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Abstract 

Aim 

The rates of chest compressions (CCs) and ventilations are both important metrics to monitor 
the quality of cardiopulmonary resuscitation (CPR). Capnography permits monitoring 
ventilation, but the CCs provided during CPR corrupt the capnogram and compromise the 
accuracy of automatic ventilation detectors. The aim of this study was to evaluate the 
feasibility of an automatic algorithm based on the capnogram to detect ventilations and 
provide feedback on ventilation rate during CPR, specifically addressing intervals where CCs 
are delivered. 

Methods 

The dataset used to develop and test the algorithm contained in-hospital and out-of-hospital 
cardiac arrest episodes. The method relies on adaptive thresholding to detect ventilations in 
the first derivative of the capnogram. The performance of the detector was reported in terms 
of sensitivity (SE) and Positive Predictive Value (PPV). The overall performance was reported in 
terms of the rate error and errors in the hyperventilation alarms. Results were given separately 
for the intervals with CCs. 

Results 

A total of 83 episodes were considered, resulting in 4880 min and 46,740 ventilations (8741 
during CCs). The method showed an overall SE/PPV above 99% and 97% respectively, even in 
intervals with CCs. The error for the ventilation rate was below 1.8 min−1 in any group, and 
>99% of the ventilation alarms were correctly detected. 

Conclusion 

A method to provide accurate feedback on ventilation rate using only the capnogram is 
proposed. Its accuracy was proven even in intervals where canpography signal was severely 
corrupted by CCs. This algorithm could be integrated into monitor/defibrillators to provide 
reliable feedback on ventilation rate during CPR. 

Keywords: Capnography, Ventilation monitoring, Cardiopulmonary resuscitation, 
Hyperventilation 
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Abstract

Aim: The rates of chest compressions (CCs) and ventilations are both important metrics to

monitor the quality of cardiopulmonary resuscitation (CPR). Capnography permits monitoring

ventilation, but the CCs provided during CPR corrupt the capnogram and compromise the accuracy

of automatic ventilation detectors. The aim of this study was to evaluate the feasibility of an

automatic algorithm based on the capnogram to detect ventilations and provide feedback on

ventilation rate during CPR, specifically addressing intervals where CCs are delivered.

Methods: The dataset used to develop and test the algorithm contained in-hospital and

out-of-hospital cardiac arrest episodes. The method relies on adaptive thresholding to detect

ventilations in the first derivative of the capnogram. The performance of the detector was reported

in terms of Sensitivity (SE) and Positive Predictive Value (PPV). The overall performance was

reported in terms of the rate error and errors in the hyperventilation alarms. Results were given

separately for the intervals with CCs.

Results: A total of 83 episodes were considered, resulting in 4880 min and 46740 ventilations (8741

during CCs). The method showed an overall SE/PPV above 99% and 97% respectively, even in

intervals with CCs. The error for the ventilation rate was below 1.8 min−1 in any group, and > 99%

of the ventilation alarms were correctly detected.

Conclusion: A method to provide accurate feedback on ventilation rate using only the capnogram

is proposed. Its accuracy was proven even in intervals where canpography signal was severely

corrupted by CCs. This algorithm could be integrated into monitor/defibrillators to provide reliable

feedback on ventilation rate during CPR.
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1. INTRODUCTION1

Quality of cardiopulmonary resuscitation (CPR) is a key factor in the outcome of cardiac2

arrest patients. Advanced life support (ALS) treatment of out-of-hospital cardiac arrest (OHCA)3

includes good-quality chest compressions (CCs) and a reliable airway management. The 20154

resuscitation guidelines recommend continuous chest compressions after intubation, ventilation5

rates of 10 min−1 and avoidance of hyperventilation.1 Hyperventilation increases intrathoracic6

pressure, reshapes the oxygen dissociation curve (increasing oxygen affinity) and behaves as a7

cerebral vasoconstrictor.2,3 It has also has been proven to lower coronary perfusion pressure and8

to contribute to hemodynamic deterioration in animal experiments.4–8 All these factors decrease9

the probability of survival.9,10 Nevertheless rescuers providing pre-hospital CPR often exceed the10

