
Exact Learning of Multivalued Dependency Formulas

Montserrat Hermo

Languages and Information Systems, University of the Basque Country, Spain

Ana Ozaki

Department of Computer Science, University of Liverpool, United Kingdom

Abstract

The transformation of a relational database schema into fourth normal form,

which minimizes data redundancy, relies on the correct identification of mul-

tivalued dependencies. In this work, we study the learnability of multivalued

dependency formulas (MVDF), which correspond to the logical theory behind

multivalued dependencies. As we explain, MVDF lies between propositional Horn

and 2-Quasi-Horn. We prove that MVDF is polynomially learnable in Angluin

et al.’s exact learning model with membership and equivalence queries, provided

that counterexamples and membership queries are formulated as 2-Quasi-Horn

clauses. As a consequence, we obtain that the subclass of 2-Quasi-Horn theories

which are equivalent to MVDF is polynomially learnable.

Keywords: Exact Learning, Multivalued Dependencies, 2-Quasi-Horn

1. Introduction

Among the models proposed to represent databases, since its presentation

by Codd [1], the relational model has been the most successful one. In this

model, data is represented by tuples which are grouped into relations. Different

types of formalisms based on the concept of data dependencies have been used

to design and analyse database schemas. Data dependencies can be classified as

functional [1], or multivalued [2, 3], where the latter is a generalization of the

first. Functional dependencies correspond to the Horn fragment of propositional

Preprint submitted to Elsevier July 10, 2016

This is the preprint of the article that appeared in final form in Theoretical Computer
Science 716 : 4-14 (2018) , which has been published in final form at https://
doi.org/10.1016/j.tcs.2017.11.018. © 2018 Elsevier

logic in the sense that one can map each functional dependency to a Horn clause

preserving the logical consequence relation [4, 5]. The same correspondence can

be established between multivalued dependencies and multivalued dependency

formulas (MVDF) [4, 6]. They have long been studied in the literature and

it is well known that the transformation of a relational database schema into

the fourth normal form (4NF), which minimizes data redundancy, relies on the

identification of multivalued dependencies [3].

In this work, we cast the problem of identifying data dependencies as a

learning problem and study the learnability of MVDF, which correspond to the

logical theory behind data dependencies. Identification of the Horn fragment

from interpretations in Angluin’s exact learning model is stated in [7], and later

an algorithm that learns Horn from entailments is presented in [8]. Furthermore,

a variant that learns sets of functional dependencies appears in [9]. Regarding

MVDF, it is known that this class cannot be learned either using equivalence

[10] or membership queries alone [11], and that a particular subclass of them

is learnable when both types of queries are allowed [12, 13]. However, to the

best of our knowledge, there is no positive result for the general class MVDF

using membership and equivalence queries. One of main obstacles to find a

learning algorithm for MVDF is the fact the MVDF theories are not closed under

intersection in contrast to the Horn case [6]. In general, given a multivalued

dependency formula, there is not a unique minimal model that satisfies both the

formula and a particular set of variables, a property extensively exploited by

Horn algorithms.

A major open problem in learning theory (and also within the exact learning

model) is whether the class CNF (or the class DNF) can be efficiently learnable.

Although it is known that this class cannot be polynomially learned using either

membership or equivalence queries alone [14, 10], it is open whether CNF can be

learned using both types of queries. Several restrictions have been imposed on

both CNF and DNF in order to make them polynomially learnable. For instance,

the classes monotone DNF [14], i.e., DNF formulas with no negated variables,

k-term DNF or k-clause CNF [15], that is, DNF or CNF formulas with at most k

2

terms or k clauses, and read-twice DNF [16], which are DNF where each variable

occurs at most twice, are all polynomially learnable via queries.

One of the most important results concerning a restriction of the class CNF

appears in the mentioned article [7], where propositional Horn formulas are

learned using both types of queries. In fact, Horn is a special case of a class

called k-quasi-Horn, meaning that clauses may contain at most k unnegated

literals. However, it is pointed in [7] that, even for k = 2, learning the class of

k-quasi-Horn formulas is as hard as learning CNF (Corollary 25 of [17]). Thus, if

exact learning CNF is indeed intractable, the boundary of what can be learned

in polynomial time with queries lies between 1-quasi-Horn (or simply Horn) and

2-quasi-Horn formulas. Since MVDF is a natural restriction of 2-quasi-Horn and

a non-trivial generalization of Horn, investigating how far this boundary can be

extended constitutes one of our main motivations and guide for this work, which

is theoretical in nature.

In this paper, we give a polynomial algorithm that exactly learns MVDF using

membership and equivalence queries. Membership queries and counterexamples

given by the oracle are formulated as 2-quasi-Horn clauses. As a consequence,

an algorithm that efficiently learns the subclass of 2-quasi-Horn formulas which

are equivalent to multivalued dependency formulas is obtained. The paper is

organized as follows. In Section 2 we introduce some notation and give definitions

for MVDF and the class of k-quasi-Horn formulas. Section 3 shows a property

that is crucial to learn the class MVDF: (although not unique) the number of

minimal models that satisfy a multivalued dependency formula and a set of

variables is polynomial in the size of the formula. In Section 4 we present our

algorithm that efficiently learns the class MVDF from 2-quasi-Horn clauses. In

Section 5 we illustrate the algorithm with an example run. We end in Section 6

with some concluding remarks and open problems.

3

2. Preliminaries

Exact Learning. Let E be a set of examples (also called domain or instance

space). A concept over E is a subset of E and a concept class is a set C of

concepts over E. Each concept c over E induces a dichotomy of positive and

negative examples, meaning that e ∈ c is a positive example and e ∈ E \ c is a

negative example. For computational purposes, concepts need to be specified by

some representation. So we define a learning framework to be a triple (E,L, µ),

where E is a set of examples, L is a set of concept representations and µ is a

surjective function from L to a concept class C of concepts over E.

Given a learning framework (E,L, µ), for each l ∈ L, denote by MEMl,E

the oracle that takes as input some e ∈ E and returns ‘yes’ if e ∈ µ(l) and ‘no’

otherwise. A membership query is a call to an oracle MEMl,E with some e ∈ E

as input, for l ∈ L and E. Similarly, for every l ∈ L, we denote by EQl,E the

oracle that takes as input a concept representation h ∈ L and returns ‘yes’, if

µ(h) = µ(l), or a counterexample e ∈ µ(h) ⊕ µ(l), otherwise. An equivalence

query is a call to an oracle EQl,E with some h ∈ L as input, for l ∈ L and E.

We say that a learning framework (E,L, µ) is exact learnable if there is

an algorithm A such that for any target l ∈ L the algorithm A always halts

and outputs l′ ∈ L such that µ(l) = µ(l′) using membership and equivalence

queries answered by the oracles MEMl,E and EQl,E , respectively. A learning

framework (E,L, µ) is polynomial time exact learnable if it is exact learnable

by an algorithm A such that at every step of computation the time used by A

up to that step is bounded by a polynomial p(|l|, |e|), where l is the target and

e ∈ E is the largest counterexample seen so far1.

Multivalued Dependencies and k-quasi-Horn Formulas. Let V be a set

of boolean variables. The logical constant true is represented by T and the

1We count each call to an oracle as one step of computation. Also, we assume some natural

notion of length for an example e and a concept representation l, denoted by |e| and |l|,

respectively.

