Show simple item record

dc.contributor.authorCárdenas-Arenas, A.
dc.contributor.authorQuindimil Rengel, Adrián ORCID
dc.contributor.authorDavó-Quiñonero, Arantxa ORCID
dc.contributor.authorBailon Garcia, Esther ORCID
dc.contributor.authorLozano-Castello, Dolores ORCID
dc.contributor.authorDe La Torre Larrañaga, Unai ORCID
dc.contributor.authorPereda Ayo, Beñat
dc.contributor.authorGonzález Marcos, José Antonio
dc.contributor.authorGonzález Velasco, Juan Ramón
dc.contributor.authorBueno López, Agustín ORCID
dc.date.accessioned2024-02-09T15:11:06Z
dc.date.available2024-02-09T15:11:06Z
dc.date.issued2019-12-23
dc.identifier.citationApplied Catalysis B: Environmental 265 : (2020) // Article ID 118538es_ES
dc.identifier.issn0926-3373
dc.identifier.issn1873-3883
dc.identifier.urihttp://hdl.handle.net/10810/65955
dc.description.abstractThe CO2 methanation mechanism was studied for Ni/CeO2 and Ni/Al2O3 catalysts. The higher methanation activity and selectivity of Ni/CeO2 is attributed to: i) Ni/CeO2 combines two types of active sites efficient for CO2 dissociation at the NiO-Ceria interface and for H2 dissociation on Ni0 particles; ii) water desorption is the slowest mechanism step, and, due to the high oxygen mobility throughout the ceria lattice, water is not necessarily formed on the same active sites that chemisorb CO2, i.e., the CO2 chemisorption sites are not blocked by water molecules; iii) the Ni/CeO2 surface does not accumulate carbon-containing species under reaction conditions, which allows faster chemisorption and dissociation of CO2. The Ni/Al2O3 catalyst handicaps are that all the steps of the mechanism take place on the same active sites, and the slow release of water and the accumulation of surface formates on these sites delay the chemisorption of further CO2 molecules.es_ES
dc.description.sponsorshipFinancial support of: - Economy and Competitiveness Spanish Ministry: Projects CTQ2015-67597-C2-1-R and CTQ2015-67597-C2-2-R MINECO-FEDER) and grant of EBG FJCI-2015-23769. - Generalitat Valenciana: Project PROMETEO/2018/076 and PhD grant of ACA GRISOLIAP/2017/185. - The Basque Government: Project IT657-13. - SGIker (Analytical Services) at the University of the Basque Country. - Spanish Ministry of Education, Culture and Sports grant of ADQ FPU14/01178. - University of the Basque Country PhD grant of AQ PIF-495 15/351.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/CTQ2015-67597-C2-1-R
dc.relationinfo:eu-repo/grantAgreement/MINECO/CTQ2015-67597-C2-2-R
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectCO2 methanationes_ES
dc.subjectnickeles_ES
dc.subjectceriaes_ES
dc.subjectmetal-support interactiones_ES
dc.subjectmechanismes_ES
dc.subjectisotopees_ES
dc.titleIsotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalystses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2019 Elsevier under CC BY-NC-ND licensees_ES
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0926337319312846
dc.identifier.doi/10.1016/j.apcatb.2019.118538
dc.departamentoesIngeniería Química
dc.departamentoeuIngeniaritza Kimikoa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2019 Elsevier under CC BY-NC-ND license
Except where otherwise noted, this item's license is described as © 2019 Elsevier under CC BY-NC-ND license