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Shell interactions for Dirac operators

Naiara Arrizabalaga

Abstract In this notes we gather the latest results on spectral theory for the coupling
H 4V, where H = —io -V +mf is the free Dirac operator in R3, m > 0 and V is a
measure-valued potential. The potentials under consideration are given in terms of
surface measures on the boundary of bounded regular domains in R3. We give three
main results. We study the self-adjointness. We give a criterion for the existence of
point spectrum, with applications to electrostatic shell potentials, V; , which depend
on a parameter A € R. Finally, we prove an isoperimetric-type inequality for the ad-
missible range of A’s for which the coupling H + V), generates pure point spectrum
in (—m,m). The ball is the unique optimizer of this inequality.

1 Introduction and main results

The quantum mechanical model presented in these notes is a shell interaction for
Dirac operators, which is nothing else than the free Dirac operator in R coupled
with a measure-valued potential.

Given m > 0, the free Dirac operator in R> is defined by H = —iat- V +m],
where o = (0, 0, Q3),

(00 o (L0 /(10
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and o1={ 4] 2=\, ) ={g_

is the family of Pauli matrices. It is a first order symmetric differential operator that
was introduced by Paul Dirac in 1929. The operator is a local version of v/—A + m?
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and satisfies
H?> = (—A+m?)ly, 2)

which turns to be a very useful property. The equation associated to this operator
describes a relativistic electron or positron which moves freely as there were no
external forces nor other particles, and, has played a fundamental role in various
areas of physics and mathematics.

In this work we show spectral properties of the coupling H +V where V is a
singular potential located at the boundary of a bounded regular domain. The first
point is to construct a domain where these operators are self-adjoint. Secondly, we
give a criterion for the existence of eigenvalues of H 4 V. This criterion is a kind of
Birman-Schwinger principle adapted to our setting. We apply this criterion to elec-
trostatic shell potentials, V, , where A € R is the coupling constant, for which we are
able to prove more specific spectral properties. Finally, we study an isoperimetric-
type inequality for the possible A’s for which the operator H 4 V; have non trivial
eigenvalues in (—m,m). We also show that the ball is the unique optimizer of this
inequality.

Note that one can take m = 0 in the definition of H, however, throughout these
notes we assume m > 0 to allow the existence of a nontrivial pure point spectrum in
the interval (—m,m) for the corresponding couplings.

The results presented in these notes have been obtained in a joint work with
Albert Mas and Luis Vega (see [1, 2, 3]).

1.1 Self-adjointness for H+V

The problem of self-adjointness of Dirac operators has a long history starting in
the early 70’s. In what respects to shell interactions, the case of the sphere was
previously studied in [4] by J. Dittrich, P. Exner and P. Seba. Since the proofs for that
case rely heavily on spherical symmetry and spherical harmonics, it is not possible
to extend those arguments to a more general domains, as it is our case.

First, let us present our setting. The ambient Hilbert space is L>(R?, u)* with
respect to the Lebesgue measure . Given a bounded regular domain 2 C R? with
boundary 9 and surface measure &, our aim is to find domains D C L*(R3, u)* in
which H+V : D — L*(R3,u)* is an unbounded self-adjoint operator, where H is
defined in the sense of distributions and V is a suitable L? (92, ¢)*-valued potential.
To shorten notation we denote L?(R3, u)* and L?>(d2,c)* by L>(R?)* and L*(0)*,
respectively. We construct the domain D as follows: by assumption, V is L>(c)*-
valued. Thus, given ¢ € D, we can write V(@) = —g in the sense of distributions
for some g € L?(c)*. Moreover, since (H +V)(¢) € L?(R?)*, we can also write
(H+V)(@) = G for some G € L>(R?)*. Therefore, H(¢) = G+ g in the sense of
distributions, and therefore, ¢ should be the convolution ¢ * (G + g), where

gfm‘x‘

009 = o (B + (1 e i % )
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is a fundamental solution of H. This fundamental solution can be easily computed
by using (2). In particular,

Dc{p=0+(G+g):GeL*(R*)* gcL*(0)*} and

V(p)=—g forallg=¢%(G+g)eD. 3)

To ensure that H +V is self-adjoint on D, we need to impose some relations between
G and g with the aid of bounded self-adjoint operators A : L?(¢)* — L?(c)*. In
other words, given suitable A’s, following (3) we find domains D, (which depend
on A) where H 4V is self-adjoint.

