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ABSTRACT 

The stiffness of yaw and pitch slewing bearings has a critical influence on the structural 

behaviour of Wind Turbine Generators. Thus, it is commonly required by designers for 

their simulations to estimate deformations and select the most suitable bearing for their 

working conditions in preliminary design stages. In this work, a Design of Experiments was 

carried out via Finite Element Analysis to obtain the stiffness curves of all of the standard 

four-point contact slewing bearings from the catalogues of manufacturers under radial, 

axial and tilting loads. From these results, a set of simple formulas to calculate the ring 

deformations were adjusted. Combining them with contact deformation results obtained in 

previous work by the authors, a complete and efficient tool for slewing bearing stiffness 

estimation has been developed.  
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1. INTRODUCTION

In Wind Turbine Generators (WTG), slewing bearings are used for orientation purposes 

(yaw bearing) and in the pitch control (blade bearings). These bearings are subjected to very 

specific working conditions, where small amplitude oscillatory rotations and high combined 

loads are involved. For these reasons, the selection criteria is complex and many factors 

need to be considered, like the static load capacity, the dynamic capacity and the fatigue 

behaviour or the friction torque.1-3 Other specific phenomena must be also considered, like 

false brinelling and fretting corrosion.4 

In this context, the global stiffness is a key parameter to account for the structural 

response of WTG under external static and dynamic loads.  A good estimation allows the 

designers to calculate global deformations, and consequently predict possible interferences 

between adjacent components or unacceptably large displacements. For this reason, the 

global stiffness can also be subjected to certain specifications or criteria, since large values 

of the stiffness are required to minimize displacements. 
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Among the many structural components of WTGs, slewing bearings play a critical role in 

the stiffness, since they connect the tower to the nacelle and the hub to the blades. This 

means that an incorrect estimation of the stiffness of the slewing bearing will lead to 

underestimating or overestimating the structural response of the WTG. Even though Finite 

Element (FE) models are widely used to calculate stiffness, modelling simplifications are 

usually necessary to ensure convergence with a reasonable analysis cost.  In this sense, in 

FE models of WTGs, rolling bearings are usually substituted by a stiffness matrix. 

Being such an important design parameter, bearing stiffness is commonly required by 

customers to perform their simulations before selecting the most suitable bearing for their 

particular application; in some cases it is even available on manufacturer webpages.5 

Nevertheless, the calculation method is undisclosed, being part of the know-how of the 

manufacturer. Thus, an efficient way of calculating it would be a very powerful tool for 

WTG designers, because it would allow them to select the appropriate bearing by 

themselves, and then make direct comparisons between the solutions offered by different 

bearing manufacturers. 

Several works have dealt with this issue. In some works ball load distribution was 

analytically calculated for four-point contact slewing bearings, from which load-

deformation curves can be built;1,6,7 similar methodologies were developed for two-point 

angular contact bearings.8-13 However, all these works assume rigid rings, i.e. only ball-

raceway contact deformations are considered, thus overestimating the bearing stiffness. 

Other semi-analytical and numerical models take into account the flexibility of the rings, 

but costly FE calculations are needed to calculate the stiffness matrix or to simulate ball 

load distribution, and the results are valid only for the particular bearing under study.14-17 

Neither is any formulation nor methodology for the stiffness estimation in any standard or 

guideline.18-20 

This work presents a FE-based methodology to calculate the global stiffness of four-

point contact slewing bearings, which leads to a set of formulas for the axial, radial and 

tilting stiffness. These simple formulas are proved to replicate the effect of main 

geometrical and contact parameters of all the standard bearings from the catalogues of 

manufacturers. In this sense, WTG designers can directly use them in early design stages as 

a fast and reliable alternative to more complex analytical approaches or computationally 

expensive numerical models. 

