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Abstract 

We investigate a version of the classic Colonel Blotto game in which individual battles may 

have different values. Two players allocate a fixed budget across battlefields and each 

battlefield is won by the player who allocates the most to that battlefield. The winner of the 

game is the player who wins the battlefields with highest total value. We focus on the case 

where there is one large and several small battlefields, such that a player wins if he wins the 

large and any one small battlefield, or all the small battlefields. We compute the mixed 

strategy equilibrium for these games and compare this with choices from a laboratory 

experiment. The equilibrium predicts that the large battlefield receives more than a 

proportional share of the resources of the players, and that most of the time resources should 

be spread over more battlefields than are needed to win the game. We find support for the 

main qualitative features of the equilibrium. In particular, strategies that spread resources 

widely are played frequently, and the large battlefield receives more than a proportional share 

in the treatment where the asymmetry between battlefields is stronger.  

Keywords: Colonel Blotto, majoritarian contests, experiment 
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1. INTRODUCTION 

We investigate theoretically and experimentally a multiple battlefield conflict in which 

battlefields may have different values. As in the classic Colonel Blotto game, two players 

compete to win battlefields by allocating a fixed amount of resources across them. A 

battlefield is won by the player who spends the most on it, and the winner of the game is the 

player winning the battlefields with highest total value. In terms of the classification in 

Kovenock and Roberson (2012) we study a multiple battlefield conflict with auction contest 

success function (CSF), budget constrained use-it-or-lose-it costs, and a weighted majority 

objective since for the overall win a player needs to win a majority of battlefields, weighted 

by their values. 

It is perhaps obvious that a player should favor more important battlefields relative to 

less important ones. But by how much? If a large battlefield is worth twice as much as a 

small battlefield, should it command twice as many resources? Should a player concentrate 

the resources on the minimal set of battlefields necessary for the overall win or should he 

spread resources over all battlefields? And do human subjects behave in the way predicted by 

equilibrium? 

Little is known about this type of games, either theoretically or empirically. 

Theoretically, if players are symmetric each player has the same equilibrium probability of 

winning the contest. Further, except for trivial cases (e.g. where the value of one battlefield is 

greater than the combined value of all other battlefields) any equilibrium of the game must 

involve mixed strategies, as in the classic Colonel Blotto game. Beyond this we know of only 

limited results due to Young (1978). He interprets this contest as a game between lobbyists 

with opposing interests, competing to bribe voters that may differ in the number of votes they 

control. The lobbyists aim to win a majority of votes. Young considers the case where there is 

one large and several small voters, such that a lobbyist wins if he gets the support of the large 

and any one of the small voters, or of all the small voters. Young discusses two games, 

differing in the number of voters, and reports that equilibrium expenditure is 

disproportionately skewed towards the large voter.  

Our experimental treatments are based on the games discussed by Young. In the 

experiment, two subjects compete for objects and receive points for objects won. An object is 

won by the player spending most on it, and some objects are worth more points than others. 
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The winner of the game is the subject obtaining most points. Although this is a simple game 

to describe, it is not clear whether subject behavior will conform well to theoretical 

predictions. On the one hand it is extremely unlikely that behavior will match precisely the 

equilibrium: identifying the equilibrium is computationally challenging and presumably 

beyond the ability of experimental subjects (indeed, we use numerical methods to pin down 

the equilibrium). On the other hand, even simpler versions of Colonel Blotto are notoriously 

difficult to solve, and yet, as we discuss in the next section, experiments with these have 

found behavior to be qualitatively in line with key features of equilibrium.  

We use numerical methods to completely describe equilibrium strategies for our 

experimental setting. We find that there is a unique mixed strategy equilibrium, under the 

restriction that the small battlefields are treated symmetrically. As well as predicting that the 

large battlefield receives on average more than a proportional share of the resources of the 

players, the equilibrium also predicts that players almost always spread their budget over 

more objects than are needed to win the contest.  

The equilibrium mixed strategy is complicated and play in the experiment does not 

match it in detail. In all treatments we can identify strategies that, if pitted against our 

subjects’ strategies, would win more often than not. With more battlefields the game is more 

complicated, firstly because there are more possible strategies, and secondly because some 

simple strategies are more exploitable. Nevertheless, the degree of exploitability of actual 

play is roughly the same across treatments, indicating that even though the game with a larger 

number of battlefields is more complicated, the behavior of subjects is as close to 

equilibrium, at least by this measure.  

Even though play does not match the equilibrium in detail, we find evidence for some 

of the equilibrium predictions. Strategies that spread resources over more battlefields than is 

necessary to win the contest are played often and their frequency increases over time in all 

treatments. In the game with more battlefields where the asymmetry between small and large 

battlefields is more pronounced, the large battlefield receives on average more than a 

proportional share of the total resources. 

In the next section we review the related literature on Colonel Blotto games. Section 3 

describes our game and its theoretical properties. Section 4 describes our experimental design 

and procedures. Results are presented in Section 5 and Section 6 concludes. 
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2. RELATED LITERATURE 

The Colonel Blotto game was introduced in Borel (1921), where he considers three identical 

battlefields, an auction contest success function, budget constrained use-it-or-lose-it costs and 

a majoritarian objective.  Later studies introduced the term “Colonel Blotto” and adopted an 

additive objective (i.e. players maximize the total value of battlefields won). For this latter 

formulation of the game, Roberson (2006) shows that when all battlefields are identical a 

player’s marginal distribution of her expenditure on a battlefield must be uniform in any 

equilibrium; Hart (2008) extended this analysis to the case of a discrete budget. Thomas 

(2013) extends the analysis to the case of asymmetric battlefields and shows that uniform 

marginals, where the mean expenditure on a battlefield is proportional to its value, are a 

sufficient condition for equilibrium. 

Young (1978) extended the original majoritarian objective model of Borel (1921) to 

the case of asymmetric battlefields. He studies vote-buying games in which players with 

opposite interests allocate their budgets across voters. He considers two games, both 

involving one large voter and several identical small voters, where a player needs to secure 

the votes of the large voter and one small voter, or the votes of all small voters, to win. In 

both games the large voter is predicted to receive a share of the budget above its proportion 

of the votes. This vote-buying game is equivalent to a Colonel Blotto game with asymmetric 

battlefields. 

A small number of studies have recently examined variants of the Colonel Blotto 

game experimentally.4 Avrahami and Kareev (2009) focus on contests between players with 

differing strengths. In their contests the two players have different budgets, and they find that 

subject behavior is sensitive to the relative budgets in the way predicted by equilibrium. They 

conclude: “the results indicate that naive players can behave, intuitively, in a way that 

approximates the sophisticated game-theoretic solution.” Chowdhury et al. (2013) also study 

a game between asymmetric players, and compare the auction CSF with a lottery CSF. They 

find that the probabilities of winning for players 1 and 2 are as predicted by the equilibrium, 

and the bidding strategies differ across treatments in the direction predicted. They note some 

interesting deviations from equilibrium, but overall conclude “ … it took only one hour for 

                                                           
4 Dechenaux et al. (2012) survey the experimental literature on contests more generally.  
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subjects who were unfamiliar with this game to exhibit behavior consistent with 

equilibrium”.5
 In both of these studies battlefields are symmetric and players have an additive 

objective. In contrast, our experiment studies a game with a majoritarian objective and 

asymmetric battlefields.     

Mago and Sheremeta (2012) study a setting with a majoritarian objective and an 

auction CSF, but with linear costs.  Thus, in their experiment subjects have to decide how 

much of their budget to allocate to the contest, as well as how to allocate resources across 

battlefields. They find that subjects make higher aggregate bids than predicted, which is not 

possible in our setting. 

