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Resumen

En esta tesis he analizado la respuesta espectroscópica de varios átomos y moléculas a
un campo electromagnético externo. Entender teóricamente dicha respuesta para moléculas
es incluso más complejo que para átomos porque además del movimiento electrónico hay
que tener también en cuenta el movimiento nuclear.

Debido a los avances experimentales en el campo de la óptica, hoy en dı́a es posible
seguir en vivo la respuesta nuclear y electrónica de estos átomos y moléculas expuestos
a un campo electromagnético externo. El control del movimiento nuclear nos sirve, por
ejemplo, para observar y controlar la formación y rotura de enlaces en moléculas. El
control del movimiento electrónico nos permite, por ejemplo, fabricar aparatos cuyo fun-
cionamiento está basado en el movimiento electrónico. Por tanto, necesitamos desarrollar
teorı́as que complementen a los resultados experimentales para poder interpretarlos.

El movimiento electrónico tiene lugar en la escala de attosegundos a varios femtose-
gundos, mientras que el movimiento nuclear tiene lugar en la escala de cientos de fem-
tosegundos a picosegundos.

Para que seamos capaces de resolver estas escalas de tiempo, necesitamos generar y
controlar láseres muy energéticos y de duración muy corta. La fuerte y rápida interacción
de estos láseres con un átomo o molécula es no-lineal y por tanto se requieren técnicas
teóricas que sean capaces de lidiar con estos efectos no-lineales.

En el capı́tulo introductorio de esta tesis, he descrito en mayor detalle el desarrollo
de las técnicas tanto experimentales como teóricas en el campo de la espectroscopı́a de
átomos y moléculas.

Resolver la ecuación de Schrödinger tratando tanto la parte electrónica como nuclear
de manera cuántica es una tarea muy compleja pero posible para moléculas de pocos
electrones tales como H+

2 y H2, ya que están compuestas por uno y dos electrones, respec-
tivamente. Por tanto, necesitamos utilizar métodos teóricos que nos permitan simplificar
este problema y que a la vez sean precisos. Para la mayor parte de las moléculas hay que
usar aproximaciones tanto para la parte nuclear como electrónica. Para la parte nuclear
se suelen utilizar aproximaciones clásicas como la aproximación de Born-Oppenheimer
(BOA) y la de dinámica de Ehrenfest (ED). En la BOA el movimiento nuclear se fija
mientras que en ED la parte nuclear se mueve de manera clásica. Para los electrones se
usa frecuentemente la teorı́a del funcional de la densidad (DFT) y la teorı́a del funcional
de la densidad dependiente del tiempo (TDDFT) que corresponde a la extensión temporal
de DFT.

Las aproximaciones clásicas son precisas si la masa de la parte nuclear de una molécula
es pesada. Si este es el caso, la parte nuclear se mueve mucho más despacio que la parte
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electrónica ante una perturbación externa. Para analizar la precisión de estas aproxima-
ciones nucleares he obtenido el espectro lineal de excitación de las moléculas de H+

2 y H2.
Como he mencionado más arriba, para estas moléculas podemos resolver tanto la parte
electrónica como nuclear de manera cuántica mediante la ecuación de Schrödinger. Por
tanto, para determinar la validez de las aproximaciones clásicas he obtenido el espectro
lineal de excitación de estas dos moléculas de dos maneras. He tratado tanto la parte nu-
clear como la electrónica de manera cuántica o he tratado la parte electrónica de manera
cuántica mientras que la nuclear de manera clásica usando la BOA y la ED.

Como la validez de las aproximaciones clásicas depende de la masa de la parte nu-
clear, he obtenido el espectro de excitación lineal tratando la parte nuclear y electrónica
de manera cuántica para diferentes masas nucleares. Los efectos cuánticos de la parte
nuclear deberı́an ser más importantes conforme la masa de la parte nuclear se reduce
hacia el lı́mite de la masa electrónica. En este caso he analizado la respuesta lineal de
estas moléculas bajo un campo externo débil. Los movimientos nucleares no deberı́an ser
fuertemente apreciables bajo este campo débil porque las escalas de tiempo en las que se
mueven requieren de campos externos más fuertes.

Las aproximaciones de DFT y TDDFT son mucho más simples que la ecuación de
Schrödinger porque para interpretar las propiedades del sistema se pueden utilizar fun-
cionales de la densidad en vez de la compleja función de onda. Adicionalmente el prob-
lema se facilita porque se utilizan las funciones de onda no interactuantes de Kohn y Sham
donde los efectos complicados de interacción se incluyen en los funcionales de intercam-
bio y correlación. La forma en la que aproximemos estos funcionales de intercambio y
correlación determinará el rendimiento de TDDFT. Además TDDFT es una técnica con
la que se puede interpretar con una buena precisión en general los efectos no-lineales que
surgen debido a la interacción de un láser fuerte y corto con un átomo o molécula.

Como TDDFT se puede utilizar para moléculas sometidas a campos externos fuertes,
he utilizado esta teorı́a para estudiar la ionización de átomos de argón y neón expuestos a
un láser de electrones libres y para estudiar la ionización de una molécula de etileno ex-
puesta a un sistema compuesto de un láser bomba y sonda. El láser bomba se utiliza para
crear en la molécula un estado excitado no estacionario. Después se utiliza un láser sonda
que monitoriza la evolución de este estado excitado con el tiempo tras ser la molécula
ionizada por el láser sonda. Los láseres usados aquı́ para estos átomos y moléculas son
fuertes y su energı́a es suficiente para ionizar sus electrones.

En el caso de los átomos de neón y argón he estudiado la ionización tanto individual
como total de sus electrones. Para ello he utilizado las funciones de onda no interactuantes
de Kohn y Sham y la densidad electrónica. Los resultados obtenidos con TDDFT los he
comparado a los mismos obtenidos a través de otro método teórico perturbativo conocido
como teorı́a perturbativa de bajo orden (LOPT). Dicha comparación se ha realizado en
una zona de actuación perturbativa donde este método funciona. Comparamos nuestros
resultados obtenidos con TDDFT a los obtenidos con LOPT porque con este método ya
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se han obtenido buenos resultados en comparación con datos experimentales para argón
y neón. TDDFT ofrece la posibilidad de tratar efectos no-perturbativos pero se pensaba
que no funcionaba porque falló para describir la doble ionización de un átomo de helio.
Como veremos más adelante, en el capı́tulo de resultados, TDDFT sı́ funciona para neón
y argón, por lo que se abre la posibilidad de analizar la ionización de éstos y otros átomos
además de la ionización de moléculas más complejas usando TDDFT en una zona de
actuación no-perturbativa.

En el caso de etileno he estudiado la evolución de sus orbitales moleculares con el
tiempo tras ser expuesto a un láser bomba y sonda. Para ello, primero excito la transición
de interés de πz a π∗z con un láser bomba y luego sigo la evolución de dicha transición tras
ionizar la molécula con un láser sonda. He analizado la energı́a cinética en el espectro de
fotoemisión y la distribución angular de los electrones ionizados. He comparado tanto el
espectro de fotoemisión como la distribución angular de los orbitales de etileno fijando la
parte nuclear con BOA y permitiendo el movimiento de la parte nuclear de manera clásica
con ED. Ası́, he podido estudiar el efecto de movimiento de la parte nuclear en el espectro
de fotoemisión y en la distribución angular de los orbitales moleculares de etileno. Como
veremos más adelante, en el capı́tulo de resultados, se pueden observar fuertes cambios
nucleares cuando se fija la ocupación del estado excitado π∗z sin usar un láser bomba. De
lo contrario, el láser bomba favorece la desocupación de dicho estado y su ocupación debe
ser suficiente para que el láser sonda pueda resolver los cambios debidos al movimiento
nuclear.

El capı́tulo teórico de esta tesis está compuesto de dos bloques principales. En el
primer bloque introduzco como resolver el problema nuclear y electrónico de manera
cuántica con la ecuación de Schrödinger. Esto sólo es factible para moléculas de pocos
electrones como H+

2 y H2. Esta parte contiene el desarrollo teórico de las aproximaciones
clásicas BOA y ED. Además he incluido una sección en la que explico teóricamente como
obtengo el espectro de excitación lineal para las moléculas de H+

2 y H2 tratando la parte
electrónica de manera cuántica y la parte nuclear de manera tanto cuántica como clásica
con la BOA y ED. En el segundo bloque introduzco como resolver el problema de muchos
electrones de manera cuántica usando DFT y TDDFT. Para la parte nuclear se utiliza la
BOA o la ED. Aquı́ he incluido un análisis de la ionización de átomos de neón y argón
y la molécula de etileno utilizando TDDFT. Para argón y neón he seguido la evolución
en el tiempo de la carga electrónica del sistema que se ioniza. Al ionizarse los átomos,
pierden carga electrónica. La ionización total se puede determinar a través de la densidad
electrónica. Sin embargo, para obtener las ionizaciones individuales utilizamos las fun-
ciones de onda no interactuantes de Kohn y Sham. Para obtener el espectro de fotoemisión
resuelto en el tiempo y las distribuciones fotoangulares para etileno con TDDFT he divi-
dido el espacio computacional total de la molécula en una parte interactuante en espacio
real y en una parte no interactuante en espacio impulsivo que están conectados por un
espacio de absorción.
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El capı́tulo de resultados y discusión de esta tesis contiene una sección con los re-
sultados del espectro de excitación lineal de H+

2 y H2, una sección con los resultados de
ionización total e individual de los electrones de los átomos de neón y argón y una última
sección donde se muestra la evolución de los orbitales moleculares de etileno expuesto a
un sistema láser bomba y sonda en el espectro de fotoemisión resuelto en el tiempo y las
distribuciones fotoangulares. Cada una de estas secciones contiene una subsección con
los detalles numéricos y el procedimiento que he llevado a cabo para resolver las ecua-
ciones del capı́tulo teórico, una subsección con los resultados obtenidos y una subsección
con las conclusiones especı́ficas.

El último capı́tulo de esta tesis contiene las conlusiones más generales para cada uno
de estos proyectos, además de posible trabajo que todavı́a se puede realizar y cosas que
nos falta por entender en más profundidad.

En el caso de H+
2 y H2, he comparado el espectro de excitación lineal que obtenemos

para un tratamiento de la parte nuclear y electrónica de manera cuántica con el que obten-
emos mediante un tratamiento de la parte electrónica de manera cuántica y nuclear de
manera clásica. Un tratamiento totalmente cuántico en general no es posible y por tanto
se usan la BOA y ED como aproximaciones clásicas para la mayorı́a de las moléculas.
Dichas aproximaciones están formuladas de manera que su validez depende de que la
masa nuclear sea pesada. Por tanto, es de esperar que el espectro lineal con parte nuclear
cuántica sólo se equipare totalmente al de parte nuclear clásica cuando la masa nuclear
sea muy pesada. Por esta razón nuestro análisis de dicho espectro lineal se ha hecho
para moléculas del tipo de H+

2 y H2 de diferentes masas nucleares. He encontrado que
el espectro apenas varı́a si utilizamos para la parte nuclear la BOA o la ED. Por ello he
comparado el espectro de la parte nuclear cuántica con el obtenido con la BOA para la
parte nuclear clásica. Como es de esperar he encontrado que para masas nucleares pe-
sadas, las caracterı́sticas del espectro lineal cuántico se equiparan al clásico usando la
BOA. Sin embargo, conforme disminuye la masa nuclear y se hace más ligera podemos
apreciar diferencias entre el espectro lineal cuántico y el clásico con BOA. En particular,
los picos se ensanchan, se hacen más asimétricos y nuevas contribuciones aparecen en el
espectro. Dichas contribuciones parece que surgen de una división de los picos de BOA
clásicos en dos contribuciones separadas, una para mayores energı́as y otra para menores.
Estos efectos cuánticos son sobre todo apreciables para la molécula de H+

2 pero son más
débiles para el caso de la molécula de H2. Por ello he realizado un análisis más en de-
talle para la molécula de H+

2 . La división de los picos nos sugiere que puede ser debido
a una hibridación entre dos niveles y por ello he usado un modelo de dos niveles para
interpretar estos resultados. Además como estos nuevos efectos son mayores o menores
dependiendo de la masa nuclear, he construido un modelo de dos niveles en función de
la masa nuclear. Estas diferencias entre el espectro lineal cuántico y clásico nos sug-
ieren que la naturaleza cuántica de la parte nuclear puede jugar un papel muy importante
en la descripción lineal de procesos de absorción, especialmente para moléculas ligeras.
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En este caso las aproximaciones clásicas no son suficientes para interpretar los procesos
de absorción lineales. Con dicho modelo he analizado cuantitativamente tanto el ensan-
chamiento como la energı́a de los picos en el espectro lineal cuántico para la molécula
de un electrón H+

2 y diferentes masas nucleares. Con un modelo tan simple como el de
dos niveles, he podido ajustar con una buena precisión el comportamiento de tanto el en-
sanchamiento como los cambios energéticos de los picos observados en el espectro lineal
cuántico. Todavı́a nos falta entender la razón fı́sica por la cual dicho modelo funciona
tan bien, además de porqué los efectos del movimiento nuclear cuántico son mucho más
fuertes para una molécula de H+

2 que para una molécula de H2. Como sı́ es predecible, es-
tos efectos son más importantes para masas nucleares ligeras. Por otra parte he deducido
que las aproximaciones clásicas de BOA y ED, que son tan ampliamente usadas, pueden
fallar incluso en la respuesta lineal. Esto es importante porque los movimientos nucleares
se mueven en escalas de tiempo para las cuales se necesitan láseres más fuertes que en la
zona de actuación lineal.

Por otra parte, he analizado la ionización de átomos de neón y argón utilizando
TDDFT. Como estos átomos están compuestos de bastantes electrones, usamos TDDFT.
En particular, he analizado tanto la contribución total de estos electrones que se ioniza
como la contribución individual de cada uno de los electrones que se ioniza. Dichos
átomos están expuestos a un láser de electrones libres en la zona de actuación pertur-
bativa. Aunque TDDFT se puede usar en la zona no-perturbativa, realizamos nuestro
análisis en la zona perturbativa. Esto es debido a que vamos a comparar nuestros resulta-
dos obtenidos con TDDFT a los mismos obtenidos con un método perturbativo conocido
como teorı́a perturbativa de bajo orden (LOPT). Por tanto, LOPT sólo funciona en la zona
de actuación perturbativa. LOPT ya se ha utilizado para analizar tanto la ionización indi-
vidual como total de los electrones de neón y argón. Los resultados teóricos de LOPT se
han comparado con los experimentales previamente y se ha encontrado un buen acuerdo
entre ambos. Aunque se pensaba que TDDFT no funcionaba bien para describir la ion-
ización de átomos, como sucedió en el caso de la doble ionización de helio, he encon-
trado que sı́ funciona bien para neón y argón comparando nuestros resultados con los de
LOPT. TDDFT además de poder usarse en la zona de actuación no-perturbativa es un
método simple porque resolvemos el problema con las funciones de onda no interactu-
antes de Kohn y Sham. Como los efectos interactuantes se introducen en el funcional
de intercambio y correlación, la precisión de TDDFT dependerá de cómo aproximemos
este funcional de intercambio y correlación. Los dos efectos importantes para describir
de manera precisa dichos funcionales son la forma asimptótica de su potencial y su de-
pendencia con el tiempo. En esta tesis he usado funcionales adiabáticos por lo que hemos
obviado la dependencia del tiempo. Sin embargo, sı́ he analizado el efecto de la forma
asimptótica. Para ello he obtenido los resultados de ionización tanto individual como total
de neón y argón usando cuatro diferentes funcionales, de los cuales dos tienen la correcta
forma asimptótica y dos no la tienen. Como es de esperar, los resultados obtenidos son
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mejores cuando se utiliza una forma correcta asimptótica con TDDFT en comparación
con los resultados de LOPT. Por tanto, hemos observado que una descripción correcta del
comportamiento asimptótico es crucial para obtener unos buenos resultados de ionización
con TDDFT. Este efecto lo hemos podido observar tanto para la contribución total de
electrones ionizada como para las contribuciones ionizadas individuales de cada electrón.
Aunque la precisión de TDDFT es buena, LOPT es un poco mejor en comparación con
los resultados experimentales que existen para neón y argón. Aunque ya obtenemos un
buen acuerdo entre LOPT y TDDFT se podrı́a intentar mejorar lo que hemos obtenido
con TDDFT. Una posible opción que no he barajado en esta tesis es utilizar funcionales
de intercambio y correlación que tengan memoria. Aunque LOPT y TDDFT están formu-
lados de una manera teórica totalmente diferente, el acuerdo entre los dos nos sugiere que
ambos métodos pueden proveernos una interpretación fı́sica correcta de la ionización de
estos dos átomos. Con este proyecto hemos descubierto que al contrario de lo que se pens-
aba por el caso de helio, TDDFT resulta ser un método no-perturbativo que puede proveer
muy buenos resultados de ionización y puede ser utilizado para interpretar resultados en
la zona de acuación no-lineal en la cual LOPT no se puede utilizar.

Finalmente, he analizado la evolución de los orbitales moleculares de una molécula
de etileno expuesta a un sistema de láser bomba y sonda. Dicha molécula está compuesta
por muchos electrones por lo que usamos TDDFT. Para la parte nuclear que está ausente
para los átomos de neón y argón he utilizado las aproximaciones clásicas de BOA y ED.
El etileno contiene un enlace doble entre sus dos carbonos y cuatro enlaces simples entre
carbono e hidrógeno. El enlace doble es rı́gido por lo que deberı́a de ser difı́cil observar
tanto elongaciones como rotaciones de dicho enlace. Sin embargo los enlaces de carbono
e hidrógeno son simples y dichos átomos son además ligeros por lo que en este caso los
movimientos nucleares deberı́an ser más importantes. En este caso he analizado cómo
los movimientos nucleares afectan a los orbitales moleculares de etileno. Para ello he
excitado la transición de interés de πz a π∗z mediante un sistema bomba creando un es-
tado no estacionario en la molécula. La evolución de este estado se sigue tras aplicar
un láser sonda que ioniza la molécula. He observado la energı́a cinética en el espectro
de fotoemisión y la distribución fotoangular de los electrones ionizados. Para analizar el
efecto de los movimientos nucleares en el espectro de fotoemisión y en la distribución an-
gular he incluido el movimiento nuclear clásico mediante ED o no lo he incluido fijando
la parte nuclear con la BOA. Con el espectro de fotoemisión y la distribución fotoangular
somos capaces de resolver tanto los movimientos electrónicos como nucleares por lo que
la técnica espectroscópica de bomba y sonda es apropiada para este análisis. He obser-
vado que el efecto de los movimientos nucleares es inapreciable cuando se utiliza un láser
bomba para excitar a la molécula del estado πz al π∗z . Para que se observen los efectos
nucleares, la ocupación del estado excitado π∗z debe ser suficiente para que la sonda pueda
resolver los efectos nucleares. El problema es que el láser bomba aparte de ocupar di-
cho estado con la excitación del estado πz también es capaz de inducir la desocupación
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de dicho estado. Desde un punto de vista experimental esto podrı́a interpretarse como
la dificultad de controlar la evolución de una reacción quı́mica desde los reactivos hasta
los productos. Si fijamos artificialmente la ocupación del estado π∗z sin usar la bomba,
conseguimos que la ocupación del estado π∗z se mantenga constante sin ninguna pérdida
para poder observar claramente los efectos nucleares. Esto es algo que podemos hacer
fácilmente teóricamente pero no experimentalmente. Ası́ se pueden observar cambios en
el espectro de fotoemisión y en la distribución angular que están causados por los efec-
tos nucleares de gran elongación y torsión que experimenta la molécula de etileno. En
el espectro de fotoemisión resuelto en el tiempo he observado que las energı́as cinéticas
de los orbitales moleculares de etileno cambian con el tiempo. Estos cambios son más
pronunciados para los orbitales que están más fuertemente afectados por la elongación y
torsión de la molécula. Para interpretar estos cambios observados nos hemos basado en
la simetrı́a de los orbitales que podemos observar de las distribuciones fotoangulares. Ex-
perimentalmente, esto es una tarea difı́cil porque es difı́cil controlar la orientación de una
molécula dando lugar a distribuciones angulares asimétricas. Sin embargo, teóricamente
podemos controlar este aspecto fácilmente. Con este proyecto hemos sido capaces de ob-
servar fuertes cambios en el espectro de fotoemisión y en la distribución fotoangular de
una molécula de etileno debido a su gran elongación y torsión nuclear. Un análisis teórico
nos ha permitido controlar con mucha más facilidad que de manera experimental tanto
la orientación como la ocupación de los estados de la molécula de etileno. Esto ha sido
clave para poder intepretar los efectos nucleares. En primer lugar nuestro estudio se ha
basado en la simetrı́a de los orbitales para lo cual necesitamos controlar la orientación de
las moléculas. En segundo lugar, hemos tenido que controlar la ocupación del estado ex-
citado π∗z para que su ocupación sea suficiente para que la sonda sea capaz de resolver los
cambios inducidos por el movimiento nuclear. Hemos podido observar cambios nucleares
tan grandes que incluso puede que sea posible, con esta técnica de TDDFT utilizada aquı́,
estudiar procesos más interesantes como la disociación de moléculas.
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CHAPTER 1

Introduction and motivations

Spectroscopy deals with the response of a system to an electromagnetic pulse. In this
thesis I have focused on the spectroscopic response of several atoms and molecules.

The motion of electrons and nuclei in atoms and molecules can only be directly ob-
served and controlled using electromagnetic pulses whose duration is comparable to the
time scales on which their wavefunctions evolve. According to Heisenberg’s uncertainty
principle [1], this time scale is the inverse of the energy of the vibrational and electronic
transitions for molecules and of the energy of the electronic transitions for atoms. Vibra-
tional energy transitions occur on a time scale of picoseconds to hundreds of femtosec-
onds, whereas electron energy transitions occur on a time scale of attoseconds to tens of
femtoseconds.

Control of nuclear scale motion is important to follow the formation and breakage
of bonds [2], whereas with electronic scale motion we can follow electron migration in
molecular electronics [3] and the damage and repair mechanisms of DNA [4, 5].

Progress in ultrafast optics has allowed the generation and control of intense electro-
magnetic pulses comprising merely a few field oscillation cycles [6]. The experimental
tools and techniques for the observation and control of nuclear dynamics with femtosec-
ond time resolution [7] and electron dynamics with attosecond time resolution [8, 9, 10]
have only recently become available.

Electromagnetic pulses were initially produced by the mode locking technique [11].
This technique is based on the constructive interference of the phase-modulated modes in
the resonant cavity of the laser, giving rise to short bursts of electromagnetic pulses. To
shorten the duration of the pulse to the femtosecond and attosecond time scale, the phase
of the cavity modes has to be locked over a large bandwidth. Optical pulse compression
based on the interplay between self-phase modulation induced by the optical Kerr effect
and negative group delay dispersion is the key concept [12, 13] for light pulse generation
in the few cycle regime. Currently, it is most efficiently implemented in mirror disper-
sion controlled Kerr Lens mode locked (KLM) Ti:sapphire laser oscillators [14, 15]. To
shorten the duration of the pulses the bandwidth of the laser is increased with a hollow-
fibre waveguide [16, 17, 18, 19] and subsequently compressed by chirped-mirrors [20],
prisms [21] or optical parametric amplifiers [22].

Ultrashort pulses can be produced from high harmonic generation [23, 24] and free
electron lasers [25].

17
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High order harmonics are generated when the atom or molecule is subject to an exter-
nal source that is strong enough to ionise an electron. The ionised electron can then return
to the parent ion it has left behind and recombine with it emitting a photon [26, 27, 28, 29].
The produced high harmonic generation can be used as a train [10, 30] and an isolated
single-cycle [31, 32, 33] attosecond source. The conversion efficiency of high harmonic
generation can be increased using ultrashort pulses. Using ultrashort pulses the phase
shift between the driving fundamental source and the harmonic waves can be controlled
as has been predicted theoretically [34]. As mentioned previously, ultrashort pulses are
obtained by increasing the bandwidth of the laser by guiding it through hollow waveg-
uides [16, 19, 35, 36, 37, 38].

X-rays were discovered by Röntgen in 1895 [39]. The idea of using a free electron
laser to produce X-rays was first proposed by Madey [40] and it was first operated by
Deacon et al. [41]. The current free electron lasers are based on the the Self Amplified
Spontaneous Emission (SASE) technique [42, 43, 44, 45]. A bunch of accelerated elec-
trons is introduced into an undulator. This undulator region contains a series of periodic
magnets which accelerate the incoming electrons along the transverse direction, giving
rise to the emission of electromagnetic radiation [46]. When the electron along the trans-
verse direction and the magnetic field in the undulator are in phase [47], the electron
transfers energy to the electromagnetic radiation. Choosing a proper phase shift between
the two is the basic principle of a free electron laser to amplify the emitted radiation [48].
Once this phase matching mechanism is lost for a certain undulator length, the amplify-
ing process is saturated and then reversed. Therefore, determining the undulator length
is essential for the efficiency of free electrons lasers [49, 50, 51]. The SASE technique is
currently implemented in the ultraviolet (UV) to soft x-ray regime [52, 53] and the hard
x-ray regime [54, 55]. Free electron lasers have been used to study the photoionisation of
atoms such as neon [56], argon [57] and xenon [58, 59].

The response of an atom or molecule to an external electromagnetic pulse will depend
on the energy, intensity and duration of the pulse.

When the photon energy does not equal or exceed the ionisation potential of the elec-
trons in atoms and molecules, ionisation will only be possible via multiphoton ionisation
if the laser is relatively intense. Multiphoton ionisation can proceed via sequential ionisa-
tion [60, 61] where the system needs to absorb more than a single photon to get ionised.
Otherwise, if the laser is not very intense and the incoming photon matches the energy
difference between the initial and final bound state, an electron will only be excited.

When the photon energy does equal or exceed the ionisation potential of the electrons
in atoms and molecules, a bound electron will escape from the system via tunnelling
or above the barrier classically. Tunnelling has been observed experimentally in real
time [62].

After tunnelling, the ionised electron will be driven by the electric field of the elec-
tromagnetic pulse and once the electric field reverses its sign, the electron will return to
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the parent ion it left behind to recombine releasing energy. This three step semiclassical
description [63] has been extended using quantum mechanical models based on quantum
orbits and the saddle point method [64, 65].

The ionised electron can recombine with the parent ion in several ways. It can recom-
bine with the parent ion and emit a photon or it can scatter elastically and inelastically.

The recombination process can lead to the emission of energy in the form of a photon.
This process is responsible for the high-order harmonic generation mentioned above.

The electron can scatter elastically, as predicted theoretically [66], leading to Above
Threshold Ionisation (ATI) [67], for example, which was first discovered by Agostini [68].
Here atoms absorb a larger number of photons than those required for ionisation. The ATI
spectrum contains a series of peaks equally separated by the frequency of the incoming
field. Due to rescattering, the photoelectron ATI spectrum will extend over a large energy
plateau region with a maximal classical energy of ten times the ponderomotive energy
Up [69] and rings will appear in the ATI photoelectron angular distributions [70]. ATI has
been observed for noble gas atoms [71], using multichannel quantum defect theory with
the R-matrix technique [72].

The electron can also scatter inelastically transferring energy to the ion. Non-sequential
ionisation is due to this process. According to Fittinghoff’s non-sequential model [73],
the returning electron can excite “shake-up” or ionise “shake-off” another electron due to
screening. In Watson’s model [74], the ejected electron induces a change in the potential
of the electrons left behind. Non-sequential ionisation is only possible due to electron cor-
relation [75, 76, 77, 78, 79]. Non-sequential ionisation has been studied mainly for noble
gas atoms such as helium [74, 80, 81, 82], neon [83, 84], argon [85, 86], xenon [87, 88], as
well as diatomic hydrogen [89], deuterium [90] and nitrogen and oxygen molecules [91].

Photoemission spectroscopy has been established as a key method to study the elec-
tronic and vibrational response of atoms and molecules to strong light sources [92]. It is
based on the application of the photoelectric effect first observed by Hertz [93] and then
explained by Einstein [94]. When light is incident on a material with a certain frequency
ω, a bound initial electron can absorb a photon and escape to vacuum from the material
with a maximum kinetic energy Ek = hω − Eb, where Eb is the binding energy of the
material.

The macroscopic photocurrent of the emitted electrons produced from the photoelec-
tric effect is related to the microscopic photoionisation differential cross section [95].
Here, the cross section is expressed in terms of the electron’s kinetic energy and angular
ejection distribution as a function of the laser’s energy and polarisation. To develop a
theoretical description of the photoemission process, one has to calculate the probability
for an optical excitation between the ground state and one of the possible final vacuum
states. This can be approximated using Fermi’s Golden Rule from scattering theory [96].

To photoionise an electron a monochromatic beam is focused on the sample emitting
electrons. Depending on the frequency of the incoming beam we can ionise valence and
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core electrons. This monochromatic beam is generated from an Aluminium or Magne-
sium anode in the X-ray regime for the core electrons and a gas-discharged lamp [97] in
the UV regime for the valence electrons. The emitted electrons are collected via the 2D
velocity map imaging [98] technique in an electrostatic analyser where their kinetic en-
ergy and angular distribution is measured in microchannel plate detectors [99]. The whole
setup is under vacuum conditions so that the photoelectrons emitted are not affected by
their interaction with the background atmosphere.

In time resolved photoemission spectroscopy a pump is used to resonantly create an
excited non-stationary wave packet, whose evolution is monitored as a function of time
by means of a delayed probe pulse [100, 101]. The spectroscopic technique used in pump
probe setups is called attosecond streaking spectroscopy [102, 103]. The idea behind the
pump probe setup was first employed by Toepler [104], who varied electrically the delay
time between a spark generating a shock wave and a second spark which acted as a flash
light source to visualise the evolution of the shock wave.

A time resolved pump probe setup can be used, for example, to monitor the evolution
of vibrational wavepacket motion [105, 106, 107], ultrafast internal conversions [108],
inner shell Auger relaxations [109], internal relaxations after the ionisation of an elec-
tron [110], the buildup of fano resonances [111], intersystem crossings from a singlet
to a triplet state [112, 113], intramolecular vibrational relaxations [114], intramolecular
proton transfers [115], dissociations [116, 117, 118, 119, 120, 121, 122], the emission
time of the electron [123], the time delay in the emission of different electrons [124], the
tunnelling delay time [125] and the time taken in double ionisation [126].

The angular distribution of the emitted photoelectrons can be described using the
asymmetry parameter [127], which measures the forward to backscattered photoemission
from the sample. The backscattered photoemission is strongly dependent on the initial
orientation of the molecule with respect to the laser polarisation [128, 129] leading to
asymmetries in the photoangular distribution. Several experiments have been performed
by initially fixing the orientation of the molecule [130, 131, 132, 133, 134]. However,
fixing the orientation is a complex task experimentally [121, 135]. With a theoretical
approach this is not an issue, as we can choose and fix the orientation of the molecule.