2. MATERIALS AND METHODS 

2.1. Fundamentals 

The methodology is based on the fact that standard four-point contact slewing bearings 

fulfill certain geometrical relationships. As it is later demonstrated, the geometry is mainly 

defined by the mean diameter (𝐷𝑝𝑤), which gives the global size, and the ball diameter 

(𝐷𝑤). The dimensions of the cross section of the bearing, the number of balls (𝑁𝑏), the 

number of holes (𝑁ℎ) and the bolt metric (𝑀) that define the standard design can be quite 

accurately defined as a function of these main parameters 𝐷𝑝𝑤 and 𝐷𝑤. 
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Thus, the first step is to define the design space, that is, to identify the typical values of 

the main parameters for the standard bearings by studying the catalogues of the 

manufacturers,21-25 in order to delimit the scope of the study. From this study, the standard 

design is defined. Then, a Design of Experiments (DOE) is performed via FE analyses, 

covering the design space by combining the values of the main parameters. As a result, 

load-deformation curves for each Design Point (DP) of the DOE and each load case (axial, 

radial and tilting moment) are obtained. The results are very accurate, because the FE 

model considers not only the effect of ball-raceway and ring deformations, but also other 

phenomena like flange-ring contact nonlinearities and bolt preload. Although FE 

calculations of the DOE are highly time consuming, the results have been used to achieve 

simple formulas of axial, radial and tilting stiffness for any bearing of the design space, 

which provide immediate results; these formulas will be a function of the main parameters. 

Additionally, the formulation has later been extended to further consider ball-raceway 

contact parameters (whose value does not depend on the main parameters) that also affect 

the bearing stiffness, namely the ball preload (𝛿𝑃), the conformity ratio (𝑠), the initial 

contact angle (𝛼), and the ball-filling ratio (𝑅𝑓𝑖𝑙𝑙). 

It is worth pointing out that the studied load cases are pure axial, radial and tilting loads. 

Consequently, three formulas are obtained, one for each of them, leading to a diagonal 

stiffness matrix; load combinations are beyond the scope of this work. Even though 

slewing bearings must usually face combined loads, the obtained results still have a wide-

range application field. Furthermore, this information is rarely offered by manufacturers or 

requested by WTG designers; in any case, out-of-diagonal terms in the matrix can be 

calculated by specific FE calculations. 

2.2. Design space 

The design space was defined from the study of the catalogues of Iraundi, SKF, Rothe 

Erde, Schaeffler and Lyc;21-25 other manufacturers, like Rollix, do not include the 

dimensions of the ball in their catalogues.26 The values of the main parameters 𝐷𝑝𝑤 and 𝐷𝑤 

for every four-point contact slewing bearing (over 200 bearings including regular and light 

series) were compiled and represented in the plot of Figure 1. Based on this point-cloud, 

the design space delimited by the upper and lower limiting curves was defined. Thus, it can 

be observed that this study covers every slewing bearing from the main manufacturers, 

embracing bearings with ball diameter between 15mm and 55mm, and mean diameter up 

to 3500mm. Based on the design space, the DOE in Figure 2 is proposed, consisting of 14 

DPs. As mentioned, three FE calculations were made for each DP (one per load case), so 

the DOE comprises 42 calculations. 
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Figure 1. Values of the main parameters for slewing bearings of the main manufacturers, 
and definition the design space. 

 

Figure 2. DOE for the design space. 
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2.3. Standard design 

As a first approach, 90 standard series bearings from Iraundi and SKF catalogues were 

used. After defining the standard design, it was validated by contrasting it with bearings 

from the other manufacturers (see Figure 1). To reduce the number of parameters needed 

to define the standard design, the cross section was considered anti-symmetric, gears and 

threaded through bolt holes were not modelled, and finally the same number of bolt holes 

was modelled in both inner and outer rings. Such simplifications were demonstrated 

through preliminary FE calculations not to significantly affect the results. Figure 3 shows 

the sketch of the standard design section, which is defined by eight additional parameters: 

together with 𝐻𝑔, five of them define the dimensions of the cross section as a function of 

the ball diameter 𝐷𝑤 via  𝑅𝐻, 𝑅𝐿, 𝑅𝐿𝑔, 𝑅𝐿𝑡, 𝑅𝐷𝑡 ratios; finally, 𝑠 and 𝛼 are contact 

parameters. Table 1 shows the non-contact parameter average values (very low scatter was 

found) calculated from the 90 bearings. Table 1 also shows the value for another 

coefficient, 𝑅𝑁ℎ, which relates the number of bolt holes (𝑁ℎ) with the main parameters 

through the following expression: 

 𝑁ℎ = 𝑅𝑁ℎ

𝐷𝑝𝑤

𝐷𝑤
 (1) 

 

Figure 3. Sketch of the standard section. 