There are two recent papers with asymmetric battlefields and budget-constrained use-

it-or-lose-it costs, but that differ from ours in other dimensions. Avrahami et al. (2013) study 

a multiple-battlefield contest with asymmetric battlefields and an auction CSF, but an 

additive objective. As shown by Thomas (2013), in equilibrium each object receives a share 

of expenditure proportional to its value. Duffy and Matros (2013) study a multiple-battlefield 

contest setting with asymmetric battlefields and a majoritarian objective, but where the 

outcome of each individual battlefield is determined using a lottery rather than an auction 

CSF. An important implication of this assumption is that, unlike in our setting, their game has 

a pure-strategy equilibrium rather than a mixed-strategy equilibrium. Interestingly, in the 

settings considered by Young (1978), the equilibrium of the game with a lottery CSF also 

predicts that the large voter receives a share of the budget that exceeds its proportion of the 

votes. Both Avrahami et al. (2013) and Duffy and Matros (2013) find that treatment 

differences conform to equilibrium predictions. 

 

3. AN ASYMMETRIC BLOTTO GAME 

The game we study is an asymmetric version of the classic Colonel Blotto game introduced 

by Borel (1921). Two players, A and B, simultaneously allocate identical endowments E 

across n battlefields. Let N = {1, …, n} denote the set of battlefields. Each battlefield has a 

                                                           
5
 Arad and Rubinstein (2012) also study a game with an auction CSF and budget-constrained-use-it-or-lose-it 

costs using a round-robin tournament in which each subject’s allocation is pitted against everybody else’s. They 

observe significant deviations from equilibrium and interpret the observed choices as reflecting iterated 

reasoning in several dimensions. Note however, that their subjects play a one-shot game, with no opportunity for 

learning. 
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value which is the same for both players, but some battlefields may be worth more than 

others. We denote the value of battlefield i by vi. This asymmetry across battlefields is the 

fundamental difference from the classical Colonel Blotto game.  

Each battlefield is won by one of the players according to an auction contest success 

function. Let 0j

ix  be the amount allocated to battlefield i by player j. Battlefield i is won 

by player A if B

i

A

i xx  , by player B if B

i

A

i xx  , and is randomly allocated with equal 

probability if B

i

A

i xx  . We will use NA to denote the set of battlefields won by A and NB to 

denote the set won by B.   

The winner of the game is the player who wins battlefields with the greatest total 

value. That is, we consider a majoritarian objective, where A wins if and only if 





BA Ni

i

Ni

i vv .  We assume throughout that 



BA Ni

i

Ni

i vv  for any partition of battlefields, so 

that there is always a winner and a loser. 

As in the classical Colonel Blotto game, we assume that players’ entire endowments 

must be spent on the battlefields, i.e., 



Ni

j

i Ex , j = A, B. In the terminology of Kovenock 

and Roberson (2012) the contest cost function exhibits the use-it-or-lose-it technology. From 

the point of view of the players, there are only two possible outcomes of the game: either win 

or lose. Thus, assuming that the utility of a win exceeds that of a loss, each player maximizes 

her expected utility by maximizing her probability of winning. This has the implication that 

equilibria are independent of risk attitudes.  

Since players are symmetric, each player wins with probability one-half in 

equilibrium. Moreover, except in trivial cases, the only equilibria of the game are in mixed 

strategies. However, beyond this little is known about equilibrium.
6  To address this question 

                                                           
6
 One thing we know is that results for the additive objective game do not carry over to majoritarian objective 

games. To see this suppose E = 5 and v = (2, 1, 1, 1). Consider any strategy such that the amount allocated to the 

first battlefield is uniformly distributed between 0 and 4, and the amount allocated to each of the other 

battlefields is uniformly distributed between 0 and 2. Such a strategy constitutes an equilibrium in the additive 

case (Thomas, 2013). (An example of such a strategy is x = (4 – 4ε, 2ε, ε, 1+ ε) with probability 0.5 and x = (4 – 

4ε, 2ε, 1+ ε, ε) with probability 0.5, where ε is uniformly distributed between 0 and 1.) Any such strategy can be 

bettered by a strategy that puts 3 on the first battlefield and 2 on the second. This alternative strategy wins the 

second battlefield with probability 1, and the first battlefield with probability 3/4, hence it wins with probability 

3/4 overall. 
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we follow Young (1978) and consider two games from the class of apex games.
7
 In one of his 

games there are four battlefields with values v = (2, 1, 1, 1), while in the other there are five 

battlefields with values v = (3, 1, 1, 1, 1). Young solved these two games assuming a finitely 

divisible budget (the size of which is not stated) and reported the expected amounts allocated 

to the large battlefield (but not the equilibrium strategies).  

To identify theoretical predictions for these games we assume each player has a 

budget of 120 indivisible units. We restrict attention to “object-symmetric” strategies, i.e., 

mixed strategies that put equal weight on all possible permutations of a given allocation 

across symmetric battlefields. For example, in the four battlefield case, where the first 

battlefield is the large battlefield and the other three are symmetric small battlefields, one 

possible object-symmetric strategy consists of playing each of (80,40,0,0), (80,0,40,0) and 

(80,0,0,40) with probability one-third. Note that the equilibrium of the game with object-

symmetric strategies is also an equilibrium of the original game. Even with this restriction, 

the number of available strategies is rather large.
8
 We then calculate equilibrium strategies 

numerically using the Gambit package (McKelvey et al., 2013). 

Although the strategy spaces are large, the fact that these are two-player constant-sum 

games makes the problem of computing equilibria tractable. In particular, the problem of 

finding a mixed strategy equilibrium (more specifically in this case a minimax strategy), can 

be expressed as a linear program for which practical solution algorithms are available. 

Moreover, since the set of mixed strategy Nash equilibria for two-player constant-sum games 

is convex, once an equilibrium has been found it is straightforward to verify if it is unique. 

Appendix A gives technical details.  

In both games the equilibrium is unique, and confirms Young’s results concerning the 

amounts allocated to the large battlefield. In equilibrium, the expected share of resources 

devoted to the large battlefield is around 50% in the four battlefield case and 58% in the five 

battlefield case. In each case the large battlefield receives a share of resources exceeding its 

value as a proportion of the total value. We refer to this as the super-proportionality property 

                                                           
7
 In an apex game with n battlefields one “large” battlefield is more important than the other (n – 1) “small” 

battlefields. In particular, to win overall a player must win either all the small battlefields or the large and one 

small battlefield. 
8
 The number of object-symmetric strategies is approximately 52,000 in the four battlefield case and 430,000 in 

the five battlefield case. 



8 

 

 

 

of the equilibrium. The equilibrium also allows us to see which battlefields a player targets. 

Does a player concentrate resources on all the small battlefields, or on the large battlefield 

and just one small battlefield? Or does a player hedge and spread the budget over all 

battlefields? At first sight it seems that there is no point spending resources on more 

battlefields than are needed to win. However, in equilibrium a player places positive amounts 

on more battlefields than are needed to win the game with a probability exceeding 90%. We 

refer to this as the hedging property of equilibrium. In the next section we describe an 

experimental design to test these predictions. 

 

4. EXPERIMENTAL DESIGN AND PROCEDURES  

The experiment was conducted at the University of Nottingham with 148 subjects recruited 

from a university-wide pool of undergraduate students using ORSEE (Greiner, 2004). The 

experiment consisted of nine computerized sessions, with no subject participating in more 

than one session. The experiment was programmed in z-tree (Fischbacher, 2007). 