4

logical constant false is represented by F. An mvd clause is an implication

X → Y ∨ Z, where X, Y and Z are pairwise disjoint conjunctions of variables

from V and X ∪ Y ∪ Z = V . An mvd formula is a conjunction of mvd clauses.

A k-quasi-Horn clause is a propositional clause containing at most k unnegated

literals. A k-quasi-Horn formula is a conjunction of k-quasi-Horn clauses. To

simplify the notation, we treat sometimes conjunctions as sets and vice versa.

Also, if for example V = {v1, v2, v3, v4, v5, v6} is a set of variables and ϕ = (v1 →

(v2 ∧ v3)∨ (v4 ∧ v5 ∧ v6))∧ ((v2 ∧ v3)→ (v1 ∧ v5 ∧ v6)∨ v4) is a formula then we

write ϕ in this shorter way: {1→ 23 ∨ 456, 23→ 156 ∨ 4}, where conjunctions

between variables are omitted and each propositional variable vi ∈ V is mapped

to i ∈ N. From the definitions above it is easy to see that:

1. any Horn clause is logically equivalent to a set of 2 mvd clauses. For

instance, the Horn clause 135 → 4 is equivalent to: {12356 → 4, 135 →

4 ∨ 26};

2. any mvd clause is logically equivalent to a conjunction of 2-quasi-Horn

clauses with size polynomial in the number of variables. For instance, the

mvd clause 1→ 23∨ 456, by distribution, is equivalent to: {1→ 2∨ 4, 1→

2 ∨ 5, 1→ 2 ∨ 6, 1→ 3 ∨ 4, 1→ 3 ∨ 5, 1→ 3 ∨ 6}.

Remark. Point 1 above means that w.l.o.g. we can assume that any mvd

clause is either V → F or V \ {v} → v or of the form X → Y ∨ Z with

Y and Z non-empty. We call Horn-like clauses of the form V \ {v} → v.

Note that T → V ≡ {T → v | v ∈ V } and each T → v is equivalent to

{T→ V \ {v} ∨ v, V \ {v} → v}.

Formally, in this paper we study the learning framework FM = (EQ,LM , µM),

where EQ is the set of all 2-quasi-Horn clauses in the propositional variables V

under consideration, LM is the set of all MVDF that can be expressed in V and,

for every T ∈ LM , µM (T) = {e ∈ EQ | T |= e}. Note that learning MVDF from

2-quasi-Horn examples also corresponds to learning the set of all 2-quasi-Horn

formulas that can be constructed by distribution from any mvd formula.

5

An interpretation I is a mapping from V ∪ {T,F} to {true, false}, where

I(T) = true and I(F) = false. We denote by true(I) the set of variables

assigned to true in I. In the same way, let false(I) be the set of variables assigned

to false in I. Observe that false(I) = V \ true(I). Let H and T be sets of mvd

clauses. If I |= H and I 6|= T then we say that I is a negative countermodel w.r.t.

T . We follow the terminology provided in [7] and say that an interpretation I

covers X → Y ∨ Z if X ⊆ true(I). An interpretation I violates X → Y ∨ Z

if I covers X → Y ∨ Z and: (a) Y and Z are non-empty and there are v ∈ Y

and w ∈ Z such that v, w ∈ false(I); or (b) there is v such that false(I) = {v}

and X → Y ∨ Z is the Horn-like clause V \ {v} → v; or (c) false(I) = ∅ and

X → Y ∨ Z is the clause V → F. Given two interpretations I and I ′, we define

I ∩ I ′ to be the interpretation such that true(I ∩ I ′) = true(I) ∩ true(I ′).

3. Computing Minimal Models

In this section, we present Algorithm 1, which computes in polynomial time

all minimal models (i.e. models with minimal number of variables assigned to

‘true’) satisfying both a set P of mvd clauses and a set of variables X. To ensure

the existence of minimal models, we consider P such that P does not contain

V → F. Algorithm 1 receives P and X as input and constructs a semantic tree,

in the sense that each child node satisfies one of the two consequents of an mvd

clause. In each iteration of the main loop we ‘apply’ an mvd clause, meaning

that, given a tree leaf node, we pick a (not used) mvd clause X ′ → Y ′ ∨ Z ′ ∈ P

and construct two child nodes, one of them containing variables in Y ′ and the

other variables in Z ′. We exhaustively apply mvd clauses in P so that in the

end each leaf node contains a set of variables that need to be true in order to

satisfy both X and P. Note that Horn-like clauses are treated in Line 16.

The following information is stored for each node i: a set Mi of mvd clauses

in P that have not yet been applied in the i-node path; and a set Si of variables

implied by X and by mvd clauses that have already been applied (i.e. clauses in

P \Mi). The following example illustrates how the algorithm works.

6

Algorithm 1 Semantic Tree

1: Let S = ∅ be a set of interpretations

2: Let P be a set of mvd clauses without V → F and X a set of variables

3: function SemanticTree(P, X)

4: Create a node i = 0 with S0 = X and M0 = P

5: repeat

6: if there is a leaf i and an mvd clause X ′ → Y ′ ∨Z ′ ∈Mi with Y ′ 6= ∅

Z ′ 6= ∅ and X ′ ⊆ Si then

7: if there is v ∈ Y ′ ∪ Z ′ such that v 6∈ Si then

8: Create a new node 2i+ 1 as a child of i

9: S2i+1 = Si ∪ Y ′, M2i+1 = Mi \ {X ′ → Y ′ ∨ Z ′}

10: Create a new node 2i+ 2 as a child of i

11: S2i+2 = Si ∪ Z ′, M2i+2 = Mi \ {X ′ → Y ′ ∨ Z ′}

12: end if

13: end if

14: until no more nodes can be created

15: for every node j that is a leaf do

16: Create I with true(I) = Sj ∪ {v | Sj = V \ {v}, V \ {v} → v ∈ P}

17: S := S ∪ {I}

18: end for

19: return (S)

20: end function

7

Example Let X = {1, 2, 3, 4} and P = {c1 = 13 → 257 ∨ 468, c2 = 12 →

34 ∨ 5678, c3 = 145→ 26 ∨ 378, c4 = 1234567→ 8} be a set of mvd clauses. In

Line 6, the choice of an mvd clause made by Algorithm 1 is non-deterministic and

in this example we choose clauses in the same order they appear above. The root

of the semantic tree of P and X has S0 = {1, 2, 3, 4} and M0 = {c1, c2, c3, c4}.

Choosing the first clause c1 we have S1 = {1, 2, 3, 4, 5, 7}, S2 = {1, 2, 3, 4, 6, 8} and

M1 = M2 = {c2, c3, c4}. Now we choose the second clause c2 to obtain S3 = S1

S4 = {1, 2, 3, 4, 5, 6, 7, 8} S5 = S2 S6 = S4 and M3 = M4 = M5 = M6 = {c3, c4}.

