On the Stabilization through Linear Output Feedback of a Class of Linear Hybrid Time-Varying Systems with Coupled Continuous/Discrete and Delayed Dynamics with Eventually Unbounded Delay
Mathematics 10(9) : (2022) // Article ID 1424
Abstract
This research studies a class of linear, hybrid, time-varying, continuous time-systems with time-varying delayed dynamics and non-necessarily bounded, time-varying, time-differentiable delay. The considered class of systems also involves a contribution to the whole delayed dynamics with respect to the last preceding sampled values of the solution according to a prefixed constant sampling period. Such systems are also subject to linear output-feedback time-varying control, which picks-up combined information on the output at the current time instant, the delayed one, and its discretized value at the preceding sampling instant. Closed-loop asymptotic stabilization is addressed through the analysis of two “ad hoc” Krasovskii–Lyapunov-type functional candidates, which involve quadratic forms of the state solution at the current time instant together with an integral-type contribution of the state solution along a time-varying previous time interval associated with the time-varying delay. An analytic method is proposed to synthesize the stabilizing output-feedback time-varying controller from the solution of an associated algebraic system, which has the objective of tracking prescribed suited reference closed-loop dynamics. If this is not possible—in the event that the mentioned algebraic system is not compatible—then a best approximation of such targeted closed-loop dynamics is made in an error-norm sense minimization. Sufficiency-type conditions for asymptotic stability of the closed-loop system are also derived based on the two mentioned Krasovskii–Lyapunov functional candidates, which involve evaluations of the contributions of the delay-free and delayed dynamics.
Collections
Except where otherwise noted, this item's license is described as 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).