All sessions used an identical protocol. Upon arrival, subjects were given a written set 

of instructions that the experimenter read aloud.
9
 Subjects were then randomly paired and 

played a sequence of 45 rounds of a game against the same opponent. Subjects were not told 

who of the other people in the room was paired with them, but they knew that they were 

playing the same subject throughout. Subjects were not allowed to communicate with one 

another throughout the session. In each round a subject won either £0.50 or nothing and at the 

end of the session subjects were paid their accumulated earnings from all 45 rounds. 

In each round subjects were given a budget of 120 tokens and used these to bid for 

‘objects’, each of which was worth a given number of points. A subject could only submit 

bids that added up to 120, and had 90 seconds to submit the bids.
10

 A subject won an object if 

he outbid his opponent on that object (or, in the case of a tie, if he won a random computer 

draw). The subject that won the most points in a given round earned £0.50. At the end of each 

round subjects were informed of how much they and their opponent bid for each object, who 

won each object, and how much they earned.  

                                                           
9
 Instructions for one of the treatments can be found in Appendix B.  

10
 If subjects timed out, the computer made a default decision allocating zero tokens to each object. Across all 

sessions only 28 out of 6,660 allocation decisions resulted in a timeout. 
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We ran three treatments. APEX4 and APEX5 use Young’s (1978) apex games with 

four and five battlefields respectively. For these treatments Object A represented the large 

battlefield. For comparison, we also ran a treatment using a (degenerate) apex game with 

three symmetric battlefields (APEX3).
11

 For each treatment we conducted three sessions with 

between 14 and 20 subjects in a session. Each session took approximately 1.5 hours and 

subjects earned on average £11.25 (about $17 at the time of the experiment). Table 1 

summarizes the experimental design.
12

 

 

Table 1. Experimental treatments 

Treatment Values of objects 

Proportional 

share of 

expenditure 

on object A 

(vA/vi) 

Equilibrium 

share of 

expenditure 

on object A 

Number of 

pairs 

 

Number 

of 

subjects 

APEX3 v = (1, 1, 1) 0.33 0.33 23 46 

APEX4 v = (2, 1, 1, 1) 0.40 0.50 26 52 

APEX5 v = (3, 1 , 1, 1, 1) 0.43 0.58 25 50 

 

Note that, in contrast to the theoretical analysis of a one-shot game discussed in the 

previous section, in our experiment subjects play a repeated game. This motivates several 

remarks. First, even though subjects play repeatedly, since a subject either wins £0.50 or 

nothing in each round, equilibrium strategies are independent of risk preferences (Wooders 

and Shachat, 2001). Second, use of a repeated play design requires a choice of how subjects 

will be matched across plays: most experiments use either a random matching protocol in 

which subjects are randomly re-matched from round to round or a fixed matching protocol 

where subjects are kept in the same pairs. An advantage of the fixed pair protocol is that it 

gives subjects a greater incentive to be unpredictable (Chowdhury et al., 2013). Also, keeping 

subjects in the same pairs simplifies the structure of possible dependencies between decisions 

                                                           
11

 The APEX3 game is isomorphic to the Colonel Blotto game with additive objective studied in Hart (2008). 

For this game equilibrium marginal distributions are approximately uniform, with different weights placed on 

odd and even allocations (see Hart, 2008).  
12

 At an early stage of our research we also ran some sessions with a budget of 5 indivisible units. This 

permitted identification of equilibrium benchmarks without resorting to numerical methods. For completeness 

we report these sessions in Appendix C.  
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and in particular allows us to treat each pair as an independent observation since subjects in 

one pair cannot influence or be influenced by the decisions of subjects in any other pair.   

 

5. RESULTS 

5.1 Predicted and observed distributions  

We begin with an overview of our results and how they relate to equilibrium predictions. 

Figure 1 displays the equilibrium and the empirical distribution of allocations for the APEX3 

treatment. In equilibrium, the players use mixed strategies where the marginal distribution of 

tokens on each object is approximately uniform on {0,…,80}. In contrast, there is a 

pronounced bi-modality in subject choices, with subjects tending to place either very small 

amounts or about half their budget on an object too often. This is similar to what is observed 

in previous experiments with Colonel Blotto or related games (see Avrahami and Kareev, 

2009, Chowdhury et al., 2013, and Mago and Sheremeta, 2012). Figure 1 also shows that the 

distributions of bids are similar across the three objects, although subjects allocated slightly 

more to Object A than to Object B than to Object C.
13

 

Figure 1. Predicted and observed bids in APEX3 

 

Next we turn to the treatments with asymmetric battlefields. Figure 2 displays the 

equilibrium marginal distribution of bids for Object A (the large battlefield) and the 

equilibrium marginal distribution of bids for one of the other objects (a small battlefield) for 

the APEX4 treatment. The figure also shows the distributions actually observed in the 

experiment, where for the marginal distribution on a small battlefield we pool the data from 

                                                           
13

 Again, this echoes previous experimental findings. Chowdhury et al. (2013) also observe mild positional 

order effects (see their table 3 and figure 3).  
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all the small battlefields.  

Figure 2. Predicted and observed bids in APEX4 

 

Again, the observed distributions are bi-modal, and are markedly different from the 

theoretical distributions. Relative to equilibrium, subjects too often place either very low 

amounts or around two-thirds of their budget on the large battlefield. Analogously, a small 

battlefield is often allocated an amount close to 0 or an amount close to one-third of the 

budget.  

Figure 3 compares the equilibrium predictions with the marginal distributions actually 

observed in the APEX5 treatment. Similarly to APEX4, the observed distribution for the 

large battlefield is bi-modal. Again there is a concentration of negligible bids and a second 

concentration of higher bids. For this treatment the second mode is around three quarters of 

the budget. Analogously, the distribution on a small battlefield is bi-modal with one mode 

close to 0 and another around one-quarter of the budget. 
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Figure 3. Predicted and observed bids in APEX5 

 

In summary, for all treatments we observe bi-modal bidding patterns, suggesting 

subjects sometimes give up on a battlefield and concentrate their forces on a subset of them. 

The positions of the modes suggest that when concentrating on a subset of battlefields 

subjects allocate budgets roughly in proportion to the value of objects within this subset. 

5.2 Minimal winning and hedging strategies 

Note that in order to win a round a player only needs to capture battlefields with a combined 

value exceeding that of his opponent’s captured battlefields. To do this in APEX3 a player 

simply needs to win two battlefields, thus subjects may find it natural to give up on one of the 

battlefields and concentrate resources on just two of them. We refer to a strategy that places 

zero on one battlefield as a minimal winning strategy. In contrast, a hedging strategy places a 

positive amount on all three battlefields. Hedging strategies can be optimal because of the 

uncertainty about the opponent’s strategy. For example, consider APEX3 and suppose one 

player randomizes equally between bidding (60,60,0), (60,0,60) and (0,60,60). A best 

response to this is (61,58,1) which wins with probability 2/3. Minimal winning strategies 

have an equilibrium probability of around 7% in APEX3, but they are observed much more 
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often than predicted (42% of submitted strategies are minimal winning).
14

  

In APEX4 and APEX5 there are two types of minimal winning strategy. One targets 

all the small battlefields, giving up on the large battlefield (e.g., the strategy (0,40,40,40) in 

APEX4). The other type of minimal winning strategy targets the large and one small 

battlefield, giving up on the other small battlefields (e.g. the strategy (80,40,0,0) in APEX4). 

For both treatments the support of the equilibrium includes minimal winning strategies, but 

according to equilibrium they should be rarely played – less than 10% of the time. Instead, 

more than 90% of the time a player should use a hedging strategy, placing a positive amount 

on the large and at least two small battlefields. Again, we observe that minimal winning 

strategies are played much more often than is predicted by equilibrium. Minimal winning 

strategies that place zero on the large voter are predicted to be used less than 1% of the time 

in either treatment, but are used 13% of the time in APEX4 and 11% of the time in APEX5. 

