

Technical Report

UNIVERSITY OF THE BASQUE COUNTRY
Department of Computer Science and Artificial Intelligence

Sampling and learning the Mallows and
Weighted Mallows models under the

Hamming distance

Ekhine Irurozki, Borja Calvo, José A. Lozano

January, 2014

San Sebastian, Spain
www.ehu.es/ccia-kzaa
hdl.handle.net/10810/4562

Sampling and learning the Mallows and Weighted Mallows models under

the Hamming distance

Ekhine Irurozki, Borja Calvo, Jose A. Lozano

Index terms— Permutations Mallows Model Sampling Learning Hamming distance

Abstract
In this paper we deal with distributions over permutation spaces. The Mallows model is the mode l in use. The

associated distance for permutations is the Hamming distance.

1 Introduction

Permutations appear in many areas and have been therefore studied for a long time. Moreover, probability distributions
over permutations are also not new. The first models where introduced in the 20’s while during the 50’s they received
the attention of the community. The most celebrated papers in the literature of this decade introduce the Placket-Luce
[9], [15], Pairwise [?] and Mallows [10] models. Actually, these are the most lively models nowadays. One can find in
the recent literature theoretical discussion and practical applications as well as extensions thereof. The main reason
for this subject to be still an active topic is the interpretation of permutations as rankings and the big explosion
on the number of applications of rankings. As examples of these applications we can mention preference elicitation,
information retrieval, . . .

The probability model in this manuscript is the Mallows model (MM). Just two parameters are required to define
such a model. The first one is a consensus permutation, �0, the one that receives the largest probability mass. The
probability value of any other permutation � 2 S

n

decreases exponentially as the distance to the consensus permutation
increases. The kurtosis of the distribution is controlled by the second parameter, ✓, namely the spread parameter.

There are multiple extensions of the model. Some of the most popular extensions are non-parametric models [11],
infinite permutations [8], [12] and mixture models [4], [13], [14]. The Generalized Mallows model (GMM) [7] is the most
famous among all of them. Instead of one single spread parameter, it requires the definition of n�1 spread parameters
✓
j

for 1 j < n, each a↵ecting a particular position of the permutation. This allows modeling a distribution with
more emphasis on the consensus of certain positions of the permutation while having more uncertainty in some others.

The original definition of the MM included two di↵erent metrics for permutations. However, in [5] this definition is
extended to di↵erent metrics giving rise to the family of the distance based probability models. Six di↵erent distances
were suggested, in particular Kendall’s-⌧ , Hamming, Ulam, Cayley, Spearman’s-⇢ and Spearman’s-footrule. However,
the metric that has received more attention in the literature is the Kendall’s-⌧ distance. The reason is that this
metric is a natural way of measuring dissimilarities in the ranking or election domain. In this way, there are e�cient
algorithms for making inference, simulating and fitting a MM and GMM under the Kendall’s-⌧ distance.

However, in many other domains the Kendall’s-⌧ distance is not a natural way of measuring the di↵erences between
permutations. Instead, the most common metric in many areas is the Hamming distance (coding theory, cryptography,
information theory, . . .). We believe that these powerful and simple models, MM and GMM, can be as useful in these
areas as they are in the ranking domain. However, the basic operations for distributions (inference, sampling and
learning) must be e�ciently carried out. This paper tries thus to give a step forward in that direction by modeling the
MM under the Hamming distance, in what we will refer to as Hamming Mallows (HM) and adapting the idea behind
the GMM for the Hamming distance, the Weighted Hamming Mallows (WHM).

This paper is organized as follows. Section 3 introduces the probability models as well as the Hamming distance.
Section 4 gives the closed formulas for the normalization constants of both MM and WHM. Section 5 exploits the
TL-decomposability property in order to give an e�cient method for the simulation of both MM and WHM. Section 6
deals with the estimation of the parameters of the distribution given a collection of permutations. In Section ?? we give
e�cient formulations for the algebraic machinery required in the rest of the paper, in particular, we include formulas
for the computation of the elementary symmetric polynomials, their derivatives and for counting permutations by
their number of unfixed points.

2 Introduction

Permutations are bijections of the set of integers {1, . . . , n} onto itself. They are usually denoted with the letters �
or ⇡. From now on we will use the following notation, �(j) = i means that item i is in position j and represent the

1

permutation � as � = [�(1)�(2) . . .�(n)]. A special permutation which is worth mentioning is the identity permutation,
e = [123 . . . n] which maps each item j to position j.

By composing two permutations � and ⇡ of n elements we obtain a new permutation � � ⇡ such that � � ⇡(j) =
�(⇡(j)), which will be denoted as �⇡. The result of composing a permutation � and its inverse ��1 is the identity,
���1 = e and the composition �e = e� = �.

The Hamming distance counts the number of disagreements between two strings. Its invariance property asserts
that d(�,⇡) = d(��,⇡�) for every permutation �. Particularly taking � = ⇡�1 and since ⇡⇡�1 = e one can w.l.o.g.
write d(�,⇡) = d(�⇡�1, e). The distance from any permutation to the identity is denoted as an univariate function
d(�⇡�1, e) = d(�⇡�1) what will simplify the notation. The implications of this property are relevant since, as we will
later explain, from now on we can w.l.o.g. assume that the reference permutation is the identity.

A recurrent concept in the permutation literature is that of fixed point. A fixed point is a position of the permutation
in which �(i) = i. In the same way, if �(i) 6= i then i an unfixed point. Therefore, the Hamming distance from a
permutation � to the the identity, d(�), counts the number of unfixed points of �, d(�) =

P
n

j=1 I[�(j) 6= j]. Rather
than the distance, we will sometimes be interested in the sets of fixed and unfixed points. This information is encoded
on h(�), a binary vector defined as follows:

h
j

(�) =

(
0 if j is a fixed point

1 otherwise

The h(�) vector is referred to as the distance decomposition since d(�) =
P

n

j=1 hj

(�). We will use the denomination
”fixed point at i”, �(i) = i and h

i

(�) = 0 interchangeably along the paper. The notion of derangement is also relevant
throughout this manuscript. A derangement is a permutation in which there are not fixed points.

2.1 Background

In this paper we deal with the e�cient computation of operations for distributions over permutations. These operations,
such as conditioning, sampling and learning, relay on operations for permutations, such as the random generation of
permutations. Moreover, these basic operations for permutations are recurrent in the whole manuscript. Therefore,
the e�cient computation of operations for permutations is critical for the e�cient management of distributions over
permutations. For this reason, we first show how this key operations are carried out. These operations include counting
permutations, random generation of permutations and the fast computation of the elementary symmetric polynomials
of a set of variables.

2.1.1 Counting permutations at each possible distance

We deal first with the issue of counting the number of distinct permutations of n items at a given distance d. We
will later use this sequence in the radom generation of permutations and in the sampling process. Note that in a
permutation at Hamming distance d there are n � d fixed points and d unfixed points. Therefore, we are interested
on counting the number of permutations with exactly d unfixed points and exactly n� d fixed points.

This question is closely related to the notion of derangement. As we have already stated, in a permutation at
Hamming distance d there are d unfixed points, i.e., there are d items that form a derangement. Therefore, the
number of permutations of n items at Hamming distance d is

S
h

(n, d) =

✓
n

d

◆
S(d) where S(d) is the number of derangements of d items

Counting the number of derangements is a recurring question and it is given in the well known On-Line Encyclopedia
of Integer Sequences (OEIS) with code A000166. Unfortunately, there is no closed form for S(d). The computation of
S(d) must be done in a recursive way as the following:

S(d) =

8
<

:

1 d = 0
0 d = 1
(d� 1) ⇤ S(d� 1) + (d� 2) ⇤ S(d� 1) otherwise

This equation can be computed in O(d). Since we are interested on the derangements of at most n items, we must
compute S(d) for 0 d n that requires time O(n).

