Show simple item record

dc.contributor.authorStankovic, Branislav
dc.contributor.authorBarbarin Abarzuza, Iranzu
dc.contributor.authorSanz Iturralde, Oihane ORCID
dc.contributor.authorTomovska, Radmila
dc.contributor.authorRuipérez Cillán, Fernando
dc.date.accessioned2023-03-22T16:29:54Z
dc.date.available2023-03-22T16:29:54Z
dc.date.issued2022-01
dc.identifier.citationScientific Reports 12(1) : (2022) // Article ID 15992es_ES
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10810/60445
dc.description.abstractThere is a constant need for versatile technologies to reduce the continuously increasing concentration of CO2 in the atmosphere, able to provide effective solutions under different conditions (temperature, pressure) and composition of the flue gas. In this work, a combination of graphene oxide (GO) and functionalized waterborne polymer particles was investigated, as versatile and promising candidates for CO2 capture application, with the aim to develop an easily scalable, inexpensive, and environmentally friendly CO2 capture technology. There are huge possibilities of different functional monomers that can be selected to functionalize the polymer particles and to provide CO2-philicity to the composite nanostructures. Density functional theory (DFT) was employed to gain a deeper understanding of the interactions of these complex composite materials with CO2 and N-2 molecules, and to build a basis for efficient screening for functional monomers. Estimation of the binding energy between CO2 and a set of GO/polymer composites, comprising copolymers of methyl methacrylate, n-butyl acrylate, and different functional monomers, shows that it depends strongly on the polymer functionalities. In some cases, there is a lack of cooperative effect of GO. It is explained by a remarkably strong GO-polymer binding, which induced less effective CO2-polymer interactions. When compared with experimental results, in the cases when the nanocomposite structures presented similar textural properties, the same trends for selective CO2 capture over N-2 were attained. Besides novel functional materials for CO2 capture and a deeper understanding of the interactions between CO2 molecules with various materials, this study additionally demonstrates that DFT calculations can be a shorter route toward the efficient selection of the best functionalization of the composite materials for selective CO2 capture.es_ES
dc.description.sponsorshipSpanish Government (BES-2017-080221) is gratefully acknowledged for its financial support. The authors would like to acknowledge the contribution of the COST Action CA 15107. The authors thank SGIker (UPV/EHU, ERDF, EU) for technical and human support.es_ES
dc.language.isoenges_ES
dc.publisherNaturees_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/BES-2017-080221es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleExperimental and theoretical study of the effect of different functionalities of graphene oxide/polymer composites on selective CO2 capturees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.nature.com/articles/s41598-022-20189-5es_ES
dc.identifier.doi10.1038/s41598-022-20189-5
dc.departamentoesQuímica aplicadaes_ES
dc.departamentoesQuímica físicaes_ES
dc.departamentoeuKimika aplikatuaes_ES
dc.departamentoeuKimika fisikoaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Except where otherwise noted, this item's license is described as © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.