Minimal winning strategies that target the large and one small battlefield are predicted to be 

used 5% of the time in APEX4 and 7% of the time in APEX5, but are actually used about 

19% of the time in APEX4 and 20% of the time in APEX5. 

Figure 4 presents the evolution of the proportion of hedging and minimal winning 

strategies over time. For APEX4 and APEX5 “MWL” denotes minimal winning strategies 

that focus on the large and one small battlefield, while “MWS” denotes minimal winning 

strategies that focus on the small battlefields. In all three treatments the proportion of hedging 

strategies observed increases over time. Thus, there is some evidence that subjects learn from 

experience to switch from using minimal winning to using hedging strategies. 

Figure 4. Proportions of minimal winning and hedging strategies 

 

                                                           
14

 A similar result is obtained by Mago and Sheremeta (2012) in a majoritarian contest with linear costs. In their 

experiment 35% of the time subjects bid only on two out of three objects, whereas in equilibrium they should 

make positive bids on all three. 
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5.3 Super-proportionality 

Equilibrium predicts that players spend a disproportionate amount of their budgets on the 

large battlefield. If subjects’ bids on objects were proportional to object values they would 

place 40% and 43% of their budgets on the large battlefield in APEX4 and APEX5 

respectively, while in equilibrium expected bids are 50% and 58% of budgets. Figure 5 shows 

the share of expenditure on the large battlefield (Object A) relative to its proportional share, 

i.e. (xA/120) ÷ (vA/vi). The theoretical prediction is that this measure is 1 for APEX3 (where 

the battlefields are symmetric) and increases with the number of battlefields. Even though 

bids on the large battlefield are not as high, on average, as predicted by equilibrium, Figure 5 

suggests that Object A receives more than a proportional share of the budget. For APEX3, the 

battlefields are symmetric and so the small deviation from proportionality suggests a 

positional order effect. For APEX4 the allocation ratio is essentially the same, and so again 

the small departure from proportionality may be attributed to a positional effect rather than to 

strategic considerations. Allocations are clearly super-proportional in APEX5, although even 

in this case they are well below the equilibrium prediction. 

 

Figure 5. Share of budget allocated to large battlefield relative to proportional share 

 

Formal statistical tests are presented in Table 2, which shows the share of the budget 

allocated to object A in each treatment and p-values for tests against proportionality. We use 

two-sided sign-rank tests treating each pair as an independent observation.
15
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 This is equivalent to a test against equilibrium for APEX3. For tests against equilibrium in APEX4 and 

APEX5 all p-values are less than 0.0005. 
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Table 2. Budget share allocated to Object A (large battlefield) 

Treatment 
Proportional 

Share (%) 

Equilibrium 

Share (%) 

Number 

of pairs 

All rounds Last 15 rounds 

Share (%) p-value* Share (%) p-value* 

APEX3 33 33 23 35 0.0177 34 0.7380 

APEX4 40 50 26 42 0.3037 42 0.3740 

APEX5 43 58 25 49 0.0001 47 0.0094 

* p-values based on two-sided sign-rank test that mean allocation to Object A is proportional to value. 

 

Object A has a small but significant positional advantage in APEX3, although this 

advantage becomes insignificant in the later rounds. In APEX4 the share allocated to the 

large battlefield is slightly, but insignificantly, higher than a proportional share. In APEX5 

the share allocated to the large battlefield is significantly higher than proportional, whether 

we average across all rounds or focus on later rounds. Thus, we find significant evidence of 

super-proportionality in APEX5, but not in APEX4. 

After using this conservative approach to test our main hypothesis, we analyze 

individual allocations to the large battlefield using multivariate analysis. Following 

Chowdhury et al. (2013), we estimate a separate regression for each treatment taking the 

form: 

itAllocA  )( )1()1(3)1(2)1(10   titititi winAAllocAOppAllocAAllocA   

  
s

itiss uDt  54 )/1( , 

where AllocAit refers to the number of tokens allocated by subject i to object A in round t, 

AllocAi(t–1) is the same variable lagged, OppAllocAi(t–1) is the corresponding lagged variable 

for the opponent of subject i, and winAi(t–1) indicates whether i won object A in the previous 

round. The regressions also include session dummies, a reciprocal time trend and individual 

random effects. We exclude any observations in which a subject timed out either in the 

current round or in the previous one, and in which the subject’s opponent timed out in the 

previous round (observations in which the opponent timed out in the current round are not 

affected). Table 3 reports the coefficients and robust standard errors from the random effects 

regressions. Session dummies are insignificant and are not reported. 
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Table 3. Determinants of allocation to Object A 

Treatments APEX3 APEX4 APEX5 

Dependent variable: AllocAit    

AllocAi(t-1) 
-0.037 

(0.038) 

-0.007 

(0.048) 

0.014 

(0.044) 

OppAllocAi(t-1) 
-0.045* 

(0.027) 

0.034 

(0.032) 

-0.043 

(0.035) 

AllocAi(t-1)  winAi(t-1) 
-0.005 

(0.030) 

0.014 

(0.041) 

0.009 

(0.035) 

1/t 
13.848** 

(6.001) 

24.782*** 

(7.336) 

27.788** 

(9.977) 

Constant 
43.990*** 

(1.886) 

45.724*** 

(2.949) 

58.261*** 

(3.691) 

# Observations 2,024 2,262 2,143 

# Subjects 46 52 50 
*significant at 10%, **significant at 5%, ***significant at 1%.  

Chowdhury et al. (2013) find that when subjects play against randomly changing 

opponents, their strategies are serially correlated. Specifically, they find that the lagged 

allocation variables and the interaction variable are useful predictors of a player’s allocation 

to a battlefield (the significance of the latter variable they interpret as a “hot box effect”). 

They also find that the serial correlation is considerably reduced when subjects play 

repeatedly against the same opponent, and the hot-box effect disappears. In our treatments we 

find very little evidence of serial correlation, and no evidence of a hot-box effect. The 

opponent’s lagged allocation is marginally significant only in one of the treatments. On the 

other hand, the significant trend means that allocations are predictable to some extent. Note 

however, that the variable 1/t models a diminishing trend, and the significant negative trend is 

essentially capturing a reduction in average amount allocated to Object A in initial rounds.
16

 

5.4 Heterogeneity 

For all treatments the lobbying game is a symmetric constant-sum game and so in equilibrium 

each lobbyist wins with probability 1/2 in any play. This means that a player expects to win 
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 Restricting the regression to the last 15 rounds, we find that the trend variable is not significant anymore, 

whereas the significance of other variables remains broadly unchanged. 
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22.5 out of the 45 games. In fact, some do considerably better than this. For example, in one 

of the pairs one subject won 11 rounds and the other won 34 rounds, so that the difference in 

wins was 23. Figure 6 shows the observed frequencies of each possible value of the 

difference in wins. For comparison the theoretical distribution is also shown.  

Figure 6. Theoretical and Observed Distributions of Differences in Wins 

 

The figure shows that fewer than expected pairs have a small difference in wins and 

more than expected have a large difference in wins. Theoretically, the expected difference in 

wins is 5.38, while in the data the average difference in wins is 6.84. This difference is 

significant (Chi-square test p = 0.028). The obvious interpretation is that some subjects are 

better than others at playing the lobbying game.  

To uncover the determinants of success in our experiment we run a probit regression 

of the following form: 

 

)

(1Pr

54

3210

itiitit

itititit

uMWSMWL

MADAcrMADTempAllocAWin








 

Here   is the c.d.f. of the standard normal distribution, and the dependent variable Winit is a 

binary variable that takes value 1 if subject i won in round t and 0 otherwise. MADTempit is 

the mean absolute deviation of allocations across rounds and measures the variability of a 

subject’s allocation between rounds, while MADAcrit measures the variability of the 
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allocation across objects in a given round.
17

 MWLit and MWSit are indicator variables for 

subject i playing different types of minimal winning strategy. In APEX3, there is only one 

type of minimal winning strategy and so we replace the MWLit and MWSit variables with a 

single variable MWit . The regression includes subject level random effects. Results are 

reported in Table 4. 