We consider the potential V given by (3) as a generic potential since it seems to
be prescribed from the begining as V(¢) = —g forall 9 = ¢ x (G+g) € Dy, s0V
is independent of A. Hence, if we want to work with a given boundary potential,
that we will denote by Vs, the key idea to construct a domain where H + V; is self-
adjoint is to find a particular bounded self-adjoint operator A so that V(@) = —g
forall @ € Dy.

Let us roughly mention the idea behind the generic potential V given by (3). If
we know that the gradient of a function ¢ has an absolutely continuous part G and a
singular part g supported on 9 (in our setting, V(@) € L?(c)* and (H +V)(9) €
L*(R*)*), then @ must have a jump across d£2, and this jump completely determines
the singular part of the gradient (that is, the jump determines the value V(¢)). For
a given potential V5, one manages to define a suitable domain D such that, for any
¢ € D, the singular part which comes from the gradient on the jump of ¢ across dQ
agrees with —Vs(¢). From now on we will simply denote by V the given boundary
potential under study.

Observe that H, which is symmetric and initially defined in €°(R3)* (C*-valued
functions in R? which are € and with compact support), can be extended by duality
to the space of distributions with respect to the test space % (R*)* and, in particular,
it can be defined on 2 = {Gu +go : G L*(R¥)*, g € [*(0)*}.

In order to construct a domain of definition where H 4V is self-adjoint, we have
to consider the trace operator on d£2. So, to ensure that the trace operator is well de-
fined, we need to use the following lemma: if G € L*(R?)*, then ¢ * G € W2 (R3)*
and (¢ *G)),, € L2(0)* (see [1]).

Given an operator between vector spaces S : X — Y, denote kr(S) = {x € X :
S(x) =0} and m(S) ={S(x) €Y : x€ X}.

Theorem 1.1. Let A : L?(0)* — L2(0)* be a bounded operator: Set

D={¢+(G+g):Gu+goec 2, (9xG), =A(g)}CL*(R*

log

and H+V on D, where V(@) = —go and (H+V)(@) =G forall g = ¢« (G+g) €
D. If A is self-adjoint and m(A) is closed, then H+V : D — L*(R3)* is an essen-
tially self-adjoint operator. Moreover; if {¢ xh : h € kr(A)} is closed in L*(R?)*,
then H 4V is self-adjoint.

Furthermore, if A is self-adjoint and semi-Fredholm, then H +V is self-adjoint.
We study other differential operators and measures and other relations between (¢ *
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G)‘ 5o and g, but we consider that they are not relevant for the purpose of these
notes. In [7] (see also [8, Section 2]), A. Posilicano gives a more general result.
There the author provides, in a very general framework, all self-adjoint extensions
of symmetric operators obtained by restricting a self-adjoint operator to a dense
subspace of the domain. See [1] for the complete details.

1.2 Point spectrum for H +V

The natural question that comes to our mind after studying the self-adjointness of
shell interactions for Dirac operators is: what can we say about their point spectrum?
In this section, we show a criterion for the existence of eigenvalues in (—m,m) for
H +V . This criterion is a kind of Birman-Schwinger principle adapted to our setting.
Afterwards, we show some applications to the case of electrostatic shell potentials.

For convenience, set 2 = Q.. Let dQ be the boundary of a bounded Lipschitz
domain ; C R3, let ¢ and N be the surface measure and outward unit normal
vector field on 92, respectively, and set 2_ = R3\ Q,, so 902 = dQ.. Note that
o is 2-dimensional. Since we are not interested in optimal regularity assumptions,
for the sequel we assume that < is of class %>.