2.1.2 Counting permutations by unfixed points

We have already shown how to count the number of permutations with exactly d unfixed points and exactly n � d
fixed points in the previous lines. We deal now with the similar problem of counting the number of permutations with
at least k unfixed points or with at least k fixed points. This count will be later useful for the closed form of the
normalization constant of the probability model and in the learning process.

2

Note that the number of permutations such that have fixed points at positions 1 i1 < i2 < . . . < i
k

 n is the
same as the number of permutations that have fixed points at positions 1, 2, . . . , k. This count is denoted as f(n, k).
This fact simplifies the algebra since it is easy to see that f(n, k) = (n� k)!.

The same situation happens when we are counting the permutations with unfixed positions, i.e., the number of
permutations such that have at least k unfixed points at positions 1 i1 < i2 < . . . < i

k

 n is the same as the
number of permutations that have unfixed points at positions 1, 2, . . . , k. This count is denoted as g(n, k). We will
compute this number using an inclusion-exclusion approach.

Counting g(n, 1) The set of n! permutations can be divided into two groups regarding h1(�), those permutations
in which h1(�) = 0 and those in which h1(�) = 1. The set of permutations in the former group is f(n, 1) = (n� 1)!.
The cardinality of the latter set is therefore

g(n, 1) = n!� f(n, 1)

Counting g(n, 2) The number of permutations in which �(1) 6= 1 and �(2) 6= 2 (i.e., those permutations in which
both 1 and 2 are unfixed points) are computed in the same way, from the complete set of n! permutations we discard
those in which �(1) = 1 (f(n, 1)) and then those in which �(2) = 2 (f(n, 1)) -note that the number of permutations
such that �(2) = 2 is equal to the number of permutations such that �(1) = 1, that is f(n, 1).

However, if we set g(n, 2) = n! � f(n, 1) � f(n, 1) we are under counting, since those permutations such that
�(1) 6= 1^�(2) 6= 2 are substracted two times. Therefore, we must compensate this undercount by adding again those
permutations that �(1) 6= 1 ^ �(2) 6= 2

g(n, 2) = n!� f(n, 1)� f(n, 1) + f(n, 2)

Counting g(n, l) The process continues in the same way. It is then easy to see that

g(n, k) = n! +
kX

i=1

(�1)i
✓
k

i

◆
f(n, i) = n! +

kX

i=1

(�1)i
k!(n� i)!

i!(k � i)!
(1)

Therefore, with Equation (1) counting the number of permutations with a given number number of unfixed positions
can be done in O(n).

2.1.3 Random generation of permutations at a prescribed distance

In this section we deal with the random generation of permutations at a given distance. This technique will be used
in the sampling algorithms. We will consider two di↵erent scenarios for the random generation of permutations.

• The set of fixed and unfixed points is given.

• Just the distance is given, but not the separate sets of fixed and unfixed points.

Note that a possible approach to generate a permutation of n items at Hamming distance d is to randomly select
d unfixed points, make a derangement with them. The remaining n � d items j can be placed so that �(j) = j. In
this way, both problems relay on randomly generating a derangement of d given items.

In order to generate random derangements we will use a recursive method again.
The base case is the generation of a derangement of two items, that will return the permutation � = [21].
For any other case, the generation of a derangement of d items implies first the generation of a derangement of

d�1 items and then the insertion of item d. The set of derangements of d items can be split in two groups: that which
includes the derangements in which item d is in a cycle of length 2 and that which includes the derangements in which
item d is in a cycle of length greater than 2 (recall that it can not be in a cycle of length one since a derangement
implies that �(d) 6= d). So to generate a derangement of d items we can either

• First, randomly select an item 0 < i < n. Then, generate a derangement with items {1, . . . , n� 1}/{i}. Finally
set �(i) = d and �(d) = i. In this way, item d in the resulting derangement is in a cycle of length 2. In this
case, the recursion implies the generation of a derangements of the S(n � 2) possible derangements of d � 2
items. Also, there are d � 1 possible ways of selecting item i. Therefore, there are exactly (d � 2) ⇤ S(d � 1)
derangements of d items of this form.

• First, generate a derangement with items {1, . . . , n� 1}. Then, randomly select an item 0 < i < n. Finally set
�(i) = d and �(d) = i. In this way, item d in the resulting derangement is in a cycle of length greater than 2. In
this case, the recursion implies the generation of a derangements of the S(n� 1) possible derangements of d� 1
items. Also, there are d � 1 possible ways of selecting item i. Therefore, there are exactly (d � 1) ⇤ S(d � 1)
derangements of d items of this form.

3

Therefore, of the total S(d) derangements of d items, exactly (d�2)⇤S(d�1) have item d in a cycle of length 2 and
(d�1)⇤S(d�1) of then have item d in a cycle of length greater than 2. So the probability of selecting the first branch
is (d� 2) ⇤ S(d� 1)/S(d) while the probability of the second is 1� (d� 2) ⇤ S(d� 1)/S(d) = (d� 1) ⇤ S(d� 1)/S(d).

The code of the whole generation process is given in Algorithm 1. Note that the complexity of generating a
derangement of d items is O(d).

Algorithm 1: generate derangement(n, k)
This algorithm generates a random derangement of n items. Note that every derangement of n items is equally
probable.

Input: d, number of items;
Output: ⇡, derangement of d items
if d = 2 then ⇡ = [21]; /* base case */

else
prob = (d� 2) ⇤ S(d� 1)/S(d);
with probability prob /* d is in a cycle of length 2 */

⇡({1, . . . , n� 1}/{i}) = generate derangement(d� 1);
⇡(i) = n;
⇡(n) = i;

end
otherwise /* n is in a cycle of length grater than 2 */

⇡(1 . . . d� 1) = generate derangement(d� 1);
ran = random number in the range [1, n� 1];
⇡(ran) = d;
⇡(d) = ran;

end

end
return ⇡;

2.1.4 Elementary symmetric polynomial

Every operation for the probability models of parameters ✓ = (✓1, . . . , ✓n) introduced in this paper relays on the
computation of the Elementary Symmetric Polynomials (ESP) on the parameters of the distribution, ✓. Therefore,
the e�cient computation of the ESP is crucial for the performance of the introduced algorithms. In this section we
introduce the notion of ESP and show how to compute them e�ciently. Moreover, we will give an expression for their
derivatives.

The ESP of degree k in a set of n variables, �
k

(X1, . . . , Xn

), is defined as follows:

�
k

(X1, . . . , Xn

) =
X

1i1<...<ikn

kY

s=1

X
is

By abusing notation �
k

will be used to denote the ESP of degree k, �
k

= �
k

(X1, . . . , Xn

). The ESP �
k

can be
e�ciently computed with the following recursion, [1]:

�
k

(X1, . . . , Xn

) =

8
<

:

1 if k=0P
n

i=1 Xi

if k=1
�
k

(X1, . . . , Xn�1) + �
k�1(X1, . . . , Xn�1) ⇤Xn

otherwise
(2)

By using the above formula, the computational complexity for computing the ESP �
k

(X1, . . . , Xn

) is O(n2). Note
that a naive computation will require time O(2n).

Splitting the ESP In the next lines there is an example of the elementary symmetric polynomial on 4 variables.
Each �

k

is computed by adding up every products inside the braces.