𝑅𝐻 𝐻𝑔 𝑅𝐿 𝑅𝐿𝑔 𝑅𝐿𝑡 𝑅𝐷𝑡 𝑅𝑁ℎ 

2.15 10mm 1.9 0.1 1.15 0.75 1 

Table 1. Dimensional values for the standard design parameters. 
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It is important to point out that, in bearings with diameters larger than the considered in 

this study (>3500mm), the absolute distance between the holes must be also checked for a 

proper bolted joint. Thus, in these cases the value of 𝑅𝑁ℎ as defined in (1) could adopt 

higher values. Nevertheless, these bearings are out of the scope of this manuscript. 

Figure 4 compares the values from the catalogues (dots) with the values adopted for the 

standard design (lines). Subscripts 𝑎 and 𝑖 correspond to outer and inner rings respectively. 

Figure 5 shows the same comparison but only for the number of holes. These plots show 

that the proposed standard design satisfactorily fits the designs of Iraundi and SKF. As 

mentioned, the standard design was compared with other manufacturers’ bearings, also 

achieving a good match. 

 

Figure 4. Standard section (lines) VS Catalogues (dots). 
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Figure 5. Number of holes: Standard design (lines) VS Catalogues (dots). 

For contact parameters 𝑠 and 𝛼, typical values of 0.943 and 45° were assumed, and no 

preload was considered. The ball number (𝑁𝑏) is a function of the main parameters and the 

ball-filling ratio 𝑅𝑓𝑖𝑙𝑙: 
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)] (2) 

𝑅𝑓𝑖𝑙𝑙 goes typically from 80% to 100%; for the first approach and before including 

contact parameters in the study, a value of 90% was assumed. Finally, a typical value of 

75% of the yield stress is adopted for bolt preload. For the bolt metric, the following 

formula was considered, consistent with the bolts used according to the catalogues: 

 𝑀 = 2 ∙ 𝑡𝑟𝑢𝑛𝑐 (
𝐷𝑡 − 1.5

2
) (3) 

2.4. Finite Element model 

A fully parametric FE model has been generated in ANSYS® Workbench in order to 

perform the analyses and process the results in an automated way, for any geometry and 

load condition. APDL scripts were required to address some limitations of the Workbench 

environment. 
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Due to the symmetry of the geometry and the loads, only half the bearing was modelled. 

Although simplified ball models based on springs are widely used to save computational 

cost,12,13 they have limitations for radial load cases. When radial loads are applied, those 

springs leave the radial plane introducing an artificial radial stiffness. For this reason, solid 

balls are used. The bearing is bolted to flanges to prevent rings from deforming freely. The 

flanges are rigid, thus simulating rigid adjacent structures, for two reasons: on the one 

hand, the structures can be significantly different depending on the application; on the 

other hand, the aim of the study is to calculate the stiffness of the bearing, without the 

effect of the surrounding components. In this sense, assuming rigid rings is not a limitation 

of this work, because the flexibility of the surrounding structures can be later considered in 

further calculations, where the bearing would be simplified by means of the formulas 

derived from the current study. 

In order to avoid excessive cost while ensuring analysis convergence, special attention 

was paid to the meshing process. The geometry was divided into sweepeable bodies and 

the element size was defined as a function of the ball diameter, so as to obtain a refined 

mesh in the contact area without introducing elements with low aspect ratio. Figure 6 

shows a detail of the mesh for a particular bearing, with the different bodies in different 

colours, including the flanges. Solid components (rings, balls and flanges) are meshed with 

solid elements, were hexahedrons are dominant. Bolts are modelled by beam elements with 

pretension section joined to the rings and the flanges by rigid links, all of them introduced 

via parametric APDL script (see Figure 7a). The mesh was proved to offer reliable results 

with affordable computational costs. Regarding contacts, frictional contact is defined for 

the ball-raceway contact, with a coefficient of friction of 0.1;27,28 ring-flange contact is 

frictional too, with a coefficient of friction of 0.3, allowing the sliding or the opening of the 

joint. Finally, a bonded contact is defined between the different bodies of the rings with a 

pure penalty formulation (see Figure 6). 