The angular resolved pump probe setup can be used to image the orbitals [136, 137],
the molecular structure [138, 139] and the nuclear wavefunctions [140] via the diffraction
patterns obtained from the interference of the forward and backscattered emitted contri-
butions [141, 142, 143].

Understanding theoretically the response of a molecule or an atom to an external elec-
tromagnetic source is becoming more important now that femtosecond and attosecond
sources are available. Modelling these time-dependent processes becomes unfeasible with
the time-dependent Schrödinger equation (TDSE) as the system studied becomes realis-
tic, i.e., systems in 3D that contain many electrons and nuclei [144]. Most work using the
TDSE has been done for the one electron H+

2 and H2+
3 molecules [145], the one electron
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H atom [144] the two electron He atom [146, 147, 148] and the two electron molecule
H2 [149, 150]. By reducing the dimensionality of the TDSE, we can simplify the problem
and still gain some insight to understand the more complex problem. However, a compu-
tationally inexpensive electronic structure theory method which can model excited state
dynamics for more complex systems is necessary.

For molecules this response becomes even more complicated because we also have
to take into account the motion of the nuclei which is absent in atoms. The nuclei in
molecules are usually treated in terms of adiabatic potential energy surfaces with the
Born-Oppenheimer approximation (BOA) [151]. Within this approximation, we assume
that the electrons move along a potential energy surface for fixed nuclear positions. An
improvement to the fixed nuclei BOA scheme is to use an Ehrenfest dynamics (ED)
scheme [152] where all the possible excited trajectories of the nuclei are described by
Newtonian classical methods along an averaged potential energy surface. The coupling
between electrons and nuclei can lead to the formation of avoided crossings and conical
intersections between the adiabatic potential energy surfaces [153]. This non-adiabatic
coupling effect is neglected within the BOA [154]. This term should only be neglected
when the nuclei move slowly and when the energy difference between the adiabatic po-
tential energy surfaces is large.

Depending on the strength of the interaction between the atom or molecule to an exter-
nal electromagnetic source, the ionisation of the electrons in atoms and molecules can be
understood from a perturbative or a non-perturbative theory. A theoretical interpretation
of the perturbative and non-perturbative regimes was first introduced by Keldysh [155].
Such interpretation is based on the ponderomotive energy Up, i.e., the average kinetic
energy of the ejected electron driven by the laser field.

If not very intense long pulses are used, electron ionisation can be understood in a
perturbative way. The peak intensity must be within the validity of Perturbation The-
ory, for which the ponderomotive energy Up, must be significantly smaller than the pho-
ton frequency [156]. The pulse duration should be long enough so that complete ion-
isation does not take place before the laser pulse reaches its maximum [157]. In the
perturbative regime several models have been proposed in terms of collective excita-
tions [158, 159], the isolated core excitation method [160, 161] and lowest-order per-
turbation theory (LOPT) [162]. Within LOPT, the overall ionisation process is broken up
into steps whose time evolution is described in terms of transition probabilities per unit
time or rate equations.

To observe strong non-perturbative behaviour at very high intensities, we need ultra-
short intense laser pulses towards the x-ray regime [163, 164]. If the intense laser is not
short enough, atoms and molecules may ionise completely before the laser pulse reaches
its maximum [157]. A possible theoretical approach is to use the single active electron
(SAE) approximation [27], where only the electron that is ionised interacts via an effec-
tive Hartree-Fock potential with the parent ion left behind [165]. This method has worked
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very well for noble gas atoms such as argon [166] and helium [167] because they have a
very high ionisation potential to eject more than a single electron simultaneously. How-
ever, it tends to fail when the other electrons play a role in the ionisation process [168].

Time-dependent density functional theory (TDDFT) [169, 170] is an inexpensive elec-
tronic structure method where the properties of the system can be determined by us-
ing density functionals instead of the wavefunction itself due to their one to one map-
ping [169]. The TDDFT problem is solved in a non-interacting way including all the
many-body effects in the exchange-correlation functional. The performance of TDDFT
depends on how this exchange-correlation functional is approximated. With TDDFT we
can capture the high degree of non-linearity due to non-perturbative phenomena such as
electron correlation that arises with ultrashort and intense pulses.

However, with TDDFT there are difficulties to properly describe excited states which
have double- and higher-excitation characters. This is because within the adiabatic TDDFT
approximation, the excitation energies have a single-excitation character [171]. To over-
come these limitations several TDDFT theories based on multicomponent [172], con-
strained configuration interaction [173] and Bethe-Salpeter methods [174] have been
implemented. Moreover, TDDFT underestimates excitation energies in charge transfer
reactions [175]. This is especially the case for long-range charge transfer excitations,
where non-local effects are stronger [176]. This is because the electrostatic attraction
between charge transfer states originates from the non-local Hartree-Fock exchange po-
tential. Non-locality is not described accurately with adiabatic TDDFT. These charge
transfer underestimation errors can generate a series of spurious low lying charge transfer
states [177] and spurious crossings [175] which may have a profound effect on the excited
state dynamics. TDDFT also fails to describe the non-perturbative non-sequential “knee”
effect [178] shown experimentally for helium [179]. Here, the double ionisation curve of
helium follows a non-sequential mechanism for lower intensities until the singly ionised
species has saturated. From then onwards, it follows a sequential mechanism. This exper-
imental “knee” effect can be described accurately including the derivative discontinuity
with an exact exchange-correlation potential [180, 181].

The failure of TDDFT to describe charge transfer excitations and excitation energies
is attributed to the incorrect asymptotic behaviour and locality of the exchange-correlation
potential of the adiabatic functionals used. The time-dependent exchange-correlation
functionals are constructed adiabatically from the ground state functionals, neglecting
their time-dependent evolution. This approximation is only reasonable if the system be-
gins in a ground state where the external time dependence is very slow, which is not the
case for strong non-perturbative phenomena. The incorrect asymptotic behaviour can be
improved by introducing a long range separation into the exchange component of the
functional [182]. The non-locality can be included using hybrid functionals which are
constructed using the non-local Hartee-Fock exchange potential [183].
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In this thesis I have investigated theoretically various aspects of the spectroscopic
response of several atoms and molecules to an external source.

In Chapter 2, I first introduce the theoretical approaches used to study the spectro-
scopic response of atoms and molecules. A full quantum description of the coupled
electron-nuclear response of molecules to an external electromagnetic source described in
Sec. 2.1 is unfeasible in most cases except for few-electron molecules such as the H+

2 and
H2 model molecules. For the nuclei the Born-Oppenheimer approximation (BOA) and
Ehrenfest dynamics (ED) classical approximations for fixed and moving nuclei, respec-
tively, are typically used. In particular, to test the validity of these classical approaches
I have theoretically studied the linear excitation spectra from quantum versus classical
nuclei for the H+

2 and H2 model molecules in Sec. 2.2. For these molecules I have stud-
ied the effects of quantum-nuclear motion on the linear excitation spectra. This analysis
has been performed as a function of the nuclear mass because we expect the classical ap-
proaches to gradually break down as the nuclear mass decreases. For many-electron atoms
and molecules, one usually solves the approximated many-electron problem by means of
density functional theory (DFT) and its time-dependent extension time-dependent den-
sity functional theory (TDDFT) as explained in Sec. 2.3. For many-electron molecules
the motion of the nuclei is treated classically with either the BOA or ED. In particular, I
have studied the photoionisation of neon and argon atoms and of an ethylene molecule by
means of TDDFT in Sec. 2.4. TDDFT is a theoretical method which allows us to interpret
in a simple and accurate way the non-perturbative response of these systems. To ionise the
electrons for the neon and argon atoms a free electron laser has been used experimentally.
The argon and neon individual and total photoionisation yields are here obtained theoret-
ically using the TDDFT non-interacting density and the Kohn-Sham (KS) wavefunctions.
As the performance of TDDFT depends on the local and asymptotic behaviour of the
exchange-correlation functional used, I have used several TDDFT exchange-correlation
functionals. To ionise the electrons for ethylene a pump probe setup has been used. The
photoemission spectra and angular distributions are theoretically obtained using a TDDFT
scheme where space is partitioned in a real and momentum space region separated by an
absorbing boundary region.

In Chapter 3, I then show and analyse the results obtained for each of the atoms and
molecules mentioned in the previous paragraph. Each of these sections contains a sub-
section with the computational details and procedure needed to perform our calculations,
a subsection where the results are shown and analysed and a final subsection with the
conclusions for each project. In Sec. 3.1 I first show the results obtained for the linear
excitation spectra of the H+

2 and H2 molecules with quantum and classical nuclei and
quantum electrons. From this analysis I have investigated the effects of quantum nuclear
motion on the excitation linear spectra and I have checked the validity of the classical
approaches. Then I show the results for the individual and total photoionisation yields
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of neon and argon atoms subject to free electron lasers in Sec. 3.2 using a TDDFT ap-
proach based on the KS wavefunctions. Here I have checked the accuracy of TDDFT to
describe these yields by comparing our results to the ones obtained from a lowest-order
perturbation theory (LOPT) perturbative method in the perturbative regime. Finally, an
analysis of the photoemission spectra and angular distributions for the molecular orbitals
of an ethylene molecule subject to a pump probe setup is given in Sec. 3.3. The evolution
of these molecular orbitals is followed including (ED) or not (BOA) the nuclear motion
to check the effects of classical nuclear motion on the photoemission spectra and angular
distributions.

Finally, in Chapter 4, I summarise the main conclusions of this thesis and possible
future work that can be carried out from it. At the very end of the thesis, after the bibliog-
raphy, I have included some Appendices for further details on the H+

2 and H2 molecules,
to which the reader can refer to. Specifically, I provide the static accuracy of the BOA in
Appendix A, the centre of mass transformation in Appendix B, the ED Hamiltonians in
Appendix C, and a derivation of the Hellmann-Feynman theorem in Appendix D.



CHAPTER 2

Theoretical background

In this chapter I first discuss the full quantum electron-nuclear problem in Sec. 2.1.
Here I introduce the Born-Oppenheimer approximation (BOA) and Ehrenfest dynamics
(ED) classical approximations to treat the nuclei. Solving the full quantum problem is
computationally very demanding and is only feasible for one and two electron molecules
such as H+

2 and H2. For most systems, the BOA and ED approximations are used. To
test the accuracy of these classical approximations, I have compared the linear response
spectra obtained from both a quantum and classical nuclear treatment for quantum elec-
trons for H+

2 and H2. In Sec. 2.2 I have introduced the theoretical details to obtain the
photoexcitation linear response spectra of the H+

2 and H2 diatomic molecules.
In Sec. 2.3 I focus on solving the electronic problem only for many electron sys-

tems, by means of density functional theory (DFT) and its time-dependent extension time-
dependent density functional theory (TDDFT). For many-electron molecules, the nuclear
motion is typically included via the BOA and ED classical approaches. TDDFT has been
used to analyse the photoionisation of neon and argon atoms and the ethylene molecule in
Sec. 2.4. To photoionise these systems I expose them to ultrashort intense sources giving
rise to non-perturbative phenomena. TDDFT is a theoretical method which allows us to
interpret in a simple and accurate way the non-perturbative response of these systems.

2.1. Approaches to the full quantum electron-nuclear problem

The quantum mechanical dynamics of a many-body system composed of a collec-
tion of N nuclei and n electrons is governed by the total electron-nuclear time-dependent
Hamiltonian (atomic units a.u. are used throughout this thesis unless stated otherwise)
which can be written as

Ĥ(t) = T̂I + T̂e + V̂II + V̂Ie + V̂ee + V̂ext(t), (2.1)

where the kinetic energy operator of the nuclei is

T̂I =

N∑
α=1

−
1

2Mα

∇
2
α, (2.2)

with the mass Mα of nucleus α and the electronic kinetic energy operator is
25
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T̂e =

n∑
i=1

−
1
2
∇2

i . (2.3)

The interaction between the nuclei is given by

V̂II =
1
2

N∑
α,β=1
α,β

ZαZβ
|Rα − Rβ|

, (2.4)

where Zα is the atomic number of nucleus α and Rα its coordinate. Similarly, the electron-
electron repulsion is

V̂ee =
1
2

n∑
i, j=1
i, j

1
|ri − r j|

, (2.5)

where ri and r j are the coordinates of electrons i and j. The attractive interaction between
the electrons and nuclei is

V̂Ie = −

N∑
α=1

n∑
i=1

Zα
|ri − Rα|

. (2.6)

Finally, V̂ext(t) describes the interaction of the system of electrons and nuclei with an
external electromagnetic time-dependent field. Throughout this thesis V̂ext(t) will describe
laser fields in the dipole approximation as explained in more detail in Sec. 2.4.1. The exact
form I have used for V̂ext(t) will be given in Sec. 2.4.1.

The time-dependent Schrödinger equation (TDSE) for the full quantum mechanical
description of the combined electronic and nuclear system then reads

i
∂

∂t
ψ(R1S 1,R2S 2, ...RNS N; r1s1, r2s2...rnsn, t)

= Ĥ(t)ψ(R1S 1,R2S 2, ...RNS N; r1s1, r2s2...rnsn, t),
(2.7)

where ψ is the many body time-dependent electron-nuclear wavefunction which depends
on the nuclear and electronic coordinates defined previously and on the spin coordinates
S α and si of nuclei α and electron i, respectively.

For time-independent problems (V̂ext(t) = 0), the general solution of the time-dependent
Schrödinger equation can be written as

ψ =
∑

k

ck exp(−iεkt)ψk(R1S 1,R2S 2, ...RNS N; r1s1, r2s2...rnsn), (2.8)
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where εk and ψk are the kth eigenvalue and eigenstate of the electron-nuclear stationary
Schrödinger equation

Ĥψk = Ĥψk(R1S 1,R2S 2, ...RNS N; r1s1, r2s2...rnsn)
= εkψk(R1S 1,R2S 2, ...RNS N; r1s1, r2s2...rnsn),

(2.9)

with

Ĥ = T̂I + T̂e + V̂II + V̂Ie + V̂ee. (2.10)

Solving the quantum electron-nuclear many body problem is computationally very
demanding and becomes unfeasible in most cases, except for one and two-electron sys-
tems, such as the model systems studied in Sec. 2.2. In particular, the resources required
to solve the quantum 3D electron-nuclear many-body problem scale exponentially with
the number of electronic 3n and nuclear 3N coordinates in the system. This makes the so-
lution of this problem very difficult when n and N are large. Thus, in Secs. 2.1.1 and 2.1.2
I introduce widely used approximations for the nuclei to computationally simplify this
problem.

2.1.1. The Born-Oppenheimer approximation. The Born-Oppenheimer approxi-
mation (BOA) [151] is used in the vast majority of electronic structure calculations.
Within the BOA, the total electronic-nuclear wavefunction ψ is assumed to be separa-
ble into a nuclear χ and electronic ϕ part. As the electrons move much faster than the
nuclei due to their typically much smaller mass, we assume that the kinetic energy of the
nuclei does not cause the excitation of the electrons to another electronic state, i.e., the
adiabatic approximation. In other words, the motion of the electrons is not affected by the
motion of the nuclei. Such an approximation is valid as long as the ratio of vibrational to
electronic energies, Evib to Eelec, which goes as the root of the electron-nuclear mass ratio,
i.e., Evib/Eelec ≈

√
me/M, is small [151] (see Appendix A for details).

Assuming this separability into an electronic problem only in ϕ and a nuclear problem
only in χ, we make a product ansatz for the solution ψk of the electron-nuclear stationary
Schrödinger equation, Eq. 2.9, as

ψk(R1S 1,R2S 2, ...RNS N; r1s1, r2s2...rnsn)

= χ(R1S 1,R2S 2, ...RNS N)ϕ(R1,R2,...RN )(r1s1, r2s2...rnsn),
(2.11)

where χ depends on the nuclear coordinates only and ϕ depends on both the electronic
coordinates and on the nuclear coordinates which, however, only enter in the electronic
wavefunctions as parameters.

In the first step of the BOA procedure one solves the “frozen-nuclei” Schrödinger
equation for the electronic wavefunction ϕ
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Ĥe(R, r)ϕ(R1,R2,...RN )
i (r1s1, r2s2...rnsn)

= εi(R1,R2, ...RN)ϕ(R1,R2,...RN )
i (r1s1, r2s2...rnsn),

(2.12)

where the nuclear coordinates Rα are fixed classically as parameters. Here

Ĥe = T̂e + V̂Ie + V̂ee + V̂II . (2.13)

The corresponding eigenvalues give the ith potential energy surfaces εi(R1,R2, ...RN)
(PESs). The PES’s are representations of the electronic energy of the system as a function
of the positions of the nuclei. Note that we neglect the effect of the kinetic energy of the
nuclei T̂I = 0 from Eq. 2.10, although the electrons still feel the static field of the nuclei
(V̂eI , V̂II , 0).

In the second step of the BOA procedure, the nuclear kinetic energy (T̂I , 0) is
reintroduced by adding its contribution to the PESs obtained from the “frozen-nuclei”
Schrödinger equation

Ĥi
Iχi, j(R1S 1,R2S 2, ...RNS N)

= εi, jχi, j(R1S 1,R2S 2, ...RNS N),
(2.14)

where

Ĥi
I =

N∑
α=1

−
1

2Mα

∇2
α + εi(R1,R2, ...RN), (2.15)

and the nuclear excitations j depend on the excited i electronic PES.
From Eqs. 2.12 and 2.13 the electronic “frozen-nuclei” Schrödinger equation in the

BOA is given by

Ĥeψn =χ

n∑
i=1

(
−

1
2
∇2

i ϕ

)
+ χ(V̂Ie + V̂ee + V̂II)ϕ

= χ

 n∑
i=1

(
−

1
2
∇2

i

)
+ V̂Ie + V̂ee + V̂II

ϕ = εi(R1,R2, ...RN)ψn.

(2.16)

For the full electron-nuclear coupled problem we insert Eqs. 2.10 and 2.11 into Eq. 2.9
to obtain
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Ĥψn =

N∑
α=1

(
−

1
2Mα

∇2
αχ

)
ϕ +

N∑
α=1

(
−

2
2Mα

∇αχ · ∇αϕ

)
+ χ

N∑
α=1

(
−

1
2Mα

∇2
αϕ

)
+ χ

n∑
i=1

(
−

1
2
∇2

i ϕ

)
+ χ(V̂Ie + V̂ee + V̂II)ϕ

= χ

 n∑
i=1

(
−

1
2
∇2

i

)
+ V̂Ie + V̂ee + V̂II

ϕ
+

N∑
α=1

(
−

1
2Mα

∇2
αχ

)
ϕ

+

N∑
α=1

(
−

1
Mα

∇αχ · ∇αϕ

)
+ χ

N∑
α=1

(
−

1
2Mα

∇2
αϕ

)
= Enψn.

(2.17)

Comparing the full quantum electron-nuclear Eq. 2.17 to the BOA Eqs. 2.15 and 2.16,
we realise that the last two terms in Eq. 2.17 are neglected in the BOA. The kinetic energy
of the nuclei is not affecting the electronic part ϕ, i.e., the BOA amounts to the assumption
that ∇αϕ ≈ 0.

The factorisation in Eq. 2.11 of the full electron-nuclear wavefunction can be made
exact, both for static [184] and time-dependent situations [185], and is not intrinsic to
BOA. In this case, however, the equations for which we obtain the solution of χ and ϕ,
have a more complicated form.

2.1.2. Ehrenfest dynamics. Within the Ehrenfest dynamics (ED) scheme the elec-
trons evolve according to the time-dependent Schrödinger equation (TDSE)

i
∂

∂t
ϕ(Rα(t), r, t) = Ĥe(Rα(t), t)ϕ(Rα(t), r, t), (2.18)

which parametrically depends on the time-dependent coordinates Rα(t) of the nuclei.
The nuclei, in turn, evolve according to the following dynamic equation from New-

ton’s second equation of motion

FED(Rα(t)) = Mα

d2Rα(t)
dt2 = − 〈ϕi(r,Rα, t) |∇αHe(Rα, r)|ϕi(r,Rα, t)〉 . (2.19)

The Ehrenfest electron-nuclear scheme consists of the time propagation of the coupled
equations Eqs. 2.18 and 2.19.
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2.2. Linear excitation spectra of H+
2 and H2 with quantum versus classical nuclei

As mentioned in Sec. 2.1, solving the full quantum time-dependent Schrödinger equa-
tion (TDSE) is computationally very demanding and the Born-Oppenheimer approxima-
tion (BOA) and Ehrenfest dynamics (ED) classical approaches are widely used to treat
the nuclei. H+

2 and H2 are one and two electron diatomic molecules for which solving the
TDSE is feasible, allowing us to test the validity of the classical approaches.

The aim of this project is to compare the linear response spectra obtained from both
a quantum and classical nuclear treatment for quantum electrons. In the perturbative lin-
ear regime, the quantum nuclear changes induced by the external electromagnetic source
should not be very strong and the classical approaches should be able to describe the spec-
tra accurately. However, for light molecules such as H+

2 and H2, non-adiabatic couplings
between the nuclei and electrons may be important and the classical approaches may not
be able to describe the spectra accurately.

As the classical approximations rely on the fact that the ratio Evib/Eelec ≈
√

me/M is
small (see Appendix A), I quantify their accuracy by fictitiously varying the nuclear mass
M of our molecules for the quantum electron-nuclear problem [186]. As the nuclei’s mass
M increases, the quantum results should be consistent with the classical nuclear results.

I model these molecules in 1D and in the centre of mass coordinates [187], so that
the numerical computational effort to carry out the calculations is largely reduced. The
3n electron and 3N nuclear coordinate problem in 3D is reduced to a n and N coordinate
problem in 1D. Within the centre of mass transformation the centre of mass motion is
exactly separated out (see Appendix B), thus further reducing the number of coordinates.

To model in 1D the interactions between any type of particles I use the so called “Soft
Coulomb interaction”, which for particles i and j with charges Zi and Z j has the general
form

Vint(xi − x j) =
ZiZ j√

(xi − x j)2 + ∆2
, (2.20)

where ∆ is the Soft Coulomb parameter [188]. The reason for using this modified inter-
action is that the bare Coulomb interaction is singular in 1D. This may lead to physically
pathological features such as, e.g., an infinite ground state energy of the 1D H atom as
∆→ 0.

2.2.1. Initial configurations. In Fig. 2.1 I show four and three possible configura-
tions that I have tested for the H+

2 and H2 molecules, as a function of the Soft Coulomb
parameter between the nuclei ∆II , the electrons ∆ee and the nuclei and electrons ∆Ie. As
the most probable electron-proton separation in a hydrogen atom is the Bohr radius a0, I
have tested Soft Coulomb parameter values within this distance range.
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Figure 2.1. Schematic representation of the (a–d) H+
2 and (e–g) H2 geometries for

the nuclear–nuclear separation ∆II , nuclear–electron separation ∆Ie, and electron–electron
separation ∆ee for each configuration. Protons are shown in red and electrons in black.
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All the configurations I have analysed are symmetric under exchange of identical
particles (see Sec. 2.2.3). One such configuration has been used previously [189] to study
the dynamics of a one-dimensional H2 model molecule in strong laser fields by means of
quantum nuclei.

2.2.2. Hamiltonians in the centre of mass. The classical energies of the one-dimensional
homonuclear H+

2 and H2 molecules in 1D are given by

EH+
2

=
1
2

MV2
1 +

1
2

MV2
2 +

1
2

ṽ2 −
1√

(x̃ − X1)2 + ∆2
Ie

−
1√

(X2 − x̃)2 + ∆2
Ie

+
1√

(X2 − X1)2 + ∆2
II

,

(2.21)

and

EH2 =
1
2

MV2
1 +

1
2

MV2
2 +

1
2

v2
1 +

1
2

v2
2

−
1√

(x1 − X1)2 + ∆2
Ie

−
1√

(X2 − x2)2 + ∆2
Ie

−
1√

(x2 − X1)2 + ∆2
Ie

−
1√

(X2 − x1)2 + ∆2
Ie

+
1√

(X2 − X1)2 + ∆2
II

+
1√

(x2 − x1)2 + ∆2
ee

,

(2.22)

respectively. Here, M is the nuclear mass; V1, V2, X1 and X2 are the proton velocities and
positions for both molecules; ṽ and x̃ are the electron velocity and position for H+

2 and v1,
v2, x1, x2 are the electron velocities and positions for H2.

The first three and four terms of Eqs. 2.21 and 2.22 are the kinetic energies of the
electrons and nuclei and molecules explained above. The remaining terms correspond
to the attractive and repulsive electrostatic potential energy terms between such electrons
and nuclei.

In the centre of mass, the spatial configuration of any molecule does not change if the
particle positions are translated uniformly. This reduces our three- and four-body coordi-
nate problems for the H+

2 and H2 molecules into two- and three-body ones, respectively.
We rewrite the classical energy in Eq. 2.21 and 2.22 in terms of the centre-of-mass

transformation (see Appendix B) to obtain the following two-body (X,ξ̃) and three-body
(X,x,ξ) internal Hamiltonians in the centre of mass frame
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Ĥ(X, ξ̃)H+
2

= −
1
M

∂2

∂X2 −
2M + 1

4M
∂2

∂ξ̃2
−

1√(
X
2 + ξ̃

)2
+ ∆2

Ie

−
1√(

X
2 − ξ̃

)2
+ ∆2

Ie

+
1√

X2 + ∆2
II

,

(2.23)

and

Ĥ(X, x, ξ)H2 = −
1
M

∂2

∂X2 −
∂2

∂x2 −
1 + M

4M
∂2

∂ξ2

−
1√(

X
2 −

x
2 + ξ

)2
+ ∆2

Ie

−
1√(

X
2 −

x
2 − ξ

)2
+ ∆2

Ie

−
1√(

X
2 + x

2 + ξ
)2

+ ∆2
Ie

−
1√(

X
2 + x

2 − ξ
)2

+ ∆2
Ie

+
1√

x2 + ∆2
ee

+
1√

X2 + ∆2
II

,

(2.24)

for the H+
2 and H2 molecules, respectively, after removing the centre of mass term. Here

the internal coordinates are given by

ξ̃ = x̃ −
X1 + X2

2
; ξ =

x1 + x2

2
−

X1 + X2

2
; x = x2 − x1; X = X2 − X1. (2.25)

2.2.3. Symmetries of the wavefunctions. Both electrons and protons are fermions.
Due to the Pauli exclusion principle, the wavefunction of a system of two or more iden-
tical fermions must be antisymmetric with respect to exchange of any pair of identical
fermions.

Since in the H+
2 molecules there are one electron and two protons, the antisymmetry

of the many-body wavefunction must be enforced for the protons only as

ψH+
2
(X1S 1, X2S 2, x̃s̃) = −ψH+

2
(X2S 2, X1S 1, x̃s̃). (2.26)

For the H2 molecule there are two electrons and two protons, therefore, the antisym-
metry of the many-body wavefunction must be enforced both for the protons and the
electrons as

ψH2(X1S 1, X2S 2, x1s1, x2s2) = −ψH2(X2S 2, X1S 1, x1s1, x2s2), (2.27)

and
ψH2(X1S 1, X2S 2, x1s1, x2s2) = −ψH2(X1S 1, X2S 2, x2s2, x1s1), (2.28)
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respectively.
For two identical particles the many-body wavefunction can be factorised into a spin

and spatial part as

ψH+
2
(X1S 1, X2S 2, x̃s̃) = ψH+

2
(X1X2, x̃)|s̃m〉e|S M〉n, (2.29)

for H+
2 and

ψH2(X1S 1, X2S 2, x1s1, x2s2) = ψH2(X1X2, x1x2)|sm〉e|S M〉n, (2.30)
for H2 where the subscripts “e” and “n” refer to electronic and nuclear spin coordinates,
respectively. For spin 1

2 fermions, the single particle spin basis functions are denoted as
| ↑〉γ, | ↓〉γ with γ ∈ {e, n}.

For H+
2 we only have a single electron with a spin of 1

2 . This unpaired electron can be
orientated | ↑〉γ, | ↓〉γ, so that we have two resulting spin states for 1

2 and −1
2 , i.e a doublet.

For H+
2 we have a pair of protons with a spin of 1

2 which can combine in different ways.
The single possible combination of these spin states that leads to a total spin quantum
number value equal to zero is called a singlet state. The three possible combinations of
these spin states that lead to a total spin quantum number value equal to one are called
triplet states. For H2 we have a pair of both protons and electrons. Therefore, in this case
we can obtain triplets and singlets for both the electrons and protons.

The singlet state is given by

|0, 0〉γ = 1
√

2
(| ↑, ↓〉γ − | ↓, ↑〉γ)

}
S = 0 (singlet), (2.31)

while the three triplet states are

|1,−1〉γ = | ↓, ↓〉γ
|1, 0〉γ = 1

√
2
(| ↑, ↓〉γ + | ↓, ↑〉γ)

|1, 1〉γ = | ↑, ↑〉γ

 S = 1 (triplet). (2.32)

If the particles are exchanged, the singlet state changes sign (antisymmetric) while the
sign of the triplet state remains unchanged (symmetric). Therefore, in order to have a total
antisymmetric many-body wavefunction, the spatial part of the nuclear and electronic
wavefunction must be antisymmetric for the triplet state and symmetric for the singlet
state.

As a consequence, I will only be concerned with the spatial part of the wavefunction,
the spin part already being separated off due to the exchange symmetry of the many-body
wavefunction.

The antisymmetry in the nuclear coordinates requires that the spatial part in the centre
of mass frame of the H+

2 wavefunction in the nuclear singlet state in 1D is

ψH+
2
(X, ξ̃) = ψH+

2
(−X, ξ̃), (2.33)
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and similarly for the H2 molecule

ψH2(X, x, ξ) = ψH2(−X, x, ξ). (2.34)
For H2, the antisymmetry in the electronic coordinates requires that the spatial part in

the centre of mass frame of the H2 wavefunction in the electronic singlet state in 1D is

ψH2(X, x, ξ) = ψH2(X,−x, ξ). (2.35)
Similarly, in the nuclear triplet state we have with respect to the antisymmetry of the

nuclear coordinates

ψH+
2
(X, ξ̃) = −ψH+

2
(−X, ξ̃), (2.36)

for H+
2 and

ψH2(X, x, ξ) = −ψH2(−X, x, ξ), (2.37)
for H2 and for the electronic triplet state the antisymmetry in the electronic coordinates

ψH2(X, x, ξ) = −ψH2(X,−x, ξ), (2.38)
for H2.