�1 =

8
>>>><

>>>>:

�11 =
n
X1

�̄11 =

8
><

>:

X2

X3

X4

�2 =

8
>>>>>>>><

>>>>>>>>:

�12 =

8
><

>:

X1X2

X1X3

X1X4

�̄12 =

8
><

>:

X2X3

X2X4

X3X4

�3 =

8
>>>><

>>>>:

�13 =

8
><

>:

X1X2X3

X1X2X4

X1X3X4

�̄13 =
n
X2X3X4

�4 =

8
<

:
�14 =

n
X1X2X3X4

�̄14 =
n
0

4

As we can see, the addends are divided into two groups. By �i
k

we denote the subset of the addends in �
k

that
include the term X

i

, that is

�i
k

=
X

A

Y

j2A

X
j

where A ✓ {1, . . . , n} ^ |A| = k ^ i 2 A

and by �̄i
k

we denote the subset of the addends in �
k

that do not include the term X
i

, that is

�̄i
k

=
X

A

Y

j2A

X
j

where A ✓ {1, . . . , n}A ^ |A| = k ^ i 62 A

Some operations over the mentioned probability distributions require these two values to be given separately.
Clearly, each of �̄i

k

and �i
k

for every 1 i, k n can be computed with Equation (2). However, we introduce a method
for computing �i

k

and �̄i
k

for every 1 i, k n given �
k

in time O(n2). It is based in the following two relations:

�
k

= �i
k

+ �̄i
k

for every i (3)

�i
k

= �̄i
k�1Xi

for every i (4)

By means of Equations (3) and (4) and being �
k

for 1 k n computed as shown in Equation (2), it is easy to
define a recursive procedure to compute �i

k

and �̄i
k

. Let �i0 = �̄i0 = 1 and �i1 = X
i

.

• The computation of �̄i1 is now trivial due to Equation (3), �̄i1 = �1 � �i1.

• Now, �i2 is easily computed by means of Equation (4), �i2 = �̄i1Xi

.

• Then, Equation (3) can be used to compute �̄i2, �̄
i

2 = �2 � �i2.

In this way, the recursion follows until the �i
k

and �̄i
k

are computed for all 1 i, k n in O(n2).

Derivatives Since the variables in the elementary symmetric polynomial are exponential functions of the form
X

i

= (exp(�✓
i

)� 1) the techniques for computing the derivatives explained in [1] are not valid here. We give here an
e�cient expression for the first and second derivatives. The first derivative of the ESP of degree k can be expressed
as follows

��
k

�✓
i

= �exp(�✓
i

)�̄i
k�1 (5)

The second derivative of the ESP of degree k can be expressed as follows

�2�
k

�✓
i

✓
j

=

⇢
exp(�✓

i

)exp(�✓
j

)�̄i,j
k�2 if i 6= j

exp(�✓
i

)�̄i
k�1 otherwise

(6)

The proof, an example of the expansion of several ESP as well as the computation of a derivative are given in
Appendix 7.

3 Mallows model, an extension thereof and hamming distance

The Mallows model (MM) is an exponential location probability model for permutations based on distances. It can
be expressed as follows:

p(�) =
exp(�✓d(�,�0))

 (✓)

where ✓ 2 R is a spread parameter, �0 is the location parameter called the central permutation, d(�,�0) represents
a distance between � and �0 and (✓) the normalization constant (✓) =

P
�

exp(�✓d(�,�0)). Note that when the
dispersion parameter ✓ is greater than 0 then �0 is the permutation with the largest probability mass (the mode), and
the closer a permutation � is to �0, the larger p(�). On the other hand, with ✓ = 0 we obtain the uniform distribution
and when ✓ < 0 then �0 is the anti mode. We will refer to the MM under the Hamming distance as Hamming Mallows
(HM).

It is a common situation that the distances between permutations depend not only in the number of discrepancies
but also in the positions of those discrepancies. Think for example in the ranking domain, where two permutations that
disagree in the last two candidates of an election may be closer to each other than two rankings that disagree in both
the first and the last candidate. Under the Kendall’s-⌧ distance one can use the best know extension of the MM, the
Generalized Mallows model (GMM) [7]. Instead of a single spread parameter it considers a vector ✓ = (✓1, . . . , ✓n�1)
of n � 1 spread parameters, each a↵ecting a particular position of the permutation. The good news is that, under
certain circumstances the GMM can be factored in n� 1 terms [7]. Unfortunately, the GMM can not be coupled with

5

the Hamming distance. The reason is that in order to base the GMM on a particular distance, this distance must be
decomposable as the sum on n � 1 terms, each related to a particular position of the permutation. Recall that the
Hamming distance is decomposed in n terms.

However, the idea behind the GMM can be adapted to the use with Hamming distance by defining ✓ = (✓1, . . . , ✓n)
spread parameters. We will refer to this model as Weighted Hamming Mallows (WHM) and define it as follows:

p(�) =
exp(�

P
n

j=1 ✓jhj

(�))

 (✓)

where (✓) the normalization constant (✓) =
P

�

exp(�
P

n

j=1 ✓jhj

(�)).

4 Inference

In order to calculate the probability value of a permutation under the MM or the WHM, the normalization constants
must be computed. Given that the naive computation sums over n! permutations this sum is an important bottle-neck
when dealing with distributions over permutations of more than n = 10 items. Fortunately, there are closed forms for
both normalization constants. The closed forms can be found by relating the normalization constants to the moment
generating function of either the distance (in HM) or its decomposition vector (in WHM).

In particular, the process of finding the closed form of the normalization in the HM starts by expressing the
probability generating function of the distance. In the WHM case, we will begin by defining the probability generating
function of the decomposition vector of the distance. Then, we will find an alternative expression for the probability
generating function by making use of a Taylor expansion. Finally, we will relate both probability generating function
and moment generating function.

4.1 Hamming Mallows

The closed form of (✓) under HM has already been given in [7]. We follow the same procedure used by them but
using a slightly di↵erent notation: we use the reverse notation for h

j

(�) since this will be helpful for the computation
of the normalization constant in WHM. Recall that for us h

j

(�) = 0 i↵ j is a fixed point. Let � be a u.a.r. chosen
permutation and its Hamming distance X = d(�) a random variable. Let P0(d(�) = d) be the probability of an u.a.r.
chosen permutation � of having d(�) = d. The normalization constant of the HM can be posed as a function of the
moment generating function of the distances as follows:

 (✓) = n!
X

d

P0(d(�) = d)exp(�d✓) = n!M(�✓)

where the moment generating function M(�✓) =
P

d

P0(d(�) = d)exp(�d✓).
The probability generating function of X is f

x

(t) = E[tX]. Its k-th derivative evaluated at t = 1 is

f (k)
x

(1) = E[X(X � 1)(X � 2) . . . (X � (k � 1))] = E

X!

(X � k)!

�

So the expansion of f(t) in a Taylor series around t = 1 is

f
x

(t)
1X

k=0

f (k)(1)

k!
(t� 1)k =

nX

k=0

E[C(X, k)](t� 1)k

where the binomial coe�cient C(X, k) is 0 when X < k. Let A = {(i1, . . . , ik)|1 i1 < i2 < . . . < i
k

 n}.
For every h = (h1, . . . , hn

) 2 {0, 1}n the binomial coe�cient may be re-expressed as

C(X, k) =
X

A

h
i1 · · ·hik

Consequently, if we consider that h
j

= h
j

(�) = I[�(j) 6= j]

E[C(X, k)] =
X

A

E[h
i1 · · ·hik] =

X

A

g(n, k)

n!
=

n!g(n, k)

(n� k)!n!k!
=

g(n, k)

(n� k)!k!

where g(n, k) denotes the number of permutations such that have unfixed points at positions 1 i1 < i2 < . . . < i
k

 n
(which is the same as the number of permutations that have unfixed points at positions 1, 2, . . . , k, see Section (2.1.2)
for details).

6

Going back to the Taylor expansion, f(t) can be re-formulated as:

f(t) =
nX

k=0

g(n, k)

(n� k)!k!
(t� 1)k

Since f(t) = E[tX] then f(exp(t)) = E[exp(t)X]. Now, the moment generating function M(t) = E[exp(Xt)] =
E[exp(t)X] = f(exp(t)). Therefore,

M(t) = f(exp(t)) =
nX

k=0

g(n, k)

(n� k)!k!
(exp(t)� 1)k

and therefore

M(�✓) =
nX

k=0

g(n, k)

(n� k)!k!
(exp(�✓)� 1)k

Finally, the normalization constant can be written as follows:

 (✓) = n!M(�✓) = n!
nX

k=0

g(n, k)

(n� k)!k!
(exp(�✓)� 1)k (7)

Given g(n, k) and the factorial numbers k!, which are both computed in O(n), the computational complexity of
Equation (7) is O(n).