Before stating the main result of this subsection, we need to consider some prop-
erties of operators defined only at the boundary of the domain. Let a € (—m,m), a
fundamental solution of H — a for x € R3\ {0} is given by

—\/m?—a?|x|
0% (x) = SR a+mpB + (1 +vm? fa2|x|> i ).
4| Jx[>
Lemma 1.2. Given g € L*(6)* and x € dQ, set
Cs(g)(x) = lim ¢“(x—2)g(z)do(2)
eNOJ|x—z|>¢

and
Ci(g)(x)= lim (¢“*go)(y),

Q4 Bth)x

where 24 3y 5 X means that y € Q. tends to x € Q2 non-tangentially. Then, the
Cauchy type singular operator C& and the operators C¢. are bounded and linear in
L%(0)*. Moreover, the following holds:

(i) C4 = F4 (a- N) +C& (Plemelj-Sokhotski jump formulae),
(ii) for any a € [—m,m], C% is self-adjoint and —4(C% (ot -N))? = Iy.
The following criterion relates the eigenvalues of H 4+ V with a spectral property

of bounded operators in L?(o')* mentioned in Lemma 1.2, that is, it relates a problem
in R3 with a problem settled exclusively on .
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Proposition 1.3. Let H+V be as in Theorem 1.1. Given a € (—m,m), there exists
©=0x(G+g) €Dsuchthat (H+V)(@)=ag ifand only if A(g) = (C4 —Cs)(g)
and G = a9 * g. Therefore, ke(H+V —a) # 0 if and only if k(A + C5 — C%) # 0.

1.2.1 Applications to electrostatic shell potentials

In this summary we are particularly interested in the case of electrostatic shell poten-
tials as the ones defined in the theorem below, V) . These potentials are also known as
J-shell potentials. It is for these potentials for which we give the isoperimetric-type
inequality detailed in the next subsection.

Theorem 1.4. Let A € R\ {0} and a € (—m,m). D= {¢ = ¢+ (G+g) : (¢ *

G)loa =—(1/A+Cs)g}, and V) (9) = %((p+ + @_), where @y are the boundary
values of @ when approaching 02 from Q. or Q_.

(i) H + V), defined on D is self-adjoint for all A # £2.
(ii)Ker(H+Vy —a) #0iff Ker(1/A +C%) #0.
(iii)H + V) and H +V_y /3 have the same eigenvalues in [—m,m].
@) |2 € [1/11CG 1, 4ICG ), then Ker(H +V), —a) = 0.
(v) If[A] & [1/C,4C], where C = sup,¢
values in (—m,m).
(vi) If Q_ is connected, then H +Vj,_has no eigenvalues in R\ [—m,m].

|CG|| < oo, then H + V), has no eigen-

—m,m) |

The last theorem shows that there are a lower and upper thresholds on the possi-
ble values of A in order to have non trivial eigenvalues in (—m,m). This is different
from what happens with other similar potentials, such as the Coulomb potential or
the characteristic function of a ball. The Coulomb potential, for example, generates
eigenvalues for any small A. The self-adjointness for the cases A = +2 is currently
under study.

1.3 Isoperimetric-type inequality

Previously, we found that for the case of electrostatic shell potentials there is no
possible ¢ verifying
(H+V2)(@) = ag @)

for any a € (—m,m) if |4 is either too big or too small. More precisely, we showed
that there exist upper and lower thresholds A,,(dQ) and A;(9 ), respectively, with
0<A(9R2) <2< 2,(dR) and such that if [A| & [A4;(d2), A,(d Q)] then there exists
no nontrivial ¢ verifying (4) for some a € (—m,m).

The main purpose of this section is to determine how small can [4;(d ), A, (9 2)]
be under some constraint on the size of Q2 and/or Q.

