposition that is represented schematically in Figure 5.28.  
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Figure 5.28. Sketch of the force decomposition concept for the analytical 
approximation of the ICs for 3D solids with curved surfaces.  

The figure shows a force PnJ acting in the local normal direction of a given 
surface point J. This force may be decomposed in the principal axes of another 
surface point I, the lateral sI and the normal nI, as indicated in Eq. (5.71):  

 InJInJsInInJ sPnPPPP ××+××−=+= αα sincos  (5.71) 

Forces in other directions are decomposed in a similar way. Based on this force 
decomposition, the approximated ICs are set out as the superposition of the 
contributions of each force component in the principal axes of the point where 
the displacements are observed, considering the contribution of each component 
as equivalent to that of the half-space. In this way, the approximated ICs in a 
given point I due to the loads applied in a point J are defined in Eq. (5.72). The 
analytically approximated ICs are denoted here with letter B.  
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 Or, in compact form: [ ] [ ] ( )[ ]αAB ijij xR⋅≈  (5.72) 

In this approximation it is assumed that the ICs depend only on the relative 
position and orientation between the point where the load is applied and the 
point where the displacements are observed. The α angle, represented in Figure 
5.28, is the difference in orientation of the principal s and n directions of points 
I and J. Considering prismatic surfaces aligned in the x direction, a single 
rotation α around the x axis suffices to define the difference in surface 
orientation between different points. cα and sα stand for cos(α) and sin(α) 
respectively, and [Rx(α)] is the rotation matrix of angle α around the x axis. The 
α angle is calculated as the slope of point J minus the slope of point I. The slope 
in each point is measured from the horizontal to the tangent of the cross-section 
directed in the positive s direction, counter clock-wise while looking towards 
the negative x axis. On the other hand, the sign of α changes depending of the 
direction of the n axis: if the n axis points into the solid the sign is maintained, 
and if it points out of the solid the sign changes. Eq. (5.72) may be considered 
for the individual ICs of each solid as well as for the combined ICs of the two 
contacting solids, and also for the corresponding IFs. For the combined ICs of 
the differences in the surface displacements of solid 2 with respect to solid 1 (cf. 
Eq. (1.8)), if the n axis points into solid 2, the α angle as defined here keeps its 
sign.  

According to Eq. (5.72), the ICs which may change more in relation to the half-
space ICs around the loaded point are the Bsn and Bns, due to the elevated 
magnitude of the direct ICs (the Ann for the Bsn, and the Ass for the Bns) in 
relation to the crossed ICs, and to the rapid variation of the sine function around 
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the zero values of the angle. This is in agreement with the characteristics of the 
ICs of the cylindrical geometries and of the sphere seen in §5.2.1.  

5.2.3.2 Influence of curvature in longitudinal direction  

In the approximation proposed in Eq. (5.72) it is assumed that the surfaces of 
the solids are curved only in lateral direction, but the presented reasoning could 
be extended for doubly curved surfaces, formulating the force decomposition in 
the three space directions, and considering the differences in orientation in 
lateral and longitudinal directions. Nevertheless, in practical rolling contact 
problems, and particularly in the wheel–rail application, the conformity in the 
longitudinal or rolling direction is much lower than what may be in lateral 
direction. This justifies the assumption of considering that the surfaces of the 
contacting bodies are curved only in lateral direction, and not in the 
longitudinal, with regard to the calculation of the ICs. The IC which may be 
affected to a greater extent by the curvature in longitudinal direction is expected 
to be the ICxn, for the same reason for which the ICsn and ICns are the most 
affected ICs by the curvature in lateral direction. According to the presented 
reasoning of force decomposition, applied now to differences in the surface 
orientation in longitudinal direction, the ICxn of a cylindrical wheel (with no 
curvature in lateral direction) could be approached by Eq. (5.73), to take into 
account the effect of the curvature in longitudinal direction:  

 ( ) ( )xxxxxnxn AAB αα sincos ×−×≈  (5.73) 

In this equation the αx angle represents the difference of the surface orientation 
in longitudinal direction between the point of load application J and the point 
where the displacements are observed I, analogously to the α angle in the lateral 
plane. For small values of the longitudinal coordinate x in relation to the 
revolution radius of the wheel Rx, as verified in the contact patch in practical 
rolling contact problems, αx ≈ ∆x / Rx, being ∆x the difference of longitudinal 
position between points J and I  23.  

                                                      

23 In this approximation the undeformed geometry of the wheel is being considered. If 
the deformed geometry is considered, or an intermediate configuration between the 
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To illustrate the influence of the longitudinal curvature in the ICxn, in Figure 
5.29 the individual Ck

xn are depicted for the prismatic solid and for the solid of 
revolution with the geometry and elastic properties defined in Figure 5.25 and 
Table 5.4. These have been numerically calculated with FEM models. Together 
with the numerically calculated values, estimated values are shown for each of 
the solids, for different values of their curvatures in longitudinal direction: on 
the one hand for the prismatic solid as if it had the same curvature in 
longitudinal direction as the solid of revolution, and on the other hand for the 
solid of revolution as if it were prismatic. The estimated values are obtained 
adding or subtracting the second term in the right hand side of Eq. (5.73) to the 
numerically calculated values, as the values of αx are small in the zone of 
interest, so that cos(αx) ≈ 1 and it is assumed that the first term in the right hand 
side of the equation remains constant regardless of the curvature in longitudinal 
direction.  

The displacements produced in the same lateral position as the applied load are 
considered, so that there is no difference in orientation in the lateral direction. 
Specifically the central position in the cross-section of each solid is considered, 
in its longitudinal symmetry plane, where the local normal directions n are 
perpendicular to the axis of revolution in the case of the solid of revolution. The 
applied load is distributed uniformly in a rectangular element with longitudinal 
a and lateral b half-sides of 0.1667 and 0.158 mm respectively. Outside the 
loaded zone, Cxx is approximately proportional to the inverse of the distance 
from the centre of the loaded zone, in this case 1 / ∆x. On the other hand, sin(αx) 
≈ αx ≈ ∆x / Rx, and therefore the second term of Eq. (5.73) modifies the Cxn in an 
approximately constant quantity in x and proportional to the longitudinal 
curvature 1 / Rx.  

                                                                                                                                  

undeformed and the final deformed one, the αx angles and their influence in the ICxn 
according to Eq. (5.73) are lower than shown here.  
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Figure 5.29. Influence of the curvature in longitudinal direction in the ICxn. Variation in 
x, in the lateral position of ∆s = 0.  

Figure 5.29 shows the Ck
xn in non-dimensional form, for ∆x/a values greater 

than 6. Closer to the loaded zone the different curves tend to approach each 
other. The graph is extended up to ∆x = 16 mm in the abscissa axis, a typical 
value of the size of the contact patch in the wheel–rail application. The 
maximum value of the non-dimensional quantity Ak

xn×Ek/a for the half-space in 
this case is 0.28, and is produced at the (∆x/a, ∆s/b) = (1, 0) coordinates. As 
may be seen in the figure, the differences in the calculated and estimated Ck

xn of 
each solid with different Rx values are relatively reduced. This confirms that the 
simplification of not taking into account the effect in the ICs of the curvature in 
longitudinal direction is adequate. On the other hand, the differences between 
the Ck

xn of each solid, related with the geometry of the cross-section of each 
solid (one being convex and the other concave) are quite bigger. These last 
differences have appreciable consequences in the tangential contact in cases of 
conformal rolling contact, as will be explained in Chapter 6. These differences 
are further addressed in §5.2.3.5, proposing a method for their better 
approximation.  
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5.2.3.3 Analogy with cylindrical ICs  

Recalling the equations of the ICs of cylindrical geometries, a parallelism may 
be appreciated between that 2D case and the approximation for 3D solids with 
non-planar surfaces proposed here. As a matter of fact, the ICs of the cylinder 
and the cylindrical cavity under a single force in the surface are composed of a 
term multiplied by the cosine of the angular difference between the point where 
the load is applied and the point where the displacements are taken (that angular 
difference, designated as α here, was designated as θ in §2.2.2 and 5.2.1), and of 
another term multiplied by the sine of that angular difference, as in Eq. (5.72). 
Additional terms appear in the cylinder, different as a function of the support 
conditions, which turn out to be rigid body displacements. Therefore, they have 
no affection at the contact mechanics level, and may be disregarded in the 
present discussion (cf. footnote no. 20).  

For example, in Eq. (2.131) for the ann IF of the cylindrical cavity under a single 
normal force, the first term in the right which is multiplied by sin(θ) may be 

assimilated to the hp

sna  of the corresponding plane geometry (that is, the half-

plane), and the second term in the right multiplied by cos(θ), to hp

nna , in line with 

the approximation for Bnn in Eq. (5.72). Taking the limit for θ → 0, and the 
adequate sign of θ in each case, it is verified that:  
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( )θ~F  and θ~  in Eq. (5.74) are as defined in Eqs. (2.136) and (2.137). In Eq. 

(5.75), the series expansion of the cosine function has been used truncated in the 
term θ2/2 (neglecting higher order infinitesimal terms for θ → 0), and that ln(θ) 
varies in the same proportion as ln(1/θ). After the second term, the 
proportionality symbol is used (with the aim of denoting similar variation or 
asymptotic behaviour, and not proportionality) instead of the equality, because 

as it is known the absolute magnitude of the hp

nna  IF of the half-plane is 
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undetermined, being necessary to choose an arbitrary x0 reference to define it 
(cf. Eq. (2.117)).  

Besides the equalities of Eqs. (5.74) and (5.75), it is observed also that the term 

which in Eq. (2.131) for bcav

nna ,  is multiplied by sin(θ), in Eq. (2.133) for bcav

sna ,  is 

multiplied by cos(θ); and the term which is multiplied by cos(θ) in bcav

nna , , is 

multiplied by sin(θ) in bcav

sna , , with the adequate sign in each case. This is also in 

line with the idea of the force decomposition presented here, taking into account 
that the direct ass IF of the half-plane is equal to the ann. The cylinder has the 
same expressions, changing the sign of the θ angle.  

Therefore, in the cylindrical geometries a force decomposition law similar to 
the one proposed here for 3D general geometries is fulfilled exactly. As a 
difference, in the expressions for the ICs of the cylindrical geometries, the terms 

assimilated to the hp

sna  include a factor variable with θ, equal to |π – |θ|| / π. It has 

been tried to include this factor in the Asn half-space ICs for use in the Bij ICs, so 
as to make them more similar to the exact ICs for cylindrical geometries, but 
with this it has not been found any consistent precision improvement of the Bij 
ICs for 3D prismatic solids. Moreover, if the materials of the two contacting 
bodies are elastically similar, as in the wheel–rail application, the combined 
half-space Asn are zero, and in this case the factor |π – |θ|| / π becomes irrelevant 
for the Bij approximation of the combined ICs.  

5.2.3.4 Moving the tangent point of the equivalent half-space  

In the approximation of Eq. (5.72) it has been assumed that the behaviour of the 
non-planar solid is equivalent to a half-space tangent to its surface at I. A 
variant of this approximation is obtained by considering a tangent plane at the 
location J where the load is applied, as illustrated in Figure 5.30. This gives 

approximated ICs denoted by ijB  according to Eq. (5.76).  
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Figure 5.30. ijB  variant of surface orientation-based approximated ICs. 

A third variant ijB̂  is set out imagining the tangent half-space halfway between 

points I and J, oriented at an angle β = α/2 apart from the tangents at those 
points. This variant, suggested by Vollebregt [Blanco-Lorenzo 2021], could be 

thought of as a mix between the previous Bij and ijB  variants. Defining As+n = 

(Ass + Ann) / 2, and As–n = (Ass – Ann) / 2, the resulting expressions for the ijB̂  ICs 

are given in Eq. (5.77).  
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This ijB̂  variant has the merit of preserving the symmetries 
xssx BB ˆˆ = , 

nxxn BB ˆˆ −=  and 
nssn BB ˆˆ −= ; and hence verifying reciprocity.  

In [Marshek 1984] the problem of the approximation of the Bnn IC was 
addressed in the context of 3D frictionless conformal contact analyses with 
cylindrical surfaces. Here a different approximation for the Bnn IC was 
proposed, according to the scheme of Figure 5.31, as Bnn ≈ Ann × cos(α/2).  

 

Figure 5.31. Scheme of the approximation for Bnn proposed in [Marshek 1984] (adapted 
from the cited reference).  

In the remainder, the Bij and ijB̂  variants (Eqs. (5.72) and (5.77)) will be 

considered. The notation B will be used generically also, designating any of the 
variants of ICs presented here as well as the extension of the following section. 
The majority of the CECT results reported in subsequent chapters of this thesis 
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have been obtained with the ijB̂  variant of approximated ICs described in this 

section.  

5.2.3.5 Extension of approximated ICs for the geometric differential 
stiffness  

The load/displacement decomposition effect, which is the basis for the 
calculation of the previously exposed B ICs based on the surface orientation, 
explains many of the differences between the ICs of non-planar solids and those 
of the half-space, but there are other differences which are not explained by this 
effect. The differences between the Ck

xn of a convex and a concave body seen in 
Figure 5.29 are an example of this. In §5.2.3.6 considerable differences between 
the combined Bxn and Cxn ICs of two conforming bodies with elastically similar 
materials are illustrated as well.  

These discrepancies are attributed to the differences between the stiffnesses of 
the convex and concave conforming bodies, that come as a result of the 
different geometry of their cross-sections: the concave body, which has more 
material, tends to be stiffer than the convex one. This characteristic is not 
captured by the Bij ICs treated in the previous sections. This section provides an 
extension for the Bij ICs to overcome this limitation. For most of the ICs, the 
effect of the surface orientation proves to be dominant in the deviation of the 
ICs of non-planar solids from those of the half-space, and the Bij ICs previously 
presented provide a good approximation. However, in the particular case of the 
Cxn, the effect of the geometric differential stiffness between the two 
conforming bodies plays a more important role. Consequently, that 
approximation is not satisfactory for the Cxn, and it becomes necessary to take 
into account the effect of the geometric differential stiffness to improve it.  

The approach followed here to incorporate the differential stiffness effect is to 
define modified, effective elastic properties of the conforming bodies, that vary 
as a function of the distance from the loaded element in the surface. Close to the 
loaded element, at a distance much lower than the typical dimensions of the 
general features of the cross-sections of the bodies, the bodies look like half-
spaces, their geometric differential stiffness tends to zero, and hence their 
effective elastic properties will be their real ones. As the distance increases, a 
bigger portion of the material and (unequal) cross-sections of the bodies 
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influences their behaviour, and more difference between their stiffnesses will be 
noted. Their approximated ICs are then calculated with modified elastic 
properties instead of the real ones of the bodies to approximate the variation of 
the geometric differential stiffness between the conforming bodies.  

The modified, effective elastic properties of the bodies vary between their real 
values at zero distance from the loaded element, to some limit values at a given 
limit distance from the loaded element related to the geometry of the cross-
sections of the bodies. This is represented here using the function defined in Eq. 
(5.78). This form of empirical equation has been chosen with the aim of 
providing a continuous transition in space for the values of the effective elastic 
properties, having the possibility of adjusting the rate of change at both limits of 
the variation interval.  

 ( ) ( ) ( ) ( )( )[ ]ff nmfffrf ρρρρ −−⋅+⋅−×−+= ∞ 11100  (5.78) 

 22

rr sxr += , ( )frr ,,1min ∞=ρ . (5.79) 

The nomenclature used in Eq. (5.78) is as follows: f refers to an elastic property, 
such as the combined G, ν or K of both bodies, or an individual elastic constant 
of one of the bodies. For each property, f 0 is its effective value at zero distance 
from the centre of the loaded element, equal to its real value, and f ∞ its effective 
value at infinite distance from the loaded element. (xr, sr) is a position from the 
centre of the loaded element in x and s directions, r the actual surface distance 
from the centre of the loaded element as defined in Eq. (5.79), and r∞,f a limit 
distance beyond which the elastic property f no longer changes and is equal to 
its effective value at infinity f ∞. mf and nf are two constant exponents for each 
elastic property f. The effective elastic properties obtained with Eq. (5.78) are 
used to calculate modified Aij, designated as A'ij. These A'ij are then used in Eq. 

(5.77) for the B̂  ICs presented in §5.2.3.4. This extended version of the 
ijB̂  is 

designated as 'B̂ .  

An empirical approach is followed to determine the parameters f ∞, r∞,f, mf and nf 
for each elastic property. The C ICs are calculated numerically with FEM for a 
single lateral position of the load in the cross-sections of the contacting bodies, 
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and these are used as a reference to adjust the parameters in Eq. (5.78). A 
drawback is that numerical calculation of some of the Cij ICs is involved, but 
this is less costly than computing the full Cij matrices. The lateral position used 
for the loaded element in the calculation of the Cij ICs is chosen in the central 
zone of the expected contact patches.  

With the 
ijB'ˆ  ICs, it is aimed specifically at improving the approximation of the 

Cxn, where the differential stiffness effects are more prominent. Taking this into 

account, here the 
ijB'ˆ  will be computed on the basis of adjusting just the elastic 

mismatch constant of both bodies K, seeking to improve the approximation for 

the Cxn while affecting the other Bij ICs as little as possible. Thus, the 
xnB̂  and 

the 
snB̂  ICs will be affected most by this extension, as well as their reciprocals, 

and to a lesser extent the 
xsB̂ , 

ssB̂  and the 
nnB̂  ICs through the contributions of 

the A'xn and A'sn.  

5.2.3.6 Comparison of approximated and numerically calculated ICs  

Next, some comparisons are done between different variants of approximated B 
ICs proposed here, half-space A ICs, and C ICs numerically computed with 
FEM. Two geometries are considered for this purpose, with cross-sections 
depicted in Figure 5.32 and related parameters listed in Table 5.6. Two 
prismatic bodies are considered in geometry 1, and a concave wheel on a 
convex rail in geometry 2. Geometry 2 is the same as that described in Figure 
5.25 and Table 5.4. In both geometries the lower convex body is designated as 
the rail, and the upper concave one as the wheel. The materials of the 
conforming bodies are elastically similar in both cases. As listed in the table, 
slightly different values of ν have been considered for each of the geometries. 
This difference does not have significant effects in the comparisons shown here.  
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(a) Geometry 1.   (b) Geometry 2.  

Figure 5.32. Cross-sections of conforming bodies, symmetric about s = 0, considered 
for comparison of ICs.  

Table 5.6. Parameters of conforming bodies considered for comparison of ICs. 

Geometry no. Symbol Description Units 
1 2 

δr  Surface inclination of rail (lower body) º 25.5 65 
δw Surface inclination of wheel (upper body) º 25.5 60 
Rr Radius of circular part of cross-section of rail mm 10.0 10.0 
Rw Radius of circular part of cross-section of wheel mm 10.0 10.1 
Rroll Nominal rolling radius of wheel (at s = 0) mm ∞ 500 
Ew, Er Young’s modulus GPa 210 210 
νw, νr Coefficient of Poisson – 0.28 0.30 
a Longitudinal half-side of loaded element mm 0.200 0.167 
b Lateral half-side of loaded element mm 0.200 0.158 

Both geometries have a cross-section with circular central zone delimited by 
inclined straight sections, with different subtended angles in each case. Besides 
testing the performance of the B ICs in each of these cases, the comparison of 
their respective C ICs allows to appreciate the effect of their different 
geometries. An objective is to observe the effect of the different overall cross-
sections of each geometry (with different inclinations of the side straight parts) 
on the ICs in the central circular zone, common in both geometries. This serves 
as a test for the consistency of the surface orientation based approach of the B 
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ICs, which takes into account specifically surface orientation differences in the 
region of interest.  

Comparisons are made of the combined ICs of two bodies, as well as of the 
individual ones for each of the bodies of geometry 2. The geometries are 
identified with superindex 1 for the geometry of Figure 5.32a and 2 for the 
geometry of Figure 5.32b. For the individual ICs of each of the bodies of 
geometry 2, superindex “2,r” is used for the rail and “2,w” for the wheel. 
Specifically the ICs associated to the loaded element located in the lateral 
position s = 0 are compared, in the longitudinal symmetry plane of the cross-
sections of both solids.  

The C ICs have been calculated with FE models for both geometries shown in 
Figure 5.32. The C ICs for geometry 1 have been provided by Edwin A.H. 
Vollebregt. Some of them were shown in [Vollebregt 2014a]. The FE mesh has 
been refined locally around the loaded element for these ICs, to provide 
adequate resolution for the step load variation and capture the relatively high 
displacement gradients. This local mesh refinement has been omitted for the C 
ICs corresponding to geometry 2. Instead, extrapolation is used on the basis of 
the trends of the half-space for the displacements in the loaded element and its 
neighbouring elements, as explained in §5.2.2.2.  

To adequately compare the numerically obtained ICs with the analytical ones, 
appropriate global displacements are subtracted from the numerical ICs in each 
case. On the one hand the global displacements listed in Table 5.7 are deducted. 
The values for geometry 2 are the same in each direction as the sum of the 
individual values listed in Table 5.5 for the rail and the wheel, after scaling 
according to the different normalizations of the quantities listed in each table. 
On the other hand, in the case of lateral tangential load, some global rotations 
θx,g around the longitudinal axis are deducted as well for geometry 2. These 
rotations are calculated so that the vertical displacements at points located in the 
same longitudinal position as the loaded element, symmetrically with respect to 
the longitudinal symmetry plane, and sufficiently far from the loaded element, 
are equated. For this purpose, specifically the displacements at the lateral 
extremes of the objective mesh in which the C ICs have been obtained in this 
case are considered, located at s = ±8.8 mm. The values of these global 
rotations, normalized with the Young’s modulus E, the rail radius Rr, and the 
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uniform pressure p and dimensions a and b of the loaded element as 
θx,g×ERr

2/(4ab×p), are –1.036 rad for the rail and 0.122 rad for the wheel. For 
geometry 1, the values are lower due to the lower δr and δw angles, and are 
neglected here. The resulting global displacements from Table 5.7 and the θx,g 
rotations are subtracted from the numerical ICs after transforming them to the 
local (x, s, n) coordinate system of each element. The global displacements 
associated to the load in direction j are subtracted from the Cij ICs (with i, j = x, 
s or n).  

Table 5.7. Non-dimensionalized global displacements, ui,g×ERr/(4ab×p) (with i = X, Y 
or Z), in the C ICs calculated with FEM for the solids with the geometries and elastic 
properties described in Figure 5.32 and Table 5.6.  

ui,g×ERr /(4ab×p) Direction of load and global displacement 
Geometry no. Longitudinal (X) Lateral (Y) Vertical (Z) 

1 6.47E–02 5.04E–01 –8.57E–02 
2 2.72E–01 2.96E+00 –5.77E–02 

The trends of the ICs are graphed in the longitudinal direction x and lateral 
direction s, along trajectories with a separation of 1.6 mm from the centre of the 
loaded element. This offset is used to avoid the relatively high displacements 
gradients at the singular loaded element masking the variations of the ICs 
outside it. Besides, the trends of the ICs close to the loaded element approach to 
those of the half-space. Even though the ICij, and particularly the direct ICii, of 
the loaded element are considerably bigger than the ones shown in the 
following figures24, the latter are still relevant in the behaviour of the solids at 
the local contact level, and observing their differences with respect to the half-
space ICs some qualitative differences between conformal and non-conformal 

                                                      

24 Recall as a reference the maximum values of the direct A1
xx and A1

zz of the half-space 
for a rectangular element with uniform load distribution and sides ratio a/b = 0.7 shown 
in Figure 5.6 a and d. The non-dimensionalised A1

xx and A1
zz for the uniform element in 

that figure reach values around 2 in the centre of the loaded element. As those are 
individual ICs, they should be multiplied by two to compare them with the combined 
ICs shown here. Additionally, as they are non-dimensionalised with one of the sides of 
the loaded element, they should be multiplied by the current a/b relation and divided by 
the a/b relation with which they were obtained, to make a uniform comparison with the 
ICs shown here.  
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contacts may be explained, as will be seen in Chapter 6. Consider for example 
that in a non-conformal circular contact, if the pressure was uniform in the 
whole contact patch25, the contribution of all the concentric differential rings in 
which the contact patch may be divided, to the normal elastic displacement at 
the central point, is the same: being r the distance to the central point, the bnn 
change in proportion to 1/r, and the differential area of each ring changes in 
proportion to r; therefore the contribution of each ring, proportional to the 
product of its bnn with its differential area, would be independent of r and 
constant in this case.  

The ICs are given per unit load in the uniformly loaded rectangular element, 
and are normalized additionally by multiplication with E and Rr. The 
dimensions of the loaded element are given in Table 5.6 for each geometry. The 
ICs are given for a unit total load rather than for a unit pressure in each loaded 
element, to compare directly the ICs of both geometries.  

The ICs are graphed in non-dimensional relative coordinates (x, s)/Rr with 
respect to the centre of the loaded element, taking it as the origin. Thus, the ICxn 
and ICsn ICs reverse their sign with respect to curves shown in previous graphs, 
in which the position coordinates were in the opposite direction. Some of the 
ICs are omitted for clarity in some graphs, when they are equivalent or very 
similar to others shown. In the graphs along the lateral direction s of the 
combined ICs, the limit between the circular and straight sections in geometry 1 
is marked with a vertical dotted line. This change in geometry has an 
appreciable effect on the trends of several of the ICs as may be appreciated in 
the different graphs.  

In the following, the direct ICii and the ICxs ICs are examined in §5.2.3.6.1, and 
the ICxn and ICsn ICs are discussed in §5.2.3.6.2. The deviations of the ICs of 
convex bodies on the one hand and of concave bodies on the other, with respect 
to the corresponding half-space ICs, are generally opposite to each other. These 
deviations counteract each other in the combined ICs of the two conforming 

                                                      

25 By way of example, in a Hertzian circular contact the variation of the normal pressure 
with respect to the maximum value in the centre is below 15% inside half the radius of 
the contact patch.  
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bodies in the case of the ICii and ICxs ICs, and are added together in the case of 
the ICxn and ICsn ICs.  

As a summary, it is seen that the approximated ICs have different accuracies for 
each type of IC. Also, the accuracy of the approximated ICs depends among 
others on the shape of the non-planar surfaces; the affection of the sudden 
curvature change in the cross-section of geometry 1 of Figure 5.32 and of the 
solid of Figure 5.48 on the accuracy of the Bsn beyond the lateral position of this 
change is an example of this. Overall, it may be concluded that the surface 
orientation-based approximation gives a good first order estimation of the main 
deviations between the ICs of non-planar solids and those of the half-space. 
Additionally, with a simple reasoning it provides insight into the way in which 
these deviations occur. However, some limitations of the approximation are 
apparent, and additional work is needed to overcome them.  

In Chapter 6, some effects of the differences between the half-space ICs and 
those of solids with curved surfaces will be seen, both in the normal and in the 
tangential part of the contact problem, and to which extent they are captured 
with the B approximated ICs.  

5.2.3.6.1 Comparison of ICii-s and ICxs  

First the direct ICii-s will be revised. Their curves in s and x are symmetric with 
respect to the origin of each coordinate.  

The greatest differences between the combined Cnn and the Ann are produced in 
the lateral direction, as may be seen in Figure 5.33. Both the combined (Figure 
5.33) and the individual (Figure 5.34) Cnn tend to become smaller than the 
corresponding Ann as the difference in orientation α from the point of load 
application increases, particularly in the case of the combined Cnn and in the 
individual ones of the concave body. The Bnn capture well these deviations in 
the geometry considered, as shown in Figure 5.33b and Figure 5.34b. The 
deviations between the individual Cnn and Ann of the convex body are smaller, as 
may be seen in Figure 5.34b. This is again well represented by either the Bnn or 

the 
nnB̂ . Referring to Eq. (5.72), the second term in the equation for Bnn is 

positive in the case of the convex body (including its minus sign), and opposes 
the decrease of the first and principal term with respect to Ann. The different 
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cross-sections of both geometries do not produce big differences in the 
variations of the combined ICnn in the longitudinal direction, as seen in Figure 
5.33a. The most notable differences in this direction occur in the individual ICnn 
of the concave body as seen in Figure 5.34a, with the C2,w

nn having less 
pronounced variations than either the corresponding A or B ICs.  

 

 

 

(a) Along x at s / Rr = 0.16.   (b) Along s at x / Rr = 0.16.  

Figure 5.33. Combined ICnn for geometries 1 and 2 of Figure 5.32. 

 

 

 

(a) Along x at s / Rr = 0.16.   (b) Along s at x / Rr = 0.16.  

Figure 5.34. Individual ICnn for geometry 2 of Figure 5.32. 

The deviations between the combined Cxx and Axx are very limited in the 
longitudinal as well as in the lateral direction, cf. Figure 5.35, and the combined 
Cxx of both geoemtries are very similar. The surface orientation based 
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approximation, which in this case amounts to the equality of the Bxx and the Axx, 
works well for the combined Cxx of both solids. On the contrary, there are 
considerable differences between the individual Cxx and Axx of each body, both 
in longitudinal and in lateral directions, as can be seen in Figure 5.36. The Cxx 
of the convex body have higher gradients than the Axx, and those of the concave 
body, smaller. These deviations are higher in the convex body. The deviations 
are of opposite sign in each of the bodies, and tend to oppose each other in the 
combined Cxx. In the case considered here with elastically similar materials, 
they turn out to nearly cancel out with each other, but it has to be taken into 
account that the extent to which this compensation occurs depends on the 
relative stiffness of both bodies. This observation is also applicable for the ICnn, 
ICss and ICxs ICs.  

 

 

 

(a) Along x at s / Rr = 0.16.   (b) Along s at x / Rr = 0.16.  

Figure 5.35. Combined ICxx for geometries 1 and 2 of Figure 5.32. 
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(a) Along x at s / Rr = 0.16.   (b) Along s at x / Rr = 0.16.  

Figure 5.36. Individual ICxx for geometry 2 of Figure 5.32. 

The combined Css, Figure 5.37, have significant deviations with respect to the 
Ass in both principal directions of the surface, tending to become smaller as the 
distance with respect to the loaded element increases. The trend in the lateral 
direction is relatively well reproduced with the Bss (Figure 5.37b), but not in 
longitudinal direction (Figure 5.37a). The Css maintain a considerably higher 
gradient than the Bss as the longitudinal distance from the loaded element 
increases, especially for geometry 2, with the highest difference between the 
convex and the concave cross-sections. This is attributed to the twist of the 
convex body under lateral load, which causes sections away from the loaded 
one to be more uncoupled from it than in the case of the half-space. The 
deviations between the individual Css and both the corresponding A and B ICs 
are considerably higher, especially for the convex body in the longitudinal 
direction, as can be seen in Figure 5.38a.  
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(a) Along x at s / Rr = 0.16.   (b) Along s at x / Rr = 0.16.  

Figure 5.37. Combined ICss for geometries 1 and 2 of Figure 5.32. 

 

 

 

(a) Along x at s / Rr = 0.16.   (b) Along s at x / Rr = 0.16.  

Figure 5.38. Individual ICss for geometry 2 of Figure 5.32. 

Next, the ICxs-s are revised in Figure 5.39 and Figure 5.40. Their curves are 
antisymmetric both in s and x. The highest differences between the combined 
Cxs and both the Axs and the Bxs happen in the lateral direction (Figure 5.39b). 
These are attributed to the difference in longitudinal stiffness of the two bodies, 
resulting from the cross-sections. Referring to the individual Cxs in Figure 5.40, 
it is seen that the individual Cxs of the convex body deviate more from the half-
space Axs than those of the concave body. This indicates that the material 
missing in the convex cross-section (with respect to the half-space), has a 
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greater effect than the additional material present in the concave section, like 

with the Css. The Bxs and 
xsB̂  capture only part of the differences between the Axs 

and Cxs, with the Bxs performing better in this case than the 
xsB̂ . The remaining 

differences in the individual ICxs are higher in the lateral direction, like in the 
combined ICxs. The performance of the Bxs-s is not fully satisfactory. The 
consequences of this are limited because the magnitude of the ICxs is 
significantly smaller than that of the direct ICxx and ICss ICs.  

 

 

 

(a) Along x at s / Rr = 0.16.   (b) Along s at x / Rr = 0.16.  

Figure 5.39. Combined ICxs for geometries 1 and 2 of Figure 5.32. 

 

 

 

(a) Along x at s / Rr = 0.16.   (b) Along s at x / Rr = 0.16.  

Figure 5.40. Individual ICxs for geometry 2 of Figure 5.32. 
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5.2.3.6.2 Comparison of ICxn and ICsn  

Next, the ICxn and ICsn ICs are examined. Comparisons with the 'B̂  ICs 
introduced in §5.2.3.5 are included for the combined ICs. The curves of the ICxn 
are symmetric in s and antisymmetric in x, and those of the Csn are 
antisymmetric in s and symmetric in x. While these ICs have also a 
considerably lower magnitude than the direct ICii-s, their influence can be 
significant in the tangential contact problem as shown in Chapter 6. This is 
because the normal pressures usually reach much higher values than the 
tangential stresses. Additionally, for the case of the ICxn, which are considerably 
lower in magnitude than the ICsn, it has to be considered that they are 
antisymmetric with respect to the longitudinal/rolling direction. This increases 
the gradients of the related elastic displacements in that direction, relevant in the 
tangential part of rolling contact problems, upon performing the convolution 
with the normal pressures.  

The combined ICxn are plotted in Figure 5.41 for geometry 1 and in Figure 5.42 
for geometry 2. The Cxn of both geometries are included in both figures to better 
appreciate the differences between them. Table 5.8 lists the parameters of the 

effective elastic property K used for the 'B̂  ICs shown in these figures.  

Table 5.8. Parameters of adjusted elastic property K used for the combined 'B̂  ICs of 
the two geometries described in Figure 5.32 and Table 5.6.  

 Geometry 1 Geometry 2 

K∞ –0.065 –0.145 
r∞,K / Rr 1.60 2.25 
mK 0.67 0.90 
nK 1.80 2.00 

As expected, the differential stiffness effect is stronger in geometry 2, and 
consequently its Cxn reach higher values than the Cxn of geometry 1. This is seen 
in the plots along x (Figure 5.41a and Figure 5.42a). The Bxn are a poor 
approximation of the Cxn, though they reproduce to a certain extent some of 
their characteristics. In fact, the Bxn turn out to be even a worse approximation 
for the Cxn than the Axn, due to the effect of the differential stiffness previously 
discussed. Upon examination of the individual ICxn in Figure 5.43, it may be 

noted that the Bxn and the 
xnB̂  predict the highest displacements in the concave 
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body (cf. the second term of the approximated Bxn in Eqs. (5.72) and (5.77), 
with different sign in each solid), while the highest individual Cxn (in 
magnitude) are those of the convex body. The difference is higher in the 
longitudinal trend (Figure 5.43a) for the convex body.  

The adjusted 
xnB'ˆ  provide a much better approximation of the combined Cxn, 

especially along x, although the values are somewhat overestimated close to the 
loaded element. This happens mostly for geometry 1, as seen in the longitudinal 
trend in Figure 5.44 through s = 0 (i.e., at the same lateral position as the loaded 
element). On the other hand, it has been tried to adjust different individual 
effective elastic properties seeking to properly approximate the combined and 

the individual Cxn at the same time, but this has not been achieved with the 'B̂  
ICs.  

Part of the differences between the Cxn of both geometries may be attributed to 
the difference in the longitudinal curvature of the upper bodies, using a 
prismatic body in geometry 1 and a body of revolution in geometry 2. The curve 
labelled as “C + A2,w

x+n sin(αx)” in Figure 5.44 is an estimate of the combined 
Cxn of geometry 2 if the wheel were replaced by a prismatic body with the same 

cross-section. This has been computed applying the B̂  approximation in 
longitudinal direction, in a similar way as discussed in §5.2.3.2. As may be seen 
in Figure 5.44, the estimated effect of the longitudinal curvature of the wheel on 
the Cxn computed for geometry 2 explains part of the differences between the 
Cxn computed for both geometries. However, this effect is small compared to the 
remaining differences between the Cxn of each geometry, attributed to the 
different magnitude of the geometric differential stiffness in each case. Also, the 
longitudinal curvature of the wheel explains only a small part of the differences 
of the Cxn of geometry 2 with the rest of ICxn-s.  
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(a) Along x at s / Rr = 0.16.   (b) Along s at x / Rr = 0.16.  

Figure 5.41. Combined ICxn for geometry 1 of Figure 5.32. 

 

 

 

(a) Along x at s / Rr = 0.16.   (b) Along s at x / Rr = 0.16.  

Figure 5.42. Combined ICxn for geometry 2 of Figure 5.32. 
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(a) Along x at s / Rr = 0.16.   (b) Along s at x / Rr = 0.16.  

Figure 5.43. Individual ICxn for geometry 2 of Figure 5.32. 

 

Figure 5.44. Combined ICxn for geometries 1 and 2 of Figure 5.32, along x at s = 0.  

The most notable differences between the Aij and Cij crossed ICs (with i ≠ j) 
occur in the ICsn. These are examined in Figure 5.45 to Figure 5.47. As it 
happens with the asn of cylindrical geometries, the individual Ck

sn of the convex 
body are considerably lower than those of the half-space in the vicinity of the 
loaded zone, and the Csn of the concave body are higher in magnitude, cf. Figure 
5.13. The elastic sphere shows this same behaviour, as seen in Figure 5.15. In 
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the combined Csn, these differences, of opposite sign, are added; they do not 
counteract each other. As will be seen in Chapter 6, using directly the Asn in 
place of the Csn in the solution of conformal contact problems with the exact 
contact theory may give rise to important errors in the tangential part of the 
contact problem.  

The Csn are adequately approximated with both the Bsn and the 
snB̂ , for the 

combined (Figure 5.45 and Figure 5.46) as well as for the individual (Figure 
5.47) ICsn of each body, especially inside the circular zone of the cross-sections. 
The greatest discrepancies are seen in the lateral trends beyond the change from 
circular to straight profile in geometry 1, cf. Figure 5.45b. The Bsn approximate 

better the Csn than the 
snB̂  in both geometries considered, and the approximation 

of the 
snB'ˆ  is worse than that of the 

snB̂ .  

