Antibacterial Activity Testing Methods for Hydrophobic Patterned Surfaces
View/ Open
Date
2021-03-23Author
Pérez Gavilán, Ana
Vieira de Castro, Joana
Arana Salaverría, Ainara
Merino Álvarez, Santos
Retolaza, Aritz
Alves, Sofía A.
Francone, Achille
Kehagias, Nikolaos
Sotomayor Torres, Clivia Marfa
Cocina, Donato
Mortera, Renato
Crapanzano, Salvatore
Pelegrín, Carlos Javier
Garrigós, María Carmen
Jiménez Migallón, Alfonso
Galindo, Begoña
Araque, Mari Carmen
Dykeman, Donna
Neves, Nuno M.
Marimón Ortiz de Zarate, José María
Metadata
Show full item record
Scientific Reports 11(1) : (2021) // Article ID 6675
Abstract
One strategy to decrease the incidence of hospital-acquired infections is to avoid the survival of pathogens in the environment by the development of surfaces with antimicrobial activity. To study the antibacterial behaviour of active surfaces, different approaches have been developed of which ISO 22916 is the standard. To assess the performance of different testing methodologies to analyse the antibacterial activity of hydrophobic surface patterned plastics as part of a Horizon 2020 European research project. Four different testing methods were used to study the antibacterial activity of a patterned film, including the ISO 22916 standard, the immersion method, the touch-transfer inoculation method, and the swab inoculation method, this latter developed specifically for this project. The non-realistic test conditions of the ISO 22916 standard showed this method to be non-appropriate in the study of hydrophobic patterned surfaces. The immersion method also showed no differences between patterned films and smooth controls due to the lack of attachment of testing bacteria on both surfaces. The antibacterial activity of films could be demonstrated by the touch-transfer and the swab inoculation methods, that more precisely mimicked the way of high-touch surfaces contamination, and showed to bethe best methodologies to test the antibacterial activity of patterned hydrophobic surfaces. A new ISO standard would be desirable as the reference method to study the antibacterial behaviour of patterned surfaces