4.2 Weighted Hamming Generalized Mallows

By using the same reasoning and notation than in the HM case, we will now focus on the closed form expression of the
normalization constant (✓) for the WHM. Let h = (h1, . . . , hn

) and recall that h
j

2 {0, 1} and h
j

(�) = 0 i↵ �(j) = j.
Then P0(h(�) = h) is the probability of an u.a.r. chosen permutation � of having the distance decomposition h. Being
the multivariate (joint) moment generating function of the random variable X defined as M

X

(t) = E[
Q

n

j=1 exp(tjXj

)],
the normalization constant, (✓), can be posed as follows

 (✓) = n!
X

h2{0,1}n

P0(h(�) = h)exp(�
X

j

✓
j

h
j

) = n!
X

h2{0,1}n

P0(h(�) = h)
nY

j=1

exp(�✓
j

h
j

) = n!M(�✓)

The multivariate case of the probability generating function is defined as:

f(t) = f(t1, . . . , tn) = E[th1
1 · · · thn

n

] =
X

h2{0,1}n

P0(h(�) = (h1, . . . , hn

))th1
1 · · · thn

n

The Taylor expansion of a multivariate function is

f(t) =
1X

k=0

1

k!

X

x1+···+xn=k

✓
k

x1 · · ·xn

◆
�kf

�tx1
1 . . . �txn

n

����
t=1

(t1 � a1)
x1 · · · (t

n

� a
n

)xn

The derivative for variable t
i

:

�f

�t
i

=
X

(h1,...,hn)

P0(h(�) = (h1, . . . , hn

))th1
1 · · ·h

i

thi�1
i

· · · thn
n

=
X

(h1,...,hn)

P0(h(�) = (h1, . . . , hn

)^h
i

= 0)th1
1 · · · 0t0�1

i

· · · thn
n

+
X

(h1,...,hn)

P0(h(�) = (h1, . . . , hn

)^h
i

= 1)th1
1 · · · 1t1�1

i

· · · thn
n

= 0 +
X

(h1,...,hn)

P0(h(�) = (h1, . . . , hn

) ^ h
i

= 1)
Y

j 6=i

t
hj

j

that is, make two di↵erent groups, one for the permutations such that h
i

= 0 and the other for the permutations
h
i

= 1. And its evaluation around t = (1, . . . , 1) is :

�f

�t
i

����
t=1

=
X

(h1,...,hn)

P0(h(�) = (h1, . . . , hn

) ^ h
i

= 1)1h1 · · · 1 · 11�1 · · · 1hn

Note that this is equivalent to the probability under the uniform distribution of a permutation � s.t. �(i) 6= i and so
h
i

= 1, i.e. the number of permutations of n with an unfixed point in i divided by n!. The second order derivative with

7

respect to t
i

equals 0. The second order cross partial derivatives equal the probability under the uniform distribution
of a permutation � in which i1 and i2 are unfixed points, i.e. the number of permutations of n with unfixed points in
i1 and i2 divided by n!

�2f

�t
i1ti2

����
t=1

=
X

(h1,...,hn)

P0(h(�) = (h1, . . . , hn

) ^ h
i1 = 1, h

i2 = 1)1h1 · · · 1 · 11�1 · · · 1hn

Let g(n, k) denote the number of permutations of n items with at lest k unfixed points. Recall than an e�cient
expression for the computation of g(n, k) is given in Section (2.1.2). Then, in general, the k-th order cross partial
derivatives equal:

�kf

�t
i1 . . . tik

����
t=1

=
g(n, k)

n!

Since h = (h1, . . . , hn

) 2 {0, 1}n then
�

k

h1···hn

�
= k!. Since �kf/�tk

i

= 0 for k > 1 the Taylor series cannot be
expanded more than n + 1 terms. Recall that A = {(i1, . . . , ik)|1 i1 < i2 < . . . < i

k

 n}. Therefore, the Taylor
expansion around a = 1 = (1, . . . , 1) can be equivalently written as:

f(t) =
nX

k=0

1

k!

X

A

✓
k

h1 · · ·hn

◆
�kf

�t
i1 . . . tik

����
t=1

kY

s=1

(t
is � 1) =

nX

k=0

1

k!

X

A

k!g(n, k)

n!

kY

s=1

(t
is � 1)

=
nX

k=0

k!g(n, k)

n!k!

X

A

kY

s=1

(t
is � 1)

By setting T
j

= t
j

� 1

f(t) =
nX

k=0

g(n, k)

n!

X

A

kY

s=1

T
is

If �
k

denotes the Elementary Symmetric Polynomial, �
k

(X1, . . . , Xn

) =
P

1i1<...<ikn

X
i1 . . . Xik :

f(t) =
nX

k=0

g(n, k)

n!
�
k

(T1, . . . , Tn

)

An e�cient formulation for the computation of Elementary Symmetric Polynomial, �
k

(X1, . . . , Xn

) is given in Sec-
tion 2.1.4. Note thatM(�✓) = E[

Q
n

j=1 exp(�✓jhj

)] = E[
Q

n

j=1 exp(�✓j)hj] and f(t) = E[
Q

n

j=1 tj
hj], so f(exp(�✓)) =

M(�✓), and therefore

M(�✓) =
nX

k=0

g(n, k)

n!
�
k

(T1, . . . , Tn

)

where T
j

= exp(�✓
j

)� 1.
The normalization constant can thus be given as follows:

 (✓) = n!M(�✓) =
nX

k=0

g(n, k)�
k

(T1, . . . , Tn

) (8)

where T
j

= exp(�✓
j

)� 1.
Given �

k

(T1, . . . , Tn

) 8k, which are computed in O(n2), and g(n, k) which requires O(n) the computational com-
plexity of Equation (8) is O(n).

Properties of the models In [2] some frequent properties of probability models for permutation domains are
defined. Regarding the HM and WHM models, we can state that both are label invariant. They are not reversible,
neither strongly unimodal and do not have complete consensus. On the other hand, both are L-decomposable as well
as TL-decomposable. In fact, the TL-decomposable models are a subset of the L-decomposable models.

On [3] it is stated that a probabilistic model is TL-decomposable i↵ it is quasi-independent, i.e. it can be written
as follows:

p(�) = k

nY

j=1

c
j,�(j)

A quasi independent probability model as the one above requires n2 parameters. We state that the WHM is also
a TL-decomposable model. Moreover, the WHM belongs to a restriction of this class of models because it makes use

8

of just 2n parameters. Let us show this point in detail. Under the WHM the probability of a particular permutation
� is

p(�) = exp(
nX

j=1

�✓
j

h
j

(���1
0)) �1 = �1(✓)

nY

j=1

exp(�✓
j

h
j

(���1
0))

Therefore, we can take k = �1(✓) and

c
j,�(j) =

(
exp(0) = 1 if h

j

(���1
0) = 0

exp(�✓
j

) if h
j

(���1
0) = 1

We can conclude that both WHM and HM are TL-decomposable and consequently, L-decomposable. On an L-
decomposable probability model the process of generating a permutation can be done as follows: The set of items to
rank is given, each with an associated weight. At the first stage the most preferred item is randomly chosen, where the
choice probability of each item is proportional to its weight. At the second stage, the most preferred item is chosen
among the remaining items, where again, the choice probability of selecting each item is proportional to its weight.
The generation process continues in this way, by setting the choice probability of the items at each stage regarding
the set of remaining items and irrespective of the items that have been already chosen or the order in which they were
selected. The process finishes when a complete permutation is built.

The L-decomposability property implies that the probability of a permutation is the product of the choice proba-
bilities across the di↵erent stages, [2]. This means that the process of generating a permutation can be e�ciently done
if the choice probabilities are known.

4.3 Marginal probabilities

In this section we deal with the computation of the marginal probabilities. The marginal distribution is defined
as the probability of a subset of variables irrespective of the values of the other variables. For the case of discrete
random variables the marginal distribution is usually computed by summing the joint probability distribution over
the unknown variables.

