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Abstract

In this thesis we apply time-dependent density functional theory (TDDFT) to
study nonadiabatic phenomena in the interaction of charged particles, atoms,
and molecules with spherical metallic clusters. These phenomena include the
screening processes of projectiles in matter as well as the energy loss processes
in a broad range of projectile velocities. In this thesis we focus on two related
topics.

The first part, described in Chapter 4, is devoted to the study of the coupled
dynamic screening of a localized hole and a photoelectron emitted from a metal
cluster or from an adsorbate on the surface of the cluster using a semi-classical
model. The motion of the photoelectron is represented classically, while the
electronic density dynamics in the cluster is calculated with TDDFT. We calculate
the energy loss of the photoemitted electron moving away from the cluster with
different velocities. As a result we see that the dynamic screening of the hole by
the cluster electrons affects the motion of the photoemitted electron, namely it

gives rise to a significant reduction of the energy lost by the photoelectron.

In the second part we present the study of energy loss processes in the in-
teraction of antiprotons and protons, as well as hydrogen dimers, with spherical
clusters. In Chapter 5 we investigate how the stopping power for the projectile
as a function of velocity can change depending on initial conditions such as the
initial state of the cluster (ground or excited state) and the presence of another
particle in close proximity to the moving projectile (so-called vicinage effect).
First, we calculate the energy loss for an antiproton colliding with a small Al
cluster, both when the cluster is initially in the ground state and in an excited
electronic state created by a previous collision. We show that the antiproton loses
less energy when penetrating a cluster previously excited. We show as well that
the projectile creates a plasmon in the cluster and that the energy of the plasmon

peak shifts to higher values in the collision with an excited cluster. This shift is
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mostly related to the small, positive charge-state in which the cluster is left after
the first collision.

In addition, we study the vicinage effect in the energy loss of two antipro-
tons moving at different distances from each other through the metal cluster.
We stress the importance of the plasmon excitation in the cluster, which influ-
ences the motion of the trailing antiproton. The vicinage effect is studied for a
hydrogen dimer as well. We calculate the stopping power ratio for a large num-
ber of projectile velocities and orientations of the dimer axis with respect to the
translational velocity. The results of our calculations are in good agreement with
recent experimental information from the group of Prof. P. L. Grande in Federal
University of Rio Grande do Sul, with whom we have established a collaboration
to study this phenomenon.

Chapter 6 is devoted to the study of dissipative effects in the particle-cluster
interaction from a different perspective. We calculate the friction force experi-
enced by an antiproton approaching the surface of a metal cluster. Our aim is to
establish whether or not it is possible to define a friction coefficient meaningfully.
We find that this is indeed the case in the low velocity limit. We show that
the friction coefficient does not strongly depend on the projectile velocity, but
strongly depends on the distance between the particle and the cluster surface, as
well as more weakly on the direction of motion of the projectile (whether it enters

or moves away from the cluster).
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Chapter 1
Introduction

The understanding of phenomena taking place when charged particles penetrate
solid media is of immense importance for fundamental research as well as for
applied physics. The slowing down of charged particles in matter is a key phe-
nomenon in many experimental techniques. Electronic structure and properties of
solids, surfaces and nanostructures are experimentally studied by different spec-
troscopic techniques. In such experiments the material to study is usually probed
by incident particles such as electrons (electron energy loss spectroscopy, EELS),
photons (photoemission spectroscopy, PES), or ions (ion scattering, IS). Projec-
tiles penetrating the solid or the surface create electronic excitations in the target
material. The quantitative description of the dynamics of the probe particles at
surfaces and in solids, as well as of the electron dynamics in the excited target,
is essential for the correct interpretation of the results of these experiments.

This thesis is devoted to the study of electron dynamics during the interaction
of charged and neutral particles with spherical metallic clusters. We focus on
nonadiabatic effects, i.e., the effects associated with the dissipation of energy,
which means here the transfer of kinetic energy of a moving projectile to electron
excitations in the target (metal cluster) or vice versa. In general, we study the
dissipative processes that accompany such physical phenomena as the screening
and stopping of electrons during photoemission, the screening and stopping of
ions and molecules traversing metal clusters and the electronic friction at metallic
surfaces. The investigation of such processes allows us to get information about
the properties of both the target and the projectile.

The complexity of electronic dynamic processes in solids is a challenge for

theoretical methods. In this thesis we study the interaction of metallic clusters
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with moving particles using an efficient methodology based on Time-Dependent
Density Functional Theory (TDDFT), an ab initio quantum-mechanical method
that allows us to study the dynamical processes taking place during the inter-
action of probe particles with matter over a large range of velocities of the pro-
jectiles. More precisely, we use for the implementation of TDDFT the real-time
Wave Packet Propagation (WPP) method, an efficient tool for the treatment
of the dynamical processes in time domain. The particular WPP code we use in
this work was developed by Dr. Andrey Borissov [1, 2] and has been successfully
applied to study the dynamic screening of charges in finite-size systems |3, 4| and
to the calculation of the energy transfer between particles and small gas-phase
clusters [5, 6]. In this work we focus on further investigation of more complex

processes using the WPP methodology.

1.1 Metal clusters

Figure 1.1: Metal clusters [7].

The choice of metals as target materials is motivated, among other reasons,
by their catalytic and plasmonic properties. Nano-sized (1 nm = 10~ m) metal
clusters (Fig. 1.1) deserve special attention being the main objects of the modern
nanocatalysis and nanoplasmonics research fields.

The importance of catalysis in industry is difficult to overestimate. A catalyst
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is a substance that accelerates the rate of a chemical reaction, but is unchanged
itself by the reaction. Nanocatalysis is a new field in which the nanomaterials are
used as catalysts. Nanoparticles have advantages in comparison with ordinary
catalysts, because of their high activity at low temperature and stability. The
high activity of nanoparticles is due to their large surface-to-volume ratio, since
catalytic reactions take place at the surface. By modifying the size and the shape

of the nanoparticles it is possible to control their efficiency as catalysts [8].

Another subfield of nanoscience in which metal nanoparticles are of great in-
terest is nanoplasmonics. Nanoplasmonics deals with the optical properties of
metal nanoparticles, or, in other words, the control of light at the nanoscale. A
remarkable property of metallic nanoparticles is the confinement of light at the
nanoscale due to the existence of modes called surface plasmons. Surface plas-
mons are collective electronic excitations at the surface of small metal particles,
which enhance the absorption and emission of light at their resonance frequency.
Furthermore, they have the ability to localize and enhance light in the proximity
of the surface of nanostructures (localizing the electromagnetic field down to the
nanometer scale). There are plenty of possible applications of plasmonic nanopar-
ticles such as nanoantennas|9, 10|, photovoltaics|[11, 12|, photocatalysts[13, 14|,

optical elements, integrated chips, and sensors|15, 16].

The large amount of possible applications of metal clusters has stimulated
many theoretical studies of the electronic properties of these objects. The interest
in the study of clusters grew significantly after it became possible to produce
clusters of various compositions by the laser vaporization technique [17]|. It is
not only their practical relevance that makes nanoclusters interesting objects to
study, but also the fact that they provide a bridge between molecules and solids.
By changing the size of a cluster it is possible to change its properties, which helps
to understand some of the key concepts in materials physics, chemistry, biology,
and medicine. Thus, clusters not only represent a bridge between phases, but

also between disciplines [18].

Physics of metal clusters in its modern sense emerged relatively recently — in
the 1980’s, when it was discovered that atoms of some alkali and noble metals
can form systems with an important feature unknown before. The pioneering
experiments by W. D. Knight et al. [19] showed that metal clusters have an
electronic shell structure. The mass spectra of sodium clusters, obtained by W.

D. Knight, is shown in the upper panel of Fig. 1.2. Peaks corresponding to a
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Figure 1.2: Upper panel: mass spectrum of sodium clusters; lower panel: change
in electronic energy difference calculated with Jellium model [19].

number of atoms per cluster equal to N = 8, 20, 40, 58, and 92 are appreciably
large. Points at which these peaks occur have been termed magic numbers. Magic

numbers indicate especially stable clusters.

Practically at the same time the existence of electronic shells in metal clusters
was independently predicted by W. Ekardt [20] using the jellium model (JM).

After this important discovery, the electronic shell structure was observed in



1.2 Photoemission )

various alkali and noble metal clusters. The features of the mass spectra are well
reproduced by the JM calculations (lower panel of Fig. 1.2), in which the ions are
replaced by a uniform positive charge. In clusters with the number of electrons
corresponding to magic numbers, the shells are completely filled with electrons,
i.e., these clusters have a closed-shell structure, which is more stable. In all the
studies presented in this thesis metal clusters are represented in the framework of
the spherical jellium model (SJM). A great number of papers have shown that a
self-consistent jellium model is able to reproduce qualitatively, and in some cases
also quantitatively, many properties of metal clusters observed experimentally
[20-22].

In this thesis we focus on two general topics: photoemission and energy loss.
The type of processes studied and the methodology used are similar in both cases.
Although we study only finite size systems as targets, some of our conclusions are
expected to remain valid in extended systems such as metal surfaces or solids.

The introduction to both topics follows.

1.2 Photoemission

The first topic, described in Chapter 4 of the present thesis, is related to pho-
toemission. Photoemission, or the photoelectric effect (Fig. 1.3), is the emission
of electrons from a target following the absorption of photons. It was discov-
ered more than 100 years ago by H. Hertz. Later, in 1905, Albert Einstein ex-
plained this effect as a quantum phenomenon. Nowadays, photoemission-based
techniques (photoemission spectroscopy (PS), angle-resolved photoemission spec-
troscopy (ARPES)) are among the most important techniques used to study the
structure of molecules, surfaces and solids [23|. In this technique an analyzer
(Fig. 1.3) is used to measure the kinetic energy of the photoemitted electrons.
The photoemission spectrum, as a result of such experiment, depicts the valence
or the core-level binding energies of electrons in the sample, depending on the
energy of incoming photons (UV or X-ray) [24]. This allows to analyze the com-
position of the target material, the electronic properties, and the chemical state
of the material.

