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Emergence of cooperation in heterogeneous population:
a discrete-time replicator dynamics analysis

Ramón Escobedo · Annick Laruelle

Abstract The emergence of cooperation is analyzed in heterogeneous popu-
lations where individuals can be classified in two groups according to their
phenotypic appearance. Phenotype recognition is assumed for all individuals:
individuals are able to identify the type of every other individual, but fail to
recognize their own type, and thus behave under partial information condi-
tions. The interactions between individuals are described by 2× 2 symmetric
games where individuals can either cooperate or defect. The evolution of such
populations is studied in the framework of evolutionary game by means of the
replicator dynamics. Overlapping generations are considered, so the replica-
tor equations are formulated in discrete-time form. The well-posedness condi-
tions of the system are derived. Depending on the parameters of the game, a
restriction may exist for the generation length. The stability analysis of the
dynamical system is carried out and a detailed description of the behavior of
trajectories starting from the interior of the state-space is given. We find that,
provided the conditions of well-posedness are verified, the linear stability of
monomorphic states in the discrete-time replicator coincides with the one of
the continuous case. Specific from the discrete-time case, a relaxed restriction
for the generation length is derived, for which larger time-steps can be used
without compromising the well-posedness of the replicator system.
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1 Introduction

Consciously or unconsciously, in humans, animals or microscopic organisms,
cooperative behaviors emerge in almost all circumstances of life. Even if it is
still difficult to understand how someone can pay a cost for another indivi-
dual to receive a benefit, some light has been shed on the mechanisms of the
evolution of cooperation (Maynard Smith 1982). Nowak (2006) reviews five
mechanisms that may lead to cooperation: (1) kin selection (Hamilton 1964),
where donors and recipients of cooperation are genetically related; (2) direct
reciprocity (Trivers 1971), where cooperation occurs between two unrelated
individuals or even members of different species along repeated encounters; (3)
indirect reciprocity, where individuals who cooperate are more likely to receive
cooperation (Nowak 1998), (4) reciprocity in networks in not well-mixed po-
pulations (Veloz et al. 2012), and (5) group selection, where cooperators help
others in their own group and defectors do not (Wilson and Dugatkin 1997).

These mechanisms often combine each other and give rise to more complex
cooperative behaviors. This happens especially when the likelihood of type
(kin, species or phenotype) recognition abilities is taken into account, where it
is plausible to think that individuals tend to cooperate more frequently with
those of the same type than their own, and defect with those of the other type.
Riolo et al. (2001) and Traulsen and Schuster (2003) studied the emergence of
cooperation based on similarity, when cooperation is channeled towards indi-
viduals that are sufficiently similar, i.e., carrying the same tag. Then, tag-based
donation can lead to the emergence of cooperation among agents who have only
rudimentary ability to detect environmental signals (Riolo et al. 2001).

In these models, individuals are assumed to know the tags of other indi-
viduals as well as their own tag. However, individuals are not always capable
of recognizing their own kin, or even their own species, although they can per-
ceive a phenotypical difference between neighbor individuals. In an experiment
in animal welfare in poultry industry carried out by Dennis et al. (2008) with
domestic fowls, two types of individuals are generated by artificially marking
a given proportion of fowls on the back of their necks. Chickens behave un-
der partial information conditions: they are unable to identify their own type
(whether they have a mark or not) but observe their opponent’s type. This
induces an alternative form of discrimination by tags. Although the marks are
clearly visible to our eyes, to what extend they serve chickens to perform mor-
phological differentiation within their conspecifics is out of the scope of this
work, but see Vallortigara (2009). Nevertheless, Dennis et al. (2008) observed
that marked fowls suffer more aggressive events and have less body mass than
their unmarked pen mates.



Emergence of cooperation in heterogeneous populations 3

The above described experiment has been recently analyzed by means of
game theory models. The common feature of these models is that individuals
fail to recognize their own type, while they are able to recognize their op-
ponents’ type. Iñarra and Laruelle (2012) describe the evolutionarily stable
strategies for the hawk-dove game. Barreira da Silva Rocha et al. (2011) use
the (continuous) replicator dynamics to study the emergence of discriminative
behavior in all 2 × 2 symmetric games. Barreira da Silva Rocha and Laruelle
(2013) focus on the snowdrift games to study the emergence of discriminative
cooperation also using the (continous) replicator dynamics.

Here we study the emergence of cooperation in 2 × 2 symmetric games.
Each individual can either cooperate or not. Cooperation is costly but may
generate a benefit. If the cost of cooperation is larger than the benefit, coope-
ration is useless. If cooperation is beneficial (i.e., the benefit is larger than the
cost), we distinguish two cases: when full cooperation is required to obtain the
benefit and when partial cooperation is sufficient. The population considered is
heterogeneous, with two types of individuals. In consequence, individuals can
choose different actions for different types of opponents. Four pure strategies
exist: 1) cooperate with both types, 2) defect against both types, 3) cooperate
with the first type, defect against the second type, and 4) defect against the
first type, cooperate with the second type

After a given interval of time during which the encounters take place
(a generation), each individual of the population is replaced by a number
of offspring proportional to the fitness of the progenitor individual. Offspring
are identical to their progenitor, i.e., they play the same pure strategy. The dy-
namics of the entire population along successive generations is then described
by a system of equations, each one controlling the time-evolution of the size
of each subgroup of the population (one per pure strategy). We focus our in-
terest in the case where population changes in time are not necessarily small
(overlapping generations), so we use the discrete-time version of the replicator
dynamics, as in Nowak (1998) and Alboszta and Miȩkisz (2004).

The rest of the paper is organized as follows. In Section 2, we present a
taxonomy of all 2×2 symmwetric games involving cooperation. In Section 3,
we first derive the equations of the discrete-time replicator dynamics for ho-
mogeneous populations, and we recall the classical results obtained in the
continuous-time case (Weibull 1995). Then, we derive the discrete-time repli-
cator system for heterogeneous populations, and we also recall the recent re-
sults obtained by Barreira da Silva Rocha et al. (2011) in the continuous-time
case. In Section 4, we derive the sufficient conditions of well-posedness of the
discrete-time replicator model. In Section 5, the stability analysis of the sta-
tionary states and invariant manyfolds is carried out. The sufficient conditions
of stability are derived, and a detailed description of the qualitative behavior
of trajectories in the corresponding state-space is presented. In Section 6, we
show that for appropriate initial conditions, the sufficient condition of well-
posedness and stability can be relaxed for the case where partial cooperation
is sufficient. Finally, Section 7 contains our conclusions. We also point out the
immediate further work and give some insight of the main open problems.
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2 To cooperate or to defect

We are interested in 2×2 games, that is, in games that describe the interactions
involving two individuals where each individual has two possible actions: to
cooperate (pure strategy s1) or to defect (pure strategy s0). The result of an
encounter for an individual playing strategy si with another individual playing
strategy sj is given by the individual’s utility v(si, sj). Cooperation has a cost
c > 0, and may generate a benefit b > 0 for both individuals.

The different combinations of strategies and their resulting utilities can be
summarized in the following matrix:1

s1 s0

s1 v(s1, s1) v(s1, s0)
s0 v(s0, s1) v(s0, s0)

If both individuals defect, there is no cost nor benefit: v(s0, s0) = 0. If both
individuals cooperate, both bear the cost and receive a benefit: v(s1, s1) = b−c.
If only one individual cooperates, this individual bears the cost, while the
opponent does not. For the benefit, two cases are considered, depending on
how the benefit is generated. We will say that full cooperation is required when
the benefit only arises when both players cooperate. In this case, v(s1, s0) = −c
and v(s0, s1) = 0. By contrast, we will say that partial cooperation is sufficient
when the benefit arises as long as at least one player cooperates. In this case,
v(s1, s0) = b− c and v(s0, s1) = b.

What matters is the difference of utility between an action and the other.
Neither the best responses, nor the Nash equilibrium, are modified by the
following transformation of utilities:

u(si, s0) = v(si, s0)− v(s1, s0),
u(si, s1) = v(si, s1)− v(s0, s1).