We are interested in the marginal distribution under the HM and WHM, in the permutation domain. Since the
HM is a particular case of the WHM in which every ✓

j

has equal value, the rest of the section considers just the WHM
model. Nevertheless, the results can be applied for both HM and WHM models. In particular, we are interested in
questions such as ”Which is the probability of a random permutation of having fixed point at i and an unfixed point
at j?”. As in other domains, this probability can be computed by summing the probabilities of every permutation
having �(i) = i and �(j) 6= j. Unfortunately, due to the factorial nature of the permutation space, this approach is
infeasible.

In this section, we introduce a method for computing the marginal distribution. In order for this computation to
be e�cient, we avoid summing over every permutation. Its quick computation is based on the closed form expression
for the normalization constant given in Equation (8) (Section 4.2).

Throughout this section we consider two sets of permutations. The first one is fix(i), which includes every
permutation in which i is a fixed point. By abusing notation we will also denote fix({i1, i2}) as the set of permutations
with fixed points at positions i1, i2. We define the set unfix(i) in the same way, as the set of permutations that have
an unfixed point at position i. Moreover, we will consider two sets of items A and B. In the rest of this section we
show how to sum the probabilities of those permutations in which j is a fixed point for every j 2 A and j is an unfixed
point for every j 2 B. In particular, we are interested on the set of permutations in the intersection of the sets fix(A)
and unfix(B), denoted as fix(A) \ unfix(B), and denote this marginal as follows:

X

�2fix(A)\unfix(B)

p(�) (9)

As we have already stated, Equation (8) (Section 4.2) shows that the normalization constant can be e�ciently
computed as follows:

 (✓) =
X

�

exp(
nX

j=1

�✓
j

h
j

(�)) =
nX

k=0

g(n, k)�
k

(T1, . . . , Tn

)

Note that this equation sums exp(
P

n

j=1 �✓jhj

(�)) over every permutation � of n items. We will show how to

adapt this idea to sum exp(
P

n

j=1 �✓jhj

(�)) over every permutation �0 in the subset of permutations of interest. We

begin by summing exp(
P

n

j=1 �✓jhj

(�)) for every permutation of n items that has a fixed point at i. Note that if �0

ranges in the permutations �0 2 fix(i) then it ranges over every possible permutation of the items {1, . . . , n} \ {i}.
We consider two WHM distributions. The first one is over permutations of n items and has dispersion parameters

✓ = (✓1, . . . , ✓n). The second one is over distributions of n�1 items and has dispersion parameters ✓0 = (✓01, . . . , ✓
0
n�1)

9

which is equal to ✓ in all but one parameter, ✓
i

, which has been removed. Also, let T
j

= exp(�✓
j

) � 1 and T 0
j

=
exp(�✓0

j

)� 1.

X

�2fix(i)

exp(
nX

j=1

�✓
j

h
j

(�)) =
X

�2fix(i)

exp(�✓
i

0 +
nX

j 6=i

�✓
j

h
j

(�)) =
X

�

0

exp(
n�1X

j=1

�✓0
j

h
j

(�0))

=
n�1X

k=0

g(n� 1, k)�
k

(T 0
1, . . . , T

0
n�1) =

n�1X

k=0

g(n� 1, k)�̄i
k

(T1, . . . , Tn

) (10)

The first equality is based on the fact that if i is a fixed point then h
i

(�) = 0. The second one takes into account
that for every � 2 fix(i) a correspondence to permutations in �0 2 S

n�1 can be defined such that:

h(�) \ {h
i

} = (h1(�), . . . , hi�1(�), hi+1(�), . . . , hn

(�)) = h(�0) = (h1(�
0), . . . , h

n�1(�
0))

From the third equality, we just applied Equation (8). Since ✓ = ✓0 [{✓
i

}, then �̄i
k

(T1, . . . , Tn

) = �
k

(T 0
1, . . . , T

0
n�1)

the last equality holds.
The marginal distribution of the set of permutations with a fixed point at i is now trivial to compute.

X

�2fix(i)

p(�) =

P
�2fix(i) exp(

P
n

j=1 �✓jhj

(�))

 (✓)
=

P
n�1
k=0 g(n� 1, k)�̄i

k

(T1, . . . , Tn

)P
n

k=0 g(n, k)�k(T1, . . . , Tn

)

Note that the naive computation of the marginal implies summing over (n � 1)! values while this alternative
formulation has complexity O(n2), the same as the computing g(n, k), �

k

and �̄i
k

. Recall that �̄i
k

was introduce in
Section 2.1.4. Moreover, in the same section, it is shown how to obtain �̄i

k

given �
k

in O(n2) for every i, k.
The the second order marginal is computed with the same reasoning:

X

�2fix(i1,i2)

p(�) =

P
�2fix(i1,i2)

exp(
P

n

j 6=i1,i2
�✓

j

h
j

(�))

 (✓)
=

P
n�2
k=0 g(n� 2, k)�̄i1,i2

k

(T1, . . . , Tn

)

 (✓)

In general, the probability of every j 2 A being a fixed point can be computed as follows.

X

�2fix(A)

p(�) =

P
�2fix(A) exp(

P
n

j 62A

�✓
j

h
j

(�))

 (✓)
=

P
n�|A|
k=0 g(n� |A|, k)�̄A

k

(T1, . . . , Tn

)

 (✓)

So far, we have considered the computation of the marginal probabilities of permutations with fixed points at
positions j for all j 2 A. We will now show how to compute the marginal probabilities of a permutations with fixed
and unfixed points. In general, we are give two sets of integers A and B and we want to compute the marginal of those
permutations having fixed points at positions j for all j 2 A and unfixed points at positions j for all j 2 B. Since
there is not a closed form for this expression, we propose an inclusion-exclusion approach to compute it. The idea is
to compute first the probability of the set with fix points at A. Note that this group includes permutations that have
fixed points at B as well as permutations that have unfixed points at B. The next step is therefore to remove the
marginal probabilities of the permutations with fixed points at B.

We will begin the explanation of the computation of the marginal with just one unfixed point. Let B be another
set of indexes such that |B| = 1. It is easy to see that

fix(A) \ unfix(B) = fix(A) \ fix(A [B)

Therefore, the marginal probability of the permutations that have fixed points at positions A and unfixed points
at position i 2 B can be given as follows:

X

�2fix(A)
\unfix(B)

p(�) =
X

�2fix(A)

p(�)�
X

�2fix(A[B)

p(�)

However, when the set B gets larger, things get challenging. Let B = {i1, i2} have two items. If we set the
marginal of fix(A) \ unfix(B) as in previous example,

P
�2fix(A) p(�)�

P
�2fix(A[B) p(�), then we are subtracting

the probability of those permutations that have fixed points on A and i1 and i2 simultaneously. However, the
probability of those permutations in which i1 is a fixed point and i2 is an unfixed point (and vice versa) are not
subtracted.

On the other hand, in case we compute the marginal as
P

�2fix(A) p(�)�
P

�2fix(A[{i1}) p(�)�
P

�2fix(A[{i2}) p(�),
then the probability of the permutations � 2 fix(i1, i2) are subtracted twice, one per sum. We are thus under counting.
This can be solved by adding the probabilities of the permutations � 2 fix(i1, i2) as follows:

10

X

�2fix(A)
\unfix(B)

p(�) =
X

�2fix(A)

p(�)�
X

�2
fix(A[{i1})

p(�)�
X

�2
fix(A[{i2})

p(�) +
X

�2fix(A[B)

p(�)

In general, given sets A and B, the marginal distribution of those permutations having fixed points at positions j
for all j 2 A and unfixed points at positions j for all j 2 B is as follows:

X

�2fix(A)
\unfix(B)

p(�) =

|B|X

i=0

(�1)i
X

B

0✓B

|B0|=i

X

�2
fix(A[B

0)

p(�) =

|B|X

i=0

(�1)i
X

B

0✓B

|B0|=i

P
n�|A[B

0|
k=0 g(n� |A [B0|, k)�̄A[B

0

k

(T1, . . . , Tn

)

 (✓)
(11)

The computational complexity of this expression is O(2|B|).

