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The enhanced phytoremediation of metal contaminated soils holds great
promise for the recovery of soil health and functionality, while providing a
range of co-benefits, from an environmental and human health perspective,
derived from the revegetation of the degraded sites and the concomitant delivery
of ecosystem services. Due to diverse evolutionary co-selection mechanisms
between metal resistance and antibiotic resistance in bacteria, metal
contaminated soils are considered potential reservoirs of antibiotic resistant
bacteria (ARB) which can contribute to the existing antibiotic resistance crisis.
During the enhanced phytoremediation of metal contaminated soils, the
application of organic wastes (e.g., manure, slurry, sewage sludge) as soil
amendments can aggravate the risk of antibiotic resistance spread, because
they often contain ARB which harbor antibiotic resistance genes (ARGs) that
can then be propagated among soil bacterial populations through horizontal
gene transfer (HGT). Due to the magnitude and criticality of the antibiotic
resistance crisis, as well as the higher risk of spread and dispersal of ARB and
ARGs (they make copies of themselves) compared to metals, it is proposed here
to aim enhanced phytoremediation strategies towards decreasing the soil
resistome (and, hence, the risk of its potential link with the human resistome),
while reducing total and/or bioavailable metal concentrations and restoring soil
health and the delivery of ecosystem services. To this purpose, a decalogue of
practices is tentatively suggested. Finally, a proper management of plant and soil
microbial compositions is amost crucial aspect, together with the selection of the
right organic wastes and phytoremediation practices.
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1 Introduction

Metal phytoremediation strategies have important drawbacks that are hindering their
commercial use (Wang and Delavar, 2023). Phytoextraction can reduce total metal
concentrations, but it requires unacceptably long times to decrease such concentrations
below regulatory limits (Tang, 2023). The main limitation of phytostabilisation is that it
does not reduce total metal concentrations in soil, as it is based on the use of excluders that
reduce metal bioavailability, but not total concentrations. Besides, phytoremediation is
limited to the surface area and depth occupied by the roots and can increase the risk of metal
accumulation up the trophic chain (El Rasafi et al., 2023). In an attempt to overcome these
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limitations, several enhanced phytoremediation strategies have been
proposed. Thus, inorganic and organic amendments are used to
assist the revegetation of metal contaminated soils (Moreira et al.,
2021). Compared to inorganic amendments, organic amendments
have certain advantages: high accessibility, low costs, reuse of wastes,
increase of soil organic matter, supply of nutrients, improvement of
soil structure, enhancement of microbial activity (which can then
help control soilborne pathogens) (Janvier et al., 2007; Núñez-Zofío
et al., 2011), etc. Another strategy, microbial-assisted
phytoremediation, is based on the inoculation of plant growth-
promoting bacteria (PGPB) (Waseem et al., 2024) and/or fungi
(Ahmad et al., 2024), often as consortia, to facilitate plant growth
and performance under the harsh conditions that characterize
contaminated soils (Alkorta et al., 2017; Alkorta and Garbisu,
2021). The presence of fungi can promote bacterial distribution
as they are known to use fungal hyphae to disperse in the soil under
unsaturated conditions (Kohlmeier et al., 2005). Likewise, the
combination of amendments, plants (phytoremediation),
microorganisms (bioremediation), and earthworms
(vermiremediation) is also promising for soil remediation (Lacalle
et al., 2020). Interestingly, the phytoremediation field has recently
shifted towards phytomanagement (Moreira et al., 2021), a concept
focused on the use of plants to generate products and ecosystem
services while remediating a contaminated soil.

Metal contaminated sites can conceal other risks different from
those associated to metal toxicity. Relevantly, metal contaminated
soils can be reservoirs of antibiotic resistant bacteria (ARB) and
antibiotic resistance genes (ARGs) (Cai et al., 2023; Song et al.,
2024). Due to the criticality of the antibiotic resistance crisis and the
higher risk of spread and dispersal of ARB and ARGs, compared to
metals, it is proposed here to aim enhanced phytoremediation
strategies towards decreasing the soil resistome, while reducing
metal concentrations and restoring soil health. This antibiotic
resistance-centered approach to metal phytoremediation could
promote its commercial use and interest for soil managers.
Several papers can be found in the literature on i) the biological
remediation of antibiotic contaminated soils, e.g., removal of
antibiotics via bioremediation or microbial-assisted
phytoremediation; or 2) the presence of ARB and ARGs in metal
contaminated soils due to co-selection mechanisms. But, to our
knowledge, the abovementioned proposal is a novel proposal.