{1, 2, 3, 4}

{6, 8}{5, 7}

{5, 7}{}{6, 8}

{8}{6}

{}

Figure 1: Semantic Tree

Finally, we choose third clause. Figure 1

illustrates the Semantic Tree with variables

which are ‘new’ in the path, that is, if node

a is predecessor of node i in the tree then

Sa does not have these variables. In Line

16, Algorithm 1 checks that the antecedent

of c4 is satisfied in node 7 and adds vari-

able 8 to its corresponding interpretation.

Algorithm 1, returns S = {I1, I2, I3}, with true(I1) = {1, 2, 3, 4, 5, 6, 7, 8},

true(I2) = {1, 2, 3, 4, 5, 7, 8} and true(I3) = {1, 2, 3, 4, 6, 8}.

The following Theorem shows that Algorithm 1 runs in polynomial time and

that the returned set S includes all minimal models satisfying P and X.

Theorem 1 Let P be a set of mvd clauses and X a set of variables. One can

construct in polynomial time w.r.t. |P| a set of interpretations S that verifies

the following properties:

1. if I ∈ S then I |= P;

2. if I ′ |= P and X ⊆ true(I ′) then there is I ∈ S such that true(I) ⊆

true(I ′).

Proof. Let S be the return value of Algorithm 1 with P and X as input. Point

(1) is a corollary of a more general one: for all nodes i in a semantic tree, the

interpretation I ′ defined as true(I ′) = Si is a model of the set of mvd clauses

8

X ′ → Y ′ ∨ Z ′ ∈ P \Mi with Y ′ and Z ′ non-empty. The proof of this fact is

by induction in the number of levels of the semantic tree. (Algorithm 1 treats

Horn-like clauses in Line 16.) Point (2) is a corollary of a more general one: if

I ′ |= P and X ⊆ true(I ′), then there exists a path from the root to a node k

that is leaf, in such a way that Sk ⊆ true(I ′). The proof of this fact is again by

induction in the number of levels of the semantic tree.

Now, it remains to show that the construction of S is in polynomial time.

Let n = |V | and m = |P|. The fact that the number of nodes of any semantic

tree for P and X is bounded by 2× n×m follows from the next 3 claims. This

bound implies that the running time of the construction is polynomial in |V |

and |P|. To simplify the presentation, we use auxiliary sets Ni which contain

variables that are ‘new’ in the set Si of a node i in the semantic tree, that is,

if node a is predecessor of node i in the tree then Sa does not have these variables.

Claim 1 For any level j whose nodes are j1, j2, . . . jk, the sets Nj1 , Nj2 , . . . , Njk

are pairwise disjoint.

Let j1 and j2 be arbitrary distinct nodes at level j and let a be the lowest

common ancestor of nodes j1 and j2. For all v ∈ Nj1 ∪Nj2 , we have that v 6∈ Sa.

Let b1 and b2 be the two children of the ancestor a. In the construction of the

semantic tree, Algorithm 1 introduces v in exactly one of Sb1 or Sb2 . Therefore,

it is not possible to find v ∈ Nj1 ∩Nj2 .

Claim 2 For any level j whose nodes are j1, j2, . . . jk there are at most k/2

nodes such that the corresponding sets Nj1 , Nj2 , . . . , Njk are empty.

In the execution of Algorithm 1, whenever two children of a node are created, at

least one new variable is introduced in at least one of the siblings.

Thus, the number of nodes in each level is bounded by 2× n.

Claim 3 The depth of a semantic tree for P is bounded by m.

9

This is because any mvd clause is used at most once along a branch. Note

that this claim also ensures termination. o

It is worth saying that Algorithm 1 allows us to decide whether a set of mvd

clauses P is satisfiable. Note that if V → F 6∈ P then P is trivially satisfiable.

Otherwise, we only need to set the input X as empty and check whether S

(the return of Algorithm 1) contains only I such that true(I) = V . If so then

P ∪ {V → F} is unsatisfiable.

4. Learning MVDF from 2-quasi-Horn

In this section we present an algorithm that learns the class MVDF from

2-quasi-Horn. More precisely, we show that the learning framework FM =

(EQ,LM , µM) (defined in the Preliminaries) is exact learnable in polynomial

time.

Algorithm 2 maintains a sequence L of distinct interpretations used to

construct the learner’s hypothesis H. We use Ii ∈ L to denote an interpretation

at the i-th position in the sequence L. In each iteration of the main loop, if H

is not equivalent to the target T then the oracle EQT ,EQ
provides the learner

with a 2-quasi-Horn clause c that is a positive counterexample. That is, T |= c

and H 6|= c. The assumption that the counterexample is positive is justified by

the construction of H, which ensures at all times that T |= H. Each positive

counterexample is used to construct a negative countermodel that either refines

an element of L, or is added to the end of L. In order to learn all of the clauses

in T , we would like the clauses induced by the elements in L to approximate

distinct clauses in T . This will happen if at most polynomially many elements in

L violate the same clause in T . As explained in [7], overzealous refinement may

result in several elements in L violating the same clause of T . This is avoided in

Algorithm 2 by (1) refining at most one (the first) element of L per iteration and

(2) previously refining the constructed countermodel with the elements of L.

10

The following notion essentially describes under which conditions we say that

it is ‘good’ to refine an interpretation (which can be either a countermodel or

an element of L). There are two cases this can happen in our algorithm: (1) an

element in L is refined with a countermodel (Line 10 of Algorithm 2) or (2) the

countermodel is refined with some element in L (Line 5 of Algorithm 3).

Definition 1 We say that a pair (I, I ′) of interpretations is a goodCandidate

if: (i) true(I ∩ I ′) ⊂ true(I); (ii) I ∩ I ′ |= H; and (iii) I ∩ I ′ 6|= T .

Algorithms for Horn formulas in [7, 8] use a notion of ‘goodCandidate’ that

is more relaxed than ours. They only need conditions (i) and (iii). The reason is

that (ii) always holds because the intersection of two models of a set of Horn

clauses H is also a model of H. The lack of this property in the case of MVDF

has two consequences. The first one is that there is not a unique minimal model

that satisfies both an mvd formula and a particular set of variables. We solved

this problem in the previous section, by constructing a semantic tree. The

second consequence is that in the Horn algorithm [7] only a single interpretation

of the sequence that the algorithm maintains can violate a Horn clause from

the target. However, in our algorithm any mvd clause of the target T can be

violated by polynomially many interpretations of the sequence L. Function

‘RefineCounterModel’ (Algorithm 3) is crucial to ensure that only polynomially

many interpretations in L violate the same clause in T . We later show that in

any run only a polynomial amount of interpretations can be removed from L.

Remark. In the rest of this paper we consider interpretations I such that

|false(I)| ≥ 1. This is justified by the fact that in Line 1 of Algorithm 2 we

check whether T |= V → F and if so we add it to H0. Then, any negative

countermodel I computed in Line 6 is such that |false(I)| ≥ 1.

Lemmas 1, 2 and 4 show how Algorithm 2 can be implemented. In particular,

Lemma 1 shows how the learner can decide Point (iii) of Definition 1 with

polynomially many 2-quasi-Horn entailment queries. It also shows how Line 6 of

Algorithm 2 can be implemented.

