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RESUI\/IEN|

| término cosmologia que proviene del griego cosmos (orden), y loguia (tratado,
estudio), abarca el estudio del universo en su totalidad: su origen, su evolucién
y su estructura actual. En sus origenes, se trataba de una ciencia practicamente
especulativa, ya que las limitaciones instrumentales reducian las observaciones a unas pocas.
En esos primeros pasos hacia un primer modelo cosmoldgico, se adoptaron unos principios
para que sirvieran de guia. Actualmente, la cosmologia moderna, también se basa en la
asuncioén de dos principios basicos: el Principio Cosmolégico y el Principio Copernicano.
Estos principios ayudan a simplificar el problema y establecen que a escalas suficientemente
grandes el universo es homogéneo e isétropo, es decir, el universo es idéntico en todas
partes y en todas las direcciones del espacio. Aunque a pequeia escala sabemos que no
es asi, ya que gran parte de la materia del universo se encuentra agrupada en planetas,
estrellas, galaxias y otras estructuras mds grandes, cuando se considera en promedio, a
escalas grandes, la distribucion de las galaxias y las agrupaciones de éstas es uniforme.
Con el tiempo y debido al progreso tecnoldgico, el nimero y la calidad de las observaciones
aumentd, dando lugar a notables descubrimientos que cambiaron por completo la concepcidn
del universo y revolucionaron el campo de la cosmologia, como:

e El descubrimiento por parte de E. Hubble en 1929 de la expansién del universo.

e La primera medicién del fondo césmico de microondas (FCM) que obtuvieron de
manera accidental Penzias y Wilson en 1965 y que ayudd a probar la isotropia del
universo y la idea de Big-Bang.

e La observacion de la reciente expansion acelerada del universo a través de la observacién
de las Supernovas en 1998 por parte de los grupos Supernova Cosmology Project y
High-Z Supernova Search Team liderados por Saul Perlmutter, Brian P. Schmidt y
Adam G. Riess, galardonados con el Premio Nobel de Fisica en 2011.

En las dltimas décadas la cosmologia ha experimentado notables avances como conse-
cuencia del desarrollo de nuevos experimentos que nos han abastecido con precisos datos
observacionales. La calidad de estos datos ha permitido construir una imagen global del uni-
verso actual; un universo acelerado compuesto principalmente por materia oscura (~ 23%),
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distinta a la materia ordinaria (~ 5%), y energia oscura (~ 70%), la componente del
universo que contrarrestaria el efecto gravitatorio y explicaria la expansidn acelerada de éste.
Con la existencia de estas dos principales componentes se puede explicar la situacién actual
del universo y los fenémenos que tienen lugar en él. Sin embargo, su naturaleza es todavia
un misterio, por lo que nos encontramos ante un largo y apasionante camino que recorrer.

Después de la evidencia empirica acerca de la expansién acelerada del universo y de
la necesidad de un modelo tedrico que la explicara, se introdujo una constante, llamada
constante cosmoldgica, en las ecuaciones de Einstein para poder dar una explicacidn a esta
aceleracion reciente. Por lo tanto, este modelo, conocido como ACDM, que corresponde
a un universo compuesto principalmente por materia oscura y que explica la aceleracion
con la presencia de una constante cosmoldgica A, se ha convertido en el modelo estandar
debido a su simplicidad y concordancia con los datos observacionales. Sin embargo, hay
algunos puntos que todavia no puede explicar. Estas deficiencias tedricas han dado lugar a
la apariciéon de modelos alternativos, como puede ser una energia oscura dindmica, es decir,
que pueda evolucionar lentamente con el tiempo.

Es en este contexto donde se enmarca el trabajo presentado en esta tesis, cuyo principal
objetivo es ir mas allda y obtener algunas pistas nuevas sobre la naturaleza de la energia
oscura. Las investigaciones llevadas a cabo durante esta tesis tratan de hacer frente a
este sector ‘oscuro” desde varias perspectivas, combinando la teoria y el andlisis de datos
astronémicos.

En el primer capitulo se presenta una introduccién detallada a la cosmologia en un universo
acelerado, tanto desde un punto de vista tedrico como observacional. Esta introduccién se
basa en diferentes libros de texto y articulos que se detallan en cada uno de los apartados.

Como primera aproximacién al sector "oscuro”, en el capitulo 2 se describe un nuevo
modelo basado en una accién de Dirac-Born-Infeld para la unificacién de la materia oscura
y energia oscura. El estudio de este nuevo modelo se aborda tanto desde el punto de vista
tedrico como observacional. En primer lugar, se investiga su comportamiento de fondo
a tiempos tempranos y tardios. En este sentido, se demuestra que el modelo propuesto
imita la materia a tiempos tempranos y que se recupera un régimen de Sitter en los dltimos
momentos. La validez de este modelo unificado se ve reforzada por su capacidad para crear
estructuras, estudio que se lleva a cabo a través de un andlisis perturbativo. Seguidamente,
se presentan los resultados obtenidos a partir del analisis bayesiano. Este nos permite
establecer las restricciones observacionales sobre los parametros del modelo que imponen las
Supernovas de tipo la, el fondo de microondas y las oscilaciones acdsticas de los bariones.
Desde el punto de vista observacional, este modelo se ajusta mejor a las observaciones que
el mds popular de los modelos que unifican el sector oscuro: el gas de Chaplygin . Los
resultados obtenidos en este trabajo indican una preferencia del modelo respecto al modelo
tan ampliamente aceptado como es ACDM (constante cosmoldgica). El resultado mas
sorprendente es que el mejor ajuste corresponde un comportamiento fantasma, w < —1,
conseguido sin anadir, explicitamente, una componente fantasma en el modelo. Finalmente,
los resultados obtenidos del estudio del modelo desde diferentes angulos demuestran que este
modelo representa una buena alternativa para la unificacién de la materia y la energia oscura
y, sugiere que debe explorarse para su generalizacién. Probablemente, relajando la suposicién
que se ha hecho de que el lagrangiano sea puramente cinético e introduciendo algunos



grados de libertad mds, se obtendria un modelo aiin mds acorde con las observaciones
astrondmicas. El trabajo presentado en este capitulo estd basado en el siguiente articulo:

e DBI models for the unification of dark matter and dark energy
L. P. Chimento, R. Lazkoz, |. Sendra, Gen. Rel. Grav. 42 (2010) 1189-1209.

En los capitulos 3 y 4 se detallan los resultados obtenidos cuando realizamos un analisis
observacional de diferentes parametrizaciones de la ecuacién de estado de la energia oscura.
En concreto, en el capitulo 3, se estudia la posibilidad de detectar patrones oscilantes en
la ecuacién de estado de la energia oscura haciendo uso de distintos conjuntos de datos
cosmolgicos. Para ello se da enfoque fenomenoldgico a la situacién de manera que se
estudian tres modelos distintos de oscilacion de la ecuacién de estado: uno de ellos periddico
y los otros dos, propuestos aqui por primera vez, con una cierta amortiguaciéon. Todos
estos modelos se caracterizan por su amplitud, su valor central, y la frecuencia de las
oscilaciones. Al contrario de lo que ocurre en otros trabajos anteriores, el valor del frecuencia
no se fija a un valor fiduciario en relacién con la extensién de tiempo de los conjuntos
de datos elegidos, sino que se considera un conjunto discreto de valores con la intenciéon
de evitar cualquier arbitrariedad y, de esa manera, tratar de detectar cualquier periodo
de tiempo posible en la ecuacién de estado. Los modelos se prueban con una coleccién
reciente de Supernovas de tipo la, mediciones directas de la constante de Hubble y de datos
observacionales pertenecientes a explosiones de rayos gamma. Estas dos ultimas mediciones,
representan un novedad en este tipo de trabajos, ya que amplian el rango de distancias en
las que detectar el comportamiento oscilatorio. Los principales resultados obtenidos son los
siguientes:

| Aunque las restricciones sobre la amplitud no son demasiado fuertes, se detecta una
tendencia de la misma en comparacioén con la frecuencia, es decir, una disminucién de
las amplitudes a medida que las frecuencias crecen.

Il El centro de oscilacién (que corresponde al valor actual de la ecuacién de estado) estd
muy bien delimitado, ademas, de que el comportamiento fantasma queda excluido en
1o, aparece la misma tendencia que muestra la amplitud con la frecuencia.

Il Resulta dificil acotar el mejor valor para la frecuencia, ya que todos los valores de la
serie discreta elegida muestran la misma validez estadistica. Sin embargo, el mejor
ajuste corresponde a un periodo que se encuentra en el rango de redshifts cubierto por
los datos cosmolégicos usados. Si comparamos los " mejores“ modelos de oscilacién
obtenidos con ACDM haciendo uso de un criterio de informacién basado en |a estadistica
bayesiana, la conclusién que se obtiene es que no existe ninguna evidencia significativa
que se oponga a un modelo de energia oscura oscilante.

Los resultados obtenidos en este capitulo han sido publicados en:

e Oscillations in the dark energy EoS: new MCMC lessons
R. Lazkoz, V. Salzano, |. Sendra, Phys. Lett. B694 (2010) 198-208.



Siguiendo la misma linea que el capitulo anterior, en el capitulo 4 con el fin de sacar el
maximo provecho de los parametros que nos definen la ecuacién de estado de la energia
oscura y de los datos observacionales de los que disponemos, se sugieren dos nuevas
parametrizaciones de la ecuacién de estado de la energia oscura. Esta vez, el principal objetivo
es obtener una ecuacién de estado cuyos pardmetros estén minimamente correlacionados y
que, al mismo tiempo, representen una modificacion minima de ACDM. Las parametrizaciones
propuestas se basan en una expansién a segundo orden de los polinomios convencionales y los
de Chebyshev escritas en términos de los valores de la ecuacién de estadoen z =0y z = 0.5,
que tienen una correlacién baja y que, naturalmente, han mostrado ya ha mejora respecto a
la popular parametrizacién de Chevallier-Polarski-Linder (CPL). Las pruebas astronémicas
usadas en este trabajo corresponden a las observaciones recientes de Supernovas y las escalas
tipicas de las oscilaciones barionicas. Sin embargo, con la intencién de deducir cual sera
la mejora que nos dardn los futuros experimentos, se han obtenido datos simulados del
experimento EUCLID. De acuerdo con el criterio de desviacién de informacién bayesiano
(DIC), que penaliza los errores grandes y las correlaciones entre los pardmetros, los nuevos
modelos propuestos funcionan mejor que la famosa parametrizacion de la ecuacion de estado,
CPL, y su re-parametrizacién propuesta por Wang (en términos de z = 0y z = 0.5).
Esto es debido a la combinacién de una correlacién mas baja y de unos errores relativos
en los parametros mas pequenos. Lo mismo ocurre desde el punto de vista frecuentista,
que muestra una Figura de Mérito mayor para las nuevas parametrizaciones. El trabajo
presentado en este capitulo se basa en el publicado en:

e SN and BAO constraints on (new) polynomial dark energy parametrizations:
current results and forecasts
|. Sendra and R. Lazkoz, Mont. Not. Roy. Astron. Soc. 422 (2012) 776-793.

Otro reto emocionante en cosmologia es descifrar como era el universo en sus primeras
etapas. El FCM nos proporciona un ventana directa a esta época, ya que nos permite obtener
informacion detallada de cada uno de los componentes del universo en esos primeros instantes
de su historia. Este conocimiento, nos ayuda en gran medida a mejorar la comprensién sobre
la evolucién posterior del universo. Por lo tanto, es extremadamente importante conseguir
una explicacién detallada de cada uno de los componentes en estas primeras etapas. Y es
justo éste uno de los propdsitos del dltimo trabajo presentado en esta tesis.

El FCM es la reliquia que nos llega de la radiacién del universo temprano, y nos proporciona
informacién sobre la densidad total de radiacion alrededor del momento de desacoplo de
los fotones, cuando se produjo el FCM. En esa época, los neutrinos representaban una
fraccion significativa de la densidad de energia de la radiacién. Si asumimos que hay tres
tipos de neutrinos, cualquier exceso en la medida del nimero efectivo de neutrinos, N,
nos indicaria la existencia de una componente relativista adicional. Las medidas actuales del
FCM muestran una ligera preferencia por Neg > 3 a un 95% de intervalo de confianza (I.C).

Este exceso en el nimero efectivo de neutrinos, se puede interpretar como la contribucién
de ondas gravitacionales primordiales con frecuencias superiores a ~ 107!%Hz al FCM. Si
consideramos que este fondo cosmoldgico de ondas gravitatorias se produjo bajo condiciones
iniciales adiabdticas, sus efectos sobre el FCM vy el espectro de potencias de materia imitaria



al producido por neutrinos sin masa. Sin embargo, con condiciones iniciales homogéneas,
tal y como uno podria esperar de ciertos modelos de la inflacién, modelos de pre Big-Bang,
transiciones de fases u otros escenarios, el efecto sobre el FCM seria distinto. En el dltimo
capitulo de esta tesis, establecemos restricciones observacionales sobre el niimero efectivo de
neutrinos. Para ello hemos utilizado los ultimos datos del FCM procedentes de WMAPT-year
y del South Pole Telescope. Estos limites se convierten en restricciones sobre la densidad
energia del fondo cosmoldgico de ondas gravitacionales para los dos conjuntos de condiciones
iniciales: adiabaticas y homogéneas. Incluyendo los datos de South Pole Telescope a
pequenas escalas se obtiene, en el caso adiabatico, una mejora sobre la densidad de energia
del fondo cosmolégico de ondas gravitacionales de un factor 1.7 respecto 10°Q,,, < 8.7
a un 95% de I.C. Bajo estas condiciones iniciales, las cuerdas césmicas podrian generar
esta componente de las ondas gravitacionales, de manera que el limite sobre €),,, se puede
convertir en un limite superior sobre la tensién de la cuerda, obteniendo G, < 2 X 1077 en
95% de I.C. En el caso homogéneo, la mejora es de un factor 3.5 sobre 10°Q,,, < 1.0 en 95%
de |.C., esta vez, sin ninguna evidencia observacional sobre la existencia de un componente
extra en la radiacion. Este trabajo representa la primera vez en que se establece un limite
sobre la tensién de las cuerdas césmicas, G, a partir de las restricciones obtenidas sobre el
fondo cosmoldgico de ondas gravitacionales provenientes del exceso en el nimero efectivo
de neutrinos. Como las cuerdas césmicas también contribuyen al espectro de potencias del
FCM, una extensién interesante de este trabajo seria investigar cudles serian las nuevas
limitaciones sobre Neg o (2, teniendo en cuenta tanto la contribucién de cuerdas y como
el nimero efectivo de neutrinos. Este capitulo se basa en el trabajo descrito en el articulo:

e Updated constraints on the primordial GW background using the latest CMB
data
|. Sendra and T. Smith, Aceptado en Phys. Rev. D, para ser publicado en Junio del
2012 (arXiv:1203.4232).






PROLOGUE|

the development of new experiments which have provided very accurate observations.

The quality of these data has allowed to construct a global concordance picture of
the Universe: an accelerated universe with a sub-critical mass content. This speed up of the
Universe can be explained with the presence of an exotic component (dark energy) which
counteracts the attractive effect of gravity. However, its nature is still unknown and progress
has to be done to uncover it. Thus, the work carried out in this thesis tries to address this
dark sector from several perspectives, combining the theory on cosmology and the analysis
of astronomical data.

In the first chapter | present a detailed introduction to the cosmology in an accelerated
universe, both on the theoretical and observational context. This introduction is based on
different books, articles and reviews as it will be detailed.

Chapter 2 describes a model based on a Dirac-Born-Infeld action for the unification
of dark matter and dark energy which is supported by the results of the study of its
background behaviour at early and late times, and reinforced by the analysis of the evolution
of perturbations. A Bayesian analysis is performed to set observational constraints on the
model parameters using Type la Supernovae, Cosmic Microwave Background shift and
Baryon Acoustic Oscillations data. Finally, to complete the study, the model kinematics, such
as the effective equation of state parameter, the acceleration parameter and the transition
redshift, are also investigated. This chapter is based on the article:

C osmology has experienced remarkable advances in the last decades as a consequence of

e DBI models for the unification of dark matter and dark energy
L. P. Chimento, R. Lazkoz, |. Sendra, Gen. Rel. Grav. 42 (2010) 1189-1209.

The possibility of detecting oscillating patterns in the dark energy equation of state is
studied in Chapter 3 using different cosmological datasets. A phenomenological approach is
followed and three different oscillating models for the EoS are studied: one of them periodic
and the other two, proposed here for the first time, with a certain damping. All these
models are characterised by the amplitude value, their central value, and the frequency of
the oscillations. In contrast to previous works in literature, the value of the frequency is not
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fixed to a fiducial value related to the time extension of chosen datasets, but a discrete set
of values is considered instead to avoid arbitrariness and try to detect any possible time
period in the EoS. The models are tested using a recent collection of Type la Supernovae,
direct Hubble data and Gamma Ray Bursts data. The results obtained in this chapter have
been published in:

e Oscillations in the dark energy EoS: new MCMC lessons
R. Lazkoz, V. Salzano, |. Sendra, Phys. Lett. B694 (2010) 198-208.

Then two new polynomial parametrizations of dark energy and their informative properties
are presented in Chapter 4. The parameters to fit are the equation of state values at
z =0 and z = 0.5, which have naturally low correlation and have already been shown to
improve the popular Chevallier-Polarski-Linder (CPL) parametrization. These models are
tested with low redshift astronomical probes: Type la Supernovae and Baryon Acoustic
Oscillations (BAO), in the form of both current and synthetic data. Specifically, simulations
of measurements of the radial and transversal BAO scales similar to those expected in a
BAO high precision spectroscopic redshift survey similar to EUCLID are disussed. The work
presented in this chapter is based in that published in:

e SN and BAO constraints on (new) polynomial dark energy parametrizations:
current results and forecasts
|. Sendra and R. Lazkoz, Mont. Not. Roy. Astron. Soc. 422 (2012) 776-793.

Another exciting challenge in Cosmology is to decipher how the Universe was in its first
stages. The Cosmic Microwave Background (CMB) provides a clear window into this epoch,
and allows us to obtain information of each of the components of the Universe. This may
impove our understanding of later evolution. Therefore, it is crucial at this stage to have a
detailed explanation of each of the components, being it one of the purposes of the last
work presented in this thesis.

The CMB is the relic of the radiation of the early stages of the Universe that reaches us. It
is affected by the total radiation density around the time of decoupling, when it was produced.
At that epoch, neutrinos comprised a significant fraction of the radiative energy, but there
could also be a contribution from primordial gravitational waves with frequencies greater
than ~ 107°Hz. If this Cosmological Gravitational Wave Background were produced under
adiabatic initial conditions, its effects on the CMB and matter power spectrum would mimic
non-interacting massless neutrinos. However, with homogenous initial conditions, as one
might expect from certain models of inflation, pre big-bang models, phase transitions and
other scenarios, the effect on the CMB would be distinct. In Chapter 5 updated observational
bounds are presented for both sorts of initial conditions using the latest CMB data at small
scales from the South Pole Telescope (SPT) in combination with that provided by the
Wilkinson Microwave Anisotropy Probe (WMAP), current measurements of the BAO, and
the Hubble parameter. For the adiabatic case, the constraint obtained is converted into an
upper limit on the tension of horizon-sized cosmic strings that could explain the production



of this primordial gravitational wave component. This chapter is based on the work detailed
in the recently accepted article:

e Updated constraints on the primordial GW background using the latest CMB
data
|. Sendra and T.Smith, Accepted in Phys. Rev. D, to be publish in June 2012
(arXiv:1203.4232).
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CHAPTER 1

INTRODUCTION

1.1 An expanding homogeneous and isotropic universe

Whenever a new field is explored in Science without any previous hints from observations
or experiments that can provide a guide, some principles need to be adopted in the first
trail towards a compelling theory that will give us the demanded understanding of the
new phenomenon. These principles will be of help if they simplify the problem, reducing
the numbers of degree of freedoms as it occurs with postulates related to symmetries.
This is exactly what happened at the beginning of the last century with the first attempts
to construct a cosmological model. One of the central pillars of these models was the
“Cosmological Principle”, which states that at sufficiently large scales, the Universe is
homogeneous and isotropic. Homogeneity concerns an identical universe everywhere in
space, while with isotropy one understands that the Universe looks the same in every
direction. This principle is not exact, since much of the Universe's matter is found clustered
together in planets, stars, galaxies, and larger structures, but when considered on average,
the distribution of galaxies and clusters is uniform on large scales.

A good evidence of isotropy in the Universe was obtained in 1965, when Penzias and
Wilson [204] observed a microwave radiation coming from all directions of the sky with a
black body spectrum at a temperature around 3.5K. This accidental discovery became one
of the most powerful pieces to support not only the hot Big Bang origin of the Universe, but
also the best evidence for the Cosmological Principle. Even so, isotropy does not necessarily
imply homogeneity without the previous assumption of the “Copernican Principle”. Named
after N. Copernicus, this principle postulates that there is no special location in the Universe.
In this case, isotropy also involves homogeneity. As our location in the Universe is not
privileged, if we obtain the same observations in every direction we look, we will do so in any
other location, thus the Universe is also homogeneous. Later observations of the Universe
at large scales such as galaxy distribution are also consistent with an homogeneous and
isotropic structure.

Another breakthrough of the last century for cosmology was the observation of the
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universe expansion. In 1914, V. M. Slipher, through his observations of the radial velocities
of galaxies by measuring their Doppler shift of the spectral lines, discovered that most
of them were redshifted. In his work "Spectrographic observations of nebulae” [250] he
announced that almost all the galaxies he had observed where moving away from Earth,
except for Andromeda, that was moving toward us.

If almost all the galaxies are moving away from Earth, we will observe a certain redshift
between the wavelength of the radiation emitted by them, \A.,, and the observed one, \;:

>\0 s /\em
p= Db Zem (1.1)

>\em
According to the Doppler shift phenomenon, for the non-relativistic case, if a nearby source
is moving with velocity v, the measured redshift is z = v/c with ¢ the speed of light.
However it was E. Hubble who in 1929 combined his measurements on distances to
galaxies through Cepheids, and discovered that the galaxy recessional velocity increases with
its distance [126], obtaining the now called Hubble's law:

Hod =, (12)

where Hj is known as the Hubble constant and d is the physical distance between the
observer and the galaxy. This law was the cornerstone of the idea of an expanding universe.
The light from distant galaxies is redshifted because their separation distance increases due
to the expansion of the Universe.

At the same time, if everything is moving away from everything else, it is a sign of that at
some point in the past, everything in the Universe was closer. So there was an event in the
past where all matter was as close as possible and after some kind of explosion everything
started to separate, thus, giving another probe for the Big-Bang model of cosmology.

1.1.1 Expansion, the scale factor and the cosmological redshift

Assuming an homogeneous and isotropic universe, we can define a “comoving coordinates
system”, in which the coordinates of a point are carried along the expansion, i.e, they remain
constant. In a universe with such properties, the expansion will be also uniform, allowing us
to relate the physical distance, d, between two different points with the comoving coordinate
distance, x, through a scale factor a(t) that depends only on time to ensure homogeneity,
and accounts for the relative expansion of the Universe:

d(t) = a(t)x. (1.3)

The wavelength of the photons crossing an expanding universe, will also scale with a(t),
thus the measured redshift of the light of a distant object will give us an indication of the
relative size of the Universe at that time:

)\obs _ (l(to)
Aem  a(t)

With the relation given by Eq. ({1.3)) and the expression of the recessional velocity v = d,

1+z2= (1.4)
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we can recover Hubble's law at any time, ¢:

v=d="d=Hd, (1.5)
a

where H = a/a is the Hubble parameter and accounts for the expansion rate of the Universe.
Its value at present can be expressed as Hy = 100hkm s~ 'Mpc™, h being a dimensionless
parameter.

1.2 General Relativity and FLRW equations

Now we require a mathematical framework which can provide the tools to describe and
study the evolution of the Universe. On one hand, we need a metric which can encapsulate
the geometric properties of a spatially homogeneous and isotropic Universe. Between
1922 and 1924, A. Friedman derived a metric with these characteristics. Some years later,
G. Lemaitre arrived independently at similar results as Friedmann; and finally, in 1935,
Robertson and Walker rigorously proved that this metric is the only one on a spacetime
that is spatially homogeneous and isotropic. The line element of this metric, known as
the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, can be written as follows in
reduced-circumference polar coordinates:

ds® = g datds” = —*dt* + a*(t) (dr® + x*(r) (d6” + r* sin® 0d¢*) ), (1.6)

where a(t) is the scale factor introduced in the previous section. For the function x(r) there
are three possible choices, each one corresponding to a different spatial curvature KC:

r if K= 0 (flat universe),
x(r) =4q sinr if =41 (closed universe), (1.7)
sinhr if K = —1 (open universe).

On the other hand, it is well known that the strongest force at very large scales is gravity,
so a theory describing this interaction will give us the best description of picture of the
Universe at these scales. In that case Einstein's General Relativity is the best description we
have, and it is captured in the so called Einstein equations:

1
Guw =R — §ng, = 81GT),,. (1.8)

Here GG, is the Einstein tensor; R, the Ricci Tensor, which depends on the metric
and its derivatives; R the Ricci Scalar (R = ¢"“R,,); G stands for Newton's Constant
of Gravitation and 7}, is the energy-momentum tensor, which describes the background
matter content. These equations give us now the relation between the geometry and the
energy density content of the Universe.

The energy-momentum tensor, which describes the energy content of an homogeneous
and isotropic universe, can be bound to the perfect fluid form:

T,Lw = (_p +p)u,uuv +pguuy (19)
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where the 4—velocity is the time-like 4—vector, u# = (%,O, 0,0) and u,u* = —1 while p
and p are the fluid energy density and pressure respectively that can be related through the
equation of state E]

w=". (1.10)

Now if we solve the Einstein equations for the FLRW metric under the assumption
of a perfect fluid, we obtain the equations for the scale factor, a(t), that describe how
an homogeneous and isotropic universe evolves in the context of General Relativity. For
generalized theories a similar treatment would have to be done. Those equations are called
Friedmann equations:

: a ArG
H = —=-—=(p+3p), (1.11)
.\ 2
a 8t k
H?* = <5) =5 P (1.12)

The first one is a first order differential equation for the Hubble parameter H, which
gives us the evolution of the scale factor. The second one is a continuity equation which
expresses the conservation of the energy.

From the O-th component of the energy conservation equation V,T"” = 0, an evolution
equation for the energy density of the fluid can be obtained:

p+3H(p+p) =0. (1.13)

Integrating this equation for a constant equation of state and using Eq. (1.12)), it is possible
to obtain the variation of the energy density with the scale factor:

p = poa T, (1.14)

with py being the energy density at present time.

A universe filled with radiation, i.e. relativistic particles, can be described with a fluid
with an equation of state w, = 1/3. This value can be obtained from the fact that the
trace of the energy momentum tensor has to be zero for relativistic matter. For a
non-relativistic matter universe which includes both dark matter and baryons, the effect of
the pressure is almost negligible and we have w,,, >~ 0. Thus summarizing:

Matter dominated: p o< a™?, (1.15)
Radiation dominated: p oc a™*. (1.16)

1This is the usual factor which relates pressure and density of any given component through the relation
wx =px/px.
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At this point, it is convenient to define the critical energy density:

3H?
c(a) = —, 1.17
pe(a) = o—= (1.17)
and the dimensionless density parameter:
pla)
Qa) = : 1.18
@) pe(a) (118)

With these two parameters we can rewrite Eq. ([1.12)) in the form

k
Qa) —1=——, 1.19
(@ ~1= g (119)
which allows us to relate the total energy density of the Universe to its local geometry,
showing that the matter distribution clearly determines the spatial geometry of the Universe:

Q>1 — k=+1, (1.20)
Q=1 — k=0, (1.21)
Q<1 — k=-1 (1.22)

Current observations from the CMB give a value of Q;, = —k/(a?H?) = —0.080") 00a
[147], therefore the spatial flatness of the Universe is commonly assumed in order to simplify
calculations.

If observations indicate that we are in an almost flat universe, and from Eq. and
(1.16)) we see that at present the energy density of radiation is negligible compared to
matter, we find we are in a purely matter dominated universe, €2, ~ 1. This model is
called Einstein-de Sitter (EdS) universe, and until the discovery of the current acceleration
of the Universe, as we will see in the next section, was the most accepted one by theoretical
cosmologists. Since 1932, different observations have indicated that a large fraction of this
matter component is not visible, i.e. does not interact with light. J. H. Oort was the first
to find an observational evidence for non visible matter in our Galaxy [197] [198]. Then,
F. Zwicky [300] 301] found that the total mass inside the Coma cluster was larger than
expected. These observations were based on the study of the motion of the astronomical
objects: stars in a galaxy or galaxies in a cluster. They tried to check if the visible matter,
that coming from stars and dust, was enough to generate the observed motion through
gravitational attraction. And what they found was that extra matter should be taken into
account to explain the observed movements. This extra component is known as dark
matter, see [38, 228] for good reviews. The most evident application of this procedure
is to their galaxy rotation curves. Other indirect observational evidences for dark matter
have been found over the years. Maybe the most noticeable one are the galaxy rotation
curves; but the existence of dark matter has been also proved with gravitational lensing
or other observational probes that involve physics of the early universe as the Big Bang
Nucleosynthesis or the Cosmological Microwave Background. All of them have shown that
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dark matter does not interact electromagnetically, only gravitationally. Many candidates
have been proposed, but the its exact nature is still unknown as we lack of a direct detection
of the dark matter particle. The most promising candidate is a particle that behaves like a
non-relativistic collisionless fluid (Cold Dark Matter).