Denoting ui = u(si, si), i = 0, 1, the (normalized) matrix of utilities is given by

s1 s0

s1 u1 0
s0 0 u0

(1)

where
{

u0 = c, u1 = b− c, if full cooperation is required,
u0 = c− b, u1 = −c, if partial cooperation is sufficient.

The benefit b is strictly positive, so u1 + u0 6= 0 and it is always possible to
define the following parameter ū ∈ R that serves as a cost-benefit ratio:

ū
def
=

u0

u0 + u1
=





c

b
if full cooperation is required,

1− c

b
if partial cooperation is sufficient.

(2)

1 We consider symmetric games: the opponent’s utility for an individual playing strategy
si while the opponent plays strategy sj is given by v(sj , si).
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The games can be clasified into three categories. In the first two categories,
cooperation can be beneficial, i.e., b > c, while in the third one, cooperation is
never beneficial, i.e., b < c. We refer to the last category as useless cooperation.
Then:

• If full cooperation is required, then u0 > 0 and u1 > 0. This corresponds to
a game of coordination (like the stag-hare game). The cost-benefit ratio is
given by c/b = ū, with 0 < ū < 1.

• If partial cooperation is sufficient, then u0 < 0 and u1 < 0. This corresponds
to a game of anticoordination (like the snowdrift game). The cost-benefit
ratio is c/b = 1− ū, with 0 < 1− ū < 1.

• If cooperation is useless, then u1 < 0 < u0. This corresponds to a prisoner’s
dilemma and “defect” (s0) is always a dominant strategy. The cost-benefit
ratio is greater than one: c/b = ū > 1 if full cooperation is required, and
c/b = 1− ū > 1 (i.e., ū < 0) if partial cooperation is sufficient.

When cooperation can be beneficial, we will refer to large benefits of coopera-
tion if the ratio cost-benefit is smaller that 1/2 (if 0 < u1 < u0 or u0 < u1 < 0).
Otherwise, we will refer to small benefits of cooperation (if 0 < u0 < u1 or
u1 < u0 < 0).

We now derive the system of ordinary differential equations describing the
dynamics of a population of individuals which play the above defined games,
i.e., the replicator dynamics.

3 Discrete-time replicator system

Let us first recall the replicator dynamics in homogeneous populations.

3.1 Homogeneous populations

We consider a homogeneous population of individuals playing the above de-
fined games. Let nt denote the size of the population at time t. If individuals
exclusively use pure strategies, the population can be divided into two sub-
groups of sizes nt

0 and nt
1 according to the pure strategy they are programmed

to play, s0 and s1 respectively. Denote by θt
i = nt

i/nt the proportion of indi-
viduals playing the strategy si (i = 0, 1) at time t. Then, we have nt

0 +nt
1 = nt

and θt
0 + θt

1 = 1 for all t ≥ 0. The population state at time t can thus be
characterized by the scalar value θt

1 in the state-space [0, 1]. A state is said to
be monomorphic if all the individuals uses one single strategy (θt

1 = 0 or 1);
otherwise, the state is said to be polymorphic.

The replicator dynamics describes the time evolution of each subgroup of
the population. In the continuous-time case, it consists in a system of ordinary
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differential equations for the vector θ(t) = (θ0(t), θ1(t)):

dθ(t)
dt

= F(θ).

When the population changes are not necessarily small, the replicator dyna-
mics takes the form of a discrete-time map for the vector θt = (θt

0, θ
t
1),

θt+δ = F(θt), (3)

where the evolution of the population is described in terms of successive gene-
rations. Here δ ∈ (0, 1] denotes the duration of one generation. From one gene-
ration to the other, individuals involved in pairwise encounters are replaced
by a number of offsprings (identical to their parents in the strategy they are
programmed to play) according to the resulting utility of these encounters.

We are interested in the discrete-time case in which generations overlap,
that is, not all the individuals are replaced from one generation to the next.
As in the classical formulation, we let the time-step δ of the map (3) equal
the fraction of the population that is renewed in each generation (Weibull
1995). Thus, in one time-step, only a portion δ of the population is subject to
potential changes.

Let us denote by ui(θt
1), i = 0, 1, the utility that individuals from each

subgroup obtain when the population is in state θt
1. Then, the size of each

subgroup evolves according to the following recurrences:

nt+δ
0 = (1− δ)nt

0 + δnt
0u0(θt

1),
nt+δ

1 = (1− δ)nt
1 + δnt

1u1(θt
1).

These equations mean that, from one generation (at time t) to the next (at
time t+ δ), a fraction 1− δ of individuals remains unchanged, and a fraction δ
increases or decreases proportionally to the utility obtained by the subgroup.

When the population is in state θt
1, the individual has a probability θt

1

of meeting an opponent playing s1 and a probability 1 − θt
1 of meeting an

opponent playing s0. Thus, the utilities ui(θt
1), i = 0, 1, are given by

u0(θt
1) = θt

1u(s0, s1) + (1− θt
1)u(s0, s0) = (1− θt

1)u0,

u1(θt
1) = θt

1u(s1, s1) + (1− θt
1)u(s1, s0) = θt

1u1,

where u0 and u1 have been defined in (1), and the evolution of the size of each
subgroup of the population can be written as

nt+δ
0 = nt

0

[
(1− δ) + δ(1− θt

1)u0

]
,

nt+δ
1 = nt

1

[
(1− δ) + δθt

1u1

]
.

Then, the total population nt+δ = nt+δ
1 + nt+δ

0 evolves as follows:

nt+δ = nt
[
1− δ + δ

[
(1− θt

1)
2u0 + (θt

1)
2u1

] ]
.
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The proportion of individuals θt+δ
1 = nt+δ

1 /nt+δ playing s1 is thus given by

θt+δ
1 =

(1− δ)θt
1 + δ(θt

1)
2u1

1− δ + δ(1− θt
1)2u0 + δ(θt

1)2u1
, (4)

and the growth rate of this subgroup of the population is given by

θt+δ
1 − θt

1 =
nt+δ

1 − nt+δθt
1

nt+δ
= δθt

1

(u0 + u1) (θt
1 − ū) (1− θt

1)
1− δ + δ(1− θt

1)2u0 + δ(θt
1)2u1

, (5)

where ū was defined in (2).
Equation (4) is the discrete-time replicator equation for a homogeneous

population of individuals playing the game defined in (1).
Dividing by δ at both sides of Eq. (5) and taking the limit δ → 0, we obtain

the continuous-time replicator equation,

lim
δ→0

θt+δ
1 − θt

1

δ
= θt

1(u0 + u1)
(
θt
1 − ū

)
(1− θt

1).

The following result of stability holds (Weibull 1995):

(i) If full cooperation is required (u0 > 0, u1 > 0), there are two stationary
states, θ∗1 = 0 and θ∗1 = 1, both monomorphic and asymptotically stable.

(ii) If partial cooperation is sufficient (u0 < 0, u1 < 0), the stationary state is
polymorphic, θ∗1 = ū = 1−c/b (i.e., θ∗0 = 1−ū), and asymptotically stable.

(iii) If cooperation is useless (u1 < 0 < u0), there is a unique stationary state,
θ∗1 = 0, and it is monomorphic and asymptotically stable.

We now use this derivation as a guide to obtain the discrete-time replicator
system in the case of heterogeneous populations.

3.2 Heterogeneous populations

Consider a heterogeneous population where two types of individuals coexist:
individuals of type I and individuals of type II. Let us denote by x the propor-
tion of individuals of type I, i.e., each individual has a probability x of meeting
an individual of type I and a probability 1 − x of meeting an individual of
type II.2 We assume that x is constant.3

Individuals are programmed to play a pure strategy. A pure strategy speci-
fies one of the two possible action (s0 or s1) for each type of opponent (I or II).
Here we assume that individuals recognize their opponent’s type but fail to re-
cognize their own type. There are then four pure strategies s10, s01, s11 and s00,

2 We assume that the population is sufficiently large to approximate the proportion and
the probability.

3 In the population dynamic process this corresponds to assuming that each new offspring
is randomly assigned a type in such a way that x does not change. The allocation of type is
completely independent of the strategy the offspring is programmed to play.