2.2.4. Born-Oppenheimer approximation in the one-dimensional centre of mass.
Within the Born-Oppenheimer approximation (BOA) in the centre of mass in 1D, Eq. 2.11
becomes

ψ(X, ξ̃) = ψi, j(X, ξ̃) = χi, j(X)ϕi(X, ξ̃), (2.39)
for H+

2 and

ψ(X, x, ξ) = ψi, j(X, x, ξ) = χi, j(X)ϕi(X, x, ξ), (2.40)

for H2 where ϕi(X, ξ̃) and ϕi(X, x, ξ) are the ith eigenfunctions of the “frozen nuclear” (X
is fixed as a parameter) Schrödinger equations

Ĥe(X, ξ̃)ϕi(X, ξ̃) = εi(X)ϕi(X, ξ̃), (2.41)
and

Ĥe(X, x, ξ)ϕi(X, x, ξ) = εi(X)ϕi(X, x, ξ), (2.42)
from which we solve for the electronic eigenstates at fixed internuclear distances X to
obtain the potential energy surfaces (PES) εi(X).

Here, we have defined the electronic “frozen nuclear” BOA Hamiltonian for H+
2 as



36 2. THEORETICAL BACKGROUND

Ĥe(X, ξ̃) = −
2M + 1

4M
∂2

∂ξ̃2
−

1√(
X
2 + ξ̃

)2
+ ∆2

Ie

−
1√(

X
2 − ξ̃

)2
+ ∆2

Ie

+
1√

X2 + ∆2
II

, (2.43)

and for H2 as

Ĥe(X, x, ξ) = −
∂2

∂x2 −
1 + M

4M
∂2

∂ξ2 −
1√(

X
2 −

x
2 + ξ

)2
+ ∆2

Ie

−
1√(

X
2 −

x
2 − ξ

)2
+ ∆2

Ie

−
1√(

X
2 + x

2 + ξ
)2

+ ∆2
Ie

−
1√(

X
2 + x

2 − ξ
)2

+ ∆2
Ie

+
1√

X2 + ∆2
II

+
1√

x2 + ∆2
ee

,

(2.44)

and χi, j(X) is the jth eigenfunction of the effective nuclear Schrödinger equation

Ĥi
I(X)χi, j(X) = εi, jχi, j(X), (2.45)

where for both molecules

Ĥi
I(X) = −

1
M

∂2

∂X2 + εi(X). (2.46)

2.2.5. Modelling the time-dependent linear response spectra for H+
2 and H2. To

obtain the linear response photoexcitation spectra I apply an initial external impulsive
perturbation, or “kick” [190]

K(H+
2 ) = exp (iK(X1 + X2 − x̃)) ,

K(H2) = exp (iK(X1 + X2 − x1 − x2)) ,
(2.47)

to the ground state wavefunctions ψgs of our H+
2 and H2 molecules, respectively, for the

fixed classical nuclear Born-Oppenheimer approximation (BOA) and quantum nuclear
approaches. K is a measure of the strength of the kick. I employ a converged kick strength
of K = 0.001, for which the linear response spectra does not change if it is decreased
further.

Using the centre of mass coordinates defined in Appendix B, the terms in Eq. 2.47
become

K(H+
2 ) = exp

(
iK

(
X̃CM2 −

2M + 2
2M + 1

ξ̃

))
,

K(H2) = exp(−iK2ξ),
(2.48)
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where X̃CM2 is the global centre of mass coordinate for H+
2 , ξ is the separation between the

nuclear and electronic centres of mass for H2 and ξ̃ the separation between the electron
and the centre of mass of the nuclei for H+

2 . The external perturbative kick K will only
induce polarisation on the coordinates ξ and ξ̃ defined for H+

2 and H2 in Eqs. B.10 and B.33
for the fixed classical BOA and quantum nuclear methods.

In linear response for small K, we expand Eq. 2.48 in terms of K, neglecting higher
order terms

K(H+
2 ) ≈ 1 + iK

(
X̃CM2 −

2M + 2
2M + 1

ξ̃

)
+ O(K2),

K(H2) ≈ 1 − iK2ξ + O(K2).
(2.49)

Note that for the first term in Eq. 2.49, 2M+2
2M+1 ξ̃ ≈ ξ̃when M � 1, for H+

2 .
For the Ehrenfest dynamics (ED) approach one should follow the same procedure, but

using

K(H+
2 ) = exp (iK(−x̃)) ,

K(H2) = exp(iK(−x1 − x2)).
(2.50)

Here I do not use the centre of mass transformation coordinates, as during the time
propagation the ions X are not fixed, but evolve as parameters according to Eq. 2.19. The
electron is kicked relative to the centre of mass of the nuclei for the H+

2 molecule, as is the
case for the fixed BOA and quantum nuclear approaches. The two electrons are kicked
relative to their distance to the nuclei for the H2 molecule. For the fixed classical BOA
and quantum nuclei I kicked the centre of mass of the electrons relative to the centre of
mass of the nuclei. However, the linear response absorption spectra does not depend on
uniform translations of the nuclei and electrons, so the different kicking effect can be
disregarded. The reader can refer to Appendix C to find the ED modelling details.

I apply the enforced time-reversal symmetry evolution operator [191] to propagate our
equations after this external perturbation has been applied to the ground state wavefunc-
tion. This operator is given by

U(t + ∆t, t) = exp
(
−i

∆t
2

H(t + ∆t)
)

exp
(
−i

∆t
2

H(t)
)
, (2.51)

and the kicked initial state I propagate is

ψ(t) = U(t + ∆t, t)ψ(t = 0) = U(t + ∆t, t)Kψgs = exp(−i∆tH0)Kψgs, (2.52)

where ψgs is the ground state eigenstate of the time independent Hamiltonian H0 = H(t +

∆t) = H(t) of Eqs. 2.23 and 2.24 and Eqs. 2.43 and 2.44 for H+
2 and H2 , for the quantum

and classical BOA problems respectively. For the ED problem, the Hamiltonians are
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shown in Appendix C. As explained in the previous paragraph, the ED Hamiltonians are
equivalent to the BOA ones.

Introducing the applied external field kick contribution K given in Eq. 2.49 and the
static equation for ψgs given in Eq. 2.8 into Eq. 2.52 we get

|ψ(t)〉 ≈ exp(−iεgst)|ψgs〉 − iK
∑

k

exp(−iεkt)
〈
ψk

∣∣∣∣∣2M + 2
2M + 1

ˆ̃ξ
∣∣∣∣∣ψgs

〉
|ψk〉, (2.53)

for the H+
2 molecule and

|ψ(t)〉 ≈ exp(−iεgst)|ψgs〉 − iK
∑

k

exp(−iεkt)
〈
ψk

∣∣∣2ξ̂∣∣∣ψgs

〉
|ψk〉, (2.54)

for the H2 molecule, using the completeness relation
∑

k |ψk〉〈ψk| = 1.
The “kick”K is applied to the ground state wavefunction ψgs and it introduces excited

state wavefunctions ψk. All the final states I have after this “kick” are then propagated in
time via Eq. 2.51. The initial ground state ψgs is even in the ξ̃ and ξ coordinates. From
Eqs. 2.53 and 2.54, we see that only the even ψgs to odd ψk dipole moment matrix elements
are non-zero by parity, since ˆ̃ξ and ξ̂ are odd operators.

When an external “kick” is applied, a dipole moment is induced in the molecule which
will oscillate back and forth with time. The dipole moment is a measure of the charge
separation induced due to the application of the “kick” between an initial and a final
electronic state. The expectation value of the dipole moment d(t) at time t is

d(t) = 〈ψ(t)| ˆ̃ξ|ψ(t)〉, (2.55)

for H+
2 and

d(t) = 〈ψ(t)|ξ̂|ψ(t)〉, (2.56)

for H2.
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Eq. 2.55 can be written as

d(t) ≈

〈ψgs| exp(iεgst) + iK
∑

k

exp(iεkt)
〈
ψgs

∣∣∣∣∣2M + 2
2M + 1

ˆ̃ξ
∣∣∣∣∣ψk

〉
〈ψk|


×

2M + 2
2M + 1

ˆ̃ξ

exp(−iεgst)|ψgs〉 − iK
∑

k

exp(−iεkt)
〈
ψk

∣∣∣∣∣2M + 2
2M + 1

ˆ̃ξ
∣∣∣∣∣ψgs

〉
|ψk〉


≈ − iK

∑
k

exp(i(εgs − εk)t)
〈
ψgs

∣∣∣∣∣2M + 2
2M + 1

ˆ̃ξ
∣∣∣∣∣ψk

〉 〈
ψk

∣∣∣∣∣2M + 2
2M + 1

ˆ̃ξ
∣∣∣∣∣ψgs

〉
+ iK

∑
k

exp(i(εk − εgs)t)
〈
ψk

∣∣∣∣∣2M + 2
2M + 1

ˆ̃ξ
∣∣∣∣∣ψgs

〉 〈
ψgs

∣∣∣∣∣2M + 2
2M + 1

ˆ̃ξ
∣∣∣∣∣ψk

〉

≈ + iK
∑

k

exp(i(εk − εgs)t)

∣∣∣∣∣∣
〈
ψk

∣∣∣∣∣2M + 2
2M + 1

ˆ̃ξ
∣∣∣∣∣ψgs

〉∣∣∣∣∣∣2
− exp(i(εgs − εk)t)

∣∣∣∣∣∣
〈
ψgs

∣∣∣∣∣2M + 2
2M + 1

ˆ̃ξ
∣∣∣∣∣ψk

〉∣∣∣∣∣∣2
≈ + iK

∑
k

[cos(ωkt) + i sin(ωkt) − cos(ωkt) + i sin(ωkt)]

×

∣∣∣∣∣∣
〈
ψk

∣∣∣∣∣2M + 2
2M + 1

ˆ̃ξ
∣∣∣∣∣ψgs

〉∣∣∣∣∣∣2 ≈ −2K
2M + 2
2M + 1

∑
k

sinωkt
∣∣∣∣∣〈ψk

∣∣∣∣ ˆ̃ξ∣∣∣∣ψgs

〉∣∣∣∣∣2 ,

(2.57)

for the H+
2 molecule using Eq. 2.53, the Euler formula exp(iωkt) = cos(ωkt) + i sin(ωkt)

and ωk ≡ (εk − εgs). Note that d(t) depends linearly on K.
Following the same procedure for the H2 molecule and using Eq. 2.54 we find that the

dipole moment is

d(t) ≈ −4K
∑

k

sinωkt
∣∣∣∣〈ψk

∣∣∣ξ̂∣∣∣ψgs

〉∣∣∣∣2. (2.58)

Within ED the final dipole moments are

d(t) ≈ 2K
∑

k

sinωkt
∣∣∣∣〈ψk |x̂|ψgs

〉∣∣∣∣2 , (2.59)

for the H+
2 molecule and

d(t) ≈ 2K
∑

k

sinωkt
∣∣∣∣〈ψk |(x̂1 + x̂2)|ψgs

〉∣∣∣∣2, (2.60)

for the H2 molecule.
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The optical photoabsorption cross section spectra σabs is obtained by performing a
discrete Fourier transform of d(t) [192]. More precisely,

σabs = 4παωIm

 1
K

T∑
t=0

∆t exp(−iωt) f
( t
T

)
[d(t) − d(0)]

 , (2.61)

where

f
( t
T

)
= exp

(
−25

( t
T

)2
)
, (2.62)

is a Gaussian damping applied to improve the resolution of the photoabsorption peaks, ω
is the frequency of the oscillations of d(t), α is the fine structure constant, T is the total
propagation time, and ∆t is the time step.

2.3. Density functional theory approach to the many-electron problem

In most electronic structure calculations, one typically neglects the nuclear motion
and starts from the Born-Oppenheimer approximation (BOA) using fixed nuclear coordi-
nates. However, even if we neglect the nuclear part, the solution of the problem of many
interacting electrons (Eq. 2.12 in the static case or Eq. 2.18 in the time-dependent case) is
highly non-trivial and can in practice only be done for fairly small electron number sys-
tems. Density functional theory (DFT) offers an alternative approach to the many-electron
problem, both for static and time-dependent situations.

2.3.1. Static density functional theory. Density functional theory (DFT) is an elec-
tronic quantum mechanical theory which allows us to describe the many-body electronic
problem directly in terms of the electronic ground state density without the need of cal-
culating the many-body wavefunction.

The Hamiltonian of n interacting electrons moving in an arbitrary static external po-
tential V̂ext is

Ĥ = T̂e + V̂ee + V̂ext, (2.63)

where T̂e and V̂ee were defined in Eqs. 2.3 and 2.5, and the operator of the external poten-
tial is

V̂ext =

n∑
i=1

Vext(ri). (2.64)

The many-electron Schrödinger equation for the electronic ground state ϕ(r1 · · · rn) is

Ĥϕ(r1 · · · rn) = Eϕ(r1 · · · rn), (2.65)

and the electronic ground state density ρ(r) is defined as
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ρ(r) = n
∫

d3r2...d3rn|ϕ(r, r2...rn)|2. (2.66)

All observable properties of a many-body system are determined by the external po-
tential V̂ext because the other two terms in Eq. 2.63 are only density dependent. The central
theorem of static DFT, the Hohenberg-Kohn (HK) theorem [193], states that there is a one
to one correspondence between external potentials Vext(r) and ground state densities ρ(r).
Two external potentials, Vext and V ′ext, which differ by more than an arbitrary additive
constant, V ′ext , Vext + const., lead to different ground state densities. The Schrödinger
equations for the ground states of these two external potentials are

Ĥϕ =(T̂e + V̂ee + V̂ext)ϕ = Eϕ,

Ĥ′ϕ′ =(T̂e + V̂ee + V̂ ′ext)ϕ
′ = E′ϕ′.

(2.67)

The proof of the HK theorem is by reductio and absurdum. We assume that the
different potentials V̂ext, V̂ ′ext lead to the same ground state density (ρ(r) = ρ′(r)) and show
that this leads to a contradiction. We assume that the ground states of Ĥ and Ĥ′ are non-
degenerate. Then, by virtue of the Rayleigh-Ritz variational principle we can write for
the ground state energy E of Ĥ

E = 〈ϕ|Ĥ|ϕ〉 < 〈ϕ′|Ĥ|ϕ′〉 = 〈ϕ′|Ĥ′ + V̂ext − V̂ ′ext|ϕ
′〉

= 〈ϕ′|Ĥ′|ϕ′〉 + 〈ϕ′|V̂ext − V̂ ′ext|ϕ
′〉 = E′ + 〈ϕ′|V̂ext − V̂ ′ext|ϕ

′〉

= E′ +
∫

d3rρ′(r)(Vext(r) − V ′ext(r)).

(2.68)

Similarly, we obtain for the ground state energy E′ of Ĥ′

E′ = 〈ϕ′|Ĥ′|ϕ′〉 < 〈ϕ|Ĥ′|ϕ〉 = 〈ϕ|Ĥ + V̂ ′ext − V̂ext|ϕ〉

= 〈ϕ|Ĥ|ϕ〉 + 〈ϕ|V̂ ′ext − V̂ext|ϕ〉 = E + 〈ϕ|V̂ ′ext − V̂ext|ϕ〉

= E +

∫
d3rρ(r)(V ′ext(r) − Vext(r)).

(2.69)

Adding Eqs. 2.68 and 2.69 while assuming that the ground state densities are equal,
(ρ(r) = ρ′(r)), we find that E + E′ < E′ + E which is a contradiction. Therefore,
the ground state densities corresponding to two different external potentials differ. The
ground state density uniquely determines the external potential, which via the many elec-
tron Schrödinger equation 2.65 determines the eigenstates of the system.

This then means that the expectation value of any quantum mechanical operator, such
as the ones in Eq. 2.63 with respect to the ground state or any other eigenstate of Ĥ, is an
explicit functional of the ground state density alone.
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For a given fixed external potential V̂ext(r), we can now write the ground state energy
as a functional of the density, i.e.,

EVext[ρ] = 〈ϕ[ρ]|T̂ + V̂ee|ϕ[ρ]〉 + 〈ϕ[ρ]|V̂ext|ϕ[ρ]〉 = FHK[ρ] +

∫
d3rVext(r)ρ(r), (2.70)

where we have defined the HK functional

FHK[ρ] = 〈ϕ[ρ]|T̂ + V̂ee|ϕ[ρ]〉, (2.71)
which is minimised in the sense that it does not depend on Vext. The second statement
of the HK theorem is a density variational principle which states that the ground state
density ρ0(r) corresponding to the given Vext can be obtained from

δEVext[ρ]
δρ(r)

∣∣∣∣∣
ρ=ρ0(r)

= 0. (2.72)

The HK proof goes through for any interaction V̂ee, in particular also for the non-
interacting case V̂ee = 0. The total energy of n non-interacting electrons in an external
potential VS (r) can then be written as

ES
VS

[ρ] = TS [ρ] +

∫
d3rVS (r)ρ(r), (2.73)

where the non-interacting kinetic energy can be written explicitly in terms of non-interacting
single-particle orbitals φi(r)

TS [ρ] =

n∑
i

∫
dr3φ∗i (r)

(
−
∇2

2

)
φi(r). (2.74)

For non-interacting electrons, the density variational principle

δES
VS

δρ(r)

∣∣∣∣∣∣∣
ρ0(r)

=
δTS

δρ(r)

∣∣∣∣∣
ρ0(r)

+ VS (r) = 0, (2.75)

is equivalent to solving the single-particle Schrödinger equation[
−
∇2

2
+ VS (r)

]
φi(r) = εiφi(r), (2.76)

and to calculating the ground state density from the n non-interacting single-particle or-
bitals

ρ0(r) =

n∑
i=1

|φi(r)|2. (2.77)
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This observation can be used to derive the Kohn-Sham (KS) scheme [194]. To this
end we rewrite the energy functional of the interacting system in Eq. 2.70 by addition and
subtraction as

EVext[ρ] = TS [ρ] + EH[ρ] + Exc[ρ] +

∫
d3rVext(r)ρ(r), (2.78)

where we have defined the classical electrostatic Hartree energy as

EH[ρ] =
1
2

∫ ∫
d3rd3r′

ρ(r)ρ(r′)
|r − r′|

, (2.79)

and the exchange-correlation (xc) energy is

Exc[ρ] = FHK[ρ] − TS [ρ] − EH[ρ]. (2.80)

From Eq. 2.75, the density variational principle in Eq. 2.72 becomes

0 =
δES

Vext

δρ(r)

∣∣∣∣∣∣∣
ρ0(r)

=
δTS

δρ(r)

∣∣∣∣∣
ρ0(r)

+ VS (r). (2.81)

From Eqs. 2.78 and 2.81, the effective potential is

VS [ρ](r) = Vext(r) + VH[ρ0](r) + Vxc[ρ0](r), (2.82)

where the Hartree potential is given by

VH[ρ](r) =
δEH[ρ]
δρ(r)

=

∫
d3r′

ρ(r′)
|r − r′|

, (2.83)

and the xc potential is

Vxc[ρ](r) =
δExc[ρ]
δρ(r)

. (2.84)

This means that we can obtain the ground state density of the interacting system in
Eq. 2.81 through a self-consistent solution of the effective non-interacting problem of
Eq. 2.76 with VS given by Eq. 2.82.

Here we have assumed that the ground state density of the interacting system can also
be represented as the ground state density of a non-interacting system.

While KS DFT is formally exact, in practice one has to employ an approximation for
the unknown xc energy Exc[ρ] given in Eq. 2.80. The quality of a DFT calculation is
determined by how well this exchange-correlation energy is approximated. To test this
we can approximate Eq. 2.80 by using different density functionals.
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2.3.1.1. Functionals. The simplest density functional used to approximate the ex-
change correlation energy is the Local Density Approximation (LDA) functional, which
is based on the homogeneous electron gas. In the homogeneous electron gas the electronic
density is constant over space and it is compensated by a uniform background density.
Within the Kohn-Sham (KS) non-interacting scheme, VS (r) = 0 due to symmetry. The
non-interacting kinetic energy per electron for a homogeneous electron gas is given by

tunif
s [ρ] =

3
10

(
3π2ρ

)2/3

. (2.85)

The exchange energy per electron of the uniform electron gas is

eunif
x [ρ] = −

3
4π

(
3π2ρ

)1/3

. (2.86)

The analytical form of the correlation energy per electron of the uniform electron gas
eunif

c [ρ] is not known exactly. It is only known exactly for certain density limits through
quantum Monte Carlo calculations. Therefore one uses Monte Carlo parametrisations to
construct an analytical fit for the correlation energy. In particular, in this thesis I have
used the parametrisation of Perdew and Wang [195] to obtain the correlation energy per
electron of the uniform electron gas

eunif
c [rs, ζ] = eunif

c (rs, 0) + αc(rs)
f (ζ)

f ′′(0)
(1 − ζ4) + [eunif

c (rs, 1) − eunif
c (rs, 0)] f (ζ)ζ4, (2.87)

where

f (ζ) =
[(1 + ζ)

4
3 + (1 − ζ)

4
3 − 2]

2
4
3 − 2

, (2.88)

rs =

[
3

4π(ρ↑ + ρ↓)

] 1
3

, (2.89)

ρ = ρ↑ + ρ↓ =
3

4πr3
s
, (2.90)

ζ =
ρ↑ − ρ↓

ρ↑ + ρ↓
, (2.91)

where ρ↑ and ρ↓ are the up- and down-spin electron ground state densities.
Here eunif

c (rs, 0), eunif
c (rs, 1) and αc(rs) are obtained with f (0)=0, f (1)=1 and f ′′(0)=1.709921

by fitting the analytical form
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G(rs, α1, β1, β2, β3, β4, p) = − 2A(1 + α1rs)

× ln

1 +
1

2A
(
β1r

1
2
s + β2rs + β3r

3
2
s + β4rp+1

s

)
 . (2.92)

To construct the LDA functional the LDA exchange energy functional is obtained
from

ELDA
x [ρ] =

∫
d3reunif

x [ρ(r)]ρ(r), (2.93)

and the LDA correlation energy functional from

ELDA
c [ρ] =

∫
d3reunif

c [ρ(r)]ρ(r). (2.94)

Then the exchange-correlation LDA functional is given by

ELDA
xc = ELDA

x + ELDA
c . (2.95)

Another LDA based functional I use in this thesis is the corrected-exchange-density [196]
extension of LDA (CXD-LDA). Here, the exchange-correlation density ρxc(r) is given by

ρxc(r) = −
1

4π
∇2Vxc[ρ(r)], (2.96)

where ρxc(r) is corrected by using

ρcorr
xc (r) = ρxc(r) +

1
|qxc(η0)|

∆ρxc(r, η0), (2.97)

where the exchange-correlation charge is

qxc(η) =

∫
d3r (ρxc[ρ(r)] + ∆ρxc[ρ(r, η)]) , (2.98)

and the exchange-correlation density correction is

∆ρxc[ρ(r, η)] =

{
0 if ρ(r) ≥ η
−ρxc[ρ(r)] if ρ(r) < η . (2.99)

Here η0 = minη≤ηm |qxc(η) + 1| is an optimised value for which we fulfil the following
conditions for which the charge is closest to -1

ρxc(r) = 0 (|r| → ∞)∫
d3rρxc[ρ(r)] = −1 , (2.100)

where ηm is the smallest value where qxc(η) has a minimum.
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As the LDA and CXD-LDA functionals are based on the homogeneous electron gas,
they solely depend on the value of the electronic density at each point in space. Therefore,
we only expect them to work for systems where the density varies slowly over space. To
account for density inhomogeneities, Generalised Gradient Approximation (GGA) func-
tionals have been constructed, which also account for derivatives of the density. One
corrects the LDA based exchange-correlation energy with terms that depend on ∇ρ as

EGGA
xc [ρ] = ELDA

xc [ρ] +

∫
d3r f [ρ,∇ρ]. (2.101)

In particular, in this thesis I have used the PBE [197] and LB94 [198] forms of the
generalised gradient approximations (GGA).

For PBE the exchange energy functional is given by

Ex =

∫
d3rρeunif

x [ρ]Fx(s), (2.102)

where eunif
x [ρ] is defined in Eq. 2.86 and

Fx(s) = 1 + κ −
κ(

1 +
µs2

κ

) , (2.103)

with κ=0.804 and µ=0.21951.
The PBE correlation energy functional is given by

Ec[ρ(r)] =

∫
d3rρ[eunif

c (rs, ζ) + H(rs, ζ, t)], (2.104)

where eunif
c (rs, ζ) is defined in Eq. 2.87 and the density gradient contribution H is

H =

(
e2

a0

)
γφ(ζ)3 ln

[
1 +

β

γ
t2

(
1 + At2

1 + At2 + A2t4

)]
, (2.105)

with γ=0.031091, β=0.066725, t =
|∇ρ(r)|

2φksρ(r) is the dimensionless density gradient, ks =√
4kF
πa0

is the Thomas Fermi screening wave number,

φ(ζ) =

[
(1 + ζ)

2
3 + (1 − ζ)

2
3

]
2

, (2.106)

is the spin scaling factor and

A =
β

γ

exp
−euni f

c (rs, ζ)
γφ(ζ)3

 − 1
−1

. (2.107)

For LB94 the exchange-correlation potential is given by
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Vxc = −ρ(r)
1
3β

x2

1 + 3βx sinh−1(x)
, (2.108)

where x =
|∇ρ(r)|

ρ(r)
4
3

is the dimensionless density gradient and β=0.05.

Note that LB94 and CXD-LDA are not energy functionals, but models for the ex-
change correlation potential Vxc. In these cases, the exchange-correlation potentials do
not result from functional derivatives of particular exchange-correlation energy function-
als.

2.3.2. Time-dependent density functional theory. Time-dependent density func-
tional theory (TDDFT) [199] is the time extension of density functional theory (DFT) (see
Sec. 2.3.1) to study the dynamic response of systems in the presence of time-dependent
external fields.

As in DFT, it has been proven by Runge-Gross (RG) that all physical properties of
an interacting many-electron system can be determined from its time-dependent den-
sity [169]. Moreover, the interacting system is also mapped onto an auxiliary, non-
interacting time-dependent Kohn-Sham (TDKS) system with the time-dependent corre-
sponding density of Eq. 2.77 ρ(r, t) =

∑n
i=1 |φi(r, t)|2, where φi(r, t) are single-particle KS

orbitals satisfying the TDKS equations

i
∂

∂t
φi(r, t) =

[
−
∇2

2
+ V̂ext(t) + V̂H[ρ](r, t)

+V̂xc[ρ](r, t)
]
φi(r, t), i = 1, . . . , n, (2.109)

where the analogue time-dependent potential terms that were described in Sec. 2.3.1 have
been used. Now the external field in Eq. 2.64 contains a time-dependent laser field term.

The exact expression used for V̂ext(t) is given in Secs. 2.4.1 for the systems analysed
with TDDFT.

In TDDFT we employ the adiabatic extension of the DFT functionals to the time-
dependent case. By adiabatic we mean that the density at time t is plugged into a ground
state (gs) density functional

Vadia
xc (r, t) = Vgs

xc[ρ(r, t)], (2.110)
neglecting its time dependent evolution. This approximation is reasonable if the system
begins in a ground state where the external time dependence is very slow.

2.4. Photoionisation of neon, argon and ethylene by means of time-dependent
density functional theory

Due to the recent advances in the development of intense ultrashort lasers, it is now
experimentally possible to study the strong field photoionisation of systems exposed to
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such sources. In particular I have studied the response of neon and argon atoms which are
subject to a free electron laser source and of an ethylene molecule subject to a pump probe
setup. To understand the non-perturbative phenomena that arises due to a very strong
interaction between these systems and the electromagnetic source I use time-dependent
density functional theory (TDDFT).

Recently, Lambropoulos et al. have used a perturbative method in terms of rate equa-
tions known as lowest-order perturbation theory (LOPT) [200] to study the photoion-
isation of neon and argon atoms exposed to intense free electron laser sources. They
have found a very good agreement with experiment [201, 202] in the perturbative regime.
TDDFT was unable to describe non-perturbative phenomena such as the non-sequential
double photoionisation “knee” found experimentally for helium, without including the de-
rivative discontinuity. In this section I show how I obtain the individual and total photoion-
isation yields using a TDDFT approach suggested by Ullrich [203]. As the performance of
TDDFT depends on the local and asymptotic behaviour of the exchange-correlation func-
tional used, I have used several exchange-correlation functionals. The ionisation yields I
obtain with TDDFT will then be compared to the accurate ones obtained from LOPT in
the perturbative regime.

To photoionise ethylene I use a pump probe setup. With a pump I first excite ethy-
lene’s πz to π∗z transition which I then follow with a delayed probe pulse which ionises the
molecule. For the many-electron ethylene molecule we also have to include the nuclear
motion which is absent for the neon and argon atoms. The nuclear motion is included
via the Born-Oppenheimer approximation (BOA) and Ehrenfest dynamics (ED) classical
approaches. Pump probe spectroscopy can be used to monitor both electron and nuclear
dynamics. Here, I have used TDDFT to model the pump-probe dynamics of ethylene. The
time resolved photoemission spectra and photoangular distributions have been obtained
using the TDDFT approach suggested by De Giovannini et al. [204]. I perform an analysis
of the angular and time resolved distribution of ethylene’s molecular orbitals using both
the classical BOA and ED approaches to check the effect of nuclear motion. The strong
probe I use to ionise ethylene can trigger non-perturbative effects. Moreover, the analy-
sis of the photoemission spectra and angular distributions is performed once the probe is
applied. The probe is applied after the ethylene molecule is already out of equilibrium
due to the excitation introduced by the pump. Therefore, the analysis is performed from
the response of an ethylene molecule which is already driven out of equilibrium initially
due to a pump. TDDFT can be used non-perturbatively in out of equilibrium situations
including electron correlation effects. Therefore it is desirable to describe the dynamic
evolution of the molecular orbitals of ethylene in terms of TDDFT.

2.4.1. Laser field. To analyse the photoionisation yields for argon and neon I ex-
pose them to the following external potential in our time-dependent Kohn-Sham (TDKS)
Eq. 2.109
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V̂ext(t) = A f (t) sin(ωt)r · α −
N∑
α=1

Zα
|r − Rα|

, (2.111)

where the nuclei are treated as Born-Oppenheimer approximation (BOA) classical fixed
particles and the atom free electron laser (FEL) interaction is written in the dipole ap-
proximation, i.e., proportional to r. Here α is the polarisation, ω the frequency and A
the field amplitude of the sinusoidal laser. For ultraviolet (UV) to X-ray laser fields, the
length scales range from 10 to 0.1 nm. As the typical size of an atom has a length scale
of the order of 0.1 nm, the dipole approximation simplified model is valid. The length
scale limit of an atom gives an upper photon frequency limit to the validity of the dipole
approximation. The pulse envelope is of Gaussian shape f (t) = exp

[
−(t − t0)2/2τ2

0

]
, with

peak value centred at t0 and full width at half maximum (FWHM) peak width given by
2
√

ln 2τ0.
To propagate Eq. 2.109 I use an enforced time-reversal symmetry based propagator,

Eq. 2.51.
For an ethylene molecule exposed to a pump and probe laser, I use the following

external potential to solve the TDKS Eq. 2.109

V̂ext(r,Rα(t), t) = r · E(t) −
∑
α

Rα(t)·E(t) −
N∑
α=1

Zα
|r − Rα(t)|

. (2.112)

The first two terms describe the interaction of the electrons and the nuclei with the
pump and probe laser fields where E(t) is the electric field associated to the lasers in the
dipole approximation as in Eq. 2.111. The laser parameters given below for ethylene have
been adapted from Ref. [205].