Cosmological Horizons

At this point it is convenient to introduce the concepts of particle horizon, coordinate horizon
and horizon distance. These quantities are a consequence of the finite speed of light. See
[93] 94, 224] for nice and clear explanations of these concepts. For a given observer, the
particle horizon at a given time, t, is defined as the surface that divides particles that have
been already seen by the observer from those that have not seen yet. Thus, the coordinate
distance is the distance that the light has been able to travel to an observer at time, t,
from the earliest time possible for its emission, to (usually taken as zero)

ra(t) = /t cdt’ (1.23)

o alt')

Finally, the horizon distance, which is the maximum distance to which the observer can
see, can be expressed as

di(t) = a(tyru(t) = aft) / cdt” (1.24)

to a(t’)

As H;' represents a rough measure of the age of the Universe, it is common to call the
Hubble radius cH; ' the horizon or horizon length. In a similar way, it is also possible to
define the sound horizon, the distance that the sound has had time to travel during the

age of the Universe:
Peg(th)at!
s\<x) — — N - 1.2
e = [ 0 (1.25)

0

1.3 The currently accelerated universe

The Hubble Diagram, as first presented by Hubble himself, relates the recessional velocity or
redshift of distant objects with their distance, and gives the most direct evidence we have of
the expansion of the Universe. Later observations have used the same principle: measure the
distance and the redshift of every object under observation. The easiest task is to measure
the redshift, it can be obtained through either spectroscopy or photometry. However, the
measurement of the distances is more complicated. The most common technique requires
the existence of a standard candle, an object whose luminosity is well known and can be
predicted from some other measurement. Sources which are far away appear fainter because
the light spreads out over a larger area in its way to the observer who will measure a flux

L

 4rd?’

F (1.26)
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where L and dj, are the luminosity and the luminosity distance respectively. The last one
can be related to the Hubble parameter:

dy = (1+2) /0% (1.27)

and allows us to infer the geometry and dynamics of the Universe. There are several types of
standard candles, Hubble in his measurements made use of Cepheids, stars whose luminosity
varies within a regular cycle [126] I57]. This kind of standard candles can only be used out
to about 30Mpc. Nevertheless, in 1993 [211] it was demonstrated that Type la Supernovae
(SNela), stellar explosions at the end of massive stars life, are good candidates for standard
candles, with the benefit that they can be seen at large distances given their extreme
brightness.

Five years later, two independent groups of astronomers, the Supernova Cosmology Project
and the High-Z Supernova Search Team, obtained a set of 42 and 10 supernovae respectively,
up to the highest redshift measured by then, z ~ (.82, that let them obtain the Supernovae
Hubble diagram to larger distances than was previously possible [16, 210, 220), 221]. Making
use of the distance modulus, u:

d
1=m— M =5logy, (M—’;C> + 25, (1.28)

with m the apparent and M the absolute magnitude of the sources respectively, both teams
showed that distant SNela were dimmer than they would be in a decelerating universe,
indicating not only that the Universe was expanding, but also that this expansion has been
accelerating for the past 5Gyrs. This discovery opened a new era in Cosmology, and has
been awarded with the Nobel Prize in 2011 [293].

Nowadays, the accelerated expansion of the Universe stands as confirmed by several
independent observations as the already mentioned SNela [107, [115], 215, 262] 274], the
measurements of cluster properties as the mass, the correlation function and the evolution
with redshift of their abundance [17, [18] 91}, 283]; the optical surveys of large scale structure
[60, 90| [212]; the anisotropies in the Cosmic Microwave Background (CMB) [78] [147] 261],
the cosmic shear measured from weak lensing [216], [282] and the Lyman—« forest absorption
(68, 189].

Given that the accelerated cosmic expansion has been well proved, the main challenge is
to understand which is the origin of this acceleration. So far, we can think of two possible
solutions. One would be the existence of a new component, dark energy (DE), with
negative pressure that would counteract the effects of the gravitational attraction, leading
to the observed accelerated expansion of the Universe. The other possible way to explain
these observations would be to consider that General Relativity breaks down at large scales,
i.e, cosmological scales, and needs to be replaced with a broader theory of gravity. If we
pay attention to Eq. , these two possibilities would respectively be translated into a
modification of the right hand side of the equation, which takes into account the matter
energy content of the Universe, either by adding a new one, or by introducing changes in
the left side of the equation, which describes the geometry of the Universe.
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1.4 Dark Energy

In Sec. we have seen that Friedmann equations explain how an homogeneous and
isotropic universe expands in the context of General Relativity. Considering the Universe
is filled with several fluid components, matter, radiation and dark energy, the Friedmann
equation becomes

H? = Hg (Qna™® + Qa™ + Qpa™ + Qppa01wre)) (1.29)

At the same time, we have already mentioned, observations are indicating that this
expansion is accelerated, i.e. (i@ > 0), which translates into a negative deceleration
parameter:

i

STEL (1.30)

q =

From Egs. (1.11]) and we see that acceleration occurs when the equation of state

for this new component satisfies w < —1/3. This means we are looking for a fluid with

large negative pressure that causes the expansion. Although its existence is well established

observationally, there is not an entirely compelling theoretical model which gives a theoretical

physical framework within which dark energy can be understood. Moreover, models so far
proposed are, in general, not compliant with all main observations.

1.4.1 ACDM model

In parallel to observational discoveries, new theories or models are being developed with the
aim of explaining the new findings. This is what took place after Hubble's breakthrough on
the Universe expansion. In 1917 when Einstein announced General Relativity, he introduced
in the equations a constant to obtain a static and finite cosmological model. A couple
of years later, the possible solutions to these equations were studied [79, 100, [161], and
showed that the case with matter and a cosmological constant, A, leads to an expansion or
contraction of the Universe. However, in 1929, with Hubble's discovery of the expansion of
the Universe, Einstein retracted from his previous formulation and removed the constant to
have a model coherent with the observations.

After the empirical evidence about the accelerated expansion of the Universe and the need
of a compliant theoretical model to explain it, the cosmological constant was recovered and
became a good candidate to explain the recent acceleration. Thus, it represents the simplest
model for dark energy, as it gives the same results as a new component of the energy density
of the Universe with constant equation of state parameter equal to —1. Einstein equations
in the presence of the cosmological constant read

1
Guw =R — §Rgu,, =8nGT,, + Agw, (1.31)




Chapter 1. Introduction

and the Friedmann equations get modified as follows:

a 4G A
Z o= T 3 - 1.32
G kA
H?> = —p— — 4+ —, 1.
5 > + 3 (1.33)

These equations clearly show that the cosmological constant represents a negative pressure
term, becoming the needed repulsive effect.

The A Cold Dark Matter (ACDM) model, which accounts for a universe mainly filled with
cold dark matter and puts down the acceleration to the presence of a cosmological constant
A, has become the standard model of cosmology due to its simplicity and compliance with
the data, but there are still some points that it cannot explain:

e Fine tuning or cosmological constant problem: In 1960's Zeldovich pointed out
that the origin of the cosmological constant could be the vacuum energy density. If
we consider it as the sum over all the zero-point energies of the quantum fields with
mass m, it would be given by

A 1 [
/ E*Vk? + m2dk, (1.34)

8nG P 0

which shows a divergence for high-frequencies. However, if one considers a cut-off
at Planck scales, one finds pyq. >~ 107GeV*, which is over 123 orders of magnitude
larger than the observed value py ~ 10~*"GeV*.

e Coincidence problem: Observations show that at the present epoch matter and
dark energy dominate the Universe, i.e. 87Gp/3HZ and A/3HZ are of the same order
of magnitude. However, we know that in an expanding universe, these terms would
have had different magnitudes at early times. At that stage, radiation dominated the
Universe, thus

PA at, (1.35)
Prad

and the energy density corresponding to A was negligible. As A is constant, at some
point in the future it will dominate. So, it seems we are in an special moment of the
history of the Universe; the actual balance between these quantities benefits us, so in
another epoch the Universe would be completely different, and the Universe would
not exist as we know it. So, the problem is: why does this happen exactly now? Why
are we so privileged?

1.4.2 Dynamical models of Dark energy

These theoretical shortcomings we have just discussed have lead to the proposal of other
settings which admit a slightly time-variable dark energy as the agent producing the cosmic
acceleration. There are good reasons to consider a dynamical dark energy as an alternative
to the cosmological constant. First, it can evolve slowly to zero, giving a solution to the
cosmological constant problem. Second, a dynamical dark energy can give us a hint of the
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evolution of dark energy, allowing us to learn something more about the underlying physics.
This fact also solves the coincidence problem, if the dynamics is such as to trigger the recent
dominance of the dark energy.

Many such models have emerged along theoretical avenues: quintessence [299], Chaplygin
gas [34], [138], modified gravity [195], holographic dark energy [168], braneworld models
[182], f(R) theories [257], theories with extra dimensions [158], and quite a few others.
Unfortunately, none of them have emerged as definitive answers for the dark energy problem,
so currently the situation is one of quick advances on the empirical front (regarding the
quantity and quality of the data), whereas theory is somewhat mired in a jungle of alternatives.

1.4.3 Quintessence

The scalar fields which arise from particle physics are good candidates for dark energy. There
has been proposed a wide variety of fields for this purpose, but Quintessence?| has became
the leading class, as its capability has been checked to also induce early cosmic inflation.
These models are described by a scalar field, ¢, minimally coupled to gravity whose action
is given by

s=- [dav=s {—% (Vo) - ww} (1.36)

with (V¢)? = 9" 0,00,¢ and V(o) being the potential of the field. The corresponding
energy-momentum tensor can be obtained varying the action with respect to g,,,:

1

= 0,00,0 — Guv {ﬁgaﬁaa¢8g¢ + V(¢)1 , (1.37)

T _ _—2 S
=g ogm

note that §/—g = —(1/2)v/—gg,.,0g"". Comparing this expression with the corresponding
one for a perfect fluid, see Eq. (1.9), we obtain an expression for the energy density and
pressure of the field:

p= 58+ V() (1.3
p= %¢32 — V(). (1.39)

For these models, Egs. ([1.11]) and (1.12)) for a flat universe become

H? = %[%é%ww] (1.40)
D= B -ve). (1.41)

From the last equation it is straightforward to see that the acceleration will take place when
¢ < V(¢), i.e. when we have a flat enough potential which ensures that the scalar field
will slowly roll. The most used is the exponential potential, however the literature is full of

2The name “Quintessence” comes from the ancient philosophical fifth element.

10
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other kinds of potentials that fulfil this condition, see [228] and references therein.
The expression for the equation of state is then

¢ —2V(¢)

= e (1.42)

We

which is bounded to —1 < wy < 1.

Phantom Field

Current observational data gives us bounds on the dark energy equation of state in which the
case with w < —1 is allowed at 68% confidence level: WMAP7-year provides w = —1.2010-57
[147] and Type la Supernova data from Union2.1 w = —1.0017535% [270]. Therefore, a
new type of scalar field needs to be taken into account in order to be able to recover these
values. It is usually done with the so called “Phantomf| fields" which are a modification of
the previous scalar fields with a negative kinetic term [51], 52]

1
S=- /d%: V=g {5 (Vo) — V(¢)] : (1.43)
This change in the sign of the kinetic term changes the equation of state, being now
/2
2
¢* —2V(9)

allowing the case with w, < —1 for ¢/2 < V(¢).
As this kind of fields does not have a lower bound, they usually present Ultra Violet
instabilities, this being one of its main shortcomings.

1.4.4 Chaplygin Gas

A special fluid motivated by Braneworld cosmology has emerged as a good candidate, not
only to describe a dynamical dark energy equation of state, but also to unify in a single fluid
dark matter and dark energy [34, [138]. The generalized form for the equation of state of
this fluid is given by

D P (1.45)
where A is a positive constant. The original Chaplygin gas is recovered with o = 1. Inserting
this expression in Eq. for the conservation of the energy density we obtain

(1.46)

Y

B 1/(14a)
P = |iA + W}

3This name is taken from Part | of Star Wars “The Phantom Menace”

11
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with B a constant. This equation allows us to obtain the equation of state for the Generalized
Chaplygin gas in terms of the redshift:

_r__ 4 __ ! (1.47)
O T T e T 1+ (BJA)(1 + 2)30+a) :

From Egs. (1.46) and (1.47)) we see that at early times (a < 1) the Chaplygin gas behaves
as purely matter:

poca® withw ~0. (1.48)

However, at late times (a >> (B/A)Y/B0+9)]) it mimics the cosmological constant:

p x constant with w ~ —1. (1.49)

1.4.5 Dark energy parametrizations

Since it is not fully clear what the observations should be compared with, in many of
the phenomenological models for dark energy a try and tested approach is to define a
parametrization of its equation of state (EoS) or energy density which, if well designed, allow
to encapsulate all the observational information in a few numbers which can afterwards be
compared with theoretical predictions (see [228] for a good reference on this topic). It is
usually assumed that these quantities vary slowly with redshift and can be approximated
by a fitting formula with a small number of free parameters. These parameters can be
constrained comparing the ansatz with observations using an optimization procedure, as we
will detail in Sec. [1.7] Choices are typically built upon intuition and prior information, but
there is yet plenty of room for discussion and improvements.

At present, we recall that the two main fluids are the dark matter and dark energy, the last
being the governor. As already discussed, dark energy can be described in an effective way
in the sense we do not need to appeal to any fundamental theory to deduce its behaviour,
and just let it be represented by a phenomenological equation of state:

PDE

The importance of the EoS is significant, because it determines the form of the Hubble
parameter H (z) or any derivation of it which is necessary to obtain the observable quantities,
as the luminosity distance Dy (z). Under the spatial flatness assumption (k = 0), we can
express the Hubble parameter as

H?(2)
Hg

X(z) = 22EB) (3 /O H—W)dz) | (1.52)

~ ppe(0) 1+2

the dark energy density function and Qpg =1 — Q,,. H(2) will be completely determined
once w(z) or X(z) are parametrized.

= Qu(1+2)*+ QppX(2) (1.51)

with

12
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There are many parametrizations of w(z) which have been proposed in the literature, in
terms of redshift, scale factor or functions of them; see Table [1.1] where a list of the most
used and some others is provided.

The last two parametrizations of the table involve more than two dark energy parameters.
Nevertheless, it has been argued that, at present, not enough data are available so as
to constrain more than two dark energy parameters [177, 269]. Therefore, although
parametrizations with three or more parameters can recover a wider range of models with
different variations with redshift or transitions, all of them cannot be well constrained at the
same time. This shows how challenging it is to find a parametrization that can provide us as
much information as possible about dark energy and its evolution with only two parameters.

The most natural way is to expand w(z) in a Taylor series of the redshift, w(z) = wy+w, 2
to first order, so that one has only two parameters. However, this clearly gives a divergence
for high z. This problem can be solved if the expansions are carried out in terms of the scale
factor a, giving place to the CPL parametrization, which we will discuss in what follows.

Cheuvallier-Polarski-Linder (CPL)

This parametrization was first discussed in [55] and reintroduced in [174], and defines the
dark energy equation of state as

) , (1.53)

wepr(2) = wo + w, (1 e

where wy is the value of the dark energy equation of state today (i.e. at redshift z = 0)
and w, + wy the limit when z — oo. The corresponding dark energy density function takes
the form:

Xepp(z) = e 1 (2 4 1)3wotwat)), (1.54)

This parametrization has been widely used because of its simplicity, sensitivity to obser-
vational data and because it is well behaved and bounded at high redshifts. Its adoption
by the Dark Energy Task Force [8] as a preferred parametrization has contributed to its
popularity.

However, this parametrization has two shortcomings. Its flexibility to determine cosmo-
logical parameters for some dark energy models with rapid evolution has been put in doubt
recently. On the other hand, the second parameter is typically very poorly constrained, thus
losing power of conviction about the conclusions to be drawn from it.

Intuitively, in order to be able to discern which dark energy model is closest to reality and
to offer a sensible interpretation of the results, it seems necessary to consider dark energy
parameters which offer clear advantages. Apart from having a clear physical meaning, for a
parameter to be eligible there should be previous hints or theoretical grounds forecasting
reasonably tight constrains; and as it is well know, the parameter should be the least possibly
correlated to others.

Most of the parametrizations listed suffer from quite a significant correlation, besides the
fact that constraints on one of their parameters are typically large in percentual terms.

13
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Authors Parametrization 7 Special features Refs.
Quiessence w = wy * mo:.mﬁw:ﬁ EoS. . [230]
e Derived from a scalar field.
e Linear with z.
Cooray-Huterer wen(z) = wy + w1z e Valid for z <« 1. [63] [108] 289]
e Diverges when z — o0.
Efstathiou wi(2) = wo — awe In(z + 1) ° >.vv3x_3mﬁ_03 to ﬁrm. EoS m_<m:._o< a [86]
wide range of dynamical scalar fields.
y e Generalization of CPL EoS and the
Barboza wp(z) = wy — Su% previous 2 parametrizations for the [19]
limits 5 = £1,0 respectively.
Wetterich ww (2) = et e Accounts for early dark energy. [290]
e Same EoS at present and at high
Padmanabhan-Choudhury wpe(z) = wo + 555 redshift. [130]
e Rapid variation for low z.
e Well behaved for z € [—1, 00).
Barboza-Alcaniz-Santos wpas(z) = wo + % e Obtained from a scalar field. [20] 21]
e Avoids divergences with z.
Ma-Zhang wirz(2) = wo + W, A% - _:vav e Can be extended to the future. [181]
watzo(2) = Wo + W AmwsMﬂva ImEACv e Same as before in an oscillating
~ form
() N N
Hannestad-Mortsell wyM(z) = %ﬁv: e Adaptability of transition. [113]
wo " wy \Tfzp
e Adaptability of transition: )
- Ia,a,A) = e X
Corasaniti we(a) = wo + (W, — we)T(a, ag, A) Lpe—(a+1)/A brer(ered/S [65] [66]
s
- T(z,2,8) = soma
[24+26]

Table 1.1: Parametrizations of the dark energy equation of state.
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This problem can be avoided with rewriting Eq. (1.53) in terms of a pivot scale factor a,
at which w, = w(a,) and w, are uncorrelated [123] 127, [176), 186]:

w(a) = wy + we(a, + a). (1.55)

Wang parametrization

The pivot technique we have just described was also used in [286], where a new dark energy
EoS was given in terms of two parameters: wy = w(z = 0) and w. = w(z.),

U@m%:(z:?)wW+(i:a)ﬂk (1.56)

This can be seen just as a rearrangement of the classic CPL parametrization with

we = wo + (1 — a.)w,. (1.57)

The value of a. can be then chosen as the scale factor at which the correlation between
wp and w, is lower. Using error propagation, from Eq. (1.57)) one gets

o(w.)? = a(wo)® + (1 — a.)o(we)? + 2|1 — acl|o(wo, wa). (1.58)

In the remainder we will drop the absolute value given that we are only interested in a
a. < 1 situation. In contrast, if one solves Eq. (1.57)) for w, and then applies on it error
propagation, it results

o(wp)? + o(we)? — 20 (wp, w)

2
= 1.
U(wa) (1 — ac)Q ( 59)
Combining our results above (Egs. (1.58) and (|1.59))
a(wo)? + (1 — ac)o(wo, w,) = o (wo, w,) (1.60)

is obtained, and then one deduces that total decorrelation (o (wg,w.) = 0) is achieved for

o (wy)

a, =1+ (1.61)

o (wo, wy)

It depends on the observational data set, but in practice a. = 2/3 <> z. = 0.5 is used
for current data. Note that, according to our notation, o(wy, w,) denotes in this case the
non-diagonal element of the covariance matrix of wy and w,, whereas o(wy, w,.) denotes
the non-diagonal element of the covariance matrix between wy and w,. In this case, the
EoS written in terms of the redshift takes the form

3(1110 — ’U)O.5>

1.62
14z ( )

Wy (2) = 3wys — 2wp +
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with the corresponding dark energy density function:

2
1+z|

Xoy(2) = (1 4 2)30720043005) oy 19 (wg — wo5) (1.63)

The main gain of this reformulation is that it minorates the correlation between the
parameters and allows us to obtain tighter constraints along with a more transparent
interpretation of the parameter estimation results.

In contrast with the procedure described before, if one is just demanding a situation
where o (wg, w.) < o(wg, w,), it is very easy to deduce from Eq. that such condition
is met whenever

ae > o(wy)? /o (woy, w,) (1.64)

giving us other possible values of a.

1.5 Early Universe

The observed CMB radiation, together with the expansion of the Universe, indicate that
there was a previous stage where the Universe was hotter and smaller. Simultaneously, from
theory we can also see that there exists a singularity known as Big-Bang, which is reached
when the scale factor tends to zero. A fundamental question at this point is: which was the
state of the Universe at these early epochs? Which was the main constituent? Observations
give us a general picture of the Universe at present mainly composed by matter, dark energy,
photons and other relativistic species like neutrinos that contribute to the radiation in the

form s
7 4
(D) ()] 0

where Ng is the effective number of neutrino species, [179]. At present, the energy density
corresponding to radiation is Q,. 9 ~ 4.15 x 107°h~2, which is negligible if one compares it
with the matter energy density ,,, 0 =~ 0.1134h~2 [147]. In section , we studied how the
energy density of both relativistic and non-relativistic matter vary with the the scale factor
as the Universe expands. From Egs. and we can find the ratio between these
two quantities at any time in the past:

0, =Q,

Qr o QT,O a3 o QT,O (1 + 2)3
Qm - Qm,[) CL4 - Qm,O (1 —|— 2)4‘

(1.66)

However, from this equation we can see that although at present €2, < €2,,,, at earlier times,
it was completely the reversal. The epoch at which both densities were the same is known
as matter-radiation equality, and it took place at

1 Qm 0
1+ 2eg=—= = ~ 3200. 1.67
+z q aeq QT,O ( )

From Fig. we can easily see that after equality the Universe became dominated by
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log(Qh?) log(T)
A

Radiation

Teq=10"K

Matter

» |og(t)

T, P e e A R R teq=10%s

(a) Energy density evolution with the scale factor (b) Variation of the Universe temperature with time

Figure 1.1: Schematic evolution in log-scale of the energy-density and temperature for the different
components of the Universe: matter, radiation and dark energy

non-relativistic matter until the moment the dark energy began to be dominant. However,
before decoupling, the Universe was effectively dominated by radiation.

Around equality, different phenomena of crucial importance took place in the life of the
Universe, and left an imprint on the CMB. Before matter-radiation equality, the speed of
the expansion was so high that fluctuations on matter density could not collapse under their
own gravity; only at later times cosmological structures were able to start to form. The age
of the Universe at the equality epoch imprints a characteristic scale that can be measured
in the galaxy clustering today, more details will be given in sections[1.6.3]and [1.6.4] For a
universe dominated by radiation, we can use the relationship between the energy density of
radiation and the temperature of a black body,

prc = aT, (1.68)

a = w2kh/15R%¢3 = 7.565 x 107'%Jm >K™* being the radiation constant, to find the
equation that gives us the dependence of the temperature with the scale factor or redsfhit.
Using this relation and Eq. , which gives us how the energy density of radiation
evolves with the expansion, we have

ﬂ:%%:%u+@. (1.69)

Before equality, in the radiation dominated universe, the concentration of electrons was
equal to the density of protons, leading to a neutral situation. At that time, the temperature
was high enough for the energy of any photon to be higher than the ionization energy
of the simplest atoms, hydrogen atoms (H). So electrons could not bind to protons to
form hydrogen because they would be immediately ionized by photons. So, the Universe
was a ionized plasma of protons (free nuclei), electrons and photons interacting through
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Thompson scattering. The mean free path of a photon (average distance the photon travels
before Thomson scattering off a free electron) was short. As the Universe expanded, the
temperature dropped, the photons lost energy and became less able to ionize. When the
temperature was below ~eV, protons began to capture electrons to form atoms of hydrogen,
thus, descending the number of ionized particles. This stage of the early universe is called
recombination, although it is the first time protons and electrons combine to produce
hydrogen. While the temperature was high enough, there was a thermal equilibrium in the
reactions of recombination and photo-dissociation of hydrogen. Over a short time interval,
the photons were unable to interact with electrons and the Universe became transparent.
The photons, which previously were unable to escape due to electron interaction, having
not enough energy to ionize the atoms formed, were able to get away and travel through
Universe in its evolution. This process, known as decoupling, produced the Cosmological
Microwave Background that we can measure at present.

We have seen that two processes took place before the CMB was produced, if this processes
were instantaneous they would have coincided, but it was not the case, both processes would
have taken some time, and decoupling would have occurred after recombination. Taking
X = n./np as the ionization fraction being, n. = n, the concentration of free electrons
(which in a neutral universe is equal to the density number of protons) and np = n, + ny
the concentration of baryons, one can write the so called Saha equation for the equilibrium
ionization fraction, which in this case can be written as [179]:

1-X npg ]{ZBT 3/2 EO
~ 3.8— — . 1.70
X? Ny (me@) P kT (1.70)

Here Ey = m. +m, — my = 13.6 eV is the binding energy of hydrogen atoms. To obtain
this relation we have used the distribution functions for protons, electrons and hydrogen:

maykgT 3/2 Jhy — My
=0y | ———— =7, 1.71
e =9 ( o ) P\ TR, T (171)

where x = p, e, H denotes each of the species and g, their degeneracy which is 4, 2,2 for
hydrogen, protons and electrons. Focusing on Eq. ([1.70)), the case of full ionizations X ~ 1
corresponds to the case with a high temperature, 7', larger than the binding energy Ej.
Once the temperature drops, the right hand side of the equation becomes larger, and the
ionization fraction approximates to zero. It is defined as the epoch of recombination, when
the process is almost complete, and the photoionization reactions cannot balance hydrogen
production. At this point, the ionization fraction is X,.. =~ 0.1. In this case, the Saha
equation can be solved numerically and 7}.. ~ 3600K is obtained, which corresponds to
Zree = 1300 [105]. Decoupling took place a little bit later, when Xy ~ 0.0001, which
implies T}.. ~ 3000K which in turn corresponds to a zg.. ~ 1100. At this stage, the drop
in the ionization fraction means an increase of the photon mean free path:

1

Uz

>\Th >~ (172)

Before decoupling this is of ~Mpc and after that it raises to ~ 10*Mpc, so the photons can
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reach us without being scattered, and the Universe becomes transparent to radiation.
But, what happened before equality, in earlier times when the Universe was radiation
dominated? As the Universe is expanding it gets cooler and cooler, see Fig. . But in
the opposite direction, when the Universe was mainly composed by radiation, the temperature
was inversely proportional to the scale factor. Thus, as the scale factor approaches zero,
the temperature increases infinitely, but there is a point in the extrapolation where classical
physics does not work any more, and the Universe begins to be dominated by quantum
effects or strings. This point is known as Planck era and it is the stage at which the De
Broglie wavelength of the particles in thermal equilibrium gets smaller than the corresponding
Schwarzschild radius. The characteristic mass for this effects is known as Planck mass,

mp = ,/% ~ 10"GeV. (1.73)

In a similar way, the corresponding Planck length and Planck time are also defined:

hG —35
hG
tr =\ 5= 10~*s (1.75)

This is the earliest stage in the Universe history which can be described with standard
physics. As these first stages of the Big-Bang involve high energies, the main processes that
took place were those involving elementary particles. As the Universe cools down different
phase transitions occur. In these transitions a disordered phase in a many-particle system
characterized by a certain symmetry disappears and a new ordered phase with less degrees
of symmetry appears. The era of phase transitions which extends from Tp ~ 10°GeV to
Ton ~ 10* MeV (when the quarks get confined in hadrons) can be divided into several
stages:

o Tp>T > Tayr ~ 10" GeV (tp <t < tqgur =~ 10737s): At this point, the Universe
was a plasma of relativistic particles; quarks, leptons and gauge and Higgs bosons in
thermal equilibrium under interactions described by Grand Unification Theory (GUT)
which unifies electroweak and strong forces. At Tyr there is a symmetry breaking
giving place to the GUT transition and origin to the matter-antimatter asymmetry
and magnetic monopoles.

o Tour >T > Tew ~ 10?2 GeV (tour <t < tpw ~ 107!1s): After the GUT transi-
tion, the unification force of strong and electroweak interactions splits into two
different forces. When temperature reaches 10> GeV the electroweak unification
ends, and the electromagnetic and weak interactions appear as a consequences of
different forces. During this electroweak transition, some gauge bosons and other
particles acquire mass via the Higgs mechanism and the full symmetry is broken (end
of Supersymetry).
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o Tpw >T > Top ~ 200 — 300 MeV (tgw <t < tom ~ 107°s): At this stage the last
phase transition takes place: the quark-hadron phase transition. The strong inter-
actions become stronger and the quarks get confined into hadrons, beginning the

hadron era.
Quark Hadron Matter-Radiation
GUT era i i o .
Planck Era Electroweak unification transition equality i
Inflation BBN 2 AXY
formatior
10p1 1028 02> 1022 101 1014 101 10° 107 104 2.73 Temperature (k)
O I Ry I I I -
Z | | | | | | | | | | | Energy
< 1015TeV (1¢12TeV 10°TeV 106TeV 103TeV 1TeV  1GgV 1MeV 1keV eV 1meV
w 10143 1037 1031 1025 1019 10-13 107 0.1 105 1011 1017 Time (s)
] ] ] | | | | >
>
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Figure 1.2: Early universe History

Hadrons are short lived, except for protons and neutrons, so when the Universe cools
to T' ~ 102MeV, the pions pairs 7+ — 7~ annihilate, remaining only leptons, antileptons,
photons, protons and neutrons. At 7'~ 10 — 0.1MeV began the primordial nucleosynthesis,
at these temperatures practically all of the neutrons bound into * He nuclei, a small fraction
produced deuterium >He even "Li. When the temperature reached the ~ MeV neutrino
interactions are too weak to keep them in thermal equilibrium and they decoupled. Later
on, the matter density becomes equal to radiation, leading to the reionization, decoupling
and the Cosmological Microwave Background as it has been described before.