 

Figure 6. FE mesh for the Iraundi POS214-8 bearing.21 
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Figure 7. FE model details introduced via APDL scripts: a) bolt b) cage. 

To simulate the symmetry of the model, frictionless boundary conditions are imposed on 

the faces on the symmetry plane. The outer flange of the bearing is fixed, while the 

displacements are applied to the inner flange through a remote node placed in the centre of 

the bearing and at the height of the interface between the flange and the ring. The loads 

that correspond to the imposed displacements are obtained by evaluating the reaction 

forces in the aforementioned remote point. 

In the simulation, large displacements are involved, mainly due to the variation of the 

ball-raceway contact angle. This fact, together with the ball-raceway and ring-flange 

frictional contacts, makes the model highly nonlinear. The model showed important 

convergence problems due to the ball-raceway contacts, mostly in the first load steps when 

some balls lose the contact and become unconstrained. This problem is especially 

notorious when a pure radial load is applied, where half the balls lose the contact. This is a 

common problem in ball bearing simulations, but no method was found in the literature to 

deal with it. Therefore, a new modelling alternative was developed, consisting of the cage 

formed by thin beams shown in Figure 7b. As indicated in the figure, the beams share 

nodes with the balls (but not with the rings), thus linking the balls to each other. This 

structure ensures the convergence with no loss of accuracy, because its stiffness is 

negligible. The number of the degrees of freedom of the model varies depending on the 

dimensions of the bearing, ranging from around 2.6·105 for low 𝐷𝑝𝑤 𝐷𝑤⁄  ratios to 3.6·106 

for high 𝐷𝑝𝑤 𝐷𝑤⁄  ratios. The simulation cost varied from 1 hour for low 𝐷𝑝𝑤 𝐷𝑤⁄  ratios to 

1 day for high 𝐷𝑝𝑤 𝐷𝑤⁄  ratios in a high performance work station (Intel® Xeon® E5-2697 

v3 @ 2.6GHz processor with 14 physical cores – 28 logical – and a RAM of 128GB). 

3. RESULTS AND DISCUSSION 

3.1. DOE results 

As shown in Figure 2, the DOE consisted of 14 DPs. Figure 8 shows the axial, radial 

and tilting stiffness curves for one of them, DP7; nevertheless, all comments and derived 

conclusions are applicable to any other DP. In red dots the axial and radial forces, as well 
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as the tilting moment, are shown for increasing values of the applied displacements; in blue 

lines, the stiffness for each load step can be seen. Note that the blue stepped curve (the 

stiffness) represents the slope between adjacent red points (force-displacement points) for 

each load step. These lines evinced the discontinuity in the tendency of the resistant 

behaviour of the bearing. In each load case, a clear jump in the stiffness was observed, 

pointing to the load value from which this behaviour changes. Contrasting these curves 

with deformation and contact results (pressure and contact status) in the flange-ring joints, 

it was identified that this change in the tendency is due to contact nonlinearities. Figure 9 

shows how flanges start either sliding (for axial or radial load) or opening (under tilting 

moment) after a threshold displacement. The effect of this nonlinearity is out of the scope 

of the study in order to achieve generally applicable conclusions and results, because this 

threshold value depends on the stiffness of the adjacent structures and the bolt preload 

level. Moreover, in the FE model, the flanges are infinitely rigid, favouring a premature 

opening. For these reasons, only the values below the threshold displacement were 

considered for the stiffness calculation. 

