Show simple item record

dc.contributor.authorFlores Bravo, José Ángel
dc.contributor.authorMadrigal, Javier
dc.contributor.authorZubia Zaballa, Joseba Andoni
dc.contributor.authorSales, Salvador
dc.contributor.authorVillatoro Bernardo, Agustín Joel
dc.date.accessioned2022-05-11T08:22:30Z
dc.date.available2022-05-11T08:22:30Z
dc.date.issued2022
dc.identifier.citationScientific Reports 12 : (2022) // Article ID 1280es_ES
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10810/56510
dc.description.abstract[EN] Sensors based on Bragg gratings inscribed in conventional single mode fibers are expensive due to the need of a sophisticated, but low-speed, interrogation system. As an alternative to overcome this issue, in this work, it is proposed and demonstrated the use of coupled-core optical fiber Bragg gratings. It was found that the relative reflectivity from such gratings changed when the coupled-core fiber was subjected to point or periodic bending. This feature makes the interrogation of such gratings simple, fast, and cost-effective. The reflectivity changes of the gratings are attributed to the properties of the supermodes supported by the coupled-core fiber. As potential applications of the referred gratings, intensity-modulated vector bending and vibration sensing are demonstrated. We believe that the results reported here can pave the way to the development of many inexpensive sensors. Besides, coupled-core fiber Bragg gratings may expand the use of grating technology in other areas.es_ES
dc.description.sponsorshipThis work is part of the Projects No. PGC2018-101997-B-I00 and RTI2018-094669-B-C31 funded by the MCIN/AEI/10.13039/501100011033/and FEDER, Una manera de hacer Europa; and the scholarship PAID-01-18 Granted by the Universitat Politecnica de Valencia.es_ES
dc.language.isoenges_ES
dc.publisherNature Researches_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/PGC2018-101997-B-I00es_ES
dc.relationinfo:eu-repo/grantAgreement/MICIU/RTI2018-094669-B-C31es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectFBG sensorses_ES
dc.subjecthigh speedes_ES
dc.subjectinterrogationes_ES
dc.titleCoupled-core fiber Bragg gratings for low-cost sensinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.nature.com/articles/s41598-022-05313-9es_ES
dc.identifier.doi10.1038/s41598-022-05313-9
dc.departamentoesIngeniería de comunicacioneses_ES
dc.departamentoeuKomunikazioen ingeniaritzaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Except where otherwise noted, this item's license is described as © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.