I employ an UV pump laser of energy ωPu = 0.326 Ha, with a 15 cycle trapezoidal
shape (3 cycle ramp), and an intensity I = 1.67 × 1011 W/cm2 polarised along the x-axis.
The probe is an extreme ultraviolet (XUV) laser of energy ωpr = 1.8 Ha, with a 40 cycle
trapezoidal shape (8 cycle ramp), and an intensity of I = 1.02 × 1011 W/cm2 polarised
along the z-axis.

The last term in Eq. 2.112 corresponds to the motion of the nuclei moving according
to Ehrenfest Dynamics (ED). Note that when the nuclei are treated as fixed BOA particles
the second term in Eq. 2.112 vanishes and Rα(t) becomes Rα in the third term.

2.4.2. Time-dependent density functional theory functionals. For neon and argon
I consider four different exchange-correlation(xc) potential approximations: the local-
density approximation [195] (LDA), PBE [197] and LB94 [198] forms of the generalised
gradient approximations (GGA), and the corrected-exchange-density [196] extension of
LDA (CXD-LDA). The analytical form of these xc functionals is given in Sec. 2.3.1.1.
These functionals are used in the static density functional theory (DFT) calculation of the
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initial ground state and their adiabatic extensions are then used in the time propagation of
the time-dependent Kohn-Sham (TDKS) equations.

A characterising property of both LB94 and CXD-LDA is the correct asymptotic de-
cay of the xc potential, Vxc ∼ −1/r, following the Coulomb potential for large distances
r from the electrons to the nuclear core. In contrast, both LDA and PBE decay exponen-
tially. The high-lying unoccupied KS bound states, close to the ionisation threshold, are
thus expected to be more accurately described by the LB94 and CXD-LDA functionals.

The xc functional I use for the ethylene molecule is the well known Local Density
Approximation (LDA) coupled to an Average Density Self Interaction Correction (AD-
SIC) [206, 207] for the ground state and its adiabatic extension for time-dependent density
functional theory (TDDFT). Here, one subtracts from the LDA energy functional, the self
interaction of every electron with itself in the molecule. I assume that indistinguishable
electrons are represented by equal single-particle densities. This means that the density
of each electron is given by the one-particle fraction of the total spin-density ρi(t) =

ρσi (t)
nσi

where σi is the spin of state i and nσi the number of electrons with spin σi ∈↑, ↓.

EADSIC[ρ(t)] = ELDA[ρ(t)] −
(
n↑(EH + Exc)

[
ρ↑(t)
n↑

]
+ n↓(EH + Exc)

[
ρ↓(t)
n↓

])
. (2.113)

The choice of ADSIC is motivated by its correct asymptotic behaviour of the corre-
sponding xc potential in the ground state. In other words, for a large distance r from the
molecule, Vxc ∼ −1/r. The high-lying unoccupied KS bound states close to the ionisa-
tion threshold are thus described more accurately than with an exponentially decaying
xc potential. This gives a bound πz → π∗z transition, which is not the case for standard
xc-functionals with the wrong asymptotic behaviour. Moreover, I obtain an accurate ion-
isation potential and carbon-carbon (C–C) bond-length by comparison to experimental
values (see beginning of Sec. 3.3.2.1). The (C–C) bond-length has been obtained by
molecular force minimisation. Force minimisation can only be achieved using energy
density functionals, i.e, xc potentials which can be obtained as functional derivatives of
an xc energy functional. In particular I employ the method of steepest descent

Rk+1 = Rk − s∇F(Rk), (2.114)

where Rk and Rk+1 correspond to the initial and final coordinates of each atom of the
molecule before and after force minimisation, respectively. −∇F(Rk) is the negative of
the gradient of the force for the initial coordinates and s is the step size between Rk and
Rk+1. As ∇F(Rk) ∼ 0, I converge towards the minimum force where the atoms are in
their equilibrium configuration, Rk+1 ≈ Rk and the minimisation process ends. The force
F(Rk) is obtained by minimising the ground state energy as a function of the coordinate
Rk.
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The combination of LDA and ADSIC has been successfully employed in conditions
similar to the ones described in this work [208, 209].

2.4.3. Absorbing boundary. Continuum unbound delocalised states play a central
role in the photoionisation of atoms and molecules. To obtain the correct distribution of
the ejected electrons in the continuum one would need accurate wavefunctions in a large
space domain to account for the spreading of these delocalised states. Knowledge of the
whole space is not feasible computationally as we are limited to a simulation box of a
certain width (see Sec. 3.2.1). Due to this limitation, ionised electrons can bounce off the
edges of the simulating box and return to the atom, which is unphysical. This would lead
to smaller ionisation yields than expected. Therefore, it is convenient to insert at the edges
of the box an absorbing boundary region to avoid unphysical reflections. The quality of
the absorbing boundary region is measured by the amount of reflections it can remove.

As the absorbing boundary method for the neon and argon atoms, I use a complex
absorbing potential (CAP) [210, 211]. This method consists of adding to the Hamiltonian
H0 a spherically symmetric negative imaginary potential which is non-zero but small close
to the boundaries of the simulating box. This potential VCAP(r), acting at a certain distance
RCAP from the centre of the spherical box of radius R is

VCAP(r) = −iη
{

0 if |r| < |RCAP|

sin2
(
π|r−RCAP |

2|R−RCAP |

)
if |RCAP| ≤ |r| ≤ |R|

. (2.115)

Time propagation with this modified Hamiltonian by means of the time propagator
with ∆t → 0

UCAP(t + ∆t, t) = exp(iH∆t) = exp (i[H0 + VCAP(r)]∆t), (2.116)

results in wavepacket absorption at the boundaries to avoid wavepacket reflection due to
exponential damping. In order to obtain a damped exponential contribution, the values η
of the imaginary part of the added potential must be negative. Characterising and control-
ling the reflection properties of the absorber is important to accurately describe continuum
states. The amount of induced exponential damping depends on the kinetic energy of the
absorbed wavepacket, on the width of the absorbing boundary region and on the negative
value of the added potential. Taking into account these effects we can obtain a reflection
error plot [212]. The kinetic energy of each outgoing electron, Ek = ~ω − Eb, is deter-
mined by the photon energy ~ω of the incoming laser and its binding energy Eb. The
width of the absorbing boundary region RCAP is limited by the size of the simulating box
R we can numerically solve. The negative value of the added complex absorbing potential
is then chosen to give the least possible reflections for the photon energy and simulating
box size used.

The absorbing boundary method used for ethylene is given in Sec. 2.4.7.
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2.4.4. Pseudopotentials. The strong nuclear Coulomb potential and many highly lo-
calised core electron wavefunctions are computationally very hard to describe with the
grid-based non-localised Octopus code [213, 214, 215] used in this thesis. Since both
the core and valence wavefunctions are eigenstates of the Hamiltonian, they must all be
mutually orthogonal. To maintain this orthogonality, the valence states must oscillate
rapidly in the core region where the core states are highly localised. As core excitations
are only expected to play a relevant role for very high intensity laser pulses, it is rea-
sonable to consider the core electrons as rigid frozen particles together with the nucleus.
Therefore it is convenient to replace the strong Coulomb nuclear plus core potential by
a weaker pseudopotential and replace the highly oscillating valence wavefunctions by
smoother pseudowavefunctions in the core region.

For neon I freeze the two 1s core electrons and for argon I freeze the two 1s, two
2s, and six 2p core electrons. The number of initial unfrozen valence electrons for both
atoms is n = 8. The pump and probe lasers that I use for ethylene cannot ionise its 1s
core electrons as their energies are ∼10.29 Ha. Therefore, I freeze the two tightly bound
1s core electrons in an LDA pseudopotential (see Secs. 2.3.1.1 and 2.4.2) generated for
the neutral configuration.

The pseudopotentials used for neon and argon have been generated within the Troullier-
Martins scheme [216] as distributed in the APE code [217] and then used in the Octopus
code [213, 214, 215]. The pseudopotential for ethylene has been generated within the
Troullier-Martins scheme [216] as distributed in the Octopus code [213, 214, 215].

The pseudowavefunction chosen for the valence electrons is described by means of
the Troullier-Martins scheme and is parametrised according to

RPP
l (r) =

{
RAE

nl (r) if r > rc

rl exp(p(r)) if r < rc
, (2.117)

and

VPP
l (r) =

{
VAE

nl (r) if r > rc

εnl + l+1
r p′(r) +

p′′(r)+[p′(r)]2

2 if r < rc
, (2.118)

where n and l are the principal and angular quantum numbers, RAE
nl (r), RPP

l (r) and VAE
nl (r),

VPP
l (r) are the all electron and pseudo wavefunctions and potentials, rc a cutoff radius and

p(r) = c0 + c2r2 + c4r4 + c6r6 + c8r8 + c10r10 + c12r12. (2.119)

Here p′(r) and p′′(r) correspond to the first and second derivative of p(r). The coeffi-
cients c of the function p(r) are then adjusted to fulfil the following requirements beyond
the cutoff radius rc [218]: the parametrised calculation gives pseudowavefunctions and
eigenvalues that have to match that of the valence electrons for the all electron calcula-
tion. The integrated density obtained from the pseudo and all electron wavefunction must
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be identical. The pseudowavefunctions must be nodeless. The logarithmic derivative of
the pseudowavefunction has the same behaviour as that of the all electron wavefunction.

The transferability of the pseudopotential is determined by the quality of the parametri-
sation for the chosen cutoff radius. The smaller the value of this cutoff radius, the calcula-
tion with pseudopotentials will be more transferable to the all electron one but also more
expensive computationally.

2.4.5. Ehrenfest dynamics for ethylene. For the neon and argon atoms I do not
have to model the nuclear part because we do not have vibrational degrees of freedom.
However, this is not the case for ethylene.

The motion of the nuclei α for ethylene within the time-dependent density functional
theory (TDDFT) framework is determined by the electronic density gradient through
Newton’s second equation of motion. For a conservative force that is a function of the
position of the nuclei only, Newton’s second equation of motion can be written as

F(Rα(t), t) = Mα

d2Rα(t)
dt2 = −∇αV(Rα(t), t), (2.120)

where V(Rα(t), t) is the total potential acting on the nuclei only

V(Rα(t), t) = Vext[ρ(t)] + VII(Rα(t)), (2.121)

where VII(Rα(t)) is defined in Eq. 2.4 and the contribution of the external potential can be
written explicitly in terms of the density

Vext[ρ(t)] =

∫
dr3 Vext(r,Rα(t), t) ρ(r, t), (2.122)

where Vext(r,Rα(t), t) is defined in Eq. 2.112. Note that the first term in Eq. 2.112, which
describes the interaction of the electrons with the pump and probe laser fields, disappears
once you apply the gradient for the nuclei α in Eq. 2.120.

Inserting Eq. 2.122 into Eq. 2.121, we can write Eq. 2.120 as

Mα

d2Rα(t)
dt2 = −∇α


∫

dr3 Vext(r,Rα(t), t) ρ(r, t) +
1
2

N∑
α,β=1
α,β

ZαZβ
|Rα − Rβ|

 . (2.123)

The electron plus nuclear scheme consists of the time propagation of the coupled time-
dependent Kohn-Sham (TDKS) Eq. 2.109 with Eq. 2.112 and the Ehrenfest Eq. 2.123.
The TDKS equations are propagated via an enforced time reversal symmetry propagator,
Eq. 2.51, and the nuclei via a velocity Verlet algorithm using
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Rα(t + ∆t) = Rα(t) + vα(t)∆t +
1
2

aα(t)∆t2,

aα(t + ∆t) = −
1

Mα

∇αV (Rα(t + ∆t)) ,

vα(t + ∆t) = vα(t) +
1
2

aα(t)∆t +
1
2

aα(t + ∆t)∆t.

(2.124)

A random initial velocity v consistent with a Boltzmann distribution function f (v) at
a specific temperature T is assigned to each nucleus with mass Mα

f (v) = 4π
[

Mα

2πkBT

] 2
3

v2 exp
(
−

mv2

2kBT

)
, (2.125)

where kB is the Boltzmann constant.

2.4.6. Modelling the time-dependent density functional theory total and individ-
ual yields for neon and argon. In order to estimate the total ionic yields with time-
dependent density functional theory (TDDFT), I follow the time evolution of the elec-
tronic charge remaining in a given interacting volume V around the atom. The evolution
of the total electronic charge with time is obtained from the electronic density.

Our simulating volume has an interacting region where the time-dependent Kohn-
Sham (TDKS) equations are solved in real space and an absorbing boundary region where
the ionised electrons are collected via damping. This absorbing region ensures that no
electron can reflect back to the atom by bouncing back from the borders of our interacting
volume. The norm of the Kohn-Sham (KS) orbital for each electron inside the interacting
volume Ni(t) =

∫
V

dr |φi(r, t)|2 decreases in time during the application of a laser pulse due
to the ionisation of the electrons into the absorbing region. The total number of escaped
electrons at time t is given by

Nesc(t) = N0 − N(t) , (2.126)

where N0 is the initial number of non-frozen valence electrons and N(t) =
∑

i Ni(t) =∫
V

dr ρ(r, t), is the total number of remaining electrons in the interacting volume at a given
time. The total ionisation yield is the long time limit of Eq. 2.126: Nesc = Nesc(t → ∞)
to allow enough time for the electrons in lower-energy eigenstates to ionise. We stop our
simulation when we see that the variation of Nesc(t) becomes negligible with time.

To calculate the TDDFT individual ionisation probabilities P+q(t) for an atom, i.e., the
probability to produce an ion in a positively q-charged state (q = 1, . . . ,N0), I employ the
approach based on the TDKS orbitals described in [203]. In this approach, as the explicit
time-dependent density functional for these probabilities is unknown, these are calculated
from the KS single-electron orbital densities instead of the total density
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N0∑
q=1

P+q(t) =

N0∑
i=1

[
(N0 − q)N j(t) + qN̄ j(t)

]
, (2.127)

where q is the charge of the species, N0 the total number of non frozen valence electrons
and

N j(t) =

∫
V

d3r|ϕi(r, t)|2, (2.128)

N̄ j(t) =

∫
VCAP

d3r|ϕi(r, t)|2, (2.129)

are the number of bound and continuum electrons in the real space interacting V and
complex absorbing potential VCAP region, respectively.

To obtain the individual ionic channels, we need to assume that the KS wavefunction
is a good approximation to the many-body one. At the exact level of theory this assump-
tion is certainly not valid. However, we may still view this assumption as a zeroth order
approximation whose quality can be assessed on the basis of its success in recapturing re-
sults from different approaches and experimental data. The total yield is the only quantity
that is rigorously correct since it is directly derived from the total electronic density and
not the single particle KS orbitals.

2.4.7. Modelling the photoelectron spectra and the photoangular distribution for
ethylene. In experimental setups photoelectrons travel long distances before being de-
tected with a given momentum p and position r in phase space (r,p). The ejected elec-
trons that are far away will feel a very weak or no interaction with the nuclear core and
electrons that they have left behind. These ejected electrons will therefore travel as free
particles driven by the laser and can be described in momentum space by plane waves
whose solutions are Volkov states. Therefore, it is advantageous to describe the dynam-
ics of the ejected free electrons analytically by plane waves in momentum space instead
of numerically by propagating the time-dependent Kohn-Sham (TDKS) equations in real
space. Moreover, as free electrons are very delocalised, extending over the whole space,
it is convenient to represent them in momentum instead of in real space to accurately
describe their wavefunctions. It is then reasonable to divide our simulation box into an
inner region A and an outer region B for which we use different basis representations in
the numerics [204]. In region A we solve the TDKS equation for the electrons plus either
Born-Oppenheimer approximation (BOA) frozen or moving nuclei according to Ehren-
fest dynamics (ED) using a grid basis set. In region B, the photoelectrons are recorded in
momentum space as free particles using a plane wave basis set.
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To access the kinetic energy P(E) and angular resolved P(E, θ) photoelectron spec-
trum which we want to visualise, the knowledge of the momentum resolved photoelectron
spectrum P(p) is required. P(E) and P(E, θ) are given by

P(E) =

∫ 4π

0
dΩP(p), (2.130)

and

P(E, θ) =

∫ 2π

0
dθP(p), (2.131)

where

P(p) = lim
t→∞

∫
B

dRw(R,p, t). (2.132)

Note that the P(p) is only evaluated within region B and for t → ∞ to ensure that all
slow core outgoing photoelectrons have enough time to reach the detector region. It is
only evaluated within region B because the probability of finding an ionised electron in
region A for t → ∞ is nearly zero.

The Wigner transform w(R,p, t) is the classical link compatible with quantum me-
chanics that we can use to obtain P(p). From this we can extract the observables P(E)
and P(E, θ) of interest. The Wigner transform is defined as

w(R,p, t) =

∫
ds

2π
d
2

exp(ip · s)ρ
(
R +

s
2
,R −

s
2
, t
)
, (2.133)

where the coordinates are

R =
r + r′

2
; s = r − r′, (2.134)

and the full one-body density matrix is

ρ(r, r′, t) =

∫
dr2 · · · drnψ(r, r2 · · · rn, t)ψ∗(r′, r2 · · · rn, t). (2.135)

Evaluating numerically the full one-body density matrix in the whole space is un-
feasible. To overcome this limitation, we use time-dependent density functional theory
(TDDFT), where the one-body Kohn-Sham (KS) density matrix is given by the sum over
all i occupied single-particle KS orbitals φi(r). Here we assume that the one-body KS
density matrix is a good approximation to the fully interacting one. In Eq. 2.132 P(p) is
only evaluated within region B. Therefore, this assumption can be safely used in region B
because the outgoing electrons, far from the interacting region A, can be treated as non-
interacting particles. From now on, we will also drop the time dependence of the orbitals
because we take Eq. 2.132 in the limit of t → ∞. The one-body KS density matrix is
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ρKS (r, r′) =

occ∑
i

φi(r)φi(r′), (2.136)

where each orbital φi is decomposed according to the geometrical partition in regions A
and B

φi(r) = φA,i(r) + φB,i(r), (2.137)
where φA,i(r) is the part of the wave function describing states localised in A and φB,i(r) is
the ionised contribution measured at the detector in B.

Introducing Eq. 2.137 into Eq. 2.136, we find that the one-body KS density matrix in
terms of the single-particle KS orbitals in regions A and B is given by

ρKS (r, r′) =

occ∑
i=1

[φA,i(r)φ∗A,i(r
′) + φA,i(r)φ∗B,i(r

′)

+ φB,i(r)φ∗A,i(r
′) + φB,i(r)φ∗B,i(r

′)].

(2.138)

Thus, inserting Eq. 2.138 into Eq. 2.133, Eq. 2.132 becomes

P(p) ≈
occ∑
i=1

|φ̃B,i(p, t → ∞)|, (2.139)

where φ̃B,i(p, t → ∞) is the Fourier transform of φB,i(r, t → ∞). As we are evaluating
Eq. 2.132 only in region B, we drop the first term and neglect the small contribution from
the mixed terms which involve both regions A and B in Eq. 2.138. The approximation
sign in Eq. 2.139 is due to the fact that we neglect these mixed overlap integrals.

The momentum resolved photoelectron spectrum P(p) in Eq. 2.139 is obtained as a
sum of the Fourier components of each orbital in the detector region B. Continuum states
in region B can only be described accurately if the whole of space is considered because
they are delocalised. However, we are computationally limited to a simulation box of a
certain width. To overcome this limitation, we use a Mask Method (MM) M(r) absorbing
potential, which connects regions A and B

M(r) =


1 if |r| < |RA|

1 − sin
(
|r−RA |π

2|RB−RA |

)
if |RA| ≤ |r| ≤ |RB|

0 if |r| > |RB|

. (2.140)

Here |RA| corresponds to the width of the box in region A before entering the MM
region. |RA| should be wide enough to accurately contain the localised bound wavefunc-
tions in real space. |RB - RA| corresponds to the distance that the electrons need to travel
to get into B once they are ejected from A. This distance is the MM region width which
connects region A to region B. As the ejected electron gets further from the ion it has
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left behind, M(r) should gradually decrease to zero. In region B, once the electron is far
enough to be driven freely by the laser field, M(r)=0 so that no outgoing electron in B can
return to A.

To follow the evolution of the KS orbitals at each time step in regions A and B sepa-
rately, we use M(r)

φi(r, t) = φA,i(r, t) + φB,i(r, t) = M(r, t)φi(r, t) + [1 − M(r)]φi(r, t). (2.141)

Note that for M(r)=0 we are only left with φB,i(r, t) whereas for M(r)=1 we are only
left with φA,i(r, t).

Time propagation of Eq. 2.141 is given by

φi(r, t + ∆t) =U(t′, t)φi(r, t) = φA,i(r, t′) + φB,i(r, t′)
= U(t′, t)M(r)

(
φA,i(r, t) + φB,i(r, t)

)
+ U(t′, t)[1 − M(r)]

(
φA,i(r, t) + φB,i(r, t)

)
,

(2.142)

where U(t′, t) is the time propagator. The two pieces of wavefunctions φA,i(r, t) and
φB,i(r, t) can separately be propagated using different methods. In region A we numer-
ically propagate them in real space and in region B we propagate them analytically in
momentum space. In region A we use an enforced time-reversal symmetry based propa-
gator, Eq. 2.51, and in region B we use the Volkov time propagator, which written in the
velocity gauge is

UV(t + ∆t, t) = exp
(
−i

∫ t+∆t

t
dτ

1
2

[
p − A(τ)

]2
)
, (2.143)

where A(τ) is the vector potential, τ the time ordering operator and p is the momentum
of the free electron.

The Volkov states propagator is known analytically. It can be obtained from the time-
dependent Schrödinger equation (TDSE) of a free electron in the presence of a laser pulse
in real space which in the velocity gauge is given by

i
d
dt
φ(r, t) =

1
2

[−i∇ − A(τ)]2 φ(r, t), (2.144)

and can be written in momentum space as

i
d
dt
φ(p, t) =

1
2

[
p − A(τ)

]2 φ(p, t), (2.145)

where

φ(p, t) = φ(p, 0) exp
(
−i

∫ t+∆t

t
dτ

1
2

[
p − A(τ)

]2
)
. (2.146)
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From Eq. 2.142, φA,i(r, t′) in real space is

φA,i(r, t′) = M(r)U(t′, t)φA,i(r, t) +

∫
dp exp(ip · r)

2π
d
2

M(r)UV(t′, t)φ̃B,i(p, t). (2.147)

Here the first term corresponds to the time evolution of the real space components lo-
calised in A. The second term corresponds to the real components of B that can return to
A.

From Eq. 2.142, φ̃B,i(p, t′) in momentum space is

φ̃B,i(p, t′) =

∫
dr exp(−ip · r)

2π
d
2

[1 − M(r)]U(t′, t)φA,i(r, t) + UV(t′, t)φ̃B,i(p, t)+

−

∫
dr exp(−ip · r)

2π
d
2

∫
dp exp(ip · r)

2π
d
2

M(r)UV(t′, t)φ̃B,i(p, t).
(2.148)

The first term corresponds to the outgoing real space components from region A that
are collected in momentum space in B. The second contribution corresponds to the mo-
mentum plane wave components that are already in region B and evolve according to
the Volkov time propagator UV(t′, t). The third contribution corresponds to the Fourier
components of B that can return to A.

All the components localised in real space in Eqs. 2.147 and 2.148 are evaluated
with spatial integrals and the components localised in momentum space are evaluated
with momentum integrals. Therefore, all these integrals are evaluated within the small
localised MM region, without requiring the knowledge of the whole space which is much
easier computationally.

If we use an optimal width for the MM region we can neglect the terms that include
unphysical reflections from B to A in Eq. 2.148, and we find that Eq. 2.139 contains the
following terms

φ̃B,i(p, t′) =

∫
dr exp(−ip · r)

2π
d
2

[1 − M(r)]U(t′, t)φA,i(r, t) + UV(t′, t)φ̃B,i(p, t). (2.149)





CHAPTER 3

Results and Discussion

In this chapter I show and discuss the main results obtained from the three projects in
this thesis. For each project I have included a section with the computational details and
procedure that I have used to solve the equations given in the theoretical chapter. After the
results and discussion section I have added a short summary with the main conclusions
for each project.

3.1. Linear excitation spectra of H+
2 and H2

1

The aim of this project is to compare the linear response spectra obtained from both
a quantum and classical nuclear treatment for quantum electrons. This is done for the H+

2
and H2 molecules because solving the full quantum problem is feasible. The analysis of
the spectra is performed for different nuclear masses because the classical approximations
are valid for heavy nuclear masses. I find that quantum nuclear motion becomes impor-
tant in the linear regime for light molecules where the coupling between the nuclei and
the electrons needs to be taken into account. This effect is more noteworthy for the H+

2
molecule than for the H2 molecule. I propose a two level model that can describe quan-
titatively the changes induced on the linear excitation spectra due to the quantum nuclear
motion as a function of the nuclear mass.

3.1.1. Computational details and procedure. To perform all the numerical cal-
culations described in this thesis I have used the real space electronic structure code
Octopus [213, 214, 215]. The wavefunctions are discretised on a grid in real space by
means of a finite difference method.

I discretise the configuration space of our H+
2 and H2 molecules, i.e., all the electronic

and nuclear coordinates for both molecules. Within the 1D centre of mass I have for the
H+

2 type molecules two coordinates X and ξ̃ and for the H2 molecule I have three X, x
and ξ. As explained in Sec. 2.2.3, with the Octopus code [213, 214, 215] I only treat the
spatial part of the wavefunction, as the spin part can be separated off due to the exchange
symmetry of the many-body wavefunction.

1This section is largely an adaptation of the work by A. Crawford-Uranga, D. J. Mowbray and D. M.
Cardamone; Quantum-ionic features in the absorption spectra of homonuclear diatomic molecules; Phys.
Rev. A 91, 033410 (2015); DOI:10.1103/PhysRevA.91.033410. As such, the reported work includes col-
laboration with the rest of the authors of the article.
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I use a finite set of values (i.e. a so-called grid) for coordinate values of b in the box
intervals boxint ∈ [−b, b] which are discretised as:

b j = −b + j∆b for b= 0, 1, 2...Nb, (3.1)

by using Nb equispaced points. The spacing between two adjacent points in the b direction
is ∆b = 2b

Nb
. The total simulation box size will be given by 2b from −b to b.

Convergence is achieved when a decrease in ∆b and an increase in b does not change
the static and time propagation observables I analyse.

For H+
2 , ground state convergence is achieved for LX = Lξ= 10a0, ∆X= 0.05a0 and

∆ξ= 0.1a0. To obtain the potential energy surfaces (PES) I have used Lξ= 100a0 and
∆ξ= 0.1a0. The convergence of the quantum nuclei optical spectra requires LX= 30a0,
Lξ= 80a0, ∆X= 0.01a0 and ∆ξ= 0.5a0 (except for the Mµ case where I have used LX= 100a0,
Lξ= 80a0, ∆X= 0.03a0 and ∆ξ= 0.5a0). Finally, for the Ehrenfest dynamics (ED) and
Born-Oppenheimer approximation (BOA) optical spectra I have used Lξ= 500a0 and
∆ξ= 0.1a0.

For the H2 type molecules, ground state convergence is achieved for LX = Lξ =

Lx = 10a0, ∆X= 0.07a0, ∆ξ= 0.2a0 and ∆x= 0.5a0. To obtain the PESs I have used
Lξ = Lx= 40a0 and ∆ξ = ∆x= 0.2a0. The convergence of the quantum nuclei optical
spectra requires LX= 10a0, Lx= 80a0, Lξ= 35a0, ∆X= 0.07a0, ∆x = 0.5a0 and ∆ξ = 0.6a0.
Finally, for the ED and BOA optical spectra I have used Lξ = Lx = 200a0, ∆ξ = ∆x =

0.5a0.
Within the BOA and ED, the X coordinate does not need to be discretised quan-

tum mechanically. It is classically either fixed as a parameter in BOA or it changes
according to the dynamic equations in ED. As a consequence, the two and three vari-
able bare Coulomb quantum nuclei problems confined to 1D trajectories for the H+

2 and
H2 molecules respectively, become one and two variable BOA and ED problems, which
are easier to compute numerically providing a more attractive alternative.

The quantum nuclear eigenvalues in the 1D centre of mass are obtained by inserting
Eqs. 2.23 and 2.24 into Eq. 2.9 for the H+

2 and H2 molecules, respectively.
To obtain the BOA eigenvalues in the 1D centre of mass frame I first calculate the

PESs solving Eqs. 2.41 and 2.42 using Eqs. 2.43 and 2.44 for H+
2 and H2, respectively.

To obtain the ED eigenvalues in 1D I solve Eqs. C.1 and C.3 using Eq. 2.9 for H+
2 and

H2, respectively. To include the BOA nuclear eigenvalues to the PES I do not compute
Eqs. 2.14 and 2.15. One can obtain the eigenvalues from these equations, but as we are
interested in configurations around the nuclear equilibrium, the harmonic approximation
is reasonable. Around the minimum of the PES of the electronic ground state, the BOA is
expected to be accurate and the exact eigenvalues of the electron-nuclear problem can be
interpreted in terms of the harmonic nuclear vibrational levels for the electronic ground
state PES (the BOA picture).
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To calculate the “frozen nuclei” BOA and quantum nuclei photoabsorption spectra
from Eq. 2.61, I initially “kick” the ground state wavefunctions of our molecules and
propagate them to obtain the dipole moments, Eqs. 2.57 and 2.58 within fixed BOA and
quantum nuclei, and Eqs. 2.59 and 2.60 within ED for the H+

2 and H2 molecules, respec-
tively. Here, for ψgs the quantum nuclear Hamiltonians are given in Eqs. 2.23 and 2.24, the
“frozen-nuclei” BOA Hamiltonians are given in Eqs. 2.43 and 2.44 and the ED Hamilto-
nians in Eqs. C.1 and C.3 for the H+

2 and H2 molecules, respectively. The total propagation
time to obtain the spectra is T = 1000 and ∆t = 0.01 is the time step.

3.1.2. Results.
3.1.2.1. Ground state potential energy surfaces. In this section I show how the ground

state potential energy surface (PES) changes as a function of the initial configuration of
the H+

2 and H2 molecules in 1D. Then I compare the overall shape and optimal internuclear
separation of these PES to the same obtained for both molecules in 3D.

