Arquitecturas de aprendizaje profundo para la detección de pulso en la parada cardiaca extrahospitalaria utilizando el ECG
View/ Open
Date
2018-11-19Author
Elola Artano, Andoni
Aramendi Ecenarro, Elisabete
Irusta Zarandona, Unai
Alonso González, Erik
Metadata
Show full item record
Libro de Actas del XXXVI Congreso Anual de la Sociedad Española de Ingeniería Biomédica, Ciudad Real, 21 - 23 de noviembre : 375-378 (2018)
Abstract
La detección de la presencia de pulso durante la parada cardiorrespiratoria extrahospitalaria es crucial para la supervivencia del paciente. Se ha demostrado que la toma manual del pulso no es muy fiable y que consume demasiado tiempo, por lo que es necesario desarrollar métodos automáticos que ayuden en la identificación del retorno de la circulación espontánea del paciente en parada. En este trabajo se propone utilizar técnicas de aprendizaje profundo para la discriminación automática de ritmos con pulso (PR) y sin pulso (PEA) utilizando solamente información proveniente del ECG. Se ha utilizado una base de datos que contiene 3914 segmentos de 5 segundos (3372 PR y 1542 PEA), que se dividieron en dos bases de datos con pacientes disjuntos para la optimización y evaluación de los métodos. Los mejores resultados se han obtenido utilizando una red neuronal profunda que contiene dos etapas de convolución y una etapa recurrente para la extracción de características y a continuación un clasificador. El modelo se evalúa en términos de sensibilidad (SE, porcentaje de PRs correctamente detectados) y especificidad (SP, proporción de PEAs correctamente detectados). Sobre la base de evaluación se obtuvieron una SE/SP de 94.2%/91.0%, por lo que puede concluirse que la detección automática del pulso utilizando sólo el ECG es viable mediante técnicas de aprendizaje profundo.