8 R. Escobedo, A. Laruelle

where sij , ij ∈ I = {10, 01, 11, 00}, denotes the strategy of playing si against
an opponent of type I and sj against an opponent of type II.4.

To derive the replicator equations, the population is divided into as many
subgroups as there are pure strategies, that is, four subgroups.

Let nt
ij (resp. θt

ij) denote the number (resp. proportion) of individuals at
time t ≥ 0 programmed to play the pure strategy sij , for ij ∈ I.

Then,
θt
00 = 1− θt

10 − θt
01 − θt

11 ∀t ≥ 0, (6)

so the state of the population can be characterized by the three-dimensional
vector θt = (θt

10, θ
t
01, θ

t
11) in the state-space Ω, which is the unit tetrahedron:

Ω = {θ ∈ [0, 1]3 : θ10 + θ01 + θ11 ≤ 1}.
The state is said to be monomorphic if all the individuals use one single stra-
tegy (θt

ij = 1 for some ij ∈ I); otherwise, the state is said to be polymorphic.
As in the homogeneous case, we denote by Uij(θt): Ω → R the utility an

individual can expect when playing strategy sij in state θt. Then, the size of
each subgroup ij ∈ I evolves according to the following equation:

nt+δ
ij = (1− δ)nt

ij + δ nt
ij Uij(θt). (7)

In the heterogeneous case, the utility Uij(θt) depends on the individual’s type.
If U I

ij(θ
t) [resp. U II

ij (θt)] is the utility of an individual of type I (resp. II) at
time t, the expected utility Uij(θt) can be decomposed as follows:

Uij(θt) = xU I
ij(θ

t) + (1− x)U II
ij (θt). (8)

To compute U I
ij(θ

t) and U II
ij (θt), note that these utilities depend on the oppo-

nent’s type and on the state of the population. The opponent’s type determines
the individual’s action s1 or s0, and the state of the population θt determines
the opponent’s action, which is sij with probability θt

ij . Thus, we have:

U I
ij(θ

t) = x
[
θt
10u(si, s1) + θt

01u(si, s0) + θt
11u(si, s1) + θt

00u(si, s0)
]

+(1− x)
[
θt
10u(sj , s1) + θt

01u(sj , s0) + θt
11u(sj , s1) + θt

00u(sj , s0)
]

U II
ij (θt) = x

[
θt
10u(si, s0) + θt

01u(si, s1) + θt
11u(si, s1) + θt

00u(si, s0)
]

+(1− x)
[
θt
10u(sj , s0) + θt

01u(sj , s1) + θt
11u(sj , s1) + θt

00u(sj , s0)
]
.

We now introduce the following

Definition 1 The function f(θ): Ω → R given by

f(θ)
def
= θ11 + xθ10 + (1− x)θ01

is the frequency of cooperation when the population is in state θt. Accordingly,
we denote by fij the frequency of cooperation in the four monomorphic states.
That is:

f11 = 1, f10 = x, f01 = 1− x, f00 = 0. (9)

4 If individuals recognized their own type, they would behave differently according to
their own type, so that the number of pure strategies would be eight.
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Then, substituting the expressions of U I
ij(θ

t) and U II
ij (θt) into (8), we obtain

Uij(θt) = xu(si, s1)f(θt) + xu(si, s0)(1− f(θt))
+(1− x)u(sj , s1)f(θt) + (1− x)u(sj , s0)(1− f(θt)),

which, by using the basic matrix (1) and the frequencies of the monomorphic
states (9), can be simplified into

Uij(θt) = f(θt)fiju1 + [1− f(θt)](1− fij)u0, ∀ij ∈ I. (10)

Plugging (10) into (7) and using nt+δ
ij = ntθt

ij , we obtain that the evolution of
each subpopulation size is given by

nt+δ
ij = ntθt

ij

[
1− δ + δ

[
f(θt)fiju1 + [1− f(θt)](1− fij)u0

]]
.

The total population size nt+δ = nt+δ
10 + nt+δ

01 + nt+δ
11 + nt+δ

00 then evolves as

nt+δ = nt
[
1− δ + δ

[
[f(θt)]2u1 + [1− f(θt)]2u0

]]
.

The proportion of individuals playing sij at time t+ δ is θt+δ
ij = nt+δ

ij /nt+δ, so
the discrete-time replicator equation for the population subgroup ij ∈ I is

θt+δ
ij = θt

ij

1− δ + δ
[
f(θt)fiju1 + [1− f(θt)](1− fij)u0

]

1− δ + δ[f(θt)]2u1 + δ[1− f(θt)]2u0
(11)

= θt
ij

[
1 + δ

(u0 + u1) [fij − f(θt)] [f(θt)− ū]
1− δ + δ[f(θt)]2u1 + δ[1− f(θt)]2u0

]
(12)

Equations (11) constitute a system of four equations which can be reduced
to three equations as one of them is redundant with relation (6). The func-
tion F of map (3) is the vector (F10(θt), F01(θt), F11(θt)), where the functions
Fij(θ): Ω → R are defined by the right hand side of (11). The system of equa-
tions (11) must be solved together with initial conditions, which are given by
the coordinates of the initial point θ0 = (θ0

10, θ
0
01, θ

0
11) in the state-space Ω.

Remark 1 The homogeneous case is recovered by replacing θt+δ
ij and f(θt) by

θt
11 and fij by 1 (cooperation frequency when using strategy s1) in Eq. (11).

Fig. 1 shows a numerical simulation of the time-evolution of the replicator
system for x = 0.4, u0 = −0.4, u1 = −0.05 (so ū = 0.88) and δ = 0.6, with
the initial condition θ0 = (0.3, 0.2, 0.01), for which f(θ0) = 0.25.

The successive positions of the trajectory in each generation are represented
by circles in equispaced intervals of time, thus emphasizing the discrete cha-
racter of the model. In these figures, the separation between circles corresponds
exactly to one single time-step, so that it can be observed that the initial steps
are large and then decrease along the trajectory. The trajectory converges
asymptotically to a point located in the upper region of Ω, with coordinates
θw = (0.038, 0.22, 0.74), where f(θw) is such that |f(θw) − ū|/ū < 10−14

after 103 time-iterations.
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Fig. 1 Three views of the unit tetrahedron Ω in the (θ10, θ01, θ11)-space. We used x = 0.4,
u0 = −0.4, u1 = −0.05 (so ū = 0.88) and δ = 0.6. Circles denote the successive values
of θt in each time-iteration, starting from θ0 = (0.3, 0.2, 0.01) in the lower region of Ω. The
trajectory grows decelerating and converging asymptotically to θw = (0.038, 0.22, 0.74).

This simulation corresponds to a relatively large value of δ = 0.6. For small
values of δ, the trajectory approximately follows the same path and tends to
the continuous line corresponding to the continuous-time replicator sytem. For
larger values of δ, the separation between circles increases because the time-
steps of the trajectory are larger, so that the trajectory separates from the
path of the continuous case. For very large values of δ, the trajectory can
eventually jump outside the tetrahedron, as described by Weibull in a similar
situation (Weibull 1995).

Our interest is thus in finding the upper bound for δ guaranteeing that, for
all initial conditions, trajectories remain in the tetrahedron for all successive
generations. Then, we will describe the stable population states and conver-
gent interior solution trajectories, which, as underlined by Weibull, do not
necessarily coincide with those of the continuous-time model (Weibull 1995).

Relation with the continuous-time case. As we did in the homogeneous case,
using (11), the growth rate of the subgroup ij ∈ I can be written as follows:

θt+δ
ij − θt

ij = δθt
ij

(u0 + u1)[f(θt)− ū][fij − f(θt)]
1− δ + δ

[
[f(θt)]2u1 + [1− f(θt)]2u0

] . (13)

Dividing by δ at both sides of and taking the limit δ → 0, we obtain the
continuous-time replicator dynamics,

θ̇t
ij = θt

ij (u0 + u1)
(
f(θt)− ū

)
[fij − f(θt)], ij ∈ I,

for which Barreira da Silva Rocha et al. (2011) obtained the following result:

(i) If full cooperation is required, there are two stationary states θ∗00 = 1
and θ∗11 = 1, and both are monomorphic and asymptotically stable. Thus,
the system converges to a monomorphic state where the entire population
either cooperates or defects.