11

Algorithm 2 Learning algorithm for MVDF from 2-quasi-Horn clauses

1: Let H0 = {V → F | T |= V → F}, L = ∅, H = H0

2: Let BuildClauses(I) be the function that given an interpretation I with

|false(I)| ≥ 1 returns {true(I) → v ∨ w | v 6= w ∈ false(I), T |= true(I) →

v ∨ w} ∪ {true(I)→ v | true(I) = V \ {v}, T |= true(I)→ v}

3: while H 6≡ T do

4: Let X → v ∨ w (or X → v) be a 2-quasi-Horn positive counterexample

5: Let S be the return value of SemanticTree(H, X)

6: Find I ∈ S such that I 6|= T (we know that for all I ∈ S, I |= H)

7: J := RefineCounterModel(I)

8: if there is Ik ∈ L such that goodCandidate(Ik,J) then

9: Let Ii be the first in L such that goodCandidate(Ii,J)

10: Replace Ii by J

11: Remove all Ij ∈ L \ {J } such that Ij 6|= BuildClauses(J)

12: else

13: Append J to L

14: end if

15: Construct H = H0∪TransformMVDF(
⋃

I∈LBuildClauses(I))

16: end while

Lemma 1 Let I be an interpretation and T the target (set of mvd clauses).

One can decide in polynomial time whether I satisfies T using polynomially

many 2-quasi-Horn entailment queries.

Proof. Let C = {true(I)→ v ∨ w | v, w ∈ false(I), T |= true(I)→ v ∨ w} ∪

{true(I)→ v | true(I) = V \ {v}, T |= true(I)→ v}. We show that I does not

satisfy T if, and only if, there is c ∈ C such that T |= c. (⇒) If I does not satisfy

T then there is X → Y ∨ Z ∈ T that is violated by I. That is, X ⊆ true(I)

and: (a) Y and Z are non-empty and there are v ∈ Y and w ∈ Z such that

v, w ∈ false(I); or (b) there is v such that false(I) = {v} and X → Y ∨ Z is the

Horn-like clause V \ {v} → v. In case (a) we have that T |= true(I) → v ∨ w.

12

Algorithm 3 Function to refine the countermodel

1: function RefineCounterModel(I)

2: Let J := I

3: if there is Ik ∈ L such that goodCandidate(I, Ik) then

4: Let Ii be the first in L such that goodCandidate(I, Ii)

5: J :=RefineCounterModel(I ∩ Ii)

6: end if

7: return (J)

8: end function

In case (b) we have T |= true(I) → v (meaning that T |= V \ {v} → v). (⇐)

Follows from the fact that for all c ∈ C, I 6|= c. o

In Line 5 Algorithm 2 calls a function that builds a semantic tree (Algorithm 1)

for H and the antecedent of the counterexample given in Line 4. Using this tree,

by Lemma 2, one can create in polynomial time a set of interpretations S such

that (i) for all I ∈ S, I |= H and (ii) there is an interpretation I ∈ S such that

I 6|= T . That is, there is I ∈ S such that I is a negative countermodel. By

Theorem 1, S is computed in polynomial time w.r.t. |H| (we show later that

|H| is polynomial in |T |).

Lemma 2 Let X be the set of variables in the antecedent of a positive counterex-

ample c received in Line 4 of Algorithm 2. Let S be the return of Algorithm 1

with H and X as the input. All interpretations in S satisfy H and at least one

interpretation of S does not satisfy T .

Proof. S verifies the following properties: (1) if I ∈ S then I |= H; (2) if

I ′ |= H and X ⊆ true(I ′) then there is I ∈ S such that true(I) ⊆ true(I ′); and

(3) there is an interpretation I ∈ S such that I 6|= T . By Theorem 1 we have

Points (1) and (2). For Point (3), we show that there is an interpretation I ∈ S

such that I 6|= T . As H 6|= c, there is an interpretation I ′ such that I ′ |= H and

I ′ 6|= c. Thus, X ⊆ true(I ′) and by Points (1) and (2), there is I |= H such that

13

Algorithm 4 Transform a 2-quasi-Horn clause into an mvd clause

1: function TransformMVDF(H′)

2: H := {c ∈ H′ | c is of the form V \ {v} → v}

3: for every X → v ∨ w ∈ H′ do

4: Let W = V \ (X ∪ {v, w}), Y = {v} and Z = {w}

5: for each w′ ∈W do

6: if T |= X → Y {w′} ∨ Z then

7: add w′ to Y

8: else

9: add w′ to Z

10: end if

11: end for

12: add X → Y ∨ Z to H

13: end for

14: return (H)

15: end function

true(I) ⊆ true(I ′). Since for all I ∈ S, we have that X ⊆ true(I), the latter fact

ensures that I 6|= c and therefore I 6|= T . o

Given a set of 2-quasi-Horn clauses, Algorithm 4 transforms each 2-quasi-

Horn clause c into an mvd clause c′ such that {c′} |= c with polynomially many

2-quasi-Horn entailment queries. This property is exploited by the learner to

generate mvd clauses for the hypothesis in Line 15 of Algorithm 2. Lines 5-11 of

Algorithm 4 rely on Lemma 4. Lemma 4 requires the following technical lemma.

Lemma 3 Let T be a set of mvd clauses. If I and I ′ are models such that

I |= T and I ′ |= T , but I ∩ I ′ 6|= T , then true(I) ∪ true(I ′) = V .

Proof. If I |= T , I ′ |= T and I ∩ I ′ 6|= T then there is X → Y ∨ Z ∈ T such

that X ⊆ true(I ∩ I ′) and either Y ⊆ true(I) and Z ⊆ true(I ′); or; Z ⊆ true(I)

and Y ⊆ true(I ′). Assume Y ⊆ true(I) and Z ⊆ true(I ′) (the other case is

14

symmetric). Given v ∈ V , we know that it has to be either in X,Y or Z. If v ∈ X

then v ∈ true(I ∩I ′). If v ∈ Y then v ∈ true(I). Also, if v ∈ Z then v ∈ true(I ′).

In all cases it holds that v ∈ true(I) ∪ true(I ′). Then, true(I) ∪ true(I ′) = V . o

Lemma 4 Let T be a set of mvd clauses formulated in V . If T |= V1 → V2 ∨V3
then T |= V1 → V2{v} ∨ V3 or T |= V1 → V2 ∨ V3{v}, where V1, V2, V3, {v} ⊆ V

and V2, V3 are non-empty2.

Proof. We can assume that v 6∈ V1, otherwise the lemma trivially holds. Now,

assuming that T |= V1 → V2 ∨ V3 and T 6|= V1 → V2{v} ∨ V3, we prove that

T |= V1 → V2 ∨ V3{v} (the other case is symmetric). The proof is by showing

that any model I of T satisfies V1 → V2 ∨ V3{v}. Suppose that I |= T and

V1 ⊆ true(I), otherwise we are done. Then either V3 ⊆ true(I) or V2 ⊆ true(I).

The latter means that I already satisfies V1 → V2 ∨ V3{v}. So it remains to

see the case when V2 6⊆ true(I) and V3 ⊆ true(I). If T 6|= V1 → V2{v} ∨ V3
there is I ′ |= T such that V1 ⊆ true(I ′) with V2{v} 6⊆ true(I ′) and V3 6⊆ true(I ′).