In photoemission studies nanoclusters are interesting objects for two reasons:

first, because if clusters are sufficiently large, they reproduce bulk properties of
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Figure 1.3: Photoemission spectroscopy.

the metal; and second, due to the fact that nanoclusters are better photoemitters
than solids. Studies of photoemission from small metal particles from the early
1980’s [25] have shown that the yield of photoelectrons per unit incident photon
is significantly enhanced if the size of the emitter is less than ten nanometers.

The particular problem of the dynamic screening during photoemission, con-
sidered in this thesis, is a subject of interest since the 1970’s [26, 27| and is still
studied nowadays [28], in particular for jellium clusters [29]. At the beginning of
the photoemission process, when the core-hole is created, the screening plays an
important role in the electron dynamics of the system. How this screening dy-
namics affects the movement of the photoemitted electron is a question we pose
in our work.

In recent years, progress in laser technology has made it possible the develop-
ment of photoemission spectroscopy in the attosecond range (1 as = 107'% s) [30].
Attosecond techniques permit access to the time scale of the electronic motion in
atoms, molecules, and solids. Due to this experimental advance, there is a grow-
ing interest in the theoretical description of the dynamical electronic processes
taking place in the subfemtosecond time scale [31-34].

In Chapter 4 we study the dynamic screening and the energy loss of an elec-
tron photoemitted from a metal cluster as well as the screening of a localized
hole left behind. We also study the case of photoemission from an adsorbate on
the surface of a metal cluster. In this case, besides the screening and energy loss

processes, we analyze the charge transfer from the metal substrate to the adsor-
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bate. We consider the case where one of the atoms in the metallic cluster (or the
adsorbed atom) undergoes core-electron photoemission. We study the combined
dynamic screening of the static localized core-hole and of the photoemitted elec-
tron. We investigate how the presence of the hole affects the many-body electronic

dynamics in the cluster and the emission dynamics of the photoelectron.

1.3 Energy loss processes

The second topic, described in Chapter 5 and Chapter 6 of this thesis, is re-
lated to the energy loss processes and the dissipative effects in the interaction
of antiprotons and protons, as well as their dimers, with metal clusters of dif-
ferent sizes. A charged particle moving across a metallic target is able to create
electronic excitations in the medium at the expense of its own kinetic energy.
Research on this phenomenon has been broad in condensed matter physics and
materials science because of its relevance in various fundamental and applied
topics, such as radiation damage, medical physics, and ion sputtering.

A key point in the theoretical analysis of the slowing down of charged particles
in metals is the intensity of the perturbation that the moving particle introduces
in the medium. For a particle of charge () moving with a velocity v in a standard
metal, the perturbation strength can be roughly characterized by the Sommer-
feld parameter n = Q/v [35]. If such ratio is small, n << 1, linear theory can
be applied and accurate results for the particle energy loss are usually found.
If n >> 1, the charged particle represents a strong perturbation to the target
metal. In such cases one needs to go beyond a perturbative approach in the
description of the particle energy loss. Various non-perturbative methodologies
have been developed over the years to calculate the energy loss in the limit of low
velocities. One of the most successful is the use of scattering theory for target
electrons at the Fermi energy, in combination with the self-consistent calculation
of the screened scattering potential using static Density Functional Theory (DFT)
[36, 37|. In between these two cases, in the regime of intermediate velocities, ac-
curate descriptions of the energy loss process are much more involved because
quasistatic or perturbative approximations break down even for unit-charge pro-
jectiles. Only recently calculations based on time-dependent density functional
theory (TDDFT) [5, 6, 38-44] have shown its potential to close this gap.
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Chapter 5 is devoted to the study of the energy loss of antiprotons and protons
traversing different metallic clusters. In Section 5.1 we present the study of the
energy loss of antiprotons colliding with small aluminum clusters in ground and
excited states. We investigate how the energy loss of the projectile is affected by
the initial electronic state of the target. The experimental investigation of the
excitation and ionization of neutral metal clusters by collision with positively or
negatively charged particles has been intensive. In particular, the ionization of
metal clusters by low energy singly and multiply charged ions and protons [45,
46| and the ionization of neutral metal clusters by slow electrons [47-50| have
been studied. Description of such processes from the theoretical point of view is

incomplete and requires further investigation.

In Section 5.2 we explore how the energy loss of an antiproton is changed
by the presence of another antiproton in close proximity to the first one. The
difference between the energy loss of a single particle interacting with a solid
and the energy loss of two particles, traveling in close proximity to each other,
is called the vicinage effect. The vicinage effect was experimentally quantified
for the first time by Brandt et al [51] and has been extensively studied since
then both experimentally and theoretically (see [52| and references therein for
earlier works and [53-60| for recent works). In this thesis we present the first
TDDFT study of the vicinage effect in the interaction of two charges moving
through metallic media. The large spherical Na and Al clusters are considered as
targets and the massive negative particles are chosen as projectiles. We provide
a systematic study of the vicinage effect in the energy loss of two antiprotons in

metals for a wide range of distances between the incident particles.

In Section 5.3 we present a study of the vicinage effect in the interaction of a
hydrogen dimer, Hy, with spherical nanoclusters of high densities, corresponding
to the effective densities of Al, Ti and Si oxides. In this case we investigate the
vicinage effect as a function of the projectile kinetic energy and compare our

results with experimental findings [61].

Chapter 6 is devoted to the study of the dissipative effects in the interaction
of antiprotons with metallic surfaces. Namely, we calculate the dissipative part of
the force acting on the projectile approaching the surface of the metal cluster due
to the creation of electronic excitations (electron-hole pairs). For low projectile
velocities (below the Fermi velocity of the target electrons) the dissipative force is

just the friction force, which is usually considered to depend linearly on velocity
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for extended metallic systems. Thus, we can define the friction coefficient. The
knowledge of the friction coefficient is important, for instance, in surface science,
where there is dissipation of energy during adsorption or dissociation of atoms
and molecules at metal surfaces. A recent proposal in surface science was the
calculation of the friction coefficient thought the so-called Local Density Friction
Approzimation (LDFA) [62, 63]. In LDFA the friction coefficient for a projectile
moving in an inhomogeneous system is obtained as the friction coefficient in a
homogeneous electron gas with the density equal to the density at a given point
of the projectile trajectory. Thus, the LDFA friction coefficient depends locally
on the electronic density and does not depend on the details of the projectile
trajectory. In this thesis we calculate the friction coefficient for an inhomoge-
neous system, such as the surface of metallic cluster, using a more sophisticated
methodology (TDDFT). We compare our results with the standard LDFA results.
We do not limit our study to low velocities and test the validity of the friction

coefficient concept for high projectile velocities as well.






Chapter 2

Fundamentals of DFT and TDDFT

2.1 Many-body problem

To describe matter at the nanoscale we need to use quantum mechanics. The
fundamental equation of non-relativistic quantum mechanics is the Schrdodinger
equation. The full time-independent Schrodinger equation for the many-body
system is:

HU,(R,r) = £V, (R, 1), (2.1)

where &, are the energy eigenvalues and ¥, (R, r) are the corresponding eigen-
states, or the wave functions of the many-electron and many-nuclei system. The

wave function describes the quantum state of a system.

The general Hamiltonian H has the following form [64]:
P N P P
- 1, 1, 1 7,2,
H==D Vi~ 23V t522 [’ &,
1 1 " Z
I
+QZZ|I'Z—I']| Z ];{[—I'Z'|7

I=1 =1 |

(2.2)

where R = {R;,I = 1,..., P} is a set of P nuclear coordinates and r = {r;,i =
1,...,N} is a set of N electronic coordinates. M; and Z; are the nuclear masses
and charges, respectively. Atomic units are used throughout the thesis, with
h =e = m, = 1, where A is the reduced Planck constant, m, is the electron mass

and e is the electron charge, unless otherwise stated.

11
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The equation (2.1) depends on 3(P + N) spatial coordinates and analytically
exact solutions are possible only for very simple systems, like the hydrogen atom
or the Hy ion. Exact numerical solutions are problematic, since this equation
is not separable because of the two-body character of the Coulomb interaction
potential. Therefore, exact numerical solutions can be found only for systems
with a small number of electrons. However, in practice, for real physical problems,
such as the interaction of matter with light or atoms and molecules, one needs a

quantitative description of systems with a large number of particles.

The first simplification of the complex Schrodinger equation (2.1) and (2.2)
is the so-called adiabatic approximation. The idea behind this approximation is
based on the fact that the nucleus of an atom is at least 1836 times heavier than
the electron. Therefore, under typical conditions, the velocity of the electron is
much larger than that of the nucleus and we can consider the nucleus as fixed.
The electrons can be considered as instantaneously following the motion of the
nuclei, while remaining always in the same stationary state. Since the time scales
of the electronic and nuclear motions are at least three orders of magnitude dif-
ferent, the total wave function ¥ can be separated into the electronic and nuclear
components:

\Ptotal(Ra I') = qDelectronic(Ra I') X @nuclear(R)~ (23)

Therefore, in the adiabatic approximation, the Schrodinger equation for the elec-

tronic wave functions is:

~

he®y(R,r) = E,(R)PL(R, 1), (2.4)
with the electronic Hamiltonian
ile = f( + ‘A/:ae + Vnea (25>

which consists of three operators: the electronic kinetic energy operator K =

—Z§V2 the potential energy operator of the electron-electron interaction

N
~ 1 1
Vee = = E ——— and the potential energy operator of the electron-nuclear
27;" |r; — 1y
L
A P N 7 ) A
interaction V,, = — E E T The potential V. = Vi is considered as

IRy — 1]
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an external perturbation to the electrons. In the equation (2.4) nuclear coordi-
nates R enter as parameters. The electronic wave functions ®,(R, r) are solutions
of the electronic Schrodinger equation, corresponding to a particular nuclear con-
figuration. The total energy of the system E includes the electronic energy &,

and the nucleus-nucleus repulsion energy

L P
Vo, = 52; R]—RJ| = const, (2.6)

so that
E=E + V.. (2.7)

The last term in (2.7) can be added after solving the electronic Schrédinger
equation for &. In (2.7) the quantum corrections due to the dependence of
electronic wave functions on nuclear coordinates are neglected, as suggested by
Max Born and J. Robert Oppenheimer (1927). Thus the nuclei are treated as
classical particles [64].