(ii) If partial cooperation is sufficient, the monomorphic states are unstable
and there is a set of neutrally stable points Pū = {θ ∈ Ω : f(θ) = ū}.
Thus, the system converges to a polymorphic state where the frequency
of cooperation is ū = 1− b/c.
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(iii) If cooperation is useless, there is a unique stationary state θ∗00 = 1, which
is monomorphic and asymptotically stable. Thus, the system converges
to a monomorphic state where the entire population defects.

Let us now study the stability of the discrete-time replicator system for
heterogeneous populations. As reported in Weibull (1995) (p. 125),

[. . . ] convergence and stability in continuous-time dynamics do not
imply convergence and stability in corresponding discrete-time dy-
namics. [. . . ] the discrete-time orbits essentially make straight-line
jumps in the direction of the tangent of the continuous-time orbit.

Thus, the first step in the next section consists in establishing the sufficient
conditions for the well-posedness of the system.

4 Well-posedness of the discrete-time replicator system

The dynamical system defined by equations (11) and an initial condition
θ0 ∈ Ω is said to be well-posed if the denominator of these equations is never
zero and the successive values of θt remain in Ω for all t > 0. Well-posedness
thus consists in restricting the value of δ to those which prevent the denomi-
nator from being zero and the trajectories from jumping outside Ω.

The system is always well-posed if full cooperation is required. If coopera-
tion is useless or if partial cooperation is sufficient there is a condition on the
value of δ. We have the following

Theorem 1 Let δ̄ be the following critical value of δ ∈ [0, 1]:

δ̄ =
1

1−min{u0, u1} .

The conditions for δ guaranteeing the well-posedness of the replicator sys-
tem (11) are as follows:

(i) If u0 > 0 and u1 > 0, the system is well-posed for all δ ∈ [0, 1].
(ii) If u1 < 0, δ has the upper bound δ < δ̄.

A point θ0 is in Ω if and only if its components θ0
ij , ij ∈ I − {00}, are

positive or zero and verify θ0
10 + θ0

01 + θ0
11 = 1− θ0

00 ≤ 1. The replicator system
preserves this last condition; this is shown by summing up the four equations
in (11) for ij ∈ I. Thus, after one iteration, the point θδ will be in Ω provided
its components are positive or zero.

The following lemmas are devoted to the study of the sign of the denomi-
nator and the numerator in equation (11).

Lemma 1 The sign of the denominator of expression (11) is as follows:

(i) If u1 > 0 and u0 > 0, the denominator is strictly positive for all θ ∈ Ω.
(ii) If u1 < 0 and δ < δ̄, the denominator is strictly positive for all θ ∈ Ω.
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(iii) If u1 < 0, u0 < 0 and δ > 1/(1 − ūu1), the denominator is strictly
negative for all θ ∈ Ω.

Proof The denominator of expression (11) is 1−δ+δ[f(θt)]2u1+δ[1−f(θt)]2u0.
Part (i) is obvious because 1− δ > 0. To prove part (ii), we observe that the
denominator of (11) can be viewed as a concave quadratic function of f(θ)
which reaches its absolute maximum in [0, 1] at f(θ) = ū and its minima at
the boundary of [0, 1]. There, the values of the denominator are 1− δ + δu0 for
f(θ) = 0 and 1−δ+δu1 for f(θ) = 1. Thus, the minimum of the denominator
in [0, ū] is 1 − δ + δu0, and in [ū, 1], 1 − δ + δu1 (one is a relative minimum
and the other is the absolute minimum, depending on the relative value of u0

and u1). The absolute minimum is thus 1− δ + δ min{u0, u1}, which is strictly
positive when δ < δ̄, so the denominator is strictly positive for all θ ∈ Ω.

To prove part (iii), note that, as u0 + u1 < 0, we have the inequality

[f(θ)]2u1 + [1− f(θ)]2u0 = (u0 + u1)[f(θ)− ū]2 + ūu1 < ūu1.

Then, for all θ ∈ Ω, the denominator is smaller than 1 − δ + δūu1, which is
negative if δ > 1/(1− ūu1). ut
Corolary 1 Under the conditions of Lemma 1, the denominator of expres-
sion (11) is never zero for all θ ∈ Ω.

Proof Lemma 1 shows that the denominator of expression (11) is either strictly
positive or strictly negative for all θ ∈ Ω. ut
Lemma 2 Under the conditions (i) and (ii) of Lemma 1, the numerator of
expression (11) is strictly positive for all θ ∈ Ω.

Proof The numerator of expression (11) can be viewed as a function of two
variables (f(θ), fij) ∈ [0, 1]2 which is linear in each variable, so its absolute
extrema are reached at the vertices of [0, 1]2. The values obtained there are:

1− δ + δu0, 1− δ + δu1 and 1− δ.

Then:

(i) If u1 > 0 and u0 > 0, all values are strictly positive because δ ∈ (0, 1).
(ii) If δ < δ̄, then 1−δ+δ min{u0, u1} > 0 and all values are strictly positive.

ut
We are now ready to prove the theorem:

Proof of Theorem 1: The sign of θδ
ij is given by the sign of the numerator and

the denominator of expression (11) which, by Lemmas 1 and 2, are both strictly
positive under conditions (i) and (ii) of Theorem 1, so that the replicator
system is well-posed in these cases. In case (iii), Lemma 1 shows that the
denominator is negative; however, for θ0 ∈ Ω such that f(θ0) = 0 and ij = 11
such that fij = 1, the numerator is positive, so θδ

11 < 0 and the trajectory has
left the tetrahedron Ω. ut

In the next section, we describe the general behavior of the trajectories of
the discrete-time replicator system.
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5 Behavior of the discrete-time replicator dynamics

This section is devoted to describe the general behavior of trajectories obeying
the equations of the discrete-time replicator system (11) and starting from the
interior of Ω. After identifying the stationary states of the dynamical system,
we obtain their stability properties, and we describe how trajectories evolve.

The casuistry of trajectories living in the boundary of Ω, that is, in the
faces and edges of the tetrahedron, is very rich. These trajectories correspond
to degenerate populations where one or more strategies are not present. As
shown later, the analysis would require to take into account the relative value
of ū with respect to x and 1−x and would be of considerable length. Here we
limit our study to nondegenerate populations.

5.1 Fixed points and invariant manifolds

5.1.1 Fixed points

The fixed points θ∗ ∈ Ω of the discrete-time replicator system (11) are such
that F(θ∗) = θ∗, that is, (θ∗ij)

t+δ = (θ∗ij)
t for all ij ∈ I simultaneously. The

four vertices of Ω, i.e., (θ10, θ01, θ11) = (0, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 0, 0),
are isolated fixed points: when θt

ij = 0 then θt+δ
ij = 0, and when θt

ij = 1, the
factor fij − f(θt) in (12) is zero, so θt+δ

ij = 1.
Denote by Pū, P1, Px and P1−x the four planes defined by the equations

Pū : f(θ) = ū, P1 : f(θ) = 1, Px : f(θ) = x, P1−x : f(θ) = 1− x.

If u0 and u1 have the same sign, then ū ∈ (0, 1) and the plane Pū intersects
the tetrahedron; otherwise, the intersection is empty. If ū ∈ (0, 1), then for all
θ ∈ Pū, the factor f(θt)− ū in (12) is zero so Fij = θ∗ij for all ij ∈ I, showing
that every point of Pū is a fixed point. Finally, as the four planes are parallel,
no other fixed point can exist.