recommended ventilation rates. Several studies report rates ranging from moderate (14 min−1) to11

severe (> 20 min−1) hyperventilation during long duration OHCA.5–7,9–1212

CPR feedback systems, either standalone or incorporated into defibrillators, have been shown13

to improve adherence to guideline recommendations.13,14 Feedback on CCs based on acceleration,14

force or thoracic impedance (TI) has been extensively studied;11,15–17 but little attention has15

been given to feedback on ventilation rate during CPR. The TI channel, recorded through the16

defibrillation pads, has been explored to monitor ventilation rate.11,18,19 However, an analysis17

of long resuscitation episodes showed that artefacts limit the reliability of TI for instantaneous18

feedback on ventilation rate.17 Currently, no commercial system is available for feedback on19

ventilation rate using the TI.20

The recently released resuscitation guidelines have placed an increased emphasis on the use21

of the capnogram during CPR to monitor, among other things, ventilation rate and to avoid22

hyperventilation.1 During CPR compression artefacts often corrupt the capnogram compromising23

the accuracy of automatic algorithms for ventilation rate feedback.20–22 Few such algorithms have24

been published,23,24 and their performance during CPR has not been systematically evaluated25

and/or documented.26

This study proposes an automatic algorithm for ventilation detection during CPR based on the27

typical waveform characteristics of the capnogram and on the use of adaptive thresholds to identify28

ventilations. The aim of the study is to analyse the feasibility of using the capnogram to provide29

an accurate automated feedback on ventilation rate and hyperventilation alarms during CPR.30



2. MATERIALS AND METHODS31

2.1. Data materials32

Two datasets of episodes with signals from monitor/defibrillators were used in this study, an33

out-of-hospital dataset (OHD) and an in-hospital dataset (IHD). The OHD was recorded during34

cardiac arrest, with manual CPR (CCs and ventilations) provided in all episodes. The signals35

available to monitor ventilations were the TI and the capnogram. The IHD corresponded to36

patients who suffered cardiac arrest, some recorded during manual CPR (CCs and ventilations)37

and some recorded after cardiac arrest during postresucitation care (mechanical ventilation). They38

were monitored with the capnogram and the expired air flow.39

The OHD was a subset of a large OHCA registry containing 623 episodes maintained by the40

Tualatin Valley Fire & Rescue (Tigard, Oregon, USA), an ALS first response agency. The episodes41

were collected using the HeartStart MRx monitor/defibrillator (Philips, Andover, MA) between42

2006 and 2009. Ventilations in these episodes were provided manually with an endotracheal tube or43

laryngeal tube airway. Episodes with at least 20 minutes of concurrent and readable recordings of44

the compression depth (CD), the TI and the capnogram were included in this study, resulting in a45

dataset of 62 episodes. The CD signal from the Q-CPR assist pad by Philips was used to identify the46

intervals with CCs. The capnogram was acquired using Microstream (sidestream acquisition) with47

a sampling rate of 40/125 Hz and a resolution of 0.004 mmHg per bit. The instants of ventilations48

were marked in the TI ventilation channel,11,17 first automatically and then manually reviewed49

by three experienced biomedical engineers. Reviewers used the capnogram to make a decision in50

unclear intervals. Fig. 1 shows examples of two episodes of the OHD, where ventilations are visible51

in both the TI ventilation channel (in black) and the capnogram, for an artefact free interval (panel52

a), and when CCs were provided (panel b).53

The IHD was a subset of the APACHI study conducted by Philips Healthcare at the Medical54

University of Vienna between November 2012 and January 2014. The APACHI study recorded55

physiological signals (arterial blood pressure, electrocardiogram, photoplethysmogram, capnogram56

and airway flow and pressure) from multiple monitors during hemodynamic crisis in the emergency57

department of the Vienna General Hospital, under the direction of Drs. Sterz and Hubner. From58

a total of 50 patients enrolled in the trial, the 21 that suffered cardiac arrest and had concurrent59

recordings of capnogram and ventilatory flow were included. Six of the episodes were recorded60



during CPR and 15 after resuscitation. The mainstream capnogram was acquired by the NICO61