The adiabatic approximation is only valid for problems where the Hamiltonian
evolves slowly in time and the electrons always remain in a given, well-defined
state (usually the ground state). It thus ignores the possibility of non-radiative
transitions between different energy levels due to the nuclear motion. In order
to apply safely the adiabatic approximation, the non-diagonal terms that couple
different electronic levels of the system should be small as compared to the ener-
gies of the electronic excitations. This condition is not fulfilled in systems with
degenerate levels, partially occupied levels at the Fermi energy, or with very small
band gaps, e.g., in metals. Thus, the adiabatic approximation should be applied
with care in such cases. Perturbations that change with time sufficiently rapidly,
such as fast ions traversing matter, can lead to strong electronic excitations in
the target and, therefore, these processes require to go beyond the adiabatic ap-
proximation. We usually talk of nonadiabatic processes or dynamics to refer to
such situations.

The separation of the electronic and nuclear motion significantly simplifies the
many-body problem. However, one still has to deal with the electronic wave func-
tion ®(ry,r9,r3,...,ry), a function of 3N coordinates, with N being the number

of interacting electrons in the system.
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2.2 Hartree-Fock and Thomas-Fermi-Dirac

methods

The first attempt to solve the many-electron problem was made by D. R.
Hartree in 1928. Hartree proposed to write the many-electron wave function
simply as a product of the single-electron wave functions (also called electronic

orbitals) of the non-interacting electrons [64]:

= H@ui(ri). (2.8)

Each electron of the system in this approximation is assumed to move in an
average field created by the rest of the electrons. This is the basics of the so
called self-consistent field approach. Each electronic orbital v;(r;) satisfies the

one-electron Schrodinger equation
(K + Vet + Vib) 9i(r) = € ti(r) (2.9)

in which the Hamiltonian besides the kinetic energy operator K and the potential
energy operator due to the nuclei Vit also includes the so-called Hartree potential,
Vﬁ, due to the average field of the other electrons in the system. The Hartree

potential can be obtained from the solution of Poisson’s equation [65]:

N

V() =4m Y ()P, (2.10)

J=Ly#i

and thus is given by the following expression:

|15 (v
Z/dr |r—r’| (2.11)

J#

The Hartree approximation significantly simplifies the many-electron problem.

However, it is inaccurate since in this approach the electrons are treated as dis-

tinguishable particles and any exchange and correlation effects are disregarded.
Considerable improvement to the Hartree approach was made by V. A. Fock

in 1930, who required the many-electron wave function to be composed of prop-
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erly anti-symmetrized products of one-electron orbitals. This gave rise to the
appearance of an additional exchange term in Hartree equation (2.9). The so-
called Hartree-Fock approximation gives more accurate energies, comparing to
the Hartree method. However, the lack of correlation effects can still lead to
significant deviations from the experimental results.

At the same time as Hartree and Fock developed their methods, another two
scientists, L. Thomas (1927) and E. Fermi (1928), independently proposed a
different approach based on the calculation of the total energy of the electronic
system only in terms of the electronic density n(r). In the Thomas-Fermi method,
the kinetic energy of the system of electrons is approximated as a functional of the
density of non-interacting electrons in a homogeneous gas with the density equal
to the local density at a given point. The method of Thomas and Fermi did not
include exchange and correlation effects among the electrons. This was corrected
by P. Dirac in 1930, who formulated for the first time the local approximation for
the exchange. The Thomas-Fermi-Dirac (TFD) energy functional for the system

of electrons in an external potential Ve (r) is expressed as [66]:

Exeoln] = 1537)} [ @ ()% 4 [ &1 Vi) nio)

3 /
—§ § /dgr n(r)(4/3) + /d3r d>r' —n(r) n(r)
4 \ 7 lr — /|

The first term in (2.12) is the kinetic energy in the local approximation, the third

(2.12)

term is the local exchange energy and the last term is the Hartree energy. The
total ground state energy can be found by minimizing the functional Erpp[n].
The TFD method is much simpler than the full many-body Schrédinger equa-
tion and it is an important precursor to Density Functional Theory (DFT).
However, it is inaccurate because it is based on a too poor approximation for the
kinetic energy as well as for the exchange energy. Moreover, it can not properly

describe the shell structure of atoms and the bonding of molecules [66].

2.3 Density Functional Theory

The problems of the Hartree and Thomas-Fermi approaches were solved when
P. Hohenberg and W. Kohn formulated and proved in 1964 the theorem which is
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the basis of the modern DFT.

The Hohenberg-Kohn theorem [67] is split in two parts.

Theorem 1: The ground state electronic density n(r) of a system of interact-
ing electrons in an external potential Ve (r) uniquely determines this potential,
to within an additive constant.

Since the density determines the number of electrons N and the external po-
tential Vo (r), it also determines the ground state wave functions and all the
electronic properties of the many-body system through the Schrédinger equa-
tion. The external potential V. (r) and therefore the total energy are unique

functionals of the electronic density n(r):
EM@H_/nmnﬂﬂﬂ+FM@L (2.13)

where F[n(r)] is an unknown, but nevertheless universal, functional of the elec-
tronic density only.
Theorem 2: the ground state energy can be obtained variationally: the den-

sity that minimizes the total enerqy is the exact ground state density.

(2.14)
:ﬂm+%m+@MH/mm%®m

Since the universal functional E[n| and the ground state density are unknown,
equation (2.14) can not be solved. However, in 1965 W. Kohn and L. J. Sham
developed a theoretical approach [68], simplifying the problem. They proposed
to replace a many-body problem of interacting electrons by a problem of non-
interacting electrons moving in an effective potential Vg ([n], r), like it was earlier
proposed by Hartree. The difference from the Hartree method is that the KS ef-
fective potential includes the exchange and correlation potential. As the electrons
are non-interacting, we can separate the corresponding Schrodinger equation into
a system of single-electron equations. These equations are called Kohn-Sham

(KS) equations and have the following form:
1
{—§V2 + Vg ([n], r)} UES (1) = epi5(r), (2.15)

where ¢; are the eigenvalues of the KS equations and 1*° are the one-electron
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KS wave functions.

Solving iteratively the self-consistent KS equations (2.15), we can obtain the
exact electronic density of the system of interacting electrons (provided Vg is

known exactly):
N
()= [P (2.16)
i=1

The density is normalized to the total number of electrons in the system, so that
/n(r)d3r =N. (2.17)

The effective potential in the KS equations (2.15) is composed by three po-
tentials:
‘/eff([nL I‘) = ‘/ext(r) + VH([”]? I‘) + ‘/XC([n]J I'), (218>

where Vi (r) is the external potential in which the electrons move, Vi ([n],r) is
the so-called exchange-correlation potential, in which all the many-body effects
are included, and Vi ([n],r) is the Hartree (or Coulomb) potential, created by the

electronic density:

Vaa([n]. 1) = / ' ) (2.19)

v —r'|’

The exchange-correlation potential and the corresponding exchange-correlation
energy are the only unknown functionals in KS approach. By definition, the
exchange-correlation potential is the functional derivative of the exchange-correlation

energy Ey. with respect to the density n(r):

0B

Vielr) on(r)

. (2.20)

The exchange-correlation potential includes the modification of the interac-
tion between electrons in a system due to Pauli exclusion principle (exchange), as
well as corrections due to Coulomb interactions. If the functional Ey.[n] would be
known exactly, the KS equations would give the exact ground state energy of the
many-body system. The search for an accurate F,.[n| is the main challenge in
DFT. There are different approximations for this functional, but in this thesis we
use the local-density approximation (LDA). LDA was first formulated by Kohn
and Sham in 1965 [68|. This approximation is accurate for systems where the

charge density is slowly varying, like the free-electron-like metal clusters consid-
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ered in this work. In LDA the density functional of exchange-correlation energy

is defined as

ELPA[] — / n(r)exe[n]dr, (2.21)

where e,.[n] indicates the exchange-correlation energy per particle of a uniform
electron gas of density n. The corresponding exchange-correlation potential be-
comes
) ELDA [n]
VEDA(py = =x V0 — ¢ (n(r)) + n(r
ION(e) = T = escln(e) ()

and the KS equations then read

dexe(n)
on

(2.22)

n(r’)

v —r'|

1
{—EVQ + Vexe () + / dr’ + VXI;DA(I')} YRS (1) = ;055 (x). (2.23)
Solving these equations we can obtain the density (2.16) and the total ground
state energy of the system given by (2.14) with the KS kinetic energy

Kln] = @ 3 5V = e = [ Vil (e, (220)

The KS kinetic energy K[n] is the kinetic energy of the system of non-interacting
electrons and is different from the K of the system of interacting electrons. This
difference should be taken into account and is also included in the exchange-
correlation energy F...

Although the LDA is the simplest approximation, it is sufficiently accurate in
many situations and is widely used. It works reasonably well in large clusters of

simple metals, such as the ones used in this thesis.
2.4 Time-Dependent Density Functional Theory

TDDEFT extends the basic ideas of the ground-state DFT to the treatment of
excitations or more general time-dependent phenomena. TDDFT is based on the
Runge-Gross (RG) theorem [69], the time-dependent analogue of the Hohenberg-
Kohn theorem.

RG Theorem: for a given wnitial wave function, there is a one-to-one cor-
respondence between the time-dependent external potential of a system and its

time-dependent density.
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In the time-dependent case the one-electron KS equations are

(e, 1) = Hs 1 (r, ), (2.25)
A 1
Hyg = —§V2 + Ve ([n], x, 1), (2.25b)

where Hys is the time-dependent KS Hamiltonian. At time t = 0, the wave
functions ¥XS(r;t = 0) = ¢¥XS(r) are the ground state wave functions. The
effective potential consists of three components, in a way similar to the ground

state DF'T, but in this case all the potentials are time-dependent:
‘/eff([nL r, t) = vext(ra t) + VH([”]? r, t) + K(C([”L r, t), (2'26)

where Viy(r, t) is the external potential, Vii([n],r,t) is the Hartree potential

n(r’,t)
r —r/|

VH([n]vr7t) :/dr, (227)

and Vi.([n],r,t) is the exchange-correlation potential, which is again unknown
exactly and, as it was mentioned in the previous section, approximations are

needed.