Table 4. Determinants of winning 

Treatments APEX3 APEX4 APEX5 

Dependent variable: Winit    

AllocAit 
-0.002** 

(0.001) 

-0.003* 

(0.001) 

0.002 

(0.002) 

MADTempit 
0.005*** 

(0.002) 

0.009*** 

(0.002) 

0.020*** 

(0.002) 

MADAcrit 
0.007 

(0.005) 

0.007 

(0.005) 

-0.009 

(0.009) 

MWit 
-0.138** 

(0.066) 
  

MWLit  
0.115 

(0.076) 

0.106 

(0.082) 

MWSit  
-0.166* 

(0.097) 

-0.005 

(0.112) 

Constant 
-0.189* 

(0.137) 

-0.279*** 

(0.092) 

-0.367*** 

(0.104) 

# Observations 2,024 2,254 2,124 

# Subjects 46 52 50 
* significant at 10%, ** significant at 5%, *** significant at 1%.  

 Consistent with Chowdhury et al. (2013) we find that MADTempit is highly 

significant, hence unpredictability of the allocation is one of the main determinants of 

success; also consistent with their results, the variability of the allocation across objects does 

not have a significant effect on the probability of winning. In APEX3, subjects tend to place 

too much of their budgets on Object A, and to play minimal winning strategies too often. 
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Against this actual distribution of play subjects who placed less on Object A and used 

minimal winning strategies less often were more likely to win. The picture in APEX4 and 

APEX5 is a little different. Recall that, relative to equilibrium, subjects play minimal winning 

strategies too frequently and place too little of their budgets on Object A. Thus, one might 

expect that minimal winning strategies will win less often and strategies placing more on 

Object A will win more often in these treatments. In fact this is not always the case. In 

APEX4 minimal winning strategies that focus on the small battlefields are less likely to win, 

but strategies (not necessarily minimal winning) that place more on Object A are also less 

likely to win (both effects are marginally significant). In APEX5 we do not observe any 

significant effect of the use of minimal winning strategies or the amount placed on Object A 

on the probability of winning. These results for APEX4 and APEX5 may simply reflect that 

given the out-of-equilibrium behavior of subjects, strategies that are closer to equilibrium in 

terms of these specific metrics do not necessarily do better than strategies that are further 

away. In the next section we look more closely at which strategies perform best against the 

empirical distribution.  

5.5 A measure of deviation from equilibrium: Exploitability 

To measure how far observed play is from equilibrium we take advantage of the fact that 

equilibrium mixed strategies restrict an opponent’s probability of winning to one-half. Any 

mixed strategy that can be beaten with probability exceeding one-half cannot be an 

equilibrium strategy. Intuitively, the greater the expected payoff one can obtain against a 

mixed strategy, the further that strategy is from equilibrium play. Thus, to measure the extent 

to which a strategy deviates from equilibrium we take the expected payoff from the best 

response to this strategy. Table 5 displays this measure of exploitability, for some selected 

strategies. We consider a “uniform” strategy and a “minimal winning” strategy. The uniform 

strategy is a mixed strategy that induces a uniform marginal distribution of tokens on each 

battlefield, with the expected allocation to a battlefield being proportional to its valuation. For 

APEX3 the minimal winning strategy randomizes equally between (60,60,0), (60,0,60) and 

(0,60,60); for APEX4 it randomizes equally between (80,40,0,0), (80,0,40,0), (80,0,0,40), and 

(0,40,40,40); for APEX5 it randomizes equally between (90,30,0,0,0), (90,0,30,0,0), 
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(90,0,0,30,0), (90,0,0,0,30), and (0,30,30,30,30).
18

 Finally we report the exploitability of (and 

below it the best response to) a mixed strategy defined over allocations used in the 

experiment, where the probability of each allocation is equal to its empirical relative 

frequency.  

Table 5. Exploitability of strategies 

 Uniform Minimal 

Winning 

Rounds  

1-15 

Rounds  

16-30 

Rounds  

31-45 

All Rounds 

APEX3 
0.500 0.667 0.681 

2-56-62 

0.670 

71-6-43 

0.664 

7-71-42 

0.664 

8-71-41 

APEX4 
0.750 0.750 0.707 

6-42-41-31 

0.696 

76-1-1-42 

0.673 

71-2-2-45 

0.674 

71-2-2-45 

APEX5 
0.833 0.800 0.682 

5-31-31-32-21 

0.648 

21-41-11-11-36 

0.677 

25-37-11-36-11 

0.655 

11-21-21-35-32 

Note that as the number of battlefields increases the game gets more complex. With 

more battlefields not only are there more strategies, but sub-optimal strategies are more 

exploitable. While the minimal winning strategy can be beaten two-thirds of the time in 

APEX3, it can be beaten 75% of the time in APEX4 and 80% of the time in APEX5. The 

uniform strategy, which is an equilibrium strategy in APEX3, can also be beaten 75% of the 

time in APEX4, and does even worse than the minimal winning strategy in APEX5, where it 

can be beaten 83% of the time. 

Turning to the data from the experiment, for any treatment we can find strategies that 

beat the empirical distribution more than 60% of the time. In all cases the best responses to 

the empirical distribution hedge by placing at least a small amount on all battlefields, beating 

the modes in the data at zero. Indeed, more generally the best responses score highly by 

beating modes in the data. Note also that although subjects in APEX4 and APEX5 place too 

little on the large battlefield, relative to equilibrium, the best response to the empirical 

distribution sometimes involves placing a small amount on the large battlefield. This is 
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 These minimal winning strategies are mixtures of particular MWS and object-symmetric MWL strategies. 

Different weights on the MWS and MWL components increase the exploitability of the strategy. 
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consistent with the finding from the previous section that subjects spending less on Object A 

sometimes win more often. This also underscores how challenging the super-proportionality 

hypothesis is in these games. Not only is it difficult to identify equilibrium strategies, but if 

the data is out-of-equilibrium sophisticated subjects might exploit this by choosing 

allocations that are even further from equilibrium. 

Notably, we find no clear pattern in the degree of exploitability of our subjects across 

treatments. Subjects are less exploitable with experience in APEX3 and APEX4 and less 

exploitable in the less complex APEX3 than in the more complex APEX4, but this pattern 

breaks down once we consider APEX5. Overall, we find that for all treatments the empirical 

distribution can be beaten around two-thirds of the time, with very little variation across 

treatments.  Thus, although simple strategies are more exploitable in more complex games, 

subject behavior is no more exploitable in APEX5 than APEX3, suggesting that in the game 

with more battles subjects “raise their game” and find ways to protect themselves from being 

exploited.  

 

6. CONCLUDING REMARKS 

As Walker and Wooders (2001) have remarked in the context of other games with mixed 

strategy equilibria, games requiring unpredictable play are often easy to play, but difficult to 

play well. The Colonel Blotto game provides a good example. Although it is easy to describe 

to subjects, and subjects have no trouble understanding the rules, sophisticated play is very 

demanding. For our simplest treatment, corresponding to the classic Colonel Blotto game, it 

is perhaps obvious that a sophisticated player should not favor one battlefield, as such 

favoritism can be exploited by an opponent. It is perhaps equally obvious that in the more 

complex version with asymmetric battlefields a player should favor the more important 

battlefield. But it is not clear by how much it should be favored. If one battlefield has a value 

that is twice as much as that of another battlefield, should it get twice as many resources? The 

answer crucially depends on how battlefield values contribute to final victory or defeat. For 

the case we consider, where the player who captures battlefields with the greatest total value 

wins, equilibrium requires players to allocate super-proportional amounts to the large 

battlefield. We would argue that the precise amount to be placed (in expectation) on the large 

battlefield, and the precise equilibrium strategies are far from obvious. Indeed, we obtain 
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equilibrium predictions using numerical methods that are beyond the cognitive capabilities of 

our subjects. 