Figure 10 compares the results for rigid and deformable rings to demonstrate the effect 

of the flexibility of the rings on the bearing stiffness. The results for rigid rings were 

obtained through the analytical model by the authors.1 From the figure, it is concluded that 

rigid ring assumption largely overestimates the stiffness of the bearing, especially for large 

bearings. As an illustrative example, for 35mm ball, the displacements due to ring flexibility 

accounted for 36% of the total displacement in the smallest bearing (DP6), 47% in the 

medium-sized one (DP7) and 52% in the largest (DP8). 

3.2. Functional approximation for ring stiffness  

According to Hertz theory,8 the relationship between the normal load (𝑄) and the local 

deformation (𝛿) in the ball-raceway contact is: 

 𝑄 = 𝐾𝛿1.5 (4) 

Based on this expression, the following formulas can be proposed for a first tentative 

approximation to the FE results, establishing a relationship between the applied loads 𝐹𝑎 , 

𝐹𝑟 and 𝑀𝑡, and the corresponding displacements 𝛿𝑎, 𝛿𝑟 and 𝜃𝑡 : 

 𝐹𝑎 = 𝐾𝑎𝛿𝑎
𝑛𝑎  

(5)  𝐹𝑟 = 𝐾𝑟𝛿𝑟
𝑛𝑟 

 𝑀𝑡 = 𝐾𝑡𝜃𝑡
𝑛𝑡  

Where subscript 𝑎 is for axial, 𝑟 for radial and 𝑡 for tilting. In this case, the values of the 

exponentials are not 1.5 as in the normal contact problem in equation (4). It is important to 

emphasize that the objective of this manuscript is to obtain an engineering approach, i.e. a 

simple formulation that represents the structural behaviour of the bearing. The study of the 

real physics of the problem is beyond the interest of this work. 
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Figure 8. FE results for forces and moments (red dots) and stiffness (dashed blue curve): 
 (a) for axial load; (b) radial load; (b) tilting moment. 
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Figure 9. Nonlinear behaviour of the bolted joint (enlarged displacements): 
(a) with axial load; (b) radial load; (c) tilting moment. 

The proposed approach to the bearing global stiffness estimation lies in separately 

calculating the displacements due to contact deformations and those due to the flexibility 

of the rings. Thus, the problem was decoupled so that each contribution was calculated 

separately. Hence, the total displacements were formulated as follows: 

 𝛿 = 𝛿𝑐𝑜𝑛𝑡𝑎𝑐𝑡 + 𝛿𝑟𝑖𝑛𝑔𝑠 (6) 

The aim of decoupling the problem was to consider separately the effect of the different 

parameters on the stiffness. By doing this, contact parameters such as ball preload or 

conformity ratio only affect 𝛿𝑐𝑜𝑛𝑡𝑎𝑐𝑡 as described in the analytical model by the authors.1 

On the other hand, 𝛿𝑟𝑖𝑛𝑔𝑠 is affected by the rest of the geometrical parameters, being 𝐷𝑤 

and 𝐷𝑝𝑤 the main ones. 

Thus, a functional approximation based on equation (5) was proposed for the 

formulation of 𝛿𝑟𝑖𝑛𝑔𝑠, where 𝐾 is a function of 𝐷𝑤 and 𝐷𝑝𝑤: 

 𝐹 = 𝐾𝛿𝑟𝑖𝑛𝑔𝑠
𝑛 = 𝐾(𝐷𝑤, 𝐷𝑝𝑤)𝛿𝑟𝑖𝑛𝑔𝑠

𝑛  (7) 

Where 𝐹 can be 𝐹𝑎 , 𝐹𝑟 or 𝑀𝑡 and 𝛿𝑟𝑖𝑛𝑔𝑠 can be 𝛿𝑎, 𝛿𝑟 or 𝜃𝑡 , depending on the load case 

under study. Finally, 𝐾 was adjusted to fit all the results from the DOE. As FE results 

provide total deformation results (𝛿), and according to equation (6), 𝛿𝑟𝑖𝑛𝑔𝑠 were obtained 

from deducting 𝛿𝑐𝑜𝑛𝑡𝑎𝑐𝑡 values of the analytical model.1 Then, the function (7) was 

approximated for each DP, obtaining the values of 𝐾 and 𝑛 for each load case, and it was 

found out that the coefficient 𝑛 was very similar for every DP (under the same load case). 