4.4 Conditional probabilities

In this section we show how to compute conditional distribution under the HM and WHM models. Since the HM is a
particular case of the WHM in which every dispersion parameter has equal value, we focus en the WHM. Nevertheless,
we remark that these results can be applied to both models.

The conditional distribution gives the probability of a variable conditioned to a particular value of a (set of)
variables. The conditional distribution can posed in terms of the joint distribution as follows:

p(X|Y) =
X \ Y

p(Y)

For our WHM distribution on permutation domains, we are interested on questions such as ”which is the probability
of item i being a fixed point given that item j is not a fixed point?”. We will denote the above question as p(h

i

(�) =
0|� 2 unfix(j)). In order to pose the conditional distribution in terms of joint distribution we must compute the joint
probability of the permutations such h

i

(�) = 0 and � 2 unfix(j). Note that the set of permutations having both
a fixed point in i and an unfixed point in j is fix(i) \ unfix(j), and its marginal distribution can be computed by
means of Equation (11). Therefore, the conditional distribution can posed in terms of the joint distribution as follows:

p(h
i

(�) = 0|� 2 unfix(j)) =

P
�2fix(i)\unfix(j) p(�)P

�2unfix(j) p(�)

In general, we are given a set of fixed points A and a set of unfixed points, B. The probability of item i being a
fixed point given that the items in A are fixed points and the items in B are unfixed points is given by the following
expression:

p(h
i

(�) = 0|� 2 fix(A) \ unfix(B)) =

P
�2fix(A[{i})\unfix(B) p(�)P

�2fix(A)\unfix(B) p(�)

The computational complexity is thus equivalent to the complexity of the marginal computation.

5 Sampling

In this section we show how to generate permutations from both HM and WHM models. We introduce here three
sampling algorithms. Two of them can generate from both WHM and HM in both exact and approximate manner,
while the third algorithm can only generate permutations under the HM model in an exact way.

5.1 Marginal sampling

We propose a method for generating permutations from a HM or a WHM based on the marginal probabilities. It
can be divided in two stages. In the first stage a binary vector is randomly generated. This vector corresponds to
the distance decomposition of a permutation, h(�). The sampling finishes by randomly generating a permutation �
consistent with the given h(�).

The generation of the random distance decomposition vector, h(�), relays on the computation of the marginal
and conditional probabilities, which are given in Sections 4.3 and 4.4 respectively. The generation of h(�) can be
done in n stages. In the first stage h1(�) is randomly selected using the marginal probabilities

P
�|�(1)=1 p(�) andP

�|�(1) 6=1 p(�). Then, the probability of h2(�) conditioned to the previous choice of h1 is computed and the value of
h2(�) is randomly chosen. This process continues in the same way until the n positions of the vector are given. Before
explicitly giving the explicit formula in the general case, we will show how the probabilities are computed for the first
positions of the permutation.

11

The probability of the first position being a fixed point is easily computed given the marginal probabilities:

p(h1(�) = 0) =
X

�|�(1)=1

p(�) =
X

�|�2fix({1})

p(�)

p(h1(�) = 1) = 1� p(h1(�) = 0)

One of the options is randomly chosen. Throughout the process, sets A and B keep record of the sets of fixed and
unfixed points respectively. Therefore, if h1(�) = 0 then A = {h1}, B = ;. Otherwise, A = ;, B = {h1}. In this way,
we can compute the probability of the second position being a fixed point conditioned on the first position being (or
not) a fixed point.

p(h2(�) = 0|� 2 fix(A) \ unfix(B)) =

P
�2fix(A[{2})\unfix(B) p(�)P

�2fix(A)\unfix(B) p(�)

p(h2(�) = 1|� 2 fix(A) \ unfix(B)) = 1� p(h2(�) = 0|� 2 fix(A) \ unfix(B))

Note that the value in the denominator is the probability selected in the previous stage. In general, the generation
of the h(�) distance decomposition vector from a given HM or WHM distribution is done in n iterations. At each
iteration i, h

i

(�) is sampled. Let the sets A and B initially empty, each iteration i proceeds as follows:

• Compute the probabilities of being i a fixed point as follows:

p(h
j

(�) = 0|� 2 fix(A) \ unfix(B)) =

P
�2fix(A[{j})\unfix(B) p(�)P

�2fix(A)\unfix(B) p(�)

p(h
j

(�) = 1|� 2 fix(A) \ unfix(B)) = 1� p(h
j

(�) = 0|� 2 fix(A) \ unfix(B))

• Randomly choose h
i

(�) given the previous probabilities.

• Update set A and B with the set of fixed and unfixed points.

In this way, our proposed sampling algorithm generates a binary vector h(�) in n stages. The process finishes by
generating a permutation � consistent with h(�). We refer the reader to Section 2.1.3 where the random generation
of a permutation given the subsets of items that are fixed or unfixed is given. As a summary, we can state that this
algorithm can generate permutations under both HM and WHM in an exact way. The complexity is equal to the
complexity of the marginalization process.

5.2 Gibbs sampling

The Gibbs sampler is a Markov Chain Montecarlo algorithm based on sampling a Markov chain whose stationary
distribution is the distribution of interest. Therefore, it is an approximated algorithm for the simulation of the
distribution. We have adapted this algorithm to generate samples for both HM and WHM.

The Gibbs algorithm proceeds as follows:

1. Generate uniformly at random a permutation �.

2. Build a new permutation �0 equal to � in all but two positions, that have been swapped.

3. Let � = min{1, p(�0)/p(�)}. With probability � the algorithm accepts the candidate permutation moving the
chain to the candidate permutation, � = �0, and goes back to 2. Otherwise, it discards �0 and goes back to step
2.

The initial samples are discarded (burn-in period) until the Markov chain approaches its stationary distribution
and so samples from the chain are samples from the distribution of interest. Then, the above process in repeated until
the algorithm generates a given number of permutations. Recall that so far we assumed that the central permutation
is the identity, e = [123 . . . n]. If not, we can center the sample around �0 by composing each of the permutations ⇡
in the sample with �0, obtaining ⇡�0.

As we have already stated, the generation of each permutation �0 is done by swapping two items in the previous
permutation �. If p(�0) > p(�) then the new permutation is accepted and the chain moves to �0. Otherwise, the chain
moves with probability p(�0)/p(�). This ratio of the probabilities can be easily computed. For both HM, where the
probability is in terms of the distance, it is only necessary to check if the swapped positions where fixed points and
if they are fixed points after the swap. If the distance has increased in d0 then the probability of accepting the new
permutation �0 is as follows:

exp(�✓d0)

12

For the WHM case, the probability relays on the distance decomposition vector h(�). If the new permutation �0

was built by swapping positions i and j from �, then vector h(�0) has changed in at most two positions with respect
h(�). In case the total distance has decreased, the algorithm accepts the new permutation and the chain moves to �0.
Otherwise, the ratio of accepting �0 is follows:

exp(�h0
j

⇤ ✓
j

� h0
i

⇤ ✓
i

+ h
j

⇤ ✓
j

� h
i

⇤ ✓
i

)

The computational complexity is thus O(n) for the generation of each permutation. It is thus a quick algorithm.
We should remark that this is an approximated algorithm.

As related works, [6] construct Markov chain algorithms for sampling from discrete exponential families conditional
on a su�cient statistic.

5.3 Distances sampling

The third method we propose to generate random permutations, samples directly from the distribution. It can generate
permutations only for the HM. The reason is that it is based on the fact that every permutation at the same distance
from the identity under a HM model has equal probability value. This fact that not hold for the WHM case. Moreover,
recall that the right invariant property implies that every permutation of n items has the same number of permutations
at each distance. Assuming that the number of permutations at each possible distance d is S

h

(n, d), the previous fact
implies that the probability of a permutation at distance d is as follows:

p(�|d(�,�0) = d) =
S
h

(n, d)exp(�✓d)
 (✓)

(12)

Note that the normalization constant (✓) =
P

�

exp(�✓d(���1
0)) can be expressed as the sum of n terms in the

following way:

 (✓) =
nX

d=0

S
h

(n, d)exp(�✓d) (13)

Therefore, the process of generating a permutation from a given HM distribution can divided in three di↵erent
stages as follows.

