Abstract
A new structural typology of a hybrid purlin, made of type C cold steel and rectangular laminated wood (SWP), is presented in this paper. As a result, improvements on the most commonly used steel purlins are achieved, by substituting some of the steel sections for wooden sections. Although the wooden section is weaker and has a lower elastic modulus than the steel, the overall dimensions of the SWP are no larger than the type C steel purlin. In comparison with the steel ones, SWP purlins achieve a far better performance in terms of sustainability and are of lower weight, so less material will be needed for the main structure of the building. The behavior of each material in its position and the improvements in terms of sustainability and lower weight are analyzed as a function of span length, slope, and design load. To do so, the influence of both tensile stress and deformation design criteria in each section and the influence of those criteria on the choice of material and the lengths of each section are all examined. Finally, a design guide for the SWPs is presented that applies the proposed technical specifications.