HUMANISE: Human-Inspired Smart Management, towards a Healthy and Safe Industrial Collaborative Robotics
View/ Open
Date
2023-01-19Author
López de Ipiña Peña, Miren Karmele
Iradi Arteaga, Jon
Fernández Gómez de Segura, Elsa
Calvo, Pilar M.
Salle, Damien
Poologaindran, Anujan
Villaverde, Iván
Daelman, Paul
Sánchez Tapia, Emilio José
Suckling, John
Metadata
Show full item record
Sensors 23(3) : (2023) // Article ID 1170
Abstract
The workplace is evolving towards scenarios where humans are acquiring a more active and dynamic role alongside increasingly intelligent machines. Moreover, the active population is ageing and consequently emerging risks could appear due to health disorders of workers, which requires intelligent intervention both for production management and workers’ support. In this sense, the innovative and smart systems oriented towards monitoring and regulating workers’ well-being will become essential. This work presents HUMANISE, a novel proposal of an intelligent system for risk management, oriented to workers suffering from disease conditions. The developed support system is based on Computer Vision, Machine Learning and Intelligent Agents. Results: The system was applied to a two-arm Cobot scenario during a Learning from Demonstration task for collaborative parts transportation, where risk management is critical. In this environment with a worker suffering from a mental disorder, safety is successfully controlled by means of human/robot coordination, and risk levels are managed through the integration of human/robot behaviour models and worker’s models based on the workplace model of the World Health Organization. The results show a promising real-time support tool to coordinate and monitoring these scenarios by integrating workers’ health information towards a successful risk management strategy for safe industrial Cobot environments.
Collections
Except where otherwise noted, this item's license is described as © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).