1.56.1 Cosmological Perturbations

Although the Universe on average is homogeneous and isotropic, it has developed nonlinear
structures which take the form of galaxies, clusters and superclusters, and large structures
of voids and filaments of galaxies of size exceeding 100 Mpc. The CMB reveals us
that at the time of recombination the Universe was very homogeneous and isotropic, with
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inhomogeneities at very small scales. The most natural mechanism through which these small
initial perturbations developed the large structures we observe is gravitational instabilities.
Matter was attracted to regions with higher density which became more dense and amplified
the existing inhomogeneities. To understand these processes and relate the physics of the
early universe to the CMB anisotropies and large-scale structure, one needs to study the
evolution of the perturbations in the context of the cosmological perturbation theory. The
physics that took place in the early universe and seeded the nonlinear gravitational collapse
concerns complex relativistic effects. It can accurately be described with a study of the
evolution of relativistic perturbations. For a wider view of this topic refer to [180].

Metric Perturbation

Starting with the metric of the Friedmann-Robertson-Walker Universe,

g,uu - az(T)nulM (176)
where 7 = dt/a(t) denotes conformal time (derivatives respect to 7 will be indicated with ")

and 7, = < _01 69- ) one can perturb it in the following way:
ij

G = Guv + 0Gu = @*(T) (M + Py - (1.77)

Here g, is the unperturbed metric and dg,, the perturbation, which can be written as

24 B,
(] = ( ~B; —2Dd;; + 25, ) ' (1.78)

Thus, the perturbed metric takes the form
ds* = a*(1) {—(1 4 2A)d7* — 2B;drda’ + [(1 — 2D)6;; + 2Ey;] da’da’ } . (1.79)

As one can see from Eq. (1.78)), the metric perturbation is characterized by a (0, 2) symmetric
tensor. Its 00-component, A, is a scalar and relates the conformal time, 7, with the proper
time, t. B; is a vector which corresponds to the Oi-component of the metric perturbation
tensor, and it is known as the shift function; it specifies the relative velocity between the
direction of motion and the wordlines orthogonal to the slicing. The term inside the brackets
is a tensor, and it represents the spatial metric perturbation. This spatial tensor can be
decomposed into a trace, (1 —2D), and and traceless, FE; ; part. The last one is known as
strain, and will happen to contain radiation, the so called Gravitational Waves.

If we pay attention to Eq. , we see it is a symmetric tensor with a total of 10
degrees of freedom for the possible perturbations of the metric: 2 from the scalar fields
(A, D), 3 given by the vector field B; and 5 for the symmetric tensor E;;. Thus, one can
distinguish three classes of perturbations, see [39]:

e Scalar mode: this kind of perturbations are described with scalar functions, and
correspond to the growing density and pressure perturbations. They are the most
important for structure formation, and we will discuss them in detail later.
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1.5. Early Universe

e Vector mode: it corresponds to the vector parts of the metric, and is related to
vorticity perturbations. In the absence of sources, these modes decay on large scales.

e Tensor mode: these perturbations involve the traceless part of the spatial tensor h;;
that cannot been obtained as a gradient of a scalar or vector, namely E;;. This mode
is completely gauge invariant, and has two degrees of freedom. Einstein equations
for the spatial tensor perturbation to the metric result in a wave equation for h;;:
0?0,h,, = 0 in a flat empty spacetime. Thus, as it has been pointed before, it can
be interpreted as transverse gravitational radiation; the two degrees of freedom being
the two possible polarizations of gravitational waves.

Einstein Equations
+

EnelaY-mo entum
cotiservation

FLRW Background
+

Linear Perturbations

/N
000

Figure 1.3: Scalar, vector, tensor decomposition of linear perturbations. At the top of the tree
of possibilities for structure formation models we have the assumption that general
relativity holds and that the Universe is homogeneous and isotropic on average.

The points of the unperturbed background space-time and those corresponding to the
perturbed one can be related with a proper coordinate system z“. Nevertheless, given
a coordinate system in the background space there exist a huge amount of them in the
perturbed spacetime. So, the choice of one among them is known as a gauge choice.

In what follows, to describe the scalar mode perturbations we are interested on, we will
make use of the “Synchronous Gauge”, which leaves the components ggg and gy; of the
metric tensor unperturbed (A = B = 0), so, the line element is given by

ds* = a*(1) [—dr® + (8;j + hyj) da'da?] . (1.80)
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This gauge is related to a coordinate system where the cosmic time is comoving with the
fluid and it becomes advantageous for the study of perturbations with a wavelength larger
that the Hubble radius (A > 1/H); conditions satisfied by any mode at early epochs. In
fact, it is the natural coordinate system for free falling observers.

Energy-momentum tensor perturbations

In cosmological perturbation theory, all energy density components fluctuate and give a
contribution to the growth of inhomogeneities that produce the large scale structures. In
addition to the metric perturbations, we have to consider density and pressure perturbations:

op p—p (1.81)

op = p—p (1.82)
which are of the same order of the coordinate velocity, v = dl‘i/dT, the perturbation to
the 4-velocity of a fluid, u* = a[lTIQ]m {1,v} .

In order to obtain the perturbation equations, the starting point are Einstein equations
(1.8)), which have to be satisfied by the background and the perturbed metric, and the
energy-momentum tensor of the fluid that describes each of the components of the Universe.
The components of the energy-momentum tensor, if we consider perturbations to the first
order, are:

o = p—(p+p)=—p=—(p+0p), (1.83)
dr dSL’z _ i

ﬂo = pg? + (p +p)u0ui = (p +p) (—d82)1/2 (—d82)1/2 R (p +p)’U¢ = _TO>(1'84)

T = pgi+ (p+p)utu; = (p+ dp)di + X (1.85)

Here, Z; is the traceless component of T%, defined as

i

E?ET]?—@ 3

J

(1.86)

Scalar perturbation equations

As tensor and vector modes do not produce density perturbations, they are not as important
as the scalar modes for structure formation. Thus, we will not discuss them in detail here.
From Einstein equations it is possible to obtain a complete set of equations for all the modes
together with the corresponding constrain equations. However, to obtain the evolution
of the scalar perturbations, it is easier to start form the energy-momentum conservation
equations, which at the same time are a consequence of Einstein equations:

TE = 9,T" +T.sT* + To,T""
1 0(v—9)TF 1
V=9)T; — ~Gua " =0.
V=9 ozt 270

(1.87)
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1.5. Early Universe

In this formulation ., denotes the covariant derivative.

From each of the components we will obtain a different evolution equation for the
perturbations. Considering in the first place the component v = 0 of Eq. ((1.87)), one gets
the continuity equation, T¥;, which at first order of perturbations reads:

T 1 3(\/—gT5‘) 1 T
0: - paO
" V=g OxH 2

00 ki

= \/% {2\_/‘(1_9T8+ V—gTy® — \/_ —I—\/_TSZ} 5 Z—goooTp — %gjk,OTij
~ 29—/T§ + T - %Tg +Te, + 2;—6;/ (p+6p) — %mgjk,o (p+ dp) 0

~ —4—a5p—%/p 5p' + 5p—3—/5p+%/p (p+p)0

= —(p+ )(9+Z/>—3—/(5p+6p)—§p =0 (1.88)

with 6 = ik;v7 = 9v? /0x? being the fluid divergence.
With the expression for the density fluctuation § = dp/p, we can obtain

3 3d
op' =pld+pd = ——a (0p)d + pd' = ¢ (1 +w)dp + pd’ (1.89)

where we have considered the fluid equation of state w = p/p. Finally, combining Egs.
(1.88) and ([1.89) we have the equation of the energy density fluctuations:

5 = —(9+%/)(1+w)—3—d(6—p—w)5. (1.90)

The v = 7 components of the energy-momentum conservation give Euler equations, which
in the perturbed case take the form:

o ] {aw—)Tuw— D g0

(2y%% /_g a 0 8‘1‘] ) a j
1
59 {g°°T} + g™T!'} = — (1 +w) pv; (4 — 3 (1 + w))
. T ooha
+w'pv; + (1 + w) pv; + 2 am(p""ép)jLZm"‘?(p"‘ép)

/

= % (1+w) pv; (4 —3 (1 +w)) + w'pv; + (1 +w) pv; + ik'Sp + ik; 57 = 0.

Multiplying this equation by ik; we obtain an expression for &',

o w 5p/5p 10r 1o
P T _ R 1.91
0 (1= 3w)0 ol Ao (1.91)
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with o the shear stress:
1 . A A kik;
—51']‘) 2; == —]{71 . ij’- - ——j

: 2 (1.92)

w

Egs. (1.89) and (1.91)) describe the evolution of the scalar modes for the energy density and
pressure perturbations. These expressions can then be particularized for a given theoretical
model to obtain the specific prediction for structure formation.

1.5.2 Inflation

In previous sections we have seen the success of the standard cosmology to explain the
observations of the Cosmological Microwave Background, the expansion of the Universe
and the framework within the formation of large structures can be understood. However,
there are certain unexplained features connected to the first stages of the Universe History
as the Big-Bang:

e Horizon Problem: This is probably the most outstanding problem of the Hot Big
Bang model. We have already seen in the last part of section [1.2] that, given the finite
age of the Universe, the light can have only traveled a finite distance in a certain
time. Thus, the observable universe is the region inside the particle horizon which is
causally connected. Observations have revealed that CMB radiation is very isotropic;
the radiation we receive from all parts of the sky give us the same temperature. This
feature is a consequence of a certain thermal equilibrium, and could be explained if
all regions of the sky have been causally connected and have been able to interact.
However, if we compute the horizon length at the last scattering surface, i.e. at the
epoch the CMB was produced, we obtain that it is very small, and it covers only
0 < 2° of the sky. Thus, how is it possible that we observe the same variation of
temperature from the CMB radiation coming from two opposite sides of the sky if
they were causally disconnected when the radiation was produced?

e Flatness Problem: Eq. (1.19) gives us the relation of spatial curvature with the

total energy density of the Universe. Taking into account Egs. (1.15]) and ((1.16]), we
obtain:

|2 —1| oc ¢ for Matter dominated universe (1.93)
|Q — 1| o t*/® for Radiation dominated universe. (1.94)

So, in both cases, if the total energy density, €2, deviates from 1, this will increase
with time very quickly, leading to an even more curved universe. At present, current
observations give us a value of the total energy density really close to 1, which means
that at very early times this deviation had to be smaller, giving place to an extremely
flat universe. Thus, if the curvature term is not dominant at present, it must have
had a very small initial value. We are again in front of another fine-tuning problem:
why were the initial conditions so flat?
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1.6. Observational cosmology

e Initial perturbation problem: One further problem is the origin of the primordial
inhomogeneities. We know from perturbation theory that initial small perturbations
can seed the gravitational instabilities that later will produce the large scale structures
of the Universe we can observe at present. However, the origin of these initial
perturbations is unknown.

e Relic particle abundances or monopole problem: GUT theories often predict
the formation of extremely heavy particles at the very early in the history of the
Universe. As the early universe was dominated by radiation with rapidly decreasing
energy density, heavy particles would quickly come to dominate the universe leading
to an evolution incompatible with the present observations.

In the 80's a possible solution to these problems was proposed: an initial short period in the
Universe History of Inflation [7, [112, [173]. During inflation the universe experimented an
evolution with an accelerating scale factor, d(t) > 0, i.e. a very rapid expansion. Looking
at Eq. , it is easy to see that this acceleration occurs when p + 3p < 0, which implies
an equation of state w < —1/3. During that period, the accelerated expansion is supposed
to be driven by the vacuum energy of a scalar field ¢ with some self-interacting potential
V(¢) > 0, rolling slowly toward its ground state, so that its energy density is approximately
constant in time and given by its potential energy p ~ V().

Such a field is equivalent to a perfect fluid with energy density and pressure given by
p=1/2¢*+V(¢) and p = 1/2¢% — V(¢). If we insert these expressions into Eqgs. @
and ([1.13), we see that to obtain the inflationary requirement, d(t) > 0, the condition
¢? < V(¢) has to satisfied together with || < H|¢p|, which has to be fullfield if we want
the field, ¢, to roll slowly down its potential (slow-roll condition). In the literature one
can find a large amount of models for inflation where different types of scalar fields and
potentials have been studied in detail. However, as it would deviate us from the main line
of this work, we will not review them here; please see [28| [169] and references therein for a
good review.

1.6 Observational cosmology

Initialy, Cosmology was practically a speculative science. In its origins, the instrumental
limitations reduced observations to a few. With time, the number and quality of observations
increased, giving place to remarkable discoveries that changed completely the conception
of the Universe and revolutionized Cosmology. As we have seen in sections and [1.3]
observational discoveries have motivated theoreticians to develop a compelling cosmological
model that could explain them. This is the case of the discovery of the expansion of the
Universe, the first measurement of the Cosmic Microwave Background or the observation of
the accelerated expansion in the early past.

In the last decades, there have been remarkable advances in observational cosmology as a
consequence of the development of new experiments to observe the CMB, the large scale
distribution of galaxies, distant Type la supernovae (SNela), baryon acoustic oscillations
(BAO), gravitational lensing, etc. The quality of these data has allowed us to obtain a global
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vision of the Universe, the so called concordance model; see Figs. and [1.5 However,
when one tries to explain observations in detail, i.e. when the cover-layer is peeled off, a lot
of lower level complications arise, thus making the situation extremely challenging. Thus, at
the same time that observational data became the seed of new physics, when observations
give us inconsistencies with the concordance model; they also help us to determine the
global geometry and dynamics of the Universe, comparing observations with theoretical
predictions.

Dark Matter (4.6%)

Figure 1.4: The left panel show the percentual energy density content of the Universe.

Any step forward in theoretical cosmology has to be able to be constrained with observa-
tional data, i.e. any cosmological model has to pass the exam of observations. Apart from
explaining current data, they have to be able to give us the most accurate measure of the
global geometry and dynamics of the Universe. At present we have a huge amount of precise
data, so it is crucial to define the tools that will allow us to extract as much information as
possible from it. In what follows we describe the main cosmological tests used in Cosmology
at present, which relate the observational magnitudes with those parameters that define
most precisely our cosmological model. Those quantities can be the energy density content,
the equation of state of dark energy or any other parameter that can give us a hint of the
dynamics of the Universe.

The essence of these tests is to correlate the redshifts measurements with some measure-
ment of distances or magnitude that can be directly related to a distance. There are several
types of cosmological tests:

e Standard candles: are luminous sources with a well known intrinsic luminosity.
They are used to measure the luminosity distance which is connected to H(z), as
it is detailed in Eq. in Section . The most common standard candles in
cosmology are Type la Supernovae (Snela), as their luminosity is well known. Another
kind of standard candles, far less accurate but more luminous, are Gamma Ray Bursts.
So, in fact theri standard character is questionable.

e Standard rulers: objects whose length perpendicular to the line of sight is known a
priori. These objects are used to measure the angular diameter distance, the ratio of
an object physical transverse size to its angular size:

c *d
(1+2) Jo H(z)

Dy = (1.95)
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Supernova Cosmology Project
Suzuki, et al., Ap.J. (2011)
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Figure 1.5: 68%, 95%, and 99.7% constraints on Q,, and Q5 obtained from CMB (orange),

BAO (green), and the SNela Union Compilation 2.1 (blue). This figure is courtesy of
the Supernova Cosmology Project [270]

Some suggested candidates are the isophotal diameters of brightest cluster galaxies,
the mean separation of galaxies in clusters, radio source lobe separations, etc [73] 90].
The last scattering horizon is also commonly used a standard ruler, this scale can be
measured either directly at z ~ 1089 through the CMB temperature power spectrum or
indirectly through Baryon Acoustic Oscillations (BAO) on the matter power spectrum
at low redshifts. Under certain assumptions clusters of galaxies and radio galaxies are
also used as standard rulers, but they are less accurate than the CMB or BAO.

e Standard populations: Source number counts as a function of redshift, flux or
magnitude of discrete populations such as galaxies, radio sources, quasars, etc. help to
probe the evolution of a volume element. These tests require a population of sources
with a constant comoving density which exhibit an evolution with the expansion of

the Universe, [76), 219].

e Standard clocks: Indirect tests of age with redshift. Usually those measurements
are highly model dependent, [72].

e Direct measures of H(z) [133, 134, 249, [266].
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1.6.1 Type la Supernovae

Type la supernovae are the most used tool for studying cosmic acceleration, as it was
discovered through their observation [210,220]. These objects are detected observationally by
the presence of silicion Il and the absence of hydrogen in their spectra [99]. These evidences
supported the idea that Type la supernovae are originated after a nuclear explosion of
carbon/oxygen white dwarfs, the final stage of a star life cycle when the nuclear fusion which
maintained the equilibrium has ended. There are two models for the progenitors. One in which
the white dwarf accretes matter from a binary companion and exceeds the Chandrasekhar
mass limit (~ 1.4M), the mass above which the degenerate electrons composing the white
dwarf became relativistic. In the second model, it is the gravitational radiation which forces
the orbiting pair of white dwarfs to merge and transcend the Chandrasekar limit, [118].
Once this limit is achieved, there is a nuclear explosion in the core in which carbon or oxygen
is converted to iron, and a nuclear flame propagates to the exterior. These events are the
most energetic and bright of the Universe, they can provide us a measure of distances
even though they are at high redshift. The other advantage is that those processes are
detected not only in young but also old stellar populations. The excellent uniformity of
their light-curves and their brightness peak, ~ 10'° L, with a characteristic decay time of
about one month, provides a standard spectral template that can be used to infer cosmic
expansion through the comparison of the peak of distant supernovae to those of closer
ones that act as calibrators (0.03 < z < 0.1). Given the high correlation between the peak
luminosity, L,cqr and the decay time, an empirical relation is obtained between the peak
absolute magnitude Mp and the observed change in apparent magnitude 15 days after the
peak in the luminosity, Ams:

Mp ~ 0.8(Amis — 1.1) — 19.5. (1.96)

Supernovae events in a given galaxy are rare in human time scale. However, from the
discovery of cosmic acceleration, supernovae surveys have became one of the main areas
of research in observational cosmology over the last years. These surveys track thousands
of galaxies in a regular way with the objective of detecting as many as possible events in
the widest redshift range. The largest high-redshift data sets with over ~ 500 SNela are
those from ESSENCE survey [77] and Supernova Legacy Survey [16], 61], 268], and at higher
redshifts, z > 1.0, the data sets are provided by the Hubble Satellite Telescope (HST)
[225, 270]. Given the high utility of SNela, several samples can be compiled to expand the
redshift range. However, the samples have to been carefully chosen in order to reduce the
systematic errors, so it is valuable to obtain a compiled sample as homogeneous as possible,
as it has been done in Union and Union2.1 [10] 148] 270], “Gold" [221], Constitution [117]
and the compilation of SNLS3 and HST sample [61].

Once a sample of SNela is compiled, the observed magnitudes are calibrated, providing
us a measure of the distance modulus, p, the best quantity to be related to the Hubble
parameter H (z) which describes the energy content of the Universe and its evolution. The
distance modulus represents the difference between the apparent magnitude of the source, m,
and the absolute magnitude, M. The expression for 1 can be obtained from the logarithm
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of Eq. (1.26). It has the form

fien(z:) = m — M = 5logyq (di (2;6)) + o, (1.97)
and it is a function of the luminosity distance:
z dz/
drp (z;0) = (1 —_. 1.

which at the same time depends on the N model parameters @ = {0,605, ....0x}.

In Fig. observational data coming from the Union2 data set [10] are plotted together
with the distance modulus predicted by three different cosmological models in order to show
how SNela can help us to depict the composition of the Universe. Observational points
from supernovae are completely in agreement with those values predicted in a universe with
matter but dominated by dark energy. In a universe under matter domination the observed
SNela should be fainter that they really are, just the opposite of what would happen in
a universe without matter and completely filled with dark energy, where the SNela would
actually be brighter than observed.
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Figure 1.6: Distance modulus, 1, versus redshift, z for a flat universe. The data points correspond
to the Union2 data set given in [10]. The lines show three different cosmological
models: (top) Q,, = 0.0 and Qx = 1.0 (middle) ©,,, = 0.3 and Q) = 0.7 and
(bottom) €, = 1.0 and Q25 = 0.0.

Usually, when a theoretical model is proposed it has to be contrasted with observational
data with two purposes: to see if it can give an explanation to them and to infer the values
of model parameters that give us the best fit with observational data, i.e. set somehow
constraints on these parameters. The last goal is obtained with a method of optimization
wich considers the uncertainties they present. The most used method in these cases is
the maximization of the likelihood, or what is the same, the x? function minimization.
This method will be explained in section [1.7], here we detail the general procedure to be
applied to SNela. We say it is general because, depending on the the data set, it has to be
adapted to the special way observational data are provided. Sometimes one has to minimize
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over nuisance parameters that take into account the light-curve shape, the stretch of the
luminosity relation, etc. It is common to provide observational data as the redshift, z, the
distance modulus, 1., and the error of the latter for each supernova. In this case, the
strategy to follow is to define the x? as the square of the differences of the theoretical and
observed distance modulus divided by the uncertainties of the mesurements:

X%N(Mm 0) _ Z (,uth(zj; o, 0) - ;uobs(zj))Q7 (199)

2
=1 T i

where o0, ; are the measurement variances. However, if we look at Eq. (|1.97]), we see
that there is an extra parameter, 1y, which encodes the absolute magnitude M and the
Hubble parameter, H,. The introduction of this parameter in the definition of x? makes
the minimization more intensive as this parameter has to be marginalized over, as the only
parameters of interest are those that define the cosmological model. In order to proceed with
the marginalization, we should integrate the x? over 1, but depending on the cosmological
model, this can be extremely complicated:

Y2 = —2log (/ exp (—x%n) d,uo). (1.100)

Nevertheless, an alternative way to marginalize is often used. It consists in maximizing
the likelihood by minimizing x? with respect to 1 [92]. In this case, one can rewrite Eq.
(1.99) as

Xan(0) = 1 — 2copu0 + capup, (1.101)
where the new terms are:
obs(2:) — Blog o dy (zi:0))
0 = Z M b Z] (;glo L('ZJ )) 7 (1102)
Uw’
Hobs Zy —5logydg (Zj5 0)
1.103
Co = Z 0'2 ) ( )

%]

3 = Z ?. (1.104)
j:l 22¥)

Now, it is easier to carry on with the minimization over jy, which gives us the value of
the nuisance parameter that corresponds to the minimum value of y?:

o :CQ/CS. (1105)

Finally the x? function after the minimization takes the form
Xan(0) = ¢ — 2. (1.106)

This is an approximate method but it has negligible effects in the final results as it is
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shown in [194].

1.6.2 Gamma Ray Bursts

Other suggested distance indicators and possible candidates to standard candles are Gamma
Ray Bursts (GRBs). GRBs are the most intense explosions observed in the Universe, their
duration varies from milliseconds to several minutes. They consist on an initial burst of
gamma rays followed by an afterglow of radiation of larger wavelengths as X-ray, ultra violet,
optical, infrared or radio emissions. These processes are so luminous that can be detected
up to very high redshifts, z > 8. [69, 110} 232], 272]. The nature of their progenitors is
still uncertain (see [190] for a review), depending on their duration, they are believed to
be released by the collapse of a rapidly rotating massive star core into a black hole if they
are long lived. For the case of short lived GRBs it is suspected that the scenario in which
they are produced is completely different, and they are thought to be produced after the
collisions of neutron stars in a binary system. Even their nature can be extremely diverse,
GRBs show a correlation between equivalent isotropic energy and spectral properties as the
energy peak or variability. These features make it possible to construct distance-redshift
diagrams for systems whose redshift has been obtained via spectroscopy. Thus, they provide
a new window to study the properties of the Universe in the redshift desert range given by
SNela (z < 2) and CMB (z = 1089), inaccessible in other ways.

Even GRBs cannot be considered as standard candles at the moment, so they are not
comparable to SNela, they contain a lot of information about high redshift properties of the
Universe which cannot be derived from SNela. So their combined use with other cosmological
probes can bring important and complementary information about the reconstruction of
dark energy, and gives us the possibility to detect eventually traces of a dynamical equation
of state. In contrast to SNela compilation, where high redshift objects can be calibrated
using nearby SNela, the lack of GRBs at z < 0.1 which are cosmology independent, requires
that GRBs have to be calibrated for each cosmological model. Thus, the GRB data must
be fitted for calibration and to infer cosmological parameters at the same time. This makes
the use of GRBs as a cosmological probe somewhat awkward. The calibration of GRB
data can be done in several ways, but in [145] an idea of the distance ladder to calibrate
GRBs in a completely cosmology-independent way has been proposed. In the same way
to the calibration of SNla by using Cepheid variables which are primary standard candles,
one can calibrate GRBs with a large amount of SNIa. And then, the calibrated GRBs can
be used to constrain cosmological models without the circularity problem. Many empirical
formulas have been given to describe the peak energy-peak luminosity correlation. In [145]
the correlation between peak energy of the spectrum, E,, and the peak luminosity, L,, is
given by the so called Yonetoku relation (see[298))

L, x E2. (1.107)

The GRBs sub-sample at low redshift z < 1.6 is calibrated without assuming any cosmological
model, using an empirical formula for the luminosity distance estimated from those of SNela
in the same redshift range. This formula can be applied to GRBs to obtain the calibrated
E, — L, relation which is then applied to the high redshift GRBs sub-sample giving a final
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data set made up of a set of calibrated luminosity distances:

1.31

dp(z) = 10*4cem poys
p

[EL s (14 2] [1-68/2 (1.108)

,0bs

with f! . the observed flux peak in units erg cm™s™" and E? . the measured energy peak
in keV.

Once GRBs data are calibrated, they can be used to obtain the parameters of the
cosmological model which best fit these data taking into account the contribution to the
total chi-square of the GRBs as:

X%}RB(0> _ Z (dL(Zj; 0) - dis(zj)) (1109)

o3 (%) ’

J=1

where the o3 are the measurement variances.

1.6.3 Cosmological Microwave Background

The Cosmological Microwave Background (CMB) was discovered by Penzias and Wilson in
1965 [204]. Given the uniformity of the radiation, they measured the same frequency in every
direction. The nature of this radiation was attributed to a blackbody with a temperature
near T' ~ 3.5K. Since then, there have been many terrestrial antennas that have tried
to get further and figure out the nature of the CMB. However, it was in 1992 when the
COBE team led by G. Smoot sent a satellite which studied the properties of the CMB in a
wide range of frequencies and detected temperature or intensity fluctuations of 10~° from
one part of the sky to another [256]. This discovery has become an important highlight
in Cosmology because it gives us the chance to learn about the physics of the the first
stages of the Universe. With time, the experiments have improved, and the anisotropies
first detected by COBE are now being measured with high precision.

In section [1.5.1] we have seen how small inhomogeneities, perturbations in the energy
density of the components of the Universe (matter or radiation), can evolve from early times
to the present. Matter inhomogeneities which have grown through gravitational instabilities
give origin to the structures like galaxies and clusters that we can observe today. The
same primordial perturbations generated the observed anisotropies in the CMB. As these
perturbations were originated at the time of recombination, the CMB represents a direct
window to the physics of early times, inaccessible in other ways.

Photons in the early universe were in thermal equilibrium, but this equilibrium started
to disappear near the epoch of recombination producing the first anisotropies. With the
decoupling, radiation spread out through an inhomogeneous gravitational field which enlarge
these anisotropies. Given the spherical geometry, they are usually expressed in terms of

spherical harmonics:
!

Sl =30 Y Vi) (1110)

=0 m=—1
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where n is a unit vector which represents the direction of the line of sight; it can also be
represented by a pair of angles (6, ¢). T is the average temperature, T'= [ dQT'(0, ¢), and
AT(n) =T(0,¢) — T is the deviation given a direction n. The coefficients a,,,, describe
the temperature perturbation and satisfy the following relation:

(Qm@frpr) = 0110 Cls (1.111)

where the brackets indicate an average over a set of realisations and ;< the Kronecker
symbol. The quantity C] defines the angular power spectrum:

AT P 1 &
—m)|)=—=> (2+1)C, (1.112)
T 4 P

(|77 ()

(214 1) being the contribution of the multipole [ to the mean square temperature distribution
of the CMB. So, given a theoretical model for the early universe one can obtain the
corresponding set of Cjs. However, if we want to compare this prediction with observations,
we have to take into account that (s are obtained as an ensemble average, whereas we
only measure the actual value, not its expectation value. This effect is known as cosmic
variance, and one can estimate the uncertainty of the measured angular power spectrum ¢
compared to the theoretical prediction C; [280]:

Cro ) = —2 (1.113)

(G =C)7) = 577G .

In Eq. for the expansion of the anisotropies, the index [ can be physically
interpreted as the angular scale § ~ 7 /l. Thus as [ gets larger, the spherical harmonics vary
on smaller angular scales. The term corresponding to [ = 0 is the monopole correction,
which modifies the mean temperature for the particular sky of an observer respect to the
global mean over all possible skies. For [ = 1 we have the dipole term, the largest anisotropy
of the CMB. It accounts for our motion through space relative to the microwave background
due to Doppler Effect. As these two terms do not provide information about the intrinsic
properties of CMB they are treated separately, and the maps of the temperature anisotropies
provide results with these modes removed. Higher values of [, those with [ > 2 are assigned
to intrinsic anisotropy produced by perturbations in density at early universe. These kind of
anisotropies are known as primary anisotropies. However, additional perturbations are added
due to the travel of photons from decoupling to the present driving the so called secondary
anisotropies which are produced by:

e The thermal Sunyaev-Zel’dovich effect which is produced when a galaxy cluster is
in the path of photons. The hot gas in the cluster interacts with the photons through
Compton scattering.

¢ Integrated Sachs-Wolfe effect. This effect is due to varying gravitational potentials
which change the frequency, energy, direction and velocity of the travelling CMB
photons. It can be divided into two categories, early ISW and late ISW. The former is
important around recombination when anisotropies start growing. The latter depends
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on the background cosmological parameters.
e Lensing.
e Doppler effect caused by the motion of the cluster gas.

The characteristics of the spectrum, i.e. the existence of peaks and troughs, the spacing
between them, and also the location of the first peak depend on the initial conditions
at time where the CMB was produced and the energy density contents before and after
recombination. Thus, the CMB is an exceptional tool to investigate not only the physics of
the early universe but also its current energy content. The way the cosmological parameters
affect the anisotropies is well understood and explained with the physics of the evolution
of linear perturbations within a background FRW cosmology. It is possible to calculate
the temperature power spectrum, but it requires a sophisticated numerical computation
to include each of the many processes that took place at time of CMB production. For
this purpose some codes have been developed such as CAMB]Y| [164, [166] or CLASS]| [163]
which do it in an efficient and fast way.