(A) (B)

 0  0.2  0.4  0.6  0.8  1
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Fig. 2 Two views of the trajectory of Fig. 1 with the plane θ00 = 0 (black), intersected by
the three parallel planes Pū (upper), P1−x (middle) and Px (lower). The trajectory starts
from below Px, crosses successively Px and P1−x, and, while approaching θ00 = 0, converges
asymptotically to Pū. Here, |f(θw)− ū|/ū < 10−14.
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Fig. 2 shows the three planes Pū, Px and P1−x for x = 0.4 and ū = 0.88.
The plane P1−x appears above Px because here x < 1/2 and we have chosen
θ11 as the vertical coordinate. The plane P1 (not shown) is located above Ω
and intersects Ω at (0, 0, 1), while Pū, which is not empty because ū ∈ (0, 1),
is below P1 and above P1−x, because ū > 1− x. The value of ū, x and 1− x
can in fact be observed in the figure as the intersection of the respective plane
with the vertical axis θ10 = θ01 = 0.

Note also that (1, 0, 0) ∈ Px, (0, 1, 0) ∈ P1−x, and that Pū intersects the
plane θ00 = 0 (which is the face of Ω towards which the trajectory seems to
converge), but not the plane θ11 = 0 (which is the basis of the tetrahedron).

5.1.2 Invariant manifold

An invariant manifold M is a subset of Ω such that if the initial condition
of a trajectory is in M, then the whole trajectory is in M. Thus, trajectories
cannot cross, depart from or arrive to, invariant manifolds. Fixed points are
invariant manifolds, so each isolated vertex of Ω is an invariant manyfold, and,
when u0 and u1 have the same sign, so is the plane Pū.

The four planes θij = 0, ij ∈ I delimiting the tetrahedron Ω are invariant
manifolds, because θ0

ij = 0 ⇒ θt
ij = 0 for all t ≥ 0 and all ij ∈ I. The six

edges θij = θkl = 0, ij, kl ∈ I, kl 6= ij, are also invariant manifolds.
In the continuous case, the fact that the four faces of the tetrahedron are

invariant manifolds suffices to say that trajectories starting from inside Ω are
confined to Ω for all successive times t ≥ 0. However, as already mentioned, the
essential feature of discrete-time dynamics is that trajectories evolve by jumps
and can traverse invariant manifolds. Thus, the confinement of trajectories to
specific regions (or to the whole domain Ω, as shown in the previous section)
must be made evident explicitely.

5.2 Linear stability of fixed points

First let us define the concept of asymptotic stability.5

Definition 1 A fixed point θ∗ ∈ Ω is Lyapunov stable if for all neighbor-
hood V of θ∗, there exists a neighborhood U of θ∗ such that U ⊂ V and

∀θ0 ∈ U ∩Ω, θt ∈ V ∩Ω.

A fixed point θ∗ ∈ Ω is asymptotically stable if it is Lyapunov stable and there
exists a neighborhood U of θ∗ such that

∀θ0 ∈ U ∩Ω, lim
t→+∞

θt = θ∗.

5 The fixed points of the system (11) are located in the boundary of Ω, so no open set
containing a fixed point can be contained in Ω. We thus relax the classical definition of
stability (see, e.g., Strogatz (1994); Weibull (1995)) and we consider the neighborhoods of
the fixed points intersected with the domain Ω.
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We now use the first method of Lyapunov for discrete-time systems to esta-
blish the (linear) stability of the four vertices of Ω. The fixed points of the
discrete-time replicator dynamics coincide with those of the continuous repli-
cator, provided the conditions of well-posedness are verified. That is:

Theorem 2 Provided the conditions of well-posedness are verified, we have:

• If u1 < 0 < u0, then the vertex (0, 0, 0) is asymptotically stable and the
other vertices are unstable.

• If u0 > 0 and u1 > 0, then (0, 0, 0) and (0, 0, 1) are asymptotically stable
and (1, 0, 0) and (0, 1, 0) are unstable.

• If u0 < 0 and u1 < 0, then all the vertices of Ω are unstable.

Proof of Theorem 2: Assume that a trajectory starts nearby the fixed point θ∗:
θ0 = θ∗ + ε0, where ε0 = (ε010, ε

0
01, ε

0
11) is a small perturbation. The linear

stability of θ∗ is given by the time evolution of εt: if ‖εt‖ → 0, then θt → θ∗

and θ∗ is asymptotically stable; if the perturbation grows, then θ∗ is unstable.
The time evolution of the perturbation is given by εt = θt− (θ∗)t, that is,

by εt = θt − θ∗, so, using the expression of the map (3), we have:

εt+δ = θt+δ − θ∗ = F(θt)− θ∗

= F(θ∗ + εt)− θ∗.

If ‖ε0‖ is sufficiently small, it is possible to find a neighborhood of θ∗ where
F(θ∗+ εt) can be approximated by the (first two terms of the) Taylor expan-
sion of F centered in θ∗:

F(θ∗ + εt) = F(θ∗) + JF(θ∗) · εt + O(‖εt‖2),
where JF(θ∗) denotes the Jacobian matrix of the vector function F(θ) evalu-
ated in θ∗ (see Appendix), and the central dot denotes matrix multiplication.
We thus have a linear approximation of εt+δ,

εt+δ = JF(θ∗) · εt,

which in the kth iteration yields

εt+kδ = JF(θ∗) · εt+(k−1)δ = JF(θ∗) ·
[
JF(θ∗) · εt+(k−2)

]

= [JF(θ∗)]k · εt.

This means that the size of the perturbation ‖εt‖ will tend to zero if and only
if all the eigenvalues of JF(θ∗) are smaller than 1.

The detailed study (Jacobian matrices and eigenvalues) shown in the Ap-
pendix ends the proof. ut
In words, the result is as follows:

• The monomorphic state θ00 = 1 (always defect) is stable if cooperation is
useless or full cooperation is required, and unstable if partial cooperation
is sufficient.
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• The monomorphic state θ11 = 1 (always cooperate) is stable if full coope-
ration is required and unstable otherwise.

• The monomorphic states θ01 = 1 and θ10 = 1 (cooperate against one
type, defect against the other) are always unstable.

5.3 Behavior of trajectories in the interior of Ω

The previous analysis of the linear stability of fixed points helps us to describe
the general behavior of trajectories in the interior of the tetrahedron.

The direction toward which a trajectory evolves is determined by the vari-
ation of each coordinate θij , i.e., by the sign of θt+δ

ij − θt
ij in expression (13).

Provided the well-posedness conditions are verified, this means that θt
ij varies

according to the sign of the product

(u0 + u1)(f(θt)− ū)[fij − f(θt)],

which is precisely what determines the sign of dθij/dt in the continuous-time
case. Then, intuition can be gained from both the continuous case and the
numerical simulations with relatively small values of δ.

Fig. 2 shows the growing trajectory depicted in Fig. 1 which successively
crosses the three planes Px, P1−x and Pū. This trajectory will serve us to draw
the orbits (paths) travelled by trajectories for different values of u0 and u1.

In Fig. 2(A), the orbit exhibits a change of variation in θt
10 when the plane

P1−x is crossed. This corresponds to the instant of time in which θt+δ
10 −θt

10 = 0
in Eq. (13) for ij = 10. Similarly, Fig. 2(B) shows a change of variation in θ01

when the trajectory crosses Px, i.e. when θt+δ
01 −θt

01 = 0 in Eq. (13) for ij = 01.
Meanwhile, θ11 does not change its variation because θt+δ

11 − θt
11 6= 0 under P1

in Eq. (13) for ij = 11 (this is precisely the reason why θ11 has been chosen
as the vertical coordinate).

If u1 < 0 < u0, then ū is either smaller than 0 (if u0 + u1 < 0) or larger
than 1 (if u0 + u1 > 0). In consequence, the expression (u0 + u1)(f(θt) − ū)
is always negative. If u0 and u1 have the same sign, then 0 < ū < 1 and
(u0 + u1)(f(θt)− ū) has a different sign at each side of the plane Pū.

In Figs. 1 and 2, the trajectory starts from below Px and close to (0, 0, 0),
that is, with a small value of f(θ0), and from the interior of Ω, i.e., out of the
planes θ11 = 0 and θ00 = 0.