In a second step, the value of 𝑛 was fixed and 𝐾 was recalculated to fit the stiffness curve. 

Figure 11 shows the results of this procedure. It can be observed that the effect of 𝐷𝑝𝑤 in 

the coefficient 𝐾 is exponential; no such clear tendency was deducted for 𝐷𝑤.  

Having tested different options, the most suitable functional form for 𝐾 with the 

minimum number of coefficients was found to be: 

 𝐾(𝐷𝑤 , 𝐷𝑝𝑤) = 𝐶𝑤𝐷𝑤
𝑛𝑤 + 𝐶𝑝𝑤𝐷𝑝𝑤

𝑛𝑝𝑤  (8) 

(a) (c) (b) 
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Figure 10. FE results (red dots) and analytical model results (blue curve) for DP7:  
(a) for axial load; (b) radial load; (b) tilting moment.  
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Figure 11. Tendencies of 𝑲 coefficients with bearing mean diameter. 

The expression for 𝛿𝑟𝑖𝑛𝑔𝑠 was then obtained from (7) and (8): 

 𝛿𝑟𝑖𝑛𝑔𝑠 = [
𝐹

𝐾(𝐷𝑤, 𝐷𝑝𝑤)
]

1
𝑛

= [
𝐹

𝐶𝑤𝐷𝑤
𝑛𝑤 + 𝐶𝑝𝑤𝐷𝑝𝑤

𝑛𝑝𝑤
]

1
𝑛

 (9) 

Finally, the values of the 5 coefficients in (9) (𝑛, 𝐶𝑤, 𝑛𝑤, 𝐶𝑝𝑤 and 𝑛𝑝𝑤) that fit the 

curves for every DP were found. To this end, the Mean Weighted Relative Square Error 

(𝑀𝑊𝑅𝑆𝐸) was defined as: 

 𝑀𝑊𝑅𝑆𝐸 =
1

𝑁
∑ [

1

𝑀𝑖
∑ [

[𝛿𝐹𝐸
𝑖𝑗

− (𝛿𝑐𝑜𝑛𝑡𝑎𝑐𝑡
𝑖𝑗

+ 𝛿𝑟𝑖𝑛𝑔𝑠
𝑖𝑗

)]
2

(𝛿𝐹𝐸
𝑖𝑗

)
2 ]

𝑀𝑖

𝑗=1

]

𝑁

𝑖=1

 (10) 

 Where 𝑁 is the number of DPs (14 in this case) and 𝑀𝑖 is the number of points from 

the FE results for DP 𝑖 before the nonlinearity of the joint occurs. By minimizing this error 

through the Newton-Raphson method, the values of the coefficients were obtained. 

Although a quadratic error was used for the minimization in order to favour the 

convergence, the Weighted Absolute Relative Error (𝑊𝐴𝑅𝐸𝑖) gave a more intuitive idea of 

the error for each DP: 

 𝑊𝐴𝑅𝐸𝑖 =
1

𝑀𝑖
∑ |

𝛿𝐹𝐸
𝑖𝑗

− (𝛿𝑐𝑜𝑛𝑡𝑎𝑐𝑡
𝑖𝑗

+ 𝛿𝑟𝑖𝑛𝑔𝑠
𝑖𝑗

)

𝛿𝐹𝐸
𝑖𝑗

|

𝑀𝑖

𝑗=1

 (11) 

Table 2 shows the final values of the coefficients for each load case together with the 

mean value of the 𝑊𝐴𝑅𝐸𝑖 (𝑀𝑊𝐴𝑅𝐸). The units for 𝐶𝑤 and 𝐶𝑝𝑤 are [𝑘𝑁 ∙ 𝑚𝑚−(𝒏−𝒏𝒘)] 

for axial and radial loads, and [𝑘𝑁 𝑚 ∙ 𝑚𝑚−𝒏𝒘] for tilting moment. As can be seen, the 

error is less than 5% in any case. 