In Fig. 3.1, I show how the H+
2 and H2 Born-Oppenheimer approximation (BOA)

ground state PES changes as a function of the shifted nuclear separation
√

X2 + ∆2
II for

each configuration shown in Fig. 2.1. I use this shifted nuclear separation to include the
internuclear Soft Coulomb parameter ∆II I use in our configurations.

Species ∆II (a0) ∆Ie (a0) ∆ee (a0) E0(Xeq) (eV)
√

X2
eq + ∆2

II (Å)
H+

2 1 0.5 — -45.757 0.5627
0.5 1 — -21.431 1.3510
1 1 — -21.969 1.2697
2 1 — 26.759 1.0584

H2
√

3 1 1 -45.193 0.9166
1 1

√
3 -44.790 0.9004

√
2 1

√
2 -45.856 0.8241

Table 3.1. H+
2 and H2 ground state potential energy surface fitted ground state ener-

gies E0(Xeq) and positions
√

X2
eq + ∆2

II obtained from a harmonic fit around Xeq for the
configurations shown in Fig. 2.1.

The PES fitted minimum energies at Xeq, E0(Xeq) and positions
√

X2
eq + ∆2

II are shown
in Table 3.1 for the H+

2 and H2 molecules with the configurations shown in Figs. 2.1 a)
and b). The data for Xeq and E0(Xeq) in Table 3.1 has been obtained from a harmonic fit
around E0(Xeq). I fit the ground state PES around its minimum energy at the internuclear
equilibrium distance Xeq using a harmonic approximation Egs(Xeq) + 1

2k(X − Xeq)2, where
k = ω2µp is the harmonic constant, ω is the harmonic oscillator vibrational frequency and
µp is defined in Eq. B.16. From ω, I obtain the ground state electron-nuclei eigenvalue
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Figure 3.1. Born-Oppenheimer approximation one-dimensional ground state potential

energy surfaces relative to E0(Xeq) in eV, versus
√

X2 + ∆2
II in Å for (a) H+

2 and (b) H2

molecules for the ∆II , ∆ee and ∆Ie configurations given in Fig. 2.1 shown here as insets.
The Born-Oppenheimer approximation three-dimensional ground state potential energy
surfaces (dotted lines) have been taken from Ref. [219].
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of a harmonic oscillator εgs = Egs(Xeq) + 1
2~ω in the BOA PES picture, where ~ω2 is the

zero-point energy and Egs(Xeq) is the energy of the PES at Xeq.
The ground state PESs [dotted black lines in Figs. 3.1 a) and b) and taken from

Ref. [219]] have been obtained by solving the stationary Schrödinger equation in 3D us-
ing basis sets. The experimental bond lengths of H+

2 and H2 are 2a0 [220] and
√

2a0 [219],
respectively.

The overall shape of these 3D PES is reproduced by our configurations b) (red PES)
and c) (green PES) from Fig. 2.1 a) for H+

2 and the 1D PES in Fig. 3.1 a). The 3D ground
state PES equilibrium distance is best reproduced by configuration d) from Fig. 2.1 a) for
H+

2 and the 1D PES in Fig. 3.1 a).
None of the configurations from Fig. 2.1 b) for H2 and the 1D PES are able to repro-

duce the overall shape or equilibrium distance of the 3D PES in Fig. 3.1 b).
The nuclei sometimes feel a strong internuclear attraction and repulsion for larger and

small X, respectively, depending on the initial configuration as shown in Figs. 3.1 a) and
b). For the strongly repulsive configurations for small X, the nuclei want to be farther
apart because the repulsion between the nuclei is stronger than the attraction between the
nuclei and electrons. For the strongly attractive configurations for larger X, the nuclei
want to be closer together because the repulsion between the nuclei is weaker than the
attraction between the nuclei and electrons.

The even state and odd state subsequent PES’s are degenerate for large X for both H+
2

and H2 molecules. Due to the exchange symmetry with respect to the X nuclear coordinate
from X to −X in the Hamiltonians for both molecules, the nuclear eigenfunctions have
a given parity as explained in Sec. 2.2.3. The X and −X components of the nuclear
wavefunction overlap to give rise to bonding and antibonding contributions. The bonding
contribution corresponds to an even singlet state and the antibonding to an odd triplet
state. This overlap becomes negligible for large X and thus the singlet and triplet states
become degenerate. For H+

2 all excited PES’s are unbound. This means that all excitation
energies from the even state to the subsequent odd PES’s at Xeq, are larger than the energy
required from Xeq to large X of the even initial PES. For configuration a) in Fig. 2.1 a),
we see that a lot of energy is required for large X in Fig. 3.1 a). Therefore, we expect
that the excitation energies required for this configuration will be larger than any of the
other configurations analysed for H+

2 . This will be shown in the spectra in Sec. 3.1.2.2
and Fig. 3.3 d).

For H+
2 , when ∆Ie = 1a0, the PES becomes less repulsive for small X as ∆II increases.

When ∆Ie = 0.5a0, the PES becomes strongly attractive for larger X.
For H2, when ∆II = ∆ee =

√
2a0, configuration g) (blue PES) from Fig. 2.1 b) the PES

becomes more attractive than the other configurations for larger X as shown in Fig. 3.1 b).
When ∆ee =

√
3, the PES becomes more repulsive than the other configurations for small

X.
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3.1.2.2. Linear response photoabsorption spectra. In this section I obtain the linear
photoabsorption spectra from a classical (either fixing the nuclei at Xeq with the Born-
Oppenheimer approximation (BOA) or allowing them to move according to Ehrenfest
dynamics (ED) from Xeq) versus quantum perspective and for several configurations for
the H+

2 and H2 molecules.
In Figs. 3.2 a) and b) I compare the H+

2 and H2 optical spectra I obtain by classically
fixing the ions at Xeq with the ones where the nuclei evolve according to ED in time from
Xeq.

The energy of the peaks in the photoabsorption spectra is given by the transition en-
ergy between the electronic ground and excited corresponding state for each peak at Xeq.
In Figs. 3.2 a) and b) the mass MH is the proton to electron mass ratio Mp

me
corresponding

mass for a H atom, and Mp is the mass of the proton.
Essentially, including the classical movement of the nuclei with ED hardly changes the

spectra as compared to fixing the nuclei via the BOA. However, when I allow the nuclei
to move according to ED, a new small peak appears before the first electronic excitation
for both molecules. For H+

2 this new peak appears at ∼ 1 eV and for H2 at ∼ 12 eV.
As shown in Sec. 2.1.2, in the ED approach the nuclear coordinates are coupled to the

electronic coordinates and are updated at each time step. For this reason, in Fig. 3.2, I
show that the time-dependent effects of the classical nuclear motion within ED have an
impact on the spectra.

The H+
2 peak for small energies corresponds to the frequency of the nuclear zero point

motion for a harmonic oscillator around Xeq for H+
2 , which vanishes for large masses

(Mp × 104). For large masses Mα, the nuclei will hardly move around Xeq. Consequently

ω =
√

k
µp

and the zero point energy ~ω2 are small.
The inset of Fig. 3.2 a) illustrates the time-dependent effects of nuclear motion. The

increasing difference ∆d(24fs) ∼ 0.7mD between the ED and BOA dipole moments
demonstrates that the nuclei move with time. Within the ED approach there is a shift
of the global centre of mass of the molecule as it propagates. However, within the BOA
approach the global centre of mass of the molecule is constant in time. This effect may
lead to the appearance of the additional ED peak for H2 at 12 eV [see Fig. 3.2 b)]. Due
to this peak, the ED and fixed BOA nuclear spectra do not overlap completely. This peak
does not vanish for large M, as is the case for the zero point energy peak for H+

2 .
Due to the minor differences between the ED versus BOA classical spectra in Figs. 3.2

a) and b), I will from now on compare the BOA classical spectra only to the quantum
nuclear one. This is because for the fixed nuclei BOA method I only have to deal with the
electrons computationally.
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Figure 3.2. Optical spectra for the (a) H+
2 and (b) H2 molecules obtained by classically

fixing the nuclei to their equilibrium positions Xeq (Born-Oppenheimer approximation)
and evolving the nuclei (Ehrenfest dynamics) from Xeq for masses MH and Mp × 104 with
nuclear and electronic separations (a) ∆II = 1a0 (b) ∆II = ∆ee =

√
2a0 and electron-

nuclear separations (a,b) ∆Ie = 1a0 shown as insets. The evolution of the difference in
dipole moment ∆d between Ehrenfest dynamics and Born-Oppenheimer approximation
for MH in milliDebye (mD) is shown as an inset of (a).

In Fig. 3.3, I show how a quantum mechanical treatment of the nuclei affects the
optical absorption spectra for H+

2 and H2 molecules in the configurations of ∆II , ∆ee and
∆Ie shown in Fig. 2.1.
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Figure 3.3. Absorption spectra obtained from a classical Born-Oppenheimer approx-
imation (dashed lines) or a quantum mechanical (solid lines) treatment of the nuclei of
an (a–d) H+

2 molecule with configurations (a) ∆II = 1
2 a0; ∆Ie = 1a0 (green), (b) ∆II =

2a0; ∆Ie = 1a0 (blue), (c) ∆II = 1a0; ∆Ie = 1a0 (red), and (d) ∆II = 1a0; ∆Ie = 1
2 a0 (orange)

or an (e–h) H2 molecule with configurations (e) ∆II = 1a0; ∆Ie = 1a0; ∆ee = 1
3 a0 (violet),

(f) ∆II =
√

2a0; ∆Ie = 1a0; ∆ee =
√

2a0 (blue), (g) ∆II =
√

3a0; ∆Ie = 1a0; ∆ee = 1a0 (red),
shown as insets. Dotted vertical lines denote the energies εi of the unoccupied electronic
levels ϕXeq

i (ξ) relative to the ground state energy ε0 for each configuration fixed at Xeq.
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To ensure that the optical spectra I obtain is only affected by the external perturbation
K, I symmetrise our initial wavefunction by imposing

ψsymm(X, ξ) =
ψ(X, ξ) + ψ(−X, ξ)

√
2

. (3.2)

Thus, I always excite from a ground state which is symmetric in the nuclear coordi-
nate. In Fig. 3.9, I show that symmetrising the wavefunction does not change the calcu-
lated optical absorption spectrum. This means that we already obtain a nearly symmetric
ground state starting configuration from the stationary Schrödinger Eq. 2.9.

New features emerge in the spectra when the nuclei are treated quantum mechanically
[solid lines in Figs. 3.3 a) to g)] instead of classically by means of the BOA [dashed lines
in Figs. 3.3 a) to g)]. The peaks are broadened, become asymmetric, and their amplitudes
and energies change as a function of the initial configuration and charge of the molecule.
In particular, I find that each classical BOA peak seems to split into a bonding and an
antibonding contribution, lower and higher in energy, respectively. Depending on the
energy shift and amplitude of each contribution, these can appear as separate peaks [we
only clearly see this for the second BOA classical peak in Fig. 3.3 a) and c)] or shoulders
in the spectra. The shoulders are giving rise to an asymmetry that can be visualised for
almost every peak. With a classical description of the nuclei, I do not obtain these new
quantum mechanical features in the optical spectra.

For internuclear potentials which are less repulsive and attractive for both small and
larger X, respectively, [see Figs. 3.1 a) (blue PES) and b) (purple PES)], the line shape
of the quantum nuclear peaks is narrowed, and their position approaches that of the BOA
peaks at equilibrium distance Xeq [see Figs. 3.3 b) and e)]. For potentials which are
repulsive for small X [see Fig. 3.1 a) (green PES)], all the quantum nuclear peaks are red
shifted with respect to the BOA peaks at equilibrium distance Xeq [see Fig. 3.3 a)]. For
potentials which are attractive for larger X [see Figs. 3.1 a) (orange PES) and b) (blue
PES)], all the quantum nuclear peaks are blue shifted with respect to the BOA peaks at
equilibrium distance Xeq [see Figs. 3.3 d) and f)]. In the case of Fig. 3.3 d), we see that
the excitation energies of the peaks are much larger than for the other configurations (see
energy scale of Fig. 3.3 d) and the explanation in Sec. 3.1.2.1).

In Figs. 3.3 a) to d), I clearly show for H+
2 that only the classical peaks in the ab-

sorption spectra obtained from a BOA treatment (dashed lines) are clearly aligned with
the energies of odd-parity unoccupied electronic levels ε2i+1 (odd-parity vertical dotted
lines) independent of the configuration and charge of the molecule. This is because only
the even to odd ξ̃ dipole allowed electronic Franck-Condon transitions are allowed by
symmetry as explained in Sec. 2.2.5 and shown in Fig. 3.4. The occupied ϕ0(ξ) and
first four unoccupied ϕi(ξ) BOA electronic wavefunctions at Xeq are depicted in Fig. 3.4,
ordered according to their energy. The electronic wavefunctions with even indices ϕ2i

are even functions of ξ, while the electronic wavefunctions with odd indices ϕ2i+1 are
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odd functions of ξ. This parity of the electronic wavefunctions means that the transition
dipole moment is zero for transitions from the ground state to even unoccupied states,
i.e., 〈ϕ2i+2|ξ̂|ϕ0〉 = 0. Essentially, even-even optical transitions ϕ0 → ϕ2i+2 are forbidden
so long as ϕ2i+2 is an even function of ξ. This is what we observe when the nuclei are
treated classically, as depicted in Fig. 3.4, and in Figs. 3.3 a) to d), where the classical
BOA peaks (dashed lines) are aligned with the odd-parity vertical dotted lines ε2i+1, i.e.,
the Franck-Condon transitions ϕ0 → ϕ2i+1.

Figure 3.4. Schematic representation of the excitation process from the occupied ϕ0(ξ)
to the first four unoccupied ϕi(ξ) electronic levels at the equilibrium geometry (X = Xeq)
after applying an impulsive perturbative “kick” ∼ e−iKξ for K � 1 (see Sec. 2.2.5 and
Eqs. 2.48 and 2.52). On the right hand side of the figure, I show the allowed even to
odd transitions from the even ground state electronic level to the two following first and
third lowest excited electronic levels. The even to even transitions, i.e., to electronic
levels which are even functions of ξ, are forbidden by parity. Figure reproduced with the
permission of Duncan J. Mowbray.
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However, for H2 we find that the classical peaks in the absorption spectra obtained
from a BOA treatment (dashed lines) are aligned with the second, sixth and tenth unoc-
cupied BOA electronic transitions. To understand this, I plot in Fig. 3.5 the first eleven
wavefunctions for the H2 molecule as a function of both x and ξ.

As for H+
2 , only the even to odd ξ dipole allowed electronic Franck-Condon transitions

are allowed by symmetry. However, for H2 we also need to take into account the exchange
symmetry with respect to x. In Fig. 3.5 the even-parity states are even from x to −x and are
therefore singlets. The odd-parity states are odd from x to −x and are therefore triplets.
Due to this exchange symmetry, only transitions from the ground state occupied singlet
state to excited unoccupied singlet states are allowed. Moreover, only transitions from
the occupied ground state even in ξ to unoccupied excited states odd in ξ are allowed
by symmetry. Taking into account both the x and ξ factors, we see in Fig. 3.5 that only
transitions from the ground state to the second, sixth and tenth excited states are allowed
by symmetry.
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Figure 3.5. Electronic Born-Oppenheimer approximation wave functions ϕXeq

i (ξ, x) for
i = 0, . . . , 10 of an H2 molecule in the configuration ∆II = 1

3 ; ∆ee = 1.

New features arise in the quantum nuclear spectra in Figs. 3.3 a) to g) which cannot be
described by their classical BOA corresponding spectra. This suggests that the quantum
nature of the nuclei can play an important role when describing linear photoabsorption
processes.

The quantum features are only noteworthy for H+
2 in Figs. 3.3 a) and c) where the

second even to odd allowed BOA Franck-Condon transition is split in red lower in energy
and blue higher in energy shifted contributions. Moreover, for these two cases the overall
shape of our 1D PES is closer the 3D PES as shown in Fig. 3.1 a) and b), respectively.
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As these quantum features are not as strong for the other H+
2 configurations and for the

neutral H2 homonuclear diatomic molecule, I will not analyse any of these cases further.
3.1.2.3. Model. The level splitting we observe for the second Born-Oppenheimer ap-

proximation (BOA) allowed energy transition in Figs. 3.3 a) and c) is reminiscent of level
hybridisation. This motivates us to employ a simple two-level model to describe the en-
ergies and widths of the quantum nuclear peaks.

To quantify the validity of the classical approximations where Evib/Eelec ≈
√

me/M is
small (see Appendix A), the two-level model I employ has a dependence on the electron
nuclear mass ratio.

As I will show in Figs. 3.7 and 3.11, both the widths and positions of these peaks
clearly depend on the electron-nuclear mass ratio me

M . Using this two-level model, I am
going to quantitatively show how the observed quantum nuclear spectral peak energy
shifts and widths are related to the BOA electronic energy levels εi at the equilibrium Xeq

of the ground state through the electron-nuclear mass ratio me
M .

Within our two-level model, for each odd-parity excited electronic level ϕ2i+1 at ε2i+1,
I artificially introduce a level at ε̃2i+1 to which it couples. In particular, I am only going to
focus on the first ε1 and third ε3 even to odd in ξ allowed excited electronic levels shown
in Fig. 3.4 because these are the most intense in the spectra.

The resulting two-level system Hamiltonians Ĥ2LS for the first and third even to odd
in ξ allowed transitions are given by

H2LS(ε1) =

[
ε1 ακ
ακ ε̃1

]
, (3.3)

and

H2LS(ε3) =

[
ε3 ακ
ακ ε̃3

]
, (3.4)

where ακ is the coupling term between the nuclei and electrons with a prefactor α which
gives the strength of the coupling. Here I use the parameter κ = (me/M)1⁄4 given in Appen-
dix A [186] to introduce the electron-nuclear mass ratio.

All the peak energy positions in the quantum nuclear spectra can be fitted using only
two parameters, the artificial level’s energy ε̃1 or ε̃3, and the coupling constant α.

The determinant of the matrices Ĥ2LS can be used to calculate the first and third al-
lowed transitions’ energies ω1 and ω3 by

det |H2LS(ε1) − ω11| = 0 = ω2
1 − ω1(̃ε1 + ε1) + ε̃1ε1 − (ακ)2, (3.5)

and

det |H2LS(ε3) − ω31| = 0 = ω2
3 − ω3(̃ε3 + ε3) + ε̃3ε3 − (ακ)2, (3.6)
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where 1 is the identity matrix of the same dimension as Ĥ2LS(ε1) and Ĥ2LS(ε3). As I will
show in Sec. 3.1.2.4, for the first allowed transition I will only analyse the width and
peak energy of the bonding − contribution. This is because I cannot fit the width and
peak energy of the antibonding + contribution for the first allowed transition because it is
coupled to the bonding contribution as a shoulder [see Figs. 3.3 a) and c)]. In this case
I only analyse the bonding contribution in energy that arises from the coupling between
ε1 and ε̃1. This bonding contribution corresponds to the first separate peak we see in
Figs. 3.3 a) and c). For the third allowed transition I will analyse both the bonding − and
antibonding + contribution. As shown in Figs. 3.3 a) and c), the bonding and antibonding
contribution correspond to the second and third separate peaks we can visualise in the
quantum nuclear spectra (solid lines) which are positioned to the left and right of the
BOA second odd allowed peak (dashed lines) in the spectra, respectively. In this case I
analyse both the antibonding and bonding contribution peaks in energy that arise from the
coupling between ε3 and ε̃3.

Using the quadratic formula, the first allowed transition energy is given by

ω1 =
ε1 + ε̃1

2
±

√(
ε1 − ε̃1

2

)2

+ (ακ)2, (3.7)

where ε1 ≈ 10 eV, as shown in Fig. 3.3 a) and c).
The third allowed transition energy is given by

ω3 =
ε3 + ε̃3

2
±

√(
ε3 − ε̃3

2

)2

+ (ακ)2, (3.8)

where ε3 ≈ 24 eV as shown in Fig. 3.3 a) and c).
The coupling term between ε2i+1 and its corresponding ε̃2i+1, scales as the quantum

nuclear displacement δ ∼ κ (see Appendix A). The degree of coupling between ε2i+1

and its corresponding ε̃2i+1, which are coupled via the nuclear displacements, increases
with the displacement of the nuclei. This coupling is therefore larger for smaller nuclear
masses M, as these are lighter and can move more.

Therefore, I want to analyse the effect of the nuclear displacements δ ∼ κ ∼ (me/M)1⁄4

as a function of the nuclear mass M, as these displacements are causing the differences
we see from a classical versus quantum nuclear treatment in the spectra. From Eqs. 3.7
and 3.8, we see that for larger couplings with a smaller nuclear mass M, the + and −
contributions will be more separated in energy.

The width of the peaks in the absorption spectra is also related to the nuclear displace-
ment. When the nuclei evolve quantum mechanically, the electrons can transfer part of
their dipole moment to the nuclei. Depending on the speed of this transfer, the ampli-
tude of the electronic dipole moment oscillations decreases in time at different time scales
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depending on the mass of the nuclei. Since the widths of the absorption peaks are propor-
tional to the decay of the dipole moment oscillations, we also expect the widths to scale
as the electron-nuclear mass ratio to the one fourth. As heavy nuclei will displace less,
damping the electronic dipole moment will take more time. The changes in the frequency
of the oscillations of the dipole moment will not be abrupt, the peak energy will be more
defined and the width of the peak narrower. For very large nuclear masses, the interaction
with the electronic motion becomes nearly elastic because there will hardly be any energy
transfer from the electrons to the nuclei. This allows the electrons to oscillate back and
forth without the influence of any external nuclear displacements. As lighter nuclei will
displace more, the decay of the electronic dipole moment will take less time. The changes
in the frequency of the oscillations of the damped dipole moment will be more abrupt, the
peak energy will be less defined and the width of the peak broader.

The simple two-level model I employ is able to quantitatively predict the widths and
positions of the quantum peaks in the spectra, from the coupling between the electronic
BOA classical allowed energy level to an artificial level, via the nuclear displacements
δ ∼ κ ∼ (me/Mp)1⁄4 which are proportional to the electron-nuclear mass ratio.

3.1.2.4. Analysis. To provide a quantitative analysis of the differences between a clas-
sical Born-Oppenheimer approximation/Ehrenfest dynamics (BOA/ED) or quantum treat-
ment of the nuclei, I will compare the total ground state energies and the peak positions
and widths in the absorption spectra as I vary the nuclear mass.

The mass of every nuclei I have tested MX with X ∈ µ,H,D,T,Li,Na,K is given by
the nuclear-electron mass ratio MX

me
where MX corresponds to the mass of each nuclei X.

For the nuclear mass case Mp × 104, Mp is the proton mass. Note that even though I vary
the nuclear mass MX of our molecules, I fix their nuclear charge to that of a single proton
Z = 1. This is because the repulsion between the nuclei of more massive homonuclear
diatomic molecules with the correct charge would be so large that the molecules would
be unstable [221]. Furthermore, this allows us to directly compare absorption spectra
between these model systems for a fixed interaction potential with Z = 1 and different
nuclear mass M. Most of the molecules used in this analysis are fictitious because I do
not change the charge of the nuclei, except for H, D, and T, as these have a positive electric
charge of Z = 1.

Analysis: Ground state accuracy

As explained in Appendix A, the accuracy of the static Born-Oppenheimer approx-
imation (BOA) calculations can be understood from a perturbation theory argument in
terms of the small parameter κ = (me/Mp)1⁄4 [186]. There I show that the BOA ground
state electron-nuclear eigenvalue for the H+

2 and H2 molecules in 1D is given by

εBOA/ED
gs ≈ ε(0) + ε(2)(κ2) + O(κ4), (3.9)
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where ε(0) and ε(2) correspond to the electronic and nuclear motion eigenvalues, and, the
first and third-order contribution to the eigenvalue, ε(1) and ε(3), vanish by symmetry.
The first non-vanishing correction to the ground state energy for the full electron-nuclear
problem using the BOA is the term of fourth order in κ.

To test the accuracy of the BOA approximations, I first compare the BOA ground
state electron-nuclear eigenvalues to those obtained from quantum nuclei. We expect that
the BOA should be accurate around the minimum of the ground state potential energy
surface (PES), as the exact eigenvalues of the electron-nuclear problem can be interpreted
in terms of the nuclear vibrational levels for the electronic ground state PES. As discussed
in Sec. 3.1.2.1, the nuclear contribution comes from the ground state level of a quantum
harmonic oscillator where the mass is included via ω.

To check the dependence of the static ground state eigenvalue accuracy of the BOA
approach, on the electron-nuclear mass ratio, I use the following power law relation

εBOA
gs − εQMI

gs = aκ4b = a
(

me

MX

)b

. (3.10)

According to the above, we should obtain an exponent b ≈ 1 for each molecule and
different masses MX, as the first non-vanishing term that the BOA does not include in 1D
is the term of fourth order in κ.

Fitting the ground state error from Eq. 3.10 to the data in Tables 3.2 and 3.3, I obtain
a power law of b = 0.92(2) and b = 1.05(2) for the BOA approach and H+

2 and H2,
respectively, as shown in Fig. 3.6. Therefore, the BOA energy expression gives the correct
total ground state energy of the full electron-nuclear problem up to fourth order in κ for
both the H+

2 and H2 molecules.

M εQMI
gs (eV) εBOA

gs (eV) me
MX

µ -21.703395 -21.697297 0.004836
H -21.970225 -21.969323 0.000545
D -22.009642 -22.009272 0.000272
T -22.027041 -22.026787 0.000182
Li -22.053541 -22.053420 0.000079
Na -22.076626 -22.076580 0.000023
K -22.083189 -22.083160 0.000014

Table 3.2. M+
2 ground state eigenvalues obtained from diagonalisation of the quantum

nuclear approach εQMI
gs , and ground state harmonic Born-Oppenheimer approximation

εBOA
gs eigenvalues obtained from a harmonic fit around the minimum of the ground state

potential energy surface. I show these results for different nuclear masses MX , a fixed
nuclear charge of a single electron Z = 1 and ∆II = 1 and ∆Ie = 1.
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M εQMI
gs (eV) εBOA

gs (eV) me
MX

µ -45.621166 -45.440564 0.004836
H -45.739425 -45.722955 0.000545
D -45.772460 -45.763130 0.000272
T -45.786936 -45.779126 0.000182
Li -45.810176 -45.807442 0.000079
Na -45.831319 -45.830529 0.000023
K -45.837552 -45.837070 0.000014

Table 3.3. M2 ground state eigenvalues obtained by electron-nuclear quantum diago-
nalisation εQMI

gs , and ground state harmonic Born-Oppenheimer approximation εBOA
gs vi-

bration levels obtained from a harmonic fit around the minimum of the ground state poten-
tial energy surface. I show these results for different nuclear masses MX , a fixed nuclear
charge of a single electron Z = 1 and ∆II =

√
2 and ∆Ie = 1.
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Figure 3.6. Difference in ground state total energy between the quantum and Born-
Oppenheimer approximation classical nuclear approach ∆εgs in eV versus the electron-
nuclear mass ratio me/MX for H+

2 (∆II = 1 and ∆Ie = 1; �) and H2 (∆II = ∆ee =
√

2 and
∆Ie = 1; �). The solid lines correspond to a power law fit a (me/MX)b.
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Analysis: Spectral energy shifts and widths

In Fig. 3.7 I show how the absorption spectra depends on the nuclear mass for the H+
2

configurations, for which the overall potential energy surface (PES) shape is closest to
that from the 3D treatment in Ref. [219]. Specifically, for H+

2 I analyse in Figs. 3.7 a) and
b), the configurations shown in Figs. 2.1 b) and c).

In Fig. 3.7 b) we see for H+
2 that in the large mass limit (M = 104 × Mp), the quantum

nuclear spectra is aligned with the allowed even to odd vertical dotted Born-Oppenheimer
approximation (BOA) transitions. The symmetry of the electronic wavefunctions ϕi(ξ) is
shown above the dotted vertical lines for the first four states in energy. As the nuclear mass
decreases, we see in Figs. 3.7 a) and b) for H+

2 that the second and third separate peaks
in the spectra, ω2 and ω3, separate more in energy and get broader, as predicted from the
two-level model. As explained in Sec. 3.1.2.3, these two peaks correspond to the bonding
and antibonding contribution of the third allowed transition. As the mass increases, all
peaks tend towards the fixed-nuclei at Xeq limit with respect to both the width and energy
position. For H+

2 , the position of the first, second and fourth peaks in Fig. 3.7 a) and b)
(ω1, ω2, and ω4) are red-shifted and the third and fifth peaks (ω3 and ω5) are blue-shifted
with respect to the fixed-nuclei at Xeq. Here ω4 and ω5 are the bonding and antibonding
contributions of the fifth allowed transition in energy. As these peaks are not very intense
in the spectra we will not analyse these contributions.

Overall, the width of all the peaks in Figs. 3.7 a) and b) decreases for all the peaks
as the mass M increases, and they approach the classical limit centred at Xeq. The decay
of the dipole moment shown in Fig. 3.8 presents this narrowing effect of the peaks in
the time domain. As the nuclear mass increases, the decay of the dipole moment takes
longer and the changes in the frequency are less abrupt. For a very large nuclear mass
(Mp × 104), the dipole becomes nearly elastic because it takes very long for it to decay as
shown in the upper inset of Fig. 3.8. The dipole energy transfers are still present for very
long times because the nuclei can transfer the energy back to the electrons. For very long
times we can also clearly visualise beat frequencies for the muon mass case Mµ. These
beat frequencies are oscillations which are overlaying the main one, as we can see that
the dipole moment is composed of two minima and two maxima of different amplitude.
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Figure 3.7. Quantum electron-nuclear absorption spectra for a positively charged
homonuclear diatomic molecule with nuclear mass M of e, µ, H, D, T, Li, Na, K, or
104×p in the configuration (a) ∆II = 0.5; ∆Ie = 1 or (b) ∆II = 1; ∆Ie = 1. Dotted vertical
lines denote the energies εi of the unoccupied electronic levels ϕXeq

i (ξ) (shown in blue as
insets) relative to the energy ε0 of the ground state electronic level ϕXeq

0 (ξ) (shown in green
as insets) for each configuration. Note that the spectra have been scaled with decreasing
mass for clarity.
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Figure 3.8. Evolution of the quantum electron-nuclear dipole moment d in milliDebye
with time t after the initial “kick” in fs for nuclear masses M of µ, H, D, Ti, Li, Na,
K, or (upper inset) 104×p of a positively charged homonuclear diatomic molecule in the
configuration ∆II = ∆Ie = a0. (lower inset) After 20 fs, the amplitude has decreased by a
factor of one million.

