Field validation of gap-type overhead conductor creep
View/ Open
Date
2018-09-11Author
Bedialauneta Landaribar, Miren Terese
Mazón Sainz-Maza, Ángel Javier
Etxegarai Madina, Agurtzane
Metadata
Show full item record
International Journal of Electrical Power & Energy Systems 105 : 602-611 (2019)
Abstract
Gap-type overhead conductor sag-tension calculations based on experimental conductor creep tests are based on stress-strain and metallurgical creep tests. Although for bi-metallic conductors, these tests are carried out for both the core and the full conductor, for gap-type overhead conductors the aluminum metallurgical creep is usually neglected and the full conductor metallurgical creep is not carried out. The purpose of the presented study is the validation of these calculation methods. For this purpose, field measurements have been obtained in a pilot line in operation. The gap-type conductor installation process has been measured and the conductor creep has been monitored during three years of line operation. In order to model relevant events such as the pre-sagging and sagging steps during the installation, and ice and wind events during the operation, a flexible sag-tension calculation method has been used. Besides, the widely used graphical sag-tension method has also been evaluated, obtaining similar results as the flexible method. The tension-decrease is used as the indicator of the creep. The calculated and measured tension-decrease values are close. Therefore, it is concluded that the sag-tension calculations based on experimental conductor creep tests are valid to represent the actual creep of the conductor in operation.