Substituting the values from Table 2 in (8), the final formulas for the contribution of the 

rings to the total displacements were obtained, whose units are shown in Table 3: 
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 𝛿𝑎|𝑟𝑖𝑛𝑔𝑠 = [
𝐹𝑎

3300𝐷𝑝𝑤
0.35]

1
1.6

 

(12)  𝛿𝑟|𝑟𝑖𝑛𝑔𝑠 =
𝐹𝑟

45𝐷𝑤
1.2 + 0.15𝐷𝑝𝑤

1.3 

 𝜃𝑡|𝑟𝑖𝑛𝑔𝑠 = [
𝑀𝑡

53𝐷𝑤
4.5 + 𝐷𝑝𝑤

3.1 105]

1
1.1

 

It is important to remark that these equations are valid and offer reliable results for any 

of the studied DPs, so they can be used to estimate the global stiffness of any bearing 

within the defined design space.29 Figure 12 summarizes the results for DP7: in red dots, 

the total displacement values from the DOE; in blue lines, the contact deformation results 

from the analytical model;1 in green lines, ring deformation values according to the 

proposed equations (12); finally, red lines are the summation of blue and green lines, i.e. 

total displacement, demonstrating that the proposed formulation for ring stiffness 

calculation accurately fits the DOE results. For this DP, the 𝑊𝐴𝑅𝐸𝑖 was 0.36%, 2.29% 

and 4.44% for axial, radial and tilting cases respectively, so it is a representative DP 

considering the mean values of the errors in Table 2. 

 𝒏 𝑪𝒘 𝒏𝒘 𝑪𝒑𝒘 𝒏𝒑𝒘 𝑴𝑾𝑨𝑹𝑬 

Axial load 1.6 0 1 3300 0.35 1.5% 

Radial load 1.0 45 1.2 0.15 1.3 3.5% 

Tilting moment 1.1 5.3·10-4 4.5 10-5 3.1 4.9% 

Table 2. Values for the coefficients of the functional approximation for δrings and the 
relative error (MWARE). 

𝑭𝒂 and 𝑭𝒂 𝑴𝒕 𝜹𝒂 and 𝜹𝒂 𝜽𝒕 𝑫𝒘 and 𝑫𝒘 

𝑘𝑁 𝑘𝑁 ∙ 𝑚 𝑚𝑚 𝑑𝑒𝑔 𝑚𝑚 

Table 3. Units for equation (12). 

3.3. Extension of the formulation for contact parameters 

As explained in the previous section, the aim of separating contact deformations and 

ring deformations in (6) was to be able to reproduce the effects of contact parameters in 

the global stiffness of the bearing without affecting the ring stiffness formulation (12). In 

this sense, it was assumed that contact parameters had an influence only on ball-raceway 

contact deformations. Additional FE calculations were performed to prove this hypothesis, 

and the results were compared with the ones from the proposed formulation. 
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Figure 12. Analytical model results (blue curve), functional approximation for rings 
deformation (green curve), the summation of both curves (red curve) and FE results (red 

dots) for DP7: (a) for axial load; (b) radial load; (b) tilting moment. 
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The parameters related to the contact deformations are ball preload (𝛿𝑃), ball number 

(𝑁𝑏), conformity ratio (𝑠) and initial contact angle (𝛼). Although the ball number is not a 

contact parameter, it affects the contact deformations because the more balls there are, the 

more contacts there will be. To verify that these parameters affect 𝛿𝑐𝑜𝑛𝑡𝑎𝑐𝑡 and not 𝛿𝑟𝑖𝑛𝑔𝑠, 

different FE calculations were carried out varying their values for reference bearing DP7, 

studying the effect of each parameter separately. 