7300 monitor using the Capnostat CO2 sensor by Philips (-125/125 L/min, 4 mV/L/min, 10062

Hz). The respiratory signals were acquired by the same monitor; the airflow and the air volume63

signals were used as gold standard (GS) to annotate the ventilations. Fig. 1 shows examples of64

two episodes of the IHD, where ventilations are visible in the air volume and the capnogram, for65

an artefact free interval (panel c) and when CCs were provided (panel d).66

2.2. Ventilation detector67

An automated algorithm that detects ventilations in the capnogram was developed based on68

the four basic phases of a normal capnogram shown in Fig. 2: the inspiration baseline (phase I), the69

expiration upstroke (phase II), the expiratory plateau (phase III) and the expiration downstroke70

(phase IV).71

The capnogram was first low-pass filtered to remove spectral components above 10 Hz, and72

then a value of 5 mmHg was adopted as baseline. The inspiration (tinsp) and expiration (texp)73

times of potential ventilations were automatically detected from positive and negative peaks in the74

first difference of the signal. For every potential ventilation the five features shown in Fig. 2 were75

computed:76

• Duration of the inspiration baseline, Dinsp, in seconds.77

• Mean CO2 value of the inspiration baseline, Ainsp, in mmHg.78

• Mean CO2 value of the expiratory plateau, Aexp, in mmHg.79

• Area of the first second of the expiratory plateau, Sexp, in mmHg · s−1.80

• Relative CO2 increase, Ar =
Aexp−Ainsp

Aexp
.81

The ventilation detector consists of a feature based decision algorithm which detects ventilations

by comparing Dinsp and the minimum distance between ventilations with a fixed threshold value

(0.3 s and 1.5 s respectively) and features Aexp, Sexp and Ar with adaptive thresholds based on the

last p ventilations as follows:

Thk =
w

p
·

k∑
n=k−p

xn (1)



where Thk is the adaptive threshold for k-th potential ventilation, w is a weighting factor between82

0 and 1, and xn represents the value of the feature for ventilation n.83

A more detailed technical description of the algorithm is supplied in the Appendix A, where84

signal processing techniques and ventilation detection criteria for the decision algorithm are85

supplied. Two illustrative examples are also included to provide intermediate results that clarify86

the implementation of the algorithm.87

2.3. Instantaneous ventilation rate and hyperventilation alarm88

The instants of ventilations detected in the capnogram were used to compute the ventilation rate89

and to report hyperventilation alarms when an established rate was exceeded. Both measures could90

be used to give real-time feedback to the rescuer. The instantaneous ventilation rate was computed91

every 15 s as the inverse of the median interval between ventilations in the previous minute.92

Hyperventilation was defined for rates exceeding 15 min−1, following the criteria established by93

Kramer Johansen et al.1394

2.4. Evaluation and statistical analysis95

The episodes of the OHD were randomly allocated to training and test sets. The ventilation96

detector was developed with the training set of the OHD, and evaluated with OHD test set and97

the complete IHD. Results are given separately for intervals with and without CCs. All the results98

were reported as median (interquartile range, IQR), as data did not pass the Anderson-Darling99

normality test.100

The performance of the ventilation detector was evaluated in terms of Sensitivity (SE), the101

proportion of correctly detected ventilations, and Positive Predictive Value (PPV), the proportion102

of detected ventilations corresponding to real ventilations.103

The Concordance Correlation Coefficient (CCC) was reported in order to quantify the104

agreement between the ventilation rate calculated from the GS and from the algorithm. The105

percentage of ventilation rate errors > 2 min−1 per episode were reported. Bland-Altman plots106

were used to show the level of agreement (95% LOA) between the algorithm and the GS.107

The performance of the hyperventilation detector was evaluated in terms of correctly detected108

hyperventilation alarms and the number of false hyperventilation alarms.109



3. RESULTS110

Table 1 summarizes the main characteristics of the datasets. For the 62 episodes of the OHD111

the duration was 38 (34-46) min, the median ventilation rate per episode was 9.9 (8.7-13.1) min−1
112

and the hyperventilation fraction per episode was 10 (2-35)%. For the 21 episodes of the IHD the113

duration was 91 (50-141) min, the median ventilation rate per episode was 14.3 (12.6-18.2) min−1
114

with 14 (0-88)% of hyperventilation fraction.115

The OHD episodes were allocated randomly to training (37) and test sets (25). Fig. 3 shows116

the boxplot of the performance of the ventilation detector for both the OHD and IHD datasets.117