We can obtain the charge density of the interacting system from the time-
dependent KS (TDKS) orbitals:

n(rt) = > S o) (2.28)

To solve TDKS equations various numerical algorithms are used. One of them
is the WPP method. We can find the TDKS orbitals ¢/X5(r, t) by propagating the
initial wave functions ¥5(r, ¢y) in time until some final time ¢;. We can rewrite
the TDKS equations (2.25) in the integral form:

VIS (e,ty) = Uty to) i (x, o), (2.29)

where U is the time-evolution operator, a unitary operator, defined as

Ut',t) = Texp

—i /t/ dTHKs(T)] : (2.30)
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Here 7 is the time-ordering propagator. The exponential in (2.30) is very complex
and can not be applied directly. Instead, different numerical schemes have been
proposed. The total time interval is normally split into smaller intervals of length
At in order to reduce the error in propagation. There are a few approximations
to the time-evolution operator such as, for example, the modified Crank-Nicolson
scheme, the split-operator method [70], etc. The detailed description of the prop-
agation method is done in Chapter 3, Section 3.2.

By analogy with the static DF'T we use a time-dependent version of LDA in
order to calculate the exchange-correlation potential. In TDDFT it is the so-
called adiabatic local-density approximation (ALDA). Adiabatic means that the
potential is local not only in space but also in time. The density at time ¢ is

inserted into a static functional, i.e.,

d
Ve P () = VS n(r, )] = el (n)]ln=nie), (2.31)
where £IFC is the exchange-correlation energy of the static homogeneous elec-

tron gas (HEG) of density n(r,t) [71]. It thus does not include any memory-
dependence.

Although it is a simple approximation, the ALDA is the most used approxi-
mation in TDDFT calculations and has been proved to work reasonably well in

many cases.



Chapter 3

Numerical implementation of DFT
and TDDFT

3.1 DFT and Spherical Jellium model for ground

state calculations

3.1.1 Spherical Jellium model

We represent metal clusters in the framework of the Spherical Jellium Model
(SIM) [20, 72-74]. The SJM is a quantum mechanical model in which the ionic
structure is completely disregarded. The attractive ionic potential is replaced by
a uniform background of positive charge. The SJM can be used to determine
the properties of metal clusters with up to several thousands of atoms. Despite
the simplicity of this model, it has been successfully applied for the description
of the electronic properties of metal clusters and surfaces with weakly bound
valence electrons, such as alkali metals. The SJM is a reasonable approximation

for electronically closed-shell clusters.

Thus, in the SJM a metal cluster is modelled by a uniform positively charged
sphere filled with an electron gas. Electrons move inside the sphere in a featureless
external potential, that represents the nuclei and the core electrons. The density

of the positive background is defined as
naL(I') = nO(rs)@(Rcl - 7’), (31)

21
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where R, is the radius of the cluster, ©(z) is the step-function and ng(rs) is the
constant bulk electronic density, which is a function of only one parameter, the
Wigner-Seitz radius (rs) [75]:

—— %rf. (3.2)
By definition rg is the average radius of a sphere containing one electron in the
bulk. This parameter is characteristic for each metal. The number of valence

electrons in a neutral cluster is

N = (ﬁ)g. (3.3)

Ts

The potential created by the positive background is the integral of the positive

density ng:

Vi = - [, (3.4)

v — |

Taking into account equations (3.1) and (3.2), the potential (3.4) has the following

1N 2
—— <3 — T—2) , r < Rg
Vi =4 2R\ R (3.5)

ext
) r Z Rcl
r

form:

With this external potential and using DFT and the KS scheme we calculate the

ground state of spherical metallic clusters.

3.1.2 Kohn-Sham scheme

In order to obtain the ground state density of a jellium cluster, we solve
the KS equations iteratively. Due to the central symmetry of the problem we
use spherical coordinates (r = 7,6, ¢) in the ground state calculations. The KS
orbitals WXS(r) are represented in a radial grid of equidistant points and are

expanded in the spherical harmonics basis set [20]:

1
Uin(1) = ~0F (1) Yim(0, 9), (3.6)

where n, [ and m are the principal, angular and magnetic quantum numbers,
respectively. The grid representation of the wave functions makes the results

more intuitive and simplifies their analysis. The radial part of the wave function
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is multiplied by 1/r in order to simplify the wave equation. Since the spherical

KS

harmonic functions are known, in order to find the function W;y

(r) we need to

solve only radial KS equations for the electronic orbitals X (r):

AP LD Ly )] ) = B S0, 6)
Ver([n], 1) = Vi (r) + Vi (r) + Vie(r). (3.8)

Here (I + 1) comes from the angular part of the Laplace operator in spherical
coordinates, which is nothing but the square of the angular momentum operator
L?. The exchange-correlation potential Vi.(r) is calculated within the LDA ap-
proximation using either the Perdew-Zunger parametrization of Ceperley-Alder

exchange and correlation potential |76] or Gunnarson-Lundqvist functional [77].

The parameters of the radial grid are the length R, the step Ar and the
number of points N, in the grid.

KS equations (3.7) are solved self-consistently by the diagonalization of the
Hamiltonian matrix. At the first iteration there is an initial guess for the effective

potential:

ef(rchlfl)

1+ e—(r—Ra-1)’

Verr(r) =U (3.9)

where R, is the radius of the cluster and U is a parameter, which defines the
depth of the potential. After each iteration, when the energy eigenvalues E,,; and
wave functions are calculated, the density is obtained as a sum of the squares of
the wave functions:

nr=2 3 ZEussee (3.10)

(n,l)€occ

where 2 stands for the spin degeneracy and (2] + 1) is for the m degeneracy of
the electronic energy levels due to the spherical symmetry of the problem. The
sum in (3.10) is over the occupied electronic orbitals, for which the eigenvalues
are lower than the Fermi level of the system, E,; < Ep. After calculating the

electronic density the effective potential is updated:
(Vest [12] Jnew = V(V;;tt + Vi + Vie) + (1 = 7) (Veg[n])oa- (3.11)

In order to obtain convergence, a mizing parameter 7y is used in the calculation

of the potential. The mixing parameter is a coefficient weighting old and new
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potentials at each iteration step. We usually employ values of v in the range from
0.001 to 0.1. The convergence of the self-consistent calculation is determined by
looking at the last occupied eigenvalue (work function). When the calculation
is converged the old and new work functions are the same within the predefined

accuracy, which in our calculations is equal to 1077,
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Figure 3.1: Upper part of figures shows the charge density of Na clusters (rs = 4)
in units of the background density as a function of radial coordinate. The area
limited with dashed lines corresponds to the density of the positive background.
Lower part of figures shows the effective potential and the occupied energy levels.
a) N =20, b) N =58, ¢) N =106, d) N = 556, where N is the number of
electrons in the cluster.

After the calculation is converged, the ground state density of the cluster and
the effective potential are obtained. Results for the ground state of small metal
clusters have been thoroughly discussed in the literature [19, 20, 22|. In Fig. 3.1
we show the ground state electronic density and the total potential for Na clusters
with 20, 58, 106 and 556 electrons.
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As it is seen from Fig. 3.1, the electronic energy levels of small clusters are well
separated and look similar to atomic energy levels. For this reason, such small
clusters are frequently referred to as "artificial atoms". As the size of the cluster
increases, the energy difference between the levels decreases. In the Nagsg cluster,
the energy levels show almost a continuum of states (once the finite lifetime and
associated broadening are taken into account), which is very similar to the bulk
metal. Thus, the jellium clusters can serve as a good model for studying both
quantum size effects as well as the bulk metallic properties.

The ground state KS wave functions of the system, obtained with DFT, are
used as a starting point for the TDDFT calculations, described in detail in the

next section.

3.2 Wave packet propagation method

In order to study the interaction of a cluster with a moving projectile we use
the WPP method. The WPP method is a powerful tool to evaluate the dynamics
of one-electron wave packets in the time-dependent external potential of a moving
projectile.

We solve the system of time-dependent KS equations

(e, 1) = HistS(e, 1), (3.12)
with the KS Hamiltonian
N 1 9
Hys = —EV + Veg([n], r, t). (3.13)
The effective potential is
Via([n), v, 1) = ViR (0) + Va(fnl v, 6) + Vil 1. 8) + Vo(r,t)  (3.14)

and in this case, besides the Hartree Vi ([n], r,t), the exchange-correlation Vi.([n], r, t)

potentials and the potential of the positive background V.I, (r) of the cluster, also

ext
includes the external potential of the projectile Vp(r,t). The exchange-correlation
potential Vi ([n],r,t) is calculated in the standard ALDA with either the Perdew-

Zunger parametrization of Ceperley-Alder exchange and correlation potential [76]
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or Gunnarson-Lundqvist functional [77].

Initial conditions are given by the KS orbitals of the cluster in the ground state
PES(r,to). As it was mentioned in Section 2.4, we can propagate the ground state
wave functions in time by using the time-evolution operator. The propagation
from time ¢y to final time ¢¢ is done by dividing the total time interval in short

time intervals At:
VRS (et + At) = 55(r, t) exp[—iHgs At]. (3.15)

Depending on the particular problem, we use in our calculations a time step At
in the range [0.01 - 0.1] a.u.

The time-dependent KS electronic orbitals 9X5(r, ) are represented in a two-
dimensional grid (p, z) in cylindrical coordinates r = (p, z, ). Cylindrical coor-
dinates are well adapted to the axial symmetry of the problems considered in
this thesis. Due to the symmetry, the angular ¢—dependence of the electronic
orbitals is trivial for each value of the projection of the angular momentum along

the symmetry axis. Thus, the KS orbitals follow the expression:

eimid

or

\Iji(pa Zat> = 15;{8(%2775) (316>

where m; is a magnetic quantum number. The projectile is moving along the
z—axis and crosses the cluster through the center. Thus the projectile-cluster
system is invariant under rotation around the z—axis and the projection of the
electron angular momentum on the z-axis m is a good quantum number. The
+m electronic states are degenerate and we only have to calculate states with
m = 0.