Assume that (u0+u1)(f(θt)−ū) here. Then, Eq. (13) shows that θt+δ
11 −θt

11

is always positive so the trajectory always moves upwards, away from the
plane θ11 = 0, and is thus forced to cross successively the planes Px and P1−x.
Outside the plane θ00 = 0, θt+δ

00 − θt
00 is always negative so the trajectory

moves also toward the plane θ00 = 0. Above Px, θt+δ
10 − θt

10 becomes nega-
tive, and above P1−x, it is θt+δ

01 − θt
01 which becomes negative, so that in this

upper region, both θt
10 and θt

01 decrease, while θt
11 increases, in such a way

that θt necessarily converges to (0, 0, 1). Trajectories starting directly from
between Px and P1−x or from above P1−x are subject to the same scenario
and therefore converge to (0, 0, 1).
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The above description defines the orbits of the dynamical system (11); a
change in the sign of (u0 +u1)(f(θt)− ū) leads simply to a change of direction
in which the orbits are travelled. Thus, the general behavior is as follows:

• If u1 < 0 < u0, the orbits are travelled downwards, i.e., in the direction
in which θt

11 decreases. Once the trajectory is below Px, θt
10 and θt

01

decrease, so the trajectory necessarily converge to the unique asympto-
tically stable point (0, 0, 0).

When u0 and u1 have the same sign, the direction with which orbits are
travelled is determined by the sign of (u0 +u1) and the relative position of the
initial condition θ0 with respect to the (now non-empty) plane Pū:

• If u0 < 0 and u1 < 0, the trajectories starting from below Pū are such
that f(θt)− ū < 0 so θt+δ

11 − θt
11 is positive and the orbits are travelled in

the direction in which θt
11 increases, i.e., towards Pū. In turn, trajecto-

ries starting from above Pū are such that f(θt)− ū < 0 and thus travel
the orbits in the direction of decreasing θt

11, again towards Pū. In the
continuous-time case, such a behavior would mean that the plane Pū is
an attractor. However, in the discrete-time case, trajectories can jump
over Pū, and can eventually oscillate around Pū, not necessarily conver-
ging (i.e., reducing the distance) to Pū. It is then not possible to clas-
sify Pū as an attractor; this is in fact the aim of the next Sec. 5.4. It
is nevertheless possible to say, in both the continuous and the discrete
cases, that the four vertices of Ω are unstable.

• If u0 > 0 and u1 > 0, the travelling direction is reversed with respect to
the previous case so trajectories move away from Pū: trajectories star-
ting from above Pū converge to (0, 0, 1), and those starting from below Pū

converge to (0, 0, 0), so that these two points are asymptotically stable,
while (1, 0, 0) and (0, 1, 0) are unstable. Here yes, Pū can be classified as
a repeller.

5.4 Stability of the invariant manifold Pū

In this Section, we show that, when u0 < 0 and u1 < 0, then Pū is an attrac-
tor, i.e., trajectories move towards Pū, while when u0 > 0 and u1 > 0, Pū is
a repeller, i.e., trajectories move away from Pū and converge to the respec-
tive asymptotically stable vertex located in the same side of Pū where the
trajectory started.

Definition 2 The basin of attraction of a closed set M ⊂ Ω is the set BM ⊂ Ω
of points whose trajectories converge to M , i.e.

BM =
{
θ0 ∈ Ω : ∃ t0 ≥ 0 such that t > t0 ⇒ θt ∈ M

}
. (14)

When BM is a neighborhood of M , M is called an attractor.6

6 Again, as BM is not necessarily an open set, we relax this definition and we will say
that M is an attractor if M ⊆ BM .
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We prove the following result: If cooperation is not useless, there are poly-
morphic states where the frequency of cooperation f(θ) is ū. If partial co-
operation is sufficient, the population tends to evoluate toward one of these
polymorphic state. By contrast, if full cooperation is required, the popula-
tion tends to converge to one of the two monomorphic asymptotically stable
states: “always defect” if the initial frequency of cooperation is smaller than
ū, or “always cooperate” if it is larger than ū.

Theorem 3 When ū ∈ (0, 1), the invariant manifold Pū is not empty. Then:
• If u0 < 0 and u1 < 0, the sufficient condition of well-posedness of the

replicator system (11) for δ ∈ [0, 1] is a sufficient condition for Pū to be
an attractor of the interior of Ω.

• If u0 > 0 and u1 > 0, trajectories starting from the interior of Ω move
away from Pū and converge to the asymptotically stable vertex located in
the same side of Pū than their initial condition.

Again, trajectories living in the boundary of Ω have a rich casuistry and
will be studied elsewhere; when Pū doesn’t cross the planes θ11 = 0 or θ00 = 0,
trajectories living in these planes cannot converge asymptotically to Pū, so Pū

cannot be considered a global attractor. If x < c < 1 − x, then Pū intersects
all the faces of Ω, but, still, not all the edges of Ω can be intersected by Pū,
so, in some edges, trajectories exist which cannot arrive to Pū. Thus, Pū is a
global attractor of the interior of Ω, but not of the whole Ω.

The qualitative description of the behavior of inner trajectories given in
Sec. 5.3 shows that, when u0 < 0 and u1 < 0, trajectories always move to-
wards Pū. However, in the discrete-time case, trajectories can jump over man-
ifolds, so, despite the fact that the trajectory travels the orbit in the direction
of approaching Pū, the distance from the trajectory to Pū does not necessarily
decreases. Although the evolution of this distance can be studied numerically,
it suffices to our proof to find conditions for δ such that trajectories are not
allowed to jump over Pū.

Lemma 3 The function P (θ) = θ11 + x2θ10 + (1− x)2θ01 −
[
f(θ)

]2 verifies
(i) P (θ) ≥ 0 for all θ ∈ Ω,

(ii) If θ is a vertex of Ω then P (θ) = 0,
(iii) P (θ) ≤ f(θ)− [f(θ)]2 for all θ ∈ Ω.

Proof Let us consider the Cauchy-Schwartz inequality

(α1β1 + α2β2 + α3β3)2 ≤ (α2
1 + α2

2 + α2
3)(β

2
1 + β2

2 + β2
3)

with α1 =
√

θ11, α2 = x
√

θ10, α3 = (1 − x)
√

θ01, β1 =
√

θ11, β2 =
√

θ10 and
β3 =

√
θ01. Then,

(θ11 + xθ10 + (1− x)θ01)
2 ≤ (

θ11 + x2θ10 + (1− x)2θ01

)
(θ11 + θ10 + θ01) ,

so [f(θ)]2 ≤ θ11 + x2θ10 + (1− x)2θ01 for all θ ∈ Ω and (i) is proved.
Part (ii) is obvious, and so is (iii), by noting that x < 1 and 1− x < 1, so

P (θ) ≤ θ11 + xθ10 + (1− x)θ01 − [f(θ)]2 = f(θ)− [f(θ)]2. ut
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Proof of Theorem 3. A trajectory starting from a point θ0 will jump from one
side of Pū to the other in one single iteration if and only if

sgn{f(θδ)− ū} 6= sgn{f(θ0)− ū}.
Expanding f(θδ) according to the replicator system equations (11), we have

f(θδ) = f(θ0) + δ
(u0 + u1)

[
f(θ0)− ū

] [
θ0
11 + x2θ0

10 + (1− x)2θ0
01 − [f(θ0)]2

]

1− δ + δ[f(θ0)]2u1 + δ[1− f(θ0)]2u0

= f(θ0) + δ
(u0 + u1)

[
f(θ0)− ū

]
P (θ0)

1− δ + δ[f(θ0)]2u1 + δ[1− f(θ0)]2u0
,

where we have used the function P (θ) defined in Lemma 3. Then,

f(θδ)− ū = (f(θ0)− ū)
[
1 +

δ(u0 + u1)P (θ0)
1− δ + δ[f(θ0)]2u1 + δ[1− f(θ0)]2u0

]

= (f(θ0)− ū)

[
1− δ + δ

[
[f(θ0)]2u1 + [1− f(θ0)]2u0 + (u0 + u1)P (θ0)

]

1− δ + δ[f(θ0)]2u1 + δ[1− f(θ0)]2u0

]
(15)

We have:

• If u0 < 0 and u1 < 0, the denominator of (15), which is precisely the
denominator of expression (11), is strictly positive by (ii) in Lemma 1
because δ < δ̄. Using (iii) from Lemma 3 and noting that u0 + u1 < 0,
we see that the numerator of (15) is larger than

1− δ + δ
[
[f(θ0)]2u1 + [1− f(θ0)]2u0 + (u0 + u1)

[
f(θ0)− [f(θ0)]2

] ]

= 1− δ + δ
[
f(θ0)u1 + [1− f(θ0)]u0

]
.