The SE was above 99% and the PPV above 97% overall. The boxplots show a slight deterioration118

for the intervals during CCs. The median SE and PPV decreased at most one point during CCs,119

and the lower quartile between 1 and 7 points.120

Fig. 4 shows four examples where the dashed lines represent ventilations annotated in the GS121

and the red triangles represent the ventilations detected by the algorithm. Panels a and b show two122

examples of OHD where ventilations were missed due to too short inspiration intervals (panel a)123

and because of the ’shark fin’ waveform of the capnogram (panel b). Panels c and d show intervals124

of the OHD and IHD, where the ventilations were correctly identified despite severe CC artefacts.125

The concordance between the instantaneous ventilation rate obtained from the GS and from126

the algorithm was high (CCC > 0.98) for the two datasets, even during CCs. The proportion of127

errors larger than > 2 min−1 were 0 (0-4.2)% per episode for the OHD and 0 (0-1.2)% for the IHD.128

Fig. 5 shows the Bland-Altman plots and the 95% LOA between the GS and the algorithm, which129

was in all cases smaller than 1.8 min−1.130

For the OHD, the algorithm correctly detected 841 of 860 alarms, and 26 of the 867 given131

alarms were false. For the IHD, the hyperventilation detector correctly reported 3563 of the 3566132

hyperventilation alarms, and 12 of the 3575 given were false.133



4. DISCUSSION134

This study proposes an automatic algorithm to detect ventilations using the capnogram, and135

thoroughly tests its accuracy for ventilation rate feedback during CPR, specifically addressing136

intervals in which CCs were delivered. The algorithm identifies the instants of ventilations based137

on adaptive thresholds to accommodate to the time-varying levels of CO2, and avoids the rapidly138

changing artefacts added by the CCs. This algorithm would permit an accurate ventilation rate139

monitoring and a better control of hyperventilation both in- and out-of-hospital, where rates140

recommended by resuscitation guidelines are frequently exceeded.5–7,9–12141

4.1. The dataset and the gold standard142

The dataset used in this study includes both in-hospital and OHCA episodes, with a total143

of 46740 ventilations (8741 during CCs). In the OHD impedance was used as gold standard, and144

annotations were reviewed with the capnogram, but only in unclear intervals (see panel a of Fig. 4).145

This procedure, which was a standard practice in previous studies because no better gold standard146

is available for the OHCA data,23 might limit the validity of the results. In order to overcome this147

limitation an independent GS, not available in the OHCA setting, was introduced in the IHD, the148

airway flow signal which provides reliable information for ventilation monitoring.1,23 In our IHD149

the airway flow and volume signals from the NICO respiratory monitor by Philips were used as GS.150

The number of episodes in our IHD is small, however this dataset contains the most reliable GS151

used to date to validate capnogram based ventilation detectors during cardiac arrest. The results152

obtained with this dataset confirmed the accuracy observed for the ventilation detection algorithm153

with the OHCA dataset.154

The global SE/PPV of the detector were 0.7/2.8 points better for the IHD than for the OHD155

(Fig. 3), which may reflect various factors. On the one hand, the capnography technique was156

different in our two datasets, mainstream for the IHD and sidestream for the OHD.25 In mainstream157

capnography the sensor is located directly in the way of the expired flow. In sidestream capnography158

a sample of the patient’s expired gases is trasported to the sensor site using a 1-2 meter long tube.159

This produces a delay in the capnogram with respect to the TI (4 seconds in our data) and the160

diffusion of the gases during transport lowers the slopes (dampening) of the capnogram.26 This last161

effect might jeopardize the discrimination of ventilations in the OHD, as the algorithm is based on162

the detection of abrupt changes in the capnogram, and might partially explain the lower accuracy163



obtained for the OHD dataset. On the other hand, the OHD reflects more challenging scenarios164

in which ventilations were manual and CPR was delivered in most of the cases, while 15 of the 21165

in-hospital cases were mechanically ventilated and/or had no CCs. However, when cases during166