To quantify the width and energy of the peaks in the spectra, I have fitted the peaks
using both a Gaussian

3∑
i=1

Ii exp
(
−

(ω − ωi)2

2σ2
i

)
, (3.11)

and a Lorentzian
3∑

i=1

Ii
(Γi/2)2

(ω − ωi)2 + (Γi/2)2
, (3.12)

function. Here Ii=1,2,3 corresponds to the intensities, ωi=1,2,3 to the energy positions of the
peaks, σi=1,2,3 to the standard deviations, and Γi=1,2,3 to the full widths at half maximum of
the first, second and third peak in energy of the QMI spectra.

One could think that the quantum coupling between electronic and nuclear vibrations
could broaden the peaks, where peak values that lie many standard deviations away from
the mean centred value could be noteworthy, giving rise to a Lorentzian line shape.
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From Fig. 3.9, in which I show the quantum nuclear spectra for H+
2 , we clearly see

that the tails of the peaks are Gaussian. Moreover, the three peaks can only be fitted
simultaneously with Gaussian functions, as the Lorentzian fit to the first peak decays so
slowly that the second and third peaks are completely obscured. Furthermore, the nuclear
wave packet on the ground state PES is a solution of a harmonic eigenvalue problem
and thus should have a Gaussian line shape. This means that the spectral line shape arises
mainly from the shape of the PES, rather than the coupling between electronic and nuclear
vibrations of the molecule. The electronic and nuclear levels are too far in energy for them
to couple and give rise to a Lorentzian line shape.
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Figure 3.9. Quantum electron-nuclear absorption spectra for an H+
2 molecule in the

configuration ∆II = 1 and ∆Ie = 1 obtained with (red solid lines) and without (green
dashed lines) imposing symmetry in X on the nuclear wave functions. Lorentzian (blue
dotted lines) and Gaussian (black solid line) fits to the first three peaks of the spectra are
also provided.

The width of the fixed-nuclei at Xeq spectrum in Fig. 3.2 is due to the artificial damping
introduced in the spectra via Eq. 2.62. The electronic fixed-nuclei transitions should be
delta-like functions, but are convoluted with a Gaussian function to plot the spectra (see
Eqs. 2.61 and 2.62). However, the widths in the quantum nuclear spectra are physical,
where the Gaussian line shape is due to the electron-electron ε2i+1 and ε̃2i+1 energy level
coupling via the nuclear displacements δ ∼ M−1/4. As explained at the end of Sec. 3.1.2.3,
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the widths of the peaks will depend on the speed at which the electrons transfer their
dipole moment to the nuclei, which in turn depends on the mass of the nuclei. As the
mass decreases, all the peaks in Figs. 3.7 a) and b) get broader.

In Fig. 3.10 I use the two-level model discussed in Sec. 3.1.2.3 to fit the calculated
quantum nuclear peak energies for various nuclear masses M.
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Figure 3.10. Two-level model fits to the first four peaks from Eqs. 3.13 and 3.14 in the
quantum electron-nuclear absorption spectra ωi for a positively charged diatomic mol-
ecule with nuclear mass M in the configuration ∆Ie = 1 and ∆II = 1

2 (�) or ∆II = 1
(�). Level coupling has the form α(me/M)1⁄4, and the decoupled levels are obtained from
the ground state electronic eigenenergies εn. Gray regions denote a ±0.1 eV estimated
accuracy.

To plot Fig. 3.10 I invert Eqs. 3.7 and 3.8 to obtain the following for the first peak

κ =

(me

M

)1/4

=
1
α

√[
ω1 −

(
ε1 + ε̃1

2

)]2

−

(
ε1 − ε̃1

2

)2

, (3.13)

and for the second and third peak

κ =

(me

M

)1/4

=
1
α

√[
ω3 −

(
ε3 + ε̃3

2

)]2

−

(
ε3 − ε̃3

2

)2

. (3.14)

The energy of the first peak in the quantum nuclear spectra scales as κ2, while the
energy of the second and third peaks on κ. To understand this, I show for ω1 that Eq. 3.7
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ω1 =
ε1 + ε̃1

2
±
ε̃1 − ε1

2

√√√√√
1 +

(
α

M1/4

)2(
ε̃1−ε1

2

)2

≈ ε1 −

α2

M1/2

ε̃1 − ε1
,

(3.15)

scales as κ2 so long as α2/M1⁄2 � ε̃1 − ε1. This is valid for ω1 and every mass M shown in
Fig. 3.10. Here I have used the Taylor expansion√√√√√

1 +

(
α

M1⁄4

)2(
ε1−ε̃1

2

)2 ≈ 1 +
1
2

(
α

M1⁄4

)2(
ε1−ε̃1

2

)2 − O

1
8


(
α

M1⁄4

)2(
ε1−ε̃1

2

)2


2 . (3.16)

For ω3 I show that Eq. 3.8

ω3 =
ε3 + ε̃3

2
±

α

M1/4

√√√√√
1 +

(
ε3−ε̃3

2

)2(
α

M1/4

)2

≈
ε3 + ε̃3

2
±

[
α

M1/4
+

(ε3 − ε̃3)2M1/4

8α

]
≈
ε3 + ε̃3

2
±

α

M1/4
,

(3.17)

scales as κ so long as ε3 − ε̃3 � 2α/M1/4. This is valid for ω3 and every mass M shown in
Fig. 3.10. Here I have used the Taylor expansion√√√√√

1 +

(
ε3−ε̃3

2

)2(
α

M1⁄4

)2 ≈ 1 +
1
2

(
ε3−ε̃3

2

)2(
α

M1⁄4

)2 − O

1
8


(
ε3−ε̃3

2

)2(
α

M1⁄4

)2


2 . (3.18)

In general, the calculated peak positions are within 0.1 eV of the two-level model fit,
which is also the expected accuracy of such calculations. I obtain a value of α ≈ 11 eV
for the three main separate peak contributions ω1, ω2 and ω3 in the spectra. For the first
peak, ε̃1 ≈ 20 eV and for the second and third peak ε̃3 ≈ 23.5 eV.

I show that the separation between the two electronic final states ω2 and ω3 for H+
2

in Figs. 3.10 and Figs. 3.7 a) and b) depends on the strength of the coupling between
ε̃3 and ε3. For smaller masses, the coupling is stronger with the nuclear displacement
δ ∼ M−1/4, leading to a larger energy separation between ω2 and ω3. For the largest mass
case (Mp × 104), the separation between ω2 and ω3 is of the order of 1 eV. However, we
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cannot visualise both the bonding and antibonding contributions in the spectra in Figs. 3.7
a) and b), because these overlap due to their finite width.

In Fig. 3.11, I also show as expected from our model, that the width of the first and
third peak scales as the electron-ion mass ratio to the one fourth, i.e. full width at half
maximum FWHM ≈ (me/M)1/4, for the configurations shown in Fig. 2.1 b) and c) and H+

2 .
Here I have obtained the FWHM from Eq. 3.11 for the configurations shown in Fig. 2.1 b)
and c) and M+

2 for different masses M. The FWHM for the first peak has a larger constant
of proportionality than the third peak, but the widths for both configurations may be fit
simultaneously.
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Figure 3.11. Full width at half maximum of the Gaussian fits (FWHM = 2
√

2σi) to
the first and third peaks of the absorption spectra for a positively charged homonuclear
diatomic molecule with nuclear mass M of µ, H, D, T, Li, Na, or K versus the fourth
root of the electron-nuclear mass ratio (me/M)1/4 in the configuration ∆Ie = 1 and ∆II = 1

2
(�) or ∆II = 1 (�). Black lines are linear fits to each peak for both configurations. Gray
regions denote a ±0.1 eV estimated accuracy.

Altogether, this demonstrates the predictive power of our simple two-level model for
describing the quantum nuclear spectral energies and widths as a function of the nuclear
mass.
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3.1.3. Conclusions. For the H+
2 and H2 molecules, the quantum electron-nuclear time

dependent Schrödinger equation can be numerically solved due to the small number of
electrons and nuclei they contain (these are three and four body systems). To simplify
this numerical task, I have modelled these systems in 1D and in the centre of mass.

I have tested several initial configurations for both molecules, using several values for
the Soft Coulomb parameters. These give rise to classical ground state potential energy
surfaces (PES) with different behaviours for larger and small internuclear separations.

Having access to the quantum electron-nuclear solution has allowed me to test the va-
lidity of widely used classical nuclear approximations, both from a static and time depen-
dent perspective. By varying the nuclear mass of the quantum electron-nuclear problem
I have been able to check the validity of the classical approximations. For large nuclear
masses the results obtained from a quantum electron-nuclear treatment should be consis-
tent with the classical results.

I have found from the static calculation, that the quantum electron-nuclear ground
state energies differ from those obtained from the classical approximations. From a per-
turbation theory argument in terms of ( me

Mp
)1/4, I have found that the classical approxima-

tions can only describe accurately the ground state energy up to the electronic and nuclear
motion eigenvalues.

I have found from the time-dependent linear response spectra new features that are
only present from a quantum electron-nuclear perspective. In particular, each classical
allowed narrow peak splits into a wider bonding and antibonding contribution, lower and
higher in energy, respectively. The amplitude and energy shift of these contributions
strongly depends on the initial configuration. For initial configurations that give rise to
PES that are strongly attractive for larger X, the antibonding blue shifted contribution
dominates in the quantum electron-nuclear spectra. For initial configurations that give
rise to PES that are strongly repulsive for small X, the bonding red shifted contribution
dominates in the quantum electron-nuclear spectra. For initial configurations where the
PES is not overall strongly repulsive and attractive, these quantum features will be weaker.

I have analysed both the position and width of these contributions as a function of
the electron-nuclear mass ratio me

Mp
by means of a simple two level model. With this two-

level model, the final coupling between the Born-Oppenheimer approximation (BOA)
electronic energy levels via the quantum nuclear displacement δ ∼ ( me

Mp
)1/4, is analysed for

different nuclear masses in terms of the mass ratio. Such a model accurately describes
the energy and width dependence of every peak as a function of this mass ratio for both
molecules and several configurations.

This work has shown that the magnitude of the final quantum electron-electron cou-
pling, given by the mass ratio via the quantum nuclear displacements δ, can limit the
domain of applicability of the classical approaches. For light atoms, the quantum nature
of the nuclei may play an important role when describing absorption processes.
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3.2. Photoionisation yields of neon and argon atoms2

In this section I study the photoionisation of neon and argon atoms subject to free
electron sources by means of time-dependent density functional theory (TDDFT). With
our TDDFT calculations based on the Kohn-Sham (KS) wavefunctions I have obtained
both the total and individual contribution from each ionisation channel. This is done in
the perturbative regime where a good agreement between experiment and a lowest-order
perturbation theory (LOPT) perturbative theoretical method has already been obtained.
It was thought that TDDFT was unable to describe non-perturbative phenomena such as
the non-sequential double photoionisation knee found experimentally for helium. From
a comparison between the total and individual yields obtained from LOPT and TDDFT
we conclude that TDDFT can provide a very good description of the total and individual
ionisation yields for neon and argon atoms exposed to strong laser pulses. As the per-
formance of TDDFT depends on the asymptotic behaviour of the exchange-correlation
functionals, I assess the reliability of different adiabatic density functionals and conclude
that an accurate description of long-range interactions is crucial for obtaining the correct
ionisation yield over a wide range of intensities.

3.2.1. Computational details and procedure. For the neon and argon atoms I dis-
cretise the three spatial Cartesian coordinates (x, y, z). Due to the spherical symmetry of
these atoms, I use a spherical box. The spatial coordinates are equivalent in all three di-
rections. These coordinates are discretised in the spherical box intervals boxint ∈ [−b, b]
with

b j = −b + j∆b for j= 0, 1, 2...Nb, (3.19)
by using Nb equispaced points. The spacing between two adjacent points in the b direction
is ∆b = 2b

Nb
. The total simulation box size will be given by 2b from −b to b.

Convergence is achieved when a decrease in ∆b and an increase in b does not change
the static and time propagation observables I analyse.

Within time-dependent density functional theory (TDDFT), I first solve the elec-
tronic ground state all-electron problem at the density functional theory (DFT) level
from Eq. 2.76 using the functionals proposed in Sec. 2.4.2 for the atoms with charge
q = 0 . . . (N0 − 1). Note that we at least need one bound electron to perform this cal-
culation. From this DFT problem the all electron eigenvalues and wavefunctions are
obtained for each functional and each atom with charge q = 0 . . . (N0 − 1). A ground

2This section is largely an adaptation of the work by A. Crawford-Uranga, U.
De Giovannini, E. Räsänen, M. J. T. Oliveira, D. J. Mowbray, G. M. Nikolopou-
los, E. T. Karamatskos, D. Markellos, P. Lambropoulos, S. Kurth and A. Rubio;
Time-dependent density-functional theory of strong-field ionization of atoms by soft x rays; Phys. Rev.
A 90, 033412 (2014); DOI:10.1103/PhysRevA.90.033412. As such, the reported work includes
collaboration with the rest of the authors of the article.

http://dx.doi.org/10.1103/PhysRevA.90.033412
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state parametrised pseudopotential is generated for each atom with charge q = 0 and each
functional used according to the requirements shown at the end of Sec. 2.4.4. Once I have
chosen the pseudopotential, I solve the DFT problem again using the q = 0 generated
pseudopotentials for each functional and each atom with charge q = 0 . . . (N0 − 1), to
obtain the pseudo eigenvalues and wavefunctions.

In Table 3.4, I show the relative percentage errors introduced by the generated pseu-
dopotential in the outermost valence energy levels of argon and neon, for increasingly
ionised species and the different exchange-correlation functionals tested. The error is
here evaluated relative to an all-electron calculation. Since our pseudopotentials have
been generated from a neutral ground state configuration with q = 0, the errors increase
linearly as a function of the charged state. Here the errors are larger for neon than for
argon, because the neon pseudopotentials have been generated using a larger radial cutoff

rc (see Sec. 2.4.4).

LDA Rel. err. (%) Ne+ / Ar+ Ne2+ / Ar2+ Ne3+ / Ar3+ Ne4+ / Ar4+ Ne5+ / Ar5+ Ne6+ / Ar6+ Ne7+ / Ar7+

2s / 3s -0.39 / 0.04 -0.41 / 0.10 -0.11 / 0.20 0.42 / 0.32 1.13 / 0.49 1.97 / 0.73 1.39 / 1.10
2p / 3p 0.18 / 0.06 0.99 / 0.14 2.20 / 0.25 3.68 / 0.41 5.31 / 0.61 7.05 / 0.91 7.18 / 1.35
3d / 3d -0.07 / 0.08 0.33 / 0.21 1.93 / 0.37 4.12 / 0.59 6.47 / 0.89 8.82 / 1.33 10.10 / 2.02

PBE Rel. err. (%)
2s / 3s -0.42 / 0.03 -0.47 / 0.06 -0.18 / 0.12 0.35 / 0.18 1.05 / 0.27 1.91 / 0.40 1.21 / 0.72
2p / 3p 0.16 / 0.04 0.98 / 0.10 2.21 / 0.17 3.69 / 0.26 5.35 / 0.39 7.21 / 0.59 7.40 / 0.97
3d / 3d -0.08 / 0.08 0.30 / 0.18 1.85 / 0.31 3.99 / 0.48 6.32 / 0.72 8.73 / 1.09 10.03 / 1.75

LB94 Rel. err. (%)
2s / 3s -0.19 / 0.10 -0.03 / 0.27 0.39 / 0.51 0.99 / 0.85 1.60 / 1.33 1.96 / 2.04 1.88 / 3.26
2p / 3p 0.34 / 0.12 1.22 / 0.30 2.48 / 0.58 3.99 / 0.96 5.61 / 1.49 7.16 / 2.28 8.11 / 3.63
3d / 3d -0.10 / 0.08 0.47 / 0.35 1.79 / 0.74 3.58 / 1.28 5.56 / 2.04 7.58 / 3.11 8.87 / 4.93

CXD-LDA Rel. err. (%)
2s / 3s -0.21 / 0.07 -0.41 / 0.10 0.02 / 0.06 0.59 / 0.16 1.28 / 0.53 1.89 / 0.60 1.71 / 1.65
2p / 3p 0.35 / 0.09 0.84 / 0.14 2.15 / 0.09 3.61 / 0.22 5.19 / 0.65 6.67 / 0.75 7.33 / 1.91
3d / 3d 0.04 / 0.06 0.54 / 0.19 1.83 / 0.15 3.63 / 0.30 5.64 / 0.86 7.71 / 1.07 9.36 / 2.43

Table 3.4. Neon and argon pseudopotential vs all electron relative percentage errors
for the outermost valence states for different exchange-correlation functionals.

Starting from this pseudo ground state calculation with q = 0, I then apply an external
Gaussian strong laser pulse to our atoms, Eq. 2.111, and numerically propagate in real
space in the interacting volume V the electronic time-dependent Kohn-Sham (TDKS),
Eq. 2.109, using an enforced time-reversal symmetry based propagator, Eq. 2.51. Here I
use a time-dependent adiabatic extension of the functionals in Sec. 2.4.2 with their asso-
ciated pseudopotential generated for the ground state neutral configuration.

For the external Gaussian laser I use for neon a fixed photon energy of ω = 93 eV
and I consider the cases of a short 5 fs and a 30 fs full width at half maximum (FWHM)
long laser pulse for several intensities from 1013 W/cm2 to 5 × 1015 W/cm2. In both
cases I propagate the TDDFT equations for 25 fs and 153 fs, respectively. For argon, a
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10 fs FWHM pulse of energy ω = 105 eV, a full propagation time of 51 fs and several
intensities from 1013 W/cm2 to 5 × 1015 W/cm2 have also been used.

To calculate the total yields from Eq. 2.127, N(t) decreases with time due to the
ionised electrons that are absorbed into the complex absorbing potential (CAP) region
and N0 = 8 are the total initial number of valence electrons that are not frozen in the
pseudopotential for both atoms. Then I use an exponential fit near the end of the propa-
gation times, given in the previous paragraph, to extrapolate N(t). I follow this procedure
for each atom and each intensity I have tested. To obtain the individual yields I calculate
Eq. 2.127 for each q charged state at the end of the propagation times for each atom and
each intensity without extrapolation.

I perform the Kohn-Sham (KS) and TDKS calculations in a R=16 Å radius spherical
box and discretise the problem on a Cartesian grid with spacing ∆R=0.16 Å.

To solve the TDKS equation an Rab=8 Å complex absorbing potential, Eq. 2.115,
is introduced in our 16 Å radius total spherical box to account for electrons escaping
from the interacting volume V during the time propagation. Within the CAP region the
ionised electrons’ reflections are damped via the propagation of Eq. 2.116. During the
time propagation our 16 Å radius total spherical box has an interacting volume V of radius
8 Å and an absorbing CAP volume VCAP of radius 8 Å. The interacting volume is big
enough to hold the atom and its outgoing electrons that interact with the atom’s electrons
and nucleus. The absorbing CAP volume is a spherical shell that is big enough to trap
the non-interacting outgoing electrons while avoiding reflections back to the interacting
volume.

I find that for a 16 Å radius total spherical box and an 8 Å complex absorbing potential,
using η = 1 is enough to guarantee good continuum properties for the outgoing electron’s
kinetic energy range that I consider in this work for neon and argon. To check this in
Sec. 3.2.2 I have compared the experimental absorption spectra to the one obtained from
TDDFT for different absorbing boxes, until reflections are negligible for this range.

I also find that the spacing of 0.16 Å I have used is small enough to describe accurately
the steep Coulomb potential for the innermost valence state eigenvalues with charge +6
and +7. The errors in the eigenvalues for these innermost valence states for all the func-
tionals are between 0.001 and 0.01 Ha.

3.2.2. Results. In this section I compare the time-dependent density functional the-
ory (TDDFT) versus lowest-order perturbation theory (LOPT) photoionisation yields ob-
tained for the neon and argon atoms. In particular, I compare the yields obtained from
these two methods for the total as well as the individual photoionisation yields. The
LOPT yields have been obtained by collaborators and compared separately to experimen-
tal results finding a good agreement. I have focused on the TDDFT results. In particular,
I have mainly analysed the long range effect of the exchange-correlation (xc) potentials.
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3.2.2.1. Neon atom. In Fig. 3.12 I compare TDDFT and LOPT total ionisation yields
for neon as a function of the laser intensity.

The overall agreement is remarkably good for all the xc functionals in a wide range
of intensities (plots are in log scale). However, as the intensity increases, the agreement
gradually deteriorates with TDDFT tending towards lower ionisation yields. This be-
haviour is more pronounced in the 30 fs case in Fig. 3.12 (b), where the TDDFT ion yield
flattens out for intensities & 1015 W/cm2, while LOPT yields higher values.

As LOPT has shown itself to be in excellent agreement with experiment [156, 200,
201, 222], we deduce that our TDDFT results have a tendency to slightly underestimate
the total ionic yield. It must be added, however, that these differences are minor and
are likely to fall within the present experimental accuracy of many FEL experiments.
Therefore, we conclude that TDDFT has predictive power over a wide range of laser
pulse intensities.

The high-lying unoccupied Kohn-Sham (KS) bound states, close to the ionisation
threshold, are expected to be more accurately described by the LB94 and CXD-LDA
functionals as explained in Sec. 2.4.2. This is reflected in a superior description of the
ionisation process with LB94, as it provides the best agreement with LOPT. In this re-
spect, the relatively poor accuracy of CXD-LDA compared to LB94 deserves further ex-
amination.

To discern the impact of the underlying ground state and the quality of the Hartree
plus exchange-correlation (xc) functional, I compare in Fig. 3.13 the full solution of the
time-dependent Kohn-Sham (TDKS) with one in which I keep VH and Vxc frozen in the
initial ground state configuration (the independent KS response).
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Figure 3.12. Neon total number of escaped electrons Nesc for different laser intensities
and (a) 5 fs and (b) 30 fs full width at half maximum pulses of ω = 93 eV. Differ-
ent time-dependent density functional theory functionals are compared with lowest-order
perturbation theory. The neon ionisation process is shown as an inset. Shaded regions
indicate the electrons frozen in the pseudopotential.
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Figure 3.13. As in Fig. 3.12 for a 5 fs full width at half maximum pulse and different
approximation levels: LB94 (a), LDA (b), CXD-LDA (c) and PBE (d). In each panel
we compare lowest-order perturbation theory (solid), time-dependent density functional
theory (dashed) and the independent Kohn-Sham response (dotted). Shaded regions
indicate the electrons included in the pseudopotential.

Electrons are thus treated as non-interacting particles moving in a fixed external po-
tential. The effects of such a crude approximation are almost indiscernible when the
xc potential is short ranged, i.e., Vxc ∼ e−r, as for LDA and PBE (cf. Fig. 3.13 (b) and (d)).
However, this is not the case when the xc potential is long-ranged, i.e., Vxc ∼ −1/r, as for
LB94 and CXD-LDA (cf. Fig. 3.13 (a) and (c)).

In an independent KS response picture, the total ionisation yields are directly related to
the KS eigenvalues. For long-ranged xc potentials, the KS eigenvalues are more strongly
bound, reducing total ionisation yields compared to short-ranged xc potentials. How-
ever, when the xc potential is propagated in time, the total ionisation yields only increase
significantly for the long-ranged xc potentials (∼100% increase for LB94 and ∼33% for
CXD-LDA at I = 1014 W/cm2). For long-ranged xc potentials, the ejected electrons in
time may induce an attractive potential via redistribution of the electronic density on the
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ion. Thus, the kinetic energy of the ejected electrons will be reduced due to this stabili-
sation of the electronic levels. To support this analysis I have employed linear response
TDDFT [223] to calculate the cross sections shown in Fig. 3.14.

20 40 60 80 100 120
Energy [eV]

10
-3

10
-2

10
-1

10
0

σ
ab

s [Å
2 ]

CXDLDA
LDA
LB94
PBE
Experiment

50 60 70 80 90
Energy [eV]

0.03

0.06

0.12

σ
ab

s[Å
2 ]

Figure 3.14. Neon absorption cross-section (logarithmic scale) above the first ionisa-
tion threshold. Result for different time-dependent density functional theory exchange-
correlation functionals, LDA (black), PBE (orange), CXD-LDA (green), LB94 (red),
compared with experimental data (blue) [224]. In the inset I focus on the range of energies
relevant for ionisation from a ω = 93 eV laser pulse.

In Fig. 3.14 we see that the linear absorption cross section of electrons increases as
the kinetic energies decrease below 93 eV [225]. The linear absorption cross section
measures the probability of an absorption process as a function of the kinetic energy of
the outgoing ionised electrons. For a larger absorption probability, the atoms absorb more
energy from the incoming electromagnetic source and a larger number of electrons can be
ionised from the atom. As the probability of the absorption process is larger for kinetic
energies below 93 eV, we obtain a larger number of ionised electrons than for a kinetic
energy of 93 eV. Therefore, we obtain a larger number of ionised electrons when the
xc potential is propagated with time than when it is frozen. This effect becomes relevant
mostly when the long-range electron-electron interaction is accurately described because
the electronic levels are stabilised as explained in the previous paragraph.
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Our complex absorbing potential (CAP) absorbs well as there are no spurious reflec-
tions and the cross-sections with different TDDFT xc functionals smoothly follow the
experimental one [224] in the energy range associated to our pulses. The ionisation po-
tential in TDDFT is given by the KS eigenvalue of each bound electron. A rough estimate
of the TDDFT quality attained in the description of ionisation processes initiated by a
laser of a given frequency ω, is therefore given by the behaviour of absorption spectra in
an energy range identified by the lower- and higher-energy KS ionisation potentials of the
non-frozen valence electrons as shown in the inset of Fig. 3.14.

In Fig. 3.15 I show neon individual TDDFT (thicker) and the independent KS response
(thinner) ionisation yields obtained with LB94 and LDA using Eq. 2.127. We observe that
TDDFT ionic yields up to Ne4+ are in good agreement with LOPT for a large range of
laser intensities; I . 1015 W/cm2 for a 5 fs pulse, [Fig. 3.15 (a)], and I . 5 × 1014 W/cm2

for a 30 fs one [Fig. 3.15 (b)]. For more strongly ionised species, Ne5+ through Ne8+, the
discrepancy is larger, especially for the 30 fs pulse. From Fig. 3.15 (a) we see that the
individual ionisation yields for all channels are ordered as LB94(KS) < LDA(KS) ∼ LDA
< LB94, as was also the case for the total ionisation yields shown in Fig. 3.13 (a) and (b).

The total and partial ionisation yields are in good agreement with LOPT, as long as the
channels with an associated charge ≥ Ne5+ play a negligible role in the ionisation process
(cf. Figs. 3.12 and 3.15). Experimental ionisation channels up to Ne6+ present excellent
agreement with LOPT [200, 156, 222, 201]. We can therefore conclude that TDDFT
describes well the ionic yields up to Ne4+, with the current state-of-the-art experimental
data.

The trend observed in the TDDFT total yields for the different xc functionals, [Fig. 3.12],
is reflected in the single ionisation channels for both pulse lengths: namely, the inclusion
of a correct asymptotic decay systematically improves the description of each channel.
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Figure 3.15. Neon individual ionisation yields as a function of the intensity for (a) 5 fs
and (b) 30 fs full width at half maximum laser pulses of ω = 93 eV. Time-dependent den-
sity functional theory (thicker) and the independent Kohn-Sham response (thinner) with
LB94 (dashed) and LDA (dotted) functionals are compared to lowest-order perturbation
theory (solid).

3.2.2.2. Argon atom. In Fig. 3.16 I present the results for total and individual ionisa-
tion yields of argon. The total ionisation yields for all the considered functionals except
LB94, [Fig. 3.16 (a)], qualitatively follow LOPT but systematically predict lower values.
LB94 remarkably reproduces LOPT up to I . 5 × 1014 W/cm2. For higher intensities,
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it departs towards lower ionisation values similarly to what was observed for neon in
Fig. 3.12.
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Figure 3.16. Argon total and individual ionic yields as a function of the laser intensity
for a 10 fs full width at half maximum laser pulse of ω = 105 eV. (a) Total ionisation
yield for different time-dependent density functional theory exchange-correlation func-
tionals and lowest-order perturbation theory. (b) Individual ionisation channels for LB94
(dashed) and lowest-order perturbation theory (solid). The argon ionisation process is
shown as an inset. Shaded regions indicate electrons frozen in the pseudopotential.
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The intensity dependence of single ionisation channels, as shown in Fig. 3.16 (b), is in
good agreement up to Ar3+ for LB94 only. It then deteriorates for higher ionised species.

The cross sections for argon shown in Fig. 3.17, also demonstrate that our complex
absorbing potential (CAP) absorbs well and that ionisation yields increase for decreasing
outgoing kinetic energies.

15 30 45 60 75 90 105 120
Energy [eV]

10
-3

10
-2

10
-1

10
0

σ
ab

s [Å
2 ]

LDA
PBE
LB94 
CXDLDA
experimental

30 40 50 60 70 80 90 100
Energy [eV]

4×10
-3

0.025

0.25
σ

ab
s[Å

2 ]

Figure 3.17. Argon absorption cross-section (logarithmic scale) above the first ioni-
sation threshold. Result for different time-dependent density functional theory exchange-
correlation functionals, LDA (black), PBE (orange), CXD-LDA (green), LB94 (red),
compared with experimental data (blue) [224]. In the inset we focus on the range of
energies relevant for ionisation from a ω = 105 eV laser pulse.

In general, I have shown that the agreement between LOPT and TDDFT is remark-
ably good for all the exchange-correlation (xc) functionals for both argon and neon and
channels with an associated charge below 5+. However, the agreement is not as good
for channels with an associated charge above 6+. TDDFT tends to underestimate the
LOPT results for the Ne7+ (see Fig. 3.15 a)) and Ar7+ (see Fig. 3.16 b)) charged channels,
whereas it overestimates LOPT for the Ne8+ (see Fig. 3.15 b)) and Ar8+ (see Fig. 3.16 b))
charged channels.