As I ∩ I ′ 6|= T , by Lemma 3, true(I) ∪ true(I ′) = V . Since I ′ |= T and

T |= V1 → V2 ∨ V3, the only option is v 6∈ true(I ′), so v ∈ true(I). As I |= T

and T |= V1 → V2 ∨ V3, if v ∈ true(I) then I |= V1 → V2 ∨ V3{v}. So any model

of T must satisfy V1 → V2 ∨ V3{v}. Then, T |= V1 → V2 ∨ V3{v}. o

If Algorithm 2 terminates, then it obviously has found a hypothesis H

that is logically equivalent to T . It thus remains to show that the algorithm

terminates in polynomial time. We can see the hypothesis H as a sequence of

sets of entailments, where each Hi corresponds to the transformation of the set

“BuildClauses” with Ii in L as input into mvd clauses (Line 15 of Algorithm 2).

By Line 2 of Algorithm 2 the number of entailments created by “BuildClauses”

is bounded by |V |2 + 1. Lemmas 5 to 10 show that at all times the number of

interpretations in L that violate a clause in T is bounded by |V |.

2Vi{v} is the conjunction of variables in Vi and v, where i ∈ {2, 3}

15

From now on, we denote the sequence produced by Algorithm 2 as L. We

always assume that i 6= j when Ii and Ij are interpretations in L.

Lemma 5 Assume that an interpretation I violates c ∈ T . For all Ii ∈ L such

that Ii covers c, true(Ii) ⊆ true(I) if, and only if, I 6|= BuildClauses(Ii).

Proof. Let c be the mvd clause X → Y ∨ Z. The (⇐) direction is trivial.

Now, suppose that true(Ii) ⊆ true(I) to prove (⇒). As I 6|= X → Y ∨ Z,

we have that X ⊆ true(I) and: (a) Y and Z are non-empty and there are

v ∈ Y and w ∈ Z such that v, w ∈ false(I); or (b) there is v such that

false(I) = {v} and X → Y ∨ Z is the Horn-like clause V \ {v} → v. In case

(a), as true(Ii) ⊆ true(I), we have that v ∈ Y \ true(Ii) and w ∈ Z \ true(Ii).

Since Ii covers X → Y ∨ Z, X ⊆ true(Ii).Then T |= true(Ii) → v ∨ w. By

definition of Hi, there is Xi → Yi ∨ Zi ∈ Hi such that v ∈ Yi and w ∈ Zi.

But this means that I 6|= BuildClauses(Ii). Case (b) is similar, we have that

{v} = false(Ii) and V \ {v} = true(Ii). Then T |= true(Ii) → v and we also

have I 6|= BuildClauses(Ii). o

Lemma 6 At the end of each iteration, for all Ii ∈ L, Ii |= H \Hi.

Proof. By Lemma 2 and Algorithm 3, the interpretation J computed in Line 7 of

Algorithm 2 is a negative countermodel. So if Algorithm 2 executes Line 13 then

it holds that J |= H. If there exists Ij ∈ L such that Ij 6|= BuildClauses(J),

then true(J) ⊂ true(Ij) and the pair (Ij ,J) is a goodCandidate. This con-

tradicts the fact that the algorithm did not replace some interpretation in L.

Otherwise, Algorithm 2 executes Line 10 and, then, an interpretation Ii ∈ L

is replaced with J , where the pair (Ii,J) is a goodCandidate. In this case, by

Definition 1 part (ii), Ii ∩J |= H. It remains to check that for any other Ij ∈ L

it holds that Ij |= BuildClauses(J), but this is always true because of Line 11. o

16

Lemma 7 If Algorithm 2 replaces some Ii ∈ L with J then false(Ii) ⊆ false(J)

(Ii before the replacement).

Proof. Suppose to the contrary that false(Ii) 6⊆ false(J). That is, (∗)

true(J ∩ Ii) ⊂ true(J). If Algorithm 2 replaced Ii ∈ L then (Ii,J) is a

goodCandidate. Then, Ii∩J 6|= T and Ii∩J |= H. If (i) true(J ∩Ii) ⊂ true(J)

(by (∗)), (ii) J ∩ Ii |= H and (iii) J ∩ Ii 6|= T ; then (J , Ii) is a goodCandidate.

This contradicts the condition in Line 3 of Algorithm 3, which would not return

J but make a recursive call with J ∩ Ii and, thus, false(Ii) ⊆ false(J). o

Lemma 8 Let Ii, Ij ∈ L and assume i < j. At the end of each iteration, if

c ∈ T is violated by Ii, Ij ∈ L then the pair (Ii, Ij) is a goodCandidate or

false(Ii) ∩ false(Ij) = ∅.

Proof. We prove that if false(Ii)∩ false(Ij) 6= ∅, then (Ii, Ij) is a goodCandidate.

By Lemma 5, true(Ii) ⊆ true(Ij) if, and only if, Ii 6|=BuildClauses(Ij). If

Ii covers c ∈ T and Ij violates c ∈ T then it follows from Lemma 6 that

true(Ii) 6⊆ true(Ij). So (i) true(Ii ∩ Ij) ⊂ true(Ii). Also by Lemma 6, it

holds that Ii |= H \ {Hi,Hj} and Ij |= H \ {Hi,Hj}. Now, by Lemma 3,

false(Ij)∩ false(J) 6= ∅ implies that Ii∩Ij |= H\{Hi,Hj}. Since true(Ii∩Ij) ⊂

true(Ii), we actually have that (ii) Ii ∩ Ij |= H. To finish, we know that (iii)

Ii ∩ Ij 6|= T because c ∈ T is violated by both Ii and Ij . Hence, we obtain the

conditions (i), (ii), and (iii) of Definition 1, and therefore the pair (Ii, Ij) is a

goodCandidate. o

Lemma 9 Let Ii, Ij ∈ L and assume i < j. At the end of each iteration, the

pair (Ii, Ij) is not a goodCandidate or false(Ii) ∩ false(Ij) = ∅.

Proof. Let J be a countermodel computed in Line 7 of Algorithm 2. Consider

the possibilities.

17

• If Algorithm 2 appends J to L, then for all Ik ∈ L the pair (Ik,J) cannot

be a goodCandidate, because otherwise the condition in Line 8 would be

satisfied and, instead of appending J , Algorithm 2 would replace some

interpretation Ik ∈ L.

• Now assume that Algorithm 2 replaces (a) Ii by J or (b) Ij by J . Suppose

the lemma fails to hold in case (a). The pair (J , Ij) is a goodCandidate.

This contradicts the condition in Line 3 of Algorithm 3, which would

not return J but make a recursive call with J ∩ Ij . Now, suppose the

lemma fails to hold in case (b). The pair (Ii,J) is a goodCandidate. This

contradicts the fact that in Line 9 of Algorithm 2, the first goodCandidate

is replaced and since i < j, Ii should be replaced instead of Ij .