• Randomly select the distance d at which the permutation will lay using Equation (12).

• Randomly generate one permutation among those at distance d from the identity. Recall that the random
generation of permutations at a prescribed Hamming distance is explained in Section 2.1.3.

• In case �0 6= e Hamming’s invariance property lets us obtain a permutation centered around �0 as follows:
� = ⇡�0 since d = d(⇡) = d(⇡�0,�0) = d(�,�0).

Therefore, the time complexity of the generation of each permutation using this method is O(n). Summarizing,
this is a fast algorithm for the generation of permutations from the HM model. Moreover, it generates samples directly
form the distribution, not in an approximated way. Unfortunately, this algorithm can not generate samples from the
WHM model.

6 Estimation

The parameters of a distribution given a sample of permutations are traditionally fitted via maximum likelihood
estimation. In [3] it is stated that the maximum likelihood estimate of the parameters of a L-decomposable distribution
can be done by iterative scaling. Unfortunately, this only includes the dispersion parameters and the exact learning
of the central permutation will imply a search on the space of permutations.

In this section we address the MLE of the parameters of both HM and WHM in a di↵erent way. Recall that
that HM is equal to the WHM in the case where all n dispersion parameters are equal. Therefore, we can consider
in general the WHM case. For a sample of m i.i.d. permutations {�1, . . . ,�m} the MLE for the parameters of the
distribution is given by the following equation:

Ln L({�1,�2, . . . ,�m}|�0,✓) =
mX

s=1

Ln p(�
s

|�0,✓)

Even though the HM is a particular case of the WHM, the MLE for the parameters of the distribution are di↵erent
for each distance. Therefore, we describe the model for each distance separately.

13

6.1 Hamming Mallows

The log-likelihood expression for the HM model is as follows:

Ln

mY

i=1

p(�
i

) = Ln

mY

i=1

exp(�✓d(�
i

))/ (✓) =
mX

i=1

(�✓d(�
i

)� Ln (✓)) = �m✓d̄�mLn (✓) (14)

where d̄ =
P

m

i=1 d(�i)/m. By looking at Equation (14), we can see that calculating the value of �0 that maximizes
the equation is independent of ✓. Therefore the MLE estimation problem can be posed as a two step process in which
first the central permutation is obtained and then the dispersion parameter for the given �̂0.

Consensus permutation The MLE for the consensus permutation is given by permutation that minimizes the sum
of the distances to the sample. Let us find a di↵erent but equivalent formulation for the problem. Suppose M is a
square matrix of n ⇥ n obtained by the sum of the permutation matrices of the m permutations in the sample. In
other words, M is the frequency matrix where M

i,j

counts the number of permutations s such that �
s

(i) = j. Then,
the problem of finding the permutation that minimizes the distance to the sample is equivalent to the problem of
selecting one entry of M per row and column in such a way that their sum is maximum. Actually, this is equivalent to
the linear assignment problem (LAP) when the objective is to maximize the sum of the assignment. The good news
is that the Hungarian algorithm solves this problem in O(n3).

Dispersion parameter Once the consensus permutation is known, the MLE for the dispersion parameter is obtained
by deriving Equation (14) and equaling to zero. Their expression is then given by the next equation

�d̄ =
� (✓)/�✓

 (✓)
=

P
n

k=0 �a
k

k(exp(�✓)� 1)k�1exp(�✓)P
n

k=0 ak(exp(�✓)� 1)k
(15)

where a
k

= g(n,k)
(n�k)!k! . Although no closed form for ✓ in Equation (15) exists, root finding algorithms such as Newton-

Raphson can e�ciently recover ✓.
As a summary, the estimation of the MLE parameters of a HM model is computationally easy.

6.2 Weighted Hamming Mallows

In this section we describe the maximum likelihood estimation process of a given sample comming from a WHM model.
The log-likelihood can be expressed as follows:

Ln

mY

i=1

p(�
i

) =Ln

mY

i=1

exp(
nX

j=1

�✓
j

h
j

(�
i

))/ (✓)

=
mX

i=1

(
nX

j=1

�✓
j

h
j

(�
i

(j))� Ln (✓))

=m

nX

j=1

�✓
j

h̄
j

�mLn (✓)

=�m(
nX

j=1

✓
j

h̄
j

+ Ln

nX

k=0

g(n, k)�
k

(T1, . . . , Tn

)) (16)

where T
i

= (exp(�✓
i

) � 1) and h̄
j

=
P

m

i=1 hj

(�
i

)/m. Given the �0 that maximizes the likelihood, the dispersion
parameters are given by the derivative equals 0 of the likelihood for ✓

i

�h
i

=

P
n

k=0 g(n, k)
��k

�✓i
(T1, . . . , Tn

)
P

n

k=0 g(n, k)�k(T1, . . . , Tn

)

where by ��k

�✓i
(T1, . . . , Tn

) we mean the derivative of the elementary symmetric polynomial of �
k

(T1, . . . , Tn

) with
respect to ✓

i

. The e�cient computation for both elementary symmetric polynomial �
k

(T1, . . . , Tn

) and its derivatives
is given in Section 2.1.4.

7 Proofs

Proofs for the derivatives of the ESP in Section 2.1.4.

14

Proof. We start by explicitly giving the expansion of the ESP on four variables of the form X
i

= (exp(�✓
i

) � 1), as
we will find in the normalization constant.

�1 =

8
>>>><

>>>>:

�11 =
n
(exp(�✓1)� 1)

�̄11 =

8
><

>:

(exp(�✓2)� 1)

(exp(�✓3)� 1)

(exp(�✓4)� 1)

�2 =

8
>>>>>>>><

>>>>>>>>:

�12 =

8
><

>:

(exp(�✓1)� 1)(exp(�✓2)� 1)

(exp(�✓1)� 1)(exp(�✓3)� 1)

(exp(�✓1)� 1)(exp(�✓4)� 1)

�̄12 =

8
><

>:

(exp(�✓2)� 1)(exp(�✓3)� 1)

(exp(�✓2)� 1)(exp(�✓4)� 1)

(exp(�✓3)� 1)(exp(�✓4)� 1)

�3 =

8
>>>><

>>>>:

�13 =

8
><

>:

(exp(�✓1)� 1)(exp(�✓2)� 1)(exp(�✓3)� 1)

(exp(�✓1)� 1)(exp(�✓2)� 1)(exp(�✓4)� 1)

(exp(�✓1)� 1)(exp(�✓3)� 1)(exp(�✓4)� 1)

�̄13 =
n
(exp(�✓2)� 1)(exp(�✓3)� 1)(exp(�✓4)� 1)

�4 =

8
<

:
�14 =

n
(exp(�✓1)� 1)(exp(�✓2)� 1)(exp(�✓3)� 1)(exp(�✓4)� 1)

�̄14 =
n
0

We will now consider the expansion of �
k

�
k

=
kX

r=0

(�1)k�r↵n

k,r

exp(
X

j2A

�✓
j

)where A 2 {1, . . . , n} ^ |A| = r (17)

Recall that �
k

can be divided (as in equation (3)) into two di↵erent subset of sums, those that include (exp(�✓
i

)� 1)
and those that do not include (exp(�✓

i

)� 1). The expansion of the latter �̄i
k

is

�̄i
k

=
kX

r=0

(�1)k�r�n

k,r

exp(
X

j2A

�✓
j

)where A 2 {1, . . . , n} ^ |A| = r ^ i 62 A (18)

Note that the coe�cients in the expansions of �
k

and �̄i
k

are di↵erent -namely ↵n

k,r

and �n

k,r

they are somehow related
as we will later see. Let us show how ↵n

k,r

are obtained. We have to count the number of addends in which the same
group of r di↵erent variables will appear.

