The Nucleolus, the Kernel, and the Bargaining Set: An Update
Abstract
One of David Schmeidler’s many important contributions in his distinguished career was the introduction of the nucleolus, one of the central single-valued solution concepts in cooperative game theory. This paper is an updated survey on the nucleolus and its two related supersolutions, i.e., the kernel and the bargaining set. As a first approach to these concepts, we refer the reader to the great survey by Maschler (1992); see also the relevant chapters in Peleg and Sudholter (2003). Building on the notes of four lectures on the nucleolus and the kernel delivered by one of the authors at the Hebrew University of
Jerusalem in 1999, we have updated Maschler’s survey by adding more recent contributions to the literature. Following a similar structure, we have also added a new section that covers the bargaining set.
The nucleolus has a number of desirable properties, including nonemptiness, uniqueness, core selection, and consistency. The first way to understand it is based on an egalitarian principle among coalitions. However, by going over the axioms that characterize it, what comes across as important is its connection with coalitional stability, as formalized in the notion of the core. Indeed, if one likes a single-valued version of core stability that always yields a prediction, one should consider the nucleolus as a recommendation. The kernel, which contains the nucleolus, is based on the idea of “bilateral equilibrium” for every pair of players. And the bargaining set, which contains the
kernel, checks for the credibility of objections coming from coalitions. In this paper, section 2 presents preliminaries, section 3 is devoted to the nucleolus, section 4 to the kernel, and section 5 to the bargaining set.