Given a compact set E C R3, the Newtonian capacity of E (sometimes referred
in the literature as electrostatic or harmonic capacity) is defined by
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Cap(E) = (n‘}f// %) - ,

where the infimum is taken over all probability Borel measures v supported in E.
Sometimes in the literature, the 47 appearing in the definition of Cap(E) is changed
by another precise constant. For the case of open sets U C R?, one defines

Cap(U) = sup{Cap(E) : E C U, E compact}.

Let us mention some examples of constraints where the Newtonian capacity ap-
pears. Let Q C R3 be a bounded smooth domain. On the one hand, we have the
following isoperimetric inequality

36mVol(2)? < Area(d Q).
On the other hand, the Pélya-Szeg6 inequality, [6], asserts that
Cap(Q) > 2(67°Vol(2))'/3,

where V is the probability measure and supp(v) C Q. In both cases, equality holds
if and only if 2 is a ball. Our main result in this sense is the following one.

Theorem 1.5. Let Q C R be a bounded domain with smooth boundary and assume

that
Area(dQ) 1

" Cap(@) a3 ©)

Then
sup{|A| : kr(H +V, —a) # 0 for some a € (—m,m)}

Area(dQ) Area(dQ)\> 1
24('" Cap(@) +\/’"2( Eol ) *4)’

inf{|A| : kr(H+ V), —a) # 0 for some a € (—m,m)}

7mArea(8.Q) " Area(9Q)\? 1
<4( Cap(@) +\/ ("Gt +4)'

In both cases, the equality holds if and only if Q is a ball.

2 On the proof of the main results

For the sake of shortness we focus our attention on the proof of the newest result,
Theorem 1.5. See [1] for the details on the proof of Theorem 1.1 and [2] for Propo-
sition 1.3 and Theorem 1.4.
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There are three key steps on the proof of Theorem 1.5. First, recall that this re-
sult is for electrostatics shell potentials. Thus, the starting point is Theorem1.4 (ii),
where we relate (4) with the existence of a nontrivial eigenvalue ¢(a) of C%. Once
we have this relation, we show that ¢(a) is a monotone function of a € (—m,m).
This has important consequences because it reduces the problem to the study of the
limiting cases a = £m. Thanks to the well-known properties of the Cauchy opera-
tor stated in Lemma 1.2, it is sufficient to consider just the case a = m. Hence, it is
enough to study Ker(1/A +C%). The next step is to prove that solving our optimiza-
tion problem (to find the optimal A for which Ker(1/A +Cj) # 0) is equivalent to
minimizing, in terms of Q, the infimum over all A > 0 such that

4 ? 2 8m — 2
(I) Lo WinPao St [ k) Tao< [ iiPds @

for all f € L%(o)?%. It is to this infimum A to which we prove the isoperimetric-
type inequality in Theorem 1.5. Finally, we write the isoperimetric-type inequality
in terms of area and capacity.

2.1 Monotonicity

The following lemma contains the monotonicity property mentioned above.

Lemma 2.1. Given a € [—m,m], the eigenvalues of C% form a finite or countable
sequence 0 # {c;(a)}; C R, with 1/4 being the only possible accumulation point of
{c;(a)*};. Moreover, L c;(a) > 0 for all a € (—m,m) and all j.

As a consequence, given a € (—m,m), the set of real A’s such that kr(H + V) —
a) # 0 form a finite or countable sequence O # {A;(a)}; C R, with 4 being the
only possible accumulation point of {Aj(a)?};. Furthermore, Aj(a) is a strictly
monotonous increasing function of a € (—m,m) for all j.