As f(θ0) ∈ [0, 1], we have f(θ0)u1 + [1− f(θ0)]u0 ≥ min{u0, u1}, so the
numerator of (15) is larger than 1−δ+δ min{u0, u1}, which is strictly posi-
tive when condition δ < δ̄ is verified. Then the factor of f(θ0)− ū in (15)
is strictly positive and trajectories are not allowed to jump over Pū.

• If u1 > 0 and u0 > 0, then, by (i) in Lemma 1, the denominator of
expression (15) is strictly positive for all θ0 ∈ Ω, and, by (i) in Lemma 3
and noting that u0 + u1 > 0, so is the numerator of expression (15).
Again, trajectories are not allowed to jump over Pū. ut

6 Relaxation of condition δ < δ̄ when u0 and u1 are negative

When u0 and u1 are negative, the tetrahedron Ω is divided in two regions by
the plane Pū: the upper region, where f(θ) ≥ ū, contains the vertex (0, 0, 1),
and the lower region, where f(θ) ≤ ū, contains the vertex (0, 0, 0). From (ii)
in Lemmas 1 and 2, it turns out that, for trajectories starting from the upper
region, the condition preventing them from leaving Ω in a single iteration
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is δ < 1/(1 − u1), while for trajectories starting from the lower region, the
condition is δ < 1/(1−u0). As u0 6= u1, one of these conditions is less restrictive
than the other, so that, at least for one single iteration, the general well-
posedness condition δ < δ̄ can be relaxed for trajectories starting from the
region where the condition is less restrictive.

Denote by Ωū ⊂ Ω the region where the condition is less restrictive; when
u1 > u0, Ωū is the upper region, and when u1 < u0, Ωū is the lower region.
Then, we have the following

Theorem 4 Let δJ be the following critical value of δ ∈ [0, 1]:

δJ =
u0 + u1

u0 + u1 − 2u0u1
.

Then, the restriction δ < δJ is a sufficient condition for the well-posedness of
the discrete-time replicator system in the region Ωū.

Recall that we refer to large benefits of cooperation if the ratio cost-benefit
is larger than 1/2 (u0 < u1 < 0) and to small benefits of cooperation if the
ratio cost-benefit is smaller than 1/2. The theorem provides the optimal bound
for δ so that, when partial cooperation is sufficient, the system is well posed
for games with large (respectively small) benefits of cooperation, as long as
the initial condition is such that the frequency of defection 1− f(θ) is smaller
(respectively larger) than the cost-benefit ratio 1− ū.

The proof of Theorem 4 consists in showing that the condition δ < δJ

is sufficient to prevent trajectories from jumping over Pū. It is easy to show
that δJ is smaller than the less restrictive bound 1/(1−max{u0, u1}). Then,
if δ < δJ , trajectories starting from Ωū will not leave Ω in a single iteration,
and will not jump over Pū, therefore being confined to Ωū for all successive
iterations.

Proof The proof is done for the case u1 > u0. We are then in the upper region
Ωū = {θ ∈ Ω: f(θ) > ū}. For the case u1 < u0, the proof is identical by simply
changing to the lower region and swapping u1 and u0 in all the expressions
(note that δJ remains unchanged).

As shown in the proof of Theorem 3, jumps over Pū are prevented if the fac-
tor of f(θ0)− ū in (15) is positive. When δ < δJ , trajectories starting from Ωū

are prevented from leaving Ω in one iteration. This means that the denomina-
tor of expression (15), which is precisely the denominator of expression (11),
is strictly positive for all θ ∈ Ω.

On the other hand, as shown also in the proof of Theorem 3, the numerator
of (15) is larger or equal to the following expression for all θ ∈ Ω:

1− δ + δu0 + δ(u1 − u0)f(θt).

For trajectories starting from Ωū, this expression can be viewed as a linearly
increasing function of f(θ) in [ū, 1] (recall that u1 > u0 and that we are in
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the upper region of the tetrahedron). The minimum of this function is thus
reached at the left boundary of the interval [ū, 1]. There, its value is

1− δ + 2δ
u0u1

u0 + u1
,

which is strictly positive if and only if δ < (u0 + u1)/(u0 + u1− 2u0u1), which
equivals to the condition δ < δJ . Then, the numerator of (15) in Ωū is strictly
positive for all θ ∈ Ω. Moreover, as the numerator reaches this value when
θ = (0, 0, ū) ∈ Ωū, the bound δJ can not be refined. ut

7 Conclusion

A taxonomy of 2 × 2 symmetric games involving cooperation has been pro-
posed. When cooperation is beneficial, two cases have been considered: when
full cooperation is required to obtain the benefit and when partial cooperation
is sufficient. A third case has been added, that occurs when the cost is larger
than the benefit so that cooperation is useless.

We have studied the conditions under which cooperation can emerge in he-
terogeneous populations where individuals ignore if they are interacting with
an individual of their own type. They recognize their opponent’s type but
do not known their own type. We have proposed a model to describe the
evolution of such populations in the framework of evolutionary game theory.
To do that, the population has been divided in four subgroups, according
to the four pure strategies that an individual can display in an encounter
with another individual: to cooperate or to defect which each of both types
of individual. We have used the replicator dynamics to follow the variation
in size of each subgroup of the population. As we have considered the case
where generations overlap, we have used the discrete-time formulation of the
replicator system.

The study of the discrete-time formulation of the replicator dynamics is
closely related to the continuous-time case. As noted by Weibull, such a study
consists essentially in establishing the conditions under which the discrete
trajectories, which evolve by jumps, follow the continuous ones, paying especial
attention to prevent the trajectories from jumping outside the state-space Ω.
The fundamental parameter is thus the size of the jumps, i.e., δ, the time-
step of the time evolution, which in this model coincides with the population
fraction subject to changes in each generation.

We have thus obtained the restrictions acting upon δ to prevent trajectories
from jumping outside Ω. It turned out, not surprisingly, that these conditions
guarantee the well-posedness of the system, and that, under these conditions,
the discrete trajectories follow the path of the continuous ones (Theorem 1).
The result is that in games where full cooperation is required, there is no
restrictions for δ, while in games where partial cooperation is sufficient or
cooperation is useless, δ must be such that δ < δ̄ = 1/(1−min{u0, u1}).
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This relation shows that, for example, in games where partial cooperation
is sufficient, the larger is the absolute difference between the utilities of each
option (cooperate or defect), i.e., |u0| or |u1|, the shorter δ must be, i.e., the
slower the population must evolve. Reciprocally, the smaller is the difference
between both options, the faster the population can evolve.

Then, we have performed the stability analysis of the dynamical system,
finding the same result than in the continuous case. The asymptotical stability
of the monomorphic states has been established by means of the analysis of the
time evolution of a perturbation of these states and the corresponding study
of the eigenvalues for each kind of game (Theorem 2):

(i) If full cooperation is required, the population evolves towards one of the
two monomorphic states, where all individuals always cooperate (θ11 = 1)
or always defect (θ00 = 1).

(ii) If cooperation is useless, the population evolves towards the state where
all individuals are defectors (θ00 = 1).