A considerable part of the differences between the Csn on the one hand, and 
snB̂  

and 
snB'ˆ  on the other, turns out to be equivalent to a rigid body vertical 

displacement. This does not affect the solution of contact problems except for 
the relative displacement of the bodies at a given load (cf. footnote no. 20). This 
is shown with the C* curves in Figure 5.45 and Figure 5.46, that are obtained by 
adjusting the global vertical displacements discounted to the Csn to match better 

with the 
snB'ˆ . In this case, the non-dimensional global vertical displacements 

ui,g×ERr /(4ab×p) for geometry 1 and 2 have been changed from –8.57E–02 

and –5.77E–02 (cf. Table 5.7) to 1.57E–01 and 2.19E–01, respectively. The Cr
sn 

curves in Figure 5.47 may be adjusted as well to match better with the 
corresponding Br

sn curves, though not shown in the figure. In this case, this is 
achieved by changing the non-dimensional global vertical displacement of the 
rail from the value shown in Table 5.5 (4.67E–03) to 1.32E–02. On the other 
hand, differences between different ICsn give rise to considerable differences in 
some of the results in the tangential part of the contact problem as shown in 
§5.2.3.7.  
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(a) Along x at s / Rr = 0.16.   (b) Along s at x / Rr = 0.16.  

Figure 5.45. Combined ICsn for geometry 1 of Figure 5.32. 

 

 

 

(a) Along x at s / Rr = 0.16.   (b) Along s at x / Rr = 0.16.  

Figure 5.46. Combined ICsn for geometry 2 of Figure 5.32. 
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(a) Along x at s / Rr = 0.16.   (b) Along s at x / Rr = 0.16.  

Figure 5.47. Individual ICsn for geometry 2 of Figure 5.32. 

The next figures show how the approximated Bsn ICs work for other two 
individual prismatic solids with different geometries in their cross-section. In 
these cases, the loaded element is located also in the longitudinal symmetry 
plane of the cross-sections, but its dimensions are different, as indicated in the 
caption of each figure. In Figure 5.48 a solid with double curvature is 
considered, concave in the central part and convex in the adjacent lateral parts 
of the section. The curvature change between the different parts is produced in a 
single point, with no transition. The s coordinate of this point is marked in the 
graph of Figure 5.48b with a vertical dotted line. On the other hand, in Figure 
5.49 a convex solid is considered with its central part of elliptical form instead 
of circular, with the long axis oriented vertically.  
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(a) Geometry of the cross-section (showing only 
part of half of the section, symmetric with 
respect to the yellow vertical axis in the figure).  

 
(b) Lateral variation of the ICs (antisymmetric 
with respect to s = 0) at x / a = 5.18.  

Figure 5.48. Individual ICsn of a non-planar prismatic solid with double curvature 
(concave and convex) in its cross-section. Loaded element located at s = 0, in the 
symmetry axis of the section. Dimensions of the loaded element: a = 0.12 mm, b = 
0.103 mm.  

 

 

(a) Geometry of the cross-section (showing only 
part of half of the section, symmetric with 
respect to the yellow vertical axis in the figure).  

 

(b) Lateral variation of the ICs (antisymmetric 
with respect to s = 0) at x / a = 5.18. In the 
“C*” and “C** ” curves non-dimensional global 
vertical displacements uz,g×E1/(p×a) of 7.875E–
03 and 1.6625E–02 resp. are deducted.  

Figure 5.49. Individual ICsn of a non-planar prismatic solid with elliptical geometry in 
its cross-section. Loaded element located at s = 0, in the symmetry axis of the section. 
Dimensions of the loaded element: a = 0.12 mm, b = 0.106 mm.  
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As can be seen in Figure 5.48b, for the solid with double curvature the Bsn do 
not approach as well the Csn as with the simpler geometry previously 
considered. Nevertheless, an important part of the deviations between the Csn 
and the Asn are corrected, and the sudden change in the lateral trend of the Bsn 
foreseen at the point of the curvature change in the section is also produced in 
the Csn, although in a less pronounced way. The Bsn work much better with the 
next geometry, as can be seen in Figure 5.49b. Three Csn curves are plotted in 
the same figure; one without deducting any global displacement, and other 
deducting the global vertical displacements indicated in the figure caption, with 
which a very good adjustment between the Csn and each Bsn is achieved in the 
shown section. In the trends in longitudinal direction, not shown in these 
figures, a good adjustment is achieved as well between the Bsn and the Csn of 
both geometries.  

5.2.3.7 Performance of approximated ICs in the solution of conformal 
contact problems  

Here numerical computations are reported for different wheel–rail conformal 
contact test cases, assessing the performance of the different variants of 
approximated ICs in the normal and the tangential parts of the contact problem. 
CECT is used for this purpose. Each test case is solved with different sets of 
ICs, to evaluate to which extent errors in the ICs affect contact related outputs. 
For the normal part of the contact problem, treated in §5.2.3.7.1, additional 
reference results are shown obtained with FEM contact analyses.  

5.2.3.7.1 Normal contact  

This section evaluates the errors made in the solution of the normal part of the 
contact problem when using approximated ICs in cases of conformal contact 
between bodies with different cross-sections.  

Description of geometries used  

Four test cases are considered, with a concave wheel placed on a convex rail 
aligned in longitudinal direction x, with zero yaw angle and mean contact angle. 
Therefore, the geometries are symmetric along the overall longitudinal and 
lateral directions at the central point of the contact at (x, s) = (0, 0).  
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In the first two test cases the bodies have circular cross-sections, and in the last 
two test cases they have different elliptical cross-sections in the vertical plane 
perpendicular to x. The geometries are defined with the semi-axes bel and del of 
their circular or elliptical cross-sections in the overall lateral (y) and vertical (z) 
directions, i.e.  
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  or y = yc + bel cos(θ), z = zc + del sin(θ). (5.80) 

yc and zc in Eq. (5.80) are the lateral and vertical coordinates of the centre of the 
ellipse, and θ is the parameter of the curve. The surface inclination α is obtained 
from the latter parametrization. The s coordinate is defined implicitly using the 
arc length along the surface. Elliptical integrals are involved in its analytical 
calculation for the elliptical cross-sections.  

The relevant parameters for each case are listed in Table 5.9. In all test cases the 
wheel and rail material is steel, with E = 210 GPa and ν = 0.30. The test cases 
with circular cross-sections are labelled as “circ. s.” (“circ. short”) and “circ. l.” 
(“circ. long”), referring to the length to width ratio a/b of the resulting contact 
patches in each case. An objective of these test cases is to study the effect of the 
a/b ratio on the results. On the other hand, the test cases with elliptical cross-
sections are labelled as “el. wide” and “el. tall”, referring to the ratio bel / del of 
the cross-sections in each case.  

Table 5.9. Parameters of test cases for normal contact. Rroll is the nominal rolling radius 
of the wheel.  

 bel / del [mm] 
 Wheel Rail 

Rroll   
[mm] 

Case “circ. s.”  10.1 / 10.1 10.0 / 10.0 500.0 
Case “circ. l.”  10.5 / 10.5 10.0 / 10.0 653.7 
Case “el. wide” 13.7 / 6.49 12.97 / 6.485 653.7 
Case “el. tall” 6.985 / 14.7 6.485 / 12.97 653.7 

The rail cross-sections for test cases “circ. l.”, “el. wide” and “el. tall” are 
depicted in Figure 5.50. Test case “circ. s.” uses the same geometry described in 
Figure 5.25 and Table 5.4. The rail used in test case “el. wide” is flatter than the 
circular geometry, such that the surface inclination changes slower across the s 
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direction than for the circular rail. In this case, the rate of change ∂α/∂s is lowest 
at the top of the rail and increases towards the sides. Test case “el. tall”, on the 
other hand, exhibits a faster change of the contact angle than the circular 
geometry at the top of the rail, and a reducing rate of change towards the sides.  

 

(a) Test case “circ. l.”.  

 

 

 

(b) Test case “el. wide”.   (c) Test case “el. tall”.  

Figure 5.50. Rail cross-sections with circular or elliptical central zone.  

The bel / del ratio of the rail is 2/1 in test case “el. wide”, and 1/2 in test case “el. 
tall”. The bel and del dimensions of the wheel have been adjusted in each test 
case with elliptical cross-sections so that the a/b ratios of the resulting contact 
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patches are around the same values in each case. In this way, the effects the a/b 
ratio are studied with the “circ.*” test cases on the one hand, and the effects of 
the form of the contact angle variation across s are studied with the “el.*” test 
cases on the other, to allow a more clear interpretation of the exposed results.  

Results computed with FEM  

For each test case, the frictionless contact has been calculated under different 
loads. The FE contact models have been built with the commercial FE package 
Abaqus/Standard [Abaqus doc 2012]. The geometries have been meshed with 
C3D8 linear hexahedron elements. The FE mesh structure used in these models 
is similar to that shown in Figure 5.17, for both the wheel and the rail. The 
surface dimensions of the elements in the most refined zone of each mesh are 
listed in Table 5.10.  

Table 5.10. Surface dimensions of elements (longitudinal × lateral) in the most refined 
zone of each FE mesh.  

Test case Element surface dimensions [mm] 

“Circ. s.” 0.33 × 0.31 
“Circ. l.” 0.36 × 0.29 
“El. wide” 0.36 × 0.34 
“El. tall” 0.30 × 0.11 

Figure 5.51 to Figure 5.54 show representative results obtained with FEM for 
the different test cases, such as the contact patch sizes and angle variation, as a 
function of the compressive normal load N between the contacting bodies. 
Contact patch shapes are shown in subfigures c for different total angle 
variations in each test case. The N values corresponding to these contact patches 
are indicated in the legend and caption of each figure. Comparing the N values 
in the “circ.*” cases it is seen that case “circ. l.”, with less conformity than case 
“circ. s.” (i.e. with greater difference between the convex and concave 
transversal radii of the contacting surfaces; cf. Table 5.9), requires much bigger 
loads to produce the same angle variation. Referring to the “el.*” cases, case 
“el. wide”, using a flatter rail, requires bigger loads than case “el. tall”.  

It has to be mentioned that the loads used for test cases “circ. l.” and “el. wide” 
are higher than what could be considered realistic in practical applications. 
Also, the resulting contact pressures are above usual levels to initiate yield. The 
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purpose of these test cases is to illustrate the influence of different factors on the 
performance of the approximated ICs in the solution of contact problems.  

 

 

 

(a) Total contact angle variation ∆δ and lateral 
dimension of contact patch b.  

 
(b) Maximum normal pressure pn,max and a/b
ratio.  

 

(c) Contact patch contours (symmetric about x = 0 and s = 0) for N = 5.2, 42 and 160 kN 
corresponding to ∆δ ≈ 40, 70, 100º.  

Figure 5.51. Results of frictionless compression test case “circ. s.” calculated with 
FEM.  
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(a) Total contact angle variation ∆δ and lateral 
dimension of contact patch b.  

 
(b) Maximum normal pressure pn,max and a/b
ratio.  

 

(c) Contact patch contours (symmetric about x = 0 and s = 0) for N = 80, 800 and 3200 kN 
corresponding to ∆δ ≈ 40, 80, 110º.  

Figure 5.52. Results of frictionless compression test case “circ. l.” calculated with 
FEM.  
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(a) Total contact angle variation ∆δ and lateral 
dimension of contact patch b.  

 
(b) Maximum normal pressure pn,max and a/b
ratio.  

 

(c) Contact patch contours (symmetric about x = 0 and s = 0) for N = 660, 5300 and 18000 kN 
corresponding to ∆δ ≈ 40, 80, 100º.  

Figure 5.53. Results of frictionless compression test case “el. wide” calculated with 
FEM.  
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(a) Total contact angle variation ∆δ and lateral 
dimension of contact patch b.  

 
(b) Maximum normal pressure pn,max and a/b
ratio.  

 

(c) Contact patch contours (symmetric about x = 0 and s = 0) for N = 7.4, 58 and 310 kN 
corresponding to ∆δ ≈ 50, 80, 110º.  

Figure 5.54. Results of frictionless compression test case “el. tall.” calculated with 
FEM.  

Comparison of FEM with approximate ICs  

Here a comparison is presented of results for the normal contact problem 

computed with FEM and with CECT using Ann, Bnn and 
nnB̂  ICs. The ratios of 

different results are plotted together for test cases “circ.*” in Figure 5.55 on one 
hand, and for test cases “el.*” in Figure 5.56 on the other.  

Using the total contact angle variation of the solutions computed with FEM 
∆δFEM in the abscissa axes, the cases “circ.*” on the one hand and the cases 
“el.*” on the other are compared at equal angle variations rather than at equal 
normal loads N. For each ∆δFEM, the results of different runs (FEM and CECT 
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with different ICs) for one test case correspond to a same normal load N, 
different from the load N used in the other test cases. That is, there is a different 
∆δFEM versus N correspondence for each test case. The ratio values show the 
agreement between different runs, with a ratio value of 1 for precise agreement. 
The FEM results are considered as the reference, although their precision 
(mostly that of the dimensions of the contact patch) is limited by the mesh 
resolution for small ∆δFEM values. Also, the approach values computed with 
CECT do not converge to the FEM values for low ∆δFEM values in all cases, due 
to the global or “rigid body” displacements contained in the FEM results.  

Referring to test cases “circ.*”, the curves CECT(A)/CECT(B̂ ) of Figure 5.55, 

with the ratios of the results computed with CECT using the Ann and 
nnB̂  ICs, 

show that the errors in the ICnn propagate more strongly to contact results in 
case “circ. long”. At the same time, the maximum normal pressure and contact 
area values obtained with the Bnn ICs have more discrepancies with the FEM 
results in case “long” than in case “short”. The reason for the increased errors in 
case “long” compared to case “short” is discussed in the next subsection. The 

step change around 45–55º in curves CECT(B̂ )/FEM and CECT(B)/FEM of the 
approach for case “circ. long” in Figure 5.55b is due to performing the 
calculations with different FE models for low and for high ∆δFEM in this case, 
which changed the FEM global displacements slightly.  
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(a) pn,max.  (b) Approach d.  

 

 

 

(c) a/b.  (d) Contact area Sc.  

Figure 5.55. Ratios of results of normal contact problem for test cases “circ.*”.  

With regard to test cases “el.*”, the curves CECT(A)/CECT(B̂ ) of Figure 5.56 
indicate that the use of the Ann ICs lead to higher errors in case “tall”, where the 
contact angle variation is faster around the central contact point.  
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(a) pn,max.  (b) Approach d.  

 

 

 

(c) a/b.  (d) Contact area Sc.  

Figure 5.56. Ratios of results of normal contact problem for test cases “el.*”.  

For both the cases “circ.*” and “el.*”, the Ann provide good accuracy in the 
normal contact problem for ∆δ values below 40º, with errors limited below 5% 
in the computed representative quantities. An exception concerns the aspect 
ratios a/b, where the accuracy of the results is limited more by the mesh 
resolution. The good accuracy provided by the Ann for low ∆δ is in agreement 
with the findings of several authors. In [Chen 1988] and [Alonso 2008], this 
conclusion was reached for the case of frictionless 2D contact, and in [Fagan 
2001] for frictionless 2D cylindrical and spherical contact. In [Paul 1979] and 
[Li Z 2002], it is stated that using the Boussinesq IF of the half-space for the 
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normal contact problem is a reasonable good approximation for the study of 
wheel–rail conformal contact problems.  

According to the CECT(B̂ )/FEM and CECT(B)/FEM curves in Figure 5.55 and 

Figure 5.56, the Bnn and 
nnB̂  ICs provide good accuracy in all the test cases, at 

least up to ∆δ values of 100º. The 
nnB̂  are more accurate in these test cases, 

except for the approach values computed in cases “circ. long” and “el. tall”, for 

which the values obtained with 
nnB̂  ICs diverge slightly more from those 

computed with FEM than the values obtained with Bnn ICs.  

In addition to the contact patch a/b ratio and the form of the contact angle 
variation, the pressure distribution across the contact patch is another factor that 
influences the performance of the approximated ICs in the solution of contact 
problems. This is discussed in a later subsection.  

Effects of the contact patch length/width ratio  

The sensitivity of the contact results to errors in the ICs tends to be higher with 
more elongated contact patches, i.e. with higher a/b ratios. A set of non-
conformal, Hertzian cases is studied here to explain this. The resulting contact 
patches of these cases have different a/b ratios, ranging from 0.2 to 5.0. In each 
case, the contact patch is divided in longitudinal strips, and the contribution of 
the normal pressures acting on each strip to the elastic normal displacement 
difference un of a point P is computed. The contribution of a strip S located at 
lateral position s is denoted as uPnSn. Figure 5.57 shows the results for the point 
P located at position (x, s) = (0, –b) on the border of the contact ellipse, for 
contact ellipses with different a/b ratios. The unitary contributions are plotted in 
normalized form so that the area beneath each curve is constant.  
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Figure 5.57. Unitary contributions of the longitudinal strips of the contact patch to the 
normal displacement difference un at point (x, s) = (0, –b), for Hertzian cases with 
different a/b semi-axis ratios.  

As may be seen in Figure 5.57, the unitary contributions of the different strips 
are more spread across the contact patch in the case of contact patches more 
elongated in the longitudinal direction. Similar observations may be made with 
points P at other positions. The deviations of the true ICs of non-planar solids 
from those of the half-space tend to be stronger in the lateral direction, with the 
change in the surface orientation, as illustrated with the different variants of the 
B approximated ICs. According to this, it is understood that having the 
contributions to the elastic field more spread in the lateral direction in the 
contact patch tends to lead to higher errors in the elastic field and hence in the 
contact solution computed with approximate ICs, by having more weight ICs 
with higher changes in surface orientation, i.e. higher non-flatness.  

Effects of the pressure distribution  

The sensitivity of contact results to errors in the ICs also depends on the stress 
distributions in the contact patch. The normal pressure profiles at x = 0 are 
plotted in Figure 5.58 for the two “el.*” test cases for two normal loads. The 
curves are non-dimensionalised with a measure of the average normal pressure 
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for each test case and load, computed as the load N divided by the contact area 
obtained from the FEM analysis.  

In Figure 5.58 the pressure profiles are plotted in the lateral direction, in which 
they deviate from the Hertzian distribution. The distribution evolves into a more 
uniform distribution for test case “wide”, and to a more peaky distribution for 
test case “tall”. This is attributed to the geometries of the two cases, deviating 
from circular cross-sections. For the “wide” test case, the undeformed distance 
varies less at the centre of the contact and more rapidly towards the sides. The 
opposite occurs in the “tall” test case. The pressure profiles maintain shapes 
close to Hertzian in the longitudinal direction (not shown), in these two test 
cases with zero yaw angle, becoming just slightly more peaky as the load 
increases.  

 

 

 

(a) Test case “el. wide”.  (b) Test case “el. tall”.  

Figure 5.58. Non-dimensional normal pressure profiles along s at x = 0 for test cases 
“el.*”, for normal loads corresponding to ∆δ ≈ 40, 80º in test case “wide” and 40, 110º 
in test case “tall”. Curves symmetric about s = 0.  

The greater spreading of normal pressures in the contact patch in test case 
“wide” causes an increased sensitivity to errors in the ICs. To show this, normal 

elastic displacement differences un are computed with the Ann and 
nnB̂  ICs and 

with a common pressure profile for each test case. The two pressure 

distributions that are considered are those computed with CECT and 
nnB̂  ICs, 

corresponding to the highest load levels plotted in Figure 5.58. These are 
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labelled as “spread pn” for test case “wide”, and “peaky pn” for test case “tall”. 
The pressure profiles are mapped into the contact patches computed in the same 

way with CECT and 
nnB̂  ICs for test case “wide” and N = 5300 kN (∆δ ≈ 80º) 

on the one hand, and for test case “tall” and N = 310 kN (∆δ ≈ 110º) on the 
other.  

Figure 5.59 shows a sample of the differences between the un-s computed with 
two pressure distributions on the geometry of each test case with two sets of 
ICnn ICs. These differences between the un-s are measured in non-
dimensionalised form as  
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The superindices in Eq. (5.81) refer to the ICnn with which each un are 
computed.  

 

 

 

(a) Test case “el. wide”.  (b) Test case “el. tall”.  

Figure 5.59. Non-dimensional differences of normal displacements along s at x = 0 

computed with Ann and 
nnB̂  ICs and different normal pressure distributions. Curves 

symmetric about s = 0.  

Comparing the test cases, bigger differences BA

nu
ˆ−∆  are observed for case “tall”, 

with a more rapid contact angle variation, than for case “wide”. This is in line 
with the higher errors with the use of the Ann evidenced in Figure 5.56 for case 
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“tall”. The s-values considered also encompass a bigger ∆δ for case “tall” than 
for case “wide” (∆δ ≈ 110º resp. 80º). Coming to the point of this comparison, 
further differences are found comparing the pressure distributions in each 

subfigure. In each geometry, the differences BA

nu
ˆ−∆  are higher with the more 

spread pressure profile. This proves that for the same errors in the ICs, more 
spread pressure distributions lead to higher errors in the elastic displacements 
and hence in the computed contact solution. This is easily understood as with 
more spread pressure profiles the contributions to the elastic field are more 
spread in the lateral direction of the contact patch, as it happens with more 
elongated contact patches, cf. Figure 5.57.  

As a conclusion, in this section it has been seen how the geometry of the contact 
surface, the a/b ratio and the pressure distribution across the contact patch may 
affect the precision of the contact results computed with approximate ICs. The 
errors contained in the Ann and Bnn are higher in zones with faster angle 
variations, and consequently the errors obtained in the solution of the contact 
problem are higher with geometries in which the contact angle variation is 
faster around the central contact point (i.e., the zone in the contact patch with 
the greatest contributions to the total load). It has been seen as well that a more 
elongated contact patch, and a more uniform pressure distribution across the 
contact patch increases the sensitivity to errors in the ICs, by putting more 
weight in the contributions of ICs associated with higher changes in surface 
orientation, which normally contain a higher error.  

5.2.3.7.2 Tangential contact  

To assess the precision of different variants of approximated ICs in the 
tangential part of the contact problem, the frictional contact of a concave wheel 
on a convex rail is considered here. Three different values of constant 
coefficients of friction are used, namely µ = 0.20, 0.40 and 0.60. A geometry 
similar to that described in Figure 5.25 and Table 5.4 is considered (equal to the 
“circ. s” geometry described in Table 5.9), except that the circular cross-
sectional profile of the wheel is replaced with an elliptical one with semi-axes 
bel and del of 10.15 and 10.25 respectively, close to the original. This modifies 
the shape of the wheel surface only very slightly, such that the Cij ICs presented 
in §5.2.3.6 continue to be valid. The change does however alter significantly the 
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normal undeformed distance to the rail, making the normal pressure distribution 
more evenly distributed in the lateral direction.  

Figure 5.60 summarizes results obtained with µ = 0.20 for the laterally 
symmetric rolling contact with a total normal load N of 100 kN, zero yaw angle 
and zero lateral rigid slip at the central contact point. Results are shown for B, 

B̂  and 'B̂  approximated ICs, along with those obtained with the C ICs for 
geometry 2 (cf. Figure 5.32 and Table 5.6) that are considered the reference. 
These results may be compared with the ones shown in Fig. 14 of [Blanco-
Lorenzo 2018], for a similar geometry and different N and µ.  

Figure 5.60a shows the longitudinal creep force curves obtained with the 

different sets of ICs. Significant offsets are shown for the B and B̂  ICs, which 
are attributed to the differential stiffness effect between the convex and concave 
bodies. This is discussed further in §6.2.2.2. This offset is well compensated by 

the adjustment between the 
xnB'ˆ  and the Cxn, cf. Figure 5.42. The adjustment 

parameters for the 
xnB'ˆ  used here are those listed in Table 5.8 for geometry 2. 

These yield a creep force curve that is in close correspondence to the reference 
obtained with the C ICs.  

The patterns of longitudinal tangential stress px computed with the 'B̂  ICs are 
also improved, as illustrated in Figure 5.60b. This figure shows the px profiles 
along the centreline of the contact patch obtained with different sets of ICs, for 
the same value of longitudinal traction ratio fx = Fx / µN. The longitudinal 
creepage values ξ at which this fx is obtained are indicated in the legend of the 
graph for each set of ICs.  

For higher values of µ, the differences between the results obtained in the 
tangential part of the contact problem with the different sets of ICs for this 
rolling contact case diminish, as may be seen in Figure 5.63 for µ = 0.40. This 
happens because the influence of the normal pressures on the tangential contact 
problem is proportionally lower with higher µ and tangential stresses, and hence 
the role of the ICxn gets less important.  
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(a) Longitudinal creepage–creep force curve.  (b) px along x at s = 0, for fx = 0.65.  

Figure 5.60. Performance of approximated ICs in symmetric conformal rolling contact 
case with µ = 0.20.  

Previously, Figure 5.46 showed that the B̂  and 'B̂  ICs provide a worse 
approximation of the Csn than the B ICs. As the Csn are greater in magnitude 
than the Cxn, this may affect the tangential part of the contact problem 
significantly, especially in problems with larger rigid slips in s direction in 
relation to those in x direction. A problem where this happens is the static 
normal compression between a convex and a concave body with zero shift in 
longitudinal direction. This is computed for the same geometry and coefficients 
of friction as in the previous rolling contact case.  

The result that is shown in Figure 5.61 is the ratio of area in sliding Ssl to total 
contact area Sc, as a function of the total compressive load N (sum of the 
resultants of the normal and tangential stresses in the contact patch), 
monotonically increasing, for µ = 0.40 and µ = 0.60. With µ = 0.20, the 
differences between the sliding areas obtained with the different sets of ICs are 
attenuated in this case due to the higher saturation level.  

The ∆δ spanned by the contact patch as a function of the load (as computed 
with the C ICs) is shown in each subfigure with circle markers. Clearly, the B 

ICs provide the results closest to the C ICs, while the adjusted 'B̂  ICs provide 
the worst results. This suggests that the presented adjustment for the differential 
stiffness effect, intended for the improvement of the Bxn, should not be applied 
in the Bsn. Furthermore, the Bsn provide a better approximation of the Csn than 
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the 
snB̂ , and consequently more precise results are obtained in the tangential 

part of this contact problem with the Bsn than with the 
snB̂ .  

 

(a) µ = 0.40. 

 

(b) µ = 0.60. 

Figure 5.61. Comparison of ratios of sliding areas Ssl to total contact areas Sc obtained 
with B and C ICs in a symmetric conformal static compression contact case.  
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5.2.3.7.3 Effect of mesh refinement on the numerical accuracy of FEM results  

Refined meshes have been used in the computations shown previously in this 
section, in order to avoid the errors associated to the mesh resolution being 
significant in relation to the differences between the different sets of ICs. The 
contact calculations with CECT have been performed with meshes 
encompassing about 50 elements inside the contact in the lateral direction, and 
40 in the longitudinal, except for the compression cases at lower loads. The 
FEM contact models have been constructed with finer meshes.  

Some of the computations with CECT have been repeated with different mesh 
refinements, in order to demonstrate numerical accuracy of the presented results 
with grid refinement. The numerical accuracy of the FEM models has been 
discussed in §4.2.2. The next figures show some comparisons of results 
obtained with CECT with different meshes. The results termed as “coarse” and 
“refined” in these figures have been obtained with meshes having about half 
and twice as many elements in each of the two surface directions as those of the 
original calculations. The original meshes are termed as “medium”. In all the 
results shown below, it is verified that the numerical errors related to mesh 
refinement are small in relation to the differences between the different sets of 
ICs.  

Figure 5.62 shows the ratios of results of the normal contact problem for test 
cases “el.*” computed with CECT and B ICs with different mesh refinements. 
The quantity ∆δrefined of the abscissa axes of this figure is the total contact angle 
variation of the solutions computed with the most refined mesh in each case. 
The ratios shown here may be compared with the ratios shown in Figure 5.56 
for results obtained with FEM and CECT with different sets of ICs. As 
expected, the most affected quantities by the mesh refinement are the ones that 
have their accuracy directly determined by the number of elements inside the 
contact in each direction, namely the contact area Sc and mostly the a/b ratio. 
The noise seen in the curves “medium/refined” in Figure 5.62 c and d has 
roughly the same amplitude as the noise that can be seen in the curves of Figure 
5.56 c and d, but their mean is around unity and do not show any appreciable 
trend which could distort the comparisons between the results obtained with the 
different sets of ICs. In the other results shown, the differences between the 



444 5.2 Solids with non-planar surfaces 

different meshes are much smaller. The errors produced with the coarser 
meshes are lower in case “wide” than in case “tall”.  

 

 

 

(a) pn,max.  (b) Approach d.  

 

 

 

(c) a/b.  (d) Contact area Sc.  

Figure 5.62. Ratios of results of normal contact problem for test cases “el.*” computed 

with CECT and B̂  ICs with different mesh refinements.  

Figure 5.63 shows mesh sensitivity results for the tangential part of the contact 
problem in a similar conformal rolling contact case as that considered in Figure 
5.60. The only difference from that case is the value of µ, which is now set to 

0.40. Here results using the 'B̂  ICs have been computed with different mesh 
densities. As can be seen in the different graphs, the differences between the 

results obtained with different meshes and the same set of 'B̂  ICs are much 



5 Influence coefficients of the elastic solid 445 

lower than the differences between the different sets of ICs. This is also verified 
in the frictional static compression case dealt with in Figure 5.61a, where also 

results computed with the same set of 'B̂  ICs and different mesh densities have 
been included. Here the differences between the curve corresponding to the 
coarse mesh and the other two are due to the lower mesh resolution of the 
coarse mesh, like the noise in the a/b and Sc curves in Figure 5.62 c and d.  

 

 

 

(a) Longitudinal creepage–creep force curve.  (b) Zoomed view of (a).  

 

(c) px along x at s = 0, for fx = 0.65 

Figure 5.63. Performance of approximated ICs in symmetric conformal rolling contact 
case with µ = 0.40. Included results with different mesh refinements.  
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In all the cases, the differences between the results obtained with the medium 
and refined meshes are very small both in the normal and in the tangential parts 
of the contact problem.  

 



 

Chapter 6  

6. Characteristics of wheel–rail 
conformal contact  

Chapter summary  

This chapter is devoted to the analysis of the particular characteristics of 
wheel–rail conformal contact. This is based mostly on numerical analyses with 
the detailed contact models presented in Chapter 4, namely CECT and FEM 
contact models. The solutions obtained with CECT and FEM are contrasted 
with each other in different cases to validate the models for conformal wheel–
rail contact analysis. A geometrical analysis of the undeformed distance 
between two non-planar conforming surfaces is also presented. Different 
features that conformity brings about are pinpointed and contrasted with the 
characteristics of non-conformal contact. The contact mechanics analyses cover 
3D frictional contact. In contrast, most of the past published work on conformal 
contact mechanics deals with 2D contact, and focuses on the normal part of the 
contact problem.  
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6.1 Analysis of the undeformed distance  

In this section a geometrical analysis is carried out of the undeformed distance h 
between the surfaces of a prismatic body (designated as the rail) and a body of 
revolution (designated as the wheel), which touch at one or more rigid contact 
points, providing some analytical approximations for h. The analysis can be 
easily extended to consider both bodies as solids of revolution. Both the case of 
having the axis of revolution of the wheel in the YZ plane (i.e. with zero yaw 
angle), and the case of non-zero yaw angle will be considered. With this 
analysis, it is intended to provide insight on the geometrical effects of the non-
flatness of the contact surface on the undeformed distance, which are 
manifested in conformal contact, and to show the influencing parameters that 
determine their relevance.  

Figure 6.1 depicts the profiles of a convex rail and a concave wheel, contacting 
at a single point. This configuration is used as the baseline for the analyses 
presented in this section. A local contact Cartesian coordinate system is defined, 
with its origin in the contact point, and with its three axes, (xc, yc, zc), defined as 
follows:  

- xc: perpendicular to the plane of the figure, oriented along the 
longitudinal direction.  

- yc: tangent to the surfaces of both bodies at the contact point, contained 
in the plane perpendicular to the longitudinal direction. It defines the 
lateral direction.  

- zc: perpendicular to xc and yc, and normal to the surfaces of both 
contacting bodies at the contact point.  

This system is analogous to the {x, y, z} system used in planar contact (cf. 
§1.2). Additionally, the (x, s, n) local contact curvilinear coordinate system is 
used, as defined in §4.1.1.1 (cf. Figure 4.2). The x and xc axes are parallel, and 
at the contact point, the s, n axes correspond to the yc, zc axes, respectively.  



6 Characteristics of wheel–rail conformal contact 449 

 

Figure 6.1. Non-planar contact surfaces and (xc, yc, zc) coordinate system. 

Figure 6.1 shows also the non-planar potential contact surface, in chain line 
between the wheel and rail profiles, and a parallel to the wheel axis of 
revolution. The latter is contained in the plane of the figure in the case of zero 
yaw angle only, and is not aligned in general with the yc nor with the zc axis. 
The wheel roll angle is assumed to be zero, without loss of generality.  

The following assumptions are made:  

- The distances between the surfaces of both bodies are much smaller 
than the dimensions in the xc and yc directions of the analysis domain.  

- The surfaces of both bodies are smooth.  

- The surfaces of both contacting bodies are not conforming in the 
longitudinal direction. However, they may be closely conforming in the 
yc-zc plane. Consequently, the surfaces of both bodies cannot be 
assumed to be nearly planar in the analysis domain around the contact 
point, as they could in punctual contact.  
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- The variation of the rolling radius of the wheel in the analysis domain is 
much smaller than the rolling radius of the wheel. Therefore, the wheel 
rolling radius can be taken as constant in this domain.  

6.1.1 Zero yaw angle  

Figure 6.2 shows a concave wheel on a convex rail, with zero yaw angle 
between them. The cross-section of the rail is shown, together with two wheel 
cross-sections with planes perpendicular to xc, at xc = 0 and xc = x. The 
following nomenclature is used:  

- ∆z0: profile of the distance between both bodies along the zc axis at xc = 
0.  

- h0: profile of the normal distance between both bodies at xc = 0.  

- δ, δ0: contact angle, with subindex 0 referring to the contact point.  

- Rroll: rolling radius of the wheel at the contact point.  

 

Figure 6.2. Analysis of the wheel–rail undeformed distance with zero yaw angle. 

For small xc / Rroll values, the shape of the different cross-sections of the wheel 
do not change much. So, the cross-sections of the wheel at different xc = x 
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positions can be obtained by simply translating the principal cross-section at xc 
= 0 by a distance dr, almost equal to x2 / 2Rroll. This translation, which takes 
place in the radial wheel direction (i.e. perpendicular to the wheel axis of 
revolution), can be decomposed into its components along the yc and zc axes, dy 
= dr sin δ0 and dz = dr cos δ0, as indicated by the triangle formed by the grey and 
red arrows in the left side of Figure 6.2. In this way, this translation can be 
thought of as being composed of two steps: the first one along the zc axis, from 
the wheel cross-section at xc = 0 (in blue solid line in Figure 6.2) to the profile 
in dashed grey line in the figure, and the second one along the yc axis, from this 
profile to the final position of the wheel cross-section at xc = x (dashed red line 
in the figure). Therefore, if zw0 (yc) is the function of the wheel profile at xc = 0, 
the wheel cross-section at different xc positions can be approximated by the 
function zw given in Eq. (6.1). zw0 and zw are measured along the zc axis.  
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This already defines the surface of the wheel in (xc, yc) coordinates. It is 
possible to compute the surface of a yawed wheel in a similar way, with an 
appropriate coordinate transformation. On the other hand, the surface of the rail 
is determined by its cross section zr (yc), which does not vary along xc. A first 
way of computing ∆z, the distance along the zc axis between both bodies, can be 
directly subtracting the zc coordinates of both surfaces:  

 ∆z1 (xc, yc) = zw (xc, yc) – zr (yc) (6.2) 

Next, the contributions to ∆z of the components along zc and yc of the 
translation of the wheel cross-section from its position at xc = 0 to that at xc = x 
will be considered. The contribution of the component along zc is uniform all 
across the yc direction, and is equal to the projection of dr on zc. On the contrary, 
the contribution of the component along yc is variable in that direction, and is 
equal to the projection of dr on yc multiplied by the tangent of the difference of 
contact angles δ between each lateral position of the wheel principal cross-
section and the contact point. This is indicated by the vertical orange line in the 
small triangle in the left side of Figure 6.2. A second way to compute ∆z is to 
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start from ∆z0, and add the contributions of these components. This leads to Eq. 
(6.3):  
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Eq. (6.3) brings to light the role of the varying contact angle δ with a non-zero 
δ0, even when computing distances ∆z in a constant direction along zc. This 
highlights the importance of carrying out a non-planar geometric analysis for 
the precise computation of undeformed surface distances in non-planar contacts, 
especially with high δ0.  

The assumption of a constant Rroll may be dropped in the above analysis, by 
taking the corresponding value Rroll (yc) at each lateral position of the wheel 
principal cross-section. If this is done, the change of the wheel cross-section 
from xc = 0 to xc = x will no longer be a simple translation: the shape of the 
cross-section will also change, as each point in the wheel profile will translate a 
different distance dr (yc) along the radial direction. Anyway, Eqs. (6.1) and (6.3) 
remain valid, taking into account the smallness of the distances between the two 
bodies and the smoothness of their surfaces.  

Lastly, the computation of the normal distance h is considered; that is, the 
distance along the local normal direction at each position. As it is well known, 
in punctual wheel–rail contact, with a constant contact angle δ0 in the analysis 
domain, Eq. (6.4) is applicable:  
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According to Eq. (6.4), the effective radius of curvature of the wheel surface in 
the longitudinal direction, Rxw, is equal to Rroll / cos δ0. For surfaces which are 
closely conforming in the yc-zc plane, the same equation may be applied, just 
changing the contact angle δ0 by the variable local contact angle δ at each lateral 
position. This may be most easily visualized by considering two linearized 
sections of the wheel and rail cross-sections, at two points with different contact 
angles δ1 and δ2, as depicted in Figure 6.3. Therefore, h is computed according 
to Eq. (6.5):  
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Figure 6.3. Variation of the effective longitudinal curvature of the wheel with the 
contact angle.  

