Strategies to Reduce Porosity in Al-Mg WAAM Parts and Their Impact on Mechanical Properties
Metals11 (3) : (2021) // Article ID 524
Abstract
Open AccessFeature PaperArticle
Strategies to Reduce Porosity in Al-Mg WAAM Parts and Their Impact on Mechanical Properties
by Maider Arana
1,2,* [OrcID] , Eneko Ukar
2, Iker Rodriguez
1, Amaia Iturrioz
1 [OrcID] and Pedro Alvarez
1 [OrcID]
1
LORTEK Technological Centre, Basque Research and Technology Alliance (BRTA), 20240 Ordizia, Spain
2
Mechanical Engineering Department, University of the Basque Country UPV/EHU, 48013 Bilbao, Spain
*
Author to whom correspondence should be addressed.
Academic Editor: Eric Hug
Metals 2021, 11(3), 524; https://doi.org/10.3390/met11030524
Received: 1 March 2021 / Revised: 16 March 2021 / Accepted: 18 March 2021 / Published: 23 March 2021
(This article belongs to the Special Issue Directed Energy Deposition of Metal Alloys)
Download PDF Browse Figures
Review Reports Citation Export
Abstract
With the advent of disruptive additive manufacturing (AM), there is an increasing interest and demand of high mechanical property aluminium parts built directly by these technologies. This has led to the need for continuous improvement of AM technologies and processes to obtain the best properties in aluminium samples and develop new alloys. This study has demonstrated that porosity can be reduced below 0.035% in area in Al-Mg samples manufactured by CMT-based WAAM with commercial filler metal wires by selecting the correct shielding gas, gas flow rate, and deposition strategy (hatching or circling). Three phase Ar+O2+N2O mixtures (Stargold®) are favourable when the hatching deposition strategy is applied leading to wall thickness around 6 mm. The application of circling strategy (torch movement with overlapped circles along the welding direction) enables the even build-up of layers with slightly thicker thickness (8 mm). In this case, Ar shielding gas can effectively reduce porosity if proper flow is provided through the torch. Reduced gas flows (lower than 30 Lmin) enhance porosity, especially in long tracks (longer than 90 mm) due to local heat accumulation. Surprisingly, rather high porosity levels (up to 2.86 area %) obtained in the worst conditions, had a reduced impact on the static tensile test mechanical properties, and yield stress over 110 MPa, tensile strength over 270 MPa, and elongation larger than 27% were achieved either for Ar circling, Ar hatching, or Stargold® hatching building conditions. In all cases anisotropy was lower than 11%, and this was reduced to 9% for the most appropriate shielding conditions. Current results show that due to the selected layer height and deposition parameters there was a complete re-melting of the previous layer and a thermal treatment on the prior bottom layer that refined the grain size removing the original dendritic and elongated structure. Under these conditions, the minimum reported anisotropy levels can be achieved.
Collections
Except where otherwise noted, this item's license is described as 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).