We can improve the efficiency of the time propagation by expanding more
accurately the wave packet in the region where this is more necessary, i.e., close
to the center of the cluster. The p coordinate is redefined by a change of variables
introduced in order to densify the grid close to the origin of coordinates. We use
a new variable x, defined from p = f(x), where f(z) = x — b/\/aarctan(xz//a),
where a and b are new parameters, which in our case are equal to 400 and 392
respectively. According to this change of variables, the wave functions are also
modified:

Vi@, 2,t) = o5 (2, 2, 1)[f (@) ()], (3.17)
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where f'(z) = df /dx.

The time-evolution operator in our case is

~

S = exp [—iﬁKS(t)At] = exp [—i(f(KS + f/eﬁ)At] . (3.18)

The real-time propagation is done using the split-operator method, separating
the kinetic and the potential energy terms. The split-operator method was first
introduced by Feit in 1982 |78, 79]. This is one of the most popular methods for
time propagation of wave packets and explicitly preserves unitarity. In the split-
operator method, the exponential (3.18) is factorized in terms of exponentials
containing either the kinetic energy operator, or the potential. Notice that this is
an approximation, since these two operators do not commute, i.e., [KKS, ‘703] +
0. In our case, we use the following factorization to approximate the evolution

operator:

. At ~ ~ At -
S =exp {—17%5} exp [—iAtKKS} exp {—17%3} ) (3.19)

The half-step symmetric product of the potential factor allows us to eliminate
the error proportional to the commutator [KKS, ‘/)veﬁ‘] [80]. This method allows
us to efficiently evaluate each split component in (3.19) in the space in which it
is diagonal, i.e., the kinetic energy operator IA(KS in momentum space and the

potential operator Veff in real space.
The kinetic energy operator in cylindrical coordinates is defined as

. 19> 10 0 m?
Ryg= -0 22,9 /M 3.20
K 2022 2p 8,0'08p * 2p%’ (3.20)

) 102 1 1 afa 1 2
- / TR+ Ky (my),  (3.21)

K. &,

We further separate the action of the kinetic energy operator on the wave func-
tions along z and p axes and thus the final form of the time-evolution operator
is the following:

S =exp [—i%l};g} exp [—iAth] exp [—iAth(mi)] exp {—i%ffeg} (3.22)
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The time-propagation of W;(z, z,t) is done using (3.22):
Uy(x, 2, t + At) = S Uy(x, 2, 1). (3.23)

The potential energy operator is local in coordinate space and therefore it is

applied by the direct product exp [—i%%ﬂ} U,(z, z,t) at each grid point.

The action of the kinetic energy operator along the z—axis can be also cal-
culated locally transforming the wave functions to momentum space. The K, is
applied using the Dynamic Fourier method [81]. The kinetic energy opera-
tor K. in momentum space is just K (k;) = k2/2. Using Fast Fourier Transform
(FFT) we transform W¥,;(z,z,t) to momentum space and multiply directly by
K(k;) at each k; point. Then the wave functions are transformed back to real

space by inverse FFT.

The action of the kinetic energy operator along the p—axis is calculated in real
space. The exponential with the kinetic energy operator K,(m;) is approximated

by means of the Cayley transform [82]:

At

) 1— 1—Kp(mi)
o IAtK(mi) _ Azt +O(AP). (3.24)

This transform is unitary and second order accurate. Thus we obtain
At At
(1 - i7Kp(mi)) Uz, z,t + At) = (1 + i7Kp(mi)) U,(x,z,t).  (3.25)

The second derivative with respect to x in K, (Eq.(3.21)) is approximated using
finite differences [80, 82|

0 ov; . D(xi 1/2)(\111 1— qu) - D(xi—1/2>(\1[i - ‘I’z‘—l)
%D(a:) ox : : (Ax)? ’
S

where D(z) = F02) d v, 77

obtain a system of three-diagonal linear equations connecting V;(x, z,t+ At) and

(3.26)

U,. Substituting (3.26) into (3.25) we

U,(z, z,t) at each grid point.

Using Eq.(3.23) we evaluate the KS states in time. The time-dependent elec-

tronic density n(r,t) is then calculated at every time step as a sum over occupied
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electronic states:

n(z,z,t) =5 Y _ |W(x, 2, 1)]%, (3.27)

1€occ

where s; stands for the spin and m degeneracy (s; = 2 for m = 0 and s; = 4

otherwise).

The scheme of the time propagation of the electronic orbitals is thus the

following;:

1.

Read the ground state wave functions of the unperturbed cluster 1/X5(r, #,)

and the corresponding magnetic quantum numbers m; from the input file.

. Transform the ground state wave functions from spherical to cylindrical

coordinates and change the variables on p, i.e., obtain W,(x, z, to).

Calculate the ground state electronic density, Eq.(3.27) and the effective
potential, Eq.(3.14).

Multiply the wave functions by the exponent of the half-step potential en-
ergy operator, exp [—i%f/eﬁ‘] U,(z, z,t).

. Transform the wave functions to momentum space by FF'T and multiply by

k2/2.

. Transform the wave functions back to real space and multiply by the expo-

nent of the Kp(mi) using Cayley transform, Eq.(3.25), i.e., solve the system

of three-diagonal equations.

Again multiply the wave functions by the exponent of the half-step potential
energy operator, exp [—i%f/eg] U, (z, z,1).

. From the wave functions calculate the electronic density at this time step,

n(r,t) (Eq.(3.27)).

. Recalculate the effective potential from the new density and go back to step

4. The steps 4-9 are repeated every time step of the propagation until the

final time ¢; is reached.

During propagation, we calculate all interesting quantities, such as the total

energy of the system, the dipole moment, or the force acting on the projectile.






Chapter 4

Dynamic screening of a localized
hole and the emitted electron
during photoemission from metal

clusters

In this chapter we focus on the study of the dynamic screening and the energy loss
of an electron photoemitted from a metal cluster and from an atom adsorbed on
the surface of a metal cluster. The problem addressed here has a long history in
condensed matter physics. The dynamic relaxation of the Fermi sea after creation
of a hole was analyzed in the context of X-ray photoemission by several authors
[26, 83|. Within the framework of linear response theory, Noguera et al. showed
that the effective interaction between the core-hole and the photoemitted electron
changes continuously from a statically screened potential for low-energy electrons
to a completely unscreened potential for high-energy electrons [26]. They also
showed that the double screening of hole and electron can occur with or without
creation of plasmons according to the kinetic energy of the emitted electron. In
this work we go beyond linear theory in the description of the dynamic screening
of charges in the photoemission process by using propagation of electronic wave
packets with TDDF'T to compute the response of the valence electrons. The main
aim of this chapter is to show that the dynamic screening of the core hole can
lead to the reduction of the energy loss of the photoemitted electron moving away
from the hole.
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4.1 Dynamic screening of a localized hole during

photoemission from a metal cluster

We use a semi-classical model for the description of the photoemission process.
The motion of the photoemitted electron is described classically. This approxima-
tion is justified, provided that typical energies of the photons are relatively high,
and give rise to high kinetic energies of the photoemitted electrons. In parallel,
valence electron dynamics in the cluster is investigated by means of TDDFT.

In our model, we do not consider explicitly the interaction of the metal cluster
with the external electromagnetic field. Thus, an electron with high kinetic energy
and a static hole are created at ¢ = 0 at the center of the spherical cluster. The

scheme of the process is shown in Fig. 4.1. The photoemitted electron (el) is

e

Figure 4.1: Sketch of the photoemission process. An electron and a hole are
created at the center of the spherical cluster at ¢ = 0. Both are represented by
classical point particles and the electron starts to move along the z-axis with
velocity vy.

modeled as a negative point charge that moves along the z-axis [pg = 0, za(t)].
It is worth noting that this photoemitted electron is not one of the cluster valence
electrons, but an extra electron coming from the inner shell of a hypothetical
atom sited in the center of the cluster. The electron motion is calculated in two

different approximations as described in detail below. The hole (h) is represented
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by a positive point charge at a fixed position [p, = 0, z, = 0]. The potential

created by these charges and acting on the electrons of the cluster is:

AV (p,z,t) = Val(p, z,t) + Vu(p, 2, 1), (4.1)

where .
‘/el(p’ Z, t) = [(Zel<t> — 2)2 T p2]1/2@(t), (42)

and .
Va(p, z,t) = —m@(t) (4.3)

The potential AV (p, z,t) replaces the external potential of the projectile Vp(r, t)
in the system of TDKS equations (3.12)—(3.14). Using the algorithm described
in the Section 3.2 we propagate in time the cluster KS wave functions under the
perturbation of the static hole and the moving electron. At every time step of
the propagation we calculate the time-dependent electronic density (3.27), from
which we can calculate the cluster induced force acting on the photoemitted

electron along the z—axis:

cls _ n(p>zat) _na_(pa Z) .
FS5(t) = 27r/pdpdz oa — 2 & 272 (zel — 2), (4.4)

which also includes the effect of the positive background density (ngd).

To address the effect of the many-body dynamics in the cluster on the energy
loss experienced by the ejected electron under well-defined conditions, we first
study a simplified case in which the photoemitted electron is assumed to move
with constant velocity v, i.e., zq(t) = vt. This allows us to isolate the effects
related to the dynamics of the screening processes from other possible effects
associated with the details of the trajectory. Here, v corresponds to the final
velocity of the electron if the photoemission process would take place in vacuum,
which is considered as a good approximation for the average electron velocity
during its movement through the cluster. Thus, the direct interaction between
the electron and the hole is not taken into account in this case. However, as we
will see below, the screening of the hole still has an important influence on the
energy loss by the photoemitted electron. In this case the energy loss is calculated

from the integral:
Floss = —v / F5(t)dt. (4.5)
0
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It is important to note that F), includes the energy necessary to eject the
electron from the cluster (an adiabatic contribution), as well as non-adiabatic
contributions due to the creation of electronic excitations in the cluster during
the emission process.