The differences between the vertical and normal distances, ∆z and h, may be 
quantified comparing Eqs. (6.3) and (6.5). On the one hand, the ratio between 
the first term in the right hand side of both equations is equal to cos(δ0 – δ), as 
may be seen in the triangle in the bottom right side of Figure 6.2 containing h0 
and ∆z0 as two of its sides. The ratio between the remaining terms of both 
equations is the same:  
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Therefore, the ratio between h and ∆z is equal to the cosine of the difference of 
contact angles26 between each lateral position of the cross-section of the PCS 
and the reference δ0, independently of δ0. I.e., h / ∆z = cos(δ – δ0). For example, 
for a contact angle difference δ – δ0 = 20º, the difference between h and ∆z is 
just about 6%.  

It has to be noted that h values cannot be computed properly from ∆z values at δ 
– δ0 close to 90º, due to the cos 90º = 0 singularity. This problem is avoided in 
the method for the calculation of h implemented in CECT explained in §4.1.1.2, 
by calculating the projection on the local n direction of the vector between each 
pair of wheel–rail homologous points, which is determined with both the Y and 
Z coordinates of each point. Also, homologous points for the calculation of ∆z 
are defined differently here, as those with the same yc coordinate instead of s 
coordinate. This again is valid for δ – δ0 values not too close to 90º. Taking into 
account the smallness of h with respect to the contact dimensions and the 
smoothness of the surfaces, the difference between both definitions of 
homologous points is negligible. For the particular case of having both wheel 
and rail surfaces parallel around a pair of homologous points (as depicted in 
Figure 6.3), both definitions lead to the same distances.  

Eqs. (6.3) and (6.5) use a linearized approximation of the wheel profile at each 
position yc, in the range (yc – dr sin(δ0), yc). When the lateral displacement of the 
wheel profile, dr sin(δ0), is not small in relation to the lateral curvature radii of 
the wheel profile Rsw, an error due to this linearization becomes appreciable. 
This error is represented in Figure 6.4 as εz at yc = 0. The same three cross-
sections of the wheel shown in Figure 6.2 are depicted in Figure 6.4: the cross-
section at xc = 0 in solid blue line, the final cross-section at xc = x (after the dr 

                                                      

26 Note that in Figure 6.2 the angular difference (δ – δ0) has been defined both with 
reference to the wheel profile in the left side of the figure, and to the profile of the PCS 
in the right side. In order for the above statement to be applicable, the wheel and rail 
surfaces have to be closely conforming in the yc–zc plane, so that the profiles of the 
wheel, the rail, and the reference contact surfaces are almost merging with one another. 
In the situation of having a significant contact angle variation in the analysis domain, 
this does not introduce any new restriction in the analysis with respect to that of the 
smallness of the distances already considered.  
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translation) in dashed red line, and an intermediate cross-section at xc = x, after 
the dz translation along the zc axis.  

 

Figure 6.4. Error in linearization of wheel profile.  

εz may be approximated according to Eq. (6.7). This uses the relation Csw = 1 / 
Rsw = zw0'' / (1 + zw0'

 2)3/2 between the lateral curvature Csw of the wheel profile 
zw0 and its derivatives with respect to yc, and a quadratic approximation of the 
wheel profile. The first derivative zw0' is equal to tan(δ – δ0).  
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The significance of εz may be assessed by comparing it with the overall vertical 
displacement of the wheel cross-section at xc, dz = xc

2 / 2Rroll × cos δ0. Its ratio is 
given in Eq. (6.8). According to this, and assuming that the relevant xc range 
changes in proportion to Rxw = Rroll / cos δ0, εz may become more relevant for 
higher δ0, xc, and |Rxw / Rsw| values.  
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Next, the results obtained with the described formulae for a particular case are 
illustrated. The “circ. a.” case is considered, with geometric parameters defined 
in Table 6.1. In this case, the wheel and rail cross-sections are circular, with 
lateral radii of curvature Rsw = –10.5 mm and Rsr = 10.0 mm, and δ0 = 45º. 
Figure 6.5 shows the contours of vertical and normal distances calculated with 
the previous formulae, together with the contours of normal undeformed 
distances calculated with CECT following the procedure explained in §4.1.1.2, 
which are taken here as the reference result. The contours are shown at levels of 
0.05 mm and 0.1 mm for each case.  

 

Figure 6.5. Contours of vertical and normal distances for “circ. a.” case, with circular 
conforming sections and contact angle δ0 of 45º.  

As can be seen in the figure, the distance contours are asymmetric in the lateral 
direction, which is due to the variation of Rxw with the contact angle δ(yc) (cf. 
§6.2.1.1). The contours in solid blue and dashed red lines are the vertical 
distances ∆z1 and ∆z2 computed with Eqs. (6.2) and (6.3), respectively, and are 
seen to be nearly the same. The contours in solid green lines represent the 
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normal distances computed with Eq. (6.5) plotted on the xc–yc plane. The 
contour of these normal distances at h = 0.05 mm is quite close to the 
corresponding contours of vertical distances. Obviously, as the values of δ – δ0 
increase, it is more important to make the distinction between yc and s, and 
between vertical and normal distances. When plotted on the curvilinear 
coordinate s, the normal distances computed with Eq. (6.5), represented in solid 
cyan lines in the figure, are seen to be very close to those computed in CECT, 
represented in black dash-dotted lines.  

6.1.2 Non-zero yaw angle  

The wheel cross-section translation approach shown for the case of zero yaw 
angle may also be applied with non-zero, small yaw angles, though the error in 
the resulting undeformed distance profiles may be appreciable with very closely 
conforming surfaces or with not so small yaw angles (e.g. ~50 mrad). Figure 6.6 
shows the cross-sectional geometry for this case, as a generalization of Figure 
6.2. In this case, the final wheel cross-section at xc = x is shown in orange 
dashed line. To obtain it, first a radial translation dr is applied, arriving at the 
cross-section shown in dashed red line (the same as the final wheel cross-
section shown in Figure 6.2, with zero yaw angle), and from it a translation of ψ 
xc is applied, being ψ the yaw angle. It is assumed that the yaw rotation of the 
wheel takes place around an axis parallel to the direction of dr, so the ψ xc 
translation is perpendicular to dr. The direction of the ψ xc translation shown in 
Figure 6.6 corresponds to a positive ψ rotation and xc coordinate.  
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Figure 6.6. Analysis of the wheel–rail undeformed distance with non-zero, small yaw 
angle. 

Adding the components of ψ xc along yc and zc to the corresponding components 
of dr, Eqs. (6.9), (6.10) and (6.11) are obtained for zw, ∆z2 and h, as an 
extension of Eqs. (6.1), (6.3) and (6.5), respectively.  
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In these equations, additional terms ∆xψ, ∆yψ, ∆zψ, and modified terms ∆z0
*(yc) 

and h0
*(yc) appear, as a result of the shift of the rigid contact point due to the 

yaw angle. The longitudinal shift of the rigid contact point is taken into account 
by using (xc – ∆xψ) instead of xc as the first argument of the functions in the left-
hand side of the equations. Thus, the functions zw, ∆z2 and h of (xc, yc) may be 
obtained by replacing xc with xc + ∆xψ in the right hand side of Eqs. (6.9)–
(6.11). In the functions modified in this way, the rigid contact point is at (xc, yc) 
= (0, 0), while in the functions as given in Eqs. (6.9)–(6.11), it is at (xc, yc) = 
(∆xψ, 0), in accordance with the position of the blue cross-section of the wheel 
annotated in Figure 6.6. The terms ∆yψ and ∆zψ stand for the necessary shift of 
the wheel cross-section in the yc-zc plane, so that its position at the section 
where the rigid contact point is located coincides with that at xc = 0 with zero 
yaw angle. ∆z0

*(yc) and h0
*(yc) are modified reference distance profiles 

calculated at xc = 0 taking into account the horizontal shift ∆yψ of the wheel 
profile. Neglecting the error shown in Figure 6.4, these may be approached 
according to Eqs. (6.12) and (6.13) (cf. the vertical orange line in the small 
triangle in the left side of Figure 6.2 for the term ∆yψ tan (δ – δ0)):  
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The quantity ∆xψ is sought next. h (xc, yc) is minimum at the rigid contact point. 
Therefore, its partial derivatives with respect to xc and yc are 0 at this point. ∆xψ 
may be found taking the derivative of Eq. (6.11) with respect to xc, according to 
Eqs. (6.14) and (6.15):  
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The approximation ∂δ / ∂xc ≈ 0 has been used in Eq. (6.14). As the rigid contact 
point is known to be located at the δ0 angle, δ may be replaced by δ0 in Eqs. 
(6.14) and (6.15). ∆xψ may also be calculated applying the condition nX = 0 in 
Eq. (4.85). For zero roll angle, this is solved directly, obtaining sin(θ) = tan(δ0) 
tan(ψ). θ is the azimuthal coordinate of the wheel shown in Figure 4.46. So, ∆xψ 
= Rroll sin(θ) = Rroll tan(δ0) tan(ψ). Eq. (6.15) is a good approximation of ∆xψ for 
small ψ, and δ0 not too close to 90º (e.g., ψ < 50 mrad and δ0 < 80º, which is 
usually fulfilled in practical wheel–rail contact cases).  

∆yψ and ∆zψ are determined compensating the shift in the yc-zc plane of the 
wheel cross-section, so that it lies in the same position in the yc-zc plane at xc = 
∆xψ as with zero yaw angle at xc = 0. So, considering Eq. (6.9):  
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The ratio h / ∆z = cos(δ – δ0) holds in this case as well. To show it, Eq. (6.18) 
demonstrates that the ratio between the added terms for h in Eq. (6.11) and for 
∆z2 in Eq. (6.10) due to the ψ xc translation, is cos(δ – δ0), equal to the value 
found in §6.1.1 for the rest of the terms of h and ∆z2.  
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The results obtained with the described formulae are illustrated in Figure 6.7 for 
a case with the same geometry as the one considered in Figure 6.5 (i.e. case 
“circ. a.”), except that now ψ is set to –3.5364 mrad. Figure 6.7 compares the 
contours of vertical and normal distances computed in different ways, with the 
formulae shown here and with CECT, as in Figure 6.5. The contours are shown 
at levels of 0.04 mm and 0.08 mm for each case. The figure also includes the 
wheel contact locus, plotted on xc – ∆xψ vs. s axes in dashed magenta line.  

 

Figure 6.7. Contours of vertical and normal distances for “circ. a.” case, with circular 
conforming sections, contact angle δ0 of 45º and yaw angle ψ of –3.5364 mrad.  

As can be seen in the figure, now the distance contours are asymmetric in both 
lateral and longitudinal directions. The asymmetry in the longitudinal direction 
is caused by the terms related to the ψ xc displacement, which are identified as 
the ψ xc sin δ term of Eq. (6.11), or the ψ xc (sin δ0 + cos δ0 tan(δ – δ0)) terms of 
Eq. (6.10). For a given yaw angle, these terms are more important with higher δ 
and xc values. Considering that the maximum relevant xc values increase with 
Rroll, it may also be said that these terms tend to be more important with higher 
Rroll values. Evidently, as the conformity in the yc-zc plane between wheel and 
rail profiles decreases, both the terms causing longitudinal and lateral 
asymmetries (i.e., the terms related to the component along yc of the dr and ψ xc 
displacements) are less important, because the original undeformed distance 
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profile h0 has higher values, and because tan(δ – δ0) decreases. This may be 
easily visualized considering that lateral shifts of the wheel profile as those 
shown in Figure 6.6 are less prone to affect the original h0 profile with less 
conforming wheel and rail profiles.  

Regarding the comparison between the different distance calculation methods in 
Figure 6.7, similar comments may be made as for Figure 6.5. In this case, slight 
differences are observed at the lower left zone of the contours at h = 0.08 mm of 
the normal distances calculated with Eq. (6.11) and plotted on the s coordinate, 
and of those calculated in CECT. In this zone, δ ≈ 80º. Anyway, the agreement 
between both calculations is still very good.  

It is instructive to look at the form of h in the longitudinal direction. The 
method developed in [Baeza 2018] for the calculation of wheel–rail 
interpenetration areas shows that the longitudinal variation of h in each contact 
strip may be approached as the distance between an arc and a plane, i.e. as a 
quadratic function for small xc / Rroll values. Following this, an alternative 
analytical formula for h is set forth next, with the following premises:  

- h is quadratic along xc. The wheel longitudinal radius of curvature Rxw 
in each strip is equal to Rroll / cos(δ), taken as constant along xc for small 
yaw angles.  

- The minimum of h in each strip is located at the longitudinal position of 
the possible contact point of the wheel with the rail, i.e. the wheel 
contact locus.  

- The undeformed distance profile h0 (s) at the longitudinal position 
where the rigid contact point is located (at xc = ∆xψ) is equal to the 
reference profile h0 (s) at xc = 0 with ψ = 0.  

According to these points, Eq. (6.19) gives an alternative formula for h.  
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In this equation, x0 is the xc coordinate of the wheel contact locus at each lateral 
position, given by Eq. (6.20). At yc = 0, x0 = ∆xψ. The term –ψ yc cos δ0 included 
in Eq. (6.20) is due to the longitudinal translation of the points on the wheel due 
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to the yaw rotation. This effect is not included in the previous equations 
developed in this section. The term –ψ yc cos δ0 is negligible with respect to Rroll 
ψ tan δ for Rroll / |Rsw| >> 1 or for high δ values, except where δ ≈ 0 and yc ≠ 0, 
with non-zero δ0. 

 ( ) ( )( )00 costan δδψ ccrollc yyRyx −=  (6.20) 

Figure 6.8 illustrates the approximation of h along a longitudinal strip of the 
contact surface according to Eq. (6.19). The contours of h plotted in Figure 6.7 
(calculated with Eq. (6.11)) are nearly coincident with the contours of h 
calculated with Eq. (6.19) (not shown).  

 

Figure 6.8. Quadratic approximation of h along xc. 

By now, it is clear that in this approximation of h, the wheel contact locus, 
plotted in dashed magenta line in Figure 6.7, coincides with the point of 
minimum h in each strip, and this point is midway between the two points of the 
strip at a given h level above that minimum. Thus, the wheel contact locus may 
be taken as an indicator of the degree of asymmetry of the contact patch in 
longitudinal direction. Contact loci with significant x0 – ∆xψ values in relation to 
the contact patch dimensions and substantially curved indicate more 
asymmetrical contact patches. In these cases, semi-Hertzian representations of h 
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(with x0 – ∆xψ = 0) as those found in simplified wheel–rail contact models as 
those of [Ayasse 2005], [Quost 2006] and [Sichani 2014] are not accurate.  

Neglecting the –ψ yc cos δ0 term in Eq. (6.20) and approximating Rroll as 
constant in the whole contact surface, x0 – ∆xψ ≈ ψ Rroll (tan δ – tan δ0). So, the 
quantity Rroll (tan δ – tan δ0) is a measure of the sensitivity of h to the yaw angle 
ψ. Here it is seen again that h becomes more sensitive to ψ with higher Rroll and 
δ. With reference to the role of Rroll, it may be thought of the extreme case of 
very conforming prismatic surfaces (with Rroll = ∞). In this case, a slight 
misalignment between both surfaces changes considerably the contact 
conditions, from a single line contact to two separate point contacts at opposite 
extremes of the bodies. The sensitivity of h to ψ is further discussed in §6.2.1.2.  

As with zero yaw angle, the expressions for ∆z2 and h developed in this section 
are affected by the second-order error shown in Figure 6.4.  

6.2 Effects of conformity on wheel–rail contact 
mechanics  

This section discusses the effects that conformity brings to wheel–rail contact 
mechanics, which distinguish conformal and non-conformal wheel–rail contact. 
Effects on the geometry, on the influence coefficients (ICs) and on contact 
subsurface stresses are discussed.  

With the aim of making the explanation as clear as possible, the different effects 
exposed are illustrated with contact cases with simple geometries, with constant 
lateral curvature radii Rsw and Rsr in the contact zone. The parameters of three of 
the considered cases are listed in Table 6.1. In these three cases, a concave 
wheel on a convex rail is considered, as can be observed with the sign of Rsw 
and Rsr. Cases “circ. s.” and “circ. l.” are defined in §5.2.3.7.1 (cf. Table 5.9), 
and their relevant geometrical parameters are indicated again in Table 6.1 for 
convenience. The geometries of these two cases are symmetric both in 
longitudinal and lateral directions for zero yaw angle. Case “circ. a.” (meaning 
“circ. asymmetric”) has the same reference curvatures as case “circ. l.”, but a 
non-zero mean contact angle δ0. In all the cases, the indicated values for Rxw and 
δ0 correspond to the initial contact point. Other geometries considered are 
described later.  



6 Characteristics of wheel–rail conformal contact 465 

Table 6.1 Parameters of conformal contact cases with circular wheel and rail profiles. 

 Values  
Parameter  “Circ. s.” “Circ. l.” “Circ. a.” 
Rxw [mm] 500 654 654 
Rsw [mm] –10.1 –10.5 –10.5 
Rsr [mm] 10.0 10.0 10.0 
δ0 [º] 0 0 45 

In all the examples steel is considered as the material of both contacting bodies, 
with a Young’s modulus E of 210 GPa and a coefficient of Poisson ν of 0.30. 
Unless otherwise noted, the results shown in this section have been obtained 
with FEM, making nonlinear static stepwise simulations as described in §4.2.1, 
to simulate frictional contact cases, static or rolling. Coulomb’s law is 
considered for frictional contact cases, with a constant coefficient of friction µ 
of 0.30. In other cases, frictionless contact is considered. A contact normal load 
N of 80 kN is considered in the rolling contact cases. All the examples shown 
have been solved also with CECT, obtaining a good correspondence with the 
FEM results when the ICs used in CECT have been sufficiently accurate. Some 
comparisons between FEM and CECT results for different conformal contact 
cases are shown in [Blanco-Lorenzo 2016] and [Blanco-Lorenzo 2018].  

A parameter used to characterize a conformal wheel–rail contact, namely the 
total contact angle variation in the contact patch, ∆δ, is illustrated in Figure 6.9. 
The figure shows a section view of a concave wheel on a convex rail, 
perpendicular to the rolling direction x. The contact patch profile is shown in 
magenta line. ∆δ is the range of inclination angles in the YZ plane spanned by 
the contact surface, and is a measure of the degree of the contact conformity. 
The figure also shows the mean contact angle δ0, previously introduced, and the 
s and n directions of the local contact curvilinear {x, s, n} system at a given 
lateral position. The origin of this coordinate system may be arbitrarily defined. 
Normally, s = 0 is set at the initial contact point or at the position defined by δ0. 
δ0 is an intermediate value within the range of δ values spanned by the contact 
patch. It may be defined in different ways, for example as the average of the δ 
values in the two lateral extremes of the contact patch, or as the local δ at the 
initial or rigid contact point. In [Vollebregt 2021] other alternatives are 
explained.  
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Figure 6.9. Conformal contact geometry with definition of δ0 and ∆δ.  

6.2.1 Geometrical effects  

The geometrical effects of conformity are derived from the non-flatness and 
from the closeness of the contacting surfaces. The geometrical effects treated in 
this section are referred particularly to the normal undeformed distances and to 
the rigid slip velocities. These are the fundamental input variables for the 
normal and the tangential contact problems, respectively, as explained in 
§4.1.1.2 and §4.1.1.3. With the aim of capturing adequately these effects 
particular of conformal contact, it is necessary to consider in the analysis the 
mentioned non-flatness of the surfaces, abandoning commonly adopted 
simplifications in non-conformal contact.  

6.2.1.1 Change of wheel longitudinal curvature radius  

In wheel–rail contact, the wheel rolling radius Rroll is much higher than the 
contact patch dimensions, and by extension much higher also than its variation 
within the contact patch. On the contrary, the longitudinal curvature radius of 
the wheel, Rxw, equal to Rroll / cos δ, is variable, as δ is variable. Rxw tends to 
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increase with δ, and its variation is higher with higher mean contact angles δ0. 
Consequently, the longitudinal dimension of the contact patch strips tends to 
increase in the zones with higher contact angles.  

This is illustrated in Figure 6.10 with case “circ. a.”, which has a relatively high 
δ0. The input geometrical parameters of this case are indicated in the upper part 
of the figure as well. With N = 80 kN, ∆δ is approximately 42º with ψ = 0. The 
contact patch contours obtained with different analysis types are shown in the 
figure, without and with the effects of conformity included. The non-conformal 
analysis has been carried out with the exact contact theory, without including 
the necessary extensions for conformal contact, and calculating the undeformed 
distance with the usual simplification in non-conformal contact of constant 
longitudinal curvature radius in the whole contact patch. On the other hand, the 
conformal analyses have been carried out with FEM. The figure also includes 
the contours of the adhesion and slip zones, for the steady rolling contact with µ 
= 0.30 (constant) and creepages on the initial contact point given by ξ0 = 0; η0 = 
–ψ / cos δ0, and φ0 = –sin δ0 / Rroll.  

The contact patch contour obtained by means of the non-conformal analysis, 
represented in blue and designated as “Non-conf.”, is symmetric in longitudinal 
and lateral directions. Each of the other two contact patches correspond to a 
different ψ. The one corresponding to zero ψ, represented in red and designated 
as “ψ = 0”, is not symmetric laterally, being more elongated in the side with 
higher contact angles (corresponding to the negative axis of the s coordinate in 
the figure), due to the described variation of Rxw with δ. The contact patch “ψ = 
0” corresponds to the case shown in Figure 6.5.  

With low δ0 values the effect is less notable, but is manifested as well, and as a 
consequence the contact patches tend to change from an elliptical to a more 
rectangular shape as ∆δ increases. This may be appreciated in Figure 5.51c and 
Figure 5.52c, which correspond to cases “circ. s.” and “circ. l.”, respectively. 
The same contact patch contours plotted in those figures are plotted in 
normalized axes in Figure 6.11, for a better visualization of the effect. The 
longitudinal x and lateral s coordinates are normalized in this figure dividing 
them by the corresponding maximum coordinates of the contact patch in each 
direction, xmax and smax. The reference elliptic contour for the non-conformal 
case is also shown in each graph in black dotted line. This effect may not be 
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present when Rroll is not constant with convex lateral Rsw radii, as may happen in 
rolling bearings. For example, in the case of a ball in a conforming groove, Rxw 
clearly does not change across the contact patch, and therefore the contact patch 
maintains a nearly elliptical shape regardless of ∆δ.  

 

Figure 6.10. Contact patch contours in a conformal contact case, illustrating the effects 
of conformity in the geometry of the normal undeformed distance.  

 

 

 

(a) Case “circ. s.”.   (b) Case “circ. l.”.  

Figure 6.11. One quarter of the contact patch contours (symmetric in the lateral and in 
the longitudinal directions about s = 0 and x = 0, respectively) obtained in frictionless 
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conformal contact cases with δ0 = 0, for different ∆δ-s as shown in the legend of each 
figure, plotted in non-dimensional axes.  

6.2.1.2 Sensitivity of the undeformed distance to the yaw angle  

Figure 6.10 includes the contact patch for case “circ. a.” obtained with a 
conformal analysis with a yaw angle ψ of –3.5364 mrad, in green and 
designated as “ψ = –3.54 mrad”, together with the previously described one for 
ψ = 0. This corresponds to the same case considered in Figure 6.7. While ψ is 
not large, it may be seen that the difference with the contact patch for ψ = 0 is 
considerable. This is a consequence of the amplification of the rotation of the 
principal axes of h that is produced in conformal contact, particularly when Rroll 
is much higher than the lateral curvature radii Rsw and Rsr.  

The contact patches with non-zero ψ and high δ0 in conformal contact are 
asymmetric in longitudinal as well as in lateral directions, tending to become 
cam-shaped as the contact patch designated as “ψ = –3.54 mrad” in Figure 6.10 
(cf. also the h contours for the same case in Figure 6.7). This is due to the 
combined effect of the variation of Rxw with δ on the one hand, and of the 
sensitivity of the orientation of the principal directions of h to ψ on the other.  

Figure 6.12 shows the contact patch contours for other cases similar to “circ. a.” 
except for Rsw, which is given the value indicated in the figure in each case. In 
all the cases shown in this figure, ψ = –3.5364 mrad, as for the cam-shaped 
contact patch shown in Figure 6.10. Each graph includes the contact patch 
calculated without taking into account the effects of conformity, as in Figure 
6.10. In this case, the conformal contact calculation is carried out with CECT, 
with the B approximated ICs of §5.2.3.1. The figure includes the contours of the 
adhesion and slip zones in each case, calculated with similar conditions as 
explained before for Figure 6.10. It has to be noted that the x and s axes of each 
of these graphs have different scales. As Rsw increases and the conformity level 
decreases, the effects of the variation of Rxw with δ and of the sensitivity of the 
orientation of the principal directions of h to ψ become smaller. Consequently, 
the contact patches become less asymmetrical in lateral and longitudinal 
directions, as can be seen in the figure. The ∆δ values for the cases shown in the 
figure, with Rsw = –11.0, –12.0 and –15.0 mm, are 30º, 21º and 13.5º, 
respectively.  
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(a) Rsw = –11.0 mm.  

 

(b) Rsw = –12.0 mm.  
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(c) Rsw = –15.0 mm.  

Figure 6.12. Contact patch contours for cases similar to “circ. a.”, with ψ = –3.5364 
mrad and different Rsw.  

The aforementioned amplification effect of the rotation of the principal axes of 
h is present also for planar contacts (as in the test case of §4.3.1), and it may be 
predicted with a geometrical analysis of the combined undeformed distance h of 
both contacting solids, as done in Appendix 2 of [Johnson 1987] for two 
quadratic surfaces in non-conformal contact27. Following that analysis, Eqs. 
(2.20)–(2.23) are obtained, which define the principal curvatures of the resulting 
combined undeformed distance between the two surfaces, and the orientation of 
the planes containing them.  

Applying Eqs. (2.21)–(2.23) to the geometry of the example considered in 
Figure 6.10 with ψ = –3.5364 mrad, the obtained β angle is about 30 times 
higher than γ (cf. Figure 2.3). For a concave wheel on a convex rail, when the 

                                                      

27 Despite the referenced appendix is entitled “Geometry of smooth non-conforming 
surfaces in contact”, the geometric analysis presented there is applicable also to 
conforming surfaces, in a sufficiently small (approximately planar) region of the 
surfaces.  
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longitudinal dimension of the contact patch (a) is bigger than the lateral one (b), 
the rotation of the principal directions of h is produced in the opposite direction 
to the γ rotation; and in the same direction when a < b. The contrary happens for 
a convex wheel on a concave rail. This effect may be easily visualized by 
considering the foreseeable locations of material interference and separation 
regions for a pair of conforming wheel and rail sections with e.g. δ0 = 0, for 
non-zero γ. This is illustrated in Figure 6.13a for a contact patch with a > b, and 
in Figure 6.13b for a contact patch with a < b. In both cases, a concave wheel 
on a convex rail is considered, as shown in Figure 6.13c.  

Figure 6.13 a and b are plan views of a concave wheel, represented in semi-
transparent red colour, on a convex rail, represented in blue colour. The wheel 
is yawed at an angle γ with respect to the rail, as shown in these figures. In the 
cross-section of Figure 6.13c, the wheel profile is represented in red line and the 
rail profile in blue line. Both in Figure 6.13 a and b, the contact patch in the 
final position is represented in light blue fill colour. The contour of the contact 
patch for γ = 0 is shown as well in dashed line in each figure. Due to the γ 
rotation of the wheel, the wheel material is displaced in planes parallel to the 
plane of Figure 6.13 a and b, coming closer to the rail surface in some parts, and 
separating from it in other parts. According to the considered geometry and 
direction of γ rotation, it may be seen that the interference regions (i.e., the 
regions in which the wheel surface approaches the rail surface) are in the left 
upper and right lower parts of the contact patches, as seen in Figure 6.13 a and 
b. These regions are represented in orange colour. On the other hand, the 
separation regions are in the right upper and left lower parts of the contact 
patches, and represented in green colour. Combining the effect of the 
interference and separation regions with the contact patch contour for γ = 0, the 
final (rotated) contact patch is obtained. In this way, it is understood that the β 
rotation of the contact patch is produced in the opposite direction to the γ 
rotation of the wheel for the contact patch with a > b (Figure 6.13a), and in the 
same direction for a < b (Figure 6.13b).  
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(a) Plan view, a > b.   

 

 

 

(b) Plan view, a < b.   (c) Section A–A.  

Figure 6.13. Direction of β rotation depending on the contact patch a / b ratio. 

As commented in §6.1.2, the wheel contact locus provides information on the 
sensitivity of h to the yaw angle ψ. According to the analysis presented there, 
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contact loci with larger x0 – ∆xψ values indicate higher sensitivities of h to ψ. 
However, to make comparisons between different cases, the shape of h or the 
contact patch has to be taken into account as well. To illustrate this, Figure 6.14 
shows the contours of two different h surfaces at a given h level, which share 
the same wheel contact locus, shown in the figure in dashed magenta line. The 
principal axes of each contour are shown as well, in lighter line. Both h surfaces 
are quadratic, and the wheel contact locus is obtained as the line joining the 
points with minimum and maximum s coordinates of their elliptical contours. It 
may also be considered that the wheel contact locus depends only on the wheel 
surface, and different h contours may be obtained by changing the rail surface. 
As may be observed, one of the contours, which is more elongated in 
longitudinal direction, has a much lower rotation, and is nearly symmetric in the 
x and s directions, which indicates lower sensitivity of h to ψ.  

 

Figure 6.14. h contours with different shapes and rotations, with the same wheel 
contact locus.  

6.2.1.3 Factoring of the approach with cosine term in the undeformed 
distance  

In non-conformal contact, the effect on h of the approach d between the 
contacting solids is uniform in the whole contact patch. On the contrary, in 
conformal contact the effect is variable with the inclination of the contact 
surface in the YZ plane. This was explained in §4.1.1.2 (cf. Figure 4.10 and Eq. 
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(4.15)). The inclination of the contact surface in the YZ plane may be 
characterized either with the α angles (cf. §4.1.1.2) or with the contact angles δ.  

The term d cos(∆α) introduces an additional variation of h in lateral direction, 
increasing its lateral effective curvature. This is illustrated considering a simple 
geometry with constant curvature radii and zero ψ and δ0 angles, as may be the 
one represented in Figure 4.10. In this case, h may be expressed in first 
approximation as h = A cos δ x2 + B s2, taking the origin of the x, s coordinates 
in the initial contact point. This approximation is valid even for considerable ∆δ 
angles. A and B are obtained from the curvatures of the contacting surfaces as A 
= (Cxr + Cxw) / 2 and B = (Csr + Csw) / 2, as in non-conformal contact. The 
convex curvatures are positive, and the concave ones negative. On the other 
hand, taking the series expansion of the cosine function, the term d cos(∆α) = d 
cos δ (δ being equal to ∆α for δ0 = 0 and d applied along the direction defined 
by δ0) is approximated as indicated in Eq. (6.21). In this equation r is the mean 
lateral curvature radius of the contact surface, which for elastically similar 
materials may be approached as the average of the absolute values of the lateral 
curvature radii of the two undeformed contacting surfaces.  
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Substituting the approached equation for h given above and Eq. (6.21) in Eq. 
(4.15), and reordering terms, Eq. (6.22) is obtained. The effective lateral 
curvature Be may be identified in this equation as Be = B + d / (2 r2). In non-
conformal contact, the term d / (2 r2) is very small with respect to B, and may be 
neglected. On the contrary, in conformal contact it may easily reach the same 
order of magnitude as B or higher.  
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As a consequence of the increase of Be with d (and hence with the normal load), 
the a/b ratio between the longitudinal and lateral dimensions of the contact 
patch tends to increase with the normal load in conformal contact, obtaining 
more elongated contact patches in the rolling direction for higher loads. This is 
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verified in the cases with circular profiles “circ. s.” and “circ. l.” studied in 
§5.2.3.7, as may be observed in Figure 5.51b and Figure 5.52b. For cases with 
non-constant transverse curvatures, this effect may be attenuated or accentuated, 
depending on the lateral curvature variation. For example, in the case “el. tall” 
studied in §5.2.3.7 (cf. Figure 5.50c), in which the lateral curvatures decrease in 
lateral direction from the initial contact point, the effect is attenuated.  

6.2.1.4 Asymmetries in the rigid slip velocity field  

In conformal contact, with a geometric spin variable in lateral direction (equal 
to –sin δ / Rroll), asymmetries in the fields of rigid slip velocity w are generated 
which are not seen in non-conformal contact. To illustrate some of these 
asymmetries, the “circ. s.” case is considered. This case presents a high 
conformity level, with a ∆δ of approx. 88º. Figure 6.15 shows the fields of 
tangential contact stresses pt obtained in this case in steady-state rolling contact 
situations with different creepages, together with the contours of adhesion and 
slip zones. The creepages imposed in each case are indicated in the upper part 
of each subfigure. These creepages, with subindex 0, are referred to the initial 
contact point. This same notation is used to define the creepages in different 
rolling contact cases throughout this thesis.  

Two laterally symmetric rolling contact cases are considered in subfigures a and 
b of Figure 6.15, with zero ψ and different ξ0. As there is lateral symmetry with 
respect to the contact centreline at s = 0, only half of the contact patch for s > 0 
is shown in these subfigures. In subfigure a ξ0 is negative (i.e., tractive), and in 
subfigure b ξ0 is positive (i.e., braking). The traction coefficient fx is indicated in 
the caption of each subfigure. It is equal to the resultant longitudinal contact 
force Fx acting on the wheel divided by µN.  
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(a) ξ0 = –0.05%, η0 = 0. fx. = 0.65.   (b) ξ0 = 0.2%, η0 = 0. fx. = –0.27.  

 

(c) ξ0 = 0, η0 = –0.2%.  

Figure 6.15. Tangential contact stresses in conformal contact cases in steady rolling 
with the geometry “circ. s.”.  

As may be seen, the patterns of tangential stresses and contours of adhesion and 
slip zones are quite different in the tractive and in the braking cases. In the 
tractive case, the effects of the tractive longitudinal creepage at s = 0 and of the 
increasing rolling radius for increasing |s| are in the same sense, while in the 
braking case they oppose each other. In this way, the magnitude of the w 
velocities increases faster with |s| in the tractive case. In fact, in the braking case 
||w|| initially decreases from s = 0, changing from positive longitudinal 
component wx at s = 0 to negative at the lateral contact zones, with higher 
rolling radii. This is shown in Figure 6.16, where ||w|| divided by the rolling 
velocity V is plotted for the cases of Figure 6.15 a and b along s at x = 0. As a 
result of these variations of the rigid slip velocities, the adhesion zone tends to 
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become more extended in the lateral direction in the braking case, and it 
becomes more acute shaped in the tractive case.  

In both the tractive and braking cases, the lateral zones of the contact patch, 
with a high contact angle and high associated geometrical spin, are sliding, and 
remain so not only in the two particular situations shown here, but in the whole 
range of longitudinal creepages within the tractive and braking saturation limits. 
It is observed as well that the adhesion zone is less extended in the longitudinal 
direction in the braking case than in the tractive one, even though the resultant 
longitudinal force is smaller in the braking case. This is because the absolute 
value of the creepage is higher in the braking case. Despite the higher absolute 
value of the creepage in the braking case, |fx| is smaller than in the tractive case, 
due to the contribution of the most lateral longitudinal strips of the contact 
patch, which, as a result of the higher rolling radii at these zones, is tractive.  

 

Figure 6.16. Magnitude of the rigid slip velocities across the central cross-section of the 
contact patch at x = 0 for the tractive and braking rolling cases of Figure 6.15 a and b. 
Results symmetric about s = 0.  
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The described characteristics for the tractive and braking regimes of Figure 6.15 
a and b correspond to a concave wheel rolling on a convex rail. In the case of a 
convex wheel on a concave rail, the behaviour for the two regimes is 
interchanged. The dissimilar characteristics described for the tractive and 
braking regimes of Figure 6.15 a and b contrast with what happens in non-
conformal rolling contact with elastically similar materials: in these conditions, 
when changing the sign of the creepages, similar contact solutions are obtained, 
changing just the sign of the tangential stresses. A further difference with 
respect to non-conformal contact is that the field of w in general does not have a 
single pole, as a consequence of the variable geometric spin. As a result of the 
nonlinear variation of the rolling radii across the contact patch, wherein there 
may be a maximum or minimum of the rolling radius in the central part of the 
contact patch, the longitudinal rigid slip may change sign more than once across 
the contact patch. This leads to the duplicity of the so-called zero-slip lines in 
ball bearings and in roller bearings with crowned rollers, where the contact 
patches are very short in longitudinal direction and the rigid slip velocities are 
usually mostly aligned with the longitudinal direction (cf. Chapter 7).  

In the case of Figure 6.15c, there is a η0 of –0.2%, imposed through a yaw angle 
of 2 mrad. In this case, the solution to the tangential problem is not symmetric 
laterally, in contrast with what would happen in non-conformal contact, due to 
the combination of the lateral creepage with the geometric spin, of different sign 
in each contact patch side. In the normal part, it may be observed the 
considerable rotation of the contact patch produced by the small ψ of 2 mrad. 
This is a consequence of the previously described high sensitivity of the 
orientation of the principal directions of h to ψ.  

6.2.1.4.1 Lateral distributions of frictional work  

The w field conditions the fields of slip velocities and frictional work densities 
in the contact patch. The lateral distributions of frictional work in the rail after a 
wheel passage, Wfric, are examined next for different conformal steady rolling 
contact cases.  

Figure 6.17 depicts the lateral distributions of Wfric for several cases with the 
geometry of case “circ. s.”, with ψ = 0 and η0 = 0 as in Figure 6.15 a and b, for 
varying longitudinal creepages. These results have been computed with FEM, 
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as the ones shown in Figure 6.15. The abscissa axis of the graph of the figure 
spans only one half of the contact patch width, as the results are symmetric 
about s = 0. Starting with the case with the highest braking (i.e., positive) ξ0 
shown in the figure, the maximum Wfric is clearly located in the centreline of the 
contact patch, due to the fact that both the highest tractions and slip velocities 
are located in this part. On the other hand, at not too high braking ξ0, a relative 
maximum of Wfric begins to appear in the sides of the contact area, associated to 
the increasing slip velocities in those parts.  

