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The Forbidden Quantum Adder
U. Alvarez-Rodriguez1, M. Sanz1, L. Lamata1 & E. Solano1,2

Quantum information provides fundamentally different computational resources than classical 
information. We prove that there is no unitary protocol able to add unknown quantum states 
belonging to different Hilbert spaces. This is an inherent restriction of quantum physics that is related 
to the impossibility of copying an arbitrary quantum state, i.e., the no-cloning theorem. Moreover, 
we demonstrate that a quantum adder, in absence of an ancillary system, is also forbidden for a 
known orthonormal basis. This allows us to propose an approximate quantum adder that could be 
implemented in the lab. Finally, we discuss the distinct character of the forbidden quantum adder for 
quantum states and the allowed quantum adder for density matrices.

Addition plays a central role in mathematics and physics, while adders are ubiquitous devices in the fields 
of computation1 and electronics2. In this sense, usual sum operations can be realized by classical Turing 
machines3 and also, with a suitable algorithm, by quantum Turing machines4,5. Furthermore, the sum 
of known state vectors in the same Hilbert space, i.e. quantum superposition, is at the core of quantum 
physics. In fact, entanglement and the promised exponential speed-up of quantum computing are based 
on such linear combinations. Here, we consider the existence of a quantum adder, defined as a unitary 
operation mapping two unknown quantum states encoded in different quantum systems onto their sum 
codified in a single system. The surprising answer is that this quantum adder is forbidden and it has 
the quantum cloner as a special case6. This no-go result, as other prohibited operations6–9, is of funda-
mental nature and its implications should be further studied. Furthermore, we consider a high-fidelity 
approximate quantum adder involving ancillary systems. Recently, we have known about a parallel work 
analyzing a similar problem, in which an optimal approximate quantum adder was found10.

Let Ψ , Ψ ∈ d
1 2  be two quantum states of a finite-dimensional Hilbert space. The conjectured 

quantum adder, sketched in Fig.  1, would be a mathematical operation defined as the unitary 
⊗ → ⊗   U : d d d d, for every pair of unknown Ψ ⊗ Ψ1 2  and ancillary vector χ ∈ d,

χΨ Ψ ∝ ( Ψ + Ψ ) , ( )U 11 2 1 2

where the ancillary state χ| 〉 may depend on the input states. There are several ways of proving the 
unphysicality of Eq. (1). The simplest one is to note that the unobservable global phase on its l.h.s. could 
be distributed in infinite forms on its r.h.s.,  χΨ Ψ = Ψ Ψ ∝ ( Ψ + Ψ )φ φ φ φ φUe Ue e e ei i i i i

1 2 1 2 1 21 2 1 2 , 
with φ =  φ1 +  φ2, yielding an observable relative phase. When the ancillary state χ  does not depend on 
the input quantum states, the (forbidden) quantum cloner becomes a particular case of this restricted 
quantum adder. This follows from applying U to two equal state vectors χΨ Ψ = ΨU , since the 
inverse would generate a quantum cloning operation. Therefore, although the general case of the quan-
tum adder is not equivalent to a quantum cloner, it is still forbidden.

We consider now a different question, whether a quantum adder may exist for a given orthonormal 
basis. In this case, as we will see, the global phase does not produce any ambiguity in the equations. Let 
us consider the action of the unitary operator U  onto a set of orthonormal vectors: 

= , = ( + )U B U i i B0 0 0 0 0 i0
1
2

 and = ( + ) U i i B0 0 i
1
2

, with 
= , …, −i d1 1. Hence, as U is a unitary matrix, it imposes some orthogonality conditions on the final 

vectors, 〈 〉 = 〈 | 〉 = 〈 | 〉 = B B B B B B 0i j j0 0 i  and δ〈 | 〉 = 〈 | 〉 = ,
 B B B Bi j i j i j  , with , = , …, −i j d1 1. The 
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Figure 1.  Scheme of the conjectured quantum adder. The inputs are two unknown quantum states, Ψ1  
and Ψ2 , while the outputs are proportional to the sum, Ψ + Ψ1 2  with an ancillary state χ .

second subspace has dimension d, but these constraints require the existence of at least 2d −  1 orthonor-
mal vectors, which is impossible.

We propose now the use of an ancillary system A , which will assure the physicality and experimen-
tal feasibility of an approximate quantum adder for arbitrary unknown quantum states, see Fig. 2. This 
particular adder, Ua, computes the exact sum of the basis elements in qubit systems. Moreover, Ua is 
extended by linearity to the whole Hilbert space, and implements an approximate sum when the input 
states are superpositions of the basis elements. The adder is given by the following expression in which 
Bi  are orthonormal and + = ( + )0 11

2
.

= , = + ,

= + , = . ( )
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Although this approximate quantum adder shows high fidelities, it is not optimal as the one recently 
found in Ref. 10.

Beyond the sum of quantum states in Eq. (1), we may also consider the statistical addition of density matrices. 
Here, the input states are the tensor product of any pair of density matrices σ ρ ρ= ⊗ ∈ ( ⊗ ) d d

1 2
2 2 , 

while the output state is the statistical sum ρ ρ ρ= ( + )1
2 1 2 . The Kraus operators of the quantum chan-

nel realizing this adder are given by = ( ⊗ )E i1i d
1
2

 and = ( ⊗ )F j 1j d
1
2

, with 1 ≤  i, j ≤  d. These 
operators straightforwardly perform the sum, i.e.,  σ σ σ ρ ρ( ) = ∑ + ∑ = ( + )= =

† †E E F Fk
d

k k k
d

k k1 1
1
2 1 2 . 

Figure 2.  Fidelity of the proposed approximate quantum adder. The fidelity is depicted as a function of 
the parameters of the input states θ θΨ 〉 = + φecos 0 sin 1j j j

i j , where j =  1,2. Here, a) φ1 =  φ2 =  0, b) 
φ1 =  φ2 =  π/4, c) φ1 =  φ2 =  π/2, and d) θ1 =  θ2 =  π/4. Note that the diagonal line of each plot corresponds to 
the approximate quantum cloner that is related to our restricted quantum adder. In this case, the fidelities 
are the lowest.
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Moreover, properly modified Kraus operators allow us to extend the previous result to any convex com-
bination of input states. Therefore, the considered addition of density operators is always possible.

Let us compare the adders for state vectors and density operators. By writing the input states in Eq. (1) 
as density matrices, ρ = Ψ Ψ ⊗ Ψ Ψ1 1 2 2 , both adders yield



ρ

ρ

∝ Ψ Ψ + Ψ Ψ + Ψ Ψ + Ψ Ψ ,

( ) = ( Ψ Ψ + Ψ Ψ ). ( )

†U U
1
2 3

1 1 1 2 2 1 2 2

1 1 2 2

By comparing the adders in Eq. (3), we can infer that the one in Eq. (1) would require the knowledge 
of the sum coherences, which were supposed unknown. 

The nonexistence of a quantum adder is of fundamental character in quantum physics, comparable 
and deeply related to the no-cloning theorem.
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