For any a € [—m, m], the existence of the sequence @ # {c;(a)}; C R stated in the
lemma and its possible accumulation point are guaranteed by the self-adjointness of
C% and the fact that if we define A{ = 1/A £ C%, then

a a 1 a 1 1 a a
AYAD = 22 (Co)2 = 22 4 —Cs(a-N){a-N,C5},
where C&(o-N){ot-N,C4} is a compact operator and self-adjoint. We want to study
dacj(a). We denote 9, = L to shorten. Let g;(a) € L*(0)* be such that ||g;(a) || =
1 and

Cs(gj(a)) =cj(a)gj(a). @)
To differentiate ¢ ;(a) with respect to a, we take the scalar product of (7) with g;(a),
$O

cjla) = {cj(a)gj(a),gj(a))s = (C5(g(a)),8j(a))o-
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Thus, at a formal level and by using that Cg is self-adjoint,
dacj(a) = ((duCs)(gj(a)),8j(a))o +2Re(dug(a),C5(gj(a)))o- ®)
Since ||gj(a)||¢ =1 for all a € (—m,m), then (7) gives
0=cj(a)da(gj(a),8j(a))c = 2Re(dug(a),C5(gj(a)))o-

Hence, we obtain d,c(a) = ((d.C%)(gj(a)).gj(a))s-
To justify the above computations, in particular in what respects to the issue of
the principal value in the definition of C%, one can decompose the kernel

—\/m2—a?|x| —\/m2—a?x| 1
agey_ €Y ey PR Wit Y W
9 (x) pr=p (a+mﬁ +ivm?—a P + in i BE

4 [x3 /)"

Note that the principal value only concerns to the last term, since the other two are
absolutely integrable on dQ and actually define compact operators, but the last one
does not depend on a. At this point, standard arguments in perturbation theory allow
us to justify the formal computations carried out above concerning d,,.

The next step is to understand the operator d,C%. Since C% is defined as the
convolution operator on dQ with the fundamental solution of H — a, and formally
94((H —a)™") = (H — a) 72, then, as we may guess, d,C% is defined as the convo-
lution operator on 9 with the fundamental solution of (H — a)?. In the following
lines, we are going to prove the details of this argument. We can easily compute

—v/m?—a?|x| —\/m2—a?|x|
ae X e
04 (0° (x :7<a+m +i m2—a2a~—>+7 ®
(0°(0) =5 s (a e mBt V] )
Since —ict- V(e V™ @) = j\/m2 — g2e~ V@ g ﬁ, then,
X
e*\/mzfaz\x\ eV m?—a?|x| (10)
d4(9° =a(H+ + .
(0°() = alH +a) et
A simple calculation shows that
eV m?—a?|x| eV m?—a?|x|
(~A+m—a) , an

stvml—ar 47l
which combined with (10) and using that —A +m? —a®> = (H — a)(H + a), yields

) e~ Vm*—a?lx|

(12)
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By using that (47|x|)~'e~ V™ ~¢’hl is a fundamental solution of —A +m? — a?
and that (H — a)?(H 4 a)?* = (—A +m? — a*)?, because —A +m? — a* commutes
with H -+ a, then, we finally deduce that (H —a)? d,(¢*(x)) = &, which means that
d.(¢%(x)) is a fundamental solution of (H — a)?, and 9,C% corresponds to the op-
erator of convolution on dQ with this kernel. Note that d,(¢“(x)) = O(1/x|) for
|x| — 0, so in particular 9,C% is compact in L?(c)*.

Given g € L*(0)*, set

uw) = [2(9°(x-1))g)do(y)  forxe R,

so u = (9,C%)(g) on dQ. Using (12), that —A +m? —a? and H +a commute and
(11), we see that for any x € R3\ 9,

(H —a)u(x) :/(Hx—a)aa((b“(x—y))g(y)dc(y) =9%x(g)(x).  (13)

H, denote the Dirac operator acting as a derivative on the x variable. Since ¢¢ is a
fundamental solution of H — a, we see from (13) that (H — a)?u = 0 outside 9.Q.