 

Figure 6.17. Lateral distribution of Wfric in conformal steady rolling contact with the 
geometry “circ. s.”, with ψ = 0 and η0 = 0, for different ξ0 as shown in the legend of the 
figure. Results symmetric about s = 0.  

A case with non-zero η0 is considered next. It has the “circ. l.” geometry, with 
creepages ξ0 = 0 and η0 = –0.2%. The lateral distribution of Wfric for this case is 
shown in Figure 6.18. Figure 6.36b and Figure 6.37b show the distributions of 
tangential stresses and relative slip velocities for this case. The details of the 
different calculation models shown in the legend of the figure are explained in 
§6.2.4.  

In this case, the tangential stress distributions and adhesion and slip areas are 
not symmetrical around the longitudinal axis of the contact patch, as can be 
seen in Figure 6.36b and Figure 6.37b. This is due to the combination of the 
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lateral creepage with the geometric spin, which is variable across the contact 
patch. However, the distributions of Wfric obtained with non-conformal as well 
as with conformal analyses are nearly symmetrical in the lateral direction, as 
can be seen in Figure 6.18. This results from two opposing effects:  

- The larger tangential stresses and slip area in the side towards which the 
wheel pushes the rail (i.e., towards decreasing s-coordinates), as is seen 
in Figure 6.36b.  

- The larger slip velocities in the other side, as is shown in Figure 6.37b.  

Both effects are due to the combined effect of the rigid slip velocities resulting 
from the applied lateral creepage on the one hand, and those resulting from the 
geometric spin on the other hand. In the rear part of the contact patch (i.e., in 
the side with decreasing x-coordinates), where the slip area is located, these 
have the same sense and therefore they sum up in the side with increasing s-
coordinates, and in the other side they have opposing senses. The CECT(C) and 
FEM results agree quite well, and render lower Wfric values than the non-

conformal calculation. The differences between the CECT(B̂ ) and CECT(C) 
results are explained in §6.2.4.2, in the discussion of Figure 6.35b.  

 

Figure 6.18. Lateral distribution of Wfric for case “circ. l.” in steady rolling with ξ0 = 0 
and η0 = –0.2%.  
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Figure 6.19 shows the Wfric distributions for different cases with geometry 
similar to case “circ. a.” except for Rsw, which is given the value indicated in the 
figure in each case, and with approximate δ0 of 45º. In all the cases shown in 
this figure, ξ0 = η0 = 0, and ψ = 0. The results of different non-conformal and 
conformal contact calculations are included in the figure. These are the results 
obtained with the exact contact theory without taking into account the effects of 
conformity, marked as “Non-conf.”, the results obtained with CECT and 

approximate B̂  ICs, and the results obtained with FEM.  

While the Wfric distributions obtained with the non-conformal calculation are 
symmetric laterally, the Wfric distributions obtained with the conformal analyses 
are clearly biased towards the side with decreasing s coordinates, which 
corresponds to the side with increasing contact angles, and typically to the 
gauge side of the track. This is caused by the following factors:  

- The higher slip velocities in this side (in this case with ξ0 = 0), resulting 
from the non-linear variation of rolling radii, with faster variation at 
higher contact angles. These higher slip velocities can give rise to more 
severe wear regimes, see e.g. [Lim 1987], [Lewis 2004] and [Vuong 
2011], and the resulting lateral distributions of wear may be even more 
biased than the frictional work distributions.  

- The larger dimensions of the contact patches in this side, due to the 
lower wheel longitudinal curvatures there (cf. §6.2.1.1).  

As the level of conformity decreases with increasing Rsw in these cases, the 
lateral distributions of Wfric obtained with the conformal analyses tend to 
converge to those obtained with the non-conformal analyses as expected, 
becoming more symmetric across the width of the contact. Still, a noticeable 
difference remains between the non-conformal and conformal analyses even in 
the case with Rsw = –15.0 mm as may be seen in Figure 6.19d, this case having a 
∆δ of just about 13.5º.  

A further point to note is that a good agreement is found between the results 
obtained with CECT and FEM, although the latter yield somewhat lower levels 
of Wfric.  
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(a) Rsw = –10.5 mm.   (b) Rsw = –11.0 mm.  

 

 

 

(c) Rsw = –12.0 mm.   (d) Rsw = –15.0 mm.  

Figure 6.19. Lateral distributions of Wfric for cases similar to “circ. a.” in steady rolling, 
with ξ0 = η0 = 0, ψ = 0 and different Rsw.  

6.2.1.5 Contribution of the approach to the lateral rigid slip  

Besides the previously described factoring of d with the cos(∆α) term, the 
variation of the normal n and tangential s directions in the contact surface gives 
rise to a component of d along s, equal to ∆d sin(∆α), as explained in §4.1.1.3 
(cf. Figure 4.12 and Eq. (4.24)). This component contributes to the rigid slip in s 
direction, or to its velocity ws. By way of example, Figure 6.20 to Figure 6.22 
show the tangential stresses and contours of adhesion and slip zones obtained in 
static compression cases with the “circ. s.” and “circ. l.” geometries, with ψ = 0, 
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symmetric in longitudinal and lateral directions. The value of µ in these cases is 
0.30, as in the previous examples of frictional contact. The load N is applied in 
a monotonously increasing way, from an initial zero value. Evidently, a purely 
non-conformal contact model would not capture these tangential stresses.  

Figure 6.20 shows the lateral distributions of lateral tangential stress ps across 
the middle section of the contact patch, for different ∆δ-s encompassed by the 
contact patch, computed both with FEM, and with CECT with approximate B 
ICs. Only one-half of the section is shown, as the tangential stresses are anti-
symmetric with respect to s = 0. The relationship between ∆δ and load N for the 
frictionless compression cases with these geometries are shown in Figure 5.51a 
and Figure 5.52a.  

The results are presented in non-dimensional form in Figure 6.20. The 
tangential stresses are non-dimensionalized dividing them with the maximum 
traction bound in each case, i.e., the maximum normal pressure pn,max multiplied 
by µ. The non-dimensional values of the abscissa axes of the graphs are the 
lateral s coordinates divided by the maximum s coordinate in the contact patch 
in each case. The results used to non-dimensionalize the variables are those 
computed with FEM, except for the cases with lowest ∆δ-s, where the results 
computed with CECT have been used. In addition to the ps curves, the curves of 
non-dimensional normal pressures at the same cross-section computed with 
FEM are also shown in the figure, for the situations with the highest ∆δ-s in 
each case, with an approximate ∆δ of 100º. The normal pressures are non-
dimensionalized dividing them by the maximum normal pressure in each case. 
The normal pressure curves for both the described frictional compression cases 
and for equivalent frictionless cases are shown.  
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(a) Case “circ. s.”.  

 

(b) Case “circ. l.”.  

Figure 6.20. Non-dimensional lateral tangential stresses across the middle section of the 
contact patch in frictional static compression cases with monotonically increasing load. 
Results computed with FEM in solid lines and results computed with CECT in dashed 
lines. Non-dimensional normal pressure curves are included for ∆δ ≈ 100º, with friction 
in black dash-dotted lines, and without friction in grey dotted lines.  
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The relative width of the adhesion zone decreases, and the level of the ps 
stresses increases with ∆δ, as can be seen in Figure 6.20. Qualitatively the 
results are similar for both cases “circ. s.” and “circ. l.”. There is also a good 
agreement in the ps curves obtained with FEM and CECT in each case. This 
good agreement is maintained in the contours of the adhesion and slip zones, 
depicted in Figure 6.21 for the situations with the highest ∆δ in each case. As 
can be seen in the Figure 6.21, the width of the adhesion zone, located in the 
centre of the contact patch, is nearly constant along the contact patch, with the 
boundary between the adhesion and slip zones being nearly parallel to the 
longitudinal direction both in case “circ. s.” and “circ. l.”. 

 

 

(a) Case “circ. s.”.   (b) Case “circ. l.”.  

Figure 6.21. One quarter of the contact patches (symmetric in the lateral and 
longitudinal directions) with contours of adhesion and slip zones in frictional static 
compression cases with ∆δ ≈ 100º.  

Figure 6.22 shows the distribution of tangential stresses obtained in the 
compression case with the “circ. l.” geometry for a ∆δ of 43º, corresponding to 
a load N of 80 kN, computed with FEM.  
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Figure 6.22. Tangential stresses in conformal static compression generated by the 
approach d. Case “circ. l.” with N = 80 kN.  

The tangential stresses shown in these figures are a direct consequence of the 
components of d in s direction. d has a final value of 89 µm for the case of 
Figure 6.22. In a similar way, relative displacements of the contacting solids in 
other directions in the YZ plane generate variations in the lateral profile of h as 
well. These effects may be considered a form of coupling between the normal 
and tangential contact problems.  

Regarding the normal pressures, there are appreciable differences between the 
distributions of normal pressures obtained with and without friction, as can be 
observed in Figure 6.20. The maximum normal pressures tend to decrease with 
friction in the interface. This is due to the coupling effect between the normal 
and the tangential parts of the contact problem that is explained in §6.2.2.3.  

6.2.2 Influence coefficients  

The effect of the non-flatness of the contacting surfaces on the ICs is treated in 
depth in Chapter 5. Here the resulting effects on the contact solutions are 
discussed.  

6.2.2.1 Decrease of ICnn-s with surface orientation change  

The combined ICnn ICs decrease along s more rapidly in curved than in flat 
surfaces as shown in §5.2.3.6.1. In other words, the influence of the normal 
pressures is more localized laterally with curved contact surfaces than with 
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planar surfaces. The resulting effect is an increase of the normal contact 
pressure levels in the lateral extremes of the contact patch, and hence a 
widening of the contact patch, to satisfy the non-overlap condition between the 
contacting surfaces in these zones.  

This effect is quantified in Figure 6.23 for the frictionless compression of two 
solids with the “circ. s.” geometry. For this purpose, the figure compares the 
contact patch width as a function of N calculated with FEM on the one hand, 
and with CECT on the other, using in the latter case the half-space Ann ICs 
instead of the real ICnn-s of the non-planar solids. The reference results are the 
ones computed with FEM. As may be seen in the figure, with ∆δ lower than 
aprox. 40º good results are obtained with the Ann. With higher ∆δ, the contact 
patches obtained with the Ann are narrower than the real ones. The figures also 
show the solutions obtained with CECT with other two sets of ICs: on the one 
hand with the approximated Bnn ICs according to Eq. (5.72), and on the other 
hand with the Cnn ICs of the non-planar solids of this case calculated 
numerically with FEM. A substantial improvement in the results obtained with 
the Bnn is verified with respect to the results obtained with the Ann. It is verified 
as well that the results obtained with the Cnn are nearly coincident with the FEM 
results.  

 

Figure 6.23. Effect of the ICnn-s in the contact patch width.  
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6.2.2.2 Normal–tangential coupling: effects in the tangential part  

A notable feature of conformal contact derived from the variation of the ICs 
with respect to those of the half-space is the coupling between the normal and 
tangential contact problems. As the contacting surfaces are not flat, elastic 
quasiidentity no longer applies with elastically similar contacting materials. In 
other words, the combined ICsn and ICxn ICs as well as their reciprocals are not 
zero even when the elastic mismatch constant K (cf. Eq. (2.115)) is zero. The 
effects of this coupling are normally higher in the tangential part, because the 
normal pressures are normally higher than the tangential stresses in steel on 
steel contact (the more so in rolling contact). Figure 6.24 illustrates two of these 
effects; one associated to the ICsn ICs (Figure 6.24a) and another to the ICxn ICs 
(Figure 6.24b). 

Figure 6.24a shows the profile of the lateral tangential contact stresses ps in the 
central cross-section of the contact patch (at x = 0) obtained in the static 
monotonous compression case with the “circ. l.” geometry and final load of 80 
kN. The solution calculated with FEM is shown on the one hand, considered as 
the reference. On the other hand, two solutions obtained with CECT are shown. 
In one of the CECT solutions the half-space Asn ICs have been used, which in 
this case are zero as the materials of both contacting bodies are elastically 
similar. In the other CECT solution, the approximated Bsn ICs have been used, 
calculated according to Eq. (5.72). To measure the influence of the ICsn-s in this 
case, this is the only difference between both CECT solutions, having used for 

the rest of ICs the same approximated Bij-s in both of them (with idgt  = 0, cf. 

§4.1.2.1.1).  

The ICsn-s are the ICs which present the greatest deviations with respect to the 
half-space, as shown in §5.2.3.6.2, and their effect in the tangential contact is 
very considerable, as may be seen in Figure 6.24a. The normal contact 
pressures, through the ICsn-s, generate elastic displacement differences in lateral 
direction us which cancel out to a great extent the rigid displacements in that 
direction associated to d, discussed in §6.2.1.5. As a result, the calculated ps 
using zero ICsn-s (that is, neglecting the influence of the normal pressures on the 
tangential contact) are much higher than the values calculated with FEM, being 
saturated in most of the contact width. The differences are noteworthy already 
in cases with conformity levels quite lower than the considered one. On the 
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other hand, it may be seen that the solution obtained with CECT and the Bsn ICs 
approaches quite well the FEM solution, which is indicative of the quality of the 
approximation of the Bsn.  

Applying the rationale of the surface orientation based approximation of the ICs 
exposed in §5.2.3.1, it may be understood how the normal pressures generate 
the mentioned us. For example, considering the effect of the normal pressures of 
the central part of the contact (the greatest in magnitude), acting in opposite 
sense in each of the contacting solids, it may be seen that in positions away 
from the contact centre they give rise to components along s which tend to push 
towards the centre the points of the concave surface, and away from the centre 
the points of the convex surface.  

 

(a) Effect of the ICsn-s counteracting the rigid shifts associated to d in static compression case.  
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(b) Effect of the ICxn-s offsetting the longitudinal creepage–creep force curve.  

Figure 6.24. Effects of the normal–tangential coupling in the tangential contact. 

Figure 6.24b shows the longitudinal creepage–creep force curve for steady 
rolling with the “circ. s.” geometry, with zero ψ and η0, and the same normal 
load and coefficient of friction as in the cases of Figure 6.15 (N = 80 kN and µ = 
0.30). The curve calculated with FEM is shown on the one hand, and on the 
other three curves calculated with CECT and three different sets of ICs, and one 
curve calculated with the exact contact theory without taking into account any 
effect of conformity. The latter curve, designated as “Non-conf.”, has been 
calculated assuming planar contact, considering semi-Hertzian geometry with 
the vertical undeformed distance profile of the real surfaces in the central cross-
section of the contact (at x = 0), and using the creepages of the initial contact 
point in the whole contact patch. One of the CECT curves, designated as 
“CECT(C)”, has been obtained with the Cij ICs calculated numerically with 
FEM for the non-planar solids of this case. Another of the CECT curves, 
designated as “CECT(Axn)”, has been obtained with the same set of Cij ICs 
except for the ICxn-s, which have been set to 0, making them equal to the Axn ICs 
for this case with elastically similar materials. In the third CECT curve, 
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designated as “CECT(Axn, Asn)”, in addition to the ICxn-s, the ICsn-s have been 
set to 0 as well, thus completely disabling the influence of the normal part on 
the tangential part of the contact problem. Similar longitudinal creepage–creep 
force curves for other rolling contact cases are shown in Figure 5.60a and 
Figure 5.63a, with CECT results obtained with different variants of 
approximated Bij ICs. The approximated Bij ICs are not included in this 
comparison, as they are not a good approximation for the ICxn, as shown in 

§5.2.3.6.2 (except for empirically adjusted xnB'ˆ  ICs).  

The shown longitudinal creepage–creep force curves (except for the “Non-
conf.” curve) do not pass through the (0, 0) point in the fx–ξ0 graph due to the 
convention adopted to define ξ0, in the initial contact point where the wheel 
rolling radius is the minimum of the contact patch in this case. As could be 
expected, the correspondence of the CECT curve obtained with the complete Cij 
set with the FEM curve is very good.  

On the other hand, the “CECT(Axn)” curve presents an offset towards the right 
in the fx–ξ0 graph. Consequently, for a given ξ0, the fx of this curve is lower. The 
reason of this effect is the differential stiffness of both contacting bodies, treated 
in §5.2.3.5. A similar effect is produced in non-conformal contact when both 
contacting bodies have dissimilar materials with different stiffness. The contact 
compressive normal pressures push the points of the surface towards where they 
are applied, and these displacements are bigger in the rail (the convex body in 
this case) than in the wheel. Therefore, due to the action of the normal 
pressures, in the front part of the contact patch the particles of the wheel surface 
are advanced (in the rolling direction) with respect to the homologous rail 
particles, and the opposite happens in the rear part of the contact patch. The net 
effect of the normal pressures is similar to having an additional tractive 
longitudinal creepage of the wheel particles with respect to the rail particles, 
during their traversal of the contact patch from the leading to the trailing edge. 
This is illustrated in Figure 6.25, where a pair of homologous wheel and rail 
contacting particles are represented at 3 instants t1 < t2 < t3 in different positions 
of the contact patch, for a wheel advancing in the positive X axis. The sense of 
the rotation velocity ω of the wheel is also represented in the figure.  
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Figure 6.25. Longitudinal creepage effect induced by differential longitudinal stiffness 
between wheel and rail.  

This reasoning is valid for planar contacts. In non-planar contact, the picture is 
not so clear, because the ICxn-s reverse their sign not only at x = 0, depending on 
the change of orientation of the surface from the point of load application (cf. 
e.g. the C1 and C2 curves of Figure 5.41a and Figure 5.42a). Nevertheless, in the 
considered case, the effect is in the same sense as anticipated with the reasoning 
for planar geometries in the majority of the contact patch, and only in the most 
lateral parts of the contact patch this effect is reversed.  

It is noted that also in this case a concave wheel rolling on a convex rail has 
been considered. In the case of a convex wheel rolling on a concave rail, the rail 
would be stiffer than the wheel in x direction, and the offset between the 
longitudinal creepage–creep force curves illustrated in Figure 6.24b would 
happen in the opposite sense.  

To further assess the role of the ICxn ICs, the longitudinal elastic displacement 
differences ux are decomposed into the contributions from the px, ps and pn 
stresses, according to Eq. (6.23). In this equation, {uxj} are the contributions to 

{ux} from the stresses acting in j direction, with j  ∈ {x, s, n}. The different {·} 
vectors of the equation collect the values of all the APs of the contact mesh, and 
the [IC xj] matrices are referred in the same way to the contact mesh. In the 
equation the {uxj} elastic displacement differences are defined as the 
multiplication of the [IC xj] matrices with the {p j} stress vectors in the space 
domain for clarity, though in practice their computation is carried out more 
efficiently in the Fourier domain, as explained in §4.1.1.4.2.  
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  {ux} = {uxx} + {uxs} + {uxn}  

 = [IC xx] {px} + [IC xs] {ps} + [IC xn] {pn}  (6.23) 

Figure 6.26 shows the gradients along the longitudinal direction of the different 
contributions to the ux displacements, decomposed according to Eq. (6.23), for 
the tractive rolling contact case of Figure 6.15a (with ξ0 = –0.05%), along the 

contact patch centreline (at s = 0). The longitudinal gradients xjxu∇ = ∂uxj / ∂x 

are shown instead of the absolute uxj displacements, because the longitudinal 
gradients enter directly in the basic kinematic equation of the tangential part of 
the rolling contact problem (Eq. (1.7)).  

 

Figure 6.26. Longitudinal gradients of uxj displacement differences along the contact 
centreline for the tractive rolling contact case of Figure 6.15a.  

The whole contact length and the adhesion zone are marked in Figure 6.26. As 

can be seen in the figure, the total longitudinal gradient xxu∇  (with minus sign) 

is equal to the imposed rigid longitudinal creepage in the adhesion region, 
which has the constant value of ξ0 = –0.05% in the contact centreline, except for 
small numerical errors. The px stresses contribute the most to this gradient, as 

could be expected. And not only that, but the xxxu∇  contribution due to the px 
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stresses reaches almost twice the value of the imposed rigid longitudinal 
creepage in the central part of the adhesion area, to compensate the opposing 

effect of the ps and pn stresses. The xnxu∇  contribution is roughly constant in 

the whole contact patch centreline, while the xsxu∇  contribution reaches its 

maximum in the central part of the adhesion zone. Both of these contributions 
are significant in relation to the imposed reference ξ0.  

Lastly, the slopes of the different creepage–creep force curves in Figure 6.24b 
are examined. The “CECT(Axn, Asn)” curve presents slightly smaller slopes than 
the “CECT(Axn)” curve. The reason is the increase of the ps associated to the use 
of the Asn-s illustrated in Figure 6.24a, consuming a bigger part of the frictional 
capacity and limiting the remaining capacity for the px. The FEM and CECT 
curves present considerably smaller slopes than the “Non-conf.” curve for the 
same reason: in the non-conformal calculation, there are no lateral rigid slip 
velocities, and consequently the tangential stresses are nearly aligned with the 
longitudinal direction, meaning that the whole frictional capacity is acting in 
this direction. The decrease of the slopes of the creepage–creep force curves 
with respect to the non-conformal calculation could be pointed out as a 
geometrical effect of conformity on the rigid slip velocity field. This is prone to 
be noted mainly in cases with low mean contact angles and low spin reference 
creepage. Other creepage–creep force curves are examined in §6.2.4.  

6.2.2.3 Normal–tangential coupling: effects in the normal part  

Figure 6.27 illustrates two effects of the normal–tangential coupling on the 
normal part of the contact problem, associated to the ICns ICs.  

Figure 6.27a shows the profile of the normal pressures pn in the central cross-
section of the contact patch (at x = 0) obtained in normal compression with the 
“circ. l.” geometry, µ = 0.3, and a final load of 80 kN, together with the profile 
corresponding to the compression case with the same geometry and load but 
without friction. The tangential stress distribution for the frictional case is 
represented in Figure 6.22. The pn profile obtained in the case with friction (µ = 
0.3) is flatter than the one obtained without friction (µ = 0), and the maximum 
pn is aprox. 2.5% higher in the frictionless case. Part of the difference is because 
the tangential stresses ps sustain part of the normal load N in the case with 
friction. Specifically, in this case the ps sustain 1.86% of N. Assuming as first 
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approximation Hertzian proportionality between the resultant force of pn and the 
maximum pn, this explains aprox. a 0.6% of the difference between the 
maximum pn values in the calculations with and without friction. The rest is due 
to the normal elastic displacements un produced by the ps stresses. In the central 
part of the contact, the ps at both sides of the contact patch, acting in opposite 
senses in each contacting body, render an inwards normal component both in 
the concave and in the convex body, altering the h profile in such a way that the 
pn in the central part (at s = 0) are reduced. In the considered case of symmetric 
compression, the effects of the ps at both sides of the contact patch are summed 
up. In other cases of rolling contact calculated for the same geometry with 
different φ0 and η0 values, this effect has been more limited, even with higher 
levels of tangential stress.  

Figure 6.20 shows the pn profiles for cases with higher ∆δ, and with higher 
resulting differences between the frictional and frictionless cases due to the 
normal–tangential coupling effect described above. The difference between the 
maximum pn obtained in the frictional and frictionless cases reaches 6.3% in 
case “circ. s.” (Figure 6.20a), and 8.9% in case “circ. l.” (Figure 6.20b). The 
coupling effect is stronger in case “circ. l.” due to the higher cross-influence 
between different longitudinal strips of the contact patch with more elongated 
contact patches, as depicted in Figure 5.57. In these figures, the normal loads 
have been adjusted in the frictionless cases so that the resultants of the normal 
pressures are the same as in the corresponding frictional cases, to make a more 
direct comparison between the cases with and without friction. I.e., the total 
normal loads are higher in the frictional cases, due to the contribution of the 
tangential stresses. Therefore, the differences in the pn profiles depicted in 
Figure 6.20 are entirely due to the normal–tangential coupling effect via the ICns 
ICs. In the frictional cases with ∆δ ≈ 100º, the proportion of the normal load 
sustained by the tangential stresses amounts to 8.9% of the total normal load in 
case “circ. s.”, and to 8.5% in case “circ. l.”.  
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(a) Flattening of the lateral profile of normal pressures in symmetric static compression case. 

 

(b) Lateral shift of the contact with net lateral contact force.  

Figure 6.27. Effects of the normal–tangential coupling in the normal contact. 
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Figure 6.27b graphs the profile of normal load per unit contact patch width in s 
direction, N*, for the rolling contact case with yaw angle shown in Figure 6.15c. 
This case is not symmetric in lateral direction, having a net lateral force 
transmitted in the contact. The figure shows two curves, both computed with 
CECT and the approximated Bij ICs for non-planar solids, except for the ICns 
ICs which have been set to zero in the curve designated as “CECT(Ans)”. There 
is a lateral shift between both curves shown in the figure, as a result of the 
action of the ps via the ICns-s, being the curve obtained with zero ICns-s (as 
would correspond to non-conformal contact) nearly symmetric in lateral 
direction with respect to s = 0. Here the FEM results are not included, as they 
may contain a lateral shift of the contact patch not directly comparable with the 
CECT results, due to the global deflections present in the FE model (cf. Figure 
4.39).  

The observed effect of the ICns-s in this case may be explained again with the 
surface orientation reasoning in which the B approximation of ICs is based. In 
the side of the contact patch towards which the concave body pushes the convex 
one, the ps stresses of most of the contact width have an outwards normal 
component in both bodies, and the opposite happens in the other side of the 
contact patch. In this way, when the ps have a predominant direction in the 
contact (that is, when there is a net lateral contact force), they tend to raise the 
surfaces of both bodies in the side of the contact patch towards which the 
concave body pushes the convex one, and to sink them in the other side. Due to 
the described deformations, a lateral shift of the contact is produced towards the 
side the concave body pushes the convex one. The described un are represented 
schematically in Figure 6.28 for a curved surface subject to the action of some 
ps in the same direction in the whole contact width. The undeformed surface is 
represented in solid black line, and the deformed surface in dashed red line. It 
must be pointed out that here reference is made to the deformations produced 
exclusively by the “normal components” of ps (analogous to the PnI component 
of the force represented in Figure 5.28), and not to the ones due to the global 
deflections of the solids due to the remaining “tangential components” of ps for 
example.  
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Figure 6.28. Normal elastic displacements in a curved surface caused by the “normal 
components” of the ps stresses. View of YZ plane.  

An effect analogous to the one illustrated in Figure 6.27b and Figure 6.28 may 
be anticipated in x direction, associated to the ICnx-s. However, as the ICnx-s are 
smaller in magnitude than the ICns-s with similar materials, this effect is smaller 
than the one shown in Figure 6.27b, and higher coefficients of friction are 
needed for it to become appreciable. Figure 6.29 illustrates this effect 
comparing the px distributions obtained along the contact patch centreline (at s = 
0) in braking and tractive rolling contact situations for the same geometry, N 
and µ considered in Figure 6.15. The ξ0 values of the braking and tractive 
situations are 0.6% and –0.4%, respectively, and η0 = 0 in both cases. With 
these creepages, Fx is almost at its negative saturation value in the braking 
situation, and at its positive saturation value in the tractive situation. The results 
shown in Figure 6.29 have been obtained with CECT and numerically 
calculated Cij ICs. The contact patch shifts in x direction towards where the 
convex body (the more compliant in longitudinal direction) pushes the concave 
one. In addition, the contact patch develops an asymmetry in x direction, 
becoming narrower in the side towards which it shifts, and wider in the other 
side. But with similar materials, this asymmetry becomes noticeable only for 
very high coefficients of friction (say µ >> 1), which may not be realistic for 
steel on steel contact.  
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Figure 6.29. Effect of the normal–tangential coupling in the normal contact due to the 
ICnx ICs. Longitudinal shift of the contact with net longitudinal contact force.  

6.2.3 Subsurface stresses  

The contact stresses affect differently to the concave and convex contacting 
solids, tending to be more unfavourable the subsurface stress state in the 
concave solid. As an example, Figure 6.30 and Figure 6.31 show the subsurface 
stresses in the symmetric static compression case considered in Figure 6.22. 
Figure 6.30 shows the von Mises stresses σvM in the central cross-section of the 
contact patch parallel to the YZ plane at x = 0, obtained with FEM on the one 
hand (subfigure a), and calculated analytically for the half-space on the other 
hand (subfigure b). For this latter analytical calculation, the contact stresses 
obtained for the same case with CECT are used, applying them to the flat 
surface of the half-space that is taken to represent each of the non-planar 
contacting solids. Figure 6.31 shows the von Mises stress curves along the 
normal direction in the central contact point (i.e., along the dashed line of 
Figure 6.30a), corresponding to each of the graphs shown in Figure 6.30.  
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(a) FEM results. 

 

(b) Results for the half-space with the contact stresses computed for the same conformal contact 
case with CECT.  

Figure 6.30. Subsurface von Mises stresses in conformal compression with elastically 
similar materials, in the central cross-section of the contact patch. Stresses in MPa.  

Qualitatively, the subsurface von Mises stress field around the contact obtained 
for the non-planar solids with FEM, Figure 6.30a, resembles the field which 
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would be obtained for half-spaces in non-conformal contact (similar to the field 
shown in Figure 6.30b), despite the contact interface is different, changing from 
a plane in non-conformal contact to a curved surface in conformal contact. 
However, the subsurface stresses are higher in the concave solid.  

 

Figure 6.31. Subsurface von Mises stresses along the normal direction in the central 
contact point in the case shown in Figure 6.30.  

Looking at the stress curves for the half-space show in Figure 6.31, it may be 
seen that part of the differences between the stresses in each of the solids is 
explained by the combined effect of the normal pressures with the tangential 
stresses, with different sign in each solid. The tangential stresses acting on the 
concave surface, combined with the normal pressures, turn out to be more 
unfavourable than the tangential stresses of opposite sign acting over the convex 
surface combined with the same normal pressures. On the other hand, the stress 
curves obtained with FEM are more asymmetric than the ones obtained for the 
half-space with the same contact stresses. A greater stress concentration is 
produced in the concave solid, and the opposite happens in the convex solid. As 
a consequence, the subsurface stresses in the concave solid are higher than the 
ones corresponding to the half-space, and those of the convex solid are lower. 
The location of the maximum stress points is also different in the non-planar 
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solids, tending to be located closer to the surface in the concave solid, and at a 
greater depth in the convex solid.  

It has to be mentioned that the tangential stresses in the compression case 
considered here are relatively low in relation to the normal pressures. As the 
tangential stresses increase, the points with maximum von Mises stresses move 
towards the surface, and the maximum stress values at each of the contacting 
bodies tend to approach each other.  

The subsurface von Mises stresses for two other conformal compression cases 
are shown in Figure 6.32, with different non-planar surface and contact pressure 
profiles. These are the “el. wide” and “el. tall” frictionless compression cases 
studied in §5.2.3.7.1, with elliptical cross-sections. Their geometrical 
parameters are listed in Table 5.9, and some pressure profiles at different load 
levels for each case are plotted in Figure 5.58. The “el. wide” case is shown in 
Figure 6.32a, and the “el. tall” case in Figure 6.32b. The normal load N applied 
in each case is indicated in the caption of each subfigure.  

In the cases shown in Figure 6.32, the highest stresses also occur in the concave 
body. The differences between the stress levels in both bodies are higher in the 
“el. tall” case (Figure 6.32b). The “s components” of the normal pressures, with 
tensile action in the concave body, alter the direct stresses in s direction. As a 
result, in the concave body the stress state in the surface becomes less 
hydrostatic than in planar contact, and the point of maximum von Mises stress 
moves towards the surface. In case “el. tall”, with a more peaky pressure profile 
(cf. Figure 5.58), the maximum von Mises stress is located at the centre, at the 
location of maximum pressure. Additionally, due to the faster contact angle 
variation around the root of the concave section in that case, the s direct stresses 
in that zone are altered more (to the extent that they become tensile), 
contributing to increasing the von Mises stress for the same pressure. In case 
“el. wide”, with a flatter pressure profile, the stress state at the centre is 
comparatively milder, and the worst state is found at the contact edge, where 
tensile radial (i.e. directed along surface lines emanating from the contact 
centre) stresses exist (cf. Figure 7.8 of [Hills 1993]). These are also increased 
with respect to planar contact in the concave body in the s-n plane due to the 
aforementioned “s components” of the normal pressures.  
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(a) Case “el. wide” for N = 5300 kN.  
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(b) Case “el. tall” for N = 310 kN. 

Figure 6.32. Subsurface von Mises stresses in frictionless conformal contact between 
wheels and rails with elliptical cross-section. Isometric view of cut at contact centre 
along longitudinal and lateral directions. Stresses in MPa.  

6.2.4 Creepage–creep force curves  

Here longitudinal and lateral creepage–creep force curves are examined for 
cases “circ. s.”, “circ. l.” and “circ. a.” described in Table 6.1. Normalized 
longitudinal and lateral contact resultant forces, fx and fs, are shown in the 
curves. These are defined as the corresponding contact resultant force divided 
by µN. Results obtained with FEM and with different versions of the exact 
contact theory are shown in each case. The ICs used with CECT are indicated 
inside parentheses in the legend of the graphs.  

For the lateral creepage–creep force curves, the CECT curves also include the 
indication of whether a lateral preload is applied, equivalent to that applied in 
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the corresponding FEM calculation. The CECT cases without lateral preload are 
indicated with “no pr.”, and the ones with lateral preload with “prel.”. In the 
FEM calculations for the cases with lateral creepage, the lateral preload applied 
before the rolling phase is approximately half of the final lateral creep force in 
each case, previously estimated with CECT. This lateral preload has an effect 
on the lateral position of the contact patch as explained in §4.2.1.5 (cf. Figure 
4.39), and hence on its mean contact angle, spin creepage and resultant contact 
forces. With a preload of half of the final lateral creep force, the contact patch 
remains approximately centred in its initial position. Without preload, the 
contact patch shifts laterally. For a concave wheel on a convex rail, this lateral 
shift is produced in the opposite direction of the resultant lateral force acting on 
the wheel. Lastly, the results obtained with the exact contact theory without 
taking into account any effect of conformity, as explained in §6.2.2.2, are 
indicated as “Non-conf.”.  

6.2.4.1 Case “circ. s.”  

Figure 6.33 shows the lateral creepage–creep force curves obtained for case 
“circ. s.” with zero ξ0. Longitudinal creepage–creep force curves for this case 
are shown in Figure 6.24b, and tangential stress distributions for different 
creepages in Figure 6.15.  

Similar comments as for Figure 6.35b in §6.2.4.2 may be made in this case, 
with higher differences between the different calculations being observed here, 
due to the higher conformity level. In this case, the C ICs used in the 
calculations with CECT correspond to the geometry of the FE model, which is 
the one plotted in Figure 5.32b. So the “CECT(C), prel.” and FEM curves 
match better than in Figure 6.35b.  

To illustrate the sensitivity of the contact patch lateral shift to the lateral 
preload, Figure 6.34 shows the contact patch contours obtained with CECT and 
C ICs for the case with η0 = –0.3%, with and without lateral preload, together 
with the contact patch contour obtained with FEM and the same lateral preload 
as in the “CECT(C), prel.” calculation.  
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Figure 6.33. Lateral creepage–creep force curve for case “circ. s.”. ξ0 = 0.  

 

Figure 6.34. Contact patch contours obtained for case “circ. s.” with ξ0 = 0 and η0 = –
0.3%, with and without lateral preload.  



508 6.2 Effects of conformity on wheel–rail contact mechanics 

6.2.4.2 Case “circ. l.”  

Figure 6.35 shows longitudinal and lateral creepage–creep force curves for case 
“circ. l.”. Figure 6.36 shows the contact patch contours and tangential stress 
distributions obtained for two different creepage situations in this case, and 
Figure 6.37 the corresponding relative slip velocity distributions.  

 

 

 

(a) Longitudinal. η0 = 0.   (b) Lateral. ξ0= 0.  

Figure 6.35. Creepage–creep force curves for case “circ. l.”.  

Figure 6.35a shows longitudinal creepage–creep force curves obtained with 
zero η0. Similar comments as for Figure 6.24b may be made in this case, with 
the difference that now the conformity level is smaller and consequently the 
differences between the different results are smaller. The FEM curve is slightly 

above the CECT(B̂ ) curve due to the differential stiffness between the 
contacting bodies. Both the FEM and CECT curves are above the curve 
obtained in the non-conformal calculation due to the convention adopted for the 
definition of ξ0, as explained in §6.2.2.2. In this case, the differences in the 
slopes of the different curves are not significant.  

On the contrary, the lateral creepage–creep force curves shown in Figure 6.35b 
present significant differences in their slopes. The CECT curve with no preload 
has higher lateral forces for a given η0 than with preload, due to the lateral 

contact shift and positive spin contribution. The “CECT(B̂ ), prel.” curve has 
significantly higher slopes than the FEM curve, even though the contact patches 
obtained for both curves are approximately aligned. This is attributed to the 
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greater lateral flexibility than predicted with the approximated B ICs, with the 
Css ICs having higher gradients in longitudinal direction (cf. Figure 5.37). The 
“CECT(C), prel.” curve approaches better the FEM curve. The remaining 
differences between these two curves are due to the fact that the C ICs do not 
correspond to the cross-sectional geometry of the FE model used in this case. 
The C ICs correspond to the geometry shown in Figure 5.32b, with rail and 
wheel surface inclination angles δr and δw of 65º and 60º, respectively (cf. Table 
5.6). In the FEM model used in this case, the values of δr and δw are 40º and 35º, 
respectively. The slopes of the “Non-conf.” curve are significantly higher than 
in the conformal calculations.  

The curves obtained with the conformal calculations do not pass through the 
(η0, fs) = (0, 0) point, because there is a non-zero contact resultant force in the 
YZ plane Flat, which has the same direction as the load N for η0 = 0, and 
approaches the perpendicular direction (which may be regarded as the contact 
lateral direction) as η0 increases.  

 

(a) ξ0 = 0.1%, η0 = 0.  
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(b) ξ0= 0, η0 = –0.2%.  

Figure 6.36. Tangential stress distributions in different creepage situations for case 
“circ. l.” obtained with FEM.  

 

(a) ξ0 = 0.1%, η0 = 0.  
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(b) ξ0= 0, η0 = –0.2%.  

Figure 6.37. Relative slip velocity distributions in different creepage situations for case 
“circ. l.” obtained with FEM.  