6000
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Figure 1.7: CMB temperature power spectrum given by WMAPT-year (black points) and Atacama
Cosmology Telescope (ACT) (yellow points) where the most differentiate features are
indicated: Integrated Sachs-Wolf rise, Sachs-Wolf plateau, the region of the acoustic
peaks and the damping tail.

What follows is a summary of the underlying physics that would explain the distinctive
features of the power spectrum. From Fig. one can see that there are three differentiated
regions:

e The Sachs-Wolfe plateau for [ < 100: an initial almost flat region at large angular
scales. A scale invariant or almost scale invariant adiabatic primordial spectrum for
matter density oscillations (P (k) o< k™ with an ng ~ 1) gives a scale invariant power
spectrum which corresponds to temperature anisotropies independent of the angle
giving a flat power spectrum for temperature. On the other hand, a variation of the

*http://camb.info/
Shttp://class-code.net
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gravitational potentials raises the Cjs for low values of the multipole momemtum:
early ISW effect. It occurs in a universe where €),,, # 1; so dark energy at low redshifts
induces a change of CMB photons that enhances the lower Cis.

e Acoustic peaks 100 <[ < 1000: a region of successive peaks and troughs of smaller
amplitude called Doppler or Acoustic peaks. These peaks are induced by acoustic
oscillations in the baryon-photon fluid in the early Universe. An overdensity of matter
at that epoch does not collapse until it enters its own particle horizon (where every
point is in causal contacted with others). Once the perturbation enters, it will keep
collapsing until the Jeans length, when radiation pressure counteracts gravity and
initiates acoustic oscillations.

e Damping tail for [ > 1000: we can see that in the region corresponding to
small scales, the peaks suffer a damping. These multipole momenta correspond
to characteristic scales of previous epochs to the last scattering. The damping is
mainly due to the imperfect coupling between the photon-baryon fluid caused by shear
viscosity and heat conduction. It drives a spreading between them that makes the
amplitude of oscillation decrease. This effect is known as Silk damping and dominates
at [ > 2000 [247]. Extra effects for high values of the multipole momentum are given
by gravitational lensing originated by structures a low redshift as galaxy clusters.

CMB anisotropies in the temperature reveal us the high dependence of these features
with cosmological parameters. Thus, CMB observations are crucial to obtain high precision
constraints on the cosmological parameters. The temperature power spectrum is not directly
related to dark energy, but it gives us strong restrictions on the matter content and on the
geometry which indirectly provides a bound on the dark energy quantities. It can also provide
us additional information about the spectral index, n,, of primordial scalar perturbations,
the post-recombination electron-scattering optical depth 7, the Hubble constant, Hy, etc.

The amplitudes of the acoustic peaks are determined by the energy content of the
Universe (£2,,h% Q,h?) before recombination. An increase of the baryon content of the
Universe at that epoch, reduces the pressure at the last scattering surface, which enlarges
anisotropies and decreases the sound speed of the baryon-photon fluid. These effects have
direct consequences on the Cs: an enhancement of the amplitude of oscillations pushing
acoustic peaks to smaller scales. A rise of Q2,12 inhibits the diffusion, having consequences
on the damping tail of the power spectrum. On the other side, if the total matter content
of the Universe gets bigger, it anticipates the epoch of equality, shifting the z., to higher
redshifts and minorating the early ISW, which pushes down and narrows the first acoustic
peak. The change of the radiation-matter equality, increases the comoving angular diameter
distances to recombination, D 4(z.). As a consequence, it varies the acoustic scale

0, — Ts(Zrec)

=Dy (1.114)

and shifts the peaks positions to lower Is, [,, ~ nmw/04. From this expression we can easily see
that the position of the first peak also depends on the geometry of the Universe and on the
history of the dark energy density. The impact of the 2pr on the power spectrum, besides

36



Chapter 1. Introduction

moving the peaks to larger angular scales, induces the late-time ISW. As the influence of €2,
and Qpg is given through D 4, there is a degeneracy with the effect of other parameters, i.e.
their variation produces an effect on the CMB similar to that from for example €2,,, or €.
To avoid this degeneracy, CMB data are normally used in combination to other datasets as
SNlea, a measure of the Hubble parameter H;, or Baryon Acoustic Oscillations (BAO) as
we will see in the next section.

Now that the influence of the cosmological parameters on the CMB has already been
described, it is time to give details about the main procedures to obtain observational
constraints on them using the power spectrum of temperature anisotropies. The most direct
would be to compare directly the predicted (s given by the theoretical model with those
given by observational data. The predicted Cjs can be obtained with the public free software
CAMB and the corresponding software to compute the likelihood. Modules for this are
usually given by each of the teams that have measured and post-processed the CMB data,
and can be acquired at the LAMBDA project web-page’] However there are cases where
the cosmological model is quite complicated and it requires modifications of the CAMB
software itself. In these cases it is easier to directly compare a bunch of quantities directly
obtained from the analysis of the CMB power spectra with those predicted by the specific
theoretical model. A good quantity is the distance to the recombination epoch because, as
we have seen, the peaks and troughs of acoustic oscillations are sensitive to it. Therefore,
the CMB provides a good measure of the ratio of the angular diameter distance to the
recombination epoch divided by the sound horizon size at that time, Da(zrec)/7s(Trec)-
Under the assumption of a flat universe, instead of D 4(z), one can directly use the comoving
distance: _y
o H(Z)

Thus, the ratio, D.(zvec)/7s(Trec), is directly given by the angular scale of the sound horizon
at recombination, 4,

D.(2) =c (1.115)

71'l)c(zrec)

o (oree) (1.116)

ZA (Zrec) =

The only remaining issue then is to compute z,... For this purpose, following the fitting
function can be used [124]:

ree = 1048 [1-+0.00124 (20%) ™) [14 g1 (Qeh?)"] (1.117)

the expressions for the g; and g, being

0.0783 (Qph?) "

- - 1.118
1+ 39.5 (Q,h2)" 7 (1.118)

(251

B 0.560
1+ 21.1(Q,h2)"%

9 (1.119)

®http://lambda.gsfc.nasa.gov/
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Finally, the corresponding comoving sound horizon at recombination is

(Zhee) / trec ¢ dt e Grec da
T's\Zrec) = - = —F— = C —
0 a s H(2) 0 /314 Rya)atH?(2)

da

c 1/(1+Zrec)
V3 / 2 iy oo
0 a’H(a)\/1+ o a

with Ry = (3pp)/(4p,), Ry = 315001 (Tenp/2.7K) ™, Q, = 2.469 - 107 °h72, ¢ =
2.9979 - 10°Kms™! (for Teyp = 2.725K) and h = 0.72 [146]. Alternatively, the sound
horizon at recombination can by evaluated using an aproximative expression as it is described
in [87]:

(1.120)

1/2 1/2
o) =~ M {[1+R<Zfec)] ¥ [Rl) + Ry }Mpc,

= n
\/Qbhz\/l‘f’nu 1—|—\/Req

where 7, = 0.6813 is the ratio of the energy density in neutrinos to the energy in photons,
R(a) = Rpa and a.,, the scale factor at which radiation and matter have equal densities,

az} = 24185 (1-6813th2).

1+'r]1/
From the CMB power spectrum it is also possible to obtain a measure of the shift
parameter or scaled distance to the last scattering surface, R(z), which is related to D,
[47] through

R(zrec) =/ QnHZDo(21ec)- (1.121)

In the end, the vector containing all these quantities, v = (l4, R, Z;cc), provides a
good summary of the CMB data to constrain the dark energy parameters. At this stage,
one can directly use the maximum likelihood values of WMAP T7-year [147], vOMB =
(302.69, 1.726,1091.36) and derive the correspoing x? for the CMB,

Xep = (Vi — viCMB)(Cfl)ZCjMB(,Uj _ UJCMB)T (1.122)

where (C~1)“™” is the inverse covariance matrix of the data, also provided by [147].

1.6.4 Baryon Acoustic Oscillations

Baryon Acoustic Oscillations (BAO) have recently come out as a promising standard ruler
in cosmology. They can provide precise measurements of the dark energy parameters with a
minimum of systematic errors [23| 144, [46], 62, [89] 122] 241}, [288]. The fight between radiation
pressure and gravity forces set up these acoustic oscillations of the density perturbations
before recombination. Once photons decoupled and propagated freely, the acoustic wave of
baryons got stuck, leaving a signature of the primordial perturbations not only on the CMB
temperature distribution but also on the matter power spectrum, and as a consequence,
on galaxy correlation, encoded in the function, £(z). These oscillations give evidence of a

38



Chapter 1. Introduction

characteristic scale, the sound horizon at recombination:

™ cs(2)

H(z)

S = 1s(Zrec) = dz, (1.123)

Zrec

where ¢, is the sound speed and z,.. the redshift at recombination [23, [206].

Az c/H(z)

Figure 1.8: BAO imprint a feature on the clustering of galaxies, providing a measure of the
angular diameter distance D 5(z) and Hubble parameter H(z) in units of the sound
horizon, s.

This scale depends on the baryon and matter densities and also on the redshift of equality
Zeq and recombination z,.. As the CMB provides good constraints on these quantities, it
becomes a good calibrator of the characteristic scale. Independently, BAO features can be
also determined from a galaxy survey, providing a measure of the angular diameter distance
D 4(2) and Hubble parameter H(z) in units of the sound horizon, s, over a series of redshift
slices, see Fig. [1.8l Measuring the BAO scale from galaxy clustering along the line of sight,
s, will be equivalent to measuring differences of redshift, and it is possible to obtain in that
way a measure of the Hubble parameter:

s|H(z) = cAz (1.124)

Doing the same but in the tangential direction, s, i.e. a variation of the angular sizes,
provides a measurement of the angular diameter distance:

S| .
B = AO(1 + 2), (1.125)

~—

which is directly related through D4(z) = r(2)/(1 + z) to the comoving distance at a given
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redshift:
? cd?

r(z) = )
Then, comparing the observed BAO measures with the scale given by CMB we directly have
r(z) or Dy, and H(z).

However, it is a challenge to obtain BAO data due to the weak signal at high redshift.
As a consequence, a vast volume of the Universe has to be mapped in order to detect
BAO features; this is carried out through galaxy redshift surveys as SDSS [90], 2dFGRS
[207], 1208], WiggleZ [45] or the future EUCLID [32, 218]| or J-PAS[33]. The data obtained
are usually combined with other datasets to give tighter constraints on the dark energy
parameters. At low redshift, the combination with SNela provides an accurate view of the
redshift-distance relation, as BAO gives absolute distance scales while SNela provide precise
relative distances. At larger redshifts (z > 0.5) BAO becomes a direct access to H(z).

(1.126)

In spite of BAO giving us the possibility of measuring simultaneously 7(z) and H(z), it
is easier to provide a composite measure of the physical D(z) and H(z) as an averaged
BAO scale which is represented by a volume averaged distance Dy (z):

1/3
cz /

Dy() = |1+ 2P DG 5|

(1.127)

see [45] 90, 208, [209].

In [209] for example, Gaussian values on the distance ratio, 74(2drag)/Dv (%), at redshifts
z = 0.2 and z = 0.35, are given from the measures obtained by combining the spectro-
scopic Sloan Digital Sky Survey (SDSS) and the Two-Degree Field Galaxy Redshift Survey
(2DFGRS) data. This distance ratio represents the comoving sound horizon at the baryon
dragging epoch, Zgag, Which reads

* es(2)

2areg H (%)

dz (1.128)

Ts(zdrag) =cC

over the effective distance Dy (z2).

In order to estimate the dark energy and other cosmological parameters we need a
definition of the x? which reflects the difference between the observational data and the
values given by our models. For this, one requires an expression for the comoving sound
horizon at the baryon dragging epoch [209] (or recombination, depending of the way the
observational data are provided). The dragging epoch took place after recombination [124],
when the photon pressure was unable to balance the gravitational trend of baryons to
collapse. The redshift at which it occurred can be well approximated by the fitting formula

proposed in [88]:
k2 \ B p2 02
T's(Zarag) = 153.5 ( b > < ) . (1.129)

0.02273 0.1326

"http://sci.esa.int/euclid
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In contrast, if the observational data provided are given in terms of the sound horizon at

recombination, we will need its expression which is given by Eqgs. ((1.117])-((1.120)).

Now, the only remaining task is to construct the corresponding x2. Constructing the
Ts(zdragaﬂmvgb§9)

Do i } containing the Gaussian values at different

corresponding data vector v; = {
redshifts, we obtain:

Xbao = (v — 0P 20)(CTH A0 (v; — v}A0) (1.130)

where C~! is the inverse of the covariance matrix of the data.

1.7 Statistics and data analysis

The improvement and development of technology have revolutioned observational cosmology.
The amount of data and their quality and precision have increased enormously. And this
trend is expected to persist in the future. Given this situation, we have to develop the
corresponding tools to analyse and extract as much information as possible with the lowest
computational effort. Thus, in the context of a given physical model which depends on
some parameters, we use these statistical techniques with two targets: fixing the “most
likely” values of the parameters that yield the series of available observational data, and on
the other hand, measuring the degree of confidence in those data generated by the best fit
parameters in an estimated interval.

For this purpose we need to define a quantity that encapsulates the information about the
theoretical model and its parameters and those corresponding to the available observational
data. Then this quantity has to be maximized or minimized with the corresponding methods
to extract the values and the interval of confidence of the parameters that best fit with the
observational data.

1.7.1 Parameter estimation

The typical central pillar of data analysis is the likelihood function. The likelihood function,
L(d|@, M), is defined up to proportionality, as the probability of measuring the data
d={d,...,d,} given the model M and its parameters taking the values @ = {6y,...,0,}
(80, [280].

Despite our aim to keep the discussion in this section as general as possible, when we
analyse particular datasets we will assume, as usual, that the measurements are normally
distributed around their true value, so the likelihood function takes the form

£(d|o, M) x e X O)/2 (1.131)

The probability density function p(8|d, M) of the parameters to have values 6 given the
data, d, under the assumption that the true model is M, is provided by Bayes' theorem
[280]:
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p(0ld, M) = £(d|6, M)m(8, M) : (1.132)
[ £(d|6, M)x (6, M)d6

where p(0|d, M) and 7(0, M) are the posterior and prior probability density functions
(pdf) respectively [67), 180} 276, 277] [280]. The prior pdf encodes all previous knowledge
about the parameters before the observational data have been collected. It can be regarded
as a subjective procedure, but its use is compulsory in the Bayesian framework, which is
the approach used in theoretical frameworks where only one particular realization of the
measurement is available; the opposite of what happens in a laboratory, where multiple
realizations of the same experiment can be done.

Parameter estimation in the Bayesian framework is based on maximizing the posterior
pdf p(0|d, M), whereas in a “strict” frequentist approach one just maximizes £(d|8, M).
When one uses flat priors in the Bayesian approach then the same conclusions are drawn
from both approaches, so the difference turns out to be conceptual only [275-H277]. If the
measured observables are independent from each other and Gaussian distributed around their
true value, d(@), with a covariance matrix, C, given by the experimental errors, maximizing
L is equivalent to minimizing the chi-square function

X(6) = (d — d(9)) C" (d* —d(8))" ; (1.133)

for uncorrelated data, C;; = d;;07 and

X*(0) = Xn: (%)2. (1.134)

i=1 ¢

The second step toward constraining parameters satisfactorily is to construct credible
intervals [276] which measure the degree of confidence that a certain data was generated
by parameters belonging to the estimated interval. This approach is a common practice
when reporting the errors on the parameters in a form of a confidence region or contour.
In the Bayesian approach, the credible intervals are drawn around the maximum likelihood
point, which gives the best fit parameters. After obtaining it by the minimization of the
x%(0), the boundaries of the confidence regions are those of a region containing 100n% of
the likelihood determined by the values of the v parameters for which x? has increased by a
certain quantity

X = Xhin = AX* =R}, (1.135)
with
Fore R
o / <_> o (1/2) gy r (K _u>
: 2 2° 792
n= P (t)dt = 22 _ —1- 2 2/ (1.136)
o 2r' (%) r <g)

2
R up to 2 parameters and different likelihood content.

where I’ (g, A””“) is the incomplete I" function [155], [213]. Table [1.2 shows the values of
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| n [0.683(10) | 0.954(20) | 0.997(30) |
1] 1.00 4.00 9.00
2 230 6.17 11.80

AN

Table 1.2: Values of R (deviation of the x* from the minimum) for v = 1,2 parameters and
different likelihood content, n = 0.683,0.954,0.997 which respectively corresponds to
lo, 20 and 30.

The 1o and 20 errors of the parameter 6; are given by the 68.30% and 95.45% credible
interval contours, respectively. If one reads the errors from the contours, the upper limit
error is the maximum value of the contour and the lower one the minimum one.

1.7.2 Bayesian evidence

In Bayes' approach the evidence is employed as a tool which informs about how well the
parameters of the model fit the data, after doing an averaging over all the parameter values
that were theoretically plausible before the measurement ever took place [170].

Then Bayes' evidence is calculated as the average likelihood of the model over its prior
parameter space:

E(M) = /w(@,M)L’(dw,M)dO, (1.137)

where m(8, M) is the model's prior on the set of parameters normalized to unity:

/w(O,M)dO = 1.

The most common choice is the top hat prior, 7(0, M) = 1/V with V =T _; (Qa.maz — @amin)-
In that case one rewrites Bayes evidence as

5(M>:—/Vc(e)d9. (1.138)

One important and unavoidable inconvenient of the use of the evidence is its dependence
on the prior ranges chosen for the parameters, so one has to take this into account when
the evidence is evaluated or computed for different prior ranges to find the most suitable
one for the model.

Once we have arrived at this point, a remark is required. The usual situation in Cos-
mology is that one has more than one set of statistically independent observational data,
{dW}, ... {d"™}, to constrain the parameters 6; in that case, one can resort to the joint
probability density function,

p(OldY N nd™ M) = p(@8ldD, M) x - x p(8]d™, M). (1.139)

With this definition the whole discussion above can be conveniently generalized for a situation
with more than one dataset.

43



1.7. Statistics and data analysis

1.7.3 Error propagation in derived quantities

It is common that the parameters do not have symmetric errors, i.e. that the posterior
distribution of the parameters is not completely Gaussian and symmetric. Then, the standard
error propagation formula cannot be used, and a modification has to be performed in order to
account for these non-gaussianities, [154]. Consider that the constraints on the parameters
are given in the form Gifgz:’;*, where 06, ,, and 00, ; are positive quantities which account for
the upper and lower error.

Following [154], the estimated error in a quantity depending on them, f(8), will be given
by an upper limit

Afu = i (IHELX (Afzua —Afil))Q, (1140)

\ &

n

and a lower one

Afy= | (min (Afu, —Afa)), (1.141)
i=1
where

This error estimation is based on finite differences, however it can be refined if the errors
are small enough, i.e. Af;, = d6;, and Ab;; = 60;;. In that case one can write

- of of ’
Afy, ~0f, = E (maX (—59w, ——(5@1)) (1.144)
— 00, 00;

and

(. [(Of of ?
; 00; 00;

In Gaussian situations, where Af;, = Af;; = A6;, one recovers the standard error
propagation formula and Af, = Af;.

1.7.4 Grid Method for minimization and the Levenberg-Marquadt
algorithm

Given the appropriate x?(0) function, the next step is to find the values of the model
parameters which minimize it. A common practice, when the number of parameters is
reasonable, is to construct a grid: one divides the physical range of each parameter to be
explored into several points to obtain a complex mesh which defines the points where the
x? has to be evaluated. After that it is possible to detect the point in the parameters space
which gives the 2. . Thus, combining some intuitive guesses to define the ranges of the
parameters to be explored with the knowledge provided by literature on the topic, it is well
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recommended to work with two grids, one for an initial guess and a second one, finer and
narrower, around the first minimum. With this procedure one will typically find a suitable
initial point to feed the Levenberg-Marquadt algorithm, which will provide us with a
more refined minimum of the x? function, together with the estimated covariance matrix
C(0y,0,,...,0,) for the model parameters.

Levenberg-Marquadt algorithm

This method, based on the inverse-Hessian method, is commonly used to provide a numerical
minimum of a non-linear function [213]. The main idea is to find the gradient of the function
x? with respect to the set of parameters 6, which will be equal to zero for 2. Thus, we
have to be able to compute the corresponding numerical partial derivatives of the function
to minimize and define these two quantities:

19x?
2 00,

1 0%y\?

and Oélj:iaezaej

Bi =

(1.146)

The increment, 66, that has to be added to the initial guess of parameters to give the next
estimate, is defined in terms of the gradient

The Levenberg-Marquadt algorithm then gives the recipe for iteratively moving around the
parameter space to estimate in the finest way the minimum of the function. It can be
summarized in 4 steps:

1. First compute the value of x?(8) for the picked set of parameters. If this is the first
iteration, these values must have been obtained previously from the grid.

2. Select a value for the constant A (see below). In the first attempt it is usually initialized
as A = 0.001.

3. Solve a modification of Eq. (|1.147)) to obtain 00

which is written in terms of
Oé;-i = Oé“()\ —+ 1),
O./;j = Q4. (1149)

Obtain the value of the new x?(0 + §6).

4. Compare x*(6 + 66) with the previous value x?(0):

o If \*(0 +860) > x?(0): Increase by a factor of 10 the previous value of A and
start again from step 3.
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o If x?(0 + 60) < x*(0): reduce in a factor of 10 the previous value of \ and
start again from step 3, having now as a new solution, the value 8 + §6.

The iteration process has to be stopped when a certain convergence is achieved.
The usual control to opperate this stop is to see that x? has decreased less than
0.01 in 2 successive steps.

Once the convergence has been reached, setting A = 0, the inverse of o defines the
covariance matrix of the parameters: C = al

1.7.5 Monte Carlo Markov Chain algorithm and convergence test

When a large amount of parameters are taken into account, methods as the grid one are
not efficient to minimize the x? any more, as they require a huge amount of computational
effort. In these case the probability distributions of the problem are explored with Markov
Chain Monte Carlo (MCMC) methods. These methods (fully described in [36], [183],
[193] and references therein) extract samples, known as Markov chains, sequentially using
a probabilistic algorithm. The most used algorithm in Cosmology for the MCMC is the
Metropolis-Hastings [114], [191] based on the Bayesian statistical approach. The Metropolis-
Hastings algorithm works as follows: starting from an initial point of the parameter space 0,
another trial point, €, is picked using a proposal density function q(@’,0), which represents
the conditional probability to have 8" given 8. The transition kernel, 7(0,8’), which gives
the conditional probability to move form one point @ to another @', has to satisfy the
“balance equation” to ensure that the Markov chain will recover the posterior distribution
P(0|d):

PO'|A)T(0',0) = P(6|d)T(6,0"). (1.150)

This condition is achieved if the new point is accepted with probability,

P(6']d)q(6",6) }
P(6|d)q(6.6') |’

«(0,6") = min {1, (1.151)
and the transition kernel being defined as T'(0,0') = a(6,0')q(0,0"). Here P(0|d) is the
conditional probability to have the parameter set 8 given the observational data d.

As from Bayes' theorem it follows that the posterior probability is P(0|d) < L(d|8)7(0)
and q(0,0") is chosen to be symmetric to ensure Eq. ([1.150)), if the trial point improves the
likelihood, it will be accepted with a probability equal to 1, otherwise it will be accepted
with a certain probability given by L(d|0")w(6")/L(d|0)7(0). Then, if the chain moves to
the new set @', one says that it has been accepted, and if not, then the point has been
rejected.

The prior is usually chosen to depend on the physical requirements a given parameter
has. The proposal density is typically a multivariate Gaussian of zero mean and standard
deviation described by a certain covariance matrix, Cy. The trial point can be obtained
from a vector made of a set of random numbers which follow a Gaussian distribution of
unit variance and zero mean, x: 8’ = 0 + Cal/zx. As a first attempt, as we usually do not
have information about the correlation of the parameters, Cj is chosen as a diagonal matrix
with the values of the expected uncertainties of the parameters.
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Figure 1.9: \? for each step of the MCMC chain. As it can be seen, there is a initial " burn-in*
region, with high values of x2, before the chain reaches the relaxation distribution.

Initial samples usually have to be discarded because there is an initial " burn-in“ region
where chain has not reached the relaxation distribution (see Fig.. This happens when
the chain has been initiated with a point lying far away of the region of high probability.
For that reason, it is recommended to run a first chain, to not only figure out the best
region to start the definitive chain, but also to measure the possible correlation between the
parameters and obtain a representative covariance matrix that will account for it, Cr. This

will help us to avoid the “burn-in" phase in the next chain and to optimize the procedure
0;1/2
' VD
[82], where it is shown that with this modification the number of accepted points increases

and the computational time required to obtain a representative chain get reduced.

with the new proposal density function 8’ = 6 + 2.4 X. This routine is proposed in

Convergence Test

The main problem when running a Markov chain concerns how to avoid biased inferences or
underestimations on errors of the theoretical parameters. The problem of the convergence
is the main one among the problems of that sort, and it can be formulated as follows: how
can one be sure that the properties of a sample from the MCMC algorithm are a good
representation of the unknown distribution to be explored? One can say that a chain has
reached convergence when the statistical properties of the extracted samples can describe the
statistical properties of the unknown probability distribution with good accuracy. Probability
theory says that Markov processes will reach the exact final distribution in an asymptotic
way, which means a sample’s length will become infinite in an infinite computation time. Of
course, as one is forced to operate with finite length samples, the question arises of how
this truncation can bias the final statistical results, and if there are any parameters that can
be able to give information about the goodness of the process. In the literature, the most
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used parameter for this task is the convergence ratio (see [82]), defined as
r="2z (1.152)

This is the ratio between the variance of the mean of the samples and the variance of the
underlying unknown distribution (we will operate with standard distributions so that o2 = 1).
Then r is required to be below a cut-off limit value, typically 0.01, to have a guaranteed
convergence of the chain. This parameter is used in other convergence tests, such as the
Gelmann-Rubin test (see [104]), which runs many parallel multiple chains and estimates r
at any step at the expense of high amounts of time and hardware.

An alternative solution to this problem is the spectral analysis approach proposed by
[82]. It is clear that all the steps in the MCMC are correlated; this correlation is somewhat
intrinsic to the code, at least before having reached convergence, but it depends also on
the value of or. But what is even more important is the behaviour of the correlation when
the convergence has been reached: in this case the MCMC will sample from the underlying
distribution and it will work like a random sampler, so that there will be no correlations in
this regime.

This is the key idea of the test by [82]: if we take the power spectra of the MCMC
samples, we will have a large correlation on small scales, but the spectrum will become
flat (like a white noise spectrum) when convergence has been reached. Then, checking the
spectrum of just one chain (instead of many parallel chains as in Gelmann-Rubin’s test) will
be sufficient to assess that convergence has indeed been reached. We will give just a short
account of the steps to be followed to implement the test, but for a more detailed reference
see [82].

In brief, we calculate the discrete power spectrum of the chains,

P; = |ay /%, (1.153)
with
4 1 = 27
aly = —— Ty eXp [1—=n|, 1.154
D) p | %3n] (1154

where N and z,, are respectively the length and a given element of the sample from the
MCMC, j =1,...,N/2 — 1, and the wave number k; of the spectrum is related to the
index j by the relation k; = 27j/N. Then we fit it to an analytical template:

(k™ /k)*
P(k) = Pp——————, 1.155
or in equivalent logarithmic form:
(k" /k;)"
mnPj=lmFPy+In|———| — ; 1.1
nP;=InF + n{l—k(k*/l@)“ v+, (1.156)

where v = 0.57216 is the Euler-Mascheroni number and r; are random measurement errors
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with < r; >= 0 and < r;7; >= d;;m%/6. The fit provides estimates of three parameters, but
only two of them are fundamental to our analysis. The first one is F,, which is the value of
the power spectrum extrapolated for & — 0; this is an important parameter because from it
we can derive the convergence ratio using r &~ Fy/N, which has to be lower than 0.01. The
second important parameter is j* (the index corresponding to k*), which is related to the
turnover point from a power to a flat spectrum; the estimated value of j* has to be = 20,
so one can be sure that the number of points in the sample coming from the convergence
region is larger than the number of noisy points. If these two conditions are met for all the
parameters, then the chain has reached convergence, and the statistics from the MCMC
procedure describes well the underlying probability distribution. In [82] the authors propose
to perform the fit over the range 1 < j < Jiaz, With Jmee ~ 107*, with a first estimation
of j* from a fit with j,,.. = 1000, and then perform a second (or even a third) iteration
to have a better estimation of it. If after this the convergence criteria have been met, we
can consider that the chain is convergent, otherwise more points will have to be added to
achieve it.

1.7.6 Model selection tests

After having estimated the value of the set of parameters using the MCMC approach, we
need a tool for comparing, selecting and testing the statistical goodness of our results. The
related literature is too extensive, so we will only refer in some detail to those tools most
used in cosmological model selection [170].

Since the MCMC technique is based on a Bayesian approach, the best way for comparing
models is arguably the Bayesian Evidence, see Eq. . It is clear from its definition that
the evidence of a model is the average likelihood of the model with respect to the prior:
models which fit the data well and make narrow predictions are likely to fit well over much of
their available parameter space, giving a high evidence. So using the evidence for comparing
models is a very appropriate task. Model comparison requires defining then Bayes factor,

_ E(M)
v EB(M)

(1.157)

which is the ratio between the evidence values of two models, M; and M. If B;; > 1 then
the model M; is preferred with respect to the model ;. By convention, Bayes' factor is
judged on Jeffreys' scale [131]:

o for 1 <In B;; < 2.5 there is a “substantial” evidence in favour of the model with the
greatest Bayesian evidence.

o for 2.5 < In B;; < 5.0 the evidence is “strong”.

e for In B;; > 5 the evidence is “decisive”.