Perhaps unsurprisingly, behavior in our experiment deviates from these equilibrium 

predictions. First, we observe bi-modal distributions, where subjects choose either to spend 

very little or a substantial proportion of their budget on a battlefield, with too little weight 

placed on intermediate allocations. This is also observed in related Colonel Blotto 

experiments. Second, and related to the first point, subjects too often submit allocations that 

concentrate their resources on a minimal winning set of battlefields, placing zero on other 

battlefields, whereas equilibrium behavior requires hedging more than 90% of the time. 

Third, in games with asymmetric battlefields subjects spend too little on the large battlefield. 

An implication of these deviations is that it is possible to find strategies that beat the 

empirical distribution of allocations more than 60% of the time.  

On the other hand, in spite of these deviations from equilibrium, we find evidence of 

strategic sophistication. For example, while simple strategies are more exploitable in games 

with more battlefields, we find that the exploitability of our subjects is quite similar across 

treatments. Our experiment also finds support for some of the qualitative features of 

equilibrium predictions. Although our subjects play hedging strategies only around 60% of 

the time, this proportion increases over the course of the session. Similarly, in games with 

asymmetric battlefields, subjects place less on the large battlefield than predicted, but in 

APEX5, where the asymmetry between battlefields is more pronounced, they place a more 

than proportional amount on the large battlefield. 
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APPENDIX A: COMPUTATIONAL TECHNIQUES 

Computing an equilibrium and verifying uniqueness 

The games APEX3, APEX4, and APEX5 are two-player, constant-sum, symmetric games. 

As two-player, constant-sum games, a minimax strategy, and therefore a Nash equilibrium, 

can be written as the solution to a linear program (Dantzig, 1951). We first develop some 

generic notation. Write the pure strategies available to each player as {1, 2, ..., M}. Let uij 

denote the payoff to a player, if the player chooses pure strategy i while the other player 

chooses pure strategy j. Let π denote a mixed strategy, where πi indicates the probability 

assigned in the mixed strategy to pure strategy i. Then, the payoff to a player of choosing 

strategy i if his opponent plays a given mixed strategy π is 

M

j jiju
1

 . Two-player, constant-

sum games have a value, which we write as ω. We must therefore have that no pure strategy 

for a player can give him a payoff greater than the value, that is,   





M

j

jiju
1

  ,,,2,1 Mi            (1) 

and that the mixed strategy is a proper distribution,  

πi  ≥  0 ,,,2,1 Mi           (2) 





M

j

j

1

.1        (3) 

Because of the symmetry of the games APEX3, APEX4, and APEX5, and the payoff 

structure, the value of the game is known in advance to be ω = 1/2.
19

 Therefore, finding a 

minimax strategy reduces to finding a mixed strategy π which satisfies the constraints (1), (2), 

and (3). This can be embedded into a linear program, where the choice of the objective 

function is arbitrary. Any feasible solution is a minimax equilibrium of the game. 

This formulation also permits verification of the uniqueness of the equilibrium. It is 

easy to see that the set of equilibria is convex in this setting, as the set of π satisfying the 

constraints (1), (2), and (3) is convex. Let Φ denote the set of equilibria. The set of equilibria 

is a singleton if and only if ii     maxmin  for all strategies },,2,1{ Mi  . 

                                                           
19 Knowing the value in advance allows us to simplify the construction of the linear program. Dantzig’s original 

construction computes the value of the game as part of its output. 
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Therefore, uniqueness can be verified as follows. Pick a strategy i. Let i be the optimal 

value of the linear program minπ πi subject to the constraints (1)-(3), and let i be the optimal 

value of the linear program maxπ πi subject to the constraints (1)-(3). If i = i for all 

},,2,1{ Mi  , then the equilibrium is unique. 

The step of verifying uniqueness can be done relatively efficiently once one 

equilibrium has been found, as this equilibrium is a feasible solution; the linear programming 

algorithm can be started at this feasible solution. Note also that if one is interested in knowing 

simply whether Φ is a singleton, it is enough to consider only the strategies i which have 

value one-half at the first known equilibrium; strategies which are strictly inferior need not be 

checked. The main computational challenge is in finding the first feasible solution. 

Improving efficiency 

Turning specifically to the games studied in this paper, with a budget of E = 120 tokens, the 

strategy spaces of these games are quite large. Even restricting attention to battlefield-

symmetric strategies, APEX3 has 1261 strategies, APEX4 has 52311, and APEX5 has 

430256. However, preliminary explorations with smaller budgets led us to conjecture that 

equilibria in these games would have small support. We therefore used an iterative method to 

identify the set of strategies. 

Iteration on supports 

Consider the game APEXk with a budget of E tokens. Let S be the set of pure strategy token 

allocations. We construct an increasing sequence of supports, nSSS  10 , such that 

Sn is the support of an equilibrium of the game. Pick some initial guess at the support of the 

equilibrium, and call it SS 0 . (The correctness of the construction does not depend on the 

value of the initial guess S0; for this approach to work efficiently, it should be small in size.) 

At each step i of the algorithm, we consider the restriction of APEXk in which players 

can choose only strategies in Si. This induces a well-defined two-player constant-sum game, 

which can be solved for some equilibrium πi; insofar as |Si| << |S| solving the restricted game 

should be much faster than solving the full game. Then, given πi, we consider all the 

strategies which were deleted from the restricted game, S\Si, and order them in decreasing 
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order by their payoff relative to the candidate equilibrium πi. If there are no strategies which 

attain a payoff greater than the equilibrium payoff of one-half, then the algorithm 

terminates, and πi is an equilibrium of the full game with strategy set S. If not, then we 

construct Si+1 by adding the top t strategies from S\Si to those in Si, and iterating. 

The number of strategies t added at every step is arbitrary; we obtained sufficiently 

good performance with t = 25. The tradeoff is that if t is too small, then the algorithm will 

require many iterations, and therefore many calls to the linear program solver, to find the 

equilibrium, while if t is too large the algorithm will consider many strategies which are not 

in the equilibrium, slowing down individual runs of the linear programming solver. 

In any event, the correctness of the approach does not depend on the scheme used for 

adding strategies. Because Si+1 is always a strict superset of Si, and because all the supports 

are bounded above (in the sense of set inclusion) by the whole strategy set S, this iterative 

process is guaranteed to terminate in a finite number of steps. 

Iteration on budgets 

The support iteration approach is most effective if the initial guess S0 on the support of pure 

strategies used in equilibria is accurate. Working on a conjecture that the equilibrium has a 

similar qualitative structure for various budget sizes, we considered a sequence of games with 

token budgets E = 15; 30; 60; 120. Given an equilibrium π*(E) for the game with budget E, 

we then constructed an initial guess for the support iteration for the game with budget 2E by 

doubling all the token allocations as follows. A pure strategy in APEXk can be written as a 

vector of token allocations k

bba 1)(  . The initial guess for the support of the equilibrium in the 

game with budget 2E is then the set of allocations such that the allocation k

bba 1)2/(   is played 

with positive probability in the equilibrium π*(E) of the game with budget E. 