2 Metal contamination and antibiotic
resistance

In order to attract attention to a field of knowledge, it is
convenient to point out its links with human health and/or
wellbeing. Metals can be toxic to humans and, as such, they have
always attracted our attention from a human health perspective
(Tian et al., 2023). But, although metal toxicity by itself is more than
enough reason to take the remediation of metal contaminated sites
very seriously, to this risk, we must add the fact that these sites have
been linked to one of the greatest threats to public health: the
emergence and dissemination of ARB harboring ARGs (Edet
et al., 2023).

Given the criticality of the antibiotic resistance crisis, the links
between the soil resistome and the human resistome is currently a

topic of much interest (Liao et al., 2022). The selective pressure that
the presence of antibiotics may exert on ARB proliferation in soil is
of particular concern, as soil contains a number of bacterial genera of
clinical relevance (Serwecińska, 2020). Much interest exists on the
relationship between the use of organic amendments of animal
(manure, slurry) and/or urban (sewage sludge) origin as fertilizers
and the soil resistome (Jauregi et al., 2021a; Jauregi et al., 2021b;
Jauregi et al., 2023). Manure is acknowledged as a reservoir of ARB
and ARGs (Zhu et al., 2013), which can be disseminated in the
environment through horizontal gene transfer (HGT) among
bacteria mediated by mobile genetic elements (MGEs) (Heuer
et al., 2011; Urra et al., 2019). Once in the soil, the ARB initially
present in the manure can die or survive and then inhabit the abiotic
and/or biotic component of the soil matrix. The presence of
antibiotics and their transformation products in the amendments
can alter the composition of soil microbial communities with
consequences for the soil resistome and mobilome (Gillings,
2013; Nesme and Simonet, 2015).

The link between metal contamination and AR is based on the
fact that metal contamination can lead to the spread of AR through
co-selection mechanisms, such as co-resistance (several resistance
systems in the same genetic element), cross-resistance (one resistance
system confers resistance to both a metal and an antibiotic), and co-
regulation (when resistance to antibiotics and metals are controlled
by a single regulatory gene) (Baker-Austin et al., 2006; Wales and
Davies, 2015; Ohore et al., 2019). Due to the AR crisis and the degree
of metal contamination in many environmental matrices, much
attention is being paid to the study of the role of metal
contamination as selective agent in the proliferation of
environmental antibiotic resistance (Jauregi et al., 2021b). For
instance, ARGs can be found in metal contaminated mines
(Garbisu et al., 2018). Importantly, owing to the long residence
times of metals in soil, they represent a recalcitrant selection
pressure on ARB.

3 Enhanced phytoremediation aimed at
reducing antibiotic resistance

Many metal contaminated sites are not being remediated for
economic and/or technical reasons. In an attempt to find ways to
encourage the remediation of metal contaminated soils, here it is
proposed to direct enhanced phytoremediation strategies to reduce
the risk of the environmental resistome present in metal
contaminated soils. This novel proposal is based on three facts:
1) soil is one of our most important resources, and as such we must
do our best to restore its functionality when degraded; ii) the link
between the soil resistome and the human resistome is a threat to the
effectiveness of antibiotics in medicinal practice and we must do
over best to disrupt such link; and iii) there is a higher risk of spread
and dispersal of ARB and ARGs (they make copies of themselves),
compared to metals. It is crucial to design enhanced
phytoremediation practices taking into consideration the
possibility to reduce the risk of antibiotic resistance in the metal
contaminated site under remediation, as well as its propagation to
other environmental matrices, while decreasing total and/or
bioavailable metal concentrations, restoring soil functioning, and
providing ecosystem services.
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The following is a brief description of practices, in the form of a
tentative decalogue (Figure 1), that must be taken into consideration
during the implementation of enhanced phytoremediation strategies
in order to minimize the antibiotic resistance risk, while addressing
the risks associated with the presence of metals.

(1) Selection and pretreatment of organic amendments: it is
desirable to select those amendments that have a lower
content of metals and antibiotics (as well as of ARB,
ARGs, and MGEs). Although, in most cases, a thorough
analysis of the composition of the amendments is not
available (especially regarding the content of antibiotics,
not to mention the abundance of ARB, ARGs, or MGEs),
from the origin of the amendments (urban versus animal
origin, manure from one livestock species versus another,
manure from an ecological versus an industrial farm, etc.), it
is possible to estimate which ones represent a lower risk.
However, the most important factor is probably the type of
pretreatment applied to the amendment prior to its use:
storage, composting, anaerobic digestion, etc. It is crucial to
opt for amendments that have been properly treated for
hygienisation purposes or composted. Manure
pretreatment, by means of composting or anaerobic
digestion, can reduce the burden of ARB and ARGs, as
well as destroy antibiotic residues (Tran et al., 2021; Wang
et al., 2021). Although neither composting nor storage
completely eliminate the risk of antibiotic resistance,
composting is normally more effective (Zalewska et al.,
2023). A thermal hydrolysis pre-treatment combined with