6.2.4.3 Case “circ. a.”  

Figure 6.38 shows the lateral creepage–creep force curve for case “circ. a.” with 

ξ0 = 0. The FEM curve is slightly offset from the CECT( B̂ ) curve towards 
higher positive lateral forces. The curve obtained with the non-conformal 
calculation falls between the former two. The differences between the different 
curves are relatively small, with better agreement being found with negative η0. 
The high spin coming from the high mean contact angle is the most determinant 
factor for this lateral creepage–creep force curve, and this is captured in the 
non-conformal as well as in the conformal calculations.  

Most of the contact patch is in slip due to the high spin, as can be seen in Figure 
6.39 for η0 = 0.5%. The contact patch contour for this case is shown in Figure 
6.10 marked as “ψ = –3.54 mrad”, and the contours of undeformed distance in 
Figure 6.7. Another consequence of the high spin is a decreased sensitivity of 
the lateral resultant contact force to the preload before the rolling phase in the 
FEM calculation. This is shown by the small black point at (η0, fs) = (0, 0.55) in 
the graph of Figure 6.38, which marks the resultant contact force obtained with 
FEM omitting the preload. As can be seen, it is very close to the FEM curve in 
the graph, which has been obtained with preload.  
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Figure 6.38. Lateral creepage–creep force curve for case “circ. a.”. ξ0 = 0.  

 

Figure 6.39. Tangential stress distribution in case “circ. a.” with ξ0 = 0 and η0 = –0.5% 
obtained with FEM.  
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6.3 Conformal wheel–rail contact case studies  

In this section, CECT is applied for the solution of two conformal contact cases 
in steady rolling, which may be representative in the wheel–rail application. The 
studied cases are designated as A and B. In case A the contact is produced 
closer to the wheel flange, with higher contact and yaw angles than in case B. In 
case B the contact is produced closer to the wheel tread, and the yaw angle is 
negative; i.e., the wheel is oriented inwards of the track in the running direction. 
Next, the relevant input data common for both cases are listed.  

• Wheel and rail profiles: synthetic profiles are used, with lateral 
curvatures relatively close to each other in the transition zone between 
the nominal rolling points in the profiles, and the wheel flange root and 
railhead corner. Figure 6.40 shows the geometry of the used profiles as 
a function of the track lateral coordinate Y (cf. Figure 4.1b), being the 
wheelset centred on the track. The profiles of both rails of the track are 
positioned with an inclination of 1/40 towards the track centre. With 
these profiles, conformal contact situations are simulated which could 
take place with worn profiles.  

• Wheelset and track half-widths: 750 and 753 mm, respectively. These 
half-widths are measured from the wheelset and track centre to the 
origin points of the local coordinate systems of the wheel and rail 
profiles, located in the wheel tread and in the railhead centre.  

• Nominal wheel rolling radius Rroll: 460 mm.  

• Material elastic properties (the same for both contacting solids): steel is 
considered, with E = 210 GPa and ν = 0.30.  

• Coefficient of friction µ: variable in lateral (s) direction of the PCS. 
Figure 6.41 shows its variation on the profile of the PCS, which is 
linear with the profile length from a minimum value of 0.10 in the point 
with an inclination of 40º, to a maximum value of 0.50 in the point with 
an inclination of 10º. This profile of the coefficient of friction is 
intended to emulate the situation with different lubrication conditions 
that may take place in the transition between the wheel tread and flange, 
or between the corresponding contact zones of the rail.  
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(a) Profiles.  

 

(b) Inclinations.  
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(c) Curvature radii.  

Figure 6.40. Geometry of wheel and rail profiles used for the case studies of wheel–rail 
conformal contact.  

 

Figure 6.41. Considered spatial variation of the coefficient of friction on the profile of 
the potential contact surface.  
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The particular data for each case are listed in Table 6.2. The independent input 
data are the normal force FN (more precisely, the projection of the resultant of 
normal pressures along the direction of the approach of the solids), the lateral 
displacement y and the yaw angle ψ of the wheelset with respect to the track, 
and the longitudinal creepage ξ0 in the initial contact point. The latter is defined 
with the value [(2 r0,+) / (r0,+ + r0,–) – 1] in each case, being r0,+ and r0,– the local 
rolling radii of the wheels in the initial contact points with each rail. The wheel 
of which the contact is studied is the one having a local rolling radius of r0,+, 
located in the positive side of the lateral Y axis with respect to the track centre, 
in the same direction as the lateral displacement y applied to the wheelset. The 
dependent DOFs of the wheelset (the vertical displacement z and the roll angle 

φ) are obtained solving the geometric contact problem of the wheelset on the 

track, taking into account both wheel–rail contact pairs, as explained in 
§4.2.3.1. The contact angle in the initial contact point δ0 is also obtained after 
solving the geometric wheelset–track contact problem, obtaining the positions 
of the initial contact points in each wheel–rail pair. The direction of the 
approach between the contacting solids is defined with this δ0 angle.  

Table 6.2 Input data for wheel–rail conformal contact case studies. 

Parameter Case A Case B 
FN [kN] 70 40 
y [mm] 6.21 6.06 
ψ [mrad] 8 –2 
z [mm] 0.13 0.093 

φ [mrad] 0.64 0.573 
δ0 [º] 40 15.6 
ξ0 [%] 0.454 0.184 

Figure 6.42 shows the fields of tangential stresses and relative slip velocities 
obtained in case A with CECT, and Figure 6.43 the ones corresponding to case 
B, on the curved contact surfaces. The vectors shown are those corresponding to 
the wheel. I.e., the tangential stresses are those applied on the wheel, and the 
slip velocities the ones of the wheel with respect to the rail, as in other figures 
with tangential stresses and slip velocities shown in the thesis.  
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(a) Tangential stresses pt.  

 

(b) Relative slip velocities vrel = v / Vc.  

Figure 6.42. Tangential problem solution of case A.  
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(a) Tangential stresses pt.  

 

(b) Relative slip velocities vrel = v / Vc.  

Figure 6.43. Tangential problem solution of case B.  
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The contact patch of case A (Figure 6.42) presents the cam shape described in 
§6.2.1.2, substantially asymmetric in lateral as well as in longitudinal directions. 
The contact patch of case B (Figure 6.43) is also asymmetric in both directions, 
but much less than in case A, due to the lower magnitude of the contact and yaw 
angles. The lateral asymmetry of the contact patch of case B is largely due to 
the variation of the lateral curvatures of the wheel and rail profiles. On the 
contrary, in case A the profiles are circular in most of the contact patch.  

In both cases there are considerable slip levels, and the magnitude of the 
tangential stresses is largely conditioned by the adhesion limit. In this way, 
there are higher tangential stress levels in case B (Figure 6.43a), in which the 
contact is produced in a zone with a higher coefficient of friction, despite the 
saturation level of the tangential stresses is lower than in case A (Figure 6.42a). 
The figures also show the adhesion and slip zones in the contact patch. In case 
B there is an adhesion zone in the leading part of the contact patch as may be 
seen in Figure 6.43, while in case A the whole contact patch is in slip. The slip 
velocities are much higher in case A, due to the higher spin and lateral creepage 
levels, consequence of the higher contact and yaw angles, respectively. The 
greatest slip levels are found in the leading part in case A (Figure 6.42b), and in 
the trailing part in case B (Figure 6.43b), due to the combination of the spin 
with the lateral creepage associated to the yaw angle, with different sign in each 
case, as it happens in non-conformal contact.  

Table 6.3 lists some relevant results of the contact solution for each case. These 
include the following:  

- The total contact angle variation in the contact patch ∆δ.  

- The longitudinal 2a and lateral 2b dimensions of the contact patch, as 
well as its area Ac. 2a is calculated as the difference between the 
maximum and minimum x coordinates of the contact patch, and 2b is 
calculated similarly with the lateral coordinates s.  

- The longitudinal and lateral components of the resultant force of the 
tangential stresses, Fx and Flat, respectively.  

- The direction of Flat in the YZ plane, dir(Flat) (cf. the dir_Flat  output 

in §4.1.2.2).  
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- Msp, the spin moment generated by the pt, calculated with respect to the 
position of the initial contact point in each case.  

Table 6.3 Results for wheel–rail conformal contact cases. 

 Case A Case B 
∆δ [º] 46.7 28.8 

2a [mm] 17.6 10.2 
2b [mm] 10.0 10.4 
Ac [mm2] 110 80.5 
Fx [kN]  3.41 7.57 
Flat [kN]  8.99 4.41 

dir(Flat) [º] 37.4 –170 
Msp [N.m] 5.16 14.0 

Case A has the highest ∆δ. The contact patch of case A is also the one with the 
highest longitudinal dimension. The higher normal load in this case contributes 
to this, and also the higher longitudinal curvature radii of the wheel resulting 
from the higher contact angles.  

Regarding the resultant forces, case B has a higher Fx, despite the lower 
longitudinal rigid slip velocities wx in this case (see as a reference the ξ0 values 
of Table 6.2), due to the higher coefficients of friction and the lower saturation 
of Flat. In case A, as the effects of the spin and of the lateral creepage resulting 
from the positive yaw angle are summed up, the magnitude of Flat is higher. The 
direction of Flat is towards the field side in case A, and towards the track centre 
in case B. Its direction does not coincide exactly with the one defined by the δ0 
of each case (cf. Table 6.2), due to the non-flatness of the contact patch and 
therefore not having the pt throughout the contact patch acting in the same 
plane. Similarly, in the normal part, in general the direction of the resultant of 
the normal pressures does not coincide with the direction of the normal 
approach between the contacting solids.  

The fact that the resultant forces of the normal contact stresses on the one hand 
and of the tangential contact stresses on the other are no longer perpendicular to 
each other, no longer existing unique “normal” and “tangential” contact 
directions associated to each one, leads to a coupling of the normal and 
tangential problems at equilibrium of forces level, besides the coupling at 
contact mechanics level described in §6.2.2. Due as well to the non-flatness of 
the contact surface, the Msp is not oriented in the normal direction to the mean 
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contact plane. The deviation is important especially in case A, with a contact 
patch with higher ∆δ and also more asymmetric. In this case, the direction of 
Msp is deviated in about 60º with respect to the normal to the mean contact 
plane, and there is a considerable component of Msp in longitudinal direction, of 
approximately 40% of its magnitude.  

Figure 6.44 shows some representative contact magnitudes on the same profile 
of the contact surface together for cases A and B. Figure 6.44a shows the 
normal pressures pn in solid line, the adhesion limits g in dashed line, and the 
magnitude of the tangential stresses ||pt|| in dotted line, in the cross-section 
passing through the initial contact point in each case. The position of the initial 
contact point is marked in Figure 6.42 and in Figure 6.43 with thicker lines 
along the two principal directions of the contact surface. Figure 6.44b shows the 
profiles of integrated frictional work after a wheel passage, Wfric.  

The transition zone of µ may be clearly appreciated in Figure 6.44a, within the 
points with discontinuous slope in the curves of g. The beginning of the 
increase of µ from its minimum value of 0.1 in the most vertical zone of the 
profile marks as well a clear tendency change in the curve of Wfric of case A 
(Figure 6.44b). From the most vertical zone of the surface, after reaching Wfric 
its first maximum in case A, initially it begins to decrease towards the most 
horizontal zone, due to the reduction of the slip velocities. Upon entering in the 
zone of increasing µ, the magnitude of the tangential stresses increases, and the 
trend of Wfric changes, increasing again. This is illustrative of the decisive 
influence of lubrication to reduce wear, which is closely related to frictional 
work, in zones with high slip. In case B, the values of Wfric are much lower than 
in case A despite the higher coefficient of friction, due to the lower slip 
velocities in this case (compare Figure 6.42b and Figure 6.43b).  
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(a) pn, g and ||pt|| at x = 0. pn in solid line, g in dashed line and ||pt|| in dotted line.  

 

(b) Frictional work after a wheel passage, Wfric.  

Figure 6.44. Results of cases A and B on the profile of the potential contact surface.  



 

Chapter 7  

7. Contact analysis in rolling 
bearings  

Chapter summary  

The aim of this chapter is to provide tools for detailed rolling element–raceway 
frictional contact mechanics analyses in rolling bearings. For this purpose, the 
numerical contact models presented in Chapter 4 (i.e., CECT and FE contact 
models) are used in the rolling bearing application, and a tool based on strip 
theory is developed. The extensions needed in Kalker’s exact contact theory, 
originally developed for the wheel–rail case, for its application in rolling 
bearings, are explained in this chapter. The use of partial slip contact models in 
this application contrasts with the usual simplification of using the full slip 
assumption in the tangential part of the contact problem.  

The different contact models are applied in a case study of a spherical roller 
bearing. The adequacy of the more simplified contact solutions is assessed by 
contrasting them with the solutions obtained with the more comprehensive 
models. Situations with different normal loads and friction levels are analyzed, 
and two distinct equilibrium configurations of the roller are identified.  
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7.1 Rolling bearing geometry and kinematics  

Some geometric and kinematic relationships in rolling bearings are given in this 
section, which are necessary for the correct definition of the rolling element–
raceway contact problems.  

Figure 7.1 shows a sectional view of a rolling bearing (in particular, a spherical 
roller thrust bearing), including a roller and the inner and outer rings. Each body 
is identified with a letter. I is used for the inner ring, R for the rolling element 
(sometimes referred to as the roller here) and E for the outer or exterior ring. 
The following relevant internal dimensions are shown in the figure:  

- r I, rE: groove curvature radii of the inner and outer races. Circular 
profiles are considered.  

- R: roller crown radius. The roller cross-sectional profile is considered 
circular, as the races.  

- D: roller nominal diameter. It is the diameter of the nominal rolling 
circle of the roller, marked in dashed red line in the figure.  

- αo: nominal angle between the roller axis and the bearing axis.  

- αR: roller angle. It is the half-angle of the nominal rolling cone of the 
roller.  

- Rp: pitch radius. It is the radius of the circumference described by the 
centre of the nominal rolling circle of the roller around the bearing axis. 
In spherical roller bearings and spherical roller thrust bearings, Rp is 
related with rE, D, αo and αR through Eq. (7.1):  

  Rp = rE cos(αo + αR) – D / 2 cos(αo) (7.1) 

In roller bearings with non-zero nominal αR, a different pitch radius may 
be defined, considering the centre of the rolling circle of the roller with 
zero αR, in which the tangent plane to the rolling element surface is 
parallel to its axis (for rolling elements with non-zero nominal αR, this 
axial position will normally fall beyond the physical limits of the rolling 
element). The pitch radius corresponding to this position is designated 
here as Rp,o, and is given by Eq. (7.2).  
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  Rp,o = Rp + R sin(αR) sin(αo) (7.2) 

 

Figure 7.1. Sectional view of a rolling bearing, with some relevant dimensions.  

The following coordinate systems are defined:  

- Bearing {X, Y, Z}: Cartesian coordinate system that rotates with orbital 
rotation velocity ωm following the radial bearing plane containing the 
central point of the considered roller. Its origin is on the common 
rotation axis of the inner and outer rings, in the intersection point 
between this axis and the perpendicular to the y axis of the rolling 
element from the position corresponding to Rp,o. The YZ plane contains 
the rotation axis of the rings and the roller centre. The Y axis is aligned 
with the rotation axis of the rings, the Z axis points vertically upwards, 
and the X axis completes the right-handed coordinate system.  

- Global or bearing reference {Xo, Yo, Zo}: fixed Cartesian coordinate 
system, with the same origin as the {X, Y, Z} system, and which has the 
orientation of this system at a given reference instant. This system is 
used in the FE models described in §7.2.3.  
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- Roller reference {x, y, z}: Cartesian coordinate system with origin in the 
nominal location of the nominal rolling circle of the roller in the YZ 
plane, with the y axis aligned with the nominal roller axis of revolution. 
It is obtained from the bearing {X, Y, Z} system with a rotation αo 
around the X axis and displacements along the Y and Z axes, being the 
displacement along the Z axis equal to Rp.  

- Roller {u, v, w}: Cartesian coordinate system with origin in the centre 
of the nominal rolling circle of the roller, which moves solidary to the 
roller. It is obtained from the {x, y, z} system with the following 
sequence of rotations and displacements:  

o β tilt rotation around the x axis. After this rotation, a z' axis is 
obtained from the z axis.  

o γ yaw or skew rotation around the z' axis. After this rotation, the 
orientation of the v axis is defined, which coincides with the 
roller axis.  

o θR pitch rotation around the v axis.  

o dy and dz displacements along the y and z axes.  

The tilt and skew rotations of the roller are illustrated in Figure 7.2. According 
to these rotations, and the nominal orientation of the roller axis in the YZ plane 
defined with the αo angle, the cosine directors (lx, ly, lz) of the roller axis v in the 
{ X, Y, Z} coordinate system are lx = –sin(γ), ly = cos(γ) cos(αo + β), and lz = 

cos(γ) sin(αo + β). β and γ are related to the roll φ and yaw ψ rotations 
introduced in Figure 4.1b through Eqs. (7.3) and (7.4):  
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Figure 7.2. Tilt and skew rotations of the rolling element.  

The nominal contact points of the roller with the inner and outer races are 
identified as “i” and “e” in Figure 7.1. The nominal rolling radii of the rings, 
rroll,I,i and rroll,E,e, are given by Eq. (7.5). These are distances in the Z axis from 
the bearing axis to the inner and outer nominal contact points. The longitudinal 
curvature radius of each ring at the nominal contact point is equal to the rolling 
radius divided by cos(α), with α, the contact angle, being nominally equal to αo 
– αR for the inner contact and αo + αR for the outer contact.  

 ( )op

D
Rr αcos

2iI,roll, −= ; ( )op

D
Rr αcos

2eE,roll, +=  (7.5) 

In steady rolling, the motion of the roller is composed of an orbital rotation 
around the bearing Y axis with angular velocity ωm and a pitch rotation around 
its own v axis with angular velocity ωR. The theoretical angular velocities for 
perfect rolling on the nominal contact points are given by Eqs. (7.6) and (7.7). 
In these equations, ωI and ωE are the rotation velocities of the inner and outer 
rings (around the bearing Y axis). These equations may be worked out by simple 
kinematic analysis, setting out the velocities of the inner and outer nominal 
contact points as belonging to the corresponding ring and to the roller.  
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The components in the {X, Y, Z} coordinate system of the total rotation velocity 

vector of the rolling element with respect to each ring, ωRT/j , j ∈ { I, E}, are 

given in Eqs. (7.8)–(7.10), with ωm/j = ωm – ωj.  

 xRXjRT lωω =,/  (7.8) 

 ( )jmyRYjRT l ωωωω −+=,/  (7.9) 

 zRZjRT lωω =,/  (7.10) 

7.1.1 Kinematics of finite rotations  

The formulation treated in this section is useful to work with the FE models 
described in §7.2.3. Unlike in the wheel–rail contact FE models introduced in 
§4.2, the orientation of the axis of revolution of the rolling element is variable 
during the rolling phase of the simulation in these rolling bearing FE models. 
This makes specifying and interpreting input and output orientation angles of 
the rolling element not straightforward. It has to be considered that compound 
finite rotations are not additive, as shown in the example of §1.2.2 Conventions 
– Finite rotations – Compound rotations in the Abaqus Analysis User’s Manual 
[Abaqus doc 2012].  

The following known definitions and formulas are introduced:  

- Dyadic product: given two 3-element vectors u = {u1, u2, u3}
T and v = 

{ v1, v2, v3}
T, their dyad or dyadic product uv is a second-order tensor 

equal to u ⊗ vT, where ⊗ stands for the Kronecker product (also known 
as the tensor product or the direct product). The result is expanded in 
Eq. (7.11).  
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- Axial rotation vector: a finite rotation may be defined by means of its 
axial vector θa. a is a 3-element unit vector aligned with the axis of 
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rotation, and the angle of rotation is equal to θ. There is a skew-
symmetric matrix [ã] associated with vector a, which is given by Eq. 
(7.12) for a = {a1, a2, a3}

T:  
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- Rotation matrix. A rotation may be defined with a rotation matrix as 
well. The following two notations are used here to define a rotation 
matrix:  

o [Ra(γ)] stands for the rotation matrix corresponding to a 
rotation of angle γ around axis a. It is given in the same 
coordinate system as a.  

o [RB/A] stands for the rotation matrix to get a system of axes B 
from a system of axes A, given in the system of axes A.  

In what follows a rotation matrix designated as [A]  is considered 
instead for notational simplicity. This is a 3×3 orthonormal matrix, 
which, when multiplied by a vector v, returns the rotated vector v' . I.e., 
v'  = [A]  v. If an orthonormal frame with unit vectors {i, j , k} is attached 
to v, which after rotation, becomes {i' , j' , k' }, [A]  may be calculated as 
the sum of the dyads of the rotated unit vectors with the corresponding 
unit vectors before rotation, as indicated in Eq. (7.13). In this equation, 

i l, j l, …, l ∈ {1, 2, 3} are the components of the different unit vectors, 

given in the same coordinate system for the six vectors involved in the 
equation. The resulting matrix [A]  is in this same coordinate system. It 
is easy to prove this equation by scalar multiplication with each of the 
unit vectors {i, j , k}. As the scalar multiplication of each unit vector 
with itself is 1, and with the other two unit vectors is 0, it is 
straightforward to see for example that [A]  i = i' .  
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As it is known, the columns of [A]  contain the cosine directors of the 
rotated unit vectors {i' , j' , k' } on the non-rotated basis {i, j , k}, if { i, j , 
k} is the basis in which [A]  is given, i.e., if [i j k]  = [I] . So, if v is given 
in the basis {i' , j' , k' }, the multiplication [A]  v may be also interpreted 
as the transformation of v from the basis {i' , j' , k' } to the basis {i, j , k}. 
The inverse rotation (or transformation) is achieved with the transposed 
matrix [A] T, as [A] –1 = [A] T.  

[A]  may be also obtained from the axial vector θa of the rotation 
through Eq. (7.14). This is known as the Rodriguez formula. Its proof 
may be found in §2.1 of [Shabana 2005]. Another form of the 
Rodriguez formula is given in Eq. (7.15), wherein [A]  is expressed as 
the exponential of θ[ã]. Details on the equivalence of both equations 
may be found in §2.3 [Shabana 2005]. 

  [ ] [ ] [ ] [ ]( )22 ~
2

sin2~sin aaIA
θθ ++=  (7.14) 

  [ ] [ ] [ ] ( ) [ ]( ) [ ]( )aaaIA ~exp~cos1~sin 2 θθθ =−++=  (7.15) 

Yet another form of the Rodriguez formula is given in Eq. (7.16), cf. 
§1.3.1 Rotation variables in the Abaqus Theory Manual [Abaqus doc 
2012]. This equation is given in component form in Eq. (7.17), where 
the summation convention is used. In this equation, δij is the Kronecker 
delta, and εijk is the alternator tensor, defined by ε123 = ε231 = ε312 = 1, ε132 
= ε213 = ε321 = –1, and all other εijk = 0. 

  [ ] [ ] [ ] ( ) aaaIA ⊗−++= θθθ cos1~sincos  (7.16) 
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  ( ) jikijkijij aaaA θεθδθ cos1sincos −++=  (7.17) 

Lastly, for a given [A]  rotation matrix, its associated axial vector a may 
be obtained through Eqs. (7.18) and (7.19). Tr([A] ) in Eq. (7.18) stands 
for the trace of [A] .  

  [ ]( ) θcos21Tr +=A  (7.18) 

  [ ] [ ] [ ] T~sin2 AAa −=θ  (7.19) 

7.1.1.1 Composition of a sequence of rotations into a single rotation  

The composition of a sequence of finite rotations into a single rotation is 
considered next. This is useful to define the initial positioning of the rolling 
element in the FE models described in §7.2.3, for instance.  

The global fixed {Xo, Yo, Zo} system and the {u, v, w} system attached to the 
rolling element are considered. The unit vectors corresponding to the Xo, Yo, Zo 
axes are designated as i, j , k, respectively, and those corresponding to the u, v, 
w axes as u, v, w. Different punctuations are used to denote different positions 
of u, v and w, as explained below.  

The rolling element is initially positioned with its centre located in the global 
Yo-Zo plane, at Zo = Rp, with its v axis inclined at an angle αo with respect to the 
Yo axis, and with zero skew and pitch rotations. In this initial orientation, the 
unit vectors of the rolling element axes are uo, vo and wo. The rotation matrix 
which gives the components of uo, vo and wo in the {i, j , k} basis is [RX(αo)], 
see Eq. (7.20).  
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The following sequence of rotations and displacements is considered, illustrated 
in Figure 7.3:  
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- Tilt rotation β. After this rotation, the unit vectors of the rolling element 
axes are u' , v' and w' . The rotation matrix which gives the components 
of u' , v'  and w' in the {i, j , k} basis is [RX(αo+β)]. The angle αo+β will 
be designated as α in what follows. Figure 7.3 shows in black dashed 
line the circular trajectory in which the tips of the unit vectors of axes vo 
and wo is enclosed during this rotation.  

- Orbital rotation θm and corresponding displacement in the pitch circle. 
After this rotation, the unit vectors of the rolling element axes are u'' , 
v''  and w'' . The rotation matrix to get u'' , v''  and w''  from u' , v'  and w' 
is [RY(θm)]. Therefore, the rotation matrix which gives the components 
of u'' , v''  and w''  in the {i, j , k} basis is [RY(θm)][RX(α)]. The 
components of this rotation matrix are given in Eq. (7.21), where sδ and 
cδ stand for sin(δ) and cos(δ), respectively (and sm and cm stand for 
sin(θm) and cos(θm), respectively). For example, the first column of this 
matrix, {cm, 0, –sm} T, gives the components of u''  in the {i, j , k} basis, 
i.e., u''  = cm i – sm k. To further illustrate this, the relationship between 
the {i, j , k} and the {u'' , v'' , w'' } bases is given in Eq. (7.22).  

Note that Eq. (7.22) collects 3 linear combinations of vectors u'' , v''  
and w''  (one with each row of the rotation matrix), the first to obtain i, 
the second j , and the third k. Eqs. (4.18), (4.20), (7.24) and (7.25) are to 
be interpreted analogously. Eq. (7.22) is equivalent to performing the 
matrix-vector multiplication of the rotation matrix with each of the i, j , 
and k vectors, to get the u'' , v''  and w''  vectors, respectively, being all 
the vectors given by their components in the {i, j , k} basis, which is the 
basis of this rotation matrix. As an example, Eq. (7.23) gives the 
multiplication to rotate i into u'' . This is a multiplication of the form v'  
= [A]  v indicated before Eq. (7.13).  
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In addition to the described orientation change, after the orbital rotation 
the centre of the rolling element has displacements along the Xo and Zo 
axes of Rp sm and Rp (cm – 1), respectively. Figure 7.3 shows in green 
dashed line the circular trajectory in which the centre of the rolling 
element moves during this displacement, parallel to the XZ plane.  

- Pitch rotation θR. After this rotation, the rolling element axes attain their 
final orientation, with unit vectors u, v and w. These vectors are 
coloured in red in Figure 7.3, and the circular trajectory which they 
follow during this pitch rotation, in a plane perpendicular to v, is shown 
in orange dotted line in the figure. The rotation matrix to get u, v and w 
from u'' , v''  and w''  is [Rv(θR)] = [cR 0 sR; 0 1 0; –sR 0 cR] (the 
semicolons delimit the different rows of the matrix, and sR and cR stand 
for sin(θR) and cos(θR), respectively). The relationship between the {u, 
v, w} and the {u'' , v'' , w'' } bases is given in Eq. (7.24). For example, 
the 3rd column of [Rv(θR)], {sR, 0, cR}

T, gives the components of w in 
the {u'' , v'' , w'' } basis, i.e., w = sR u''  + cR w'' . The rotation matrix 
[RR/G] to get the unit vectors of the roller (R) axes u, v and w from the 
unit vectors of the global (G) axes i, j  and k is calculated replacing Eq. 
(7.24) in the right-hand side of Eq. (7.22). It is given in Eq. (7.25) in 
compact form (in terms of the multiplication of the different rotation 
matrices involved), and Eq. (7.26) gives the resulting expressions for 
each component of the matrix.  
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The sought rotation matrix [A]  between the initial and final roller orientations, 
i.e., from {uo, vo, wo} to { u, v, w}, is obtained applying Eq. (7.13), where the 
rotated vectors are u, v and w and the initial ones uo, vo and wo, respectively. 
The components in the global {Xo, Yo, Zo} coordinate system of vectors u, v and 
w on the one hand, and uo, vo and wo on the other, are given in the columns of 
matrices [RR/G] (Eq. (7.26)) and [RX(αo)] (Eq. (7.20)), respectively. The axial 
rotation vector θa of [A]  may then be obtained with Eqs. (7.18) and (7.19).  

Given inner and outer ring rotations θI and θE, adequate values for the orbital θm 
and pitch θR rotations of the rolling element may be obtained through Eqs. (7.6) 
and (7.7), replacing in these equations the rotation velocities ωI and ωE with the 
rotation angles θI and θE. The rotations obtained in this way would correspond 
to the theoretical motion for perfect rolling. If necessary, additional offsets 
could be added to the theoretical θm and θR angles for perfect rolling to adjust 
the position of the rolling element as necessary.  
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Figure 7.3. Sequence of positioning rotations and displacements of the rolling element. 
Isometric view.  

7.1.1.2 Decomposition of a rotation into rolling element reference rotations  

Now, a single rotation is to be decomposed into several reference rotations of 
the rolling element. This may be regarded as the inverse of the composition of a 
sequence of rotations considered in §7.1.1.1. It may be useful for correctly 
interpreting the output rotation quantities of the rolling element in the FEM 
simulations described in §7.2.3 for instance, decomposing the total rotational 
motion into the different rotation components relevant for the analysis.  

The following inputs are considered, given in the {Xo, Yo, Zo} coordinate 
system:  
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- The initial orientation of the rolling element. Apart from the αo angle, 
initial non-zero tilt and skew angles are considered, βo and γo, 
generalizing the development of §7.1.1.1.  

- The total rotation of the rolling element from its initial configuration, 
defined by its axial rotation vector θa. With this, the rotation matrix [A]  
from the initial to the final orientation of the rolling element is 
calculated applying Eq. (7.17).  

- The position of the rolling element centre p = {p1, p2, p3}
T.  

The following angles or rotations are to be calculated, which determine the 
orientation and rotation velocity of the rolling element: θm, θR, β and γ. β and γ 
are angles with respect to the theoretical rolling element orientation at each 
instant, and θm and θR are rotations from the initial position. The β and γ 
rotations of the rolling element are illustrated in Figure 7.2, and the θm and θR 
rotations in Figure 7.3. The β rotation is also illustrated in Figure 7.3.  

Apart from the orientation and rotation velocity of the rolling element, its 
forward velocity and position in the bearing YZ radial plane are also of interest. 
The determination of these from the p position vector is straightforward.  

To calculate the orientation and rotation velocity of the rolling element, first the 
following matrices are calculated:  

- [RX(αo)] (Eq. (7.20)).  

- [RR/G,o], the rotation matrix to get the vectors uo, vo and wo in the initial 
position of the rolling element, from the global vectors i, j  and k. In the 
initial position, θm = 0 and θR = 0. On the other hand, non-zero initial βo 
and γo angles are considered, unlike in §7.1.1.1. Therefore, [RR/G,o] may 
not be calculated using Eqs. (7.25) and (7.26) with θm = 0 and θR = 0, 
i.e. simply as [RX(αo)]. Instead, the [RR/Ref,o] matrix is calculated first, 
which gives vectors uo, vo and wo in the {xo, yo, zo} coordinate system, 
which is the roller reference {x, y, z} reference system in the initial 
position. [RR/Ref,o], which represents the resulting rotation from the 
initial βo and γo rotations applied in this order, is given in Eq. (7.27). 
Here it is taken into account that in the initial position, with θR = 0, the 
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z' axis depicted in Figure 7.2 is equal to the w axis of the roller 
coordinate system.  
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[RR/G,o] is then obtained pre-multiplying [RR/Ref,o] by [RX(αo)], taking 
into account that [RX(αo)] rotates the axes {Xo, Yo, Zo} to the axes {xo, 
yo, zo}. This is expressed in Eq. (7.28).  

  [ ] ( )[ ] ( )[ ] ( )[ ]ooo γβα wxX RRRR =R/G,0  (7.28) 

The θm rotation is determined as atan(p1 / p3). Specifically, the atan2 function is 
used, which returns an angle in the (–π, π) interval. The {Xo, Yo, Zo} system is 
defined so that θm = 0 in the initial position, as illustrated in Figure 7.3, and the 
origin of θm is in the positive Zo axis. Then the rotation matrix [RRef/G] is 
calculated according to Eq. (7.29). This matrix rotates the global axes {Xo, Yo, 
Zo} to the roller reference axes {x, y, z} in the final position.  
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On the other hand, the u, v and w vectors corresponding to the final orientation 
of the rolling element are calculated by multiplying [A]  with uo, vo and wo, 
respectively. uo, vo and wo are given by the columns of the [RR/G,o] matrix 
calculated in Eq. (7.28).  
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The u, v and w vectors calculated in this way are in the {Xo, Yo, Zo} system. 
Now, they are to be transformed to the final {x, y, z} system. For this purpose, 
they are pre-multiplied with [RRef/G]

T. The components of u in the {x, y, z} 
system calculated in this way are denoted as ux, uy, uz, and analogously for the 
components of v and w.  

Finally, the remaining angles β, γ and θR that characterize the orientation of the 
rolling element are calculated according to Eqs. (7.30)–(7.32). These equations 
are derived taking into account the defined relationship between the {x, y, z} 
and the {u, v, w} coordinate systems (see the [RR/Ref,o] matrix given in Eq. 
(7.27) as a reference).  
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7.2 Description of contact models  

It is aimed to obtain detailed contact solutions for each rolling element–raceway 
contact of a given rolling element of the bearing. To this end, different partial 
slip contact models are considered. Each of them is described in the following 
subsections.  

The following common assumptions are considered, also used in previous 
chapters of this thesis:  

- The bodies are homogeneous, and the material’s behaviour is linear 
elastic and isotropic.  

- Coulomb’s friction law is used, with a constant coefficient of friction. 
This is commonly applied in dry or in boundary lubricated contacts.  

The motions of the inner and outer rings are prescribed, as well as the approach 
between them. The precise motion and position of the rolling element are to be 
determined as part of the solution so that the rolling element complies with 



7 Contact analysis in rolling bearings 539 

steady equilibrium. More precisely, quasi-steady equilibrium configurations of 
the rolling element are computed, since the load on it changes continuously 
during its orbital rotation around the bearing in other than purely axially loaded 
bearings.  

The approach defined for the particular rolling element considered includes 
possible global deflections of the rings. The problem of load distribution among 
the different rolling elements of the bearing is assumed to have been previously 
solved, and is out of the scope of this chapter. Commonly used methods for the 
solution of this problem are explained in [Harris 2001]. Factors such as 
structural flexibility of the rings and manufacturing errors may considerably 
influence the resulting load distribution, and this is a field of open research (see 
e.g. [Amasorrain 2003], [Aguirrebeitia 2010], [Aithal 2015], [Heras 2018]).  

7.2.1 Strip theory – ContRod2D program  

A rolling element with two approximately elliptical contact patches is 
considered, one with the inner raceway and another with the outer raceway. The 
strip theory (cf. §2.1.2.3) is applied to solve the tangential contact problem in 
each contact. The necessary geometric and kinematic inputs for the definition of 
the rolling contact problem are obtained under the following assumptions:  

- The rolling element is considered in its nominal orientation, with 
neither tilt nor skew.  

- The inner and outer rolling element–race contact centres are considered 
to be located in the same rolling circle of the rolling element.  

- The contact centres, which are prescribed, may be different from the 
nominal contact points.  

The normal contact problem is solved first using Hertz theory. The same normal 
load N is prescribed for the inner and outer contacts. The crown radius of the 
rolling element and groove radii of the races are used in the lateral direction, 
and the longitudinal curvature radii of the rolling element and races at the 
contact centres in the longitudinal direction.  

The tangential contact problem is solved by dividing the contact patch into 
parallel strips aligned with the x direction and applying Carter / Fromm’s theory 
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(cf. §2.1.2.1) independently in each of them. The interaction between different 
strips is neglected. A pure longitudinal creepage is considered, constant in each 
strip. The longitudinal rigid slip velocities wx are calculated as the difference of 
the relative velocities of the contact patch over each contacting surface. The 

contact relative velocities Vc,j over the surface of each race j, j ∈ { I, E}, and 

over the surface of the rolling element, Vc,R, are given in Eqs. (7.33) and (7.34). 
These velocities are identical for perfect rolling on the nominal contact points of 
the inner and outer contacts.  

 Vc,j = |ωm/j| rroll,j = |ωm – ωj| rroll,j (7.33) 

 Vc,R = |ωR| rroll,R (7.34) 

In these equations, rroll,j are the rolling radii of each race (measured along the 
bearing Z axis), and rroll,R is the rolling radii of the rolling element (measured 
along the rolling element z axis). These are variable in the lateral direction of 
the contact patch. The longitudinal creepage ξ is thus calculated according to 
Eq. (7.35). The contact velocity Vc is taken as the average of Vc,j and Vc,R.  
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For given ring rotation velocities ωI and ωE, ωm and ωR are iterated until the 
equilibrium of longitudinal forces and moments around the y axis are satisfied 
in the rolling element with the inner and outer contact resultants. Only the 
tangential contact forces contribute to these equilibrium conditions. This search 
for the rolling element equilibrium is a simplified version of the procedure 
explained in §7.2.2.2, and has been implemented in a program called 
ContRod2D. During this search, the position of the rolling element and contact 
patches remain fixed, and therefore the normal contact problem is calculated 
only once for each contact patch, while the tangential contact is recomputed in 
each iteration according to the changing ωm and ωR velocities and resulting 
creepages.  

The inputs and outputs of ContRod2D are explained in the next subsections.  
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7.2.1.1 ContRod2D input  

The input variables for the ContRod2D program are specified next.  

- GEO. Vector with 7 real numbers with the basic geometric data of the 
rings–rolling element assembly, in the following order (cf. Figure 7.1): 
[Rp, D, r I, rE, R, αo, αR].  