In a second step, we perform a more refined treatment in which the direct
electron-hole interaction is included and the trajectory z.(t) is calculated using

the classical equations of motion:
dzg/dt =v(t), za(t=0)=0 (4.6)
dv/dt = F'(t), ot =0)= . (4.7)
In Eq. (4.7), FI°* is the total force felt by the moving electron:

Zel(t)
[Zel(t)2 + O42]3/2 ’

FI'(t) = F25(t) — (4.8)
The first term on the right side of Eq.(4.8) corresponds to the interaction with
the cluster given by Eq.(4.4). The second term stands for the force due to the
interaction between the photoemitted electron and the core hole left behind.
The electron-hole interaction in our study is given by the regularized Coulomb

potential V_y:
1

Vza(t)? + a?’

We use the cutoff parameter o = 0.5 to avoid divergence at time t = 0.

Velen = — (4.9)

The second approximation might be closer to the real photoemission process.
In this case we also find an important influence of the hole-screening dynamics
on the force experienced by the emitted electron and, thus, on the energy loss

during the photoemission process.

4.1.1 Constant velocity approximation

In the constant velocity approximation, we calculate the cluster induced force
in two different cases, namely with a localized hole at the center of the cluster
(potentials in Eqgs. (4.2) and (4.3) are included in the calculations) and without
the hole (only the potential in Eq. (4.2) is included). In the first case, the direct
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Figure 4.2: Cluster induced force, F®, acting on the electron moving away from
the center of the Nayg cluster as a function of the electron position. The electron
moves with a constant velocity: a) v = 1, b) v = 1.5, and ¢) v = 2.5. Vertical
dashed lines show the border of the cluster.
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Figure 4.3: Cluster induced force acting on the electron moving away from the
center of the Nagsg cluster as a function of the electron position. The hole is
not included. The electron moves with velocity v = 1. Horizontal dashed line
corresponds to the stopping power in an homogeneous electron gas with ry=4.

interaction between hole and electron is not included. In spite of this, we find
that the presence of the hole modifies the electron dynamics in the cluster because
there are two different charges to be screened. We have studied four Na clusters
(r¢ = 4) with 20, 58, 106 and 556 electrons. We consider three different velocities
of the photoemitted electron: 1, 1.5 and 2.5 a.u.

Figure 4.2 shows the cluster induced force F® acting on the photoemitted
electron as a function of the electron position for all three velocities considered
and for the smallest cluster, with 20 electrons. From the present results it follows
that, in the case of the presence of the hole, the cluster induced force on the
photoemitted electron has positive value at short times. This indicates that the
cluster response tends to accelerate the electron at the very beginning of its
movement. The repulsive cluster induced force is related to the screening of the
hole. More precisely, at the beginning of its movement, when close to the hole,
the electron is repelled from the hole vicinity by the cluster electrons that arrive
to screen the hole. When the hole is not included in the calculation, the above
effect is not observed and the emitted electron is mainly decelerated all along its
trajectory. This deceleration is due to two effects. First, within the cluster, the
electron suffers the stopping characteristic of any charged particle moving in an
electron gas [6]. Second, as the electron approaches the cluster surface, we can

clearly see the contribution of the forces associated with overcoming the surface
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potential step.

These two decelerating contributions are difficult to disentangle for very small
clusters, like that shown in Fig. 4.2. However, the force experienced by a particle
moving inside a large jellium cluster reaches a sort of stationary regime and
oscillates around a mean value. This can be seen in Fig. 4.3 for a cluster containing
556 electrons. The mean value of the force is similar to the stopping power in
an infinite medium, which only depends on the electron density. In our case, for
rs = 4, the stopping power is around 0.055 a.u. for a negatively charged particle

moving with velocity v = 1 a.u. in an infinite electron gas [5].

We can further analyze the influence of the hole screening on the moving
electron if we look at the difference of forces (Fig. 4.2): F™5(z) = F(z) —
FS5(2). Here, F{¥(2) (F§®) is the cluster induced force on the photoemitted
electron calculated with (without) explicit inclusion of the positive point charge
at the center of the cluster. With this definition, F{*(2) is the force felt by
the photoemitted electron due specifically to the cloud of electronic density that
dynamically screens the hole. This quantity is shown in Fig. 4.4 for all clusters

considered and for two different velocities.

As it is seen from the graphs, the effect of the screening of the hole is larger
in the case of the smallest electron velocity (Fig. 4.4(a)). This is related to
the time that the photoelectron spends in the neighborhood of the hole and to
the characteristic time of the hole screening. The slow photoelectron stays near
the hole long enough for the screening of the hole to be performed. Therefore, it
experiences a large force due to the piling up of electronic charge around the hole.
The fast electron, however, leaves the hole at short times, which are not enough
for a significant piling up of screening charge. Hence, the effect associated with the
hole screening becomes smaller the higher the electron velocity. It is worth noting
that, for the slow electron, F{'*(2) is almost identical for the two largest clusters
considered here and it is very small for z, > 25. Both observations indicate that
the screening of the hole is well established and basically reaches its stationary
value at the corresponding time scale. For the faster electron, however, the value
of F5(2) at large zq is different for different cluster radii (Fig. 4.4(b)). This is
linked to the time-evolution of the screening density which still goes on by the time
the electron reaches the cluster boundary. These conclusions are corroborated by

the induced electronic density dynamics plots (Fig. 4.6) discussed later on.

In order to quantify the effect of the hole screening, we calculate the electron
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Figure 4.4: Component of the cluster induced force acting on the moving electron
due to the dynamic screening of the hole by the electronic charge of the cluster,
F¥5(2). Results are shown as a function of the electron position for jellium clusters
(re=4) of different size comprising N = 20, 58, 106, and 556 electrons. Electron
velocities are: a) v = 1, b) v = 2.5. Vertical dashed lines correspond to the radii
of the clusters.

energy loss due to the interaction with the cluster electrons for the case of N = 20
and for the velocities 1, 1.5, and 2.5 of the photoemitted electron. The energy loss
Floss, given by Eq. (4.5), is defined as the work performed by the cluster induced

force acting on the moving electron. The results are summarized in Table 4.1, in
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which the difference in the cluster induced energy loss AFEj., with and without

the hole, is also shown.

Table 4.1: Energy loss [Eq. (4.5)] of the photoemitted electron as a function of
its velocity. The electron is assumed to follow a trajectory with constant velocity.
The difference in energy loss AFE) for the case of absence and presence of the
hole in the center of the cluster is also given.

N =20 v=1lau |v=15au | v=25au.
without hole 0.60 0.44 0.22
Eloss, a.u. n
with hole 0.37 0.30 0.16
AF)ys, a.u. 0.23 0.14 0.06

The presence of the hole reduces the cluster induced energy loss for all veloc-
ities. The value of AF). also shows that the effect of the hole screening is more
significant the slower is the electron. The energy loss of the electron moving with
v = 1 a.u. decreases almost by a factor of 2 when we include the hole screening
in the process. An interesting consequence is that, at low velocities, the effects
associated with the hole screening might become crucial to determine if the pho-
toemission process can indeed take place or not. For example, the kinetic energy
of the slowest electron considered in Table 4.1 is 0.5 a.u.. Since the energy loss in
the case without hole is 0.6 a.u., this electron cannot be photoemitted from the
cluster. However, in the presence of the hole the photoemission becomes possible.

The study of the electron dynamics during photoemission in the constant
velocity approximation leads us to two conclusions: 1) the screening of the hole
by the cluster electrons leads to a repulsive (accelerating) force acting on the
photoemitted electron at the beginning of its movement; 2) the effect of the hole

screening is reduced for faster (more energetic) photoemitted electrons.

4.1.2 Varying velocity approximation

The results discussed so far are obtained using a simple model in which the
photoemitted electron moves with a constant velocity. In a real photoemission
process, however, the velocity varies due to the different elastic and inelastic forces

acting on the electron. In order to be sure that none of the effects discussed above
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is an artifact of the model and to prove our conclusions, we simulate the photoe-
mission process in a more realistic second approximation. In this approximation,
the velocity and coordinate of the electron are dependent on time, according to
equations (4.6), (4.7), and (4.8). Electron and hole interact via a regularized
Coulomb potential (Eq. (4.9)).
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Figure 4.5: Cluster induced force [Eq. (4.4)] acting on the electron moving away
from the center of the cluster (N = 20, ry = 4), as a function of the electronic
position in three cases: 1) There is no hole at the center of the cluster and the
initial velocity of the electron is 1.5 a.u. (green line); 2) There is a hole at the
center of the cluster, but the photoemitted electron does not interact directly with
the hole. The initial velocity of the electron is 1.5 a.u. (blue line); 3) There is a
hole at the center of the cluster and a direct electron-hole interaction (Eq. 4.9) is
included. The initial velocity of the electron is 2.25 a.u. (red line). The vertical
dashed line shows the radius of the cluster, R, = 10.86 a.u.

In Fig. 4.5 we show the results for the small cluster with 20 electrons in the
varying velocity approximation. The force felt by the moving electron due to the
interaction with the cluster electrons (Eq. (4.4)) is calculated for three different
cases. In the first case, we do not include the hole in the cluster. In the second
case, there is a hole to be screened, but we do not include the direct interaction
between the hole and the photoelectron when performing the trajectory calcu-
lation. In the third case, the direct interaction between photoelectron and hole
is additionally included. In the first two situations, the initial velocity of the

electron is set to 1.5 a.u, while in the third situation is set to 2.25 a.u. This
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difference in velocity corresponds to the energy of the electron-hole interaction.
Indeed, with the parameter a? = 0.5, used in Eq. (4.9), the "binding energy" (the
interaction energy when both the electron and the hole are located at the center
of the cluster) of the electron is around 1.4 a.u. Taking into account this binding
energy, the initial velocity 2.25 a.u. for an electron interacting with the hole and
eventually photoemitted in vacuum leads to a final velocity ~ 1.5 a.u. Therefore,
our choice of initial velocities allows a direct comparison of the two cases, with
and without direct electron-hole interaction in the case of photoemission inside
the cluster.

