Show simple item record

dc.contributor.advisorAlberdi Celaya, Elisabete ORCID
dc.contributor.advisorPardo Zubiaur, David ORCID
dc.contributor.authorRivera González, Jon Ander
dc.date.accessioned2022-12-14T08:00:35Z
dc.date.available2022-12-14T08:00:35Z
dc.date.issued2022-11-25
dc.date.submitted2022-11-25
dc.identifier.urihttp://hdl.handle.net/10810/58728
dc.description139 p.es_ES
dc.description.abstractEl subsuelo terrestre está formado por diferentes materiales, principalmente por rocas porosas que posiblemente contienen minerales y están rellenas de agua salada y/o hidrocarburos. Por lo general, las formaciones que crean estos materiales son irregulares y con materiales de diferentes propiedades mezclados en el mismo estrato.Uno de los principales objetivos en geofísica es determinar las propiedades petrofísicas del subsuelo de la Tierra. De este modo, las compañías pueden determinar la localización de las reservas de hidrocarburos para maximizar su producción o descubrir localizaciones óptimas para el almacenamiento de hidrógeno o el depósito de CO$_2$. Para este propósito, las compañías registran mediciones electromagnéticas utilizando herramientas de Medición Durante Perforación (LWD por sus siglas en inglés -- Logging While Drilling), las cuales son capaces de recabar datos mientras se lleva a cabo el proceso de prospección. Los datos obtenidos se procesan para producir un mapa del subsuelo de la Tierra. Basándose en el mapa generado, el operador ajusta en tiempo real la trayectoria de la herramienta de prospección para seguir explorando objetivos de explotación, incluidos los yacimientos de petróleo y gas, y maximizar la posterior productividad de las reservas disponibles. Esta técnica de ajuste en tiempo real se denomina geo-navegación.Hoy en día, la geo-navegación desempeña un papel esencial en geofísica. Sin embargo, requiere la resolución de problemas inversos en tiempo real. Esto supone un reto, ya que los problemas inversos suelen estar mal planteados.Existen múltiples métodos tradicionales para resolver los problemas inversos, principalmente, los métodos basados en el gradiente o en la estadística. Sin embargo, estos métodos tienen graves limitaciones. En particular, a menudo necesitan calcular el problema inverso cientos de veces para cada conjunto de mediciones, lo que es computacionalmente caro en problemas tridimensionales (3D).Para superar estas limitaciones, proponemos el uso de técnicas de Aprendizaje Profundo (DL por sus siglas en inglés -- Deep Learning) para resolver los problemas inversos. Aunque la etapa de entrenamiento de una Red Neuronal Profunda (DNN por sus siglas en inglés Deep Neural Network) puede requerir mucho tiempo, una vez que la red está correctamente entrenada puede predecir la solución en una fracción de segundo, facilitando las operaciones de geo-navegación en tiempo real. En la primera parte de esta tesis, investigamos las funciones de pérdida apropiadas para entrenar una DNN cuando se trata de un problema inverso.Además, para entrenar adecuadamente una DNN que se aproxime a la solución inversa, necesitamos un gran conjunto de datos que contenga la solución del problema directo para muchos modelos terrestres diferentes. Para crear dicho conjunto de datos, necesitamos resolver una Ecuación en Derivadas Parciales (PDE por sus siglas en inglés -- Partial Differential Equation) miles de veces. La creación de un conjunto de datos puede llevar mucho tiempo, especialmente para los problemas bidimensionales y tridimensionales, ya que la resolución de la PDE mediante métodos tradicionales, como el Método de Elementos Finitos (FEM por sus siglas en inglés -- Finite Element Method), es computacionalmente caro. Por lo tanto, queremos reducir el coste computacional de la construcción de la base de datos necesaria para entrenar la DNN. Para ello, proponemos el uso de métodos de Análisis Isogeométrico refinado (rIGA por sus siglas en inglés -- refined Isogeometric Analysis).Además, exploramos la posibilidad de utilizar técnicas de DL para resolver PDE, que es la limitación computacional principal al resolver problemas inversos. Nuestro objetivo principal es desarrollar un simulador rápido para resolver PDE paramétricas. Como primer paso, en esta tesis analizamos los problemas de cuadratura que aparecen al resolver PDE utilizando DNN y proponemos diferentes métodos de integración para superar estas limitacioneses_ES
dc.description.sponsorshipbcames_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectartificial intelligencees_ES
dc.subjectpartial differential equationses_ES
dc.subjectinteligencia artificiales_ES
dc.subjectecuaciones diferenciales parcialeses_ES
dc.titleDeep Learning for Inverting Borehole Resistivity Measurements.es_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.rights.holderAtribución 3.0 España*
dc.rights.holder(cc)2022 JON ANDER RIVERA GONZALEZ (cc by 4.0)
dc.identifier.studentID731523es_ES
dc.identifier.projectID21657es_ES
dc.departamentoesMatemáticases_ES
dc.departamentoeuMatematikaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España