Units: Rp, D, r I, rE and R are given in mm, and αo, αR in rad.  

Notes:  

o The location of the centres of the contact patches is determined 
with Rp, D, α0 and αR. It is assumed that the centres of the 
contact patches of the rolling element with the inner and outer 
races are located in the same rolling circle, though they need 
not be the nominal contact points for the given geometry. To 
have the centres of the contact patches displaced a distance s0 in 
the lateral (s) direction of the contact with respect to their 
nominal position, the modified pitch radius R'p, roller nominal 
diameter D' and roller angle α'R given in Eqs. (7.36)–(7.38) are 
input, instead of their nominal values Rp, D and αR. These 
equations are deduced from the geometry of Figure 7.1. In these 
equations, rm is the average of the transverse radii of the inner 
and outer contact surface profiles. It may be calculated as rm = 
rE / 4 + r I / 4 + R / 2.  

   ( ) ( )
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o The profiles of the raceways are assumed to be concave, and 
that of the rolling element convex. R must be lower in 
magnitude than r I and rE.  

o Both αo and αR must be in the (–π/2, π/2) interval.  
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o αo is measured from the positive Y global bearing axis to the 
positive local rolling element y axis, being positive anti-
clockwise as viewed towards the negative X direction.  

o αR is positive when the vertex of the rolling cone points towards 
the intersection of its axis with the axis of the rings.  

Nominally non-zero αR should be positive, so that the vertex of 
the equivalent rolling cone may be on the rings’ axis. In this 
way, an adequate kinematics may be obtained, in theory with 
perfect rolling for point contacts. On the other hand, small 
negative αR values may appear in cases with zero nominal αR, to 
equilibrate axial resultants of the contact frictional forces or 
centrifugal forces for example. This is the case of the spherical 
roller bearing (SRB) studied in §7.3.  

With nominally non-zero αR (e.g. in tapered roller bearings), a 
third contact is necessary (the roller end–flange contact) to 
provide a force in the y axis to equilibrate the pair of (not 
aligned) normal forces between the rolling element and the 
inner and outer raceways. The normal force in that third contact 
has no influence on the calculation carried out by this program. 
Further, it is assumed that the friction force in this third contact 
is zero.  

- OM. Vector with rotation velocities. It may contain either one or three 
real numbers, in the following order: [ωI, (ωm), (ωR)].  

Units: rad/s.  

Notes:  

o It is assumed that ωE = 0, without loss of generality.  

o ωI is mandatory, and ωm and ωR optional.  

If only ωI is given, the program will iterate to obtain the ωm and 
ωR rotation velocities with which the equilibrium of forces is 
satisfied in the rolling element.  
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If ωI, ωm and ωR are given, no iteration is carried out for the 
rolling element equilibrium. In this case, the contact solutions 
are computed for the given ωI, ωm and ωR, and in general they 
will not comply equilibrium in the rolling element.  

- MAT. Vector with two real numbers defining the individual elastic 
constants of each body of the rings–rolling element assembly, in the 
following order: [Ek, νk]. Ek and νk are, respectively, the individual 
Young’s modulus and the coefficient of Poisson of each body. Ek is 
given in GPa. It is assumed that the inner and outer rings and the rolling 
element have the same elastic constants.  

- N. Three-element vector with data for the normal problem: [Ni, Ne, 
B_dgt].  

o Ni, Ne: contact normal forces between the rolling element and 
the interior (i) and exterior (e) races, respectively. [kN]  

o B_dgt: bit to deactivate (0) or to activate the correction of the B 
parameter of effective lateral curvature according to Eq. (6.22).  

- f. Two-element vector with the coefficients of friction [µi, µe] in the 
contacts between the rolling element and the interior and exterior races.  

- DISCR. Vector with two positive integer numbers, [nx, ns], defining the 
number of elements in which the inner and outer contact ellipses are 
discretized in longitudinal (nx) and lateral (ns) directions.  

The discretization is similar to that of FASTSIM (cf. Figure 2.15): the 
contact ellipse is divided in ns longitudinal strips of the same width, and 
each strip is divided in turn in nx elements in longitudinal direction, 
equal in each strip, but different in different strips.  

The same discretization is used for both contact ellipses.  

7.2.1.2 ContRod2D output  

ContRod2D returns the following variables:  
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- cont_i, cont_e. Structures with the results of the interior (_i; between 
the rolling element and the inner race) and the exterior (_e; between the 
rolling element and the outer race) contact, respectively.  

Both structures have the same fields, being similar to the sol  structure 

output by CECT (cf. §4.1.2.2). A difference is in the mesh structure, the 
mesh of CECT being regular with equal rectangular elements, and the 
mesh of ContRod2D being similar to that of FASTSIM, as indicated in 
§7.2.1.1.  

Fields of the cont_i and cont_e structures that are not present in the sol  

output structure of CECT or that are different are listed below. Scalar 
fields are written in italics, vector fields inside curly brackets ({}), and 
matrix fields inside square brackets ([]). The vectors below have ns + 2 
elements (each element corresponding to a strip of the contact patch 
discretization, plus an additional exterior strip in each side) and the 
matrices have (nx + 2) × (ns + 2) elements (each element corresponding 
to an element of the contact patch discretization, plus an additional 
exterior row and column in each side, adjacent to the contact patch 
limits). The ordering of elements in these output vectors and matrices is 
similar to that in CECT (cf. §4.1.2), i.e., in ascending x and s directions.  

o a, b: semiaxes of the contact ellipse, in longitudinal (x) and 
lateral (s or y) directions, respectively. [mm]  

o d: normal approach between the contacting bodies. [mm]  

o pn,o: maximum contact normal pressure, which takes place at 
the central point of the contact ellipse. [MPa]  

o Fx: resultant contact force along local contact x direction 

(analogous to CECT Fx  output variable). [kN]  

o My: resultant contact moment along local rolling element y axis. 
It is caused entirely by the px stresses. [N.m]  

o {ξ}: longitudinal creepages. They are assumed constant in each 
contact strip. [-]  
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Sign criteria: positive when the relative velocity of the rolling 
element surface with respect to the race surface is in the same 
direction as the contact patch travelling velocity in the relative 
movement with respect to the corresponding race. That is, a 
positive creepage corresponds to a braking creepage of the 
rolling element with respect to the race.  

o {ξ*}: normalized longitudinal creepages (cf. §2.1.2.1). [-]  

o {c'} : length of the adhesion zone in each strip divided by the 
strip length. [-]  

o {N*}, {Fx
*}: normal and longitudinal forces per unit width in 

each contact strip. [N/mm]  

o [x] , [s]: longitudinal (x) and lateral (s) local contact coordinates 
of the element centres forming the discretization of the contact 
ellipse. [mm]  

o [Y] , [Z] : lateral (bearing axial) Y and vertical (bearing radial) Z 
coordinates of the discretization element centres, in the YZ 
radial plane of the bearing assembly. [mm]  

o {α}: inclinations of the contact surface profile in the YZ plane, 
with respect to the axis of the bearing assembly. Analogous to 

the CECT ang_prf_pcs  output variable (cf. §4.1.2.2). [rad]  

o [srel]: slip velocities divided by the forward velocity of the 
central contact patch strip with respect to the race. [-]  

[wx], [wy]: rigid slip velocities in longitudinal (x) and lateral (y) 
directions. [wy] = [0]. [mm/s]  

Analogous to wx and ws fields of CECT sol  output structure, 

except for the units.  

o  [vx], [vy]: slip velocities in longitudinal (x) and lateral (y) 
directions. [vy] = [0]. [mm/s]  

o [Pfric ]: frictional power density, equal to vx × px in each element. 
[mW/mm2]  
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o {W fric }: integrated frictional work in each contact strip after a 
full contact passage; cf. Eqs. (4.88) and (4.89). [mJ/mm2]  

In addition to the fields listed above, the following fields are present in 
the cont_i and cont_e structures: [eldiv] , [pn] and [px]. These are 

analogous to the corresponding fields of the sol  output structure of 

CECT.  

Some of the fields are either redundant or trivial (with zero values), and 
are included for compatibility with post-processing scripts prepared for 
outputs from other contact models.  

- ROT. Structure with the rotation velocities of the rolling element, with 
the following fields: ωm,o, ωR,o, ωm, ωR. Each field contains a real 
number, as described next.  

o ωm,o and ωR,o are the theoretical values of ωm and ωR, 
respectively, considering perfect rolling on the initial contact 
points. [rad/s]  

o ωm and ωR are the orbital and pitch rotation velocities of the 
rolling element. ωm is aligned with the bearing Y axis, and ωR 
with the rolling element v axis. [rad/s]  

When ωm and ωR are not given in the OM input, if a prescribed 
maximum number of iterations is reached without finding an 
equilibrium solution, zeros are returned.  

7.2.2 Exact contact theory  

The formulation of CECT has been detailed in Chapter 4, and its application to 
wheel–rail contact problems has been demonstrated in Chapter 6. Here, CECT 
is extended to contact problems in rolling bearings.  

In the type of contact mechanics problems treated here, the CEM allows the 
construction of models with much fewer DOFs than the FEM described in 
§7.2.3 for a similar level of detail in the contact solution. Further advantages of 
the exact contact theory are the use of an Eulerian mesh, by which the mesh is 
restricted to a region only slightly larger than the contact patch itself, and that it 
is possible to solve steady rolling contact problems directly, as opposed to the 
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incremental or multi-stepping technique followed with the FE models described 
in §7.2.3. All this translates into much lower computational demands than the 
FEM simulation methodology for contact mechanics problems used in this 
thesis.  

A starting point of the contact analysis is the definition of the geometry of the 
PCS, in which the contact patch of the rolling element with each raceway is 
contained. This is defined as a prismatic surface extruded along the X direction. 
Its profile is between the profiles of the rolling element and the raceway. Each 
contact is analyzed in the same local curvilinear {x, s, n} system associated to 
the PCS described in §4.1.1.1. It moves with the contact patch, and its origin is 
defined to be in the corresponding nominal contact point. The s and n axes, of 
variable direction, are contained in the radial YZ plane. The s axis is tangent to 
the profile of the contact surface, and the n axis is normal to it, pointing into the 
rolling element. The x axis is perpendicular to the radial YZ plane, pointing 
towards the direction of the relative movement of the rolling element with 
respect to each raceway. Figure 7.4 depicts the {x, s, n} systems for the inner 
and outer contacts in different lateral positions. The cross-section of a SRB is 
represented, which is studied in §7.3. The profiles of the potential contact 
surfaces are also represented, in dotted lines. The X and Y axes of the {X, Y, Z} 
system28 are flipped for the analysis of each contact so that the X and x axes 
point in the same direction, to facilitate transformations between both systems.  

The inner and outer contact problems are specified and solved independently, 
considering the relative motion of the rolling element with respect to each 
raceway. I.e., the raceway is taken as the rail, and is assumed to be fixed (with 
no movement), and the rolling element is taken as the wheel.  

                                                      

28 In this chapter, the {X, Y, Z} system illustrated in Figure 7.1 is used for convenience. 
The orientation of this system is the same as the one of the global {X, Y, Z} system used 
in CECT, explained in Chapter 4, but its origin is different. The Y axis of the system 

illustrated in Figure 7.1 is at the Z = –r_nom_r  coordinate of the global CECT system 

(cf. §4.1.2.1.1).  
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Figure 7.4. Potential contact surfaces and local contact coordinate systems in roller–
raceway contacts for a rolling element.  

7.2.2.1 Extensions in CECT for rolling bearings  

The application of the exact contact theory to rolling bearings is affected by the 
following two fundamental geometric differences between rolling element–
raceway and wheel–rail contact:  

- The raceway is not straight in the rolling direction.  

- The rolling radii of the contacting surfaces of the rolling element and 
raceway are not large with respect to their variations in the contact 
patch.  

Each of these points is addressed in the following subsections.  

7.2.2.1.1 Curvature of the raceway in the rolling direction  

The raceways are taken as bodies of revolution, like the rolling element. The 
axes of revolution of each pair of contacting bodies (inner raceway–roller and 
outer raceway–roller) may not be aligned nor contained in the same plane. The 
axis of revolution of the raceway is arranged to be aligned with the Y axis in 
each contact.  
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The inner raceway–rolling element contact is counterformal in the rolling 
direction. Additionally, the longitudinal curvature radii of the outer raceway are 
considered to be much higher than those of the rolling element. Within linear 
elasticity, this implies that the longitudinal dimensions of the contact patches 
are much smaller than these radii. So, the hypothesis of a prismatic contact 
surface previously described is retained for both the inner and outer contacts.  

On the other hand, the longitudinal curvatures of the raceways affect the rolling 
element–raceway normal undeformed distances. The longitudinal dimension of 
the inner contact patch decreases as a result of the convex longitudinal curvature 
of the inner raceway, and that of the outer contact patch increases as a result of 
the concave longitudinal curvature of the outer raceway. The normal 
undeformed distances are computed following mostly the same procedure 
explained in §4.1.1.2, which is based on computing intersections of the 
contacting surfaces with planes perpendicular to x. Only the computation of the 
intersections of the raceway surface is changed.  

The intersections of the rolling element surface are computed in the same way 
as in the wheel–rail case, using Eqs. (4.13) and (4.14). The intersections of the 
raceway surface are no longer constant in the x direction as with a straight rail. 
These are computed with the same equations as for the rolling element, 
particularized for having the raceway axis of revolution parallel to the Y axis. In 
this way, the Z coordinates of the raceway surface intersection are calculated as 

( ) 22
,,sgn xrr jrolljroll −× , with j ∈ { I, E}. In this expression, sgn(rroll,j) = 1 if the 

raceway axis of revolution is below the point (x, s) = (0, 0) of the contact patch 
along the Z axis, and –1 otherwise (in accordance with the sign criteria for 

r_nom_r  indicated in §4.1.2.1.1). rroll,j is equal to |Zr|, being Zr the Z 

coordinates of the raceway profile. The raceway axis of revolution is defined to 
be at x = 0, and the origin of the Z coordinate is on this axis (cf. Figure 7.1). The 
Y coordinates of the intersection are the same as those of the raceway profile on 
the YZ plane. For correct results, the raceway profile should not cross the Z = 0 

line, and the coordinates Zr have the same sign as r_nom_r .  

The longitudinal curvature of the raceway also implies that in steady rolling, the 
rotation velocity vector of the rolling element in its relative motion with respect 
to the raceway j, ωR/j, is not aligned with the axis of revolution of the rolling 
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element v, unless v is parallel to the bearing Y axis. This is because ωR/j is the 
vectorial sum of ωm/j and ωR. It is allowed for through the CECT input 

parameter bit_l6  and the parameters of the 6th line of the particular data for 

each case in the CECT input file, cf. §4.1.2.1.1. The rigid slip velocities are 
computed as the projections of the relative velocity vectors over the PCS, 
following the procedure explained in §4.1.1.3.  

7.2.2.1.2 Varying rolling radii of the contacting surfaces  

The relation of velocities of Eq. (1.7), reproduced here for convenience, holds 
in the tangential contact problem:  
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In Eq. (7.39), v is the slip velocity, w is the rigid slip velocity and u is the 
tangential elastic displacement difference of the contacting surfaces. They are 
two-dimensional vectors with components in the (x, s) tangent directions of the 
contact surface. These vectors are functions of the (x, s) surface position in the 
contact reference frame and in non-stationary problems of time as well. The 
uppercase time derivative in the central side of the equation denotes a 
Lagrangian derivation associated with the material particles of the contacting 
surfaces. Vc is the rolling or contact velocity, approximately the velocity at 
which the material particles of the bodies flow through the Eulerian {x, s, n} 
coordinate system attached to the contact patch along the negative x direction; 
or in other words, the velocity of the contact over the contacting surfaces in the 
relative motion with respect to each contacting surface. In wheel–rail contact, Vc 
may be taken as uniform throughout the whole contact. In rolling bearings, it 
may be variable because the rolling radii of the bodies may be variable. This 
affects the computation of the surface velocities associated with the elastic 
deformations of the contact surfaces, i.e. the second term in the central side of 
Eq. (7.39).  

The discretization in time of Eq. (7.39) leads to:  

 
t∆

−+= u'u
wv  (7.40) 
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In Eq. (7.40), ∆t is the chosen increment for the time discretization, u, v, and w 
are field magnitudes in the current time instant t, and u'  is the elastic 
displacement difference in the previous time instant and position. For the 
contacting particles occupying position (x, s) in the current time instant t, u'  = 
u'(x, s, t) = u(x + Vc ∆t, s, t – ∆t). The quantity Vc ∆t is designated as ∆q, as 
indicated in §2.1.3. ∆t is fixed for the whole contact patch, so with a variable Vc, 
∆q is variable in the contact patch. A reference ∆q, ∆qo, is chosen in the contact 
patch. This may be the value of ∆q at (x, s) = (0, 0), for example. u' is obtained 
in different ways in transient and in steady-state rolling contact problems.  

In transient rolling contact problems, the elastic displacement field in the 
previous time instant is known. It is computed with the contact stresses of the 
previous time instant, p'  = p(x, s, t – ∆t), according to Eq. (7.41).  

 [ ] JjIiJjIi p'IC'u' =  (7.41) 

Eq. (7.41) expresses the discretized relationship between the contact surface 
stresses and elastic displacements at t – ∆t. A similar relationship may be 
written for the current time t (cf. Eq. (2.100)). p'Jj is the vector of contact 
stresses at time t – ∆t, with element p'Jj of this vector being the contact stress 
along direction j on element J of the contact mesh. The convention of 
summation over repeated indices is used in Eq. (7.41), with index J extending 

over all the elements of the mesh entering into contact, and index j ∈ {x, s, n}. 

[IC' IiJj ] is a matrix of ICs of the previous time instant t'. As explained in §2.1.3, 
element IC'IiJj of this matrix gives the elastic displacement difference along 

direction i ∈ {x, s} on element I due to a unit stress along direction j on element 
J, at the position (xI + ∆q, sI) occupied by the particles of element I in a previous 
instant. Here it is generally desirable a common ∆qo for the whole contact mesh 
for efficiency in the computation of ICs and their convolution29 with the contact 

                                                      

29 With a regular mesh, the convolution of the ICs with the contact stresses may be 
performed efficiently in the Fourier domain with FFTs, and without forming complete 
NE×NE [IC' IiJj ] matrices for a 2D mesh with NE elements, as explained in §4.1.1.4.2. 
This, however, is not relevant to the subject discussed here, and the variables and 
equations in this section are expressed in the space domain for convenience.  
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stresses. To get the desired displacements at (xI + ∆q, sI, t – ∆t), the initially 
obtained displacements at (xI + ∆qo, sI, t – ∆t) are interpolated in x direction (or 
extrapolated as necessary at extreme positions of the mesh).  

In steady rolling contact problems, the transient term ∂u/∂t in the right-hand 
side of Eq. (7.39) vanishes, and the second term of the right-hand side of Eq. 
(7.40) becomes a purely spatial gradient. Therefore, the difference u – u'  in this 
term may be scaled proportionally to Vc in each mesh position.  

(u – u') is split into the contributions due to the normal pressures and the 
tangential stresses, (u – u')n and (u – u')t, with (u – u') = (u – u')n + (u – u')t. 
Following the Panagiotopoulos process to solve the generally coupled normal-
tangential contact problem, (u – u')t is initially unknown, and (u – u')n is known 
in the tangential problem. If the available (u – u')n corresponds to a common 
∆qo in the whole contact patch, the value for the applicable ∆q in each position 
is obtained by scaling (u – u')n with the ratio ∆q / ∆qo.  

For (u – u')t, this scaling is realized by modifying the elements of the matrices 
of ICs with which this difference is computed within the solver used for the 
tangential problem. This may be calculated according to Eq. (7.42) or to Eq. 
(7.43). In either case, the fact that in steady rolling p'  = p(x, s, t) is used. The 
subindices IiJj  used in Eq. (7.41) are dropped in these equations for brevity, and 

here j ∈ {x, s}.  

 ( ) [ ] [ ]( ) [ ] pdICpIC'ICu'u =−=− t  (7.42) 

 ( ) [ ] ( ) ( )( ) [ ] dpICppICu'u =∆+−=− tsxxtsxt ,,,,  (7.43) 

Referring to Eq. (7.42), if the initially computed difference matrix [dIC]  
corresponds to a common ∆qo in the whole contact patch (i.e. if [dIC]  = 
[dIC (∆qo)]), a scaled difference matrix [dIC sc(∆q)] is used within the tangential 
solver instead of [dIC (∆qo)]. Each element of [dIC sc(∆q)] is computed as 
dICsc,IiJj (∆q) = dICIiJj (∆qo) × ∆qI / ∆qo, being ∆qI the value of ∆q at the position 
of element I. This is done within the version of the ConvexGS solver 
implemented in CECT. Regarding Eq. (7.43), which is used in the SteadyGS 
tangential solver, ∆x is the element size in the longitudinal direction, common 
in the whole contact mesh. In this case, the scaling of [IC]  is performed 
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analogously as explained for [dIC]  in Eq. (7.42). In either case it has to be 
borne in mind that this scaling is valid only for computing differences (u – u')t, 
but not values u or u' . Eqs. (7.42) and (7.43) become:  

 ( ) ( )[ ] pdICu'u sc qt ∆=−  (7.44) 

 ( ) ( )[ ] dpICu'u sc qt ∆=−  (7.45) 

The calculation of Vc is carried out in a similar way as described in §7.2.1, 
computing first contact velocities Vc,j and Vc,R over the surfaces of the raceway 
and the rolling element. For this purpose, the input rotation velocity of the 
wheel ωR/j has to be decomposed into orbital and pitch rotation velocities. The 
contact velocities may be approximated as constant in x due to the short 
longitudinal dimension of the contact patch. Vc and ∆q may therefore be taken 
as variable only in the s direction. Taking this into account, a vector {∆q} is 
obtained as outcome from this calculation, which contains a ∆q value for each 
lateral position of the mesh of the PCS. The main steps of this calculation are as 
follows:  

- Location of the point A of the rolling element axis of revolution which 
intersects the radial plane YZ0, parallel to the bearing YZ plane and 
passing through the origin of the local contact coordinate system. The 
coordinates of point A in the global coordinate system are (XA, YA, ZA).  

For this purpose, first the axial coordinate of the origin of the local 
contact coordinate system is determined in the rolling element 
(wheelset) coordinate system, yw,C. With reference to Figure 4.3, 
assuming that point C is the origin or the local contact coordinate 
system, point O is the point on the rolling element axis having the same 
yw coordinate. The coordinates of this point on the rolling element 
coordinate system are then (xw,O, yw,O, zw,O) = (0, yw,C, 0), and the 
transformation to its coordinates (XO, YO, ZO) in the {X, Y, Z} system is 
given by Eqs. (7.46)–(7.48). In these equations, cγ and sγ stand, 
respectively, for the cosine and the sine of γ, and (YR, ZR) are the (Y, Z) 

coordinates of the centre of the rolling element axis. ψ and φ are the 

yaw and roll angles of the rolling element axis, cf. Figure 4.3.  
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  XO = –yw,C cφ sψ  (7.46) 

  YO = yw,C cφ cψ + YR (7.47) 

  ZO = yw,C sφ + ZR (7.48) 

If the rolling element axis of revolution is parallel to the radial plane, 
point A is in the same position as point O, and therefore (YA, ZA) = (YO, 
ZO). Otherwise, YA and ZA are calculated with Eqs. (7.49) and (7.50). XC 

is defined by the input x_0 , and tγ stands for the tangent of γ.  

  YA = YO + (XO – XC) / tψ (7.49) 

  ZA = ZO + (XO – XC) tφ / sψ (7.50) 

- Calculation of the longitudinal component of the velocity of A, vA,x. The 
velocity of A, vA, is calculated by applying vA = vP/j + ωR/j×r A-P, being 

||vP/j|| given by the input parameter sftx_o_vel , and its cosine 

directors by dir_vx , dir_vy  and dir_vz .  

- The orbital radius of A, rm,A, is equal to |ZA| if |r_nom_r | > 0. 

Otherwise (for a straight raceway), rm,A = ∞.  

- The orbital rotation velocity of the rolling element, ωm/j, is calculated as 

ωm/j = vA,x / rm,A if |r_nom_r | > 0. For a straight raceway, ωm/j = 0. ωm is 

also the rotation velocity of the YZ0 plane. The rotation velocity of the 
rolling element with respect to the YZ0 plane (i.e., the pitch velocity of 
the rolling element) is equal to ωR/j – ωm/j j , being j  the unit vector 
aligned with the Y axis.  

- For a curved raceway, Vc,j is calculated for each lateral position of the 
mesh of the PCS applying Eq. (7.33). For a straight rail, Vc,j is taken as 
equal to vA,x. Vc,R is also calculated at each lateral position of the mesh, 
at the x = 0 section. It is calculated using the formulation developed in 
§4.1.1.3, considering zero forward velocity of point A, and the rotation 
velocity of the rolling element with respect to the YZ0 plane calculated 
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in the previous step. Vc,R is taken as the longitudinal component of the 
velocity calculated in this way, with changed sign.  

- For the general case of contacting bodies with dissimilar elastic 
constants, Vc is computed as the weighted average of Vc,j and Vc,R, using 
the elastic constant EB

* = EB / (1 – νB
2) of each body B as weight. The 

values for all the lateral positions of the contact mesh are collected in a 
vector {V c}. The value of Vc corresponding to the s = 0 position is taken 
as the reference contact velocity.  

- The {∆q} vector is obtained as ∆qo × {V c} / Vc (s=0). ∆qo is the dq 

parameter given as input.  

A possible refinement on the above procedure could be to retain the velocities 
Vc,j and Vc,R to compute the velocities due to elastic deformations of each 
surface separately instead of using a single, averaged Vc. This would require 
doubling the amount of IC matrices to be handled. However, if the difference 
between these velocities is not small, there will be large rigid slip velocities, 
which in linear elasticity will dominate the resultant slip velocities v as Kalker 
pointed out [Kalker 1990], [Kalker 2001]. In this case, a small improvement in 
the computation of the term (u – u') / ∆t of Eq. (7.40) is not relevant.  

In the SRB studied in §7.3, it has been observed that using a variable contact 
velocity across the contact patch to compute the velocities (u – u') / ∆t has little 
influence on the tangential problem solution, because the variations of the 
rolling radii are relatively modest and because there are large rigid slip 
velocities in most of the contact patch as a result of the curved profiles of the 
roller and the raceways. However, having a curved raceway in the rolling 
direction makes possible to have large variations in the rolling radii across the 
contact patch without having large rigid slip velocities. For example, in the case 
of steep-angle tapered roller bearings, this effect may be more relevant.  

7.2.2.2 Computation of equilibrium configurations of the rolling element – 
equil_roller program  

A Newton-Raphson iteration procedure is carried out to obtain the position, 
orientation and rotation velocities of the rolling element with which its steady 
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rolling equilibrium is satisfied. The main steps of the process are illustrated in 
the flowchart of Figure 7.5.  

 

Figure 7.5. Flowchart of the search for the steady equilibrium configuration of the 
rolling element with contact solutions from CECT.  

In the steady equilibrium configuration, the sum of all the forces and moments 
acting on the rolling element, including the inertia forces, is zero, while the 
rolling element is in a steady configuration in the radial YZ plane. The rolling 
element configuration is defined with the following variables, which are 
arranged in a vector {P}:  

- Position, defined by displacements dY and dZ of the rolling element 
centre in the YZ plane with respect to its nominal position.  

- Rotation velocities ωm and ωR.  
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- Orientation, defined by rolling element tilt and skew angles β and γ30.  

Apart from the forces in the contacts with the raceway, an additional resultant 
force and moment may be considered acting on the rolling element. These may 
be due for example to inertia effects, contact with the cage or lubricant 
churning. The resultant forces and moments due to the contact and additional 
force and moment acting on the rolling element are summed in a vector {R} .  

The process illustrated in Figure 7.5 for the determination of the steady 
equilibrium configuration of the rolling element has been implemented in a 
program named equil_roller. The main steps of this process are as follows:  

1. {P} is initialized. This may be done with the nominal rolling element 
position, or with a previously obtained equilibrium solution for a 
similar problem if one is available.  

2. The inner and outer rolling element–raceway contacts are solved with 
CECT for the rolling element configuration defined in {P}.  

Although here cases with specifically two contacts in the rolling 
element are considered, the extension of this procedure to a different 
number of contacts would be conceptually straightforward. Also, a 
workaround could be applied to allow for cases with more contact 
patches in the rolling element (e.g. four-point contact slewing bearings, 
or tapered roller bearings) within the two-contact procedure. This would 
consist on extending the PCS of the inner and/or the outer contacts as 
necessary, so that more than one contact patch (between the same two 
pair of bodies) is accommodated in the same contact calculation (e.g., 
the roller end–flange contact, in addition to the corresponding roller–
raceway contact). This would be possible if the separation between the 
contacting surfaces remains small between the different contact patches 

                                                      

30 In the case of ball bearings, the possibility of what could be considered non-zero tilt 
or gyroscopic rotation velocity is covered by a non-zero skew angle (though regarded 
here as a component of the pitch rotation velocity, according to the described DOFs of 
the rolling element configuration).  
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(recall the limitation illustrated in Figure 4.9a for profiles that separate 
and join more than once).  

3. {R}  is calculated considering the contact solutions obtained in the 
previous step. {R}  is composed of subvectors {RF} and {RM} of forces 
and moments, respectively, each of them of 3 elements.  

4. The condition for steady equilibrium is {R}  = {0}. To check this 
condition, different tolerances are defined for {RF} and {RM}, namely 
tolF and tolM. If all the elements of {RF} and {RM} are below their 
respective tolerance (in absolute value), the equilibrium configuration 
of the roller has been found. Otherwise, a different {P} is tried. {P} is 
updated according to a Newton-Raphson algorithm as defined in the 
following steps.  

5. [J]  is calculated, the 6×6 Jacobian matrix that contains the sensitivities 
of each element of {R}  to each element of {P}. This involves the 
solution of 6 pairs of inner and outer roller–raceway contact problems 
with CECT, one for each element of {P}, Pi. Each of these pairs of 
contact problems is solved considering a modified {P' i} vector, in which 
Pi is given a small increment δPi. (i.e., Pi is substituted by Pi + δPi), and 
the rest of the elements are the same as in {P}. With each of these pairs 
of contact solutions, a modified resultant is obtained on the roller, {R' i}. 
The column of [J]  corresponding to Pi is calculated as ∂{R}  / ∂Pi ≈ 
({R' i} – {R i}) / δPi.  

6. {P} is updated as {P} (n+1) = {P} (n) – ([J] –1)(n) {R} (n). The superindices in 
parentheses (n) and (n+1) denote the iteration number.  

7. With the updated {P}, the process returns to step 2. Steps 2–6 are 
looped until {R}  is sufficiently close to {0}, as defined by the tolerances 
tolF and tolM.  

The contact problems in step 2 above on the one hand, and in step 5 on the 
other, may be solved with different meshes, using coarser meshes in step 5 to 
save computation time. Meshes of roughly 50×50 elements have been used in 
the study of §7.3.4 for the contact problems of step 2.  
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The matrix [J]  presents a significant noise level due to discretization error when 
some element of the contact mesh changes from inside to outside contact or vice 
versa in some of the contact solutions computed in step 5. This poses a 
considerable difficulty for the convergence of the Newton-Raphson process 
described above, and in some cases leads to divergence. This problem has been 
tackled by using very small increments δPi, to avoid changes in the set of 
elements making up the contact patch. But excessively small δPi increments 
could lead to being left with too few significant digits when computing the 
differences ({R' i} – {R i}), so some testing is necessary to arrive at adequate δPi 
values for the described numerical computation of [J] .  

The following subsections describe the input and output of the equil_roller 
program.  

7.2.2.2.1 equil_roller input  

The input for the equil_roller program is described next.  

The input is supplied in a file with a specified name finp. The program creates 
.txt input files for CECT with the finp root and suffixes _i-int and _i-ext for the 
inner and outer contacts, respectively, being i the number of equilibrium 
iteration padded if necessary with zeros up to 3 digits. A .log file is also created, 
with the same root and with suffix -eq_ro, with information of the equilibrium 
iterations and the intermediate contact solutions obtained.  

The variables that must be defined in the finp input file are as follows:  

- GEO. Structure with the basic geometric data of the rings–rolling 
element assembly, with the following fields: Rp, D, prfI, prfE, prfR, R, αo, 
αR].  

Rp, D, R, αo and αR are as defined in Figure 7.1.  

prfI, prfE and prfR are the text input files in which the profiles of the 
inner ring (I), outer ring (E), and rolling element (R) are defined. 

They have the same format as the prf_w  and prf_r  CECT input 

files, cf. §4.1.2.1.3.  

Units: Rp, D, R and the profiles defined in the files prfI, prfE and prfR are 
given in mm. αo and αR are given in rad.  
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Notes:  

o The rolling element profile defined in prfR must be a convex 
circular profile of radius R. R must be lower in magnitude than 
the transverse curvature radii of the inner and outer raceway 
profiles.  

o The definition of the profiles in their local (yL, zL) plane must be 
as follows. All the profiles must be tangent to the zL = 0 
horizontal at the (0, 0) point. The rolling element profile must 
be defined in zL > 0, and therefore with its centre located at (0, 
R).  

According to the positioning of the profiles described in 
§7.2.2.2.2, the nominal contact point on each race profile in 
their local (yL, zL) plane is at its (0, 0) point, and at the (–R 
sin(αR), R (1 – cos(αR))) point on the rolling element profile.  

The rolling element profile defined in prfR is used for both the 
inner and outer contacts, with a nominal roll angle of αo for the 
inner contact, and π – αo for the outer contact, as indicated in 
§7.2.2.2.2. Taking into account as well that the X and Y axes of 
the inner and outer contacts have opposite directions, the 
direction of the s coordinate of the rolling element profile is 
different in the inner and outer contacts. This has to be taken 
into account in the definition of the inner and outer raceway 
profiles, so that their directions are consistent with that of the 
rolling element profile in each contact (cf. Figure 4.27). For 
example, if the s coordinate on the rolling element profile goes 
from left to right in its local (yL, zL) plane at the (0, 0) point, the 
s coordinate on the profile of the inner raceway must go also 
from left to right at (0, 0), and that of the profile of the outer 
raceway from right to left. In this way, the orientation of the 
local contact coordinate systems depicted in Figure 7.4 is 
achieved.  
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- OM. Structure with the absolute rotation velocities of the inner and 
outer rings, with fields I for the inner ring and E for the outer ring. The 
axes of revolution and rotation of both rings coincide with the Y axis.  

Units: rad/s.  

- MAT. Structure with the elastic properties of the materials, with the 
following fields:  

o ER, EI, EE: Young’s moduli of the rolling element (R), inner 
ring (I) and outer ring (E). [GPa]  

o νR, νI, νE: coefficients of Poisson of the rolling element (R), 
inner ring (I) and outer ring (E). [-]  

o mat_dgt : digit with which spatially variable material 

properties may be specified. Cf. §4.1.2.1.1. In relation to this, 
the following fields are given: [f] [B],inf, r inf,[f],[B], exp1[f],[B] and 

exp2[f],[B]. [f] stands for an elastic property ([f] ∈ {E, ν}) and [B] 

for a contacting body ([B] ∈ {R, I, E}). These fields are 

analogous to the corresponding fields included as common data 

in the CECT main input file for mat_dgt  = 2 (cf. Table 4.3).  

- CAR. Structure with the following fields that determine the load in the 
rolling element:  

o d: approach between the inner and outer rings of the bearing 
(>0). [mm]  

o dird: direction of d in the YZ plane. With origin in the positive Z 
axis and positive counter clock-wise while looking towards the 
negative X direction, considering that the approach d is applied 
to the inner ring, being the outer one fixed. [rad]  

o mR: mass of the rolling element. It is used to calculate the 
centrifugal force Fc on it, which acts along the Z axis. [kg]  

o Ixx,R: inertia moment of the rolling element about an axis 
perpendicular to its axis of revolution and passing through its 
centre of gravity. It is used to calculate the gyroscopic moment 
Mg on it, which acts along the X axis. [kg·m2]  
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NOTE: for the calculation of the centrifugal force and 
gyroscopic moment, it is assumed that centre of gravity of the 
rolling element is located in the centre of its nominal rolling 
circle. The inertia forces of the rolling element are updated in 
each equilibrium iteration, according to the position of the 
rolling element in the YZ plane. They are calculated as follows:  

   Fc = mR ωm
2 Rp,act (7.51) 

   Mg = –Ixx,R ωR ωm sin(αo + β) (7.52) 

Rp,act in Eq. (7.51) is the current pitch radius, equal to Rp,o + dZ – 
R sin(αR) sin(αo + β).  

o Fad, Mad: additional force (Fad) and moment (Mad). They are 3-
element vectors, with the components in the {X, Y, Z} system 
of the additional force and moment acting on the rolling 
element (apart from the forces and moments from the inner and 
outer contacts computed in CECT, and from inertia effects).  

Units: Fad is given in kN, and Mad in N.m.  

- f. Structure with i (interior) and e (exterior) fields, with the data of the 
coefficients of friction for each rolling element–raceway contact. Each 
field may be a scalar value (with the constant coefficient of friction for 
the whole contact), or a character string specifying the file name where 
the coefficient of friction data is defined, which may be variable in 
space. The format of the file for the latter case is described in 
§4.1.2.1.4.  

- DISCR. This structure defines the mesh and ICs. It is composed of 
structures i and e, corresponding to each rolling element–raceway 
contact. Each of these structures in turn has the following fields:  

o c_o_n , ics , x_0 , s_0 , x_inf , x_sup , s_inf , s_sup , 

nx , ns : as defined for CECT, see §4.1.2.1.1. All these fields 

are mandatory.  

