Abstract
Due to the inherent difficulties in determination of the degree of branching for polymers produced in pulsed laser polymerization (PLP) experiments, the behavior of the degree of branching and backbiting reaction in high laser frequency and relatively high reaction temperatures have not been well-established. Herein, through a simulation study, the validity of different explanations on the recovery of PLP-molar mass distribution at high laser frequencies is discussed. It is shown that the reduction of the backbiting reaction rate at high laser frequency, and consequent decrease in the degree of branching, is not a necessary condition for recovering the PLP-molar mass distribution. The findings of this work provide simulation support to a previous explanation about the possibility of using high laser frequency for reliable determination of the propagation rate coefficient for acrylic monomers.