• The number of addends i.e. number of lines in the previous example, is
�
n

k

�
.

• There are k terms in each addend. Once an addend is expanded by multiplying the terms there will be
�
k

r

�
terms

of degree r per addend, i.e. like exp(
P

j2A

�✓
j

) for |A| = r.

• There are
�
n

r

�
groups of r items.

Therefore,

↵n

k,r

=

�
k

r

��
n

k

�
�
n

r

� =
(n� r)!

(k � r)!(n� k)!

With the same reasoning we obtain the coe�cients �n

k,r

�n

k,r

=

�
k

r

��
n�1
k

�
�
n�1
r

� =
(n� 1� r)!

(k � r)!(n� 1� k)!

The first derivative with respect to ✓
i

of the expansion in Equation (17) cancels every term that does not include
✓
i

.

��
k

�✓
i

= (�1) ⇤
kX

r=1

(�1)k�r↵n

k,r

exp(
X

j2A

�✓
j

) where A 2 {1, . . . , n} ^ |A| = r ^ i 2 A

Since ✓
i

appears in every term, it is possible to take out this common factor, resulting

��
k

�✓
i

= (�exp(✓
i

)) ⇤
k�1X

r=0

(�1)(k�1)�r↵n

k,r+1exp(
X

j2A

�✓
j

) where A 2 {1, . . . , n} ^ |A| = r ^ i 62 A

15

Let us now focus on the coe�cient ↵n

k,r+1:

↵n

k,r+1 =
(n� r � 1)!

(k � r � 1)!(n� k)!
= �n

k�1,r =
(n� 1� r)!

(k � 1� r)!(n� 1� k + 1)!

So the above expression can be rewritten as

��
k

�✓
i

= (�exp(✓
i

)) ⇤
k�1X

r=0

(�1)(k�1)�r�n

k�1,rexp(
X

j2A

�✓
j

) where A 2 {1, . . . , n} ^ |A| = r ^ i 62 A

Finally, note that part of the above expression is a particular case of Equation (18), so we can equivalently write
it as follows, finishing the proof.

��
k

�✓
i

= �exp(�✓
i

)�̄i
k�1

The computational complexity of ��k

�✓i
given �̄i

k

8k, i is O(n2). Let us now give an example of the expansion of the
ESP �3 for n = 4.

�3 =exp(�✓1 � ✓2 � ✓3) + exp(�✓1 � ✓2 � ✓4) + exp(�✓1 � ✓3 � ✓4) + exp(�✓2 � ✓3 � ✓4)

� 2exp(�✓1 � ✓2)� 2exp(�✓1 � ✓3)� 2exp(�✓1 � ✓4)� 2exp(�✓2 � ✓3)� 2exp(�✓2 � ✓4)� 2exp(�✓3 � ✓4)

+ 3exp(�✓1) + 3exp(�✓2) + 3exp(�✓3) + 3exp(�✓4)
� 4

Here ↵4
3,3 = 1, ↵4

3,2 = 2, ↵4
3,1 = 3, ↵4

3,0 = 4. The expansion of �2 for n = 4 is as follows

�2 =exp(�✓1 � ✓2) + exp(�✓1 � ✓3) + exp(�✓1 � ✓4) + exp(�✓2 � ✓3) + exp(�✓2 � ✓4) + exp(�✓3 � ✓4)

� 3exp(�✓1)� 3exp(�✓2)� 3exp(�✓3)� 3exp(�✓4)
+ 6

On the other hand, ↵4
2,2 = 1, ↵4

2,1 = 3, ↵4
2,0 = 6.

�12 =exp(�✓1 � ✓2) + exp(�✓1 � ✓3) + exp(�✓1 � ✓4)

� 3exp(�✓1)� exp(�✓2)� exp(�✓3)� exp(�✓4)
+ 3

�̄12 =exp(�✓2 � ✓3) + exp(�✓2 � ✓4) + exp(�✓3 � ✓4)

� 2exp(�✓2)� 2exp(�✓3)� 2exp(�✓4)
+ 3

Here �4
2,2 = 1, �4

2,1 = 2, �4
2,0 = 3.

��3
�✓1

=� exp(�✓1 � ✓2 � ✓3)� exp(�✓1 � ✓2 � ✓4)� exp(�✓1 � ✓3 � ✓4)

+ 2exp(�✓1 � ✓2) + 2exp(�✓1 � ✓3) + 2exp(�✓1 � ✓4)

� 3exp(�✓1)

The derivative ��3

�✓1
can be given as a function of �̄12 as follows:

��3
�✓1

= �exp(�✓1)[exp(�✓2 � ✓3) + exp(�✓2 � ✓4) + exp(�✓3 � ✓4)

�2exp(�✓2)� 2exp(�✓3)� 2exp(�✓4)
+3]

=� exp(�✓1)�̄12

�̄i,j0 = 1

�̄i,j1 =
X

r 6=i,j

(exp(�✓
r

)� 1)

�̄i,j
k

= �
k

� �̄i
k

� �j
k

+ �i,j
k

�i,j
k

= (exp(�✓
i

)� 1) ⇤ (exp(�✓
j

)� 1)�̄i,j
k�2

16

7.1 more things, ESP

This can lead to an e�cient sampling algorithm

�̄i
k+1 = �̄ij

k+1(exp(�✓j)� 1) + �̄ij
k+1

8 Conjetures

su�cient statistic matrix i↵ l-decomposable ?
Complexity. If the distance between two permutations of n items ranges between 0 and max dist then the com-

plexity of generating a random permutation at distance d, 0 d max dist is O(max dist).

References

[1] Frank B Baker and Michael R Harwell. Computing Elementary Symmetric Functions and Their Derivatives: A
Didactic. Applied Psychological Measurement, 20(2):169–192, 1996.

[2] Douglas Edward Critchlow, Michael A Fligner, and Joseph S Verducci. Probability Models on Rankings. Journal
of Mathematical Psychology, 35:294–318, 1991.

[3] Vill Csiszár. On L-decomposability of random orderings. Journal of Mathematical Psychology, 53(4):294–297,
2009.

[4] Angela D’Elia and Domenico Piccolo. A mixture model for preferences data analysis. Computational Statistics

& Data Analysis, 49(3):917–934, 2005.

[5] Persi Diaconis. Group representations in probability and statistics. Institute of Matematical Statistics, 1988.

[6] Persi Diaconis and Bernd Sturmfels. Algebraic Algorithms for Sampling from Conditional Distributions. The

Annals of Statistics, 26(1), 1998.

[7] Michael A Fligner and Joseph S Verducci. Distance based ranking models. Journal of the Royal Statistical Society,
48(3):359–369, 1986.

[8] Alexander Gnedin and Grigori Olshanski. The two-sided infinite extension of the Mallows model for random
permutations. Advances in Applied Mathematics, 48(5):615–639, 2012.

[9] Duncan Luce R. Individual Choice Behavior. Wiley, New York, 1959.

[10] C L Mallows. Non-null ranking models. Biometrika, 44(1-2):114–130, 1957.

[11] Yi Mao and Guy Lebanon. Non-Parametric Modeling of Partially Ranked Data. Journal of Machine Learning

Research, 9:2401–2429, 2008.

[12] Marina Meila and Le Bao. Estimation and Clustering with Infinite Rankings. In Uncertainty in Artificial

Intelligence (UAI), pages 393–402, Corvallis, Oregon, 2008. AUAI Press.

[13] Marina Meila and Harr Chen. Dirichlet Process Mixtures of Generalized Mallows Models. In Uncertainty in

Artificial Intelligence (UAI), pages 285–294, 2010.

[14] Thomas Brendan Murphy and Donal Martin. Mixtures of distance-based models for ranking data. Computational

Statistics & Data Analysis, 41(34):645–655, 2003.

[15] R L Plackett. The Analysis of Permutations. Journal of the Royal Statistical Society, 24(10):193–202, 1975.

17