• It remains to check the case where Algorithm 2 replaces I ∈ L \ {Ii, Ij}

by J . We prove that if at the end of the iteration, the pair (Ii, Ij)

is a goodCandidate then false(Ii) ∩ false(Ij) = ∅. So assume that (i)

true(Ii ∩ Ij) ⊂ true(Ii); (ii) Ii ∩ Ij |= H; and (iii) Ii ∩ Ij 6|= T . Point (ii)

implies that Ii ∩ Ij |= Hi and Ii ∩ Ij |= Hj . Denote by H′ the hypothesis

at the beginning of the iteration. By induction hypothesis, before the

replacement, (Ii, Ij) was not a goodCandidate (or false(Ii) ∩ false(Ij) = ∅

and we are done). Therefore, Ii ∩ Ij 6|= H′, and there is H′
k such that

Ii ∩ Ij 6|= H′
k. We know that k 6∈ {i, j} because Hi = H′

i and Hj = H′
j .

As Ij |= H′ \ H′
j (by Lemma 6), we have that Ij |= H′

k . By the same

argument Ii |= H′
k. Hence, by Lemma 3, false(Ii) ∩ false(Ij) = ∅.

o

Lemma 10 At the end of each iteration, if Ii, Ij ∈ L violate c ∈ T then

false(Ii) ∩ false(Ij) = ∅.

Proof. We assume w.l.o.g. that i < j. On the one hand, by Lemma 8 the pair

(Ii, Ij) is a goodCandidate or false(Ii) ∩ false(Ij) = ∅. On the other hand, by

18

Lemma 9 the pair (Ii, Ij) is not a goodCandidate or false(Ii)∩ false(Ij) = ∅. We

conclude that false(Ii) ∩ false(Ij) = ∅. o

By Lemma 10 if any two interpretations Ii, Ij ∈ L violate the same clause

in T then their sets of false variables are disjoint. As for each interpretation

|false(I)| ≥ 1, the number of mutually disjoint interpretations violating any mvd

clause in T is bounded by |V |. Since every Ii ∈ L is such that Ii 6|= T , we

have that every Ii ∈ L violates at least one c ∈ T . This bounds the number of

elements in L to the number of mvd clauses in T .

Corollary 1 At the end of each iteration every c ∈ T is violated by at most |V |

interpretations Ii ∈ L.

Then, at all times the number of elements in L is bounded by |T | · |V |. As in each

replacement the number of variables in the antecedent is strictly smaller, we have

that the number of replacements that can be done for each Ii ∈ L is bounded by

the number of variables, |V |. To ensure the progress of the algorithm, we also

need to show that the number of iterations is polynomial in the size of T .

The rest of this section is devoted to show an upper bound polynomial in

|T | on the total number of iterations of Algorithm 2. Before showing our upper

bound in Lemma 12, we need the following two lemmas. Essentially, Lemma 9

states the main property obtained by our refinement conditions (Definition 1).

Lemma 11 shows that (1) if an interpretation Ii is replaced and an element Ij
is removed from L then they are mutually disjoint; and (2) if any two elements

are removed then they are mutually disjoint.

Lemma 11 In Line 11 of Algorithm 2, the following holds:

1. if Ij is removed after the replacement of some Ii ∈ L by J (Line 10) then

false(Ii) ∩ false(Ij) = ∅ (Ii before the replacement);

2. if Ij , Ik with j < k are removed after the replacement of some Ii ∈ L by

J (Line 10) then false(Ij) ∩ false(Ik) = ∅.

19

Proof. First we argue that if Ij is removed then i < j. Suppose to the

contrary that j < i and Ij is removed after the replacement of Ii by J . Then,

Ij 6|=BuildClauses(J), which means that true(J) ⊂ true(Ij). We obtain that (i)

true(Ij ∩J) ⊂ true(Ij); (ii) Ij ∩J |= H and (iii) (Ij ∩J) 6|= T (as Ij ∩J = J).

Then, by Definition 1, the pair (Ij ,J) is a goodCandidate. This contradicts the

fact that in Line 9 of Algorithm 2, the first goodCandidate is replaced.

So we can assume that i < j, k.

We now argue that under the conditions stated by this lemma if false(Ii) ∩

false(Ij) = ∅ (respectively, false(Ij) ∩ false(Ik) = ∅) does not hold then the

pair (Ii, Ij) (respectively, (Ij , Ik)) is a goodCandidate (Definition 1), which

contradicts Lemma 9.

In our proof by contradiction, we show that conditions (i), (ii) and (iii) of

Definition 1 hold for both (Ii, Ij) and (Ij , Ik).

• For condition (i): By Lemma 7, true(J) ⊆ true(Ii). If Ij is removed, then

Ij 6|= BuildClauses(J), and there is c ∈ BuildClauses(J) such that Ij
and J violate c. Then, Ii covers c. Now assume to a contradiction that

true(Ii) ⊆ true(Ij). Since Ii covers c and Ij violates c, we have that Ii
violates c. As Ij violates c, we obtain that Ij 6|= BuildClauses(Ii), which

is a contradiction with Lemma 6. One can give a similar argument to show

that true(Ij) 6⊆ true(Ik).

• For condition (ii): As Ij |= H\Hj (by Lemma 6) we have Ij |= H\(Hi∪Hj).

By the same argument Ii |= H\ (Hi ∪Hj). If false(Ii)∩ false(Ij) 6= ∅ then,

by Lemma 3, Ii∩Ij |= H\ (Hi∪Hj). In fact, by Claim 2, we actually have

Ii ∩ Ij |= H. With a similar argument one can show that Ij ∩ Ik |= H.

• For condition (iii): As Ij 6|=BuildClauses(J) there is c ∈ BuildClauses(J)

such that Ij and (Ii ∩ J) = J (by Lemma 7) violate c. Then Ii covers c,

meaning that Ii∩Ij 6|= c. By definition of BuildClauses(J), T |= c and, so,

Ii ∩ Ij 6|= T . One can give a similar argument to show that Ik ∩ Ij 6|= T .

So conditions (i), (ii) and (iii) of Definition 1 hold for (Ii, Ij) and (Ij , Ik),

20

which contradicts Lemma 9. Then, false(Ii) ∩ false(Ij) = ∅ and false(Ij) ∩

false(Ik) = ∅. o

if then Lemma

∃c : (I |= c) ∧ (I ′ |= c) ∧ (I ∩ I ′ 6|= c) false(I) ∩ false(I ′) = ∅ 3

Ii is replaced by J false(Ii) ⊆ false(J) 7

∃c : (Ii 6|= c) ∧ (Ij 6|= c)

false(Ii) ∩ false(Ij) = ∅

10

(i < j) ∧ goodCandidate(Ii, Ij) 9

Ij is removed when Ii is replaced

11Ii and Ij are removed when

another interpretation is replaced

∃c : (I 6|= c) ∧ (Ii covers c) ∧ (I 6|= Hi) true(Ii) 6⊆ true(I) 5

∃c : (Ij 6|= c) ∧ (Ii covers c)

true(Ii) 6⊆ true(Ij)

5, 6

Ij is removed when Ii is replaced

11Ii and Ij are removed when

another interpretation is replaced

J is appended to L
¬goodCandidate(Ij ,J)

9¬goodCandidate(J , Ij)

(i < j) ∧ (false(Ii) ∩ false(Ij) 6= ∅) ¬goodCandidate(Ii, Ij)

Table 1: Summary of technical results (where c ∈ T).