We can see from Fig. 4.5 that the behavior of the cluster induced force in
this more realistic model is similar to that of the simple model considered in the
previous section (Fig. 4.2). Whenever the hole screening is taken into account,
there is an accelerating force acting on the electron at the beginning of its trip.
Similarly to the constant velocity approximation, performing calculations along
a more realistic trajectory with different launch velocities, we also found that
the effect of the hole screening decreases when the initial velocity of the electron
increases.

Moreover, we found that the cluster induced force is very similar indepen-
dently on whether electron and hole directly interact with each other or not.
However, this is valid only if the final velocity of the photoemitted electron inter-
acting with the hole is equal to the final velocity of the electron not interacting
with the hole. This shows that, as far as the final energy of the photoemitted
electron is the same, the cluster induced force acting on the photoemitted elec-
tron is mainly affected by the presence or absence of the hole screening and not

by the details of the electron trajectory nearby the hole.

4.1.3 Time evolution of the electronic density

Continuing the discussion on the electron density dynamics in the cluster,
we illustrate the effect of the coupling of both processes — dynamic screening of
the hole and dynamic screening of the moving electron. Figure 4.6 shows the
time evolution of the electronic density of the spherical cluster with N = 106
electrons. The hole and the electron are created at time ¢ = 0 at the center of
the cluster (z=0) and the electron is moving along the positive part of the z-axis

with a constant velocity v = 1 a.u. The induced electronic density close to the
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z-axis An = n(pog, z,t) — n(po, z,0), where py = 0.02 a.u, is plotted in units of the
background density nqg.

Panel (a) shows the results of a direct TDDFT calculation of the induced elec-
tronic density for the cluster with a static hole at the center and a photoelectron
moving away from the center of the cluster along the z-axis. Panel (b) shows the

induced electronic density obtained as a sum of two different contributions:
An(t) = onu(t) + Inea(t). (4.10)

Here, ony(t) is the TDDFT result for the induced electron density due to the
appearance of only a localized hole at the center of the cluster. Similarly, dne(t) is
the TDDF'T result for the induced electron density in response to a photoelectron
moving from its center, where no hole is present. Therefore, panel (b) shows a
linear superposition of the electronic charges screening the static hole and the
moving photoelectron. In the inset of both graphs we show the time evolution of
the electronic density at a given point (p=0.02 a.u., 2=0.2 a.u.).

The white area in the main plots shows a depletion of the electronic density
in the cluster that roughly follows the trajectory of the electron. It is due to the
Coulomb repulsion between the moving electron and the rest of the electrons in
the cluster. Black arrows indicate the time at which the screening of the hole
is fully developed, i.e., the induced electron density in the close vicinity of the
hole roughly integrates to one. This time is also shown in the inset of each plot
and is equal to 11 a.u. and 8 a.u. for the cases (a) and (b), respectively. Thus,
there is a delay in the TDDFT screening of the hole as compared to the linear
superposition case. Moreover, comparing the charge distribution for negative and
positive values of z, we can see that there is an asymmetry in the screening charge
for the TDDFT calculation with both hole and electron simultaneously included.
This asymmetry is absent in panel (b), corresponding to the linear superposition
of electron and hole separate screenings, and clearly indicates that the dynamics
of the hole screening is affected by the presence and movement of the emitted
electron. Therefore, we can conclude that the TDDFT calculation, considering
both the hole at the center and the electron photoemitted from the center of the
cluster, includes a combined effect of the dynamic screening of both particles in
the relaxation processes in the cluster. This combined effect is also visible in the
oscillations of the electronic density, where the periods of these oscillations are

slightly different for the two cases considered.
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Figure 4.6: Time evolution of the electronic density of the Najos cluster at the
center of which the hole and the electron are created at time ¢ = 0. The hole
is static and the electron moves away along the positive part of the z-axis. The
induced electronic density is shown close to the symmetry z-axis (p=0.02 a.u.,z).
The time evolves along the vertical axis. Color map shows the change in density
in units of the background density ng. Panel (a) shows the results of the TDDFT
calculation of the complete system. In panel (b) the induced density is calculated
as a sum of two contributions (see the text for the explanation). The velocity of
the electron is v = 1 a.u. Insets: Profile of the density plot along the time axis
at (p=0.02 a.u., 2=0.2 a.u.).
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4.1.4 Conclusions

In this section a semi-classical model was used to describe the dynamic screen-
ing of a moving photoelectron and that of the localized core-hole left behind as
a result of the interaction of XUV pulses with small metal clusters. The electron
is emitted from the center of the cluster and the motion of the photoemitted
electron is described classically.

We have shown that, when the hole is explicitly included in the calculation,
the photoemitted electron is accelerated by the cluster electrons that pile up
nearby the cluster center to dynamically screen the hole. This effect is observed
by comparing the forces acting on the photoemitted electron due to the inter-
action with the cluster in which a hole is present or absent at the center. In
order to quantify the effect of the hole screening we have calculated the energy
loss of the photoelectron. We have shown that the presence of the hole reduces
significantly the cluster induced energy loss and that this effect is velocity de-
pendent. In the limit of very small velocities we should recover the adiabatic
limit and the screening-induced acceleration of the emitted electron along its tra-
jectory should reflect the decrease of the binding energy of the inner shell from
which the electron is photoemitted due to the metallic screening provided by the
cluster electrons. This change in the binding energy, in our simplified model,
is given by the Coulomb interaction of a positive point-particle (the hole) with
the screening electron cloud around it in a static calculation. Interestingly, how-
ever, we find here that the acceleration effect strongly depends on the velocity
of the photoemitted electron. For sufficiently high energy photons, the measured
binding energy of the inner shell (given by the energy position of the elastically
photoemitted electrons) should increase due to the fact that the screening of the
hole takes place in a characteristic, fixed time-scale. Although this effect should
be observable experimentally, to the best of our knowledge we are not aware of
a clear measurement of such photon-energy dependency of the binding energy of
atomic core shells in metals.

These conclusions were obtained using a relatively simple approximation in
which the photoemitted electron moves with constant velocity. The conclusions
are proven to remain valid when the interaction between photoemitted electron
and core-hole left behind is included in the calculation and the velocity of the

electron is allowed to vary with time. We have illustrated the time evolution of
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the electron density in the cluster during the photoemission process and we have
shown that the TDDFT calculation allows us to see the coupled effect of the
screening of both the hole and the electron in the relaxation processes inside the

cluster.

4.2 Dynamic screening and charge transfer pro-
cesses in the photoemission from an adsorbate

on a metal cluster

The field of photoemission spectroscopy was pioneered in the early 1960’s.
In particular, core-level photoemission from molecular adsorbates has been the
subject of experimental studies for several decades. It was observed that the
photoemission spectrum of a molecule adsorbed on a metal surface is very different
from that of the free molecule [84-86]. There are different features that can
appear in the spectrum of the adsorbate: either additional peaks close to the
main peak with lower intensity or the broadening or shifting of the main peak.
Some of these new spectral features are the shake-up and shake-off satellites. The
existence of satellite structures in core-level photoemission spectra of adsorbates
have multiple origins, one of them being charge transfer processes from the metal
surface to screen the core-hole left in the adsorbate. [84-89]. Therefore, the effect
of the charge transfer (CT) is very important and it should be taken into account
in the theoretical calculations of the photoemission spectra of adsorbates [90].
The adsorbate-substrate distance plays an important role in the process of CT to
the adsorbate [89]. This is because the energies and widths of the atomic levels
of the adsorbate vary depending on the distance from the metal surface [91-93].

In this section, we study the dynamic screening of an electron photoemitted
from a core-level of an adsorbate weakly interacting with the surface of a metal
cluster, e.g., a noble gas. We use a very simplified model to describe this process
since our emphasis is on describing the dynamics of the cluster electrons. Noble
gases interact weakly with metal surfaces and have relatively large adsorption
heights, which justify our assumption of an unperturbed cluster as an initial
description of our system. Once the photoemission process from a core-level

of the adsorbed noble gas takes place, a localized hole is left and the excited
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adsorbate can be approximated by a hydrogen-like or alkaline ion. Here, we will
not attempt to improve the model using a specific pseudopotential to describe a
particular adsorbed atom, but we will use the simplest possible model to reveal
some basic phenomena related to the interplay of the different time-scales of the

processes at play.

We show that, in the case of the photoemission from an adsorbate, the pho-
toelectron also experiences an accelerating force due to the screening of the core
hole by the cluster electronic charge, as it was observed in the case of the pho-
toemission from the center of the cluster. To quantify this effect we calculate
the energy change of the photoemitted electron and show that the energy of the
electron increases due to the screening of the hole. This effect is studied in detail
for different adsorbate-substrate separation distances and for a range of velocities
of the photoemitted electron. By looking at the time evolution of the electronic
density, we analyze the different CT processes depending on the parameters of
the calculations, such as the distance from the adsorbate to the metal surface,

the velocity of the photoelectron, and the type of substrate.

The system under study consists of a metallic cluster of spherical shape and an
adsorbate at a distance d from the cluster surface. The metal cluster is represented
in the framework of SJM. The core hole of the adsorbate and the photoemitted

electron are modeled as classical positive and negative point charges respectively.

In this section, we use the same methodology as of section 4.1. We start the
time evolution at ¢ = 0, when the photoelectron (el) and the core hole (h) are

created at the position of the adsorbate.

The scheme of the process under study is shown in Fig. 4.7. The photoelectron
moves with a constant velocity along the z-axis [peg = 0, zei(t)]. The hole is fixed

on the z-axis, at a given distance from the cluster surface [p, = 0, z, = Rq + dJ.

The potential created by these charges and acting on the cluster electrons is:

AV (p,z,t) = Valp, z,t) + Vi(p, 2, t), (4.11)

where .
Valp.2.8) = T O0) (112

and )
Va(p, 2, t) = — s p2]1/2@(t). (4.13)
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Figure 4.7: Sketch of the photoemission process. An electron and a hole are
created at a given distance d from the surface of the spherical cluster, at ¢t = 0.
Both are represented by classical point particles. The electron starts to move
along the z-axis with constant velocity v.

