Show simple item record

dc.contributor.authorGunatilake, Udara Bimendra
dc.contributor.authorMorales Arboleya, Rafael ORCID
dc.contributor.authorBasabe Desmonts, Lourdes ORCID
dc.contributor.authorBenito López, Fernando ORCID
dc.date.accessioned2022-05-19T10:32:08Z
dc.date.available2022-05-19T10:32:08Z
dc.date.issued2022
dc.identifier.citationLangmuir 38(11) : 3360-3369 (2022)es_ES
dc.identifier.issn0743-7463
dc.identifier.urihttp://hdl.handle.net/10810/56614
dc.description.abstract[EN] Remote manipulation of superhydrophobic surfacesprovides fascinating features in water interface-related applications. Asuperhydrophobic magnetic nanoparticle colloid layer is able to float on the water-air interface and form a stable water-solid-air interface dueto its inherent water repulsion, buoyancy, and lateral capillarity properties. Moreover, it easily bends downward under an externally applied gradient magnetic field. Thanks to that, the layer creates a stabletwister-like structure with aflipped conical shape, under controlled waterlevels, behaving as a soft and elastic material that proportionally deformswith the applied magneticfield and then goes back to its initial state in the absence of an external force. When the tip of the twister structure touches the bottom of the water container, it provides a stable magnetomovable system, which has many applications in the microfluidicfield.We introduce, as a proof-of-principle, three possible implementations of this structure in real scenarios, the cargo and transport of water droplets in aqueous media, the generation of magneto controllableplugs in open surface channels, and the removal of floating microplastics from the air-water interfacees_ES
dc.description.sponsorshipThe authors acknowledge the MaMi project, funded by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 766007. The authors acknowledge funding support from "Ministerio de Ciencia y Educacion de Espana" under grant PID2020-120313GB-I00/AIE/10.13039/501100011033, Spanish AEI grant no PID2019-104604RB, Gobierno Vasco Dpto. Educacion for the consolidation of the research groups (IT1271-19 and IT1162-19), and European funding (ERDF and ESF). The authors thank for technical and human support provided by Dr. Edilberto Ojeda from GTScience and SGIker of UPV/EHU.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/766007es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2019-104604RBes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2020-120313GB-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectliquid marbleses_ES
dc.subjectparticleses_ES
dc.subjectfabricationes_ES
dc.subjectsurfaceses_ES
dc.subjectremovales_ES
dc.subjectoiles_ES
dc.titleMagneto Twister: Magneto Deformation of the Water-Air Interface by a Superhydrophobic Magnetic Nanoparticle Layeres_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 The Authors. Published by American Chemical Society. Attribution 4.0 International (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acs.langmuir.1c02925es_ES
dc.identifier.doi10.1021/acs.langmuir.1c02925
dc.contributor.funderEuropean Commission
dc.departamentoesQuímica analíticaes_ES
dc.departamentoesQuímica físicaes_ES
dc.departamentoesZoología y biología celular animales_ES
dc.departamentoeuKimika analitikoaes_ES
dc.departamentoeuKimika fisikoaes_ES
dc.departamentoeuZoologia eta animalia zelulen biologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 The Authors. Published by American Chemical Society.
Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as © 2022 The Authors. Published by American Chemical Society. Attribution 4.0 International (CC BY 4.0)