There are several sources of error within TDDFT which could lead to these effects.
First, the pseudopotential transferability errors increase with the charge of the ionised
contribution as they have been generated from the neutral configuration as shown in
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Sec. 3.2.1. Second, it has been found that for argon there is an important experimen-
tal effect [202] which I do not include within TDDFT. From the analysis of photoelec-
tron energy spectra for argon, an ionised plus excited contribution of the sixth species
has been detected and quantified. The seventh species is sequentially produced from
these two contributions of the sixth species. As shown experimentally, the sixth ionised
contribution produced is much larger than the sixth excited contribution. Therefore it
is reasonable to think that the seventh species will be mainly produced from the sixth
ionised contribution. However, it has been found experimentally that the excited contri-
bution strongly contributes to the production of the seventh species. Therefore the sixth
excited contribution must be included to calculate the ionisation yields for the seventh
species. Otherwise, within TDDFT the ionisation yields will be clearly underestimated
with respect to the experimental results. Third, for Ne8+ and Ar8+, the spurious correlation
effects between the core electrons frozen in the pseudopotential and the escaped electrons
in the absorbing boundary are included. Fourth, the observed deviation for highly ionised
species may trace back to an improper spatial- and time-dependence of the adiabatic func-
tionals. When we apply a periodic field to our atoms, a charge-transfer excitation takes
place where the population of the initial and final state will oscillate with time. The non-
local spatial dependence on the density can be partly treated with GGA functionals such
as LB94 and CXD-LDA, as these take into account both the density and the gradient of
the density at the coordinate where the functional is evaluated (see Sec. 2.3.1.1). This
non-local dependence can only be partly treated with GGAs, because only the short range
non-locality in the gradients of the density is included. The non-local time dependence
on the density cannot be described with any of the adiabatic functionals used, as these
neglect memory effects. As shown in Eq. 2.110, within the adiabatic approximation, we
input the instantaneous density into a ground state xc functional at time t, neglecting the
effect of the density at all previous times t′ < t. The effect of using an adiabatic versus
exact functional has been shown in 1D for He, a two electron system [226, 227, 228]. The
correlation potential obtained for charge-transfer excitations over one Rabi cycle using
an exact versus adiabatic functional has been compared. A time-dependent oscillating
step structure in the correlation potential can only be described accurately using an exact
functional. To describe the long-range charge-transfer from one state to another, or from
different regions of space, a non-local spatial functional is necessary. To describe the
time-dependence of the oscillating step due to the generation of a net acceleration across
the atom, a non-local time-dependent functional is necessary.

These possible TDDFT sources of error have to be tested to check if the ionisation
yields improve for these highly ionised species. This can be achieved for example by
using harder, more transferable pseudopotentials as well as testing new functionals that
can describe spatial and temporal non-localities and self interaction effects better. How-
ever, as we are mostly interested in the intensity regime where LOPT is expected to be
valid, these issues are not so relevant for this study. Since the two approaches are built



3.2. PHOTOIONISATION YIELDS OF NEON AND ARGON ATOMS 97

on completely different bases, the resulting agreement for lower intensities indicates that
both are able to provide a realistic picture of the underlying physics.

3.2.3. Conclusions. For the neon and argon atoms, I have studied their strong field
ionisation (up to the X-ray regime) by means of a perturbative (lowest-order perturba-
tion theory, LOPT) and a non-perturbative (time-dependent density functional theory,
TDDFT) theoretical method. Studying the strong field ionisation of these atoms has
become recently possible experimentally due to the advances and development of free
electron lasers (FEL). Under strong fields, multiple ionisation processes where more than
one electron is ejected simultaneously, become important to understand the ionisation of
these atoms. These multiple ionisation processes are enhanced for high intensity and short
duration laser pulses.

LOPT has shown to be an accurate theoretical method by comparison to experimental
results for these two atoms. To obtain the ionisation results within LOPT a series of rate
equations for each atom are formulated according to the experimental conditions used.
LOPT is a perturbative method, which cannot handle non-perturbative effects such as
electron correlation, and it is applicable only under certain intensities and pulse durations.

TDDFT can deal with all the limitations of LOPT, but was thought to fail to describe
strong field ionisation when tested for helium. However, I have found that by comparing
the TDDFT results to the LOPT ones (which have been previously compared to experi-
mental results as mentioned above) for neon and argon atoms subject to strong fields, I
obtain accurate ionisation yields, as long as the charge of the ion is not too high. Since
the two theoretical approaches are built on completely different bases, the resulting agree-
ment for lower intensities indicates that both are able to provide a realistic picture of the
underlying physics.

Within TDDFT I obtain the best results when I use an LB94 functional, which de-
scribes better the levels close to the ionisation threshold due to its long range behaviour.
To understand the effect of the long range behaviour, I have analysed the cross sections
in the energy range identified by the deeper and higher KS ionisation potentials. There I
show that the amount of ionisation increases when the kinetic energy of the ejected elec-
trons decreases. For long-ranged potentials, the kinetic energy of the ejected electrons
will be more reduced than for short-ranged potentials, due to a stronger stabilisation of
the electronic levels induced by a stronger attractive potential via redistribution of the
electronic density on the ion.

To simplify our TDDFT calculations I have used a pseudopotential (adapted to each
long and short ranged exchange-correlation potential I have tested) to freeze the inner
core electrons, as these are not strongly ionised under the laser conditions I employ. As
we are numerically limited to a simulation box of a certain size and the ejected continuum
electrons will be delocalised in space, I add a complex absorbing boundary region at the
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edges of the box. This absorbing boundary region absorbs the ionised ejected electrons to
avoid unphysical reflections.

I have shown that both the total as well as individual ionised contribution of the elec-
trons that are not frozen in the pseudopotential can be accurately described by means of
both LOPT and TDDFT. For highly charged species both the TDDFT and LOPT results
are not as good. Several possible TDDFT sources of error have to be tested to check
if the ionisation yields improve for these highly ionised species. One could test harder
more transferable pseudopotentials as well as new functionals that can describe spatial
and temporal non-localities and self interaction effects better.

3.3. Nuclear effects on the Time Resolved Photoemission Spectra of ethylene3

In this section I have studied the ionisation of an ethylene molecule subject to a pump
probe setup with time-dependent density functional theory (TDDFT). The πz-bond in the
ethylene molecule is responsible for its useful reactivity. Due to this reactivity, ethylene
is used to produce many products which are widely used. To investigate this reactivity
I follow the dynamic evolution of the molecular orbitals of ethylene due to the πz to π∗z
excitation triggered by the pump pulse which is then monitored by the time-dependent re-
action of ethylene to a delayed strong extreme ultraviolet (XUV) probe laser. To visualise
this evolution I have looked at the time-resolved photoemission spectra and photoangular
distribution because they can be used to directly probe electron and nuclear dynamics in
molecules. This analysis has been performed including the nuclear motion via the Ehren-
fest dynamics (ED) approach and not including it via the Born-Oppenheimer approx-
imation (BOA) approach to investigate the effects of nuclear motion. Due to ethylene’s
double bond between the two carbon atoms the molecule is relatively rigid and distortions
as well as elongations of this bond require a lot of energy. However, the nuclear changes
induced under strong non-perturbative sources can be large for its single C-H bonds due
to their small mass and small force constant. I have found that nuclear motion can only
be clearly observed if I artificially fix the occupation of the pumped π∗z state and not use
a pump. Otherwise, the pump causes the depopulation of the π∗z state and the occupation
of this state must be sufficient for changes in the nuclear positions to be resolved by the
probe.

3.3.1. Computational details and procedure. For the ethylene molecule I also dis-
cretise the three spatial Cartesian coordinates (x, y, x), as I have done for the neon and

3This section is largely an adaptation of the work by A. Crawford-
Uranga, U. De Giovannini, D. J. Mowbray, S. Kurth and A. Rubio;
Modelling the effect of nuclear motion on the attosecond time-resolved photoelectron spectra of ethylene;
J. Phys. B: At. Mol. Opt. Phys. 47, 124018 (2014); DOI:10.1088/0953-4075/47/12/124018. As such, the
reported work includes collaboration with the rest of the authors of the article.

http://dx.doi.org/doi:10.1088/0953-4075/47/12/124018
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argon atoms. The ethylene molecule is not spherically symmetric, but I use a spheri-
cally symmetric box to discretise its three spatial Cartesian coordinates. To discretise
these coordinates, I use a spherical box of a finite set of values b in the box intervals
boxint ∈ [−b, b] which are discretised as:

b j = −b + j∆b for j= 0, 1, 2...Nb, (3.20)
by using Nb equispaced points. The spacing between two adjacent points in the b direction
is ∆b = 2b

Nb
. The total simulation box size will be given by 2b from −b to b.

Convergence is achieved when a decrease in ∆b and an increase in b does not change
the static and time propagation observables I analyse.

As I use a spherical box, the spatial coordinates are equivalent in all three directions.
The ground state density is first obtained by solving the Kohn-Sham (KS) equations

self-consistently at the density functional theory (DFT) level using Eq. 2.76. To approxi-
mate the exchange-correlation (xc) term I use a local density approximation (LDA) func-
tional coupled to an average density self interaction correction, Eq. 2.113. To freeze the
Carbon 1s core electrons I use an LDA pseudopotential that is already included with the
Octopus [213, 214, 215] code. I employ a spherical box of radius R = 30 a0 with a grid
spacing of ∆R = 0.3 a0. I first find for the ADSIC functional the minimum geometry
by force minimisation using Eq. 2.114, to make sure that the molecule is initially in its
ground state. The ground state geometry is given in Sec. 3.3.2.1.

Once I have found the relaxed molecular structure, I apply to our ground state a pump
pulse followed by a probe pulse for different time delays, Eq. 2.112. The photoionisation
process I consider is depicted schematically in Fig. 3.18, where the laser parameters have
been adapted from Ref. [205]. First, a pump pulse is used to resonantly excite from
the bound πz to the π∗z state. I employ an ultraviolet (UV) pump laser of energy ωPu =

0.326 Ha, with a 15 cycle trapezoidal shape (3 cycle ramp), and an intensity I = 1.67 ×
1011 W/cm2 polarised along the x-axis. The frequency of the pump is tuned to excite this
excitation of interest. The dynamic evolution of the electronic levels of ethylene due to the
πz to π∗z excitation triggered by the pump pulse is then monitored by the time-dependent
reaction of ethylene to a delayed strong probe laser. The probe is an extreme ultraviolet
(XUV) laser of energy ωpr = 1.8 Ha, with a 40 cycle trapezoidal shape (8 cycle ramp),
and an intensity of I = 1.02× 1011 W/cm2 polarised along the z-axis. This delayed strong
probe pulse is used to eject the electrons of ethylene to a laser driven unbound continuum
state. The time delay between the pump and the probe is measured from the onset of the
pump to the centre of the probe so that negative delays correspond to cases where the
probe precedes the pump, as shown in Fig. 3.19.

Alternatively, I also follow the procedure described in the previous paragraph by start-
ing from an artificially π∗z pumped state by fixing its occupation. In this case, as the initial
state of our time-dependent density functional theory (TDDFT) time propagation, I use a
KS Slater determinant which differs from the KS ground state in that the highest occupied
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molecular orbital (HOMO) (πz) is empty while the lowest unoccupied molecular orbital
(LUMO) (π∗z) is fully occupied. This corresponds to the situation where the pumped con-
tribution from the HOMO to LUMO has been efficiently maximised. Therefore, for this
case I omit the pump and use the same probe. Here, the time delay is measured as the
difference from the centre of the probe to the starting point of the time evolution, as shown
in Fig. 3.19.

Figure 3.18. Schematic of the pump-probe setup employed to study the time-resolved
photoemission spectra of ethylene. The pump (blue) is an ultraviolet laser pulse of en-
ergy ωPu = 0.326 Ha, with a 15 cycle trapezoidal shape (3 cycle ramp), and an intensity
I = 1.67 × 1011 W/cm2. polarised along the C–C bond, i.e., x axis. The excited electron
is probed using an extreme ultraviolet probe laser (violet) of energy ωpr = 1.8 Ha, with a
40 cycle trapezoidal shape (8 cycle ramp), and an intensity of I = 1.02 × 1011 W/cm2 po-
larised along the z axis. The calculated Hartree potential (red) for the x coordinate along
the yz plane, Kohn-Sham eigenvalues (black horizontal lines), structural schematics (C in
black, H in white), and Kohn-Sham orbitals (isosurfaces of ±0.05e/a3/2

0 ) for ethylene are
shown according to their energy. The πz state is the highest occupied molecular orbital
and the π∗z state is the lowest unoccupied molecular orbital.

I model the time-resolved photoemission spectra (TRPES) and photoangular distri-
butions (PAD) to obtain the kinetic energies and angular distributions of the outgoing
electrons by solving the time evolution of ethylene according to the following. I partition
the whole space as described in Sec. 2.4.7. In region A I solve in real space the discretised
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coupled time-dependent Kohn-Sham (TDKS) equation (Eq. 2.109) either for fixed nuclei
or for nuclei following the classical equations of motion (Eq. 2.123), in the presence of a
mask boundary absorber function M(r) of a given width Rab (see Eq. 2.140). I introduce
a 15 a0 wide Mask Method boundary absorber to collect the photoelectrons and prevent
electronic reflections inside the total 30 a0 box. To propagate the TDKS Eq. 2.109 I use
an enforced time-reversal symmetry operator (Eq. 2.51) and a time step of ∆t = 1.2 as.
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Figure 3.19. Schematic of the time delay between the pump in blue and the probe in
violet. When the pump is not present, the time delay is measured from the starting point
of the time evolution.

To propagate the Ehrenfest Eq. 2.123 I use a velocity Verlet algorithm (Eq. 2.124) with
a random initial velocity (Eq. 2.125) introduced by an initial temperature of 300 K≈25◦C
to follow experimental ambient conditions. Otherwise the nuclei are left fixed. Absorbed
electrons in A are collected via M(r) and propagated in momentum space as free Volkov
states within the ionisation region B. From the photoelectrons in region B the momentum-
resolved photoelectron probability P(p) in Eq. 2.139 is obtained by Fourier transforma-
tion within the localised small absorbing boundary region of 15 a0. From P(p) we can
then extract and visualise the photoemission spectra P(E) and photoangular distribution
P(E, θ) given in Eqs. 2.130 and 2.131, respectively. These are calculated as a function of
the delay time between the pump and probe and are measured only when the probe pulse
is applied.
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3.3.2. Results. In this section I compare the frozen Born-Oppenheimer approxima-
tion (BOA) versus moving Ehrenfest dynamics (ED) nuclei time-resolved photoemission
spectra (TRPES) and photoangular distribution (PAD) I obtain for an ethylene molecule
from two different approaches. In the first approach I apply a pump to excite from the
πz → π∗z , followed by a time delayed probe. In the second approach, I initially start from
a pumped state by fixing the occupation of the π∗z , followed by the application of a time
delayed probe.

3.3.2.1. Pump plus probe. In Fig. 3.20 I show the geometry of the ethylene molecule.
On the right hand side of Fig. 3.20, I show the first seven molecular orbitals for ethylene
ordered according to their energy. These describe the regions of space in which there is
a high probability of finding the molecules’ electrons. These molecular orbitals are con-
structed by combining bonding and antibonding combinations of atomic orbitals, lower
and higher in energy.

Figure 3.20. Schematic representation of the ethylene molecule’s coplanar geometry
and its first seven molecular orbitals ordered according to their energy. The two carbon
atoms are shown black and the four hydrogen atoms white. The blue atomic orbital lobes
are negative phases and the red atomic orbitals are positive phases. These are separated
by nodal surfaces at which the electron density is zero.

The TRPES for ethylene with the nuclei frozen at their equilibrium positions is shown
in Fig. 3.21 (a). The spectra presents similar features to those described in Ref. [205].
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Brighter areas correspond to more ionisation with larger kinetic energies and darker areas
to less.
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Figure 3.21. Time-resolved photoemission spectra P(E, τ) of ethylene as a function
of the photoelectron’s kinetic energy in Ha and the pump-probe time delay τ in fs with
frozen (a), or moving (b) nuclei. Nuclear motion is modelled with an initial temperature
of 300 K. Pump (blue) and probe (violet) pulses are polarised with laser parameters as
described in Fig. 3.18. The pump is depicted in the upper panels of (a) and (b) as a
function of τ. Here E1 = 2ωPu − Ip, E2 = ωpr − Ip, E3 = ωPu + ωpr − IP. The energies
E1, E1 +ωPu, E1 + 2ωPu, E2, E3 ( black) and the time delay τ f ( white) are shown to guide
the eye. White arrows correspond to the pump’s energy ωPu.

The first ionisation potential obtained from LDA+ADSIC is Ip = 0.447 Ha, compared
to the experimental value of 0.386 Ha [229]. Here, Ip has been evaluated within den-
sity functional theory (DFT) using the vacuum energy minus that of the highest occupied
Kohn-Sham (KS) molecular orbital (HOMO), i.e., Ip ≈ Evac − εHOMO. The carbon-carbon
(C–C) bond-length obtained from LDA+ADSIC is 2.337 a0, in fair agreement with the
experimental one of 2.531 a0 [230]. The (C–C) bond-length has been obtained by molec-
ular force minimisation (≤ 2.4× 10−5 Ha

a0
), with the two carbon atoms placed on the x-axis

at x = ±1.169 a0 and hydrogens in the xy-plane at (x, y) = (±2.120,±1.785) a0.
The peak at E1 = 2ωPu − Ip = 0.205 Ha constitutes the main ionisation channel and

it is due to the pump alone. Here, the absorption of a pump photon leading to a πz → π∗z
transition, is followed by a second pump photon which directly excites electrons from the
π∗z state into the continuum. Multiphoton replicas of this peak can be observed at energies
separated by the two following integer multiples of ωPu.
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The peak at E2 = ωpr − Ip = 1.353 Ha corresponds to the direct emission from the
highest occupied KS molecular πz orbital into the continuum.

A similar mechanism, but with electrons ejected from deeper levels, is responsible for
the peaks lying at energies lower than E2. These peaks depend on molecular ground state
properties and the probe laser only. For this reason they can be observed also for negative
delays τ < 0.

The population of the π∗z state increases with the delay for τ > 0. At about the same
τ for which E1 becomes visible, the peak at E3 = ωPu + ωpr − IP = 1.679 Ha begins to
emerge. This peak corresponds to electrons ejected into the continuum from the π∗z state,
which is transiently occupied via the pump pulse. This ionisation channel is the one we
are interested in but for which I get the least ionisation. Here one integer multiple of ωPu

is the difference between E2 and E3.
To further analyse the results, in Fig. 3.22 I plot a cut of the TRPES at τ f = 7.26 fs,

after the pump has been switched off.
In the figure I introduce new peak labels in addition to E1, E2, E3, which have been

previously discussed. These labels identify the contribution to each peak from the ground
state KS orbitals of ethylene shown in Fig. 3.18. We can identify the peak to the corre-
sponding orbital from the KS eigenvalues, the symmetry of the orbitals and the PADs.

Supplementary information regarding the nature of PES peaks can be obtained from
the PADs. P(p) can be evaluated by Fermi’s golden rule as

P(p) ∝
∑

f

|〈ϕ f |A0 · p|ϕi〉|
2δ(E f − Ei − ω), (3.21)

where ϕi, ϕ f , Ei and E f are the electronic initial and final orbitals and energies, A0 the
laser polarisation axis where A(t) =

∫ t

0
dτE(τ) is the vector potential in the velocity gauge,

ω the frequency of the pump and p the momentum of the ejected electrons. In a mo-
mentum space approach, we can express P(p) for electrons ejected from orbitals with
π-symmetry as

P(p)2 ∝ |A0 · p|2|ϕ̃i(p)|2, (3.22)
where ϕ̃i(p) is the Fourier transform of the initial orbital in momentum space [231]. The
dot product between A0 · p is a geometrical polarisation factor, so that ejected photo-
electrons will have total momentum p along A0 and no momentum along perpendicular
directions of A0. PADs for angles close to the laser polarisation direction, where the po-
larisation factor |A · p| is close to unity, reflect the nodal symmetry of the orbital from
which the electron has been ejected.
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Figure 3.22. Photoemission spectra of ethylene versus the photoelectron’s kinetic en-
ergy in Ha for a probe applied at the end of the pump (τ f = 7.26 fs as shown in Fig. 3.21)
P(E, τ f ). The nuclei are either frozen (red), or their motion is classically modelled at
an initial temperature of 300 K (blue). Peaks at E1, E2 and E3 correspond to the energy
transitions described in Fig. 3.21, while those labelled σ, σ∗, πy, σx and π∗y correspond
to direct excitations by the probe from the respective orbitals depicted in Fig. 3.18. Pho-
toangular distributions for ethylene at the energies E2 and E3 when the pump has ended
τ f for frozen and moving nuclei are shown in the inset.

As it is reasonable that most photoelectrons are emitted along the laser polarisation
direction, the pump is polarised along x because of the symmetry of the πz orbital, so that
no photoelectrons are ejected due to the pump. Due to the symmetry of the π∗z orbital,
photoelectron ejection will be enhanced along z, so that the probe we apply is polarised
along z.

The inset of Fig. 3.22 shows how the frozen and moving nuclei’s PADs correlate
with the originating orbital symmetry. Photoelectrons emerging with kinetic energy E2

are ejected from almost degenerate π∗y and πz orbitals. The PADs associated with E2

coherently display a symmetry compatible with the superposition of these orbitals. On
the other hand, the PADs for E3 present a nodal structure clearly linked to a π∗z orbital
symmetry.
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As shown in Fig. 3.21(b), the effect of nuclear motion on the electronic TRPES is
negligible. Further, the PAD is minimally changed by the effect of moving the nuclei as
shown in the inset of Fig. 3.22. These negligible effects are due mainly to the fact that
the π∗z orbital is depopulated through the direct ionisation channel observed at E1 via a
second pump. This process is very strong and the π∗z is depleted by the pump so that the
probe application process E3 we are interested in is very weak. The applied pump does
not induce a sufficient occupation of the antibonding π∗z orbital for changes in the nuclear
positions to be resolved by the probe.

As a result, the molecular geometry is minimally modified during the action of the
probe pulse, with a maximum change in the C–C bond-length of less than 0.033 a0. For
the laser parameters depicted in Fig. 3.18, the photoelectron properties of the molecule
are largely unaffected by the coupling with nuclear degrees of freedom.

I have tried to fix this problem by increasing and decreasing the intensity of the pump,
as it causes the depopulation of the π∗z . If I decrease its intensity, we reduce the depop-
ulation of π∗z due to a second pump but we also decrease the π∗z population by excitation
from the πz due to a first pump from E1. If I increase its intensity, we can trigger nonlinear
effects such as a displacement of the peaks and the emergence of new peaks in Fig. 3.22.
In the strong non-linear regime the TRPES and PAD will depend on the perturbation.

3.3.2.2. Artificial pump plus probe. A stronger nuclear response can be stimulated
artificially by propagating an initially fully occupied electronic excited state π∗z without
the need of a pump. In the previous case, the pump laser was in charge of populating the
π∗z excited state, which was subsequently observed during its construction, by means of a
delayed probe pulse. We now investigate the effect of the coupling between nuclear and
electronic degrees of freedom while keeping the excited state π∗z fully populated.

To this end, I artificially promote one electron from the highest occupied Kohn-
Sham (KS) molecular orbital (HOMO) πz to the first lowest unoccupied molecular orbital
(LUMO) π∗z , and propagate keeping this configuration fixed. The KS LUMO with π∗z
symmetry is of antibonding nature (see Fig. 3.18). We thus expect its occupation to have
sizeable effects on the nuclei’s motion, especially on the C–C bond. I employ the same
probe pulse shown in Fig. 3.18, while the pump pulse has been omitted. Here, the time
delay is measured as the difference from the centre of the probe to the starting point of the
time evolution.

Changes in the bond length and the torsion of the molecule induced by the initial
electronic excitation are shown on the left and right hand side of Fig. 3.23 (a), respectively.
The same is shown in Fig. 3.24 for a longer time propagation. The C–C bond length
displays an oscillatory behaviour. It initially increases up to 0.53 a0 at τm = 10.8 fs over
its initial ground state equilibrium position, and then oscillates in time.
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Figure 3.23. (a) Ethylene carbon-carbon bond length in a0 (red) and torsion angle
in ◦ (blue) versus the probe time delay τ in fs from an artificial πz → π∗z excited initial
state. The nuclei’s motion is classically modelled starting from 300 K and the ground
state. The black vertical lines are the times at which the C–C bond length reaches its
maximum τm = 10.8 fs and a previous time τp = 3.6 fs for comparison. The molecular
structure and π∗z orbital at the start, τp, τm and end of the simulation are shown above. (b)
Probe time-resolved photoemission spectra P(E, τ) for all the labelled orbitals of ethylene
in Fig. 3.18, as a function of the photoelectron’s kinetic energy in Ha and the probe
time delay τ in fs (see Fig. 3.18 for details of the probe) starting from the ground state.
The nuclei’s motion is classically modelled with an initial temperature of 300 K. The
black vertical lines are the times at which the C–C bond length reaches its maximum
τm = 10.8 fs and a previous time τp = 3.6 fs for comparison.
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Figure 3.24. Ethylene carbon-carbon bond length in a0 (red) and torsion angle in ◦

(blue) as a function of time in fs, with the nuclei’s motion classically modelled starting
from 300 K and a molecular excited state created by artificially promoting one electron
from the Kohn-Sham highest occupied molecular orbital to the lowest unoccupied molec-
ular orbital.

The molecule undergoes a twist along the C–C axis reaching a maximum torsion of
150.6◦. This behaviour is at the core of cis-trans isomerisation processes happening in
many photochemical reactions [232]. The vibrational stretching frequency along the C–C
bond (ωCC = 7.14 × 10−3 Ha) and the torsional distortion (ωtorsion = 2.82 × 10−3 Ha) are
in qualitative agreement with the experimental data (ωCC = 7.39 × 10−3 Ha and ωtorsion =

4.67 × 10−3 Ha) [232].
These modifications of the molecule’s geometry are reflected in the TRPES shown in

figure 3.23 (b). The initial spectrum changes in time, as the peaks shift in position and
separate close to the maximum elongation time τm of the C–C bond.

The lowest energy peak is consistent with all-bondingσ orbital electrons (see Fig. 3.18),
and is therefore sensitive to the molecule’s bond-length and relatively insensitive to its tor-
sion angle.

The following peak in energy splits into two new peaks. The peak that shifts and
increases in energy, corresponds to the πy state, whereas the one that does not, to the σ∗

state. These two which were practically degenerate in Fig. 3.22, now separate. The πy

state energy shift is due to the fact that it connects hydrogens bound to different carbon
atoms, and is therefore sensitive to the molecule’s torsion and the C–C bond length.
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The intermediate peak in energy corresponds to the σx, π∗y and πy states. Here the σx

does not shift in energy, as it is only weakly affected by the molecule’s bond stretching.
The π∗y shifts towards lower energies because it does not connect hydrogens bound to
different carbon atoms. The πy shifts towards higher energies because it does connect
hydrogens bound to different carbon atoms.

The second to last peak in energy corresponds to the πz state. The π∗y and πz states are
not degenerate anymore as was the case in Fig. 3.22.

The highest and last peak in energy is consistent with the π∗z .
The LUMO π∗z orbital evolution is shown on top of Fig. 3.23. The π∗z and πz orbitals

become degenerate when a torsion angle of 90◦ is reached. The former and latter build
and deplete probability along the nodal plane, shifting towards lower and higher energies,
respectively.

In order to support this analysis, in Fig. 3.25 (c) I present selected cuts of the TRPES
at the specific time delays τp = 3.6 fs, τm = 10.8 fs and τe = 14.5 fs. The time evolution
of each photoelectron peak, can here be monitored identifying each peak with its PAD
fingerprint in Fig. 3.25 (a) and (b). The peaks labelled F, G, H, which shift towards lower
energies as time evolves, belong to the same state according to the PADs. This state can
easily be associated to a π∗z orbital due to its nodal structure. Similarly, the peaks C, D, E,
which shift towards higher energies as time evolves, all originate from the same πz orbital.

In comparison to the HOMO E2 PADs we observed in the pump-probe case of Fig. 3.22,
the πz character is here more defined. This is because the occupation of the KS LUMO
state is lifting the π∗y, πz degeneracy that we had previously.

When the C–C elongation is at its maximum value at τm, a new peak emerges at
EB = 1.22 Ha, which disappears at τe and τp. In order to understand where this extra peak
comes from, I have obtained the photoelectron spectrum of methylene with the same
probe pulse used for ethylene as shown grey filled in Fig. 3.25 (c). The PADs and orbitals
of the peaks labelled B (belonging to ethylene C2H2) and A (belonging to methylene
C2H4) in Fig. 3.25 (a) display a πy symmetry. We can therefore conclude, that this extra
peak is related to the πy ethylene state which becomes less stable as the C–C bond length
increases. We cannot clearly associate it to the dissociation of the molecule because the
C-C bond length oscillates for a long time as shown in Fig. 3.24.

The first main peak corresponds to a σ state, which increases in energy until τm and
then decreases again until τe as shown in the PES in Fig. 3.25 (c). The second main peak
shifts towards lower energies as time evolves. This corresponds to the σ∗ and πy states,
which separate in energy at τm, as explained above. The third peak contains σx and π∗y,
as well as πy for τ , τm. The following peaks correspond to the πz and then the π∗z . The
order of the peaks I find for the PES in Fig. 3.25 (c) corresponds to the one I find for the
TRPES in Fig. 3.23.
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Figure 3.25. (a) Photoangular distributions and πy orbitals for methylene C2H4 (A)
and ethylene C2H2 (B). (b) Ethylene photoangular distributions for πz/π

∗
z orbitals at τp, τm

and τe. (c) Photoemission spectra for a probe applied to the methylene molecule and to
the ethylene molecule for the time at which the C–C bond length reaches its maximum
τm = 10.8 fs, an earlier time τp = 3.6 < τm fs and at the end of the simulation τe = 14.5 fs.
The photoangular distribution for the peaks labelled in the photoemission spectra for both
ethylene and methylene are shown in (a) and (b).
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3.3.3. Conclusions. For the ethylene molecule, I have probed the electronic only
and electronic plus nuclear effects of exciting the πz to π∗z transition. This is done to
investigate the reactivity of such a transition because many useful products are obtained
from ethylene due to this reactivity.

First, I have used an ultraviolet (UV) pump that is tuned to excite this πz to π∗z transition
of interest. The dynamic evolution of the electronic levels of the molecule with or without
including the nuclear motion is then monitored in time by means of a delayed strong and
short extreme ultraviolet (XUV) probe laser. The probe ejects the molecule’s electrons
out to an evolving laser driven unbound continuum state. The outgoing electrons’ kinetic
energies and angular distributions are then calculated, during the application of the probe,
as a function of the time delay between the pump and the probe.

To model the kinetic energies and angular distributions, I divide our space into two
regions, an interacting and a noninteracting region which are connected by an absorbing
boundary region. In the interacting localised region, I solve the electron plus nuclear
equations using a real space grid basis. To model the electrons I use time-dependent
density functional theory (TDDFT) and for the nuclei I either freeze them within the Born-
Oppenheimer approximation (BOA) or I move them according to Ehrenfest dynamics
(ED). In the non interacting region, where the electrons are freely driven by the laser
field, I analytically propagate the outgoing electrons in momentum space using a plane
wave basis. Most of the terms in both regions can be analysed within the small absorbing
region simplifying the computational problem.

To evaluate these, we want the excitation by a pump followed by the ionisation by
a probe sequence, to be the dominant process that takes place. However, I find that this
pump plus probe sequential process is actually very weak. The dominant process is the
pump πz to π∗z excitation process followed by a second pump π∗z ionisation process which
depopulates the π∗z , leaving only a π∗z small occupation for the second probe ionisation
process which we are interested in. The induced occupation of the π∗z due to the pump
is not sufficient for changes in the nuclear positions to be resolved by the probe. In this
case the kinetic energies and angular distributions hardly change by including the nuclear
motion or not, and I find that the molecule hardly experiences any elongation or torsion.