The remaining fields listed below are optional:  
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o nxj, nsj: fields with analogous meaning to nx  and ns . If they are 

given, they are used in the contact solutions for the calculation 
of the Jacobian of the equilibrium equations (step 5 in the 

equilibrium calculation procedure explained above), and nx  

and ns  are used only for the solution of the rolling element–

raceway contacts for the current rolling element configuration 

(step 2). If they are not given, nx  and ns  are used in both steps 

2 and 5.  

o ajx, ajs: bits to activate automatic adjustment of the limits of the 
PCS in x and s directions. Each bit applies for both the inner 
and outer contacts. If a bit is given with a value of 1, the limits 
of the PCS are adjusted in the corresponding direction (x or s) 
in each equilibrium iteration. The adjustment is carried out 
based on the overlap of the undeformed contact surfaces, and 
using the fx and fs factors defined below. In any case, the limits 

of the mesh are bounded by the values x_inf , x_sup , s_inf  

and s_sup  given as input. x_inf , x_sup , s_inf  and 

s_sup  have to be defined with adequate margin, so that the 

contact patches fall entirely within their limits in all the 
equilibrium iterations.  

Default value: 0.  

o fx, fs: scaling factors to calculate the limits of the PCS in x and s 
directions, when the automatic adjustment of these limits is 

carried out (i.e. when ajx or ajs = 1). Each fxs (xs ∈{ x, s}) factor 
is taken into account only when the corresponding aji bit is 
equal to 1. Each factor applies for both the inner and outer 
contacts.  

To adjust automatically the limits of the PCS, first the overlap 
of the undeformed surfaces is calculated. This is identified as 
the region in which the undeformed distance h is negative. h is 
calculated following the procedure developed in §4.1.1.2, in the 
mesh defined by the mandatory inputs of DISCR listed above. 
The overlap region is bounded by the coordinates xsol,min, xsol,max 
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in each xs direction. The corresponding range is calculated as 
∆xsol = xsol,max – xsol,min, and the centre as xsol,med = (xsol,max + 
xsol,min) / 2. Each fxs factor is used to scale the corresponding 
range ∆xsol. The adjusted limits are thus calculated as xsmin = 
max(xsinf, xsol,med – fxs ∆xsol / 2), and xsmax = min(xssup, xsol,med + 

fxs ∆xsol / 2), being xsinf equal to x_inf  or s_inf , and xssup 

equal to x_sup  or s_sup , as applicable. The number of 

elements in each direction are defined with the inputs nx  and 

ns . A final adjustment of the limits xsmin and xsmax is carried out 

so that one of the APs falls at xs = 0.  

Default value: 0.  

Recommended values: for circular contacts, around 0.6; for 
very elongated contacts, 1.1 in the long direction, and 0.6 in the 
short direction.  

- NUM. Structure with numerical parameters, with the following field 
and structures:  

o maxite: maximum number of allowed equilibrium iterations. 
The execution of the program is stopped when this number of 
equilibrium iterations is reached, printing a warning message if 
equilibrium has not been achieved within the specified 
tolerances.  

o tol: structure with F and M fields, with the allowed equilibrium 
tolerances for forces (F) and moments (M) in absolute value in 
each direction of the {X, Y, Z} system. These are the tolF and 
tolM tolerances depicted in the flowchart of Figure 7.5.  

Units: F in kN, and M in N.m.  

o djac: structure with fields ∆dY,u, ∆dZ,u, ∆ωm,u, ∆ωR,u, ∆β and ∆γ, 
with increments corresponding to each of the previously 
described DOFs defining the configuration of the rolling 
element {P}, for the numerical calculation of the Jacobian [J]  of 
the equilibrium equations. These are the previously referred δPi 
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increments, normalized in the cases with “,u” subindex as 
indicated next.  

Units:  

� ∆dY,u and ∆dZ,u in mm/mm. These are normalized 
increments, per unit of rigid approach CAR.d.  

� ∆ωm,u and ∆ωR,u are dimensionless. These are 
normalized increments, for ring rotation velocities ωI = 
–1 rad/s and ωE = 0.  

� ∆β and ∆γ are in rad.  

o cfg_ini (optional): structure with fields dY, dZ, ωm,u, ωR,u, β and 
γ, defining the initial configuration of the rolling element. ωm,u, 
ωR,u are normalized orbital and pitch rotation velocities of the 
rolling element, corresponding to ring rotation velocities ωI = –
1 rad/s and ωE = 0. The rest of the variables are the previously 
described DOFs defining the position of the rolling element in 
the radial plane.  

Some or all of the fields of cfg_ini may be omitted. The default 
values are 0 for dY, dZ, β and γ, and the theoretical unitary 
rotation velocities for perfect rolling for ωm,u and ωR,u (cf. Eqs. 
(7.6) and (7.7)).  

Units: dY and dZ are in mm. ωm,u and ωR,u are dimensionless. β 
and γ are in rad.  

o ivar_slc (optional): vector with up to 6 integers from 1 to 6, 
with the indexes of the DOFs of the rolling element with which 
to iterate in the search for equilibrium. If not all the DOFs are 
chosen, the equilibrium is checked only for some of the 
components of the resultant force and moment in the rolling 
element. The not chosen DOFs are left fixed at their initial 
values. The coding of the DOFs and correspondence with the 
resultant force and moment components that are checked for 
equilibrium is indicated in Table 7.1.  
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The default behaviour is to iterate with all the rolling element 
configuration variables / components of residuals.  

Table 7.1. Coding of rolling element degrees of freedom defined in ivar_slc, and 
correspondence with components of residuals.  

ID Degree of freedom {R} component 
1 dY FY 
2 dZ FZ 
3 ωm,u FX 
4 ωR,u MY 
5 β MX 
6 γ MZ 

o lim (optional): structure with lower and upper bounds for each 
of the DOFs of the rolling element, with fields dY, dZ, ωm,u, ωR,u, 
β and γ. Each field is a two-element vector, being the first the 
lower saturation bound and the second the upper saturation 
bound. The saturations are applied in all the equilibrium 
iterations. This may aid to avoid divergence if a bad [J]  matrix 
has been calculated in some cycle (as a result of changing the 
set of elements in the contact patch).  

Some or all of the fields of lim may be omitted. The default 
behaviour is not to apply any saturation bound. Only the fields 
of lim corresponding to the chosen DOFs (cf. ivar_slc input) 
are taken into account.  

Units: as in the corresponding fields of djac.  

- FILES (optional). Structure with in, inj, out and outj fields, each of 
them with a bit with which it may be chosen to delete (0) or preserve 
(1) the CECT input and output files generated during the execution of 
equil_roller.  

Each field is referred to the following files. In each case, the total 
number of files involved is given in parenthesis, being ite the number of 
equilibrium iterations until convergence, and considering that there are 
two contacts involved (inner and outer).  
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o in: main CECT input files corresponding to the rolling element 
configuration {P} (2×ite).  

o out: .mat, .prf and .log CECT output files corresponding to the 
rolling element configuration {P} (2×3×ite).  

o inj: main CECT input files for the calculation of [J]  (2×npj×ite).  

o outj: .mat, .prf and .log CECT output files corresponding to the 
calculation of [J]  (2×npj×3×ite).  

NOTES for inj and outj:  

� If DISCR.nxj = DISCR.nx  and DISCR.nsj = DISCR.ns , 

npj is the number of DOFs with which it is iterated in 
the equilibrium search (cf. ivar_slc input). Otherwise, it 
is this number of DOFs plus one. In the latter case, this 
is because in addition to solving the contact problems 
corresponding to the perturbed configurations {P' i} for 
each of the selected DOFs, the contact problems for the 
unperturbed current configuration {P}, already solved 

on the nx ×ns  mesh, are solved as well on the mesh 

with nxj×nsj elements. This is necessary to ensure that 
the residual variations with which [J]  is computed 
contain only the influence of the variations of the 
rolling element DOFs, and not numerical differences 
due to differences of the mesh.  

� The structure of the name root of the generated CECT 
files corresponding to the calculation of [J]  is as 
follows: finp_i_jn-ie. Being:  

• finp: filename of the input file for equil_roller.  

• i: number of the equilibrium iteration, padded 
if necessary with zeros up to 3 digits.  

• n: code of the perturbed DOF, according to 
Table 7.1. n = 0 for the unperturbed current 
configuration (calculated within the calculation 
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step of [J]  only if DISCR.nxj ≠ DISCR.nx  or 

DISCR.nsj ≠ DISCR.ns , as explained before).  

• ie: “int” for inner contact and “ext” for outer 
contact.  

The default behaviour is to preserve all the files.  

NOTE: the CECT input and output files of the last equilibrium iteration 
are always preserved, regardless of the values in the in and out fields.  

7.2.2.2.2 equil_roller output  

The following variables are returned by equil_roller:  

- PAR. Structure with nominal position, geometry, orientation and 
rotation velocity parameters of the rolling element, with the following 
fields:  

o i, e: similar structures for the inner (i) and outer (e) contacts, 
each of them with the following fields with relevant CECT 
input parameters described in §4.1.2.1.1:  

� incl_r : tangent of the inclination angle of the rail 

(raceway) profile in the YZ plane. [-]  

It is fixed at tan(αo – αR) for the inner contact, and –
tan(αo + αR) for the outer.  

� r_nom_r : nominal rolling radius of each raceway, cf. 

Eq. (7.5). [mm]  

� despl_y , despl_z : displacements along the Y and Z 

axes with which the nominal contact point is located at 
the local (0, 0) point of the local system of the raceway 
profile, which is also the (0, 0) point of the track {X, Y, 
Z} system used by CECT (the latter being different 
from the {X, Y, Z} system defined in Figure 7.1). [mm]  

Taking into account the previously explained definition 
of the raceway and rolling element profiles, and that the 

track and wheelset half-widths (hw_tr  and hw_ws; cf. 
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§4.1.2.1.1) are set to 0, these displacements are defined 

as follows. The ± and ∓ signs in Eqs. (7.53) and (7.54) 

are applied for the inner and outer contacts, in this 
order.  

   despl_y  = ±R sin(αR) cos(αo)   

    + (R (1 – cos(αR)) – r_nom_w) sin(αo) (7.53) 

   despl_z  = R sin(αR) sin(αo) – r_nom_w   

    ∓ (R (1 – cos(αR)) – r_nom_w) cos(αo) (7.54) 

� phi : roll angle of the rolling element. Equal to αo for 

the inner contact, and to sgn(αo) (π – |αo|) for the outer. 
[rad]  

� vel : forward velocity of the centre of the rolling circle 

of the rolling element corresponding to the Rp,o pitch 
radius, in the relative movement with respect to each 
ring. [m/s]  

It corresponds to the sftx_o_vel  CECT input.  

It is equal to Rp,o |ωm – ωI| for the inner contact, and to 
Rp,o |ωm – ωE| for the outer.  

� omega, dir_om : modulus and cosine directors (in the 

global coordinate system) of the total rotation velocity 
of the rolling element with respect to each ring. See 
Eqs. (7.8)–(7.10) (note that the signs of the components 
in X and Y directions given in those equations have to 
be reversed for the outer contact, due to the reversal of 
the axes X and Y axes described at the beginning of 

§7.2.2). dir_om  is a 3-element vector with the 

dir_omx , dir_omy  and dir_omz  CECT inputs.  

Units: omega in rad/s, dir_om  dimensionless.  
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o r_nom_w : rolling radius of the rolling element at the (yL, zL) = 

(0, 0) point of its profile. It is equal to D / 2 + R (1 – cos(αR)). 
[mm] 

o ωm,o: theoretical orbital rotation velocity of the rolling element 
for perfect rolling (cf. Eq. (7.6)). [rad/s]  

o ωR,o: theoretical pitch rotation velocity of the rolling element 
for perfect rolling (cf. Eq. (7.7)). [rad/s]  

- eq. Structure with the equilibrium DOFs of the rolling element, with the 
following fields: dY [mm], dZ [mm], ωm,u [-],ωR,u [-], β [rad] and γ [rad]. 
Each of these fields is a vector with NUM.maxite elements.  

- rs. Structure with the F and M fields, with the residual force (F) and 
moment (M) vectors in each equilibrium iteration. Each of these fields 
is a matrix with NUM.maxite × 3 elements.  

Units: F in kN, and M in N.m.  

In the case of the eq and rs output structures, row i of each field contains the 
corresponding data in equilibrium iteration i. Rows for iterations higher than the 
total number of needed iterations to achieve equilibrium contain zeros.  

In addition, besides the CECT files, a .log file is printed, named finp–eq_ro.log 
as mentioned at the beginning of §7.2.2.2.1. This file includes information 
about the equilibrium iterations and the intermediate solutions obtained. The 
information included is listed next.  

- Header of the file, including name of the equil_roller input file, version 
of the program and date of execution.  

- If the equil_roller input file is not found, an error message is printed 
and execution is stopped.  

- Identifiers of the DOFs of the rolling element configuration with which 
it is iterated in the search for equilibrium, together with the objective 
components of force and moment residuals (cf. NUM.ivar_slc input in 
§7.2.2.2.1).  

- For each equilibrium iteration, the following information is included:  
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o Current value of each DOF of the rolling element configuration.  

o Writing of the CECT input file for each contact, including the 
name of each file.  

o End of calculation of each contact with CECT, including the 
elapsed time after each CECT execution.  

o Force and moment residual vectors, together with the objective 
value for each component.  

o Progress of the contact solutions related to the calculation of the 
Jacobian, including the name of the written CECT input files, 
and elapsed times after each CECT execution.  

o Jacobian matrix, including headers in each of its rows and 
columns to identify the related residual component and DOF.  

o Increments of the DOFs of the rolling element configuration for 
the next iteration (including only the DOFs with which it is 
iterated). If, after the application of these increments, the upper 
or lower bound for each DOF defined with the NUM.lim input 
are exceeded, the required saturations are applied, and a 
warning message is printed for each saturated DOF.  

- Outcome of the equilibrium search process. It is a message indicating 
whether equilibrium in the rolling element has been achieved or not 
(within the specified tolerances). For the case in which not all of the 
components of the force and moment residuals are checked for 
equilibrium according to the NUM.ivar_slc input, it is also indicated if 
the not checked components have converged to the specified tolerances.  

- Summary of results of each iteration. Two lists are printed with results 
of each equilibrium iteration. The first one includes the six DOFs 
defining the position {P} of the rolling element, and the second one the 
six components of force and moment residuals.  

Regarding the writing of the different files, the following applies:  

- The structure of the roots of the names of the written files are finp_i-ie 
for the CECT files related to the main contact problems, and finp_i_jn-
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ie for the CECT files related to the Jacobian calculation, as previously 
explained.  

- If a CECT input file with the same name as a new file intended to be 
created exists in the current working directory (CWD), it is attempted to 
rename the existing file, together with each associated output file (.mat, 
.prf and .log) if they exist, appending the current date to its name. If a 
file with this modified name also exists in the CWD, an error message 
is printed and equil_roller execution is stopped. Otherwise, the existing 
file is renamed, and a warning message is printed. The behaviour is 
different for the finp–eq_ro.log file: if a file with this name exists, the 
name of the newly created .log file is modified, appending the current 
date to its name. If some file with this modified name also exists, it is 
overwritten.  

7.2.3 Finite element models  

Each FE model for the calculation of the rolling element–raceway contacts 
comprises one rolling element and a portion of the inner and outer rings in 
contact with it. A general view of one of the models built for the SRB studied in 
§7.3 is shown in Figure 7.6a. This model has been built in Abaqus/Standard 
[Abaqus doc 2012]. The contact regions of the roller and the raceways are 
finely meshed with solid linear hexahedron C3D8 elements. Figure 7.6b shows 
a detail of the mesh of the roller surface in the most finely meshed region. For 
the model shown in particular, the minimum element size is approx. 
0.024×0.37×0.06 mm (in longitudinal, lateral and depth directions, 
respectively), and the model has a total of about 740000 nodes. Other models 
have been built with coarser and with finer meshes, observing that with the 
quoted element size accurate contact surface results are obtained. Frictional 
contact pairs are defined between the rolling surface of the roller and the inner 
and outer raceways. A surface-to-surface contact detection method is used, and 
the contact constraints are enforced with the penalty method, both for the 
normal and tangential parts, as in the wheel–rail contact FE models described in 
§4.2.1.  
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(a) General view.   (b) Mesh detail.  

Figure 7.6. 3D FE model for contact analysis of rolling element–raceway contacts in 
rolling bearings. The model shown corresponds to the SRB studied in §7.3.  

The rolling contact between the roller and the inner and outer rings is simulated 
in a Lagrangian, multi-step static simulation. A central reference node is defined 
for each ring, through which their motion is prescribed. The main phases of the 
FEM simulation are the initial positioning and normal loading of the roller, and 
the rolling stage. These are illustrated in Figure 7.7. The figure shows a 
schematic view of the two rings and the rolling element perpendicular to the 
bearing Y axis during the different simulation phases. The central node of the 
outer ring is fully constrained during the whole simulation.  

All the bodies are initially positioned in such a way that the inner and outer 
contacts fall into the most finely meshed regions of the contact surfaces at the 
end of the simulation. The axial position of the roller also has to be adjusted at 
the beginning of the simulation, as explained in §7.3.3.  
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(a) Initial position.  (b) Initial approach. 

 

 

(c) Normal load.  (d) Rolling. 

Figure 7.7. Main phases of the FEM rolling contact simulations of a rolling bearing.  

The normal loading phase is split into two steps, depicted in Figure 7.7b and c. 
In the first of these steps, small radial displacements are imposed on the roller 
and inner ring to achieve the initial closure of the inner and outer contacts. This 
is indicated by the blue vertical arrows on the central nodes of the inner ring and 
the roller. This displacement-controlled step is necessary because before 
achieving the initial contact closure the system is singular if the rigid body 
motion of the bodies is not constrained. In the second step of the normal loading 
phase (Figure 7.7c), the radial displacement constraints of the roller and the 
inner ring are released, and the desired radial load is imposed on the central 
node of the inner ring. This is indicated by the red vertical arrow on this node. 
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At the end of this step, the roller is in equilibrium under the inner and outer 
contact forces and the inertia forces. The latter are applied through the central 
node of the roller as prescribed concentrated forces and moments. The resulting 
normal approach of the central node of the inner ring towards the outer ring at 
the end of this phase is held constant during the subsequent rolling stage.  

During the rolling stage (Figure 7.7d), small axial rotation increments are 
imposed on the central node of the inner ring. Thus, the motions of the central 
nodes of the rings are entirely prescribed, while the movement of the roller is 
driven by the contacts with the inner and outer raceways. The rolling phase of 
the simulation is also split into several steps. The applied axial rotation 
increments to the inner ring are adjusted according to the mesh density of the 
surface sections traversed by the contact patches in each of these steps, for the 
displacement increments of the contact patches in each substep to be similar to 
the mesh element size in the longitudinal direction, as in the developed wheel–
rail contact FE models (cf. §4.2.2.2).  

A quasi-stationary rolling contact state is established at the contact level within 
rolling distances of the order of a few times the longitudinal contact patch 
dimension (1–2 times as shown by experience with the exact contact theory, as 
quoted in [Kalker 1979-b]). On the other hand, in the simulations carried out, it 
has been observed that larger rolling distances are required for the roller to 
reach a steady configuration, as is shown in §7.3.3. For the SRB studied in §7.3, 
simulations with inner ring rotated angles of up to 170 mrad have been carried 
out in this work. This corresponds to a roller–raceway rolled distance of about 
7.6 mm, or about 17 times the total longitudinal dimension of the outer contact 
patch with a normal load of 5.5 kN between the roller and each raceway. In 
contrast, much lower rolled distances have been seen to be necessary in other 
applications of detailed FEM for rolling contact analyses in rolling bearings. 
E.g., a rolled distance of one time the longitudinal contact patch dimension was 
applied in [Heras 2017b], observing that this was sufficient for the friction 
torque to stabilize.  

Taking into account the large size of the model, which includes two finely 
meshed contact regions, and the long rolling distances, the mesh construction 
and simulation setup have to be properly optimized to get affordable FEM 
simulations. With this aim, a variable mesh density has been used in the rolling 
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direction, as may be appreciated in Figure 7.6b, providing the finer mesh in the 
final part of the simulated rolling path in each contact surface. Compared to 
wheel–rail rolling contact FEM simulations shown in Chapters 4 and 6, these 
roller–raceway rolling contact simulations have presented greater difficulty. The 
fact of having the roller driven just by the contacts with the rings rather than 
with prescribed motion, as well as the increased model size, contribute to the 
added complexity.  

7.3 Case study: spherical roller bearing  

The partial slip contact models described in §7.2 have been used to compute 
roller–raceway frictional contact solutions for a SRB. The considered SRB is 
described in §7.3.1. The performance of the considered contact models is 
assessed in §7.3.2. In §7.3.3 the quality of the contact solutions obtained with 
FEM is discussed, examining the evolution of relevant output quantities along 
the simulations. Lastly, §7.3.4 presents a study of the steady rolling equilibrium 
attitudes of the roller in a range of normal loads and friction levels.  

7.3.1 Description of the studied spherical roller b earing  

A double-row SRB with symmetrical barrel-shaped rollers is considered. This is 
a type of bearing commonly used in railway axles. These bearings have self-
aligning and high load-carrying capacity, and can carry combined radial and 
thrust loads [Harris 2001], [Kleckner 1982]. Figure 7.8 shows a sectional view 
of the bearing (not to scale), and Table 7.2 lists its main internal dimensions 
relevant to the contact analyses. One-half of the bearing section is shown in the 
figure, which is symmetrical with respect to the XZ plane. The bearing material 
is steel, with a Young’s modulus E of 207 GPa and a coefficient of Poisson ν of 
0.30.  
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Figure 7.8. Sectional view of the studied spherical roller bearing.  

Table 7.2. Geometric parameters of the studied spherical roller bearing.  

Parameter Description Value 
D [mm] Roller nominal diameter 19.8 
rE [mm] Outer race groove curvature radius 102.4 
rI [mm] Inner race groove curvature radius 103.0 
R [mm] Roller crown radius 100.3 
αo [º] Nominal contact angle 11.5 
αR [º] Roller angle 0.0 

The bearing is considered to be radially loaded. The resulting roller–raceway 
contact patches have a high width-to-length ratio (approx. 40) and modest total 
contact angle variations in the lateral direction, ∆δ. The length refers to the 
dimension in the rolling direction and the width to the dimension in the lateral 
direction. ∆δ ≈ 11º with a normal load N on the roller of 5.5 kN. This load has 
been computed in the most loaded roller for a total radial load of 28.7 kN in the 
bearing, considering a radial bearing clearance of 0.1 mm.  
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The rotation velocities of the inner and outer rings of the bearing (around the 
global Y axis) are ωI = 476.2 rpm and ωE = 0. With these velocities and the 
considered bearing geometry (radial clearance included), the theoretical orbital 
and pitch rotation velocities of the roller for perfect rolling on the nominal 
contact points are ωm,o = 22.25 rad/s and ωR,o = 225.5 rad/s. Without radial 
clearance31, these velocities change to ωm,o = 22.27 rad/s and ωR,o = 225.7 rad/s.  

Each roller as a mass mR of 65.6 g and inertia moment about the u axis IR,uu of 
5.87 kg·mm2. Together with the kinematic parameters considered, this results in 
a centrifugal force and a gyroscopic moment of approx. 3 N (along the positive 
Z axis) and 6 N.mm (along the positive X axis for the roller depicted in Figure 
7.8), respectively. In the cases analyzed in this chapter, these roller inertia 
forces are much lower in magnitude than the roller–raceway contact forces, and 
their effect on the contact solutions is negligible. Apart from these inertia 
forces, no other additional forces are considered acting on the roller in this 
study.  

7.3.2 Comparison of strip theory, CECT and FEM  

In this section, the roller–raceway contact solutions obtained with the contact 
models described in §7.2 are compared, to assess the ability of each model to 
produce representative results. For this purpose, the steady rolling positions of 
the roller with a normal load N of 5.5 kN and two different values of the 
coefficient of friction µ, namely µ = 0.10 and 0.30, are considered. Besides 
comparing the results of the different models, the main features of the contact 
solutions are illustrated for different friction levels. With µ = 0.10 most of the 
contact patch is sliding. With the higher µ, a bigger adhesion zone is obtained, 
and the elasticity of the bodies plays a more important role in the tangential 

                                                      

31 Once the normal load in the considered roller is fixed, the radial clearance has a 
negligible influence on the roller local contact solution. However, it has to be taken into 
account in the calculation of the theoretical rotation velocities, for proper comparisons 
between equilibrium rotation velocities obtained with different calculation methods, if 
different clearances are considered. The results presented in this chapter have been 
obtained considering a radial clearance of 0.1 mm only in the case of the FEM 
calculations. In the rest of the calculations, no radial clearance has been considered.  
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contact. A partial slip contact model may provide a greater precision 
improvement in the contact solutions in the latter case, with respect to a full slip 
contact model.  

Two different solutions computed with strip theory are included in each case, 
labelled as “H+C” (Hertz + Carter). The difference between both solutions is 
the position of the roller–raceway contact centres. In one of them, each roller–
raceway contact centre is located in its nominal position. This is identified with 
“s0 = 0”. In the other, identified with “s0 = s0_CECT”, the roller–raceway contact 
centres are offset from their nominal positions in the contact lateral (s) 
direction. The same offset is applied for the inner and outer contacts, computed 
as the average of the offsets for each contact of the corresponding equilibrium 
solution computed with CECT.  

Figure 7.9 and Figure 7.10 show the lateral distributions of normal load and 
longitudinal tractions per unit contact width, N* and Fx

*, across the inner and 
outer contact patches. The distributions are plotted on the profiles of the roller–
raceway potential contact surfaces, on the bearing YZ plane. The contact patches 
appear offset from their nominal position towards the positive y direction, as 
can be seen comparing the CECT and FEM solutions with the H+C (s0 = 0) 
solution. This offset is higher for higher µ. The reason for this offset is 
explained in §7.3.4. The FEM solutions give a slightly more concentrated load 
distribution in the lateral direction, as seen in Figure 7.9. Apart from this, there 
are no remarkable differences in the normal contact solutions obtained with 
H+C (s0 = s0_CECT), CECT and FEM.  
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(a) µ = 0.10.  

 

(b) µ = 0.30.  

Figure 7.9. Lateral distribution of normal load in roller–raceway contacts with N = 5.5 
kN.  
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(a) µ = 0.10.   (b) µ = 0.30.  

Figure 7.10. Lateral distribution of traction in roller–raceway contacts with N = 5.5 kN. 

Figure 7.11 and Figure 7.12 show the contact patch contours and the tangential 
stresses. As is characteristic with crowned rollers, the tangential contact 
solutions are dominated by high longitudinal creepages due to the variable 
rolling radii of the roller across the contact with the raceways, with two zero-
slip bands in which they change sign. This may also be seen in the longitudinal 
traction distributions of Figure 7.10. A good match is observed between the 
different solutions in the tangential contact as well. On the other hand, mostly 
with high µ notable differences are seen between the H+C solutions obtained 
with and without adjusted contact centre positions. These differences may be 
clearly appreciated in the lateral distributions of frictional work shown in Figure 
7.13. This shows that not making the lateral contact position adjustment may 
lead to some inaccuracy in the tangential contact solution. While quite accurate 
results may be obtained with H+C, it is not possible to work out the necessary 
equilibrium condition in the lateral direction to perform this position adjustment 
taking into account only the longitudinal tangential stresses in the calculation. 
The differences between both H+C solutions are higher with higher µ because 
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the roller shift between its equilibrium and nominal position increases for higher 
µ, as explained in §7.3.4.  

 

 

 

(a) µ = 0.10.   (b) µ = 0.30.  

Figure 7.11. Contours of adhesion and slip zones in the outer roller–raceway contact 
patch with N = 5.5 kN. Solid blue: H+C (s0 = 0); dashed red: H+C (s0 = s0_CECT); dotted 
green: CECT; chain black: FEM.  

 

(a) H+C (s0 = s0_CECT). 
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(b) CECT. 

 

(c) FEM.  

Figure 7.12. Magnitude and direction of tangential stresses and contours of adhesion 
and slip zones in the inner roller–raceway contact patch with N = 5.5 kN and µ = 0.30.  
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(a) µ = 0.10.  

 

(b) µ = 0.30.  

Figure 7.13. Lateral distribution of frictional work in the inner and outer races after one 
roller passage with N = 5.5 kN.  
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The slip velocities and frictional work levels are higher towards the bearing XZ 
centre plane, as can be seen in Figure 7.13. Here, the longitudinal creepage due 
to the rolling radii difference of the roller surface with the rolling cone is 
superposed with the spin creepage. The lateral contact shift is produced towards 
this side, and consequently, the maximum frictional power densities in the 
contact patch increase.  

Due to the short longitudinal dimension of the contact patches, the slip 
velocities are mostly aligned in the rolling direction, except around the zero-slip 
bands. Figure 7.14 shows longitudinal distributions of slip velocities along 
slices close to one of these regions. In the case with low µ, notable differences 
are observed between the H+C, CECT and FEM results around the zero-slip 
bands, where the tangential stresses change from their positive to their negative 
saturation bounds in a relatively small distance in the lateral direction. In this 
region, significant lateral components of stress and slip velocities appear, as 
seen in Figure 7.14a, and the 2D simplification is inadequate. Part of the 
differences between the CECT and FEM results seen in Figure 7.14a may be 
attributed to the fact that the lateral positions in which the results are taken in 
each model are not exactly the same. The results obtained with CECT and FEM 
indicate higher levels of tangential stresses and slip than predicted with the strip 
theory neglecting the interaction between adjacent strips. Nevertheless, these 
regions occupy a small part of the whole contact patch.  

In the case with high µ, the changes of ξ* are slower in the lateral direction, 
which implies lower interaction between adjacent strips. Consequently, the 
lateral components of stress and slip velocities are comparatively smaller, and a 
better agreement is found between the tangential stresses (not shown in the 
figure) and slip velocities obtained with H+C, CECT and FEM, as shown in 
Figure 7.14b. Figure 7.15 shows the distributions of longitudinal rigid slip in the 
outer contact for µ = 0.10 and 0.30, both in terms of longitudinal rigid slip 
velocities wx and normalized longitudinal creepages ξ

*. The graphs for the inner 
contact are qualitatively similar. While the profiles of wx are similar for both 
values of µ, the profiles of ξ* are different mainly due to the different µ. Here it 
is also shown for each µ how ξ* changes as a result of the lateral shift of the 
contact, mainly for high µ where the shift is higher.  
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(a) µ = 0.10. Outer contact —at s = 1.54 mm in H+C results, 1.52 mm in CECT results and 1.60 
mm in FEM results.  

 

(b) µ = 0.30. Inner contact —at s = 0.68 mm in H+C and CECT results and 0.80 mm in FEM 
results.  

Figure 7.14. Longitudinal distribution of slip velocities at lateral positions of the roller–
raceway contacts partly in adhesion. N = 5.5 kN.  
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(a) µ = 0.10.  

 

(b) µ = 0.30.  

Figure 7.15. Lateral distribution of longitudinal rigid slip in the outer roller–raceway 
contact with N = 5.5 kN.  
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7.3.3 Assessment of stationarity of FEM solutions  

Figure 7.16 shows the evolution along a FEM simulation of different 
parameters that are checked to determine if the obtained FEM results 
correspond to stabilized equilibrium positions. The results shown correspond to 
the case of §7.3.2 with µ = 0.30. Similar trends are observed for the case with µ 
= 0.10, with some of the parameters stabilizing earlier.  

Figure 7.16a shows the resultant tangential forces in each contact. The lateral 
tangential forces become quite stabilized within the first half of these 
simulations after a rolled distance of about eight times the longitudinal 
dimension of the contact patch (a rolled distance equal to the longitudinal 
dimension of the outer contact patch corresponds to a rotated angle of the inner 
ring θI of about ten mrad, cf. §7.2.3. The longitudinal forces reach stabilization 
earlier.  

Figure 7.16b shows the lateral locations of the centres of the normal pressures 
of the inner and outer contacts, Yc,i and Yc,e. Their evolution is determined 
primarily by roller tilting in this simulation. The roller also has a slight lateral 
motion, also shown in these figures in non-dimensional form η as the axial 
velocity of the roller centre vR,y divided by the rolling velocity along the outer 
contact centreline. This does not represent exactly the lateral creepage in the 
roller–raceway contact, as it does not include the part due to roller skew.  

The lateral motion of the roller causes variations in the contact lateral resultant 
forces enough to comply quasistatic equilibrium of the roller in significantly 
different lateral positions. The lateral position of the roller influences the lateral 
shift of the contact patches, which impacts on the tangential solution, as shown 
in §7.3.2. The actual steady equilibrium position of the roller is the one with 
zero η. Reaching this position from an arbitrary initial position would require 
impractically long rolling distances for this FE model. In this work, the correct 
equilibrium lateral position of the roller is found iterating with different initial 
lateral positions. In this way, plots of η versus roller lateral position, such as the 
ones shown in Figure 7.17, are produced. In this figure, dy designates the axial 
offset of the roller centre from its nominal position along the y axis. The 
changes of dy are on the order of just one micron during each of these 
simulations. This shows that an accurate analysis of the motions of the roller is 
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necessary to interpret the FEM results correctly and to obtain the steady rolling 
solution. Given the slow lateral movement of the roller in lateral positions 
different from the one corresponding to steady equilibrium, the roller may not 
reach its steady state equilibrium position during its whole orbiting motion 
around the bearing in some cases.  

The trends of roller tilt and skew shown in Figure 7.16c indicate that the tilt is 
stabilized during the simulation, but not the skew. Nevertheless, the skew angle 
variations are not very high, and the values obtained in the final phase of this 
simulation are close to the value computed with CECT for steady equilibrium, 
with a difference of just about 0.2 mrad. The differences in the tilt angles 
obtained with CECT and FEM are of the same order. It is considered that these 
angles are small enough to be able to take the FEM solution as a representative 
steady equilibrium solution.  

Calculations with CECT indicate that the individual contact lateral resultant 
forces in the inner and outer contacts are relatively sensitive to the tilt and skew 
angles. Higher negative tilt and skew angles lead to higher lateral force in the 
outer contact and lower in the inner contact, and higher negative skew also 
leads to slightly higher total lateral force. Indeed, the individual lateral contact 
forces computed with CECT and FEM do not match well. But other results, 
such as the total lateral resultant force on the roller from the inner and outer 
contacts, the roller axial displacement dy, and the resultant longitudinal forces, 
are not so sensitive to these angles, and a relatively good agreement is found 
between the CECT and FEM results, as shown in Table 7.3 for the cases of 
§7.3.2. The table includes the longitudinal and lateral frictional forces in each 
contact, Fx and Flat, and the sum of the lateral forces in the inner and outer 
contacts ∑Flat. All the forces are divided by µN.  

Table 7.3. Frictional contact resultant forces on the roller and roller axial offset 
computed with CECT and FEM for N = 5.5 kN and µ = 0.10 and 0.30.  

 µ = 0.10 µ = 0.30 
 Full slip CECT FEM Full slip CECT FEM 
fx,i [-] 4.36E–03  –4.96E–03 –4.8E–03 2.58E–02 –5.33E–03 –5.2E–03 
fx,e [-] 7.31E–03 4.99E–03 4.8E–03 –1.28E–02 5.33E–03 5.2E–03 
flat,i [-] –5.20E–03 2.23E–02 5.5E–04 –1.08E–02 2.34E–02 1.3E–02 
flat,e [-]  5.63E–03 2.87E–02 5.7E–02 1.20E–02 3.22E–02 5.2E–02 
∑flat [-] 4.54E–04 5.09E–02 5.8E–02 1.17E–03 5.55E–02 6.5E–02 
dy [µm] - 6.3 7.2 - 20.4 23.5 
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Apart from the CECT and FEM results, Table 7.3 also shows the results of a 
full slip solution for each friction level. These full slip solutions have been 
derived from the CECT equilibrium solution for each case, considering the 
corresponding normal pressure distributions and rigid slip velocities computed 
with CECT, as follows. At each point of the contact patch, the magnitude of the 
tangential stress is defined as the normal pressure times the coefficient of 
friction, and its direction is determined with the direction of the rigid slip. The 
resultant contact forces are then obtained as the vector sum of the contributions 
of each element of the mesh of the contact surface, as in the other models. The 
full slip solutions obtained in this way are not equilibrium solutions; these 
would have to be computed for other roller (equilibrium) configurations through 
a procedure such as that shown in Figure 7.5. It is observed that the lateral 
forces, and mostly the values of their sum ∑flat for the full slip solutions, are 
much lower than the corresponding values obtained with CECT and with FEM. 
This was to be expected, as the lateral force due to spin (the camber thrust) is 
absent in symmetric contact patches with the full slip model. Consequently, the 
equilibrium configurations obtained with the full slip solutions would surely 
have much lower dy displacements than the ones computed with CECT and 
FEM, cf. §7.3.4.  

Figure 7.16d shows the trends of the rotation velocities ωm and ωR of the roller 
relative to their theoretical values corresponding to perfect rolling on the 
nominal contact points. It may be seen that the roller rotation velocities are also 
stabilized by the end of these simulations. The perturbations seen in the trends 
of these velocities, η and γ at about 75 and 125 mrad of inner ring rotated angle 
(θI) correspond to contacts changing to zones of different mesh densities in the 
rolling direction, cf. Figure 7.6b.  
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(a) Frictional contact resultant forces fi = Fi / 
µN.  

 
(b) Axial positions in bearing of centres of 
contact normal pressures, and lateral 
displacement of roller.  

 

 

 

(c) Roller orientation (tilt β and skew γ).   (d) Roller rotation velocities ωm and ωR.  

Figure 7.16. Indicators of stationarity of FE rolling contact solution for N = 5.5 kN and 
µ = 0.30 along the rolling stage of simulation.  
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Figure 7.17. Non-dimensional axial velocity of roller η as a function of its initial lateral 
position in FEM rolling contact simulations.  

7.3.4 Equilibrium solutions for different operating  
conditions  

Steady rolling equilibrium configurations of the roller have been computed with 
CECT and equil_roller (cf. §7.2.2.2) for a range of normal loads and friction 
levels. The results are summarized in Figure 7.18. Two distinct equilibrium 
configurations of the roller are observed. There is a first configuration, which is 
closer to the nominal roller position, feasible at higher loads. This will be 
identified here as configuration 1. The results shown in previous sections 
correspond to this configuration. On the other hand, there is a second 
configuration, feasible at lower loads. This will be identified here as 
configuration 2. With higher coefficients of friction µ, there is a range of 
intermediate loads in which both configurations are feasible.  