We present a polynomial upper bound on the number of iterations of the

main loop via a bound function. That is, an expression that decreases on every

iteration and is always ≥ 0 inside the loop body. Note that we obtain this upper

bound even though the learner does not know the size |T | of the target. Table 1

presents a survey of some technical results used along the paper.

Lemma 12 Let N be 2 · |V |2 · |T |. The expression E = |L| + (N − 2 ·∑
I∈L |false(I)|) always evaluates to a natural number inside the loop body and

21

decreases on every iteration.

Proof. By Corollary 1, the size of L is bounded at all times by |V | · |T |. Thus,

N is an upper bound for 2 ·
∑

I∈L |false(I)|, which means that E always evaluates

to a natural number. It remains to show that E decreases on every iteration.

In each iteration there are three possibilities: (1) an element I is appended.

Then, |L| increases by one but |false(I)| ≥ 1 and, therefore, E decreases; (2)

an element is replaced and no element is removed. Then, E trivially decreases.

Otherwise, (3) we have that an element Ii is replaced and p interpretations are

removed from L in Line 11 of Algorithm 2. By Point 2 of Lemma 11, if Ii is

replaced by J and Ij , Ik are removed then false(Ij)∩ false(Ik) = ∅. This means

that if p interpretations are removed then their sets of false variables are all

mutually disjoint. By Point 1 of Lemma 11, if Ii is replaced by J and some Ij
is removed then false(Ij) ∩ false(Ii) = ∅. Then, the p interpretations also have

sets of false variables disjoint from false(Ii). For each interpretation Ij removed

we have false(Ij) ⊆ false(J) (because Ij 6|=BuildClauses(J)). Then, the number

of ‘falses’ is at least as large as before. However |L| decreases and, thus, we can

ensure that E decreases. o

By Lemma 12, the total number of iterations of Algorithm 2 is bounded by

a polynomial in |T | and |V |. We now state our main result.

Theorem 2 The problem of learning MVDF from 2-quasi-Horn, more precisely

the learning framework FM , is polynomial time exact learnable.

5. An Example Run

We describe an example run of Algorithm 2. Suppose the target MVDF is

T = {12→ 345 ∨ 678, 23→ 146 ∨ 578, 12678→ 3 ∨ 45}.

Initially the sequence L of interpretations and the hypothesis H are both empty.

Suppose that the counterexample to our first equivalence query with H is

22

12→ 3 ∨ 6. Since H is empty, the return of the function ‘SemanticTree’ contains

the interpretation I1 with true(I1) = {1, 2}. Algorithm 2 appends I1 to L and

constructs the hypothesis H. Then,

L = {I1} and H = {12→ 345 ∨ 678}.

Suppose that the counterexample to our second equivalence query with H

is 12347 → 6 ∨ 8. The return of the function ‘SemanticTree’ contains the

interpretations I2 and J2, where true(I2) = {1, 2, 3, 4, 5, 7} and true(J2) =

{1, 2, 3, 4, 6, 7, 8}. Only I2 is a countermodel and, so, Algorithm 2 chooses I2 in

Line 6. In the function ‘RefineCounterModel’, (I2, I1) is not a goodCandidate

because I2 ∩ I1 6|= H (it violates Point (ii) of Definition 1). For the same reason,

in Line 8, (I1, I2) is not a goodCandidate and, thus, Algorithm 2 appends I2 to

L. The constructed sequence L and hypothesis H are as follows:

L = {I1, I2} and H = {12→ 345 ∨ 678, 123457→ 6 ∨ 8}.

Suppose that the counterexample to our third equivalence query with H is

123458→ 6 ∨ 7. The return of the function ‘SemanticTree’ contains the counter-

model I3 with true(I3) = {1, 2, 3, 4, 5, 8} which is chosen in Line 6. Algorithm 2,

then, calls the function ‘RefineCounterModel’ with I3 as input. We have that

(I3, I1) is not a goodCandidate (it violates Point (ii) of Definition 1) but (I3, I2)

is a goodCandidate. Algorithm 2 returns from the function ‘RefineCounterModel’

with I3′ = I3 ∩ I2, i.e., true(I3′) = {1, 2, 3, 4, 5}. Algorithm 2 replaces I2 with

I3′ . The constructed sequence L and hypothesis H are as follows:

L = {I1, I3′} and H = {12→ 345 ∨ 678, 12345→ 6 ∨ 78}.

Now, suppose that the counterexample to our fourth equivalence query with

H is 123678 → 4 ∨ 5. The return of the function ‘SemanticTree’ contains the

countermodel I4 with true(I4) = {1, 2, 3, 6, 7, 8} which is chosen in Line 6.

Algorithm 2, then, calls the function ‘RefineCounterModel’ with I4 as input. We

have that (I4, I1) and (I4, I3′) are not goodCandidates (Point (ii) of Definition

1 is violated). For the same reason, in Line 8, (I1, I4) and (I3′ , I4) are not

23

goodCandidates and, thus, Algorithm 2 appends I4 to L. The constructed

sequence L and hypothesis H are as follows:

L = {I1, I3′ , I4} and H = {12→ 345 ∨ 678, 12345→ 6 ∨ 78, 123678→ 4 ∨ 5}.

Note that the last two mvds inH violate the second mvd in T . However, if we omit

Point (ii) of Definition 1, the oracle could give 12678→ 3 ∨ 4 as counterexample.

Without Point (ii), this counterexample would replace the second element of our

sequence of interpretations with J such that true(J) = {1, 2} (just like the first

element of the sequence), the algorithm would enter into a loop.

Suppose that the counterexample to our fifth equivalence query with H is

23 → 6 ∨ 7. In Line 6 we chose the interpretation I5 with true(I5) = {2, 3}.

The return of the function ‘RefineCounterModel’ is I5. In Line 8, (I3′ , I5)

is a goodCandidate and, thus, Algorithm 2 replaces I3′ with I5. In Line 11,

Algorithm 2 removes I4 from L. The constructed sequence L and hypothesis H

are as follows:

L = {I1, I5} and H = {12→ 345 ∨ 678, 23→ 146 ∨ 578}.

To finish our run, suppose that the counterexample to our sixth equivalence

query is 12678 → 3 ∨ 4. The interpretation I6 with true(I6) = {1, 2, 6, 7, 8} is

appended to L and Algorithm 2 constructs H equivalent to T .

6. Conclusions and Open Problems

We presented an algorithm that exactly learns the class MVDF in polynomial

time from 2-quasi-Horn clauses. As this class is a generalization of Horn and a

restriction of 2-quasi-Horn, we extended the boundary between 1 and 2-quasi-

Horn of what can be efficiently learned in the exact model. We would like to find

similar algorithms where the examples are either mvd clauses or interpretations.

A more general open problem is whether the ideas presented here can be extended

to handle other restrictions of 2-quasi-Horn. Another direction is to use our

algorithm to develop software to support the design of database schemas in 4NF.

24

Acknowledgements

We would like to thank an anonymous referee for pointing out that the proof of

Lemma 9 was incomplete in an earlier version and for giving many suggestions to

improve the readability of the paper. Hermo was supported by the Spanish Project

TIN2013-46181-C2-2-R, the Basque Project GIU12/26 and grant UFI11/45. Ozaki was

supported by the Science without Borders scholarship programme.