From Lemma 1.2(i), we have g = i(a - N)(C% (g) — C%(g)). Therefore, using the
divergence theorem for H — a, that (H — a)¢* x (g) = 0 outside dQ and (13), we
finally get

(0.8 8o = [ | 19°+(e)Pdu. (14)
R3\9Q

Thanks to the Plemelj—Sokhotski jump formulae from Lemma 1.2(i), we see that if
g € L2(c)* is such that ¢¢ + (¢) = 0 in R?\ 9Q then C%(g) = 0, and thus g = 0.
Therefore, applying (14) to g;(a) and plugging it into

aaCj(a) = <(9an)(gj(a))78j(a)>a

yields
Oucs (@) = (OCE) e, gy(@)o = [ 107 (g,(@) P >0,
Finally, by setting cj(a) = —1/A;(a) we see that A;(a) is a strictly monotonous

increasing function of a € (—m,m) for all j. This finishes the proof of the lemma.

From Theorem1.4 (ii) we know that the study of the eigenvalues of H 4+ V) is
equivalent to the study of eigenvalues of Cg, and from the previous result the eigen-
values of Cg are a monotonous increasing function of a. Therefore, this reduces
the problem to the study of a = £m. Moreover, by using the properties on Lemma
1.2, it is sufficient to consider just the case a = m. Therefore, the problem has been
reduced to the study of kr(1/A +C) # 0.
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2.2 Quadratic forms

Let us introduce some bounded operators defined exclusively on the boundary of
the domain. For a € R and 0 = (0}, 02, 03), where the 0;’s compose the family of
Pauli matrices introduced in (1), define the kernels

—\/m2—a?|x| —\/m2—a?|x|
k“(x):eilz and w”(x):eiz(l+\/m2—a2|x\> i0-x
47|x| 4m|x|’

for x € R3\ {0}. Given f € L*(0)? and x € 92, set

K(f)(x) = /k“(x—Z)f(Z)dG(Z) and W*(f)(x) = lim w(x—2)f(z)do(2).

ENOJ|x—z|>¢

That K¢ and W¢ are bounded operators in L?(c)? can be verified similarly to the
case of C% in L?(o)*, we omit the details. Moreover, note that

o [ (a+m)K* W
CO'_ ( we (a_m)Ka>~ (15)

For any a € [—m,m], K? is positive and both K¢ and the singular integral operator
W are self-adjoint. For simplicity of notation, we write k, w, K and W instead of k",
w™, K™ and W™, respectively. Thus, the study of Ker(1/A 4+ C¥) # 0 is equivalent
to find A € R and u,h € L?(o)? such that

{ZmK(u) +W(h) =—u/A,
W(u)=—h/A.

Now by using the properties
{(c-N)K,(c-NYW}=0 and [(c-N)W]>=—1/4, (16)

we get u = (4/A)(c-N)W (o -N)(h). Plugging u into the first equation we obtain
that there exists f € L?(c)?, f # 0 such that

8m 165\,
(5 50) 1o

Multiply by £, integrate with respect to ¢ and we get

(2)2 [winpas+ St [k Fo= [irpdo,

where the second term on the left hand side is positive. Thus, the quadratic form is
decreasing for A > 0. As a consequence we have
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Ao —inf{)t >0: (;)2/W(f)2d0'+?1/1((f)-fd6§/|f2d6,}

forall f € L*(0)>.

These arguments lead us to the next theorem, that is a key ingredient to derive
the isoperimetric-type inequalities contained in Theorem 1.5. It gives the connec-
tion between the admissible A’s that generate eigenvalues of C” with the optimal
constant of the inequality (17).

Theorem 2.2. Let Ag be the infimum over all A > 0 such that
4\’ 2, 8m [ - g
1) [wirde+S" [k Fao < [I1rPdo an

forall f € 1*(0)? Then,

(1) 4(m|Kllo + /m2[|[K[|Z +1/4) < Ao < 4(m|[K]lo + /m?[K[Z+[WII3),

(@) If A > O is such that kr(1/A +C%) # 0 then A < Ag,

(it)) If A = Ag > 2V/2 then the equality holds, and the minimizers of (17) give rise
to functions in kr(1/Aq + C%) and vice versa.