anaerobic digestion has been reported to reduce the
abundance of ARGs and MGEs in sewage sludge (Sun
et al., 2019). The use of exogenous additives, such as
nanomaterials, during manure composting has been
shown to reduce the ARG abundances (Jiang et al., 2023).
Jiang et al. (2023) reported the effectiveness of the addition
of SiO2 nanoparticles during manure composting to
decrease the propagation of ARGs. Nnorom et al. (2023)
reviewed the use of carbon- and iron-based conductive
materials (biochar, activated carbon, zerovalent iron) as
additives to mitigate the proliferation of ARGs during the
anaerobic digestion of sludge and manure, and concluded
that they can decrease ARG abundances in the digestate by
easing selective pressure, changing microbial community
structure, and diminishing HGT.

(2) Application of inorganic amendments to reduce metal
bioavailability: another strategy to minimize the risk of
co-selection between metal and antibiotic resistance is to
decrease the levels of bioavailable metals in soil. A well-
known strategy is the application of lime to increase soil
pH and, hence, reduce bioavailable concentrations. Many
other amendments (iron oxides, phosphates, ashes, etc.)
have been used for chemical stabilization in metal
contaminated soils (Kumpiene et al., 2019). When dealing
with metal phytoremediation, one must decide whether to
mobilize or immobilize the metals (Bolan et al., 2014), since
mobilizing agents (chelating agents, desorbing agents)
enhance plant metal uptake but at the same time increase
the risk of metal leaching, while immobilizing agents

FIGURE 1
Tentative decalogue of practices that must be taken into account during the enhanced phytoremediation of metal contaminated soil in order to
minimize the risk of antibiotic resistance.
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(precipitating agents, sorbent materials) reduce both metal
transfer to the food chain and leaching but require
monitoring and management to guarantee the long-term
stability of the immobilized metals.

(3) Planting metal excluders to reduce metal bioavailability:
phytostabilisation with excluders is focused on the
reduction of bioavailable concentrations, so that metal
toxicity and mobility are decreased (Moreira et al., 2021).
The level of bacterial exposure to metals is decreased and,
concomitantly, the selection pressure to become tolerant to
those metals, minimizing the appearance of antibiotic
resistance via co-selection.

(4) Application of biochar to reduce the soil resistome: apart from
the use of biochar aimed at modifying soil properties,
including bioavailable concentrations (Moreira et al.,
2021), much research has been done on the effect of
biochar on the soil resistome (Cheng et al., 2021).
Biochar has been reported to reduce the accumulation of
ARGs in soil and their transfer to crops, among other
reasons, due to the biochar´s ability to decrease, through
sorption, the mobility and bioavailability of antibiotics and
metals, as well as to its effect on microbial community
composition derived from the induced changes on soil
physicochemical properties (Ye et al., 2016; Duan et al.,
2017; Chen et al., 2018; He et al., 2019; Cheng et al., 2021).
Field aging can modify the biochar’s effect on the resistome
of manured soil (Cheng et al., 2021). Finally, the addition of
biochar during composting can accelerate antibiotics
removal and reduce the accumulation of ARGs (Tong
et al., 2022).

(5) Application of plant growth-promoting bacteria: the
application of PGPB is becoming common practice
during the phytoremediation of contaminated soils
(Moreira et al., 2021). The application to soil of
ecologically competitive PGPB could, theoretically
speaking, outcompete the ARB present in the soil via, for
instance, competition for resources and space. Antibiotic
resistant bacteria introduced via the application of
amendments can be viewed as invasive species and, as
such, the possibility of their control by means of the
introduction of highly competitive equivalents comes out
as a potentially suitable strategy to reduce the risk of their
dissemination. Biodiversity, and in particular soil
biodiversity, can control invasive species (Bach et al.,
2020). The generation of soil niches for potential
microbial competitors of ARB derived from aboveground
plant richness also emerges as a possibility for the control of
ARB. It is important to emphasize that only antibiotic-
susceptible PGPB must be used because PGPB often
harbor ARGs (Mahdi et al., 2021).