Moreover, in favour of the Bayesian evidence it has to be underlined that it is a full
implementation of Bayesian inference, and can be directly interpreted in terms of model
probabilities. Unfortunately, it being a highly-peaked multi-dimensional integral, its esti-
mation typically requires a hard and challenging numerical effort. Even if some algorithms
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have been found which simplify this operation, it is always preferable to have easier tools
for estimating it and comparing models.

The easiest and most used tools are different versions of the Information Criteria. Generally,
the introduction of a higher number of parameters improves the fit to the chosen dataset,
regardless of whether or not these new parameters are really relevant. As a consequence,
the simple comparison of the maximum likelihood value of different models will tend to
favour the model with the highest number of parameters. The information criteria work just
in this direction: they compensate this behaviour by penalising models which have more
parameters. In what follows we detail the most used information criteria.

Akaike Information Criterion (AIC)
The Akaike Information Criterion (AIC) is defined as

AIC = —2In L + 2k (1.158)

where £ is the maximum likelihood value and & is the number of parameters of the model [5].
The AIC is derived by an approximation of the Kullback-Leibler information entropy, which
measures the difference between the true data distribution and the model one [50] 271].
The best model is the one which minimises the AIC, and no requirement for the models is
asked for.

There also exists an AlC version for small sample sizes, the corrected AIC, AIC, [50] given
by
2k(k 4+ 1)
N—f-T
where N is the number of points in the dataset. Since the correction term disappears for
large sample sizes, N >> k, it is convenient to use this corrected definition for comparing
models as pointed out in [171].

AIC, = AIC + (1.159)

Residual Information Criterion (RIC)

From the same principles of AIC, the minimisation of the Kullback-Leibler information
entropy, another comparison tool can be derived, the Residual Information Criterion (RIC).
However, as it seems that the motivation for the RIC criterion is not correct, the corrected
version proposed in [162] is comonly used, where the RIC. is defined as

4k

RIC, = —21 kE—1 _
. nl+( >+N—k‘—1

(1.160)
When N >> k, RIC. has a smaller penalty than AIC.,.

Generally, when AAIC,. 2 1 (or ARIC, = 1), it follows that the two models are significantly
different, and the one with the lowest value of AIC (or RIC) is the preferred one. Finally,
we have to keep in mind that AIC./RIC, tends to favour models with a high number of
parameters, and it is “dimensionally inconsistent”, namely, that even if the dataset size
tends to infinity, the probability of the AIC./RIC, incorrectly picking an overparametrized
model does not tend to zero [170].
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Bayesian Information criterion (BIC)

The Bayesian Information criterion (BIC) was introduced in [237] and is defined as
BIC=-2InL+kInN . (1.161)

Again, in this case the best model has the lowest BIC, and it is clear from this expression
that models with a high number of parameters are more penalized by BIC than by AIC. Since
the BIC is a good approximation for twice the log of the Bayes factor, it can be compared
with Jeffreys' scale, so that ABIC > 5 means a “strong” evidence in favour of the model
with lowest BIC values, while for ABIC > 10 this evidence is “decisive” .

Deviance information criterion (DIC)

The Deviance information criterion (DIC) [263] mixes elements from both Bayesian and
information theory. It is easily computable from posterior samples such as those coming
from MCMC runs. It relies on the definition of the effective number of parameters, pp, also
known as the Bayesian complexity, which is defined as

pp = D) — D(D), (1.162)

where
D(0) = -2InL(0) + C (1.163)
with C' a constant which vanishes from any derived quantity, and the chi-square defined as
usual, that is, x> = —21In £. This definition shows that pp can be considered as the mean

deviance minus the deviance of the means, and this is the key quantity for estimating the
degrees of freedom of a test. Finally the DIC is defined by

DIC = D(A) + 2pp = D(6) + pp, (1.164)

where one can recognise a similar-to-AlC formulation in the first expression, while a Bayesian
definition and measure of model adequacy, penalised by an additional term related to the
model dimensionality is implicit in the second one. The DIC is also useful for another
reason: it overcomes the difficulties AIC and BIC have to discount parameters which are
unconstrained by data, BIC is of even more suspicious validity when there is any parameter
degeneracy. Finally, DIC (like BIC) is not dimensionally inconsistent, so it is able to detect
wrong high dimensionality parametrizations.

1.7.7 Dark Energy Experiments comparison tool

Despite so many efforts, we are a stage at which current observational data cannot provide
rigorous constraints on the dark energy parameters. This allows a wide range of possibilities
ranging from a time evolving equation of state to ACDM. For this reason all the hope lies
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in future experiments as EUCLID [32, 218JF} J-PAS [33]° Dark Energy Survey (DES)}
BigBoss [235] [236], Large Synoptic Survey Telescope (LSST)| Square Kilometer Array
(SKA) E which are very ambitious as they expect to improve present-day constraints with
high accuracy extended datasets. In these circumstances we need a useful tool to compare
the capability on constraining dark energy of these upcoming experiments.

A good quantity for this purpose is the Figure-of-Merit (FoM), which has been defined in
several slightly different but related ways in the literature [0, 251]. Perhaps the most popular
version of the FoM was the one proposed by the “Dark Energy Task Force” (see [8] for a
recent revision of the topic) which is defined as the inverse of the area of the confidence
region ellipse defined by the plane wy — w, and it simply reads

1
V/det C(wg, w,)

where C(wy, w,) is the covariance matrix between the two dark energy parameters for the
CPL parametrization, see Eq. . Even though this definition of the FoM is widely used,
it presents some drawbacks, as it fails to capture success of other variations of the equation
of state w with the redshift. In that direction, in [286] a generalization of the FoM was
presented for any parametrization of the dark energy equation of state concerning several
parameters:

FOMDETF = (1165)

1
V/det C(cy, ca, 3, )7

where C(cq, ¢a, ¢3, ...) is the covariance matrix of the corresponding ¢; dark energy parameters
one is concerned with. As explained in [286], this specific definition has two advantages:
firstly, it is easy to calculate for either real or simulated data, and secondly, it has an easy
physical interpretation. The FoM penalizes experiments that yield very correlated estimates
for the dark energy parameters. Hence the FoM is larger when the dark energy parameters
¢; are chosen such that they are minimally correlated with each other. But obviously, if the
model considered does not have a low degree of correlation per se, one will be giving a poor
estimation of the performance of the observational tests.

FOMWang =

(1.166)

The main difference between FOMyyang and FoMyyan, is that in the latter the two relevant
parameters are wy and w,, and not any others. However, w, is a parameter informing about
early time asymptotics, which is a region with extremely hard observational access and
physical interpretation, and thus, the debate persists of whether a FoM using that parameter
may not be giving artificially large results.

8http://sci.esa.int/euclid
http://j-pas.org/

Ohttp: / /www.darkenergysurvey.org/
Hhttp://www.lsst.org/lsst/

2http:/ /www.skatelescope.org/
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Equivalence between FoMpgrrr and FoMyy,,,,

As it is presented in [240], following [59] it is easy to show the relation between the covariance
matrix corresponding to two different sets of parameters {p;} and {p}:

ct=M'Cc'M, (1.167)

where

0—12 02

2
C= ( o1 on ) , (1.168)

and M;; = 8pi/8p;- is the Jacobian of the parameter transformation. For a parametrization
in terms of wy and w5 = w(z = 0.5) as Eq. (1.62), {p1,p2} = {wo, w5} and {p},ph} =
{wg, w, }, and specifically wg 5 = my +mowy + maw, with my, my, mg coefficients different
in the different parametrizations considered other than the CPL one, thus

M—( Lo ) (1.169)

ma M3
It is a simple matter of algebra to see that

9 012 — mgO'%
0-1 -
C = ) 4 (1.170)

019 — mgaf m20f — 2maog + ag

ms3 ms3

and vdet C' = v/det C/ms. Therefore we get the simple relationship between the two
definitions of FoM
FOMDETF = mgFOMwang. (1171)
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CHAPTER 2

‘DIRAC—BORN—INFELD MODELS FOR THE
UNIFICATION OF DARK MATTER AND
DARK ENERGY

and Dark Matter (~ 23%) with only a (~ 4.6%) of baryonic matter and (~ 0.4%) of

radiation, see Fig. and [1.5] Therefore, in this context, unified models of the two
main components of the Universe, dark energy and dark matter, represent an interesting
option for explaining the substantial evidence of the current acceleration of the Universe.
On the one hand, as it has been pointed in the previous Chapter, no observational direct
evidence of either of them is available, so it might well be the case that they do simply not
exist and there is a bolder explanation for the effects we attribute to them; perhaps extra
dimensions are the answer. On the other hand, if one believes these two entities really fill
our universe in a huge joint proportion as compared to the other components, it remains to
discover what their nature is. In a way, finding out that they happen to be manifestations
of the same fluid would at least simplify the problem in the sense one should have to care
about the fundamentals of a single fluid. Only at worst, if investigations along these lines
were able to refute this idea that the two components are just one, we would at least be
able to face the future in the confidence that dark energy and dark matter can be treated
separately.

C urrent observations reveal that the Universe is mainly filled with Dark Energy (~ 72%)

Following the tradition of trying to find an interconnection between the world of Particle
Physics and Cosmology, it is customary to try and view unified dark energy models as scalar
field scenarios [13HI5) [34] 138, 200] . One possibility is to explore the evolutions contained
in a given scalar field model, this is actually the approach of this work. We consider a
scalar field setup, and by fixing some of its degrees of freedom, we obtain an expansionary
cosmology which mimics a dark matter dominated background at early times and a dark
energy dominated one at the late stages of its history, see Fig. . On the other hand,
a popular procedure to find a motivation based on scalar fields for a given evolution is to
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start from a given equation of state and then “reconstruct” the corresponding Lagrangian
by specifying its kinetic term and potential. This widely followed approach has its caveats,
however, as in general the scalar field model one ends up with is in fact a richer scenario,
and contains other evolutions that the original seed. Leaving aside these remarks, the route
of scalar fields toward unified dark energy scenarios may offer interesting possibilities, and
our efforts in this work go in this direction.

It has been suggested that acceleration might be the manifestation of non-perturbative
features of some string theory versions [214]. This idea has gathered quite a lot of
attention as it could provide an explanation to early time acceleration, that is, inflation; see
[9, 29] [31], 48, 53, 54| 57|, 84] 106, [116), [125] [136], 137, [140| 149, 160, 172, 248| 258-260]
and references therein for regular papers and [203] for a review. According to this description,
the inflaton could be a mode accounting for the position of a D-brane with three spatial
dimensions rambling radially in a ten-dimensional space-time with a warped metric. This
interpretation seems to have the virtue, among others, that it would allow inflation to
proceed with much steeper potentials than in the standard weakly coupled slow roll inflation
model.

So, a somewhat natural question to ask is this one: could a Dirac-Born-Infeld (DBI) model
be responsible for the acceleration we observe at present? Moreover, given the similarity of
the DBI Lagrangian to that of the most popular unified dark energy model, the Chaplygin
gas, could it also offer a satisfactory and perhaps even more suitable alternative for the
unification of dark matter and dark energy? The investigations we report below show that
is indeed the case. We construct a purely kinetic DBl model for the joint description of
the two main components of the Universe, with the bonus that the effective dark energy
component displays a late-time phantom behavior even though the model does not include
at all a scalar field with the wrong sign in the kinetic energy.

Any conclusions about the capability of our model to represent a solid alternative to other
dark energy scenarios must ideally be reached from both the theoretical and the observational
perspectives. To that end, first we carry out the computation and interpretation of the linear
gauge invariant perturbations of the model. After that, we perform a thorough analysis
of this novel unified dark sector scenario using geometric means: specifically we use the
SNla, the BAO, and the CMB shift test. These combination of tests allows to take into
account the early, mid and late time behavior of our model, which is expected to have its
own features as compared to models in which dark energy and dark matter are different
components. Our analysis is performed in the Bayesian spirit and it allows us to identify the
best fit and errors, and to complete the information obtained with a computation of the
evidences on different ranges of the parameters and constraints on kinematical quantities of
Interest.
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2.1 The model

Our scenario is that of a four-dimensional spatially flat FRW spacetime, see Eq. (1.6)), filled
with a non-canonical scalar field of DBI type described with the action

s=- [atwap (107 (Vi- 106 -1) +vie). (2.1)

where, in principle, f(¢) and V' (¢) are arbitrary functions. In general, as we shown in Sec.
1.4.3, a scalar field can be described with an action of the following form:

S = —/d4x V=L (6 X), (2.2)

where the kinetic term X is defined as X = —%g’“’&,ﬂb&,(b and L is an arbitrary function of
¢ and X. The corresponding energy-momentum tensor can be obtained varying the action
with respect to g,

2 58 oc
T = 0 = 2 . 2
= s~ ax w000+ Lo (23)

Comparing this expresion with the corresponding one for a perfect fluid, see Eq. ([1.9)), we
set

p= 77_1 +V(9), (2.4)
_a-1
P="7 V(). (2.5)
with
! (2.6)

By

The usage of the symbol v was originally motivated by its analogy to the Lorentz factor
of Special Relativity, given that /f(¢)¢ is interpreted as the proper velocity of the brane
[248].

Assuming for the above fluid a barotropic equation of state of the form p = (I' — 1)p, we
get

=—-——= : (2.7)
and the conservation equation (1.13)) reads
p+3HTp = 0. (2.8)

In this work we explore the case in which both f(¢) = f, are V(¢) = Vi constants. The
goal is to obtain a purely kinetic model as in other unified dark sector models 35, 41, (56,
138 [234], so that the field ¢ depends solely on the scale factor; and, as a consequence, the
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same holds for the effective pressure and energy density. To that end we insert

v—1
fo

into the conservation equation (/5.4 and obtain

p= + W, (2.9)

4+ 3foHyd? = 0. (2.10)

Upon replacement of the derivative 7,

i = for’69. (211)
and using the Egs. (2.6)), (2.10) we arrive at
Y S gy (2.12)
¢ g
which has the following first integral:
. 3
é=2C (ﬁ) . (2.13)
7 \a
Thus, it is possible to write
6
=1+, (%) . (2.14)

with ¢ an arbitrary integration constant and a( the value of the scale factor today, which we
fix as ag = 1.

On the one hand, we have accomplished our goal of obtaining a DBI model which is
purely kinetic throughout the evolution. On the other hand, the behavior of the model
obtained is quite appealing. Using it can be seen that at very late times v ~ 1,
i.e. in the regime a > ag, one has p ~ Vj, whereas at early epochs, i.e. for a < ag, one
has v ~ a~3 instead, which in turn gives p ~ 1/a?, see Fig. . Thus, synthetizing, the
solution found interpolates between a dust and a de Sitter model, with the 1}, piece acting
as a cosmological constant and the absence of any trace of the genuinely DBI degree of
freedom fy. Of course, for a positive fyV} it is easy to see from Eqgs. and that
H > 0, so the evolution is indeed expansionary.

This new model represents an alternative description for the unification of dark matter
and dark energy, and as popular models of this sort, it can be linked to a non-canonical
scalar field model obtained from the following Lagrangian [258]:

L(X) = —% <\/1 ~ X — 1) Y, (2.15)

with X = ¢2.
The background evolution of our unified model happens to mimic that induced by the
joint contribution of a conventional Chaplygin gas (Cg) and a cosmological constant (A).
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Figure 2.1: Evolution of the energy density, p and the factor v with the scale factor, a, for fy = 10
and Vi = 80.

This would require a cosmological constant of the form V; — 1/ fo which seems to mix in a
too fine tuned way the parameters V;; and fj. Let us stress that one of the key points here
is that such background behaviour is realized with a single fluid, and therefore represents
a novelty by itself, which is enabled precisely because of the non-canonicality of the DBI
framework. The equation of state of this unified fluid is

1 1
p:%(l_pfo—vofoﬂ) — Y (2:16)

and we will make use of this expression in the next section.

However, if one wants to stick to a reinterpretation of the model in a two components
fashion by separating the cosmological constant term (V4) plus a fluid with an energy density
Pz, 1t turns out that the equation of state of the extra component is

P

= (2.17)

Dz

Thus, the natural splitting hinted by the asymptotic behavior does not leave us with a Cg
plus a A, but rather with a different picture in which the parameters 1}, and f, do not
appear simultaneously in the equations of the state of the two fluids.

Nevertheless, one must keep in mind the possibility out of the scope of this work that the
Universe is made of two fluids, the DBI one plus cosmic dust, which ultimately should be
confronted with the model we present here. This possibility has been recently explored from
an asymptotic behaviour perspective in [187].

2.2 Linear perturbations

As we have already seen in Section [I.5.1], in the " Synchronous Gauge" the line element is
given by Eq. where the comoving coordinates are related to the proper time ¢ and
position 7 by d7 = dt/a, dx = dr/a, and h;; is the metric perturbation. We choose not to
use the longitudinal gauge, which was used in [102] for Lagrangians of this sort, because it
is only applicable to the analysis of scalar perturbations; whereas the synchronous gauge,
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which is the one we work with, allows for a more general treatment. The scalar mode of h;;
is described by the two fields h(k, ) and n(k, T) in the Fourier space:

hi]’(a},’f) = /dgkeik.w |:’%1kAjh, + (’%lk;] — 5”)677 s (218)

1
3

with k = kk. The Einstein equations to linear order in k-space, expressed in terms of A
and 7, are given by the following four equations [180]:

1la

k*n — §—h’ = 41Ga*STy, (2.19)
a
k1’ = 4xGa*(p + p)o, (2.20)
/
B+ 2L — ok = —8nGa?oT, (2.21)
a

/
B+ 61+ 2%(}/ +61) — 2% =
—24wGa®(p + p)o. (2.22)

Here, the quantities 6, Z; and o were previously introduced in Section |1.5.1) and denote the
divergence of the fluid's velocity, the traceless component of the tensor Tj and the shear

stress respectively, see Eqs. (1.86]) and (1.92).

Let us consider a fluid moving with a small coordinate velocity v* = dx’/dr, then, v* can
be treated as a perturbation of the same order as the energy density, pressure and metric
perturbations. Hence, as we have seen in Section [1.5.1] considering the perturbations to
linear order of the energy-momentum tensor, with vanishing anisotropic shear perturbation

33, Eqs. (1.83)-(1.85), the perturbed part of energy-momentum conservation equations
") =0 in the k-space leads to the equations

‘' h' B op B
¥ =—-(1+w) (0 + 2) 3H (5,0 w) J, (2.23)
0 — 11— 3w)d — — g OOy (2.24)

14+ w 1+ w

where H = da'/a = aH = a. Assuming strictly adiabatic contributions to the perturbations,
the speed of sound for the fluid is

op p 1 a
Cs (Sp ;0 ,72 C2f0 + ab ’ ( )
and the time variation of w is
w' = =3H(1+w)(c2 —w). (2.26)

Lt has been pointed out that linear perturbations may not be sufficient to treat unified dark sector models,
and a method to do so has been proposed in [42].
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Hence, inserting these last two equations in (2.23) and ([2.24)), they become

/

§=—(14w) (0 + %) — 3H(c? — w)d, (2.27)

2

0 = —H(1—32)0 + 1i—5wk25. (2.28)

Besides, using equations ([2.19), (2.21)), (1.83) and (1.85) we arrive at

R+ HK + 3H?*(1 + 3c2)6 = 0. (2.29)

At early times, when the overall fluid has. w =~ 0, the effective fluid perturbations evolve
similarly to those of ordinary dust, with # = 6 = 0, a ~ t*/3, and from Egs. 1} and

(2.29) we obtain
-3
& + M — 57{25 =0 (2.30)

and 6 = cit' 4 ct?/3, where ¢; and ¢, are arbitrary integration constants. In this dust
dominated era the perturbation grows as d ~ a, showing an initial unstable phase compatible
with the observation that the primordial universe would have tiny perturbations which seeded
the formation of structures in the universe. Conclusions about the clustering capabilities of
other cosmic settings with DBI fluids have been studied in [37].

At late times, we are interested in finding the evolution of the linear scalar perturbations
for any mode k. To this end we write the second order differential equation for the density
perturbation 4, see [30]:

5" 4 11+ 6(c2 — w)[Ho + [9((;3 —w)PH? + 3(F — w)H + 3(2 — w)(H + H?)

+2k* — 2(1 +3c¢2) (1 + w)’}#} § = —3c2(1 + w)Hé. (2.31)

\%
Taking into account that in the late time regime the scale factor behaves as a x eV 3t we
can calculate H

H=d/a=axa. (2.32)

Considering the expression of v given by Eq. ([2.14]), one obtains the late-time expansion

in terms of 1/a for p, p, w, cz, w’ and H. In this way, replacing these expansions in Egs.

(2.28) and (2.31)) and keeping only the most significant terms one gets
8" + 13H + [9(c — w)*H* +2(c? — w)H* + 2k*] 6 = =32 (1 + w)HHY2.33)
Vok2ab

c2

o =216+ . (2:34)

From Egs. (2.33)) and (2.34]) the evolution of the perturbation becomes mode dependent
with the k%/H? term, and for low energy modes their solutions can be obtained assuming a
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power law dependence of the perturbations with the scale factor, 6 oc @™ and 6 o a®. In
this case the approximate solutions are given by

0 ~ 90&2, (235)
01 0y 04

where 6, d; and J, are integration constants while ¢, is a function of ¢y, ¢ and V4. This
shows that the coupling to # in Eq. can be neglected for all scales we are interested
on. We also find that the energy density perturbation decreases for large cosmological times
for modes satisfying the condition k?/H? < 1. For high energy modes, k*/H? > 1, Eq.
is like the equation of motion of a dissipative mechanical system. This resemblance
emerges using the analogy with the classical potential problem

d{g

Il — 12
15 +V(5)] 13167, (2.37)

where

k262
T2
As for any mode k the potential V has a minimum at 6 = 0, the function inside the square
bracket in Eq. is a Liapunov function and the perturbation decreases asymptotically
reaching 6 = 0 in the limit ¢ — oo.

V(5) (2.38)

2.3 Observational constraints

Once the behaviour of the model has been well studied, it is time to set constraints on its
parameters from a Bayesian perspective, see Section for details. Our analysis will use
geometrical tests: the SN Type la luminosity test, the CMB shift test with WMAP5-year
data [146), 287], and the BAO test [208] as it has been detailed in Sections [1.6.1]
and . As these two last tests involve early universe quantities (the sound horizon at
decoupling and dragging epochs), one must consider a slightly more general setup and
include radiation, which must be conserved independently from the DBI fluid. This way, the
Friedmann equation for a flat universe turns out to be

3H? — ! <\/1 + 2, (%)6 - 1) + Vo + pro (%)4 (2.39)

In terms of the fractional energy densities and the redshift we have

H2

_ 5 4
i \/Q§+Q§(1+z)6+QA+QT(1+z) ,
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where
Q= 1 (2.40)
T 3HZf, '
foVo —1
Oy ==~ 2.41
AT U3HR S (2.41)
Pro
Q, = SH2 and (2.42)
C2f0
L= 2.4
3Hg ( 3)

The latter are subject to the normalization condition

O+ Q=1 (2.44)

In addition, the CMB and BAO tests require that we identify a combination of parameters
which behaves effectively as €2, in the high energy regime. In our case this mimicry is
played by €.

As a approach to this model, we are setting constraints only on 2. and €2¢. In contrast,
we fix a prior for €, taking the WMAP 5-year best fit, {2, = 0.0432 [146]. Using the
tests mentioned before in the framework of Bayesian statistics, one should minimize the
corresponding x? function in order to obtain €. and Q, see Section .

We have used two different compilations for SNla data: ESSENCE [77] 150], which
combines the first results of the survey [292] with the results of Riess et al. detected
by the HST [222] and UNION [148], a vast sample which brings together 414 SN from
13 independent datasets: recent samples (SLS, ESSENCE), old datasets and distant
supernovae from the HST. In the case of the UNION sample, the best values obtained
are Q. = 0.25670018, QO = 0.16070 1%, and for the ESSENCE sample Q. = 0.25770013
and ; = 0.20275377 with the corresponding 68.30% uncertainties. The lines in the upper
regions of the plots in Fig. represent the locations on the parameter space which
correspond to Chaplygin gas cases and the points in each of the lines indicate the case with
the lowest x? value. From visual inspection one can infer that the Chaplygin gas is rejected
by our model. In contrast, ACDM (the ©; = 0 locations) is not significantly excluded, as
for a certain range of 2,,, ACDM cases lie in the 68.30% likelihood credible interval. All in
all, our model provides better fits.

With the aim of compensating for the arbitrariness in the choice of priors when one
computes the evidence, Eq. ([1.7.2), we explore different priors on €, and Q. In the case of
Q2. we have the guidance of all the literature of constraints on dark energy, which more or
less suggests preferred regions. To take advantage of this, we explore four priors of different
lengths, all centered at the value €. = 0.25. In contrast, to illustrate the effect of changing
the prior on {2f, which is a new parameter on which we have no previous clues, we divide
the physically allowed region 2y € [0.00, 1.0] into four equal intervals. From Fig. and
Tab. one can conclude that among the priors considered, the region Q; [0.00, 0.25],
Q. € [0.24,0.26] gives the best constraints for the parameters.
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Figure 2.2: Credible intervals from the combination of SN+CMB~+BAQO constraints for two
different SN compilation samples.

2.4 Model kinematics

As this is a new model, it is worth examining it from different perspectives, the kinematic one
being specially relevant. We investigate the redshift dependence of the effective equation of
state parameter, w(z), and derived quantities such as the acceleration parameter, ¢(z), or
the redshift at which the transition from a decelerated to an accelerated universe transition
occurs, 2. In order to obtain the behavior of w(z), we use the expression that relates it
with the Friedman equation [194] 231

2dIn H
141
w(z) = 3 dz

- (%)2941 L

(2.45)

In our model it takes the form

(2(1+2)* = 300) /(1 + 2)° + 0 - 30,2

w(z) =
3\/QC2<1 + 2)8 + Q (Qr<1 +2)t = Qe(142)3 + O + \/93(1 +2)0 + Qﬁ)

(2.46)

Analyzing the redshift dependence of the equation of state parameter we can see that
the current observational data in the context of our model restrict it to be smaller than
-1, w(z) < —1 with dw/dz|,_, > 0 for the current time. More precisely, we obtain w(z =
0) = —1.052%00%:, dw/dz|,_, = 0.081705 with the UNION sample and w(z = 0) =
—1.07415:0%3, dw/dz|,_, = 0.07413975 with the ESSENCE sample, with the uncertainties
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(a) UNION
| Q. €[0.24,0.26] | Q.€[0.23,027] | Q. €[0.26,0.28] [ Q. € [0.25,0.29] |
Q; € [0.00,0.25] 4.534-107" 2.655 - 10~ 7.797 107 2.258 - 10~
Q; €10.25,0.50] 2.060 - 107" 5.970 - 10~ 1.242-10°™ 7.289 - 1077
Q; €[0.50,0.75] 4.312- 1078 1.667-1077° 3.760 - 107™ 4.681-107™
Q; € 1[0.75,1.00] 5.250 - 107100 6.557 - 1079 8.821-107%8 2.975-107™
(b) ESSENCE
. €10.24,0. . €10.23,0. . €10.26, 0. . €10.25,0.
Q. €[0.24,0.26 Q. €[0.23,0.27 Q. €[0.26,0.28 Q. €[0.25,0.29
Qf € [0.00,0.25] 2.052-10~% 1.194-107% 3.359 - 1040 1.003 - 10~%
Q; € [0.25,0.50] 1.750 - 10746 4.628 - 10716 9.751 - 10746 5.798 - 10746
Q; €10.50,0.75] 3.435 - 1075 6.867 - 10750 9.742 - 10748 1.058 - 10747
Q; €10.75,1.00] 8.433-107" 4.257-107%2 2.501-107% 4.115-10752

Table 2.1: Bayesian evidences for our unified dark energy DBl model from the combination of

SN+CMB+BAO observations for two different SN compilation samples.

(a) UNION

(b) ESSENCE

Figure 2.3: 3D representation of Bayesian evidences for our unified dark energy DBl model from
the combination of SN+CMB+BAO observations for two different SN compilation

samples.
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Figure 2.4: Variation of the equation of state parameter with the redshift for two different SN

compilations.
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Figure 2.5: Variation of the acceleration parameter with the redshift for two different SN compi-
lations.
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corresponding to the 68.30% interval of confidence.
In addition, we study the acceleration parameter, ¢(z), which for instance can be expressed

q(z) = g (1 - QC(;I——;Z)> w(z) + % (2.47)

Figs. and depict the shape of the equation of state and acceleration parameters with
their corresponding 68.30% and 95.45% error bands. From the analysis of the acceleration
parameter we gather that there is a strong evidence of the transition from a deceleration to
an acceleration stage. For a better insight on this matter, we have inferred in different ways
the redshift at which the transition happens.

Since we have an expression for ¢(z),

302(1+ 2)°
¢Q?+Qﬂ1+@6 1

2 (1 — R+ -, +Q.(1+2)" + \/Q§+Qg(1+z)6> ’

we can directly compute the redshift at which the acceleration parameter vanishes, ¢(z;) = 0,
to obtain the transition redshift, z;. For the ESSENCE compilation of SNla we have
z = 0.76670043, and for the UNION sample z; = 0.77870 035,

In [221] another approach was proposed. It requires an expansion of the acceleration
parameter, ¢(z), into two terms:

(14 2) | 49Q,(1+2)* +

q(z) = (2.48)

dgq
— = 2.4
q(2) qo+zdzzz0 (2.49)

Under this definition, we get 2, = 0.6497( 079 with the UNION sample and z; = 0.65070 (32
with the ESSENCE sample. These results are in good agreement with the results obtained
in [109] 221], 285].

Yet another parametrization was considered in [70, [297]:

4(2) =+ a (2.50)

1+2’
where g9 = q(z = 0) is the value of the deceleration parameter at present and ¢ is the
parameter that contains the correction in the distant past (lim, ., ¢(z) = go+¢q for z > 0).
With this parametrization we get that the value of the transition redshift is z; = 0.67475 00
for ESSENCE and z; = 0.69775 055 for UNION.