For the first part of the theorem, we denote by A(A, f) the left hand side of (17)
for a given 2 > 0 and f € L?(c)?. Note that

2
A1) < <<4'V;"’) +8’”'f"’) 1712 8)

Hence, if A > 4(m||K||6 4+ +/m2||[K||% + [W])%) then (18) yields A(A, f) < || f||3 for
all f € L*(0)?, which in turn implies that Ao < 4(m||K||s +/m?||K|3+ [W]3).
The inequality from below is a bit more involved. Let A > 0 be such that

AN <Iflls - forall f e L (o). (19)

If we set h = %(O"N)W(f) € [*(0)?, then f = —A(c-N)W(h) by (16). Further-
more,

2
/|W(f)|2d0: G) /|h|2dc and /\f\zdo:xz/w(h)\zdo. (20)
Moreover, using (16) again,

/K(f)-fdc:)LZ/K(U-N)W(h)-(6~N)W(h)d6: %Z/K(h)ﬁda. @1

Gathering (19) with (20) and (21) yields

/\h|2d6+2ml/1((h)-ﬁdogkz/\W(h)FdG (22)
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for all h € L*(c)?. If we multiply (22) by 16/4* we get
16 [ 32m - 16
i [ Pdo+ =5 [K(f)-Fdo < 35 [IW(pPdo
for all f € L?(o)?, which added to (19) gives
- Al 2 20,12
2m/K(f)~fdcr§ h-2 /\f| do  forall f € I¥(c)>
Since K is bounded, positive and self-adjoint, we see from the above inequality that

NS

2m||K||e =2m sup [ K(f) fdo <
[fllo=1"

)

>

which in turn is equivalent to A> — 8m||K||cA —4 > 0, since A > 0 by assumption.
Therefore, we must have A > 4 (m||K||s 4 +/m?[|K||Z + 1/4) for all 2 > 0 satisfying
(19). This gives the desired inequality from below for Aq, and finishes the proof of
(7). Observe that this lower bound for A is strictly greater than 2 because ||K||s > 0.
The proof of (ii) comes from the arguments presented before the theorem. And, for
the last part, since K is positive, A(A, f) is a non-increasing function of A > 0 for
all f € L?(c)2. By the definiton of Agq, this monotony implies that (17) holds for all
A > Ag and it is sharp for A = Aq. It remains to be shown that if 1o > 2v/2 then the
equality is attained and that the minimizers give rise to functions in kr(1/Ag + C%)
and vice versa. We will not give these details in order to shorten the notes, see [3].

The constraint (5) needed in Theorem 1.5, appears precisely as a technical ob-
struction on the arguments that we use to prove that equality holds in (17). The items
(if) and (iii) in Theorem 2.2 ensure that

Ao =sup{|A|: kr(1/A +C¥) #0} and4/Aq =inf{|A|: kr(1/A +CF) #0}. (23)

2.3 The isoperimetric-type inequality

Finally, in this subsection we gather the previous results and give the isoperimetric-
type inequality in terms of area and capacity. Notice that we are looking for an
inequality for Ag.

At this point the following result become crucial. If Q is a ball then 2W is an
isometry and ||Wq||2 = 1/4. The opposite implication is proved in [5]. Thus, 1o =
A(m|Kllo+/m?[[K][5+1/4).

For a general Q, |W|2 > 1/4 holds. Then,
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do(x) do(y)

1 J _ " 1
Kl =sup s [ K572 0002) [ o SEes o0

Area(dQ2)
Cap(Q2)

Equality holds in the las two inequalities if 2 is a ball. Hence,

2
ha > 4 mArAR) \/ m (L’a(m )) 4 24)

1
Cap(Q) Cap(Q) 4

Therefore, combining (23) and (24) we get the desired result.
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