Leg Fidgeting Improves Executive Function following Prolonged Sitting with a Typical Western Meal: A Randomized, Controlled Cross-Over Trial
View/ Open
Date
2022-01-26Author
Fryer, Simon
Paterson, Craig
Stoner, Lee
Brown, Meghan A.
Faulkner, James
Turner, Louise A.
Zieff, Gabriel
Stone, Keeron
Metadata
Show full item record
International Journal of Environmental Research and Public Health 19(3) : (2022) // Article ID 1357
Abstract
Prolonged uninterrupted sitting and a typical Western meal, high in fat and refined sugar, can additively impair cognitive and cerebrovascular functions. However, it is unknown whether interrupting these behaviours, with a simple desk-based activity, can attenuate the impairment. The aim of this study was to determine whether regular leg fidgeting can off-set the detrimental effects of prolonged sitting following the consumption of a typical Western meal, on executive and cerebrovascular function. Using a randomized cross-over design, 13 healthy males consumed a Western meal and completed 180-min of prolonged sitting with leg fidgeting of 1 min on/4 min off (intervention [INT]) and without (control [CON]). Cognitive function was assessed pre and post sitting using the Trail Maker Test (TMT) parts A and B. Common carotid artery (CCA) blood flow, as an index of brain flow, was measured pre and post, and cerebral (FP1) perfusion was measured continuously. For TMT B the CON trial significantly increased (worsened) completion time (mean difference [MD] = 5.2 s, d = 0.38), the number of errors (MD = 3.33, d = 0.68) and cognitive fatigue (MD = 0.73, d = 0.92). Compared to CON, the INT trial significantly improved completion time (MD = 2.3 s, d = 0.97), and prevented declines in cognitive fatigue and a reduction in the number of errors. No significant changes in cerebral perfusion or CCA blood flow were found. Leg fidgeting for 1-min on/4-min off following a meal high in fats and refined sugars attenuated the impairment in executive function. This attenuation in executive function may not be caused by alterations in CCA blood flow or cerebral perfusion.
Collections
Except where otherwise noted, this item's license is described as © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).