(6) Bioaugmentation with antibiotic degraders: apart from the
risk of the introduction of antibiotics to soil via organic
amendments, many soil microbial species (particularly,
actinobacteria and fungi) naturally produce antibiotics for
competition purposes or as signalling molecules that
facilitate intra- or interspecies interactions (Romero et al.,
2011). Microorganisms have produced antibiotics for
millions of years and, then, ARGs are often isolated from

pristine environments, not subjected to antibiotic residues
derived from human usage (Bhullar et al., 2012). In metal
contaminated soils subjected to enhanced
phytoremediation, this natural resistome must be added
to the metal-derived resistome and the manured-
associated resistome. The presence of natural or
exogenous antibiotics in the soil causes a selective
pressure on exposed bacteria to become resistant. The
possibility of antibiotic bioremediation via
bioaugmentation with microbial antibiotic degraders
(Hong et al., 2020) can be a suitable option to decrease
the risk of antibiotic resistance dissemination in soils under
remediation. Apart from bacterial degraders, fungal-based
remediation (mycoremediation) shows great potential for
the removal of antibiotics (Čvančarová et al., 2015; Olicón-
Hernández et al., 2017; Jalali et al., 2023). Interestingly,
fungal hyphae serve as vectors for bacteria to travel across
the soil, the so-called hyphal highways along which bacteria
can swim in the water film that coats the hyphae or,
alternatively, travel passively by settling at the tip of the
growing hyphae (Guennoc et al., 2018).

(7) Increase plant richness to generate niches belowground: when
ARB enter the soil during the application of manure, they
can be regarded as invasive species whose success will rely on
abiotic and biotic factors, such as, for instance, their
ecological fitness, ecological valence under those
conditions, dispersal ability, capacity for acclimation and
adaptation, etc. Chen et al. (2019), in a study on the
possibility of using microbial diversity against ARB
invasion, reported that soil microbial diversity was
negatively correlated with ARG abundance and concluded
that a high soil microbial diversity works as a barrier against
antibiotic resistance dissemination. Plant richness has been
linked to belowground microbial diversity, probably due to
the generation of niches derived from diverse litter types and
root exudates (Wardle et al., 2004). In principle, the
implementation of high plant richness aboveground
(different species of grasses, shrubs, trees, and at different
stages of growth and development) should increase the
number of niches belowground and, concomitantly, a
high diversity of microorganisms that could limit the
growth of ARB or outcompete them. Besides, the
promotion of biodiversity under phytoremediation has
been reported to have many benefits (Garbisu et al., 2020).

(8) Establish a vegetation cover to control soil erosion: to avoid the
dispersal of soil ARB to other environmental compartments
(e.g., air, water), it is critical to establish a permanent full
vegetation cover to minimize the risk of such dispersal
through erosion. On the other hand, erosion has been
reported to reduce soil microbial diversity (Qiu et al., 2021).

(9) Introduction of earthworms to reduce antibiotic resistance
risk: although still a controversial issue, there are quite a few
studies that have found a decrease in soil ARG abundances
in the presence of earthworms. Li et al. (2022) found that
earthworms can reduce the dissemination potential of ARGs
by changing bacterial co-occurrence patterns in soil. Zhu
et al. (2021) observed that the presence of earthworms
decreased the abundance of ARGs in soils, suggesting that
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vermiremediation could be a suitable method to reduce risks
associated to the presence of ARGs in soils. During
vermicomposting of sewage sludge, earthworms have
shown to decrease ARG abundance (Huang et al., 2020).

(10) Avoid orminimize the use of pesticides during phytoremediation:
during phytoremediation, pesticides are often used to control
weeds in the early stages of site management (Kidd et al., 2015).
But herbicide use has been shown to be positively correlated
with antibiotic resistance (Kurenbach et al., 2018; Xu et al.,
2019), among other reasons, possibly due to changes in
herbicide-mediated gene expression, leading to activation of
bacterial ARGs (Staub et al., 2012). Liao et al. (2021) reported
that the application of glyphosate, glufosinate, and dicamba
increased the abundance of ARGs and MGEs in soil, without
changes in the abundance or diversity of bacterial communities.
Moreover, herbicide exposure increased conjugation frequency
of multidrug resistance plasmids, thus promoting ARG spread
among bacterial populations (Liao et al., 2021).

4 Conclusion

Metal contaminated soils can be a reservoir of ARB and ARGs.
The application of organic amendments during enhanced
phytoremediation, as well as the inoculation of PGPB, can
aggravate this problem. Here, it is proposed to aim enhanced
phytoremediation strategies towards decreasing the soil resistome,
while reducing total and/or bioavailable metal concentrations and
restoring soil health and the delivery of ecosystem services. To this
purpose, a decalogue of practices has been tentatively suggested.
Nonetheless, it must be emphasized that the soil is a highly complex,
heterogeneous, and dynamic ecosystem, whose functioning is still
greatly unknown, and then one must be extremely cautious when
proposing specific soil practices or measures as, quite often, they do
not have the expected outcome or even show the opposite effect. In
consequence, it is crucial to first test the suitability of the ten
practices proposed here under the specific edaphoclimatic and
contamination conditions of the site of interest. The ultimate
goal of this perspective article has been to bring attention to the
antibiotic resistance problem in metal contaminated soils subjected
to enhanced phytoremediation. Importantly, this antibiotic
resistance-centered approach to soil metal phytoremediation
could promote its commercial use and interest for soil managers.
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