To visualise the effects of nuclear motion, I have started from an initially pumped state
by fixing the occupation of the π∗z and I apply the same probe as when I use the pump too.
By doing so, we avoid the depopulation of the π∗z because we do not use a pump and
because its population is fixed.

In this case I see that the kinetic energies change in time due to the nuclear motion, as
the electronic peaks shift in position and separate into new contributions. I also find that
the molecule experiences a large elongation and torsion.

I have analysed these nuclear effects on the molecular orbitals of ethylene in terms of
the symmetry of the orbitals and the angular distributions.
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This work has shown that it is possible to visualise large elongational and torsional
effects of a double bonded rigid ethylene molecule. Therefore, it may even be possible to
study more interesting processes such as the dissociation of molecules.



CHAPTER 4

General conclusions and future work

The experimental analysis of spectroscopic properties is a complex task, especially
when one wants to understand the dynamic response of coupled electrons and nuclei to
a strong external electromagnetic source. Due to the recent advances in optics, we can
now follow the real time response of nuclei and electrons to very intense ultrashort lasers.
When a molecule or an atom is exposed to an intense ultrashort laser, many non-linear
effects can occur. This non-linear response becomes more complicated for molecules
because we also have to take into account the induced vibrational changes. Computer
simulations allow us to interpret with a reasonable degree of accuracy, many physical
processes that occur for molecular and atomic systems when they are exposed to a strong
external electromagnetic source.

Treating the coupled electron-nuclear many body problem quantum mechanically is
only feasible for small benchmark systems such as the H+

2 and H2 molecules. In order
to be able to theoretically interpret the experimental results for larger more complicated
systems, approximations are employed for both the nuclei and electrons. To treat the
nuclei I have used classical approximations such as the Born-Oppenheimer approximation
(BOA) and Ehrenfest dynamics (ED). To treat the electrons I have used time-dependent
density functional theory (TDDFT) because it is a simple and accurate method which can
describe time-dependent non-perturbative phenomena.

In this thesis, I have obtained the linear response photoabsorption spectra for a 1D
model of the H+

2 and H2 molecules. This problem can be solved quantum mechanically,
allowing us to test the accuracy of approximations which treat nuclei classically. I have
compared the linear response spectra that I obtain from a quantum and classical nuclear
approach for different molecular masses. These approximations are only accurate as long
as the mass M of the nuclei is large. I have found that quantum nuclear effects are impor-
tant to describe the linear response spectra, especially for the H+

2 molecule. These effects
are gradually less intense as the mass of the molecule increases. This is something that
one would expect because the classical and quantum approaches should be consistent for
large masses. However, the most interesting effect is that the quantum nuclear effects can
already be visualised in linear response. Using a simple two level system as a function
of the mass of the molecules, I have been able to quantitatively interpret the widths and
positions of the excitations peaks in the spectra. More work needs to be done to under-
stand the physical origin that is behind the success of the two level system. Moreover, I

113
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still need to understand why the nuclear effects are more important for the one electron
molecule than the two electron molecule.

The strong field photoionisation of neon and argon atoms exposed to free electron
lasers has been studied in this thesis using TDDFT. Lowest-order perturbation theory
(LOPT) has been successfully used to interpret experimental photoionisation results for
argon and neon in the perturbative regime. This perturbative method works very well as
long as the laser used is not too intense and too short. For intense ultrashort pulses we need
to have access to a non-perturbative approach such as TDDFT. However, it was thought
that TDDFT was unable to describe the strong field photoionisation of atoms because it
did not work for the helium “knee”. Surprisingly, comparing our TDDFT results to the
LOPT ones, I find that TDDFT can provide a very good description of the ionisation pro-
cesses for neon and argon atoms. As the performance of TDDFT strongly depends on the
locality and asymptotic behaviour of the exchange-correlation functional, I have tested the
asymptotic behaviour effect with different exchange-correlation functionals. Long range
potentials decay as a real atom whereas short range potentials decay too fast. Therefore,
as expected, I have found that the performance of TDDFT improves using long-range po-
tentials. The LOPT results are a bit better than the TDDFT ones, but we can still try to
improve the performance of TDDFT. A possible option which I have not analysed here is
to use functionals which can describe non-localities better than the ones employed here. I
have compared the TDDFT and LOPT ionisation yields in the perturbative regime where
LOPT can work. However, TDDFT turns out to be a non-perturbative method which can
provide very good photoionisation results and can be used to interpret more complicated
non-linear phenomena.

Finally, in this thesis I have also studied the strong pump probe ionisation of an ethy-
lene molecule. For an ethylene molecule we also have to include the vibrational degrees
of freedom which we do not have for the neon and argon atoms. Pump probe spectroscopy
is an appropriate technique here because it can resolve both the vibrational and electronic
degrees of freedom. The intense short probe that I have used triggers non-perturbative
effects which we can analyse with TDDFT. Ethylene contains single C-H bonds and a
double C=C bond. For these light atoms, nuclear changes should be large under strong
non-perturbative sources. Due to the relatively strong force constant for the C=C double
bond, distortions as well as elongations of this bond require a lot of energy. The intense
ultrashort probe I use is strong enough to induce a huge rotation and elongation of the
double bond of the ethylene molecule. We can only see the nuclear motion with the ED
scheme because with the BOA scheme the nuclear positions are fixed. Extracting infor-
mation from the orbitals obtained from the angular distributions and the time resolved
spectra I have been able to see how these nuclear changes affect the photoemission of the
molecule’s orbitals. As we do not have to deal with the orientation of the molecule com-
putationally, we can obtain the angular distributions for each orbital. It would be harder
to observe these nuclear effects experimentally due to two reasons. First, the orientation
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of the molecule cannot be fixed experimentally as can be done theoretically. Second, the
occupation of the non-stationary state due to the pump has to be sufficient for changes in
the nuclear positions to be resolved by the probe. This is also experimentally very hard to
control because this non-stationary state can get ionised or relax before we can even apply
the probe. Theoretically we can fix the orientation of the molecule and the occupation of
the non-stationary state to apply the probe. With our TDDFT approach it may even be
possible to observe the dissociation of molecules computationally, a process which may
be very hard to control experimentally.
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APPENDIX A

Static accuracy of the Born-Oppenheimer approximation for the H+
2

and H2 molecules

The accuracy of the static Born-Oppenheimer approximation (BOA) calculations can
be understood from a perturbation theory argument in terms of the small parameter κ =

(me
mI

)
1
4 [151, 186]. The ratio of vibrational to electronic energies, Evib to Eelec depends on

the electron-nuclear mass ratio me/Mp as [233]

Evib

Eelec
≈

√
me

M
≈
δ2

a2
0

, (A.1)

where δ is the length scale of vibrational motion, and a0 is the length scale of electronic
motion, i.e., the Bohr radius. This means the ratio of nuclear to electronic motion is of the
order δ/a0 ≈ (me/M)1/4. With this in mind, we may expand the Hamiltonian in Eq. 2.24
for the neutral H2 molecule as a function of the small parameter κ to third order as follows

Ĥ(Xeq + κζ, x, ξ) ≈ −
∂2

∂x2 −
1 + M

4M
∂2

∂ξ2 + V(Xeq, x, ξ)

+ κ
∂

∂X
V(X, x, ξ)

∣∣∣∣∣
X=Xeq

ζ

− κ2 ∂
2

∂ζ2 +
1
2!
κ2 ∂2

∂X2 V(X, x, ξ)

∣∣∣∣∣∣
X=Xeq

ζ2

+
1
3!
κ3 ∂3

∂X3 V(X, x, ξ)

∣∣∣∣∣∣
X=Xeq

ζ3 + O(κ4),

(A.2)

where we have used X = Xeq+κζ and the potential V contains the last six terms in Eq. 2.24.
Here µe and µep are given in Eqs. B.29 and B.39, respectively.

Sorting the Hamiltonian in different powers of κ, i.e.,

Ĥ(Xeq + κζ, x, ξ) ≈ Ĥ(0) + κĤ(1) + κ2Ĥ(2) + κ3Ĥ(3), (A.3)
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we obtain

Ĥ(0) = −
1

2µ̃e

∂2

∂x2 −
1

2µep

∂2

∂ξ2 + V(Xeq, x, ξ),

Ĥ(1) =
∂

∂X
V(X, x, ξ)

∣∣∣∣∣
X=Xeq

ζ,

Ĥ(2) = −
∂2

∂ζ2 +
1
2!

∂2

∂X2 V(X, x, ξ)

∣∣∣∣∣∣
X=Xeq

ζ2,

Ĥ(3) =
1
3!

∂3

∂X3 V(X, x, ξ)

∣∣∣∣∣∣
X=Xeq

ζ3.

(A.4)

Expanding the time-independent Schrödinger Eq. 2.9 in powers of κ to the third order,
we obtain

3∑
n=0

(κnĤ(n))[κnψ(n)] =

3∑
n=0

(κnε(n))[κnψ(n)]. (A.5)

Decomposing Eq. A.5 in terms of κ, we find

O(κ0) : Ĥ(0)|ψ(0)〉 = ε(0)|ψ(0)〉, (A.6)
O(κ1) : Ĥ(0)|ψ(1)〉 + Ĥ(1)|ψ(0)〉 = ε(0)|ψ(1)〉 + ε(1)|ψ(0)〉, (A.7)
O(κ2) : Ĥ(0)|ψ(2)〉 + Ĥ(1)|ψ(1)〉 + Ĥ(2)|ψ(0)〉

= ε(0)|ψ(2)〉 + ε(1)|ψ(1)〉 + ε(2)|ψ(0)〉, (A.8)
O(κ3) : Ĥ(0)|ψ(3)〉 + Ĥ(1)|ψ(2)〉 + Ĥ(2)|ψ(1)〉 + Ĥ(3)|ψ(0)〉

= ε(0)|ψ(3)〉 + ε(1)|ψ(2)〉 + ε(2)|ψ(1)〉 + ε(3)|ψ(0)〉. (A.9)

Ĥ(0) is the electronic frozen nuclear Hamiltonian at Xeq and ε(0) is the zeroth-order
eigenvalue which corresponds to the electronic motion. Therefore, we choose the zeroth-
order wavefunction as

ψ(0)(Xeq, ξ, ζ) = χ(ζ)ϕ(0)(Xeq, ξ), (A.10)
where ϕ(0) is the electronic eigenstate of Ĥ(0) and χ(ζ) is the nuclear wavefunction which
will be specified later.

Based on Eqs. A.7, A.10 and the Hellmann-Feynman theorem (see Appendix D), ε(1)

vanishes. This is because the first derivative with respect to the eigenvalue ε(0) at Xeq is
zero. More explicitly,

ε(1) = 〈ψ(0)|Ĥ(1)|ψ(0)〉

=

〈
ϕ(0)

∣∣∣∣∣∣ ∂∂X
Ĥ(0)(X)

∣∣∣∣∣
X=Xeq
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〉
〈χ |ζ | χ〉

=
∂

∂X
ε(0)(X)
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X=Xeq

〈χ|ζ |χ〉 = 0.

(A.11)
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From Eq. A.8 we obtain the second-order correction to the energy

ε(2) =〈ψ(0)|Ĥ(2)|ψ(0)〉 + 〈ψ(0)|Ĥ(1)|ψ(1)〉

=

〈
χ
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2!
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n

∣∣∣∣ ∂
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n − ε
(0)
0

〈χ|ζ2|χ〉,

(A.12)

where the first order correction to the wavefunction is obtained from Eqs. A.7 and A.10

|ψ(1)〉 = −
∑
n>0

〈
ψ(0)

n

∣∣∣∣Ĥ(1)
∣∣∣ψ(0)

0

〉∣∣∣∣ψ(0)
n

〉
ε(0)

n − ε
(0)
0

= −
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〈
ψ(0)

n
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|ψ(0)

n 〉

ε(0)
n − ε

(0)
0

ζ |χ〉.

(A.13)

Here ε(0)
n and |ψ(0)

n 〉 are the nth electronic eigenvalue and eigenstate of the Hamiltonian
Ĥ(0).

We now choose χ(ζ) (see Eq. A.10) to be the lowest eigenfunction of the harmonic
oscillator problem. We can then express ε(2) in the form

ε(2) =

〈
χ

∣∣∣∣∣∣− ∂2

∂ζ2

∣∣∣∣∣∣ χ
〉

+
1
2!
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χ
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∣∣∣ χ〉 =
1
2
ωI , (A.14)

where

k1 =

〈
ϕ(0)

∣∣∣∣∣∣∣ ∂2

∂X2 V(X, x, ξ)

∣∣∣∣∣∣
X=Xeq

∣∣∣∣∣∣∣ϕ(0)
〉

− 2
∑
n>0

∣∣∣∣∣〈ϕ(0)
n

∣∣∣∣ ∂
∂X V(X, x, ξ)

∣∣∣
X=Xeq

∣∣∣∣ϕ(0)
0

〉∣∣∣∣∣2
ε(0)

n − ε
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0

,

(A.15)

is the harmonic oscillator constant. Second order corrections to the energy thus corre-
spond to the nuclear vibrations.
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Finally, from Eqs. A.9, A.10 and A.13 we obtain for the third-order correction to the
energy

ε(3) =〈ψ(0)|Ĥ(1)|ψ(2)〉 + 〈ψ(0)|Ĥ(2)|ψ(1)〉 + 〈ψ(0)|Ĥ(3)|ψ(0)〉

=
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(A.16)

where the second-order correction to the wavefunction is from Eqs. A.8, and A.13

|ψ(2)
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ε(0)
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n 〉|ψ

(0)
0 〉.

(A.17)

All the terms from Eq. A.16 using Eqs. A.13 and A.17 vanish by parity. This is
because they are all proportional to 〈ψ(0)|Ĥ(3)|ψ(0)〉 which is zero by parity since Ĥ(3) is
odd in ζ and ψ(0) is even in ζ. For this reason ε(3) = 0.

Therefore the total energy in 1-D is given by

εBOA = ε(0) + ε(2)(κ2) + O(κ4), (A.18)
i.e., the BOA energy expression gives the correct total ground state energy of the full
electron-nuclear problem up to the fourth order in κ, as shown in Fig. 3.6.
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For the H+
2 homonuclear diatomic molecule we follow the same procedure as above

using Eq. 2.23, so that expanded in terms of κ gives the Hamiltonian

Ĥ(Xeq + κζ, ξ̃) ≈ −
1

2µe

∂2

∂ξ̃2
+ V(Xeq, ξ̃)

+ κ
∂

∂X
V(X, ξ̃)

∣∣∣∣∣
X=Xeq

ζ

− κ2 ∂
2

∂ζ2 +
1
2!
κ2 ∂2

∂X2 V(X, ξ̃)

∣∣∣∣∣∣
X=Xeq

ζ2

+
1
3!
κ3 ∂3

∂X3 V(X, ξ̃)

∣∣∣∣∣∣
X=Xeq

ζ3 + O(κ4),

(A.19)

where µe is given in Eq. B.16.
Again, after including zero-point energy corrections, the error in the BOA ground

state energy is O(κ4) ∼ me/M, as shown in Fig. 3.6.





APPENDIX B

Centre of mass transformation for the H+
2 and H2 molecules

B.1. The H+
2 molecule

1st step: Partial centre-of-mass transformation for the protons (x fixed)
We define the following partially transformed coordinates from the two coordinates

X1 and X2 and their time-derivatives

XCM(1) =
X1 + X2

2
⇒ VCM(1) =

V1 + V2

2
, (B.1)

X = X2 − X1 ⇒ V = V2 − V1, (B.2)
x̃ = x̃ ⇒ ṽ = ṽ, (B.3)

where XCM(1) is the centre of mass coordinate of the protons and X is the distance between
the protons. Here, the velocities in each case correspond to the time derivatives of the
corresponding positions.

In matrix form this partial transformation reads XCM(1)

X
x̃

 = A1

 X1

X2

x̃

 =


1
2

1
2 0

−1 1 0
0 0 1


 X1

X2

x̃

 . (B.4)

The inverse transformation is X1

X2

x̃

 = A−1
1

 XCM(1)

X
x̃

 =

 1 −1
2 0

1 1
2 0

0 0 1


 XCM(1)

X
x̃

 , (B.5)

so that A1A−1
1 = A−1

1 A1 = 1.
By substituting Eqs. B.5 in Eq. 2.21 we obtain

E =
1
2

2MV2
CM(1) +

1
2
µpV2 +

1
2

ṽ2 −
1√(

x̃ − XCM(1) + X
2

)2
+ ∆2

Ie

−
1√(

XCM(1) + X
2 − x̃

)2
+ ∆2

Ie

+
1√

X2 + ∆2
II

,

(B.6)
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where the reduced mass of the two protons is

µp =
M
2
. (B.7)

2nd step: Centre-of-mass transformation for the electron (X fixed)
We define the following transformed coordinates from the two previous coordinates

XCM(1) and x̃ and their time-derivatives

X̃CM(2) =
2MXCM(1) + x̃

2M + 1
⇒ ṼCM(2) =

2MVCM(1) + ṽ
2M + 1

, (B.8)

X = X ⇒ V = V, (B.9)
ξ̃ = x̃ − XCM(1) ⇒ Vξ̃ = ṽ − VCM(1), (B.10)

where X̃CM(2) is the global centre of mass coordinate and ξ̃ is the distance between XCM(1)

and the electron. The internal degrees of freedom coordinates are X and ξ̃. Here, the
velocities in each case correspond to the time derivatives of the corresponding positions.

In matrix form this transformation reads

 X̃CM(2)

X
ξ̃

 = A2

 XCM(1)

X
x̃

 =


2M

2M+1 0 1
2M+1

0 1 0
−1 0 1


 XCM(1)

X
x̃

 . (B.11)

The inverse transformation is XCM(1)

X
x̃

 = A−1
2

 X̃CM(2)

X
ξ̃

 =

 1 0 − 1
2M+1

0 1 0
1 0 2M

2M+1


 X̃CM(2)

X
ξ̃

 , (B.12)

so that A2A−2
2 = A−2

2 A2 = 1.
The final two-step transformation is given by

 X̃CM(2)

X
ξ̃

 = A2A1

 X1

X2

x̃


=


2M

2M+1 0 1
2M+1

0 1 0
−1 0 1




1
2

1
2 0

−1 1 0
0 0 1


 X1

X2

x̃


=


M

2M+1
M

2M+1
1

2M+1
−1 1 0
−1

2 −1
2 1


 X1

X2

x̃

 .
(B.13)

The two-step inverse transformation of Eq. B.13 is given by
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 X1

X2

x̃

 = A−1
1 A−1

2

 X̃CM(2)

X
ξ̃


=

 1 −1
2 0

1 1
2 0

0 0 1


 1 0 − 1

2M+1
0 1 0
1 0 2M

2M+1


 X̃CM(2)

X
ξ̃


=

 1 −1
2 − 1

2M+1
1 1

2 − 1
2M+1

1 0 2M
2M+1


 X̃CM(2)

X
ξ̃

 ,
(B.14)

so that A2A1A−1
1 A−2

2 = A−1
1 A−2

2 A2A1 = 1.
By substituting Eqs. B.12 in Eq. B.6 we finally obtain

E =
1
2

(2M + 1)Ṽ2
CM(2) +

1
2
µpV2 +

1
2
µ̃eV2

ξ̃

−
1√(

X
2 + ξ̃

)2
+ ∆2

Ie

−
1√(

X
2 − ξ̃

)2
+ ∆2

Ie

+
1√

X2 + ∆2
II

,
(B.15)

where the reduced mass of the two protons and the electron system is

µ̃e =
2M

2M + 1
. (B.16)

If we rewrite Eq. B.15 in terms of the classical momenta given by

PX̃CM(2)
= (2M + 1)ṼCM(2); PX = µpV; Pξ̃ = µ̃eVξ̃, (B.17)

we obtain the following energy

E =
1
2

P2
X̃CM(2)

2M + 1
+

1
2

P2
X

µp
+

1
2

P2
ξ̃

µ̃e

−
1√(

X
2 + ξ̃

)2
+ ∆2

Ie

−
1√(

X
2 − ξ̃

)2
+ ∆2

Ie

+
1√

X2 + ∆2
II

.
(B.18)

The quantum momentum operators in 1-D are canonically defined as

P̂X̃CM(2)
= −i

∂

∂X̃CM(2)
, P̂X = −i

∂

∂X
, P̂ξ̃ = −i

∂

∂ξ̃
, (B.19)
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which are then substituted in Eq. B.18 instead of the correspondent classical momenta to
obtain the following Hamiltonian

Ĥ = −
1

2(2M + 1)
∂2

∂X̃2
CM(2)

−
1

2µp

∂2

∂X2 −
1

2µ̃e

∂2

∂ξ̃2

−
1√(

X
2 + ξ̃

)2
+ ∆2

Ie

−
1√(

X
2 − ξ̃

)2
+ ∆2

Ie

+
1√

X2 + ∆2
II

= −
1

4M + 2
∂2

∂X̃2
CM(2)

+ Ĥint(X, ξ̃),

(B.20)

where Ĥint(X, ξ̃) is the internal Hamiltonian, which depends only on the internal coordi-
nates X and ξ̃

Ĥint(X, ξ̃) = −
1

2µp

∂2

∂X2 −
1

2µ̃e

∂2

∂ξ̃2

−
1√(

X
2 + ξ̃

)2
+ ∆2

Ie

−
1√(

X
2 − ξ̃

)2
+ ∆2

Ie

+
1√

X2 + ∆2
II

.
(B.21)

B.2. The H2 molecule

1st step: Partial centre-of-mass transformation for the protons and the electrons
We define the following partially transformed coordinates from the four coordinates

X1, x1, x2, X2 and their time-derivatives

XCM(1) =
X1 + X2

2
⇒ VCM(1) =

V1 + V2

2
, (B.22)

xCM(1) =
x1 + x2

2
⇒ vCM(1) =

v1 + v2

2
, (B.23)

X = X2 − X1 ⇒ V = V2 − V1, (B.24)
x = x2 − x1 ⇒ v = v2 − v1, (B.25)

where XCM(1) is the centre of mass coordinate of the protons, xCM(1) is the centre of mass
coordinate of the electrons, X is the distance between the protons and x is the distance
between the electrons. Here, the velocities in each case correspond to the time derivatives
of the corresponding positions.

In matrix form this partial transformation reads
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
XCM(1)

X
x

xCM(1)

 = B1


X1

X2

x1

x2

 =


1
2

1
2 0 0

−1 1 0 0
0 0 −1 1
0 0 1

2
1
2




X1

X2

x1

x2

 . (B.26)

The inverse transformation is
X1

X2

x1

x2

 = B−1
1


XCM(1)

X
x

xCM(1)

 =


1 −1

2 0 0
1 1

2 0 0
0 0 −1

2 1
0 0 1

2 1




XCM(1)

X
x

xCM(1)

 , (B.27)

so that B1B−1
1 = B−1

1 B1 = 1.
By substituting Eqs. B.27 into Eq. 2.22 one obtains

E =
1
2

2MV2
CM(1) +

1
2
µpV2 +

1
2

2v2
CM(1) +

1
2
µev2

−
1√(

xCM(1) −
x
2 − XCM(1) + X

2

)2
+ ∆2

Ie

−
1√(

XCM(1) + X
2 − xCM(1) −

x
2

)2
+ ∆2

Ie

−
1√(

xCM(1) + x
2 − XCM(1) + X

2

)2
+ ∆2

Ie

−
1√(

XCM(1) + X
2 − xCM(1) + x

2

)2
+ ∆2

Ie

+
1√

X2 + ∆2
II

+
1√

x2 + ∆2
ee

,

(B.28)

where µp was defined in Eq. B.7 and the reduced mass of the two electrons is

µe =
1
2
. (B.29)

2nd step: Global centre-of-mass transformation for the molecule (X and x fixed)
We define the following transformed coordinates from the four previous coordinates

XCM(1), xCM(1), X, x and their time-derivatives
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XCM(2) =
2MXCM(1) + 2xCM(1)

2M + 2
⇒ VCM(2) =

2MVCM(1) + 2vCM(1)

2M + 2
, (B.30)

X = X ⇒ V = V, (B.31)
x = x ⇒ v = v, (B.32)

ξ = xCM(1) − XCM(1) ⇒ Vξ = vCM(1) − VCM(1), (B.33)

where XCM(2) is the global centre of mass coordinate and ξ is the distance between xCM(1)

and XCM(1). The internal degrees of freedom coordinates are X, x and ξ. Here, the veloci-
ties in each case correspond to the time derivatives of the corresponding positions.

In matrix form this transformation reads


XCM(2)

X
x
ξ

 = B2


XCM(1)

X
x

xCM(1)


=


2M

2M+2 0 0 2
2M+2

0 1 0 0
0 0 1 0
−1 0 0 1




XCM(1)

X
x

xCM(1)

 .
(B.34)

The inverse transformation is


XCM(1)

X
x

xCM(1)

 = B−1
2


XCM(2)

X
x
ξ


=


1 0 0 − 1

M+1
0 1 0 0
0 0 1 0
1 0 0 M

M+1




XCM(2)

X
x
ξ

 ,
(B.35)

so that B2B−2
2 = B−2

2 B2 = 1.
The final two-step transformation is given by
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
XCM(2)

X
x
ξ

 = B2B1


X1

X2

x1

x2


=


2M

2M+2 0 0 2
2M+2

0 1 0 0
0 0 1 0
−1 0 0 1




1
2

1
2 0 0

−1 1 0 0
0 0 −1 1
0 0 1

2
1
2




X1

X2

x1

x2


=


M

2M+2
M

2M+2
1

2M+2
1

2M+2
−1 1 0 0
0 0 −1 1
−1

2 −1
2

1
2

1
2




X1

X2

x1

x2

 .

(B.36)

The final two-step inversion of Eq. B.36 is given by


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(B.37)

so that B2B1B−1
1 B−2

2 = B−1
1 B−2

2 B2B1 = 1.
By substituting Eqs. B.35 into Eq. B.28 we obtain
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E =
1
2

(2M + 2)V2
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1
2
µpV2 +

1
2
µepV2

ξ +
1
2
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ee
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(B.38)

where the reduced mass of the two electron two proton system is

µep =
2M

1 + M
. (B.39)

If we rewrite Eq. B.38 in terms of the classical momenta given by

PXCM(2) = (2M + 2)VCM(2); PX = µpV; Pξ = µepVξ; Px = µev, (B.40)
we obtain the following energy
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ee
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(B.41)

The quantum momentum operators in 1-D are canonically defined as

P̂XCM(2) = −i
∂

∂XCM(2)
, P̂X = −i

∂

∂X
, P̂x = −i

∂

∂x
, P̂ξ = −i

∂

∂ξ
, (B.42)

which are then substituted in Eq. B.41 instead of the correspondent classical momenta to
obtain the following Hamiltonian
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(B.43)

where Ĥint(X, x, ξ) is the internal Hamiltonian, which depends only on the internal coor-
dinates X, x and ξ

Ĥint(X, x, ξ) = −
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.

(B.44)





APPENDIX C

Modelling the Ehrenfest dynamics Hamiltonians for the H+
2 and H2

molecules

Here I describe how I model the Ehrenfest dynamics (ED) Hamiltonians. These
Hamiltonians differ from the Born-Oppenheimer approximation (BOA) Hamiltonians by
a factor of two. This difference with respect to the BOA is due to the different kicking ef-
fect that we apply. As the linear response absorption spectra does not depend on uniform
translations of the nuclei and electrons, this effect can be disregarded.

For the H+
2 molecule we use the following form

Ĥ(x) = −
∂2

∂x̃2 −
1√

x̃2 + ∆2
Ie

, (C.1)

where the nuclear coordinates are defined as X2 = X0
2 and X1 = −X0

2 along the x̃ direction.
Here, X0 = X2−X1 and ∆Ie will change as shown in Fig. 2.1. The nuclear repulsion term is
obtained from the interaction between the coordinates X1 and X2, where the charge of the
interaction ZiZ j from Eq. 2.20 is set to one and the ∆II will change as shown in Sec. 2.1.
By doing this, we end up with the following Hamiltonian

Ĥ(X0, x̃) = −
∂2

∂X1
2 −

∂2

∂X2
2 −

∂2

∂x̃2 −
1√(
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x̃ − X0
2
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+ ∆2

Ie

+
1√(
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2 + X0

2

)2
+ ∆2

II

,

(C.2)

where we have reduced X0 by a factor of two with respect to the BOA, by comparison to
Eq. 2.21.

For the H2 molecule we solve the following Hamiltonian

Ĥ(x1, x2) = −
∂2

∂x1
2 −

∂2

∂x2
2 −

1√
x2

1 + ∆2
Ie

−
1√

x2
2 + ∆2

Ie

+
1
2

1√
(x2 − x1)2 + ∆2

ee

, (C.3)
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where the coordinates are defined as X0
2 and X0

2 along both the x1 and x2 directions and
where ∆Ie will change as shown in Fig. 2.1. The charge of the nuclear interaction ZiZ j

from Eq. 2.20 is set to
√

2 and the ∆II will change as shown in Fig. 2.1.
By doing this, we end up with the following Hamiltonian
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II
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(C.4)

where we have reduced X0 by a factor of two with respect to the BOA, by comparison to
Eq. 2.22.



APPENDIX D

The Hellmann-Feynman theorem

Consider a 1D Hamiltonian Ĥ(X) which depends on some parameter X and let |ψ〉 be
an eigenstate of that Hamiltonian:

Ĥ(X)|ψ〉 = ε|ψ〉 (D.1)
The Hellmann-Feynman theorem then relates the derivative of an eigenvalue of the

Hamiltonian Ĥ(X) with respect to X, to the expectation value of the derivative of the
eigenstate of the Hamiltonian Ĥ(X) with respect to that same parameter. This can be seen
as follows:

∂

∂X
ε =

∂

∂X
〈ψ|Ĥ(X)|ψ〉

= 〈
∂

∂X
ψ|Ĥ(X)|ψ〉 + 〈ψ|Ĥ(X)|

∂

∂X
ψ〉 + 〈ψ|

∂

∂X
Ĥ(X)|ψ〉

= ε〈
∂

∂X
ψ|ψ〉 + ε〈ψ|

∂

∂X
ψ〉 + 〈ψ|

∂

∂X
Ĥ(X)|ψ〉

= ε
∂

∂X
〈ψ|ψ〉 + 〈ψ|

∂

∂X
Ĥ(X)|ψ〉

= 〈ψ|
∂

∂X
Ĥ(X)|ψ〉 =

∂

∂X
ε

(D.2)

where we have used:

〈ψ|ψ〉 = 1⇒
∂

∂X
〈ψ|ψ〉 = 0. (D.3)
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