References

[1] E. F. Codd, A relational model of data for large shared data banks, Commu-

nications of the ACM 13 (6) (1970) 377–387. doi:10.1145/362384.362685.

URL http://doi.acm.org/10.1145/362384.362685

[2] C. Delobel, Normalization and hierarchical dependencies in the relational

data model, ACM Transactions on Database Systems 3 (3) (1978) 201–222.

doi:10.1145/320263.320271.

URL http://doi.acm.org/10.1145/320263.320271

[3] R. Fagin, Multivalued dependencies and a new normal form for relational

databases, ACM Transactions on Database Systems 2 (1977) 262–278.

[4] R. Khardon, H. Mannila, D. Roth, Reasoning with Examples: Propositional

Formulae and Database Dependencies, Acta Informatica 36 (4) (1999) 267–

286.

URL http://l2r.cs.uiuc.edu/~{}danr/Papers/db.pdf

[5] Y. Sagiv, C. Delobel, D. S. Parker, Jr., R. Fagin, An equivalence between

relational database dependencies and a fragment of propositional logic,

Journal of the ACM 28 (3) (1981) 435–453. doi:10.1145/322261.322263.

URL http://doi.acm.org/10.1145/322261.322263

[6] J. L. Balcázar, J. Baixeries, Characterizations of multivalued dependencies

and related expressions, in: Discovery Science, 7th International Conference,

DS 2004, Padova, Italy, October 2-5, 2004, Proceedings, 2004, pp. 306–313.

25

http://doi.acm.org/10.1145/362384.362685
http://dx.doi.org/10.1145/362384.362685
http://doi.acm.org/10.1145/362384.362685
http://doi.acm.org/10.1145/320263.320271
http://doi.acm.org/10.1145/320263.320271
http://dx.doi.org/10.1145/320263.320271
http://doi.acm.org/10.1145/320263.320271
http://l2r.cs.uiuc.edu/~{}danr/Papers/db.pdf
http://l2r.cs.uiuc.edu/~{}danr/Papers/db.pdf
http://l2r.cs.uiuc.edu/~{}danr/Papers/db.pdf
http://doi.acm.org/10.1145/322261.322263
http://doi.acm.org/10.1145/322261.322263
http://dx.doi.org/10.1145/322261.322263
http://doi.acm.org/10.1145/322261.322263
http://dx.doi.org/10.1007/978-3-540-30214-8_25
http://dx.doi.org/10.1007/978-3-540-30214-8_25

doi:10.1007/978-3-540-30214-8_25.

URL http://dx.doi.org/10.1007/978-3-540-30214-8_25

[7] D. Angluin, M. Frazier, L. Pitt, Learning conjunctions of Horn clauses,

Machine Learning 9 (2) (1992) 147–164.

[8] M. Frazier, L. Pitt, Learning from entailment: An application to propo-

sitional Horn sentences, in: Machine Learning, Proceedings of the Tenth

International Conference, University of Massachusetts, Amherst, MA, USA,

June 27-29, 1993, 1993, pp. 120–127.

[9] M. Hermo, V. Lav́ın, Learning minimal covers of functional dependencies

with queries, in: Proceedings of the 10th International Conference on

Algorithmic Learning Theory, ALT’99, Springer-Verlag, 1999, pp. 291–300.

URL http://dl.acm.org/citation.cfm?id=647717.735778

[10] D. Angluin, Negative results for equivalence queries, Machine Learning 5 (2)

(1990) 121–150. doi:10.1007/BF00116034.

URL http://dx.doi.org/10.1007/BF00116034

[11] V. Lav́ın, M. Hermo, Negative results on learning multivalued dependencies

with queries, Information Processing Letters 111 (19) (2011) 968–972. doi:

10.1016/j.ipl.2011.07.007.

URL http://dx.doi.org/10.1016/j.ipl.2011.07.007

[12] V. Lav́ın, On learning multivalued dependencies with queries, Theor. Com-

put. Sci. 412 (22) (2011) 2331–2339. doi:10.1016/j.tcs.2011.01.011.

URL http://dx.doi.org/10.1016/j.tcs.2011.01.011

[13] V. Lav́ın, Learning an extension of the class of functional dependencies

with queries, New Generation Computing 33 (3) (2015) 319–340. doi:

10.1007/s00354-015-0301-8.

URL http://dx.doi.org/10.1007/s00354-015-0301-8

26

http://dx.doi.org/10.1007/978-3-540-30214-8_25
http://dx.doi.org/10.1007/978-3-540-30214-8_25
http://dl.acm.org/citation.cfm?id=647717.735778
http://dl.acm.org/citation.cfm?id=647717.735778
http://dl.acm.org/citation.cfm?id=647717.735778
http://dx.doi.org/10.1007/BF00116034
http://dx.doi.org/10.1007/BF00116034
http://dx.doi.org/10.1007/BF00116034
http://dx.doi.org/10.1016/j.ipl.2011.07.007
http://dx.doi.org/10.1016/j.ipl.2011.07.007
http://dx.doi.org/10.1016/j.ipl.2011.07.007
http://dx.doi.org/10.1016/j.ipl.2011.07.007
http://dx.doi.org/10.1016/j.ipl.2011.07.007
http://dx.doi.org/10.1016/j.tcs.2011.01.011
http://dx.doi.org/10.1016/j.tcs.2011.01.011
http://dx.doi.org/10.1016/j.tcs.2011.01.011
http://dx.doi.org/10.1007/s00354-015-0301-8
http://dx.doi.org/10.1007/s00354-015-0301-8
http://dx.doi.org/10.1007/s00354-015-0301-8
http://dx.doi.org/10.1007/s00354-015-0301-8
http://dx.doi.org/10.1007/s00354-015-0301-8

[14] D. Angluin, Queries and concept learning, Mach. Learn. 2 (4) (1988) 319–

342. doi:10.1023/A:1022821128753.

URL http://dx.doi.org/10.1023/A:1022821128753

[15] D. Angluin, Learning k-term dnf formulas using queries and counterexamples,

Tech. rep., Department of Computer Science, Yale University (August 1987).

[16] K. Pillaipakkamnatt, V. Raghavan, Read-twice DNF formulas are properly

learnable, Information and Computation 122 (2) (1995) 236 – 267.

doi:http://dx.doi.org/10.1006/inco.1995.1149.

URL http://www.sciencedirect.com/science/article/pii/

S0890540185711492

[17] M. D. Frazier, Matters horn and other features in the computational learning

theory landscape: The notion of membership., Ph.D. thesis, University of

Illinois Urbana, 36-37 (1994).

27

http://dx.doi.org/10.1023/A:1022821128753
http://dx.doi.org/10.1023/A:1022821128753
http://dx.doi.org/10.1023/A:1022821128753
http://www.sciencedirect.com/science/article/pii/S0890540185711492
http://www.sciencedirect.com/science/article/pii/S0890540185711492
http://dx.doi.org/http://dx.doi.org/10.1006/inco.1995.1149
http://www.sciencedirect.com/science/article/pii/S0890540185711492
http://www.sciencedirect.com/science/article/pii/S0890540185711492

	Introduction
	Preliminaries
	Computing Minimal Models
	Learning MVDF from 2-quasi-Horn
	An Example Run
	Conclusions and Open Problems