As the value of 2, obtained directly by the explicit equation is bigger that the
approximate one, we infer that the approximations are not good enough for accounting
accurately for the tendency of our DBI fluid to induce a phantom stage. The result obtained
by our procedure tells us that the acceleration-deceleration transition happens before than
the other definitions allow to estimate.
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2.5 Conclusions

Here we have proposed a new alternative to the popular models which attempt at a unification
of dark matter and dark energy components of the Universe. This new model stems from a
purely kinetic DBI action, and therefore suggest that these non-canonical actions, which
have been resorted to as a way to model the early acceleration in the Universe, can also
serve the same purpose for the late time acceleration. The transition from an H? ~ a3
regime to a de Sitter phase is realized with a single fluid, so this is a novel scenario and
demands a perturbative analysis of its own. We can summarize the results as follows. At
early times, the divergence of the velocity perturbation is negligible, whereas the energy
density perturbation is a growing one, thus signaling the initial unstable phase required
for the onset of structures. At late times, the velocity and energy density perturbations
decouple, and the latter becomes negligible as the Universe becomes dominated by vacuum
energy.

The observational analysis suggests that our model presents some attractive features
which extend its value beyond the theoretical perspective. To begin with, current constraints
show our model is by far better suited to the observations that the most popular unified dark
sector model: the Chaplygin gas [35, [138]. Our results also indicate a modest preference
of our model as compared to the ACDM one. Perhaps the most remarkable outcome of
this observational analysis is that the best fit corresponds to a phantom behaviour, i.e. the
effective equation of state parameter wqg lies at present below the —1 line. It must be
remembered that this behaviour is achieved without actually having to resort to a genuine
phantom component, so we do not have to be concerned with the associated instabilities.

This study, which has been carried out from different relevant angles and the results
achieved, convinces us that our model represents a worthy model for the unification of the
dark sector, reinforces the theoretical interests of DBl models by extending the range of
interest to the late Universe, and suggests the interest of exploring generalizations of this
model, probably by relaxing the assumption of a purely kinetic Lagrangian, as perhaps further
degrees of freedom would allow an even better suitability to astronomical observations.
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CHAPTER 3

‘OSCILLATIONS IN THE DARK ENERGY
EQUATION OF STATE: NEW MCMC
LESSONS

the present dynamical state of the Universe. High quality data coming from the

Hubble diagram of Type la Supernovae [16, 58| 221]; the measurements of cluster
properties as the mass, the correlation function and the evolution with redshift of their
abundance [17, [18] 91} 283]; the optical surveys of large scale structure [60, 90| 212]; the
anisotropies of the cosmic microwave background [78], [261]; the cosmic shear measured from
weak lensing surveys [216], [282] and the Lyman - « forest absorption [68] [189] are evidences
toward an apparently clear picture of our universe at present which is characterised by: .
spatial flatness, Il. a subcritical matter content, Ill. and accelerated expansion.

We have nowadays a great amount of independent data sets available for studying

But the clarity of this sketch poses a more interesting and deeper question: how can we
interpret all these features in the framework of a self-consistent theoretical cosmological
model? This is the main task of modern cosmology, and no unique answers have been given
so far.

The ACDM model is, from a statistical point of view, the simplest and the most accepted;
it is called concordance model just for this reason. In this scenario, acceleration is driven
by the famous cosmological constant, A, as was detailed in Sec. [1.4.1] this component
represents the major contribution to the energy/matter content of the Universe. At the
same time, it requires the presence of a large amount of cold dark matter which does
not interact with electromagnetic radiation, but it is detectable only by its gravitational
interaction with ordinary baryonic matter. This model provides a good fit to most of the
data [233, [239] [274], giving a reliable snapshot of the current Universe; but it is also affected
by serious theoretical shortcomings that have motivated the search for alternative candidates
generically referred to as dark energy or quintessence. Such models range from conventional
scalar fields rolling down self-interaction potentials, to non-canonical scalar field models
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(phantom, k-essence,etc.); from phenomenological unified models of dark energy and dark
matter to alternative gravity theories [64] 199, 202].

Unfortunately, so many data are not yet able to give us a definitive answer about the origin
and nature of the acceleration of the Universe; and neither able to to solve the coincidence
problem nor to state what the right EoS of dark energy is.

Regarding the EoS, using current data one typically will only be able to infer that the
dark energy effective EoS parameter w is close to —1 at present. But any small deviation
from this value could give a different theoretical scenario: if it is exactly equal to —1, when
of course referring to observational errors, we have a cosmological constant; if it is larger
than —1, we have a quintessence model; while if it is smaller than —1 we have the so
called phantom dark energy as was detailed. In addition, the data seem to indicate that the
fractional energy densities of the two main components of the Universe, i.e. dark matter
and dark energy, are very similar at present, and the label “coincidence problem” has been
coined to refer to this striking similarity.

In Sec. we have already seen that one of the most interesting solutions proposed
to try and throw some light on these questions is oscillating dark energy ([81], 98] 229]).
Such a model can easily solve the coincidence problem in a very natural way due to periods
of acceleration, and can be also used as a good candidate for the unification of the late
time acceleration (the one observed at present) with inflation (an early time acceleration
period). In this context we have to underline the difference between assessing a periodic or
non-monotonic potential and an oscillating dark energy EoS. In many cases such potentials
do not give rise to a periodic w; one example can be found in [101], where the proposed
field is clearly periodic, but the derived w can be well described by the CPL parametrization
for dark energy introduced in [55] and [174] and given by Eq. (1.53).

In this chapter we are going to follow the method from [175], by examining some directly
proposed phenomenological periodic equations of state for the dark energy using different
cosmological observations. Specifically, we are going to set constraints on the location of
the centre of the range about which w oscillates. We will also constraint the amplitude of
the oscillations and the fractional energy density of matter.

Actually, in the models to be considered there is another important parameter, the
frequency of the oscillation. Relevant though it is, leaving this parameter completely free
leads to a high-dimensionality statistical problem, but given the precision of the data available
at present, it seems that problems of that sort cannot be tackled satisfactorily. As it has
been already pointed out, there is not enough quality in the present data to constrain more
than two dark energy parameters [177), 269]. In the literature on oscillating dark energy, the
usual practice has been choosing a specific single value of this oscillation frequency and
stick with it. In order to fix it one may resort to an argument by [175], which suggests the
lowest bound on this frequency to be able to discriminate an oscillating behaviour from a
monotonic one for the data in use. We wish to carry out here a more thorough study of
oscillating dark energy than previous works, and to this end we choose a discrete set of
values of the frequency (above and below that bound), and then obtain constraints on the
rest of parameters. Relaxing assumptions on the frequency, as compared to previous works,
will allow us to draw stronger conclusions; yet this is not the only novelty of our analysis, as
will be shown in what follows.
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Figure 3.1: Credible intervals of the different observational data sets: green ones correspond to
GRBs, purple to Hubble parameter data, orange to SNela and blue to the combination
of all observational data. To construct these contour plots we have considered a prior
on Q,, and wg from WMAP-5years.

In this exploration of possible oscillating patterns in the expansion of the Universe induced
scenarios which display a similar start off to the popular oscillating model by Linder [175],
but then depart from it as their amplitude gets smaller as z grows and the distance between
nodes tends to converge to a specific value. In this direction, we propose a pair of models
in which dark energy oscillations are modelled via special functions. Comparison between
models of that sort and the usual trigonometric parametrization provides hints about which
features in the oscillations are favoured or disfavoured.

Moreover, the present work innovates in another direction: we choose a combination
of datasets with interesting characteristics: we combine the statistically most powerful
dataset available, the luminosity measurements of SNela, with other datasets: the luminosity
measurements of Gamma Ray Bursts and direct measures of the Hubble parameter. GRBs
are particularly useful for the study of oscillating models, as they typically inform us of
higher redshifts than supernovae data, so they improve the capability for detecting oscillating
features, at lower frequencies, if they exist. In addition, the inclusion of the direct Hubble
data can, in principle, enhance the sensitivity of our tests to the presence of oscillations, as
the use of these data does not involve an averaging of the inverse of the Hubble factor, and
then a possible smoothing of the oscillations is partially compensated for. Another point
in favour of the usage of this particular combination of three datasets is the rather good
concordance among them (see Fig. , which applies at least for the case of a constant w
quintessence, and therefore seems a priori a property that will be shared by models with a
dynamical EoS parameter.
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3.1 Oscillating dark energy

3.1.1 Our parametrizations

We have just presented motivations for studying oscillating dark energy. In general, in order
to infer conclusions about the dynamical behaviour of dark energy and its consequences in the
expansion of the Universe, one has to make some concessions to try and make the best out
of a collection of noisy scattered data. It has been pointed out that one of the most popular
is to propose a parametric reconstruction obeying some basic requirements. Our proposal fits
precisely in this kind of approach, and in order to examine the adequacy of oscillating patterns
in the dark energy EoS we consider a simple and periodic phenomenological parametrization
for the EoS, as proposed and studied in [175]:

w(a) =w, — Asin(Blna — 0). (3.1)
Equation (3.1)) describes evolutionary dark energy with
e O being the phase of the oscillation, which for simplicity is assumed to be zero.

e w,. being the centre of the range about which w(a) oscillates. In the © = 0 case the
parameter w,. is equal to the present value of the dark energy EoS, w(a =1) = w, =
wo-

e A being the amplitude of the oscillations, which obviously must be non zero for a
dynamical w. If this EoS is the effective realisation of a canonical scalar field, A
should fulfil the constrain wy — A > —1 ; but we leave it completely free and let the
observational data speak out its value.

e B being the frequency of the oscillations; and there are some key remarks to be made
about it. In order to notice distinctly the presence of an oscillatory behaviour B should
fulfil the condition

| B1n apin| > 2, (3.2)

where a,,,;, is given by the highest redshift in the dataset. For our observational data
this value is associated with a GRB at z = 5.6, for which we infer the constraint
B > 3.3. Nevertheless, as SNela represent by far the dataset with the largest statistical
power in our analysis and they span a smaller redshift range, it seems reasonable that
an oscillating pattern will be only detectable for larger values of B.

Previous works have attempted to set constraints in these parameters, but they have not
been able to distinguish an oscillatory model from one with a constant EoS. This is partly
due to the data sets employed, but also because of excessive restrictions on the parameters.

In this new attempt at exploring oscillating dark energy we use a new combination of data
sets so as to obtain more reliable constraints, but we also make a few other key changes:
specifically we carry out an analysis for a discrete set of fixed B values to try and avoid the
arbitrariness in the choice of this parameter present in works by other authors.
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In addition, and given the lack of grounds for very strong restrictions on phenomenological
parametrizations of dark energy we have analysed two more models which represent a
slight departure from the perhaps excessively nicely shaped trigonometric parametrization
by Linder. Our first proposal in this direction is

w(a) =w, — A Ji(Blna — 0), (3.3)

where again we have set the phase © = 0 so that w. = wy, and J, is the Bessel function of
the first kind with n = 1. The Bessel function J;(z) shows oscillations which are damped
with growing x, as opposed to the constant amplitude of the trigonometric case. So, in
this case, the EoS parameter w would have an oscillating trend modulated by a damping
effect which makes the amplitude smaller and smaller as we go back in time (in the redshift
space).

As we have to set observational constraints on parameters, we have to compute the
Hubble factor, which in the flat case takes the form

H?(a) = Qa4 (1 — Q,,)a30+0@), (3.4)

In this case, it only depends on the present value of the fractional matter density €2, and
on the averaged equation of state parameter

L foln(a) w(a)dIn(a)
w(a) = n(a)

(3.5)

So, we will work at some points with this expression of the EoS parameter instead of the
usual one. It can be noticed that for the two parametrizations presented above the averaged
forms follow a common pattern; for example, the parametrization given by the Eq. (3.1]

takes the form
Acos(Blna) —1

w(a) = wy 5 n(a) : (3.6)
whereas the parametrization given by Eq. (3.3]) reads
A Jy(B1 -1
w(a) = wy Ah(Blna) - 1 (3.7)

B In(a)
With Eq. (3.7)) and Eq. (3.6) as a reference, we propose another parametrization with a

damped oscillating behaviour:
A(r/2)H_1(Blna)—1
B In(a) ’

w(a) = wy (3.8)
where wy is the value of the EoS at present, and H_; is the Struve function, H,, of order
« = —1. The Struve function lies between the trigonometric case, with constant amplitude,
and the Bessel function, being less acutely damped than the Bessel function. It can be
checked that the w(a) function for this new proposal is an oscillating one as well, so this
new model fits is the aim of the discussion.
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3.1. Oscillating dark energy

Anyway, we have to underline that our three w models depend on Ina (i.e. In(1 + 2)),
so these effects are quite smoothed and not so evident when depicted on even a large
redshift interval such as the one limited by the re-ionisation one (z = 1089). However, such
parametrizations, as first shown by [175], allow for analytical expressions of H(z) (see Eq.
(3.5))) and thus result convenient for evaluation purposes.

Interestingly, as we will discuss later, the main consequences of an oscillating equation of
state are more evident on the deceleration ¢(z) function than on the Hubble function or the
dark energy fractional density ().

3.1.2 Earlier Works

In [222] an interesting observational clue of a possible oscillating behaviour in the EoS was
found. Indications that such oscillations might be really present were found fitting a quartic
polynomial of w(z) to SNela observations. Even though the redshift range where these
oscillations seem to be present is actually rather small; these results motivated a plethora of
works trying to analyse this possibility deeper.

In [294] the formulation
w(z) = wo + wy sin(z), (3.9)

was used to model a quintom scenario phenomenologically. The analysis was conducted
using luminosity distances of SNela, the CMB shift parameter and the linear growth rate
from large scale structure. The best fit values found combining all these data sets were
wy = —1.33, wy = 1.47. Such oscillating model differs very little from the linear one
(w(z) = wy + w1 2) when considering constraints from SNela only, and the oscillating case
is only mildly preferred. This was somehow to be expected, as for low redshifts the two
parametrizations are very similar. Note that, as in this study the oscillation frequency was
fixed to a specific value, we meet again the difficulties to make general inferences.

An extension of the latter was done in [295], where
w(a) = wo + wy sin (wy Ina + ws) , (3.10)

was proposed, therefore now including also a period and a phase. One further degree of
sophistication was introduced in the analysis as it was carried out using a modified version
of CosmoMC so as to take into account dark energy perturbations. The results indicate that
wq is acceptably well constrained, while w; is poorly constrained, and ws and w3 can be
regarded as completely unconstrained. This is not surprising, though, as highly dimensional
parametrizations of dark energy seem to suffer this problem typically, given the precision of
observational data at present.

In [296] constraints on the cosmological parameters of some oscillating models were anal-
ysed using simulated data from future Planck measurements. Two different parametrizations

of the dark energy EoS were used, the CPL one, Eq. (1.53), but in terms of the scale factor:

w(a) =wy+wy (1 —a), (3.11)
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and a reformulation of the [175] oscillating one,
w(a) = wy + wy sin(ws In (a)), (3.12)

having fixed the phase parameter to zero. In addition, one further choice was made: for
simplicity and for focusing the analysis on low redshifts, the period parameter was fixed as
wy = 3m/2 (because it corresponds to a period in the redshift range 0 < z < 2 where data
from supernovae are more robust). Then the authors used present data from WMAP3-year
[262], ESSENCE SNela [77], SDSS [90] to derive best fit values for the EoS parameters
which are assumed as the fiducial values for deriving constraints from Planck mission details.
The following results were obtained for the CPL EoS:

_ 40.15+0.36 _ +0.56240.781
wo = —1.0375 13 g6, w1 = —1.0374 58771 5705 (3.13)
whereas these were the results for the oscillating model:
_ +0.320+0.534 _ +0.5614+1.037
wo = —0.98175330 074, w1 = —0.068 4750, 17515 (3.14)

Assuming the CPL EoS they were able to conclude that a Quintom scenario with a
w(z) which crosses the phantom divide is favoured against the ACDM scenario (it is
mildly favoured with present data while future surveys would provide narrower constrains).
Assuming the oscillating EoS the same conclusion can be derived, even if the constraints
are weaker, and the low value for the amplitude of oscillation makes the constant w(z) (i.e.
ACDM model) equally possible.

For what concerns the oscillating model, these results are backed up in [178], where the
following 68% CL values were obtained:

wy = —0.958 & 0.098,  Waymp = 0.0301)735. (3.15)

From these results one can conclude that the EoS fit with current data provides as good as
ACDM, and that the oscillation amplitude is limited: |wg,,| < 0.232 at 95%CL.

An oscillating model different from the one proposed by Linder is analysed in [129]
(inspired by a previous idea in [98]). The authors used SNela, the CMB shift parameter and
the measurement of the BAO peak from SDSS [90] in order to constrain the sine version of
the oscillating EoS written in the form

w(a) = wy — Asin(Blna), (3.16)

and the alternative
w(a) = —cos(blna). (3.17)

The frequency parameter b in the second model drives the accelerating/decelerating epochs,
and in the small b limit one has w(a) ~ —1.

Final results show that b = 0.06 £ 0.01 at 1o level, a value which is consistent with limits
required by the CMB and a correct power spectrum, and which represents a clear evidence
for an oscillating behaviour with a very long period (i.e. small but clear deviation from a
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cosmological constant).

Another interesting work is [I5I], where many different EoS were compared with a
Bayesian approach. They worked with the so called linear EoS, i.e. CPL model; with
pure oscillating models, the cosine one, w(z) = wycos(w.In(1 + 2)), and the sine one,
w(z) = —1 + wo sin(ws In(1 + 2)); with a damped version of previous oscillating models,
w(z) = wo(1 + 2)3 cos(w, In(1 + 2)) or w(z) = —1 + wo(1 + 2)3sin(ws In(1 + 2)); and
with a more complicated version of the dark energy EoS directly derived from the dynamics
of the phantom scalar field (see reference for details). Analysing the values of the Bayesian
evidences obtained fitting data (SNela, CMB, BAO) for each particular model, and comparing
them with the Jeffreys’ scale [131], they concluded that there is a substantial evidence for
preferring the pure oscillating model (sine) and the one derived from phantom field dynamics
over the linear one, while damped versions are completely excluded. In addition, they found
no strong evidence to favour ACDM over the oscillating models.

As it has been stated previously, completely different approaches are possible as well;
for example, in [227] the starting point was an oscillating model for H(z) instead of w(z).
Finally, it is possible to consider oscillating fields, which do not necessarily produce an
oscillating EoS [101].

3.2 Observational data

We have tested the possible periodicity of the Hubble function, Eq. (3.4]), by using three
different observational data sets, i.e.:

e the reconstructed Hubble data given in [266];
e the Constitution Supernovae data set described in [117];

e the Gamma Ray Bursts luminosity distances measured and analysed in [145].

3.2.1 Hubble parameter: Stern et al. 2009 data set

Recently, in [266] an update of the Hubble function H(z) data extracted from differential
ages of passively evolving galaxies previously published in [249] was presented. Constraining
the background evolution of the Universe using these data is interesting for several reasons.
Firstly, they can be used together with other cosmological tests in order to get useful
consistency checks or tighter constraints on models. Secondly, and more importantly, in
contrast to standard candle luminosity distances or standard ruler angular diameter distances,
the Hubble function is not integrated over. This is a key point because if a periodic behaviour
is present in w(a) it should be directly detectable in H(a) while it could be lost in luminosity
or angular diameter distances because of integration stages.

The Hubble parameter dependence on the differential age of the Universe in terms of
redshift is given by

1 dz

14 zdt

H(z) =

(3.18)
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Thus, H(z) can be determined from measurements of dt/dz. As reported in [133], [134],
[249] and [266], values of dt/dz can be computed using absolute ages of passively evolving
galaxies.

The galaxy spectral data used by [266] come from observations of bright cluster galaxies
done with the Keck/LRIS instrument (see [267] for a detailed description of the observations,
reductions and the catalogue of all the measured redshifts). The purposely planned Keck-
survey observations have been extended with other datasets: SDSS improvements in
calibration available in the Public Data Release 6 (DR6) have been applied to data in
[134]; the SPICES infrared-selected galaxies sample in [265]; and the VVDIS survey by the
VLT /ESO telescope in [156].

The authors of these references bin together galaxies with a redshift separation which is
small enough so that the galaxies in the bin have roughly the same age; then, they calculate
age differences between bins which have a small age difference which is at the same time
larger than the error in the age itself [266]. The outcome of this process is a set of 11 values
of the Hubble parameter versus redshift. A particularly nice feature of this test is that the
sensitivity of differential ages to systematic error is lower than in the case of absolute ages
[135].

Observed values of H(z) can be used to estimate DE parameters by minimising the
quantity

2 (o, (01)) — 3 LG5 (00) — How(2))" (319)

= ofi(2)

where Hy = 100 h will be fixed as h = 0.742 ([223]), while the vector of model parameters,
0;, will be 0; = (Q,, wo, A, B) here in this case.

3.2.2 Supernovae: Hicken et al. 2009 data set

We use one of the most recent SNela samples, the Constitution sample described in [117],
which is a data set obtained by combining the Union data set by [148] with new 90 nearby
objects from the CfA3 release described in [117].

The Union SNela compilation is a data set of low-redshift nearby-Hubble-flow SNela,
and is built with new analysis procedures for working with several heterogeneous SNela
compilations. It includes 13 independent sets with SNela from the SCP, High-z Supernovae
Search (HZSNS) team, Supernovae Legacy Survey and ESSENCE Survey, the older data
sets, as well as the recently extended data set of distant supernovae observed with HST.
After various selection cuts were applied in order to create a homogeneous and high-signal-
to-noise data set, a final collection of 307 SNela events distributed over the redshift interval
0.15 < z < 1.55 was obtained.

The CfA3 data set was originally made of 185 multi-band optical SNela light curves
obtained at the F.L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics
(CfA); 90 of the original 185 objects passed the quality cuts of [148] and were added to the
Union data set to form the Constitution one.

The statistical analysis of the Constitution SNela sample rests on the definition of the
distance modulus, p(z), which is directly related to the Hubble free luminosity distance,
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D(z), as it is detailed in Sec. [1.6.1] The best fits to be presented will be obtained by
minimising the quantity x2x (1o, {6;}). However it will have to be marginalised over i,
which encodes the Hubble parameter and the absolute magnitude M. Thus, giving the
heterogeneous origin of the Constitution data set, and the procedures described in [148]
and [117] for reducing data, we have worked with an alternative version, Eq. (1.106]), which
is already minimised with respect to .

3.2.3 GRBs: Kodama et al. 2008 data set

The GRBs sample, described in [145], is made of 33 GRBs within the redshift interval
z < 1.62, and 30 GRBs in the redshift interval 1.8 < 2z < 5.6. It is well known that
GRBs are not standard candles as SNela; at the same time they contain a lot of important
information about high redshift properties of the Universe which cannot be derived from
SNela. So their combined use can bring important and complementary information about
the reconstruction of dark energy and gives us the possibility to detect eventually traces
of an oscillatory behaviour on a larger redshift range. The calibration of GRB data can be
done in several ways, but here we follow the prescriptions given in Sec. using the
peak energy-peak luminosity correlation described by the Yonetoku relation [298]. Thus,
the chi-square function of GRBs data will be that given by Eq. (1.109).

3.3 Constraints and assumptions

We will explore the posterior probability distributions of our problem with the Markov Chain
Monte Carlo (MCMC) method, described previously in Sec. [1.7.5 with the corresponding
convergence test to check the validity of our chains, i.e. if our MCMC chain is large enough
to obtain a good estimation of the parameters.

With the aim to improve results, we have implemented a few priors for running our MCMC
chains. The main one has been to set the control 0 < 2,,, < 1, which is a minimum physical
requirement. We have also set mild Gaussian priors on €2, and wy with the 3¢ error bar
from WMAPS5-year [146] as a reference.

As we stated in the previous sections it would be possible to set physical limits on the
parameters of the oscillating model, such as A and B. The amplitude A should have a
value which depends on the theoretical scenario chosen to be the fiducial one. In the case
of ACDM, one could require that the minimum value for the EoS was wg— A > —1. But it
is clear that with this case will exclude the possibility of a phantom behaviour, which is a
scenario present data do not rule out, and in some cases seem to be the preferred one. For
that reason we regard leaving A free as the best option.

At the same time, the frequency (period) parameter B should be subject to | B In ay,,| >
2m. The highest redshift of our observational data corresponds to a GRB observation at
z = 5.6. For that choice, B should be B > 3.3. As we have no strong clues a priori about
the validity of a periodic oscillating EoS, there is scarce guidance regarding a suitable lower
bound on B. We could have oscillations with a period bound given by the highest redshift in
the supernovae data, so in this case we would have B > 5.7; or we could have no detectable
oscillations at all in our redshift range, so that a really small value of B could turn out to
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be the best fit. In addition, rigorously the bound on B we are commenting about proposed
in [175] makes only sense for the sine oscillating model, which has a valid definition for the
oscillation period, and not for the other two models. However, also in these cases the B
parameter can be related to periodic properties of the dark EoS parameter, so we treated it
on the same footing in the analysis of the three models.

There is also another problem concerning the number of free parameters one introduces
in @ model. In our case we would have a dark energy EoS with three free parameters,
namely wy, A and B, which become four parameters because of the presence of €2, in the
expression for the Hubble function and luminosity distance. This poses a well known problem
in reconstructing or modeling the EoS with parametric relations: how many parameters can
we inquire about? Following the Occam’s razor prescription one could be tempted to choose
the minimalistic option: models with few parameters are the best ones. But sometimes this
could be a physically not good choice: complex systems could require complex analytical
formulas and a large number of parameters could describe a more suitable behaviour of dark
energy. It is also possible that not all the parameters introduced are really free, and there is
a correlation/dependence between some of them; but this cannot be known a priori when
proposing a new model.

The only solution is to decide depending on the physical problem one has to face with. In
preliminary runs we left all the parameters free, but it soon emerged that there is a strong
degeneracy between some of them, mainly between A and B. While €2,, and wy were well
constrained, the two main parameters of our oscillating models showed a degeneracy which
made them eventually unconstrained, and yielded no satisfactory information about our
proposed EoS.

So we turned to another way to proceed: we fixed the value of B to a set of discrete values
scanning entirely the range of values which could potentially lead to detectable oscillations
of our observable functions given the criteria discussed above.

3.4 Results

Tables [3.3), and summarize our results. As ours is a more exhaustive analysis than
previous ones in the literature, it is clear that we can draw stronger conclusions. The main
one is that current data do not seem to give as strong constraints on A as on the other
parameters €1,,, and wy, but a clear trend in A can be guessed, which becomes quite evident
in Fig. [3.3(a)] A fit of A as a function of B using a linear relation turns out to be the best
one for the sine model; whereas, for the Bessel and Struve function a quadratic relation is
preferred.

If we pay attention to the behaviour of wy, which is the present value of the EoS, we see
that it is very well constrained. There is a slight difference between the sine and the Bessel
or Struve cases, but in all cases we can exclude phantom like behaviour at 1o level; the
prior does not in principle hinder it as it is rather weak. In Fig. , we can see that
the behaviour for wy as a function of B agrees with the tendency of the amplitude A: as
B grows the value of A becomes more negative so wy moves to less negative values, see
Eq. and Eq. (3.1). If we explore by means of fits how w and B are related, we find
the same pattern as for A, the linear fit is preferred for the EoS with a sine form, and the
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Figure 3.2: In these figures we plot the redshift-variation of the EoS and the acceleration for the
best values of the parametrizations. The colors have the same meaning of Figs. .
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Figure 3.3:

In these figures we plot the free parameters €),,, A, wy and the reduced x? value
versus the fixed B value for the different models. The blue points refer to the sine
model Eq. ,' the red ones to the Bessel model Eq. , and the green ones to

The gray line in Fig. and Fig. corresponds

the Struve model Eq.(3.8).
to ACDM values. In Fig.
error that describe ACDM.

3.3

the gray region indicates the values of §),,, within 1o
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quadratic one for the EoS with the Bessel or Struve function.

The remaining parameter, €2,,, is very well constrained and fully agrees with the expected
values in the literature, being 2, ~ 0.25 and this value changes negligibly with B, see Fig.
33(c)

So, with the current data it seems that B cannot be really constrained, that is, all B
values seem to be of similar statistical validity. We have a very slight preference for values
which are different from those chosen by other authors. Generally, the chosen value is
B = 37/2 as corresponds to the typical supernovae redshift range. In our analysis the
lowest value of for x? does not correspond to that value of B; for the sine and Struve
models the minimum is for B = 117/6 which means that we can detect oscillations within
a redshift z ~ 1.98, comprised by our data. For the Bessel oscillating model we have a ?
minimum value at B = 27/3 which will need a redshift z ~ 19.09, which is outside of our
observational data range. Fig. reflects clearly these behaviours: the best values, from
the statistical point of view, for the sine and Struve models allow us to detect a complete
oscillation in the range of our observational data.

Nevertheless, focusing our attention on Fig. [3.3(d)| we can see that for almost all the
values of the frequency, B, the values of x? of the sine parametrization are smaller than
those of others parametrizations. If we take this into account together with the fact that
the best value of this parametrization corresponds to a B = 117/6, we could say that
observational data show a preference for a periodic EoS with a small period.

At the same time, if we look at the variation of the acceleration parameter Fig. in
the recent past we can observe that it has recently peaked and is slowing down at present
as have been pointed in [244].

Moving to the statistical side of the analysis, we have to argue if the proposed models are
reasonably good or not, and above all if they can compete with the the concordance ACDM
model. From our results we conclude an oscillating pattern in dark energy is an admissible
possibility, as there is so far no concluding evidence against it; and from some statistical
perspectives they even represent a better option that its main competitor, ACDM. Tables
summarizes our findings on the statistical side.