If partial cooperation is sufficient, the population evolves towards a poly-
morphic state where the frequency of defection is given by the cost-benefit
ratio 1− ū. The stability of the invariant manyfold Pū has been studied specif-
ically after giving a detailed description of the behavior of trajectories starting
from the interior of Ω. The reason of this specific study is that the jumps of the
discrete-time case trajectories can make trajectories to traverse not only the
invariant manyfolds located in the boundary of the state-space, but also those
located in the interior of the state-space, as it is the case of Pū. We have then
derived the conditions for δ under which trajectories cannot cross the stable
set Pū, finding that the conditions precisely coincide with the well-posedness
conditions. This proves, consequently, that Pū has the same status than in the
continuous-time case: Pū is an attractor in games where partial cooperation is
sufficient, and a repeller in games where cooperation is useless (Theorem 3).

The calculations carried out to show that Pū is an attractor in games where
partial cooperation is sufficient have suggested us the possiblity of relaxing
the restriction on δ when the initial condition of the trajectory can be selected
appropriately.We have found the conditions under which a trajectory starting
from the appropriate side of the state-space with respect to Pū will remain
indefinitely in the same side of Pū. The result is that a larger value of δ
can be used which prevents trajectories from leaving the region from which
they depart (Theorem 4): if a trajectory starts from the interior of Ωū, then
the sufficient condition for δ to prevent the trajectory from leaving Ωū is
δ < δJ = (u0 + u1)/(u0 + u1 − 2u0u1).

The condition is effectively a relaxation because δ̄ < δJ , so that δ can be
choosed larger than δ̄. This is especially interesting for the case in which the
configuration of the initial condition can be selected arbitrarily. By choosing
θ0 in Ωū, it is possible to use a larger value of δ > δ̄ so that the time-steps
of the discrete-time trajectories along the orbits of the continuous case are
larger, thus accelerating the convergence of the population to the correspon-
ding asymptotically stable state. This can be interesting for populations where,
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for example, partial cooperation is sufficient and cooperation frequency has to
be maximized. Then, if the initial condition is below Pū (where the frequency
of cooperation is smaller than ū), the largest time-step δJ will allow the popu-
lation to reach the optimal frequency of cooperation as fast as possible. This
last result is specific to the discrete-time case.

Inmediate further works should start with the extension of this work to
trajectories which can start in the boundary of Ω, that is, in faces and edges
of the tetrahedron. This is especially interesting for studying degenerate popu-
lations where one of the pure strategies is not present. In particular, the face
θ11 = 0 corresponds to populations where individuals cooperate with only one
type of individuals and discrimination towards the most or least frequent type
can take place. Although it is presumable that the stability analysis will yield
similar results than in the continuous case, the casuistry of how the invariant
manyfold Pū intersects faces and edges for different values of ū with respect
to the proportion of individuals of each type x and 1−x is very rich and novel
results are to be expected.

The values of δ considered in this work have been focussed on general
properties of all the trajectories starting in Ω. However, particular initial con-
ditions (corresponding to particular populations) can allow the use of larger
values of δ. Our numerical simulations have revealed the existence of trajec-
tories that, for some values of δ, jump over Pū more than once. We thus plan
to explore the possibility of finding stable oscillatory trajectories which inde-
finitely jump over Pū from one point in one region of Ω to another point in
the other region of Ω and vice versa. Potential routes to chaos should not be
discarted if trajectories jump over Pū from different points in each region.

Appendix

Proof of Theorem 2: The general expression of the Jacobian matrix JF(θ) of
the vector function F(θ), where θ = (θ10, θ01, θ11), is given by

JF(θ) =




∂F10

∂θ10

∂F10

∂θ01

∂F10

∂θ11

∂F01

∂θ10

∂F01

∂θ01

∂F01

∂θ11

∂F11

∂θ10

∂F11

∂θ01

∂F11

∂θ11




,

which must be evaluated on the vertices of Ω. Recall, from (12), that

Fij(θ) = θij

[
1 + δ

(u0 + u1) [fij − f(θ)] [f(θ)− ū]
1− δ + δ[f(θ)]2u1 + δ[1− f(θ)]2u0

]
.

Defining the function R(ξ): [0, 1] → R as follows,

R(ξ)
def
=

(u0 + u1)(ξ − ū)
1− δ + δξ2u1 + δ(1− ξ)2u0

,
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we have

Fij(θ) = θij

[
1 + δ [fij − f(θ)] R(f(θ))

]
,

so the ij-kl-element of JF(θ), for kl = ij or not, is

∂Fij(θ)
∂θkl

=
∂θij

∂θkl

[
1 + δ [fij − f(θ)] R(f(θ))

]

+ δ θij
∂f(θ)
∂θkl

[
∂R(f(θ))

∂f(θ)
[fij − f(θ)]−R(f(θ))

]
. (16)

If θ∗ is a vertex of Ω, there exists a unique label pq ∈ I such that θ∗pq = 1,
i.e., θ∗ij = 0 for all ij ∈ I, ij 6= pq. Then, f(θ∗) = fpqθ

∗
pq = fpq. Then:

(i) If ij = pq, then fij − f(θ∗) = fij − fpq = 0, so

∂Fij(θ∗)
∂θkl

=
∂θij

∂θkl
− δfkl R(fpq).

(ii) If ij 6= pq, then θij = 0 and the second term in (16) vanishes. Thus:
– If ij = kl, ∂Fij(θ∗)/∂θkl = 1 + δ(fij − fpq)R(fpq)
– If ij 6= kl, ∂Fij(θ∗)/∂θkl = 0.

The Jacobian matrices and the corresponding eigenvalues are then as follows:
• For θ∗ = (0, 0, 0), we have R(0) = −u0/(1− δ + δu0), so

JF(0, 0, 0) =
1

1− δ + δu0




1− δ + δu0(1− x) 0 0
0 1− δ + δu0x 0
0 0 1− δ


 .

The eigenvalues are given by the roots of the determinant |JF(θ∗) − λI|,
where I is the identity matrix, so

λ1 =
1− δ + δu0(1− x)

1− δ + δu0
, λ2 =

1− δ + δu0x

1− δ + δu0
and λ3 =

1− δ

1− δ + δu0
.

The condition for asymptotic stability is |λi| < 1 ∀i = 1, 2, 3, which happens if
and only if u0 > 0. Thus, (0, 0, 0) is asymptotically stable if and only if u0 > 0.

• For θ∗ = (0, 0, 1), we have R(1) = u1/(1− δ + δu1) so

JF(0, 0, 1) =




1− δ + δu1x 0 0
0 1− δ + δu1(1− x) 0

−δu1x −δu1(1− x) 1− δ


 .

The eigenvalues are

λ1 =
1− δ + δu1x

1− δ + δu1
, λ2 =

1− δ + δu1(1− x)
1− δ + δu1

and λ3 =
1− δ

1− δ + δu1
,

which are such that |λi| < 1 ∀i = 1, 2, 3, provided u1 > 0. Then, (0, 0, 1) is
asymptotically stable if and only if u1 > 0.
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• For θ∗ = (1, 0, 0), we have f(θ∗) = x, so

JF(1, 0, 0) =




1− δxR(x) −δ(1− x)R(x) −δR(x)
0 1 + δ(1− 2x)R(x) 0
0 0 1 + δ(1− x)R(x)


 ,

whose first two eigenvalues are λ1 = 1− δxR(x) and λ2 = 1 + δ(1− 2x)R(x).
Now: λ1 < 1 ⇒ R(x) > 0 and λ2 < 1 ⇒ R(x) < 0, which cannot be simulta-
neously verified, so (1, 0, 0) is unstable for all values of u0 and u1.

• For θ∗ = (0, 1, 0), we have f(θ∗) = 1− x, so JF(0, 1, 0) =



1− δ(1− 2x)R(1− x) 0 0
−δxR(1− x) 1− δ(1− x)R(1− x) −δR(1− x)

0 0 1 + δxR(1− x)


 .

Here λ1 = 1−δ(1−2x)R(1−x) and λ3 = 1+δxR(1−x), for which λ1 < 1 and
λ3 < 1 are incompatible conditions, so (0, 1, 0) is unstable for all cases. ut
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