The second configuration is farther from the nominal roller position, with 
higher axial offsets (Figure 7.18a), tilt and skew angles of the roller. This 
configuration also involves higher rolling torques and associated resultant 
longitudinal forces in each contact (Figure 7.18b) and higher frictional powers 
(Figure 7.18c). The transition loads from configuration 1 to configuration 2 
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increase as µ increases. Also, the leap between both configurations is higher for 
higher µ.  

 

 

(a) Axial offset dy of the roller from its nominal 
position.  

 
(b) Longitudinal force in roller–race contacts fx 
= Fx / µN.  

 

 

(c) Total dissipated power by friction in roller–
race contacts, Pfric.  

 
(d) Ratio of frictional power in contact of roller 
with outer to inner race, Pfric,e / Pfric,i.  

Figure 7.18. Steady rolling contact configurations of the roller computed with contact 
solutions of CECT for different normal loads and coefficients of friction.  

Figure 7.19 and Figure 7.20 illustrate a case of each configuration. The figures 
depict free-body diagrams of the roller, including the resultant tangential 
frictional forces and spin moments in each contact and the centres of the normal 
pressures marked with filled circles. The nominal contact positions are also 
shown with unfilled red circles. The frictional forces and moments are 
represented acting on these points on the roller.  

In equilibrium configuration 1, the resultant frictional lateral forces transmitted 
to the roller in both contacts have the same direction, as may be observed in 
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Figure 7.19a. The roller has a small axial displacement in the direction of these 
forces so that the contact centres are shifted in this direction, and an axial 
component of the normal forces appears to balance the lateral frictional forces. 
The lateral frictional forces are higher for higher µ. As a result, the axial 
displacement of the roller in the equilibrium position is higher for higher µ, and 
the rolling torques and frictional power increase somewhat more than 
proportionally with µ.  

For a given µ, the axial displacement of the roller is higher at lower normal 
loads, cf. Figure 7.18a. This is because the ratio of camber thrust to normal load 
increases at lower loads in this case. In non-conformal contact, this ratio 
remains constant for a given ellipticity of the contact patch, coefficient of 
friction and spin. In this case, as the load increases, this ratio becomes smaller 
due to the higher friction saturation in the longitudinal direction, resulting from 
higher longitudinal rigid slip velocities. This effect is notable despite the modest 
total contact angle variation in the contact patch (approx. 11º with N = 5.5 kN) 
because the variation of the rolling radii is relatively high. This is a distinctive 
feature of conformal contact in rolling bearings with respect to conformal 
wheel–rail contact, as a result of the much higher ratios of lateral profile radii 
over rolling radii seen in this application.  

Continuing with equilibrium configuration 1, the roller also adopts a small 
negative tilt, on the order of –0.05 mrad according to the computations with 
CECT (higher with higher µ). The tilt values computed with FEM are higher, cf. 
Figure 7.16, possibly due to global defections in the FE model. As a result of 
the negative tilt of the roller, the offset from the nominal position is slightly 
higher in the inner contact, and the inner normal load causes a higher moment 
along x than the outer. This is balanced by the difference in the lateral frictional 
forces of both contacts, being higher the outer one. The lateral frictional forces 
are greater than the longitudinal ones, as may be seen comparing Figure 7.19a 
and b, in which the forces are represented at the same scale.  
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(a) Front view.  

 

(b) Plan view.  

Figure 7.19. Roller free-body diagram in equilibrium configuration 1 with N = 5.5 kN 
and µ = 0.30.  
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(a) Front view. Note: the lateral forces have been scaled down by a factor of 10 in this view.  

 

(b) Plan view.  

Figure 7.20. Roller free-body diagram in equilibrium configuration 2 with N = 4 kN 
and µ = 0.30.  
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The roller axial offsets, tilt and skew angles are much higher in equilibrium 
configuration 2. The skew angles increase up to –4 mrad, and the tilt angles 
increase up to about –0.4 mrad with µ = 0.3. The offset of the inner contact from 
its nominal position is considerably higher than that of the outer contact, as may 
be seen in Figure 7.20a, as a result of this increased tilt. The dissipated power in 
the inner contact also increases more than in the outer contact in this 
configuration, cf. Figure 7.18d. The lateral frictional forces are much higher 
than in configuration 1, as may be seen comparing Figure 7.20a with Figure 
7.19a. Note that the lateral forces have been scaled down by a factor of 10 in 
Figure 7.20a; the scale of the rest of the forces and moments is the same in 
Figure 7.19 and Figure 7.20. The direction of the lateral frictional force of the 
inner contact is also reversed.  

It has to be mentioned that in some cases in which equilibrium configuration 2 
is found as the only one complying steady equilibrium exactly, the force 
residuals with roller configurations which may be assimilated to equilibrium 
configuration 1 are not high. Also, the slow lateral movement of the roller when 
being out of its steady equilibrium position is recalled. Further research is 
necessary on the practical significance of equilibrium configuration 2.  

The effects described here, as well as the lateral contact shifts shown in §7.3.2, 
are more relevant with higher coefficients of friction. A 3D partial slip contact 
model is necessary to capture them, with the ability to predict lateral frictional 
forces in addition to the longitudinal ones, as well as moments related to both 
longitudinal and lateral contact stresses. The lateral frictional forces referred to 
here are the ones coming e.g. from spin in a contact with no lateral creepage, 
which full slip and 1D models fail to predict. At lower friction levels, such as 
may be found in well-lubricated conditions, the offsets of the roller from its 
nominal position are small, as may be seen in Figure 7.18a. In this case, it may 
be satisfactory to assume nominal roller position and use a simpler contact 
mechanics model, e.g. the strip theory or the full slip solution.  

The computation of the equilibrium configuration(s) of the roller for each 
combination of N and µ has taken on the order of minutes to tens of minutes 
with CECT. Each of these equilibriums involves the computation of several 
pairs of inner/outer contact solutions, iterating with the six parameters defining 
the roller configuration as explained in §7.2.2.2. The FEM described in §7.2.3 
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has much greater computational demands, with a single run taking about tens of 
hours in a high-performance computer. The application of this FEM in this 
study would be much less practical due to the high computational costs and the 
need to start from positions close to the sought equilibrium configuration, as 
illustrated in §7.3.3.  

 



 

Chapter 8  

8. Closure  

Chapter summary  

This chapter compiles the conclusions of the work carried out in this thesis and 
outlines perspectives for future works. Finally, the publications that have 
resulted from this work are listed.  



600 8.1 Conclusions 

8.1 Conclusions  

8.1.1 Models of vehicle–track dynamic interaction  

Different types of vehicle–track models have been constructed to study the 
vertical dynamic vehicle–track interaction in the time domain. A comprehensive 
representation of the whole vehicle–track system, necessary for the study of 
dynamic phenomena at high frequencies, has been achieved making use of 
systematic methodologies and standard tools offered in a commercial multibody 
(MBS) and in a commercial Finite Element (FE) analysis package.  

The most comprehensive models comprise MBS representations of the vehicle 
and the track, being ‘moving mass’ type models, in which the vehicle moves 
with respect to the track. These models allow the definition of non-linear 
characteristics for both the vehicle and the track, and consideration of 
interaction between different wheelsets. The flexibility of the continuous 
elements of the track (i.e., the rails, and also the slab in the case of slab tracks) 
is incorporated in these models via the normal modes of vibration previously 
calculated with FE models of these components. On the other hand, simpler 
vehicle–track interaction models have been constructed. One of these simpler 
models uses a MBS representation of the track by means of assemblies of rigid 
bodies travelling beneath each of the vehicle’s axles. The other simplified 
model is a ‘moving irregularity’ type linear FE model, in which the vehicle is 
represented as an assembly of lumped masses stationary on a given position in 
the track.  

With the constructed vehicle–track models, the dynamic performance of a high 
speed ballasted track and three different types of slab tracks has been studied by 
means of numerical simulations in the time domain of a vehicle running on a 
straight section of track with vertical irregularities at high speed. All the studied 
tracks feature discretely supported rails. The validity of the results obtained 
with the different models developed has also been assessed, as well as the most 
adequate configuration of the models in different situations.  

The conclusions obtained are summarized below. As mentioned in Chapter 3, 
the different results have been obtained considering a single set of typical 
physical parameters for each of the tracks. However, some of the parameters, 
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e.g. the pad stiffness, and consequently the dynamic properties of the tracks can 
change within a certain range. Consequently, the conclusions obtained must not 
be generalized straightforwardly to other possible configurations of each type of 
track.  

- The wheel–rail contact forces have a lower degree of fluctuations in the 
ballasted track and in the STEDEF track, than in the other two types of 
slab tracks studied (RHEDA 2000 and floating slab). In the case of the 
floating slab track, although vibration transmission to the ground is 
expected to be considerably reduced, vibration levels between the 
loading source and the slab may be enlarged, as pointed out in [Kuo 
2008].  

- The pad forces in the floating slab track are much higher than in the 
other tracks studied due to the low degree of rail bending allowed by 
the stiffness of both pad and slab, which prevents the load of the vehicle 
from being more effectively spread between more pads along the track.  

- In the studied design of floating slab track, another problem is seen for 
high-speed applications: the effect of the parametric excitation is much 
higher than in the other studied track types, implying that even for 
smooth railhead and wheel surfaces, a considerable degree of 
fluctuations is already seen in the wheel–rail contact forces.  

- At low and mid frequencies, up to a few hundred Hertz, and when the 
effects of the parametric excitation are not important, very simple, full 
FE linear models of the vehicle–track system, of the ‘moving 
irregularity’ type, and with the wheel–rail contact condition simplified 
to a linear spring, are seen to be entirely satisfactory for the study of 
vertical vehicle–track dynamics.  

- Additionally, in the case of tracks without a floating slab or tracks with 
a floating slab in which the dominant wheel–rail vibration takes place at 
frequencies much higher than the slab cut-on frequency, the interaction 
between different wheelsets of the vehicle is seen to be very small at 
frequencies up to a few hundred Hertz. In these cases, the track models 
may be further simplified to discrete spring–damper–mass assemblies 
beneath each wheelset with very few DOFs. The results obtained with 
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these simple models match very well with those obtained with more 
complex track models, if the physical parameters of mass, stiffness, and 
damping of the discrete track elements are carefully chosen adjusting 
the receptance of the simplified (RMB) track model to that of the more 
comprehensive track model. Also, a very simple model of the vehicle 
may be used for the study of wheel–rail contact forces in these cases, 
which consists of a single wheelset with a static load applied on it.  

- Modelling the elasticity of the slab in slab tracks may significantly 
increase the complexity of vehicle–track models. Although 
mathematical procedures have been developed that enable a very 
detailed modelling of the slab as an elastic solid, in this work, it is 
found that a much simpler modelling of the slab by means of 1D beam 
elements is entirely satisfactory to study dynamic phenomena even at 
high frequencies, as it has been shown that the slab has fundamentally a 
1D vibration in the vertical plane. With the simpler 1D beam model of 
the slab, the computational costs of the model are greatly reduced with 
respect to the models in which the slab is represented as a 3D solid. The 
convenience of either types of model for the slab should be assessed in 
different cases depending on the physical characteristics of the slab.  

8.1.2 Numerical analysis of wheel–rail conformal co ntact  

Comprehensive 3D numerical models have been developed for the analysis of 
wheel–rail elastic conformal contact. These have included a version of Kalker’s 
exact contact theory extended for conformal contact that has been named CECT 
(Conformal Exact Contact Theory) and FE models properly tuned for the 
intended contact mechanics analyses.  

A detailed description has been provided of the extensions for conformal 
contact implemented in the developed version of the exact contact theory, and 
of the setup and tuning of the FE models. The extensions for conformal contact 
implemented in CECT are related to the geometric analysis for the computation 
of the normal undeformed distances and rigid slip velocities, and to the 
determination, arrangement and computations with the influence coefficients 
(ICs) of solids with non-planar surfaces. This has included a new method for the 
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precise calculation of distances between non-planar surfaces of revolution with 
non-coplanar axes.  

CECT is able to cope with cases with high contact and yaw angles, besides 
conformal contact. The FE models represent with a high degree of detail the 
wheel–rail contact zone, and are static models. The steady rolling contact is 
achieved via a step-by-step technique, in which prescribed displacements and 
rotations are applied to the wheel in successive increments, in a non-linear static 
simulation.  

The computational costs have been found to be roughly three orders of 
magnitude higher with the FE models than with CECT, being on the order of 
tens of hours with the FE models, and tens of seconds with CECT for a steady-
state rolling case. These figures are to be considered only as orientative, as the 
run times vary considerably from case to case and with the discretization, and 
may also depend on a number of circumstances other than the physical models 
themselves, such as convergence tolerance settings or the particular algorithmic 
implementation of the models. The exact contact theory, while having much 
lower computational costs than the FE models, has been proved to produce 
accurate results with high levels of conformity, being capable to capture the 
particular characteristics of conformal contact both in the normal and in the 
tangential parts of the contact problem.  

8.1.3 Influence coefficients of the elastic solid  

New results have been developed for the ICs of the half-space, working out the 
analytical expressions of the ICs of surface displacements for rectangular 
elements with bilinear stress distribution. The bilinear elements have been 
found to produce no relevant precision improvement over the usual uniform 
elements in the numerical solution of contact problems with the exact contact 
theory.  

The determination of ICs for non-planar solids has been investigated, by means 
of analytical approximation and numerical calculation. Precise ICs are not 
readily available for general non-planar solids, and they must be generally 
obtained through numerical calculation. This involves a notable difficulty for 
the application of the exact contact theory in conformal contact problems, 
especially when precise results are sought with moderate or high conformity 
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levels considering the tangential part of the contact problem. Different 
possibilities have been explored for approximate analytical computation, by 
which this difficulty may be alleviated, and numerical calculation of ICs can be 
avoided as much as possible.  

The numerical calculation has been tackled with linear 3D FE models, and it 
has been shown how the results obtained around the loaded element may be 
extrapolated, to avoid the need for local refinement of the loaded area. This 
facilitates the automatization of the process for the numerical calculation of ICs.  

For the analytical approximation, a surface orientation based approach has been 
set out, consisting on combining the half-space ICs according to the surface 
orientation change between the point where the load is applied and the point 
where the displacements are observed. Different variants of the approximation 
have been studied. This approximation has been proved to capture well the main 
differences of the ICs of non-planar solids with respect to those of the half-
space, and with a simple reasoning it provides insight into the way in which 
these differences occur.  

On the other hand, some limitations of the surface orientation based approach 
have been observed. An extension has been set out to incorporate the effect of 
the geometric differential stiffness between convex and concave conforming 
solids, based on the definition of spatially variable modified elastic properties of 
the solids. This extension renders a considerable improvement in the 
approximation of the ICxn. However, the associated parameter adjustment is 
empirical, and necessitates some numerically calculated Cxn ICs as reference. 
Additionally, this extension has currently been verified to work well only with 
one of the variants of the surface orientation based approximation, designated as 

B̂ . Despite their low magnitude, the ICxn have an appreciable influence on the 
longitudinal tangential stresses, and use of inaccurate ICxn may lead to a 
significant offset in the longitudinal creep force curve.  

A fundamental assumption of the studied approximations is that the contacting 
solids may be considered approximately prismatic around the contact, as it 
happens in relevant rolling contact applications like the wheel–rail case or in 
rolling bearings. The different approximated ICs have been compared with two 
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sets of numerically calculated ICs, and their performance has been assessed in 
the normal and tangential parts of the contact problem.  

Regarding the propagation of errors from the ICs to the solution of contact 
problems, it has been shown that geometries with faster contact angle variations 
are more prone to errors in the normal contact solution due to the higher errors 
contained in the approximated ICs. Also, the sensitivity to errors in the ICs 
increases when the contact pressures are more spread out in the lateral direction 
of the contact patch, and in contact patches with higher length to width ratios. 
For the normal part of the contact problem, it has been verified that the use of 
the half-space Ann IC is satisfactory for low to moderate conformity levels (with 
total contact angles less than about 45º), as found by other authors before. For 
the tangential part of the contact problem, it has been shown that relatively 
small errors in the ICsn and ICxn ICs may lead to appreciable differences in the 
results. The need to properly approximate the ICsn in non-planar conformal 
contact is highlighted, as high errors may result in the tangential contact 
problem if the half-space Asn-s are used directly. The proposed surface 
orientation based approach of ICs substantially improves the results obtained 
with the direct use of the half-space ICs.  

The best choice of approximated ICs could be to use the B̂  ICs, except for the 

ICsn, where the B ICs seem to perform better. The xnB̂  should be adjusted for 

the differential stiffness effect whenever possible; failing this, the direct use of 
the half-space Axn is preferred over the different variants of Bxn. The ICns and 
ICnx ICs can be defined according to the selected ICsn and ICxn ICs to fulfil 
reciprocity exactly. These ICs are of less importance because the normal 
displacements are generally dominated by the normal pressures.  

The study has focused on contact between bodies with elastically similar 
materials. Significant differences are noted between the individual ICs of 
separate non-planar solids, ICk

xx and especially ICk
ss, that are of primary 

importance in the tangential contact problem. The errors in these individual ICs 
are of opposite signs in the convex and concave bodies, and tend to be cancelled 
out in the combined ICs. The extent of this compensation depends on the 
relative stiffness of both bodies, and may not be sufficiently favourable 
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especially when the convex body is the one with the more flexible material. In 
that case, the approximation of these ICs should be improved further.  

8.1.4 Characteristics of wheel–rail conformal conta ct  

The characteristics of wheel–rail conformal contact and its differences with 
respect to non-conformal contact have been studied in detail, by means of 
numerical analyses with the developed contact mechanics models. The study 
has focused in steel-on-steel contact, present in important industrial applications 
in addition to the wheel–rail case, as rolling bearings. 3D frictional conformal 
contact has been tackled, covering both the normal and tangential parts of static 
(compression, shift) and rolling contact problems. In contrast, most of the past 
published literature in conformal contact has focused on 2D contact or on 
frictionless contact.  

Different effects derived from conformity in wheel–rail contact mechanics have 
been illustrated making use of simple geometries, with constant curvatures. The 
effects of conformity begin to be appreciable in the tangential part of the contact 
problem first, already with relatively low contact angle variations. At geometric 
level, the most relevant effects are related to the variation of the longitudinal 
curvature of the wheel and to the variation of the geometric spin, which in turn 
are originated by the variation in the contact angle. It is noteworthy as well the 
high sensitivity of the geometry of the normal undeformed distance to the 
relative orientation between the contacting solids, and particularly to the yaw 
angle. Some of these effects are listed next. In general, these effects become 
more appreciable with higher contact angles.  

- The contact patches become asymmetric both in longitudinal and lateral 
directions, even in cases with constant lateral curvatures of the contact 
surfaces. The contact patches tend to become more elongated in the side 
with higher contact angles. Nevertheless, the overall contact patch 
dimensions and maximum normal pressures do not change significantly 
with respect to those obtained with a planar contact analysis.  

- The contact patches tend to change from elliptical to rectangular shapes 
as the total contact angle increases. For a given geometry, they also tend 
to acquire shapes with higher length-to-width ratios as the load 
increases, becoming more elongated in the rolling direction.  
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- The frictional work distribution inside the contact patch tends to be 
biased towards the side with increasing contact angles, due to the larger 
longitudinal dimension of the contact patch and slip velocities in this 
zone.  

- Different patterns are developed in the rigid slip velocity fields 
depending on the sign of the creepages. Considering the rolling of a 
concave wheel on a convex rail, in situations with zero mean contact 
angles and lateral creepages, the adhesion area in the contact patch 
tends to be more acute shaped, and more extended in the longitudinal 
direction, in tractive rolling than in braking rolling. The frictional work 
density tends to be more evenly distributed across the width of the 
contact patch in tractive rolling, and to be more concentrated in the 
central region in braking rolling.  

- The creepage–creep force curves in cases with pure creepage or low 
spin have lower slopes than in planar contact, because the tangential 
stresses are not aligned in a single direction. Additionally, the 
longitudinal creepage–creep force curves are offset from the curves 
obtained with a planar analysis. This offset comes on the one hand from 
the variation in rolling radii and consequent variation in longitudinal 
rigid slip velocities, and may vary depending on the convention adopted 
to define the reference creepages. On the other hand, there is the offset 
due to the previously mentioned geometric differential stiffness, acting 
through the ICxn IC.  

The presented results evidence that it is essential to use proper representations 
of the normal undeformed distance and rigid slip velocity fields for precise 
contact mechanics analyses in conformal contact. These may deviate 
considerably from those calculated with a planar analysis. The precise 
determination of the normal undeformed distances and rigid slip velocities 
requires more detailed geometric analyses than those commonly used in non-
conformal contact, taking into account the curved contact geometry, which 
implies different contact angles and rolling radii at each point.  

Regarding the mechanical behaviour of the non-planar contacting solids at the 
local contact level, some relevant effects derived from its alteration from that of 
the half-space include the following:  
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- Tendency for more lateral spreading of the contact patch, due to the 
decrease of the ICnn IC with the variation of the contact angle.  

- The coupling between the normal and tangential contact problems, 
mainly through the ICsn IC. As a result, quasiidentity is not applicable 
even with elastically similar materials. Neverless, the coupling is 
relatively mild with the coefficients of friction commonly found in 
wheel–rail contact, usually below 0.50. The effects of the normal–
tangential coupling are more notable in the tangential part of the contact 
problem, due to the higher level of the normal pressures compared to 
the tangential stresses. Apart from this coupling at the contact 
mechanics level, there is also a coupling at the equilibrium of forces 
level.  

The subsurface stresses at the contact level are also affected by the non-planar 
geometry. The maximum von Mises stress tends to increase in the concave 
body, and its location tends to move towards the surface, while the tendency is 
the opposite in the convex body.  

The application of CECT has been demonstrated in different wheel–rail contact 
cases, with different levels of conformity and friction. The coefficient of friction 
conditions to a great extent the tangential problem solution in situations with 
high levels of rigid slip, as the ones that may occur in the contact between the 
rail gauge corner and the wheel flange root, and may have important variations 
depending on the lubrication conditions among other factors.  

8.1.5 Frictional contact analysis in a spherical ro ller 
bearing  

The roller–raceway frictional contact has been studied in a spherical roller 
bearing. For this purpose, different partial slip contact models have been used, 
as opposed to the usual full slip approach: the strip theory, CECT, and FEM. In 
this way, the use of the numerical models developed for the study of wheel–rail 
conformal contact has been demonstrated in the rolling bearing application. 
This has involved the need for some adaptations.  

Regarding the application of CECT in rolling bearings, the use of a variable 
discretization size ∆q is highlighted, due to the variable rolling radii of the 
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contact surfaces. Regarding the FEM, it has been shown that a precise analysis 
of the motions of the roller is necessary to arrive at the solution corresponding 
to the steady rolling configuration of the roller. Also, in the presented FEM 
analyses, relatively long rolling distances, of the order of ten times the total 
longitudinal dimension of the contact patch, have been necessary to achieve 
reasonably stabilized solutions. These contrast with the much lower distances 
necessary to reach a quasi-steady state at the local contact level. The required 
rolling distances could be different in other cases or with other analysis set-ups.  

In the studied spherical roller bearing case, the contact patches present a high 
width-to-length ratio, modest contact angle variations, and rigid slip velocities 
mostly aligned in the rolling direction. These features point to 2D-like contact 
solutions and anticipate that representative results may be obtained with strip 
theory. Indeed, the results obtained with the strip theory agree quite well with 
those obtained with the more comprehensive 3D contact models, as long as the 
contact patch position is appropriately adjusted. However, a 3D partial slip 
contact model is needed to perform this adjustment, with a proper description of 
the rigid slip velocities in the roller–raceway contacts according to the geometry 
of the non-planar contact surfaces, and the capability to compute lateral 
frictional forces in addition to the longitudinal ones, as well as associated 
moments. While the lateral frictional forces are relatively small in the studied 
short contact patches (as compared to the normal loads), with high friction, they 
may be high enough to cause a noticeable lateral shift of the contact patch with 
a roller having zero nominal roller angle. This lateral shift, in turn, influences 
the tangential contact solution. Al lower friction levels, the frictional forces are 
smaller, and the contact shifts from their nominal positions have been shown to 
decrease in the studied bearing. Still, the relevance of possible contact shifts 
should be evaluated for each bearing geometry and operating conditions. These 
could come for reasons other than frictional forces, e.g., in the presence of 
internal clearances, axial loading, and misalignment.  

The advantages and disadvantages of the different contact models considered in 
this study are summarized in the following points:  

- The strip theory may be used to get detailed steady-state contact 
solutions efficiently in cases with wide contact patches and slip 
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velocities aligned in one direction, in which the contact location may be 
estimated beforehand, aside from the contact frictional forces.  

- The exact contact theory is a comprehensive 3D partial slip contact 
model that may be applied to get precise frictional contact solutions 
within the framework of linear elastostatics, providing a realistic 
representation of the effect of the contact frictional forces on the roller 
equilibrium. Its computational costs are between those of strip theory 
and FEM, while allowing a much more general application than strip 
theory.  

- The main difficulty for the practical application of FEM in the type of 
contact problems treated here is its high computational costs. Its use 
should be reserved for studying phenomena not allowed by simpler 
contact models, such as non-linear material behaviour.  

The steady rolling configurations of the roller have been computed for different 
normal loads and friction levels with CECT. Two different steady equilibrium 
configurations of the roller have been found. There is a first configuration, 
which may be described as the expected one, in which the roller has low or 
moderate offsets from its nominal position in the bearing radial plane. This 
configuration is feasible at higher loads. The second configuration, which is 
feasible at lower loads, presents higher roller offsets and dissipated powers. The 
leap between both configurations increases with higher friction levels. The 
finding of these two configurations in a numerical analysis requires using a 3D 
partial slip contact model. Further research is necessary on the significance of 
the second steady equilibrium configuration of the roller. For this purpose, it 
may be interesting to investigate the transient evolution of the roller in its 
orbital motion around the bearing.  

8.2 Future works  

The following subsections suggest possible directions of further research related 
to the work carried out in this thesis.  
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8.2.1 Vehicle–track dynamic interaction  

The scope of the developed MBS–FE vehicle–track dynamic interaction models 
could be extended for lateral dynamics. This would allow using the models for 
the study of phenomena that may happen during inscription of the vehicle in 
tight curves for example.  

The extension of the models for lateral dynamics would involve an increase in 
their complexity. It would be necessary to model the rail cross-section in more 
detail, to take into account its distortion in addition to the bending and torsional 
deformations of the rail. Additionally, the flexibility of the wheels should be 
considered. While it may be reasonable to consider the wheelsets as rigid for 
vertical dynamics in certain frequency ranges as has been done in this work, for 
lateral dynamics it becomes more imperative to consider them as flexible 
bodies. All this would lead to a higher number of degrees of freedom and modes 
of vibration to be included in the models.  

8.2.2 Conformal contact  

Directions for further research on conformal contact are listed below. These are 
set out with regards to the wheel–rail application, while many are extensible to 
the rolling bearing case.  

• Development of simplified conformal rolling contact models for use in 
vehicle dynamics simulations. The comprehensive numerical models 
developed in this thesis are aimed for detailed contact mechanics 
studies. For rail vehicle dynamic simulations, more emphasis has to be 
placed on computational efficiency (cf. §2.1). At the same time, the 
simplified models should retain the ability to capture the inherent 
features of conformal contact relevant for the analyses to be carried out.  

The dynamic and contact mechanics simulations could also be 
undertaken separately, getting first the contact parameters from the 
dynamic simulations, and calculating with these a limited number of 
detailed contact solutions in a second step with a comprehensive contact 
mechanics model. But contact conformity could influence the vehicle 
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dynamics, calling for coupled simulation, as done in [Bashkar 1997] 
and [Pascal 2019] with simplified conformal contact models.  

• Application to damage analysis. The conformal contact models could be 
applied to damage analyses such as wear evolution predictions in 
identified critical scenarios. The results of the more comprehensive 
models could then be compared with those of more simplified models, 
and if possible, with field measurements.  

• Temperature effects in the contact. Changes in the profiles of the 
contacting surfaces resulting from non-uniform temperature 
distributions across them could alter significantly the undeformed 
distances in closely conforming surfaces. This could have an effect both 
in the normal and in the tangential parts of the contact problem. Further, 
higher slip levels are usually encountered in conformal contact 
situations compared to planar contact, which may promote conditions 
with higher temperatures and temperature gradients inside the contact.  

• Complex frictional behaviour. This includes the consideration of 3rd 
body layer, and variable coefficient of friction with the slip velocity. 
The exact contact theory allows the consideration of these features, and 
are actually implemented in CONTACT (cf. [CONTACT UG 2013], 
[Vollebregt 2014d]). In this way, conformal contacts could be studied 
considering these interfacial behaviours. This could be undertaken 
either with CONTACT, or adding these capabilities in a future version 
of CECT.  

The impact of these features in the real contact behaviours may be 
much higher than the inaccuracies coming from more simplified contact 
models, such as the ones described in §2.1.2; cf. [Hobbs 1967], 
[Vollebregt 2014d], and [Magel 2017]. In this regard, the main 
difficulty lies in the proper characterization of the real constitutive 
behaviours and involved physical parameters, rather than in the solution 
of the contact problem itself.  
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• Plasticity. Particular cases of planar contact have been studied in detail, 
e.g. developing shakedown maps for Hertzian cases in partial slip (cf. 
[Johnson 2001]). Numerical studies of planar contacts in the wheel–rail 
application have been carried out as well with detailed 3D FE models, 
as in [Zhao 2015]. In the rolling bearing application, [Tonazzi 2017] is 
an example of a case study of conformal contact with plasticity. Still, 
there is a lack in the literature of detailed studies of 3D frictional 
conformal contact with plasticity in the wheel–rail application. A higher 
complexity than in elastic contacts is involved, as multiple cycles need 
to be simulated, and more detailed material data is needed, being 
necessary to properly characterize the cyclic plastic behaviour of the 
materials.  

• Layered solids. Rolling contact surfaces are sometimes treated to 
enhance their wear, RCF and/or corrosion resistance. Sometimes, the 
treatments involve coatings or claddings with different elastic properties 
from the substrate material. Contact problems with layered solids could 
be treated with the contact models developed in this thesis.  

For the application of CECT, it would be necessary to numerically 
calculate ICs. A further development could be to extend the calculation 
of approximated ICs for layered solids, to avoid their calculation with 
dedicated FE models. A difficulty here is that in the case of layered 
half-spaces, ICs are available in analytical form only in the Fourier 
domain, being necessary to obtain the values in the space domain by 
numerical integration.  

8.3 Publications directly derived from the thesis  

Part of the work developed in this thesis has been published in the references 
listed in the following subsections.  

8.3.1 JCR papers  

• Blanco-Lorenzo J, Santamaria J, Vadillo EG, Oyarzabal O. (2011). 
Dynamic comparison of different types of slab track and ballasted track 
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• Blanco-Lorenzo J, Santamaria J, Vadillo EG, Correa N. (2016). On the 
influence of conformity on wheel–rail rolling contact mechanics. 
Tribology International 103, 647–67.  
https://dx.doi.org/10.1016/j.triboint.2016.07.017.  

• Blanco-Lorenzo J, Santamaria J, Vadillo EG, Correa N. (2018). A 
contact mechanics study of 3D frictional conformal contact. Tribology 
International 119, 143–56.  
https://doi.org/10.1016/j.triboint.2017.10.022.  

• Blanco-Lorenzo J, Vollebregt EAH, Santamaria J, Vadillo EG. (2021). 
Approximating the influence coefficients of non-planar elastic solids for 
conformal contact analysis. Tribology International 154, 106671.  
https://doi.org/10.1016/j.triboint.2020.106671.  
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8.3.2 Conferences  

• Blanco-Lorenzo J, Santamaria J, Vadillo EG, Correa N. Finite element 
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Madeira, Portugal, 10–13 April, 2017.  
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A. Appendix  

A. Integrals for half-space ICs of 
bilinear rectangular elements  

Details of the calculation of the J1, J2, J3, and J5 integrals defined in Eqs. (5.1), 
(5.2), (5.3), and (5.5) for rectangular elements in the half-space surface with 
bilinear load distribution are given here. Specifically, the contributions to these 
integrals of element number 1 shadowed in blue in Figure A.1 are considered, 
denoted as J1

1, J2
1, J3

1 and J5
1. The resulting expressions for J2

1, J3
1 and J5

1 are 
given in Eqs. (5.24), (5.25) and (5.26), respectively.  

The same Cartesian coordinate system as in §5.1 is used. (x, y) are the 
coordinates of the node shared by the four loaded elements in the half-space 
surface as illustrated in Figure A.1. The integrals for the different Ji

1 are carried 
out over the surface of element 1, i.e. on (X, Y) where x < X < x + a and y < Y < 
y + b, first along X and then along Y. Letter D is used for the expressions arising 
after the integration in X, and letter E for the ones arising after the subsequent 
integration in Y.  

The bilinear load distribution T(X, Y) in element 1 is given in Eq. (5.23), and 
reproduced in Eq. (A.1) for convenience.  
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Figure A.1. Coordinate system and element dimensions for the calculation of the ICs 
for rectangular elements with bilinearly varying load distributions.  

The double brackets in the equations given in the following subsections stand 
for the evaluation of the integral expression f inside them at the limit points (x, 
x+a) for X and (y, y+b) for Y, as expressed in Eq. (A.2), reproduced from Eq. 
(5.27). ρ is equal to the distance from the origin to the (X, Y) point, i.e. 

22 YX +=ρ .  

 [[ f ]] = f (x+a, y+b) – f (x, y+b) – f (x+a, y) + f (x, y) (A.2) 

A.1 J 1  

The integral to be calculated is given in Eq. (A.3). This integral may be 
calculated as J2

1 + J4
1, cf. Eq. (5.1). Here, the integration of Eq. (A.3) is shown.  
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The integrals of Eqs. (A.5) and (A.6) are carried out for the integration in X of 
Eq. (A.3) (expressed in Eq. (A.4)), and are combined according to Eq. (A.7).  



A Integrals for half-space ICs of bilinear rectangular elements 619 

  ∫
+

+







 −−






 −−=
ax

x
dX

YXb

yY

a

xX
D

221

1
11  (A.4) 

 ( )[ ] ax

x

ax

x
YXX

YX

dX
D

++
++=

+
= ∫

22

221,1 ln   

  ( ) ax

xY

X

Yxx

Yaxax +



=














++

++++
= asinhln

22

22

  

  ( )[ ] ax

x
YXX

Y

x

Y

ax +
++=−+= 22lnasinhasinh  (A.5) 

 ] ax

x

ax

x
YXdX

YX

X
D

++
+=

+
= ∫

22

222,1
 (A.6) 

 







−







 +






 −−=
a

D
D

a

x

b

yY
D 2,1

1,11 11  (A.7) 

Next, the result of Eq. (A.7) is to be integrated in Y. For this purpose, the 
integrals of Eqs. (A.8)–(A.11) are carried out. For the integral of Eq. (A.8), the 
substitution u = X / Y is used.  
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J1
1 is calculated from the previous integrals according to Eq. (A.12).  
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After operating, the expression of Eq. (A.13) is obtained.  
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A.2 J 2  

The integral to be calculated is given in Eq. (A.14).  

 ∫ ∫
+ +








 −−






 −−=
by

y

ax

x
dXdY

X

b

yY

a

xX
J

3

2
1

2 11
ρ

 (A.14) 

The integrals of Eqs. (A.16) and (A.17) are carried out for the integration in X 
of Eq. (A.14) (expressed in Eq. (A.15)), and are combined according to Eq. 
(A.18).  
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Next, the result of Eq. (A.18) is to be integrated in Y. For this purpose, the 
integrals of Eqs. (A.19)–(A.22) are carried out, together with the integrals E1,1, 
E1,2, E1,3, and E1,4 defined in Eqs. (A.8)–(A.11).  
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J2
1 is calculated from the previous integrals according to Eq. (A.23).  
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After operating, the expression of Eq. (5.24) is obtained for J2
1. In doing this, 

there is a (y + b) X ln|1/X| term that cancels out in the four evaluations and is 
therefore eliminated from the resulting primitive function.  

A.3 J 3  

The integral to be calculated is given in Eq. (A.24).  
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For the integration in X of Eq. (A.24) (expressed in Eq. (A.25)), the integral of 
Eq. (A.26) is carried out together with the integral D2,1 defined in Eq. (A.16). 
These are then combined according to Eq. (A.27).  
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Next, the result of Eq. (A.27) is to be integrated in Y. For this purpose, the 
integrals of Eqs. (A.28)–(A.30) are carried out, together with the integrals E1,2, 
E2,6, and E2,7 defined in Eqs. (A.9), (A.20) and (A.21), respectively.  
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For the calculation of E3,6, the result given in Eq. (A.31) is used. In this 
equation, the substitution u = x / Y is used.  
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J3
1 is calculated from the integrals E1,2, E2,6, E2,7, E3,1, E3,4, and E3,6 according to 

Eq. (A.32).  
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After operating, the expression of Eq. (5.25) is obtained for J3
1. 

A.4 J 5  

The integral to be calculated is given in Eq. (A.33).  
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The integrals of Eqs. (A.35) and (A.36) are carried out for the integration in X 
of Eq. (A.33) (expressed in Eq. (A.34)), and are combined according to Eq. 
(A.37).  
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Next, the result of Eq. (A.37) is to be integrated in Y. For this purpose, the 
integrals of Eqs. (A.38)–(A.43) are carried out.  
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For the calculation of E5,5 and E5,6, the results given in Eqs. (A.44) and (A.45) 
are used, respectively. In these equations, the substitution u = x / Y is used.  
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J5
1 is calculated from the previous integrals according to Eq. (A.46).  
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After operating, the expression of Eq. (5.26) is obtained for J5
1. In doing this, 

there is a Y term and a Y 2 / 4 term that cancel out in the four evaluations, and 
are therefore eliminated from the resulting primitive function. The last term in 
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Eq. (5.26), (–(y + b) / 2 × sgn(XY) × X 2 × π / 2), has been added to compensate 
the discontinuity of the ((y + b) / 2 × R2 × atan(X / Y)) term when Y passes 
through 0.  
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