If we take a look at the reduced chi-square values, we can see that all the models have
lower values than the ACDM one, even if the differences are really small. In particular, the
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[Model | x> | xZ%a | AAIC,| ABIC | ARIC, [ ADIC, |
ACDM | 507.7003 | 1.0802 | 0 0 0 0
Sine | 504.6550 | 1.0783 | 0.9975 | 9.2687 | —1.0282 | 1.9145
Bessel | 505.4669 | 1.0801 | 1.8094 | 10.0806 | —0.2163 | 2.0344
Struve | 505.0848 | 1.0792 | 1.4273 | 9.6985 | —0.5984 | 2.0023

Table 3.4: Statistical criteria

sine model seems the best one. If we take a look to the AIC,. values, we see that the sine
model is just in a border line position if we consider the limit we discussed in Section [1.7.6),
i.e. AAIC 2 1. On the contrary, we should absolutely reject the Bessel and Struve models.
But the situation changes when considering RIC.: we know that it has a small penalty than
AIC. when N >> £k as it is in our case, where we have N = 472 and k = 3. And we see
that its values favour the oscillating models with respect of ACDM; they are even negative,
meaning that the RIC, of oscillating parametrizations are better.

The situation reverses again when moving to BIC; if we compare the values obtained with
the Jeffreys’ scale, we should conclude that there is an almost decisive evidence against
oscillating patterns. But we have to remember that BIC has some problem when facing
degeneracies between parameters, like the behaviours of the amplitude and of wy seem to
reflect.

These degeneracies would well be the reason of the “bad results” offered by BIC, which is
also challenged by another criterion, DIC, which looks more favourable with oscillating dark
energy. Since DIC relies also on the Bayesian approach, we can apply Jeffreys' scale to it in
the same fashion as above, and from this we conclude there is not a significant evidence
against oscillations.

3.5 Conclusions

In this work we have performed a quite detailed analysis towards the detection of oscillating
patterns in the dark energy EoS. We have considered different phenomenological models,
starting from the original sine models and then introducing two new ones, based on the
special functions. Those new models differ from the sine one mainly because they show a
damped amplitude in the oscillations when moving into the past.

Compared to prior works devoted to oscillating dark energy we can highlight that fact
that instead of fixing the frequency parameter to a particular value, we have explored a
discrete set of frequency values.

We have also introduced some novelty with respect to the datasets used, as we take
direct measurements of the Hubble factor and GRB luminosity data, which are arguably
two directions of improvement, as the sensitivity to oscillating patterns gets increased and a
wider redshift range comes into play. Our theoretical setup has been complemented with a
detailed statistical analysis using different model selection tools.

Numerical results show that while parameters like the matter content, €2,,,, and the present
value of dark energy EoS, wy, can be constrained very well, this is not true for the amplitude
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and the frequency. In particular, between the amplitude A and wq a degeneracy that cannot
be solved seems to be working. About the frequency, we can say that x? values are not
really in favour of a particular value, being all in a very narrow range. But the best values
favour values of the frequency which mean detectable oscillations inside the present redshift
range of SNela.

The statistical analysis does not seem to provide such a conclusive answer as desirable,
though we think that oscillations can be considered as a possible alternative to a ACDM
model for addressing the well know problems it suffers from. All but one (BIC) of the
statistical criteria used considered here are keen to the possible detection of oscillations
in the EoS, there is even one of them (RIC) which seems to favour an oscillating pattern
against a cosmological constant.
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CHAPTER 4

- SNEIA AND BAO CONSTRAINTS ON
(NEW) POLYNOMIAL DARK ENERGY
PARAMETRIZATIONS: CURRENT
RESULTS AND FORECASTS

velocity, and this fact was brought to light by SNela observations [16], 210} 220, 221].

We have seen that this accelerated expansion, which today is confirmed by many
other independent observations, can be explained postulating the existence of a “new”
component in the Universe, the so called “dark energy”, which represents the major fraction
of the energy/masa content of the Universe, and would counteract the effects of the
gravitational attraction produced by ordinary contents. In this context, although the simplest
model, ACDM, agrees rather well with observational data, there are still some points it
cannot describe. Thus, this situation has motivated the appearance of other models with a
slightly time-variable dark energy as the agent producing the cosmic acceleration. Many
of them have emerged along theoretical approaches as quintessence, Chaplygin gas, etc.
However, as we have seen in the previous chapter, another natural way to address this
situation is to study an effective parametrization of the dark energy equation of state.
In Chapter [3| we have proposed an oscillating equation of state, but we have seen this
kind of parametrizations are not strongly favoured by observational data to became a firm
alternative to a ACDM model. This allows considering alternatives, here we propose two
new polynomial parametrizations of dark energy and we will argue their interest later. As
before, we will perform cosmological tests to compare them to the most popular dark
energy parametrization in the literature, both in its classical fashion and a new, improved
reformulation. But in this case we resort to several criteria to perform our comparison: in
addition to the x? value, we also pay attention to the correlation of the coefficients, figure
of merit, fractional errors on the free dark energy parameters and the deviance information

I\/l ore than a decade ago it was discovered that the Universe is expanding with increasing
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criterion (DIC). The reason for an analysis from several perspectives is that we find y? to
be an insufficiently informative tool, as it does not offer any reward upon some important
improvements like tighter constraints or lower correlation.

Our tests make use of SNela and BAO, which are so far the best representatives in the
categories of standard candles and standard rulers. Such probes provide us with distance
measures related to the Hubble factor H(z), and as they are low redshift datasets, their
suitability for constraining dark energy is strong, as this component of the cosmic soup has
began to govern the evolution of the Universe just recently, according to most evidences. This
combination has additional advantages: SNela measurements come in the form of luminosity
distances and therefore give a smeared out information on H(z) (two integrations are
required) but still remain extremely useful because of the large number of measurements and
their considerably good quality. On the other hand, BAO measurements, though currently
scarce, involve 1/H(z) directly, so they are expected to favour sensitivity considerably,
besides being of even better quality than SNela data. In principle, one could also consider
including CMB data, but typically they do not improve constraints on dark energy parameters
significantly (WMAP7-year data alone constrain w in quiessence models with about a 40%
error [147]), and the dark matter density €2, is generally the only parameter on which those
data exert a strong impact. A good compromise between simplicity and advantages offered
by CMB as regards €2, is the use of priors, and that is the approach we use.

Interestingly, we will not only use the latest observational data to obtain the constraints on
the parameters of the models, but we will also consider mock data simulating a forthcoming
survey. We present mock datasets for the two main measurable quantities expected from a
line-of-sight, high-resolution spectroscopic baryon acoustic oscillations survey [32, 205, 218]E].

We combine these data with synthetic pre-WFIRST (Wide-Field Infrared Survey Telescope)
supernovae data to throw further light on the constraining power and suitability of the
parametrizations proposed, so we are allowed to strengthen our conclusions.

4.1 Dark energy parametrizations

The Friedman equations ([1.12]) and explain how an homogeneous and isotropic
universe expands in the context of General Relativity (or generalizations). It is well proved
that at present, the two main fluids which fill the Universe are dark matter and dark energy,
the last being the governor. Dark energy can enter our picture in an effective way represented
by a phenomenological equation of state (EoS), w(z) = pge/pae, Which determines the
Hubble parameter H(z), given by Eq. which is written in terms of the dark energy
density function as described by Eq. ({1.52)), which is the exponential of an averaged EoS.

Considering the huge number of contributions to the topic, and the knowledge so far
gathered, it might seem hard to make improvements, but we believe some avenues opened
by Y. Wang in [286] are worth exploring and allow for modest, yet valuable, advances
towards parametrizations that make the best out of the data available. Questions like the
most convenient choice of the two dark energy parameters or the most suitable model
comparison criterion are worth being looked at once and again, particularly to build a more

http://sci.esa.int/euclid
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solid background to make the most out of future data and their expected far better statistical
value.

The quest to delineate the expansion history of the Universe is expected to make big
ambitious moves in the future. As a result it is expected that many more and better
observational data will be available. Obviously it is worth getting prepared to making the
best profit out of this avalanche of data to come, and this can be done by learning as much as
possible from the data we already have. With the aim of obtaining from observational data
the most exact information about dark energy, we do not only have to be able to recognize
witch model fits better with reality, but also to provide the most accurate interpretation of
the results. In that direction, it is extremely important to choose previously a dark energy
parametrization with clear rewards: model parameters with a clear physical meaning and
low correlation between them, which at the same time have to show their capability to be
tightly constrained. Suitability criteria for parameters along those grounds can be sketched
with the help of comparison tools rewarding for those nice features. The (frequentist) FoM
favours low correlation, whereas the (Bayesian) DIC does not only favour that feature, but
it also rewards for tight constraints also, so both these criteria (FoM and DIC) do poorly
when high correlation is present in the dark energy parametrization one considers. In this
respect, one must make a fair use of those statistical tools. For instance, if one performs
a reparametrization of a certain scenario, the FoOM and DIC as calculated for both cases
will typically be direct indicators of improvements (or worsenings) in terms of correlation,
but changes in the value of those quantities should not be held in the same grounds as the
changes occurring when constraining the same single parametrization with two different
datasets.

Although the CPL parametrization, Eq. is widely used, its parameters {wg, w,}
suffer from quite a significant correlation, besides the fact that constraints on w, are typically
large in percentual terms. However, as it presents nice features, a convenient redefinition
as concerns those two issues was put forward to yield an improved situation, although the
encoded information remains exactly the same. As mentioned, this was done in [286], where
a new dark energy description was given in terms of its value at present, wy, and at redshift
2z = 0.5, wys. Explicitly, Eq. was proposed, and it represents a rearrangement of
the classic CPL parametrization with a lower correlation between the parameters. Thus, it
allows us to obtain tight constrains on parameters with a clear interpretation, just in the
spirit of making an optimal use of observational data from future surveys.

The results of this work reinforce the view that Eq. is a preferred way of exploiting
the CPL parametrization, and on the other hand we suggest, with the help of two new
parametrizations, that the wy, wq 5 couple is indeed a very good choice despite the specifics of
the dark energy evolution, provided it is smooth enough and with bounded early asymptotic
behaviour.

4.1.1 Polynomial parametrizations

The two proposals we are making are somewhat inspired on the one hand by the CPL
parametrization, and on the other hand by an a proposal consisting in a expansion in powers
of the quantity (1 + z) which emerged naturally from the relationship between the redshift
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and the scale factor and showed computationally convenience. This second inspiring setup
we are referring to was proposed for the first time in [289] in the form

w(z) = —1+c(1+2) + (1 + 2)° (4.1)

However, this sort of parametrization poses problems at high redshifts, as |w(z)| grows
unboundedly with z, and one will either end up with a superphantom model or a superluminal
one. This motivates considering generalizations which are devoid of this pathology and may
match or event surpass the nicety of CPL or its reformulation (recall Eq. )

Two possible routes that retain some similarity with the previous case but also bring some
improvements arise from

w(z) = =1+ a(l+ f(2) + el + f(2)", (4.2)
with f(z) a smooth and at the same time simple function, or from

w(z) = =1+ cgi(l+ f(2) +c262(1 + f(2)), (4.3)

where g; and g, are some smooth and simple functions as well.

Conventional polynomial

In the spirit of the first scheme above we propose

K
14z

f(2) (4.4)

so we avoid high-redshift unboundedness by the same via as in CPL. Therefore we have

(2)=—-1+ 1+ : + 1+ =\ (4.5)
WiE = “ 1+2) 7 1+2) " '

which we dub conventional polynomial parametrization. If more compactness is desired one
can also write the latter as

w(z) =—-14¢ (1112;) + ¢ (1 T 22)2. (4.6)

1+ 2

It is convenient to leave out the constant term of value —1 from the computational point of
view because as one does not expect a large departure from a ACDM setting, it is reasonable
to confine (at least initially) the parameter search region to |c;| < 1 and to |co| < 1.
However, as we have discussed already, it is desirable to fit parameters which are more or
less physically transparent and which in addition are just lightly correlated. At a first stage
we wish to compare our conventional polynomial parametrization with Wang's, so the best
way to do so is to consider exactly the same two dark energy parameters. Then, at a later
stage, we will check whether the good behaviour as correlation is concerned is shared by
our parametrization. With those arguments in mind we reformulate the proposal made in

88



Chapter 4. SNela and BAO constraints on (new) polynomial dark energy parametrizations

Eq. (4.6) by letting

1
C1 = 1(16’11}0 — 911)0.5 + 7), (47)
9 -3
co = —3wy + w0+ (4'8)

This way, we move on to a scenario in which wy and w5 are the parameters subject to
estimation, which can be explicitly reconstructed using Eq. (1.52)):

3z(wq(522440)—9wq 5(52+4)+72+4) )

X(2) = (14 2)3hvoromstn( = , (49)

which consistently comes down to the ACDM case for wg = w5 = —1.

For completeness and purposes related to model selection, it is convenient to compute
and effective w, parameter for this model. By analogy with the CPL case we define

w,, = lim w(z) — w, (4.10)
Z—>00
so in this case 9 1
Wq = —5’11)0 + 5’11)0.5 — 5 (411)

is the result we get.

Chebychev polynomial parametrization

Now we want to make a further generalisation in the fashion of our general proposal above,
by considering a bit more involved functions. In this case we make use of Chebychev
polynomials of the first kind, which have a significant role in most areas of numerical
analysis, as well as in other areas of Mathematics (polynomial approximation, numerical
integration, and pseudo spectral methods for partial differential equation, etc.)

Once again we have to take into account that we cannot constrain accurately more than
two dark energy parameters [177], thus we have cut the expansion at the second order.
Specifically we propose

w(z) = —1+ e Ti(1+ £(2)) + eTa(1 + f(2)), (4.12)

with 7, being the first kind Chebyshev polynomial of degree n and f(z) = z/(1 + z) as
before. A convenient presentation of that parametrization is

1422 1+22)\2
=-1 2 —1]. 4.1
IU(Z) +Cl(1+z)+62 <1+2) ] ( 3)
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In this case too we switch to more amenable parameters and then let

1
c1 = ﬁ(23w0 - 9w0‘5 + 14) (414)
3
Cy = _ﬁ(4w0 — 3UJO,5 + 1) (415)

Then, one should simply resort to Eq. (1.52) to produce the whole scenario:

3 3z(w((682456)—9wq 5(62+5)+142411)
X(Z) _ (1 + Z)—Z(52w0—45w0‘5+7)€( 4(1+2)2 )

(4.16)

For this first attempt at depicting a dark energy dominated universe in terms of Chebyshev
polynomials we choose wy and wy 5 as our parameters, but it would be not surprising than
one could do better if some extra work was done in the direction of making parameter
correlation smaller. For the time being we just pursue to compare directly our polynomial
proposal with a preferred presentation of the CPL parametrization on the one hand and
with our conventional polynomial proposal on the other hand.

In that direction, and as it has been done before, we compute an effective w, parameter
which in this case takes the form

1

Some additional remarks

In the first place, these two new routes can be viewed as perturbations of ACDM, particularly,
at low redshifts, which is the region most accurately described by the current data. If one
wants to perturb ACDM in either the CPL or the Wang scenarios wy has to be anchored
at —1, and then there is only one free parameter to play with. In contrast, our two new
models may model two-parametric departures from ACDM, and thus have more flexibility in
principle.

Note that it would be possible to consider the two new parametrizations along with CPL
(Wang) if one let the parameter space have one more dimension. Indeed, if we let our
parametrization be of the form

w(z):bl+b2(1+2z>+b3(1+2z>2, (4.18)

1+z2 1+z2
then our conventional polynomial case would be obtained for by = —1, b, = c1, and b3 = ¢3;
the Chebyshev case would follow from the choice by = ¢y, b3 = 2¢9 and by = —(1 + ¢3);

and finally the CPL case would be obtained from b; = wy — w,, by = w, and b3 = 0.

4.2 Pivot computation

Provided wg 5 = w|,—¢.5 for our new parametrizations, let us try to find the value of w,, the
parameter least correlated with wy. Following the ideas discussed in Sec. of Chapter
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[1, we will obtain the values of w, in terms of wy and w5 for the models proposed.

4.2.1 Chebyshev polynomial
For our Chebyshev polynomial parametrization we have

1

=11 (—6aZ(4wo — 3wo5 + 1) + ac(73wy — 63w 5 + 10) — 38wy + 45wg 5 — 4) .

(4.19)
Following the same straightforward calculation as for Wang's case we conclude there will be
minimal correlation for

We

/7290 (wo, wo.5)% — 21420 (wo, wo.5)0 (wo)? + 16810 (we)* + 630 (wo, wo.5) — 730 (w)?

N 12(30’(11)0,21]0.5) — 40’(’&)0)2) ’
(4.20)

which corresponds to z. = 0.17,0.28 respectively for real and synthetic data. Sticking to

our notation here o(wy, wy5) denotes the non-diagonal element of the covariance matrix

of wy and wg 5. But one can just want to meet the less restrictive requirement oy, < 012,

which follows provided

Qe

(3ac — 2)(6a. — 17)o12 < (24a? — T3a. + 38) o5 - (4.21)

4.2.2 Conventional polynomial

Finally, following the same steps as before, but this time considering the conventional
polynomial parametrization we have
1

we = 7(4(2 = 3ac)(ac = 2)wo + 9(ac = 2)(ac = Dwos + (2 = 3ac)ac + 3ac — 2). (4.22)

The same route as for the two previous cases drives us to the conclusion that the minimal
correlation situation is achieved for

. 90 (wo, wo.5)

Qe = g (w2 20 (W0 Wos) = 120 (wo)?, (4.23)

which corresponds to z. = 0.18,0.29 respectively for real and synthetic data. Here the
meaning of oo is exactly the same as in the case before. Finally, one can deduce the

condition for the less restrictive requirement oo, < o12 to happen is simply

%(7 —3a.)(2 — 3a.)o12 < (2 — 3a.)(2 — a.)op. (4.24)

4.3 Observational data

As dark energy is expected to have started to dominate at recent times, low redshift datasets
are the obvious choice to put the tightest constraints on each dynamics, whereas high
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redshift ones may be viewed as complementary. Thus, the combination of SNela and BAO
datasets, given their quality in both cases, and the considerable number of data points in
the case of the SNela, is an excellent choice given the state of the art. Besides, new avenues
on BAO [23] are to be open soon which will allow to exploit the tremendous potential
of this new astronomical tool towards constraining the main evolutionary features of dark
energy. As we have already mentioned, one of our objectives is to introduce new promising
parametrizations as alternatives to one of the commonest, but one of the other objectives is
to forecast how the old parametrizations and our challengers will cope with new data.

The literature provides a large number of papers where simulated supernovae data are
used in the way we have just mentioned, but to our knowledge synthetic baryon acoustic
oscillations data have only been presented and exploited in [96]. This builds on considerable
theoretical efforts in different forecast aspects [46], which have crystallized in the package
Initiative for Cosmology (iCosmo)? [217] and its BAO modules, which have allowed us to
produce these mock data. We have modified and extended this general purpose software to
produce mock data from a line of sight, high-precision BAO spectroscopic survey as the one
described in [205]F and pre-WFIRST supernovae data.

4.3.1 Baryon Acoustic Oscillations

Measurements of the cosmic distance-redshift relation have always constituted one of the
most important quantities to probe cosmology of the Universe. In that direction, and as it has
been detailed in Sec. [1.6.4] some years ago another way to map the distance-redshift relation
appeared. It was based on the measurement of BAOs in the large-scale clustering pattern of
galaxies and it is a promising a cosmological standard ruler. One of its characteristics is
that it enables precise measurements of the dark energy parameters.

In this work we will make us of two different data sets: one with the latest real data given
by [209] and as a first time, a mock sample with represents the forecast of the future BAO
survey, EUCLID. In what follows we will give details about these samples.

Percival et al.

In [209] Gaussian values on the distance ratio, 7(2darag)/Dv (2), at redshifts z = 0.2 and
z = 0.35, are given from the measurements obtained by combining the spectroscopic Sloan
Digital Sky Survey (SDSS) and the Two-Degree Field Galaxy Redshift Survey (2DFGRS)
data. This distance ratio represents the comoving sound horizon at the baryon dragging
epoch, zgag, Over the effective distance Dy (z), see Egs. (1.128)) and ((1.127)).

In order to estimate the dark energy parameters in the context of Bayesian statistics, as
detailed in Section [1.7} we need a definition of the x? which reflects the difference between
the observational data and the values given by our models. In our case, this requires giving
an expression for the comoving sound horizon at the baryon dragging epoch, and we have

used the fitting formula proposed in [88], Eq. (1.129).

2http: //www.icosmo.org/
3http://sci.esa.int/euclid
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Table 4.1: Mock BAO data from EUCLID
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Figure 4.1: Fractional errors on synthetic BAO data for y (a) and y' (b).

Now, taking into account the Gaussian values at z = 0.2 and 0.35 from the BAO data in
[209], we can calculate

Xbao = (vi — 0P )(CTHE (v — 0PA0) (4.25)
where
v = Ts(zdragagmagb;0)7 Ts(zdragan7Qb;0) ’ (426)
vBA9 = (0.1905,0.1097) (4.27)
and
-1 30124  —17227
C = ( —17227 86977 )’ (4.28)

being the inverse of the covariance matrix.
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High precision spectroscopic redshift surveys

Future BAO surveys are expected to represent a real breakthrough in our knowledge of
dark energy. In [205] is proposed a survey to measure spectroscopic redshifts for 6.1 x 107
luminous galaxies and clusters of galaxies out to redshift z = 2 over 20000 deg?, reaching
a dz/(1+ z) < 0.001, enough to resolve the BAO feature along the line of sight, and
achieving much better dark energy constraints than their predecessors.

We have used the Initiative for Cosmology (iCosmo) software package to generate the
BAO mock data. In this case we are concerned with the following two signatures of the
BAO peak:

y(z) = = (4.29)

r'(z) _ ¢/H(z2)

C ro(Zree)  Ts(Zree)

(4.30)

The publicly available code has built-in routines based on the universal BAO fitting formulae
for the diagonal errors on y and ¢ presented in [46]. Once we have made the proper
modifications of the code to replace the defaults (Peacock and Dodds [201] power spectrum
and Smail et al. [252] galaxy distribution) with the survey properties (those quoted above
and besides z,,.q ~ 0.46, redshift range 0.1 < z < 0.9), we have written extra codes to
generate a large number of normal random realizations around a fiducial model which is
specifically the wecdm+sz+lens case from WMAPT-year [147], which has €2,,, = 0.26 + 0.099
and is phantom-like with w = —1.12 4+ 0.43., Then, after some reduction, the synthetic
BAO data presented in Table have been obtained. In addition, in the corresponding >
we have introduced priors based on the values of the matter and baryon density presented in
[49] as a forecast analysis of Planck: using the result 2,,h% = 0.1308 4- 0.0008 we construct
a weak Gaussian prior, whereas with €,h? = 0.0223 we construct a fixed prior. In both
cases we use h = 0.742 as is given by [223]. See as well Fig. for a graphical account of
the features of our BAO simulated data.

In this case we need an expression for the sound horizon at recombination to constrain
the dark energy parameters:

c ar da 1
S(a,) = , 4.31
ro(ar) mm{/ (@ +ag) P L+ R)7 (4:31)

which can be evaluated as described by Eq. ({1.121f). The redshift of recombination z. is
given by [124] in the following fitting formula given by Eq. ((1.117)). Thus, the x* function
for BAO mock data is now defined as

Nmock Nmock’

1 (Y(2 Qny W3 0) = Yumoek (%)) (' (255 Qny U3 0) = Yroer (25))°

XBao(0) = T [ > ’ p ety : 02 -

Pyy j=1 Y,J j=1 y'.J
Nmoc

-9 Dy’ Zk (y(zj7 Qm? Qb; 0) - ymock(zj))(y/(zja Qm7 Qb; 0) — y;nock<zj>> (4 32)

Y,y ' O-yjo'y/ ] ? N

]:1 P P
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where N, is the number of mock data, in this case 4, and 8 = 04, 60,, ... are the dark
energy model parameters. Here we have conveniently accounted for the slight degree
of correlation existing between y and ¥/, and as suggested in [242], we will fix for our
calculations p, ,» = 0.4.

4.3.2 Type la Supernovae

Type la supernovae are the explosions that take place at late stages of the stellar evolution.
They have been recognized as a powerful probe of cosmological dynamics, as they give a
good measure of the cosmological expansion rate. Supernovae provided the first probe for
the cosmological expansion [210, 220] and are considered standard candles [159].

The statistical analysis of such SNela samples has been carefully detailed in Section [1.6.1]
please refer to this section to see the complete procedure we have followed.

Union2

Union2 [10] is one of the largest Type la Supernovae samples up to date, and it consists of
557 SNela and covers a redshift range from 0 to 1.4. This sample has increased the number
of well-measured Type la supernovae of the previous Union [148] at high redshifts by the
combination of different data sets. The Union Sample has been extended with six Type la
supernovae presented in [10], the SNela from [11], the low-z and intermediate-z data from
[117] and [121] respectively.

This sample has been obtained after some improvements in the Union analysis chain: all
light curves have been fitted using a single light curve fitter (SALT2) to eliminate differences
and systematic errors have been directly computed using the effect they have on the distance
modulus.

Mock data for a pre-WFIRST stage

To create SNela mock samples we have reproduced the pre-WFIRST observational situation
as reported in [8], which has two population peaks, one at z < 0.1 and the other at
0.6 < z < 0.7; along with a very scarce population at z > 1.6. Specifically, the redshift
distribution suggested in [8] is reproduced here in Table [4.2]

The formulae for errors on SNela magnitudes that we use follows from a prescription used
in the binning approach [128) [144] 278], in which they are calculated as follows:

O;ﬁ = \/0i2nt + O]%ec + ngst ) (433)
where:

e 0;,; = 0.15 is the intrinsic dispersion in magnitude per SNela, assumed to be constant
and independent of redshift for all well-designed surveys;

® 0, = 50,/(In(10)cz) is the error due to the uncertainty in the SNela peculiar velocity,
with o, = 500 km/s, ¢ is the velocity of light and z is the redshift for any SNela;
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| redshift bin | # of SNela |

< 0.1 500
0.1-0.2 200
0.2-0.3 320
0.3—-04 445
0.4—-0.5 580
0.5—-0.6 660
0.6 -0.7 700
0.7—-0.8 670
0.8—-0.9 110
09-1.0 80
1.0-1.1 25
1.1-1.2 16
1.2-1.3 16
1.3-14 4
1.4—-15 4
1.0 -1.6 4

> 1.6 4

Table 4.2: Redshift distribution of pre-Wfirst SNela samples

® 04yt = 0.02(2/2maz) is the floor uncertainty related to all the irreducible systematic
errors with cannot be reduced statistically by increasing the number of observations.
The value 0.02 is conservative from the perspective of what space-based missions could
achieve. Those are precisely the resources expected to provide high-redshift SNela,
which are in turn the ones in which the systematic error term is expected to contribute.
Note as well that z,,,. is the maximum observable redshift in the considered mission
and this linear term in redshift is used to account for the dependence with redshift
of many of the possible systematic error sources (for example the Malmquist bias or
gravitational lensing effects).

We have included some extra, though very slight, noise, and then we have checked that
our mock data are compliant with the main features of the Union2 sample. The fiducial
model used is again the wedm+sz-+lens case from WMAP7-year as quoted above, which
has 2,, = 0.26 & 0.099 and is phantom-like with w = —1.12 4= 0.43. The x? function
for the SNela mock data has been constructed as described in Sec. . Then we
have let iCosmo generate the d values for the redshifts in the table a large number of
universes drawn randomly and normally distributed around the fiducial one, and finally we
have performed a reduction to give our mock sample.
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Figure 4.2: Mock data obtained with iCosmo for the pre-WFIRST specifications.

4.4 Results

Following Bayesian Statistics, we have inferred the values €2,,, and the dark energy parameters
for the models considered using the Grid Method and the Levenberg-Marquadt algorithm for
the minimization of the total 2. For further details see Sec. [1.7.4, We report our findings
in two main ways: on the one hand we present our best fits, errors and derived quantities in
Tables [4.3] [4.4} on the other hand we present credible contours obtained after a numerical
marginalization over €2,,, where we have approximated the likelihood as a Gaussian and
then have marginalized analytically,

2= —2log ( /0 1 exp(—x2/2)de) : (4.34)

see [273] and references therein. The limits in the integral are dictated by the physical range
of €2,,,. As mentioned, we have considered the combination of real and mock SNela and BAO
data as discussed above, and in addition we have introduced in all cases a Gaussian prior
on €, and Q; deduced in [49] as a forecast analysis of Planck: €,,h? = 0.1308 = 0.0008,
Qp, = 0.0223 with h = 0.742 as is given by [223].

The presence of the prior leads to uniformity in the best fit value of 2, thus minorating
its influence in the dark energy constraints. This trick, together with the marginalization,
allows to focus the discussion on the dark energy parameters, thus offering a clearer picture
of what each parametrization can offer.

Let us now examine our results using different criteria. First of all, uncertainties in
percentage terms on the dark energy parameters can be considered. The conventional
polynomial turns out to give the lowest percentage error on wy for both current and recent
data, and the second best is the Chebyshev setting, although we only get a marginal
difference with respect to the conventional polynomial and Wang's model. The situation
gets reversed, though, for the percentage error on wy 5, and Wang's parametrization is the
best performer, but again differences are small when compared to our parametrizations (CPL
gets excluded from this discussion item, as the parameter wy 5 is not considered).
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Model Xin Qo Dark energy parameters | FoMyyang P12 DIC
(FOMDETF)

CPL 544.91 | 0.315 £ 0.033 | wo = —1.033 + 0.180 14.16 —0.930 | 10.30
we = —0.742 +1.520 (14.16)

Wang 544.91 | 0.315 £ 0.033 | wo = —1.033 + 0.180 42.47 —0.792 | 8.11
wos = —1.281 + 0.361 (14.16)

Chebychev P. | 544.96 | 0.314 £ 0.032 | wy = —1.049 £+ 0.163 43.63 —0.785 | 8.02
wos = —1.268 +0.373 (11.67)

Conventional P. | 544.98 | 0.314 +0.032 | wo = —1.055 4+ 0.157 44.11 —0.780 | 7.98

Table 4.3: Constraints on dark energy parameters and derived quantities from current data.