CPR were considered the results were similar for the OHD and IHD (see Fig. 3 during CPR).167

This primarily is because during CPR both datasets reflected the effects of greater variability in168

ventilation patterns, CC artefacts and the intervention of multiple rescuers. The results for the169

IHD data with a reliable and independent GS confirm the observations on the larger OHD, and170

the accuracy of the algorithm with both mainstream and sidestream capnography.171

4.2. The capnogram based ventilation detector172

To date few capnogram based ventilation detectors applicable to OHCA data have been173

described. However, the universalization of the capnogram during ALS and the importance of174

adequate ventilation for the survival of the patient call for new and improved capnogram based175

ventilation feedback algorithms. Our method relies on an adaptive thresholding to classify possible176

ventilations detected in the first derivative (slope) of the capnogram. A preliminary version of the177

method was previously described.27 Edelson et al. proposed an adaptive CPR artefact suppressing178

filter before detecting ventilations in the first derivative of the filtered signal and then used fixed179

detection thresholds.23 Adaptive filtering requires additional CPR-assist pad signals, such as depth,180

acceleration and/or force signal. These signals need to be synchronized to the capnogram which is181

often recorded by a different device. Edelson et al. reported SE/PPV of 82/91% respectively for182

the ventilation detector, slightly below our results, and > 80% of the rate errors below ±2 min−1,183

compared to the > 90% of our algorithm. As it can be observed in Fig. 4 the error of our184

algorithm hardly increased for the intervals with CCs in the OHD, with LOAs close to 1.8 min−1;185

the difference is higher in the IHD where the LOA is 1.5 min−1 in the intervals with CCs, and 0.5186

min−1 for the complete dataset. This difference is attributable to the CC artefacts as well as to187

the mechanical ventilations of the IHD .188

Panels c and d of Fig. 4 show two cases where the algorithm was effective in the presence of189

large CC artefacts. Panels a and b, are two exceptional cases that show the limitations of the190

algorithm. Panel a corresponds to a ventilation technique leading to baselines too short to be191

detected as true ventilations. Panel b shows a capnogram of a patient with airway obstruction,192

due to bronchospasm, asthma or chronic obstructive pulmonary disease. In both cases the detector193



missed most of the ventilations of the interval.194

The artefacts in the capnogram due to CCs were visually identified in previous studies20,24 and195

are frequent in OHCA episodes, 73.3% of the cases in the study by Idris et al.22 and 78.8% in196

our study (37.6% of the ventilations). The severity of the artefact has not been characterized yet197

and might vary with the position/depth of the CCs, the physiology of the patient, and probably198

with the technology used to acquire. It is known that the sidestream capnography shows artifacts199

and distortions that may appears as false disease waveforms,26 and it might also show different200

susceptibility to CC artifacts compared to mainstream capnography. A thorough research is needed201

for a better understanding of the level, characteristics and differences of the CC artefact in both202

capnography sampling techniques.203

4.3. Application scenarios204

Monitoring ventilation rate to avoid hyperventilation is a challenge in OHCA scenarios where205

many feedback systems are available for CCs but not for ventilatory assistance. During BLS,206

the impedance measured through defibrillation pads has been proposed to monitor ventilations.207

Although impedance can be used for debriefing, it showed limited performance for monitoring208

instantaneous ventilation rate. Alonso et al. reported significant errors due to non ventilatory209

components of the impedance waveform,17 an observation consistent with the manual annotations210

required in several studies on CPR quality.11,28 For ALS, where advance airway management is211

integrated, the latest guidelines encourage the use of the capnogram to monitor CPR quality. Our212

results show that ventilation rate algorithms should be further evaluated with capnograms acquired213

during CCs before they are incorporated into feedback systems.214

4.4. Limitations215

The use of the algorithm is limited by the characteristics of the capnograms. As capnogram is216

dependent on the perfusion and metabolism of the patient, for very low levels (< 5 mmHg in our217

algorithm), ventilations would not be detected. The IHD used to test the algorithm is limited by218

the number of episodes, 6 out of 21, which include CCs. Although few cases were available, the219

inclusion of this dataset enabled the validation of the algorithm with a robust and independent220