Using this approach, we verified that the main qualitative properties of the 

equilibrium referenced in the main body of the paper regarding the marginal distributions of 

token allocations on each contest and the prevalence of supermajority strategies also hold 

with other budget sizes. We also found that the equilibrium is unique for most - but not all - 

choices of the budget E. 
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APPENDIX B: INSTRUCTIONS 

General rules 

Welcome! This session is part of an experiment in the economics of decision making. If you 

follow the instructions carefully and make good decisions, you can earn a considerable 

amount of money.  

In this session you will be competing with one other person, randomly selected from the 

people in this room, over the course of forty-five rounds. Throughout the session your 

competitor will be the same but you will not learn whom of the people in this room you are 

competing with. The amount of money you earn will depend on your decisions and your 

competitor’s decisions. 

It is important that you do not talk to any of the other people in the room until the session is 

over. If you have any questions raise your hand and a monitor will come to your desk to 

answer it.  

Description of a round 

Each of the forty-five rounds is identical. At the beginning of each round your computer 

screen will look like the one below.  

 

You have 120 tokens. You must use these to bid on 4 objects labelled A, B, C and D. You get 

points for winning objects – object A is worth 2 points and the other objects are worth 1 point 

each. For each object you can bid any whole number of tokens (including zero), but the total 

bid for all objects must add up to 120 tokens. You bid by entering numbers in the boxes, and 

then clicking on the “Submit” button. If the bids you submit do not add up to 120 the 

computer will indicate by how many tokens the bid needs to be corrected. If you do not 
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submit a valid bid within 90 seconds the computer will bid for you and will place zero tokens 

on each object.  

When everyone in the room has submitted their bids, the computer will compare your bids 

with those of your opponent. Your computer screen will look like the one below (the bids in 

the figure have been chosen for illustrative purposes only): 

 

 

You win an object if you bid more for it than your opponent. (If you and your opponent bid 

the same amount the computer will randomly decide whether you or your opponent wins the 

object, with you and your opponent having an equal chance of winning the object. In this case 

the computer screen will indicate with an asterisk that the object was awarded randomly). 

The winner of the round is the person who gets the most points. 

The winner of the round earns 50 pence, the other person earns zero. 

Ending the Session 

At the end of the session you will be paid the amount you have earned from all forty-five 

rounds. You will be paid in private and in cash.  

Now, please complete the quiz. If you have any questions, please raise your hand. The 

session will continue when everybody in the room has completed the quiz correctly. 
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Quiz 

1. Suppose your bids and your competitor’s bids were as follows: 

 

Object Points Your Bid Opponent’s Bid 

A 2 30 60 

B 1 30 60 

C 1 30 0 

D 1 30 0 

 

How many points would you receive?   ________ . 

How many points would your opponent receive?   ________. 

What would your earnings from this round be (in pence)?   ________. 

What would your opponent’s earnings from this round be (in pence)?   ________. 

 

2. Suppose your bids and your competitor’s bids were as follows: 

 

Object Points Your Bid Opponent’s Bid 

A 2 30 10 

B 1 30 30 

C 1 30 40 

D 1 30 40 

Who wins object A?     Me / My Opponent / Randomly Determined  (Circle One) 

Who wins object B?     Me / My Opponent / Randomly Determined  (Circle One) 

For the remaining questions suppose the computer awards object B to your opponent: 

How many points would you receive?   ________. 

How many points would your opponent receive?   ________. 

What would your earnings from this round be (in pence)?   ________. 

What would your opponent’s earnings from this round be (in pence)?   ________. 
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APPENDIX C: COARSE BUDGET TREATMENTS 

We also run experiments using a coarse budget of 5 indivisible units. The motivation for the 

coarse budget is that there are relatively few strategies and this makes the game much easier 

to analyze (and perhaps to play). Having a coarser budget has little effect on the equilibrium 

expected expenditures on objects. Experimental results show that object A's share of 

expenditure is higher than proportional in both asymmetric battlefield treatments and is very 

close to the equilibrium share in the APEX5 treatment. Section C.1 contains the equilibrium 

prediction for all three apex games with a coarse budget. Section C.2 contains the 

experimental results. 

C.1 Equilibrium predictions for the coarse budget 

The game APEX3 

We restrict attention to object-symmetric strategies. There are 5 possible object-symmetric 

strategies in this game, and the following table gives player 1’s expected payoff in the 

normal-form game with these five strategies. (“410” represents the object-symmetric mixed 

strategy that puts equal probability on each of the pure strategies (4,1,0), (4,0,1), (1,4,0), 

(0,4,1), (1,0,4), (0,1,4), etc.). Recall that, because there are only two possible outcomes 

(winning and losing), risk attitudes are irrelevant under expected utility theory and a player’s 

payoff can be identified with the probability of winning. Recall also that any equilibrium of 

this game is also an equilibrium of the original game. 

 500 410 320 311 221 

500 0.5 1/3 1/3 0 0 

410 2/3 0.5 0.5 1/3 1/6 

320 2/3 0.5 0.5 0.5 2/3 

311 1 2/3 0.5 0.5 1/3 

221 1 5/6 1/3 2/3 0.5 

There is a continuum of equilibria in the game, described by strategy combinations 

(1 320 + (1 – 1) 311, 2 320 + (1 – 2) 311) for 1/2  1, 2  1. This includes a “pure” 

strategy equilibrium (320, 320), but recall that 320 is actually a particular mixed strategy. 

Note also that 320 is the only strategy in the normal form game above that survives the 

iterated elimination of weakly dominated strategies. 
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The game APEX4 

There are 16 object-symmetric strategies. The table below is the resulting normal form game 

(entries in the table correspond to the probability that the row player wins). 

 5000 4100 3200 3110 2300 2210 2111 1400 1310 1220 1211 0500 0410 0320 0311 0221 

5000 0.5 3/4 3/4 0.5 3/4 0.5 0 3/4 0.5 0.5 0 3/4 0.5 0.5 0 0 

4100 1/4 0.5 11/12 5/6 11/12 3/4 0.5 11/12 3/4 2/3 1/3 11/12 3/4 2/3 1/3 1/6 

3200 1/4 1/12 0.5 0.5 11/12 11/12 1 11/12 5/6 5/6 5/6 11/12 5/6 3/4 2/3 2/3 

3110 0.5 1/6 0.5 0.5 1 11/12 3/4 1 11/12 5/6 7/12 1 11/12 5/6 7/12 1/3 

2300 1/4 1/12 1/12 0 0.5 0.5 0.5 11/12 11/12 1 1 11/12 5/6 11/12 5/6 1 

2210 0.5 1/4 1/12 1/12 0.5 0.5 0.5 1 23/24 11/12 11/12 1 23/24 7/8 5/6 3/4 

2111 1 0.5 0 1/4 0.5 0.5 0.5 1 1 1 3/4 1 1 1 3/4 0.5 

1400 1/4 1/12 1/12 0 1/12 0 0 0.5 0.5 0.5 0.5 11/12 11/12 1 1 1 

1310 0.5 1/4 1/6 1/12 1/12 1/24 0 0.5 0.5 0.5 0.5 1 23/24 47/48 11/12 1 

1220 0.5 1/3 1/6 1/6 0 1/12 0 0.5 0.5 0.5 0.5 1 1 11/12 1 11/12 

1211 1 2/3 1/6 5/12 0 1/12 1/4 0.5 0.5 0.5 0.5 1 1 1 11/12 5/6 

0500 1/4 1/12 1/12 0 1/12 0 0 1/12 0 0 0 0.5 0.5 0.5 0.5 0.5 

0410 0.5 1/4 1/6 1/12 1/6 1/24 0 1/12 1/24 0 0 0.5 0.5 0.5 0.5 0.5 

0320 0.5 1/3 1/4 1/6 1/12 1/8 0 0 1/48 1/12 0 0.5 0.5 0.5 0.5 0.5 

0311 1 2/3 1/3 5/12 1/6 1/6 1/4 0 1/12 0 1/12 0.5 0.5 0.5 0.5 0.5 

0221 1 5/6 1/3 2/3 0 1/4 0.5 0 0 1/12 1/6 0.5 0.5 0.5 0.5 0.5 

 

Using the Gambit software (McKelvey et al., 2013) we found a unique equilibrium of 

the normal-form game above, with probabilities 30/77 on 4100, 12/77 on 3200, 8/77 on 2111, 

24/77 on 1211 and 3/77 on 0221. In this equilibrium, the expected share of the total budget 

allocated to the large object is 0.51
55
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 . The expected 

share of each small object is 0.16
55

9

55

28
1

3

1









 . Note that the equilibrium places positive 

probability on the hedging strategies 2111 and 1211.  