Model Xnvin Qun Dark energy parameters | FoMyyang P1,2 DIC
(FoMpgrr)
CPL 5320.38 | 0.269 4 0.005 | wo = —1.151 £ 0.041 616.25 —0.946 | 21.44
w, = 0.244 + 0.207 (616.25)
Wang 5320.38 | 0.269 4 0.005 | wo = —1.151 £ 0.041 1848.70 —0.712 | 11.69

wos = —1.069 £ 0.031 | (616.25)

Chebychev P. | 5320.43 | 0.260 + 0.005 | wo = —1.140 £ 0.035 | 2065.28 | —0.666 | 11.38
wos = —1.073£0.029 | (504.85)

Conventional P. | 5320.45 | 0.269 £ 0.005 | wy = —1.137 £ 0.033 2147.57 —0.648 | 11.29
wos = —1.075 £ 0.028 (477.24)

Table 4.4: Constraints on dark energy parameters and derived quantities from simulated data.
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Chapter 4. SNela and BAO constraints on (new) polynomial dark energy parametrizations

Note the substantial reduction on percentual errors when one moves from current to
mock data, typically they become almost three times smaller. Up to some degree this may
be a consequence of the use of a fiducial model in the simulated data, probably real future
data will be significantly better than current ones but perhaps not as remarkably as our
synthetic data.

Summarizing this section of the analysis, we see that, in general, choosing wy and w5
as the parameters to constrain is worthy as percentual errors are low. In our two new
parametrizations they are indeed valuable from this particular perspective, but are they as
valuable when one considers other criteria?

Another interesting point of view to interpret our results is Pearson's correlation coefficient

(for dark energy), defined as

2
%P

pl,g = (435)

01027

which can be used to study the lineal correlation between either two dark energy parameters.
Here 015 stands generically for the non-diagonal element of the covariance matrix for the
parameters 1 and 2. A value of p; o close to zero will tell us there is no correlation between
them, and lowering correlation typically improves constraints, so if a given parametrization
achieves that goal naturally then it will most likely provide an overall worthy scenario.

A related magnitude is the (frequentist) Figure-of-Merit (FoM), which has been defined
in two slightly different but related ways in the literature; one was introduced by the DETF
for the CPL parametrization, FOMpgrr; and the other one, proposed in [286] represents
an extension for a wider range of dark energy EoS parametrizations, FOMyyapg. In Section
we present both and discuss their specific features. Here we will report their values for
the benefit of the readers keener to one version or the other. According to Section [1.7.7],
the two FoMs are linearly related:

FOMDETF = mgFOMWang (436)

with m3 = 1/3,2/9,11/45 for Wang, Chebychev polynomial and Conventional polynomial
models respectively.

Our results on the FoM get summarized very simply: the conventional polynomial has the
largest value of the FOMang, Whereas the results get complete reversed for the FoMpgrr.
In addition, the ratios between the different FoMs are very similar for real and synthetic
data. However, as follows from our discussion before, the price paid to get a larger FoM
(by a redefinition) is to waive the importance of correlation, and further investigations and
reflections would be needed to provide a definite solution to this debate, which is, on the
other hand, out of the scope of this thesis.

For both sorts of data the conventional polynomial parametrization is naturally less
correlated than all three others. The second best is the Chebyshev one, and all three are
considerably less correlated than CPL. Nevertheless, even though Wang's second parameter
w. = w5 is chosen for the low degree of correlation with wy, a better choice for that purpose
would be the dark energy EOS parameter evaluated at a lower redshift (say z ~ 0.25). This
was already pointed out in [286] and confirmed in [96]. In agreement with our discussion, the
degree of correlation at a certain low redshift in our two new parametrizations immediately

99



4.4. Results

ConventionalP. ChebychevP.

w(z)
w(z)

3.0 . . . 30 . . .
0 1 2 3 4 0 1 2 3 4
redshift, z redshift, z
Conven;ionaIP. ChebyphevP.

-0.9
-1.0
N )
2 2
-1.1
0 1 2 3 4 0 1 2 3 4
redshift, z redshift, z

Figure 4.3: Total 1o error bands for w corresponding our best fits for real (a) and mock data
(b) compared with the results for the CPL parametrization (dashed lines and light

contours).
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Chapter 4. SNela and BAO constraints on (new) polynomial dark energy parametrizations

drives to very narrow errors on the total w at that location, as reflected in Fig. [4.3] where we
represent the total w for our best fits and the 1o error bands. In fact, these two figures serve
the additional purpose of illustrating the sort of evolution described by our parametrizations.
Nevertheless, as correlation is a topic worth of further consideration, we have elaborated in
Section [4.2]

Finally, the last criterion we resort to is the Bayesian deviance information criterion (DIC),
see Eq. . This is a very interesting way to examine results in this context, in
particular when one finds marginal differences in the y? values. As it has been previously
pointed out, this criterion accounts for the dependence of x? on our parameters, but it also
somehow involves the correlation and the percentual errors, thus turning out to be far more
informative and having more discerning power. When applied for model selection, as we
put forward, the setting with the lowest DIC is in principle the best. In our case, as we
are mainly concerned with dark energy issues given that €2, is very tightly constrained we
construct our DIC starting from a y? marginalized over €,,,, x2. Namely

DIC = 2x%(8) — X2(64y), (4.37)

where 8¢ denotes the set of parameters that gives the best fit.

The behaviour of the DIC follows the same pattern as the FoM (although the FoM is
not so convenient as a model selection criterion as it does not involve x?). Basically, the
conventional polynomial model is the best one, then we have the Chebyshev polynomial
model, then Wang's scenario, and finally, the CPL model closes the ranking with the highest
DIC by far.

Finally, we can see that the FoM values obtained with the mock data are typically better
than those for currently available data. This fact proves the capability of the forthcoming
surveys to describe the evolutionary features of dark energy.

4.5 Conclusions

Parameterizing dark energy in a phenomenological way offers the possibility of progressing in
the characterization of this main component of the Universe, even though its origin has not
been yet unveiled from a theoretical perspective. The extensive prior knowledge available on
the topic hints that compliance with relevant astrophysical data favours parametrizations
which are smooth and have two parameters only. A second order requirement is restraint at
high redshifts in the sense that dark energy should never redshift slower than matter, but
neither display a significant blueshift.

Given those guidelines, we have presented two new polynomial parametrizations of dark
energy and we have payed attention to some particular aspects which are important for
model selection. On the one hand we have examined the degree of correlation between the
two parameters chosen in our proposal; specifically those are the EOS values at z = 0 and
z = 0.5, which have been already shown to provide a convenient way to revisit and have
already been shown to provide a preferred way to reconsider it. On the other hand we have
resorted to a genuinely Bayesian model selection criterion, the deviance information criterion
(DIC) for a better account of the improvements that our parametrizations represent.
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Figure 4.5: Confidence contours for the four parametrizations using simulated data.
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4.5. Conclusions

The astronomical tests we have performed make use of SNela luminosity data and
the typical BAO related scales, so we have focused on low redshift probes, although our
parametrizations are suitable (as they are well behaved at high redshifts) for the analysis of
CMB constraints which we hope to address in the future.

The conclusions that have emerged from our analysis is that our new parametrizations
perform better in the sense that they allow to obtain tighter constraints on the dark energy
EQOS at present and its derivative, and they are also favoured by the statistical indicator we
mention above (DIC). The main reason why we feel they fare better than their competitors
is that they represent rather flexible perturbations of the ACDM scenario, which in many
respects still remains the best description of the accelerated universe, and not surprisingly is
often referred to as the concordance model. In contrast, either CPL or Wang are models
which when taken as perturbations of ACDM are left with one free parameter only, and
then one could expect less ability to accommodate themselves to the data.

Note as well that the datasets we have considered are not only some currently available
ones, but we have also simulated surveys to come. Un particular, it is of interest our
provision of synthetic measurements of the radial and transversal BAO scales as expected
to be obtained with the EUCLID spectroscopic survey, which as expected help us conclude
that future surveys will decrease considerably our degree of ignorance about dark energy
evolution by providing far tighter constraints that may eventually lead to the conclusion that
a cosmological constant is not the preferred candidate for dark energy.
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CHAPTER 5

IMPROVED LIMITS ON

SHORT-WAVELENGTH GRAVITATIONAL
WAVES FROM THE COSMIC MICROWAVE
BACKGROUND

taking place in the early Universe. Given the extremely small cross section of

gravitational waves (GWs), they can probe deep into the early Universe, and provide
a unique window to explore its evolution. The exact mechanisms of production of primordial
GWs are still under investigation. There are many theoretical models that predict them:
not only through quantum fluctuations during inflation [2], 43, [226], but also from cosmic
strings [74), [75], 196, 245, [246], 253], fragmentation of a scalar condensate in the context
of supersymmetry [152], brane inflation [188], causal mechanisms from phase transitions
[12] 111], 119, 120} 291], ekpyrotic models [142, [143] or pre big-bang theories [95] [103]. Such
backgrounds will involve GWs with wavelengths that extend up to our present cosmological
horizon, giving a lowest observable frequency limit of ~ 10717 — 10716 Hz.

Q primordial gravitational wave background may have been generated by processes

A measure of the amplitude of the cosmological gravitational-wave background (CGWB) at
low frequencies can be obtained from constraining a possible tensor-mode contribution to the
large-scale temperature and polarization fluctuations in the Cosmic Microwave Background
[97,[139] 238} 264]. Recent results from the Wilkinson Microwave Anisotropy Probe (WMAP)
satellite limit the amplitude of tensor fluctuations, quantified by the tensor-to-scalar ratio,
to r < 0.20 at the 95% confidence level (C. L.) [147], which translates to an upper bound
on the CGWB energy density (0, h* < 107 at frequencies ~ 1077 — 107'% Hz. At higher
frequencies, larger than ~ 107!° Hz, a bound on the CGWB can be obtained through
big-bang nucleosynthesis (BBN), see Fig. 5.1l Gravitational waves at these frequencies
would contribute to the total radiative energy density at the time of nucleosynthesis, thus a
measure of the light-element abundances can place a constraint on the CGWB. Current
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5.1. Theoretical background

observations set an upper limit at this frequency range of 10°Q,,,h? < 8.0 [71]. At the
same time, pulsars act as natural gravitational wave detectors [132], strongly constraining
the amplitude of the GW with the narrow range of frequencies, f ~ 107 — 10~® Hz, to
10°Q,h* < 1072 [281]. Large scale interferometers for gravitational wave detection (e.g.,
LIGO [3], LISA [243], VIRGO [4]) are also looking for gravitational wave signals. A recent
bound of 10°Q4,h? < 6.9 has been obtained at 10> Hz from the Laser Interferometer
Gravitational Wave Observatory (LIGO) [1].

Angular
CMB
spectrum Pul
(decoupling uisar
A o LISA
Timing
Polarization LIGO
(tensor fluctuations)
VIRGO
BBN
GEO
| | | | L
| | | | |
10717 — 10716 10719107 —10-8 1074 10?
f[Hz]

Figure 5.1: Frequency range of the different CGWB experiments.

In this work we estimate constraints on the CGWB at frequencies larger than ~ 1071° Hz
through their effect on the angular power spectrum of the CMB. This component behaves
as a non-interacting relativistic fluid, and so would modify the CMB power spectrum in
a similar way to adding extra neutrino species [254]. Given the ~ 20 hint of a neutrino
number excess seen by both the South Pole Telescope (SPT) and Atacama Cosmology
Telescope (ACT) experiments [83] [141], it is timely to consider alternatives beyond the
standard three neutrino species. Constraints on this GW background were first presented
in [254], and updated with WMAP 7-year data in [147]. We now make use of the latest
CMB data from WMAP and SPT, which currently give the tightest constraints on the
number of effective neutrinos [141]. We then use the improved limits to bind the tension
of cosmic strings that could generate this gravitational wave background. As in [254], we
do not restrict our study to the case where the GW were produced under adiabatic initial
conditions, but also study homogeneous initial conditions.

5.1 Theoretical background
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5.1.1 Effective number of neutrino species and the Cosmological
Microwave Background

As it was previously indicated in Sec. , the effective number of neutrino species, N,
represents the energy density stored in relativistic components (radiation) as

74\
1+ é (ﬁ) Neff] P, (5.1)

with p,, p,, and p, the energy densities of photons, neutrinos, and possible extra radiation
components, respectively. In this expression, all non-photon energy density is expressed in
terms of an effective number of neutrino species, Nqg. Any additional radiation density,
pz, would then typically correspond to a non-integer value of N.g. The largest effect of
increasing the radiation density on the CMB comes from a decrease in the redshift of the
matter-radiation equality, 2.4, which follows from the relation

prad:p7+pu+pm:

(5.2)

2
Nug = 3.04 4 7.44 ( i 3139 1) ,

0.1308 T + 2o

for matter density ,,,h? [146]. An increase in Nz also affects the acoustic oscillations in
the primordial photon-baryon plasma, leading to additional damping (early ISW) which will
increase the height of the first peak and a phase shift in the acoustic peak positions of the
CMB (see Sections[1.5] [1.6.3]and [22]). As noted in [147], the matter density can be better
constrained by combining observations of the CMB with late-time distance measurements
from BAO data, and a measurement of the Hubble parameter, H,. These allow the equality
redshift to be better measured, improving constraints on Ngg from small-scale CMB data.

If we assume that there are three standard neutrino flavors, Neg = 3.046 (with the small
correction due to finite temperature QED effects and neutrino flavor mixing [185]), and any
measured excess would imply an extra relativistic component. Current small-scale CMB
data show a slight preference for Nog > 3 at 95% C. L., with Nz = 4.56 £ 1.5 measured
from the Atacama Cosmology Telescope and Nqg = 3.86 4 0.84 with South Pole Telescope
data [141] in combination with WMAP data, measurements of the BAO data, and H
[83]. Combining both ACT and SPT (along with WMAP and other probes of large-scale
structure) increases the significance to Neg = 4.0 = 0.58 [255].

5.1.2 CGWB contribution to radiation

In [254] it was proposed that such an excess could be interpreted as a contribution of
gravitational waves to the radiation density, instead of neutrinos. As detailed in Sec. 35.7
of [192], it is possible to obtain an effective energy momentum tensor for the gravitational
waves as an average of the stress energy carried by several wavelengths

aw _ APk phie.)
T = ki) (5.3)
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5.1. Theoretical background

For perturbations inside the horizon, gravitational waves can be considered to be propagating
in a flat, Minkowski background. In this case, the equation of motion for the tensor
perturbation of the metric (see Sec. becomes, 9°9,h,,, = 0, whose solution is a
plane-wave h,, = R{A,,e**"}, with a wave vector k. It allows us to obtain an expression
of the effective energy-momentum tensor:

aw _ A’kuk,

= 5.4
e 327 (5:4)

which is completely the same as the energy-momentum tensor of a beam of non-interacting
massless particles. Thus, the effects on the CMB and the matter power spectra of CGWB
are equal to those produced by massless neutrinos.

Since gravitational waves with wavelengths shorter than the sound horizon at decoupling
behave as free-streaming massless particles, a limit on additional relativistic radiation can
be translated into an upper limit on the energy density of the CGWB for frequencies larger
than ~ 107! Hz. One can relate the effective " number of gravitational-wave" degrees of
freedom, Ny = Neg — 3.046, to the CGWB energy density [184]:

oo

Quuh® = / d(In f) h*Qgu(f) = 5.6 x 107 Ny (5.5)
0

5.1.3 CGWB production and cosmic string tension

The different processes which may produce a CGWB lead to different initial conditions for
perturbations in the CGWB fluid. Adiabatic initial conditions may arise from the incoherent
superposition of cusp bursts from a network of cosmic strings or superstrings (see [196], [245]
for further details). Bounds on the energy density of this radiation can then be translated
into an upper limit on the string tension, G, for a given model [74, [75, (196, 245, 246 [284].
Following the procedure given in [196] for the analytical approximation of the CGWB
produced by strings, we can relate our limit on the GW energy density to a bound on G and
the string reconnection probability, p, which is 1 for cosmic strings and < 1 for superstrings.
String loops which are smaller than the causal horizon produce a CGWB with

Quw(f) =5 x 1072Gpu/p (5.6)

whereas the CGWB produced by horizon sized loops scale as

Qo (f) & 3.2 x 1074/Gp/p. (5.7)

An alternative scenario, noted in [254], may arise when the CGWB is produced by quantum
fluctuations during a period of inflation. In this case, the perturbations may be non-adiabatic,
differing from those of other species produced through the decay of the inflation. We re-
examine the dependence on initial conditions by also considering "homogeneous” initial
conditions, as in [254]. These have no initial primordial perturbations in the CGWB energy
density in the Newtonian gauge, thus the curvature perturbation disappears when the CGWB
energy density dominates, and, in addition, it approaches the adiabatic case when the CGWB
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energy density vanishes.

5.2 Data and methodology

We use the latest measurements of the CMB power spectrum from the WMAP 7-year data
release [153] and SPT [141], which extend the previous set of data to higher multipole
moments (£ ~ 3000). These data considerably improve constraints on Neg, which will
be translated into tighter bounds on QA% To illustrate the sensitivity of these new data
to changes in N, in Fig. we show the difference between a model with N,,, = 0 and
Ngyw = 1 with the other cosmological parameters chosen so that the two models fit the
WMAP-7 data equally well. It is clear that the data from SPT covers the range where the
power spectrum is sensitive to a variation of Ngy.

We estimate the bounds on N, by varying the number of effective gravitational-wave
degrees of freedom, Ny, imposing a prior that Ny, > 0 and assuming the standard three
non-interacting massless neutrino species and by marginalizing over the standard six ACDM
parameters: the baryon energy density in units of the critical energy density, 2,72, the energy
density in cold dark matter in units of the critical energy density, Qpyh?, the angular size
of the first acoustic peak 6, the optical depth to the surface of last scattering, 7, the scalar
spectral-index, n,, and the amplitude of the scalar power-spectrum, A,. To include the
SPT data we follow the prescription presented in [141], marginalizing over three additional
parameters describing power from foregrounds and the Sunyaev-Zel'dovich effect. We use a
Markov Chain Monte Carlo (MCMC) method to estimate the probability distribution, using
the CosmoM([| software package, see [165] [166] with a modified version of CAMB?| [167]
which includes the homogeneous initial conditions for CGWB perturbations in the conformal
Newtonian gauge. We combine these CMB measurements with distance measurements from
BAO data measured at z = 0.2 and z = 0.35 from SDSS and 2dFGRS presented in [209].
We also include a prior of Hy = 74.2 £ 3.6 km/(s Mpc) on the Hubble constant [223]. The
CMB temperature and polarization spectra are obtained with CAMB for each cosmology,
and then passed to CosmoMC to obtain the joint likelihood of WMAP, SPT, BAO, and H,
as described in [I41

5.3 Results

As shown in Fig. and Table [5.1] the new combination of CMB data gives an upper limit
of Ngw < 1.56, or 10°Q.,h? < 8.71, at 95% C. L. for adiabatic initial conditions which
improves the previous upper bounds on Q1 given in [147] by a factor of 1.7. A non-zero
relativistic excess is weakly favoured at 95% C. L., with the best-fit value Ny, = 0.82£0.36.
Homogeneous initial conditions for GWs are now more strongly excluded, with N, < 0.18,
109, h? < 1.02, an improvement on the previous constraint in [253] by a factor of 3.5.
In this case, the degeneracy between the effects of CGWB and neutrinos is broken, giving

http://cosmologist.info/cosmomc/
2http://camb.info/
3Likelihood code is available at http://lambda.gsfc.nasa.gov/
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Figure 5.2: The difference between the temperature power spectrum, ACZTT, between a model
with Ngw = 0 and Ng = 1 with the other cosmological parameters chosen so that
the two models fit the WMAP-7 data equally well. The thick-line model has adiabatic
initial conditions, the dot-dashed homogeneous initial conditions. The angular range
of the SPT and WMAP 7T-year CMB data are shown.

us the stronger constraint. These bounds are now competitive with those given by BBN,
10°Qgh? < 8.0 [71] for f = 107'% Hz and LIGO, 10°Q,,h* < 6.9 at f = 10* Hz [I], but
with the benefit that this upper bound can be extended to frequencies as low as 1071 Hz.

Our constraint to the integrated CGWB energy density with adiabatic initial conditions
can be translated into a constraint on cosmic string networks, as shown in Fig.[5.4] In order

to do this we use Eq. and integrate the spectra given in Eqs. and (5.7). The lower-
bound to the CGWB spectrum produced by the string network is fom ~ 3.6 x 107 /(Gp)
Hz for horizon-sized string loops, and fi, ~ oflzelézHg for sub-horizon sized string loops,
where zq =~ 3400 is the redshift at matter-radiation equality [196]. The upper-bound is
given by the horizon size at the time of the phase-transition which produced the network,
fmax ~ @ H(Ty) = o7 MT5 /My = o MG, where T,y = /Gy, is the temperature
of the phase transition, M, is the Planck mass (see Eq. (1.73)), and o = 1 for horizon-sized
string loops [196]. With this we find that for subhorizon-sized loops our constraint becomes

G (GuM,
T [ RS <3 %1074, (5.8)

and for horizon-sized loops we have

VG [ (CuMy L
<
5 In B % 0B ) ~ 5x 1077, (5.9)

For p = 1 we obtain Gz < 2 x 1077 for horizon-sized string loops and Gu < 2.5 x 107° for
subhorizon loops. String tensions this large have already been excluded through directly
limiting a string contribution to the CMB power spectrum [27, 140}, [83], 85 279], Gu <
107% — 107", However, for lower reconnection probability, e.g. p = 0.1, the N, bound
tightens to G < 2.4 x 1072 for horizon-sized string loops. Further study is required to
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Figure 5.3: Marginalized likelihoods for Ngw and CGWB energy density, Qgwh?(x1075), for
adiabatic (left) and homogeneous (right) initial conditions, where the horizontal line
and the colored/shaded region indicate the 95 % C.L. limit.

| [ New [ 109007

Adiabatic 95% upper limits < 1.56 < 8.71
Adiabatic 68% range 0.82+0.36 | 4.8+0.2
Homogeneous 95% upper limits < 0.18 < 1.02

Table 5.1: Upper limits on Ng, and ngh2 at 95% C.L for the adiabatic and homogeneous
primordial initial conditions.

investigate constraints considering both the string contribution to the CMB power spectra,
and additional relativistic degrees of freedom.

5.4 Conclusions

We have used recent CMB data at small angular scales from SPT, in combination with
data from WMAP-7 year and the latest measures of Hy and BAO, to constrain a possible
cosmological gravitational wave background with frequencies greater than 107!% Hz. Recent
measurements of the Silk damping tail from SPT improves limits on the CGWB density
by about a factor of two. We note that the inclusion of additional measurements of the
small-scale CMB, such as from the Atacama Cosmology Telescope, do not significantly
improve the upper-limits presented here [255].

In agreement with other analyses of similar data, we find that a non-zero relativistic
energy density with adiabatic initial conditions is preferred at the 95% level [83| [141] 255].
This additional energy density could be attributed to gravitational waves with frequencies
greater than ~ 10'® Hz, or some other relativistic species (see, e.g., [259]). If we attribute
this extra relativistic energy density to gravitational waves produced by a cosmic string
network, it is interesting to note that for p = 1 the upper limits to the CGWB presented here
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Figure 5.4: The shaded region shows the 95% C. L. region which is allowed by constraints
on the CGWB from the CMB in the p — G plane for horizon-sized (solid), and
subhorizon-sized (dashed) cosmic string and superstring models with string tension G
and reconnection probability p, given a GW energy density level ngh2 =8.7x1076.
For p = 1, the CMB power spectrum limits G < 1076 — 1077,

are competitive with direct CMB constraints on the the string tension, both now requiring
Gu <1076 —107".

We have also explored how constraints on the CGWB depend on the initial conditions.
Besides the standard adiabatic initial conditions, we placed constraints on the CGWB energy
with ‘homogenous’ initial conditions [253]. The additional information on the small-scale
CMB from SPT improves upon the previous upper-limit by more than a factor of 3.5.
As opposed to an additional adiabatic relativistic component, the data do not prefer any
additional homogeneous relativistic energy density.

Finally, the situation will be greatly improved with near-future CMB observations. For
example, the Planck satellite will increase the sensitivity of these constraints by a factor of
5 for adiabatic initial conditions and a factor of 2 for homogeneous initial conditions [253].
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CHAPTER 6

OVERALL CONCLUSIONS

nature of dark energy. As a first approach, in Chapter 2 a new unified model for the

dark sector has been presented and investigated. In Chapters 3 and 4 the dark energy
has been tackled form a new perspective, and new parametrizations of the dark energy
equation of state have been proposed. Finally, in Chapter 5, through CMB data, a step
further has been given in the physics of the early universe, and constraints on the excess
of the radiation energy density have been set. Moreover, an explanation of this effect has
been given: this excess can be attributed to the primordial gravitational wave background
produced by cosmic strings. In what follows details on the conclusions obtained will be
summarized.

—I—he main aim of this thesis has been to go further and obtain some new hints of the

Chapter 2 focuses on the study from different views of a new unified model based on
a purely kinetic DBI action. This model unifies the dark sector, dark matter and dark
energy, in a single fluid. After proving it mimics matter at early times and that a de Sitter
regime is recovered at late times, its capability to create structures is studied through a
perturbational analysis. An initial domination of the energy density perturbation seeds
the initial unstable phase required to initiate the formation of structures. As the Universe
becomes dominated by the vacuum or dark energy, these perturbations become negligible.
Thus, from the initial perturbation perspective, this model is coherent with what is know
nusabout structure formation and evolution. An observational analysis of this model reveals
us that, although it is slightly preferred if we compared it with the ACDM, it is much
better suited to observations that the Chaplygin gas, becoming a potential alternative. A
nice feature of this model is that the best fit for the present value of the effective dark
energy equation of state is below -1 and this phantom behaviour is achieved without the
addition of any special component in the field action. Another remarkable achievement is
that we have been able to extend the usage of models based on a DBI action (widely used in
inflation) to explain the present acceleration of the Universe. The present work has focused
in the case with lowest degrees of freedom, we have considered constant f(¢) and V(¢),
but it is only a special case and it would be interesting to explore further scenarios and
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generalizations. Finally, to get further in the perturbational analysis, it would be convenient
to include second order perturbations, because they would help us to obtain a global view
of this unified model.

Chapters 3 and 4 detail the results obtained when we perform an observational analysis
of different parametrizations of the dark energy equation of state. Specifically, in Chapter
3 a detailed study has been performed to detect an oscillating pattern in the dark energy
equation of state and 3 different parametrizations have been proposed: one expressed in
terms of the sine and the other two in terms of Struve and Bessel special functions. One
of the novelties of this work is that the frequency parameter have not been fixed and the
equation of the state has been evaluated at different values. Another novelty is the usage
of direct measurements of the Hubble factor and Gamma Ray Bursts data, which widen
the redshift range to detect the oscillatory behaviour. The main results obtained are: |.
even if constraints on the amplitude are not too strong, we detect a trend of it versus
the frequency, i.e. decreasing (and even negatives) amplitudes for higher frequencies; Il.
the centre of oscillation (which corresponds to the present value of the EoS parameter) is
very well constrained, phantom behaviour is excluded at 1o level and a trend in agreement
with the one for the amplitude appears; lll. the frequency is hard to constrain, showing
similar statistical validity for all the values of the discrete set chosen, but the best fit of
all the scenarios considered is associated with a period in the redshift range depicted by
our cosmological data. The "best” oscillating models are compared with ACDM using a
dimensionally consistent Bayesian approach based on information criteria and the conclusion
reached is the non existence of significant evidence against dark energy oscillations.

Following the same line as the previous chapter, in Chapter 4 two new parametrizations
of the dark energy equation of state have been suggested in order to make the most of
the dark energy equation of state parameters and the observational data. This time, the
principal goal is to obtain an EoS whose parameters are those least correlated, and at the
same time, as ACDM is the preferred model by observational data, these parametrizations
will represent a perturbation of the ACDM scenario. The proposed parametrizations are
written in terms of Chebyshev and Conventional polynomials. The astronomical tests we
have performed make use of SN luminosity data and the typical BAO related scales of
current surveys. But we have also produced mock data to infer the improvement that future
experiments as EUCLID will bring us on the constraints of the dark energy equation of state.
According to the Bayesian deviance information criterion (DIC), which penalizes large errors
and correlations, we show that our models perform better than the famous CPL and its
re-parametrization proposed by Wang (in terms of z = 0 and z = 0.5). This is due to
the combination of a lower correlation and smaller relative errors. The same holds for a
frequentist perspective: our Figure-of-Merit is larger for our parametrizations.

In the last chapter of this thesis, we have set constraints on the number of effective
neutrinos which accounts for the radiation excess. For this purpose, we have used the
latest CMB data coming from WMAP7-year and the South Pole Telescope. Then, we
have converted these bounds into an energy density of the Cosmological Gravitational
Wave Background for two sets of initial conditions: adiabatic and homogeneous. With the
inclusion of the data from SPT at small scales the adiabatic bound on the CGWB density is
improved by a factor of 1.7 to 10°Q,,, < 8.7 at the 95% confidence level (C.L.), with weak
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Chapter 6. Overall Conclusions

evidence in favour of an additional radiation component consistent with previous analyses.
This constraint has been later converted into an upper limit on the tension of horizon-sized
cosmic strings that could generate this gravitational wave component obtaining an upper
of limit G, < 2 x 1077 at 95% C.L. The homogeneous bound improves by a factor of
3.5 to 10699w < 1.0 at 95% C.L., with no evidence for such a component from current
data. It is the first time that a bound on the CGWB coming from the number of effective
neutrinos is translated into a string tension, GG,,. As cosmic strings also contribute to the
temperature power spectrum of the CMB, a interesting extension of the presented work
would be to get further and investigate which would be the constraints considering both the
string contribution and additional relativistic degrees of freedom to the CMB power spectra.
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