Trotterized adiabatic quantum simulation and its application to a simple all-optical system
View/ Open
Date
2020-05Author
Sun, Yifan
Zhang, Jun-Yi
Byrd, Mark S
Wu, Lianao
Metadata
Show full item record
New Journal of Physics 22(5) : (2020) // Article ID 053012
Abstract
As first proposed for the adiabatic quantum information processing by Wu et al (2002 Phys. Rev. Lett. 89 057904), the Trotterization technique is a very useful tool for universal quantum computing, and in particular, the adiabatic quantum simulation of quantum systems. Given a boson Hamiltonian involving arbitrary bilinear interactions, we propose a static version of this technique to perform an optical simulation that would enable the identification of the ground state of the Hamiltonian. By this method, the dynamical process of the adiabatic evolution is mapped to a static linear optical array which is robust to the errors caused by dynamical fluctuations. We examine the cost of the physical implementation of the Trotterization, i.e. the number of discrete steps required for a given accuracy. Two conclusions are drawn. One is that the number of required steps grows much more slowly than the system size if the number of non-zero matrix elements of Hamiltonian is not too large. The second is that small fluctuations of the parameters of optical elements do not affect the first conclusion. This implies that the method is robust against the certain type of errors as we considered. Last but not least, we present an example of implementation of the simulation on a photonic chip as well as an optimized scheme. By such examples, we show a reduction of the costs compared to its classical counterpart and the potential for further improvement, which promotes a more general application.
Collections
Except where otherwise noted, this item's license is described as Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.