The game APEX5 

Again we restrict attention to object-symmetric strategies. We also discard some strategies 

that look implausible (obtained equilibria are later checked against invasion by those 

strategies). We discarded strategy 14000 and strategies that allocate the budget to a losing 

subset of small objects, leaving 12 object-symmetric strategies: 
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 50000 41000 32000 31100 23000 22100 21110 13100 12200 12110 11111 02111 

50000 0.5 7/8 7/8 3/4 7/8 3/4 0.5 3/4 3/4 0.5 0 0 

41000 1/8 0.5 31/32 15/16 31/32 29/32 13/16 29/32 7/8 3/4 0.5 3/8 

32000 1/8 1/32 0.5 0.5 31/32 31/32 1 15/16 15/16 15/16 1 7/8 

31100 1/4 1/16 0.5 0.5 1 47/48 15/16 47/48 23/24 43/48 3/4 5/8 

23000 1/8 1/32 1/32 0 0.5 0.5 0.5 31/32 1 1 1 1 

22100 1/4 3/32 1/32 1/48 0.5 0.5 0.5 95/96 47/48 47/48 1 15/16 

21110 0.5 3/16 0 1/16 0.5 0.5 0.5 1 1 31/32 7/8 25/32 

13100 1/4 3/32 1/16 1/48 1/32 1/96 0 0.5 0.5 0.5 0.5 1 

12200 1/4 1/8 1/16 1/24 0 1/48 0 0.5 0.5 0.5 0.5 1 

12110 0.5 1/4 1/16 5/48 0 1/48 1/32 0.5 0.5 0.5 0.5 31/32 

11111 1 0.5 0 1/4 0 0 1/8 0.5 0.5 0.5 0.5 7/8 

02111 1 5/8 1/8 3/8 0 1/16 7/32 0 0 1/32 1/8 0.5 

Using the Gambit software, we found a continuum of equilibria described by strategy 

combinations (1 41000 + (1 – 1) 11111, 2 41000 + (1 – 2) 11111) for 16/29  1, 2  4/7. 

The expected share allocated to the large object is between 77/145 ≈ 0.53 and 19/35 ≈ 0.54.  

C.2 Experimental results for the coarse budget 

The coarse budget experiment had one APEX3 session, one APEX4 session, and two APEX5 

sessions. Instructions are identical to the 120 token budget treatment (see Appendix B), 

except for references to the number of tokens. Table C1 summarizes the experimental design 

and the average share of budget allocated to Object A in the experiment. 

Table C1. Experimental treatments 

Treatment 

Number 

of pairs 

 

Values of objects vA/vi 

Equilibrium 

share of 

expenditure 

on Object A 

Observed 

share of 

expenditure 

on Object A 

APEX3 8 v = (1, 1, 1) 0.33 0.33 0.35 

APEX4 10 v = (2, 1, 1, 1) 0.40 0.51 0.45 

APEX5 15 v = (3, 1 , 1, 1, 1) 0.43 0.53-0.54 0.57 
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Observed allocations in APEX3 

The frequencies of strategy types, averaged over all 45 rounds, are shown in Table C2 below. 

With a slight abuse of notation, we use 320 to denote both the object-symmetric strategy in 

which each of the six possible permutations has equal probability (in the equilibrium 

analysis), and the strategy type, i.e. the set of permutations not necessarily with the same 

frequency (in the analysis of the data). Note that the equilibrium strategy type 320 has the 

highest proportion in all pairs. However, most pairs played non-equilibrium strategies more 

than 20% of the time. Across all pairs 35% of tokens were allocated to Object A. However, 

the positional advantage of Object A is statistically insignificant (sign-rank test two-sided p-

value = 0.4833). 

 

Table C2. Observed allocations in APEX3 

Type/Pair 1 2 3 4 5 6 7 8 All 

500 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

410 0.00 0.22 0.02 0.32 0.01 0.07 0.26 0.00 0.11 

320 0.56 0.68 0.77 0.52 0.67 0.69 0.43 0.72 0.63 

311 0.08 0.02 0.01 0.08 0.19 0.20 0.06 0.19 0.10 

221 0.37 0.08 0.20 0.08 0.13 0.04 0.24 0.09 0.15 

 

Observed allocations in APEX4 

Table C3 compares the frequencies of strategy types with equilibrium in APEX4, pooling 

across pairs. Behavior is quite far from equilibrium. The only two hedging strategies 

predicted in equilibrium are 2111 (with 10% probability) and 1211 (with 31% probability). 

These are observed only 4 and 5% of the time respectively in the experiment. Although we 

observed hedging strategies quite frequently (e.g. 3110 was observed 10% of the time), they 

are not played as frequently as in equilibrium, and they are not the hedging strategies that 

should be played in equilibrium. Across all pairs, 45% of the budget is allocated to Object A. 
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This is significantly higher than proportional (sign-rank test two-sided p-value = 0.0217), but 

also significantly lower than the equilibrium prediction (sign-rank test two-sided p-value = 

0.0050). 

Table C3. Observed allocations in APEX4 

Strategy 

Type 
4100 3200 2111 1211 0221 3110 2210 1220 Other 

Predicted 

frequency 
0.39 0.16 0.10 0.31 0.04 - - - - 

Observed 

frequency 
0.20 0.20 0.04 0.05 0.22 0.10 0.05 0.04 0.09 

 

Observed allocations in APEX5 

Table C3 compares the frequencies of strategy types with equilibrium in APEX5, pooling 

across pairs. (There is a small interval of equilibria, with varying weights on 41000 and 

11111. Table C4 reports the midpoint). As in APEX4, the proportion of hedging strategies 

observed is lower than predicted, 34% overall, and these often correspond to strategies that 

should not be played in equilibrium. Across all pairs, 57% of the budget is allocated to Object 

A. This is significantly higher than proportional (sign-rank test two-sided p-value = 0.0007), 

and we cannot reject the hypothesis that the share is different from 19/35 (the upper bound of 

the equilibrium prediction) (sign-rank test two-sided p-value = 0.1728). 

 

Table C4. Observed allocations in APEX5 

Strategy 

Type 
41000 11111 50000 02111 31100 32000 21110 Other 

Predicted 

frequency 
0.56 0.44 - - - - - - 

Observed 

frequency 
0.27 0.10 0.17 0.12 0.12 0.07 0.07 0.08 
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Summary 

Overall the results for the coarse budget are qualitatively similar to the results with the fine 

budget. Over all rounds, object A is allocated a slightly more than proportional share in 

APEX4 and a clearly super-proportional share in APEX5; hedging is frequently observed 

though not as frequently as equilibrium theory would predict. The main difference between 

the coarse budget and the fine budget experiments is that, with the coarse budget, the 

observed share for the large object in APEX4 is significantly higher than proportional and the 

observed share in APEX5 is substantially closer to equilibrium.
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