For the preload, four different values were considered up to 10% of the static load 

capacity, which happens at 30μm for DP7, with the results shown in Figure 13; it can be 

seen that the curves from the proposed methodology are near the FE results, although they 

have limitations for high loads. The ball number is quantified by the filling ratio (𝑅𝑓𝑖𝑙𝑙) 

from formula (2), with the values for this ratio varying from 80% to 100%. In this case, 

three values were analysed; the results are shown in Figure 14 and the numerical errors are 

summarized in Table 3. As with the preload, the proposed methodology lacks accuracy as 

the load increases, but the values of the errors are still satisfactory. For the conformity 

ratio, values of 0.92, 0.943 and 0.96 were analysed; even though the formulation catches the 

tendency adequately (see Figure 15), the errors are larger than for the other parameters 

(Table 3). Finally, the effect of the initial contact angle was studied. For this purpose, values 

of 35°, 45° and 55° were considered. If the proposed formulation is applied without 

introducing any correction (dashed curves in Figure 16), the curves are far from the FE 

results, even though the tendency is correct. Nevertheless, a correction can be easily made 

using the 𝛾 factor, leading to the curves in solid lines, which show a good correlation with 

FE results. This correction factor comes from the unprojection of contact forces in the 

vertical axis for axial and tilting cases, and in the horizontal axis for the radial case: 

 𝐹 = 𝛾 ∙ 𝐾(𝐷𝑤, 𝐷𝑝𝑤)𝛿𝑟𝑖𝑛𝑔𝑠
𝑛  where {

𝛾𝑎/𝑡 =
𝑠𝑖𝑛𝛼

𝑠𝑖𝑛45°
= √2 𝑠𝑖𝑛𝛼

𝛾𝑟 =
𝑐𝑜𝑠𝛼

𝑐𝑜𝑠45°
= √2 𝑐𝑜𝑠𝛼

 (13) 

Table 3 indicates the errors for the different contact parameters according to Figures 13 

to 16. The values are near those for the nominal case previously pointed out in Table 2. 

 𝜹𝑷 𝑵 𝒔 𝜶 

Axial load 1.7% 3.3% 6.8% 7.4% 

Radial load 3.2% 3.3% 5.6% 3.7% 

Tilting moment 5.5% 5.2% 7.5% 5.6% 

Table 3. Relative error (MWARE) for the different contact parameters. 
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Figure 13. Effect of the preload according to the proposed formulation (curves) and FE 
results (dots) for DP7: (a) under axial load; (b) radial load; (b) tilting moment. 
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Figure 14. Effect of the ball number according to the proposed formulation (curves) and 
FE results (dots) for DP7: (a) under axial load; (b) radial load; (b) tilting moment. 
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Figure 15. Effect of the conformity ratio according to the proposed formulation (curves) 
and FE results (dots) for DP7: (a) under axial load; (b) radial load; (b) tilting moment. 
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Figure 16. Effect of initial contact angle according to the proposed formulation without 
the correction (dashed curves), corrected (continuous curves) and FE results (dots) for 

DP7: (a) under axial load; (b) radial load; (b) tilting moment. 
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4. CONCLUSIONS 

This work presents a procedure to calculate stiffness curves for four-point contact 

slewing bearings of Wind Turbine Generators, under external axial and radial forces, and 

tilting moments. For such purpose, the methodology separates ball-raceway contact 

deformations and ring deformations. While contact deformations can be calculated by 

analytical models found in the specialized literature, no simple and generalist procedure 

exists to calculate the effect of the flexibility of the rings. For such purpose, a Design of 

Experiments is performed with a parametric Finite Element model, and a set of stiffness 

formulas are derived from its results, which replicate the effect of the geometrical 

parameters of the standard four-point contact slewing bearings of manufacturers. Later, the 

formulas are combined with an analytical model by the authors to further consider contact 

parameters, showing good correlation with Finite Element results.  

As a result, the proposed formulation is a fast and accurate tool to calculate the stiffness 

of standard four-point contact slewing bearings, taking into account both contact and ring 

deformations. It is an extremely useful approach not only for bearing manufacturers, but 

also for Wind Turbine Generator designers to feed their static and dynamic simulation 

models in preliminary design stages. The methodology was successfully applied to single-

row four-point contact bearings, but it can be extended to other types of WTG slewing 

bearings such as double row four-point contact ball bearings and crossed roller bearings. In 

future works, the suitability of this method for the simulation of real pitch or yaw systems 

will be studied, considering realistic combined loads and possible nonlinear boundary 

effects. 
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