GS.221



5. Conclusions222

Our study proves that an accurate feedback on ventilation rate using only the capnogram is223

feasible, even in intervals where the capnogram signal is severely corrupted by CCs. Technology224

based on this type of algorithms could be integrated in monitor/defibrillators to provide reliable225

feedback on ventilation rate and alarms on hyperventilation during CPR.226
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Figure Legends305

Figure 1 Intervals from the out-of-hospital and in-hospital datasets, OHD and306

IHD, showing the capnogram and the Gold Standard (GS) to annotate307

ventilations. Panels a and b show OHD examples without and with308

chest compressions, with the impedance ventilation channel (GS) in309

black on top and the capnogram below. Panels c and d show IHD310

examples without and with CCs, with the air volume (GS) on top311

and the capnogram below.312

Figure 2 The four phases of the normal capnogram and the features of the313

ventilation detector associated to potential ventilation number k.314

The time stamps tinsp,k and texp,k correspond to the inspiration and315

expiration times respectively.316

Figure 3 Box plots showing the performance of the ventilation detector for317

the out-of-hospital dataset, OHD, in panel a, and for the in-hospital318

dataset, IHD, in panel b. Results are also given for the intervals with319

chest compressions (CCs).320

Figure 4 Performance of the ventilation detection algorithm with four episodes.321

The examples of panels a, b and c correspond to episodes from the322

out-of-hospital dataset, and example of panel d to an episode from323

the in-hospital dataset. For every example the gold standard (GS) is324

shown (impedance ventilation signal or air flow volume signal). The325

GS annotations are shown with black dashed lines, and the detected326

ventilations with red triangles.327

Figure 5 Bland-Altman plots for the out-of-hospital and in-hospital datasets,328

OHD and IHD respectively, for all cases and for the intervals with329

chest compressions. The horizontal lines show the 95% level of330

agreement.331
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Figure 1: Intervals from the out-of-hospital and in-hospital datasets, OHD and IHD, showing the capnogram and
the Gold Standard (GS) to annotate ventilations. Panels a and b show OHD examples without and with chest
compressions, with the impedance ventilation channel (GS) in black on top and the capnogram below. Panels c and
d show IHD examples without and with CCs, with the air volume (GS) on top and the capnogram below.
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Figure 2: The four phases of the normal capnogram and the features of the ventilation detector associated to
potential ventilation number k. The time stamps tinsp,k and texp,k correspond to the inspiration and expiration
times respectively.



Figure 3: Box plots showing the performance of the ventilation detector for the out-of-hospital dataset, OHD, in panel
a, and for the in-hospital dataset, IHD, in panel b. Results are also given for the intervals with chest compressions
(CCs).
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Figure 4: Performance of the ventilation detection algorithm with four episodes. The examples of panels a, b and c
correspond to episodes from the out-of-hospital dataset, and example of panel d to an episode from the in-hospital
dataset. For every example the gold standard (GS) is shown (impedance ventilation signal or air flow volume signal).
The GS annotations are shown with black dashed lines, and the detected ventilations with red triangles.



Figure 5: Bland-Altman plots for the out-of-hospital and in-hospital datasets, OHD and IHD respectively, for all
cases and for the intervals with chest compressions. The horizontal lines show the 95% level of agreement.



Table Legends332

Table 1 Characteristics of the out-of-hospital dataset (OHD) and the in-hospital333

dataset (IHD)334
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Parameter OHD IHD

Number of episodes 62 21

Total duration (min) 2545 2335

Total number of ventilations (% with CPR) 16899 (37.6) 29841 (8)

Instantaneous ventilation rate (min−1) 10 (8.7-13.1) 14.3 (12.6-18.2)

Minutes with hyperventilation per episode (%) 10 (2-35) 14 (0-88)

Table 1: Characteristics of the out-of-hospital dataset (OHD) and the in-hospital dataset (IHD)
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