Since in the previous section we have observed that the Coulomb interaction
between the hole and the photoelectron does not have a significant influence on the
effect of the screening of the electron, the direct interaction of the photoemitted
electron and the core hole is not included in this case.

In this section, we study two different metallic clusters: aluminum (Al) with
rs= 2.07, and sodium (Na) with ry= 4, with 106 electrons in each cluster. The
radii of these clusters are 18.93 and 9.8 a.u. respectively. The adsorbate-cluster
distances d are chosen to be 3 a.u. and 6 a.u. Velocities of the photoemitted
electron are chosen in the range from 0.02 a.u. up to 2 a.u. The change in
the energy of the photoemitted electron due to the screening of the core hole is

calculated from the time-dependent force (4.4):
AE =v / F5(t)dt. (4.14)

A schematic view of the system under study is shown in Fig. 4.8. Figure 4.8a
shows the KS effective potential Veg(r) of the Najps cluster (blue curve) with
the corresponding valence electronic energy levels (blue horizontal lines) and the

potential created by the hole localized at a distance 3 a.u. from the cluster surface
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Figure 4.8: Simplified sketch of energy diagrams for the adsorbate on the surface
of a cluster. Blue lines represent the occupied levels and the effective potential
describing the ground state of a) a Na cluster and b) an Al cluster containing
106 electrons. The red lines represent the levels and 1/r potential created by a
localized hole located at a distance d = 3 a.u. from the cluster surface in panel
a), and d = 6 a.u. in panel b). Finally, the purple line represents the sums of
both potentials and can be interpreted as the t — 0 effective potential felt by the
cluster electrons when the photoemitted electron has a very large kinetic energy
(i.e., in the sudden creation approximation for the core-hole).

with the energy levels of that potential, corresponding to an H atom (shown in
red). The sum of these potentials is plotted as well (purple), and can be thought
as the initial potential in which the electrons evolve when the kinetic energy of

the photoemitted electron tends to infinity, corresponding to the sudden creation
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approximation of the hole. Fig. 4.8b is the same as Fig. 4.8a but for Al;gs and
the localized hole at a distance 6 a.u. from the cluster surface. For both clusters,
the energy of the highest occupied level corresponds to the Fermi energy. The
positions of hydrogen-like levels with respect to the cluster electronic levels and
the height of the potential barrier between cluster and the attractive potential
created by the hole determine the character of the charge transfer from the cluster
to the adsorbate. The different CT processes are discussed later in the subsection

"Time evolution of the electronic density".

4.2.1 Force and change in energy experienced

by the emitted electron

When the core hole is created in the adsorbate on the surface of the cluster, the
electronic charge of the cluster immediately starts to screen the positive charge
of the hole. The screening of the hole in turn affects the movement of the pho-
toemitted electron. We start our study from the analysis of the force experienced
by the photoelectron due to the screening of the hole. The force along the z-axis
is calculated using Eq. (4.4) and is shown in Fig. 4.9 and Fig. 4.10 as a function of
the electron position z for the adsorbate/Najos and the adsorbate/Al;os respec-
tively, and for different velocities of the electron. The z-axis starts from the value
corresponding to the position of the hole z = (R +d). In the previous section we
have already shown that the electron photoemitted from the center of the cluster
experiences an accelerating force due to the screening of the hole. In the case of
the photoemission from the adsorbate we also see (Fig. 4.9 and Fig. 4.10) that the
force is positive all along the trajectory of the electron. This means that the elec-
tron is being accelerated. The reason for the acceleration is the repulsion of the
electron from the hole vicinity by the cluster electronic charge that is displaced to
screen the hole. The screening process is very fast. Therefore, it affects more to
electrons moving with low velocity. This is seen from Figs. 4.9 and 4.10, where
the force increases when the velocity of the photoemitted electron decreases.

Another observation is that for both systems adsorbate /Najs and adsorbate/Al;g,
in the case of the adsorbate-substrate distance equal to 6 a.u., the force has os-

cillations. The latter is not observed in the case of distance d = 3 a.u. and high
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Figure 4.9: Force felt by the electron photoemitted from a model adsorbate on

the surface of the Na cluster due to the screening of the core hole as a function
of the electronic position. Velocities are in atomic units.

electron velocities. We show (in the subsection "Time evolution of the electronic
density") that the oscillations in the force are reflecting the oscillations of the

electronic density in the clusters.

Since the photoelectron feels a repulsive force from the screening charge, the
energy of the electron changes. The change in energy AFE is calculated from
the force using Eq. (4.14). This quantity is shown in Fig. 4.11 as a function of

the electron velocity for both metals and for both distances d. We can see that
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Figure 4.10: Force felt by the electron photoemitted from a model adsorbate on

the surface of the Al cluster due to the screening of the core hole as a function of
the electronic position. Velocities are in atomic units.

values of AE are in the same range for both metals, but strongly depend on
the adsorption distance and on the velocity of the photoemitted electron. The
electron gains more energy when the distance between metal cluster and adsorbate
is shorter.

From energy diagrams in Fig. 4.8 it becomes obvious that the CT processes
must be strongly dependent on the distance and on the electron velocity. At

shorter adsorbate-substrate distance the potential barrier between cluster and
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Figure 4.11: Change in energy of the photoelectron due to the interaction with
the cluster as a function of the electron velocity for a) adsorbate/Najgg, and b)
adsorbate /Al;gg.

the attractive potential created by the hole is small. Therefore more charge can
get across the barrier to the adsorbate to screen the hole. This leads to a larger
force acting on the photoemitted electron and therefore to a larger energy gain.
At lower electron velocities the energy change is larger because slower electrons

spend more time close to the core hole and thus are more affected by the hole
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screening.

In order to understand better the influence of the core hole screening on the
force that the photoemitted electron experiences, we analyze the time evolution
of the electronic density in clusters after the sudden creation of a core hole and

a photoelectron at the position (R + d).

4.2.2 Time evolution of the electronic density

As we have seen in Fig. 4.9b and Fig. 4.10b, in the case of the adsorbate-
cluster distance d = 6 a.u. the force felt by the moving electron has oscillations.
The oscillations in the force are reflecting oscillations of the electronic density.
Fig. 4.12 shows the time evolution of the electronic density along the z—axis
in the Najg¢ cluster after the sudden creation of a core hole and an electron,
which starts to move with velocity 0.1 a.u. We see in Fig. 4.12a (corresponding
to the case of d = 3 a.u.) that the density change is roughly constant in time,
with no oscillations. The same behavior is observed in the force, which does not
have any oscillations at low velocities of the photoemitted electron for d = 3 a.u.
(Fig. 4.9a). However, the density oscillates in Fig. 4.12b, corresponding to the
case of d = 6 a.u. These oscillations are also seen in the force (Fig. 4.9b). A
similar correspondence between force and density oscillations is observed for the
adsorbate/Aljpg system.

In the two cases shown in Fig. 4.12, the density accumulation is located at the
position of the core hole. This means that electronic charge is transferred from
the cluster to the adsorbate. However, in the case of d = 6 a.u. (Fig. 4.12b), there
is also a small peak located near the border of the cluster besides the main peak.
The different behavior of the electronic density is a consequence of the charge
transfer occurring to different energy levels of the adsorbate, depending on the
adsorption distance.

In Fig. 4.13 the time evolution of the electronic density is shown for the
adsorbate/Najgs system and for electron velocity v = 1 a.u. We can see that
in this case the picture is quite similar for both distances d. Namely, there are
two peaks in the induced density and the density oscillates. This means that
not only the adsorption distance affects the CT process, but the velocity of the
photoemitted electron also determines to which level of the adsorbate the charge

is being transferred. We can check the latter by calculating the projections, P,
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Figure 4.12: Time evolution of the electronic density when a photoelectron is
emitted from an adsorbate on the surface of a Najog spherical cluster. The change
in electronic density is shown in units of the background density ng as a function
of time and distance from the center of the cluster. Velocity of the electron is
v = 0.1 a.u. Radius of the cluster is R, = 18.93 a.u.

of the cluster wave functions onto the hydrogen-like states bound to the poten-
tial created by the localized hole. The results of these calculations are shown
in Fig. 4.14 for velocity 0.1 a.u and are in agreement with the observations in

Fig. 4.12 and also with similar results for the adsorbate/Al;og system, not shown
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Figure 4.13: Time evolution of the electronic density when a photoelectron is
emitted from an adsorbate on the surface of a Najog spherical cluster. The change
in electronic density is shown in units of the background density ng as a function
of time and distance from the center of the cluster. Velocity of the electron is
v = 1 a.u. Radius of the cluster is Ry = 18.93 a.u.

here.

We have calculated projections for both systems (Na and Al clusters), for two



56 Chapter 4. Dynamic screening during photoemission

0.8 - - - .
0.6 ]
1s

S 04 i
8
(a
? 0.2t 1
£ e
T 0.0 i

02t 25+2p2 i

-04 : : : :

0 200 400 600 800 1000
t(au.)
(a) d=3a.u.

0.6 - - - .
E)
8
o
)
1
£
T

01 - - - -

0 200 400 600 800 1000
t(au.)
(b) d =6 a.u.

Figure 4.14: Calculated projections of the electronic states of the Na cluster onto
the hydrogen-like 1s and (2s + 2p,) states of the hole potential as a function of
time. The adsorbate-surface distances are a) d = 3 a.u., b) d = 6 a.u. Velocity is
v = 0.1 a.u.

distances d, and for two velocities of the electron, v = 0.1 and v = 1 a.u. We
projected the cluster wave functions onto the hydrogen 1s, 2s, 2p, states and

onto two hybrid states: (2s + 2p,) and (2s — 2p,). Analytical expressions are
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used for the hydrogen states. The quantity shown in Fig. 4.14 and Fig. 4.15,
>.;(m = 0)P, is a sum of projections of the cluster states with m = 0. For
the system adsorbate/Najos with d = 3 a.u. and electron velocity v = 0.1 a.u.
(Fig. 4.14a) the largest projection is onto the hydrogen 1s state. Indeed, if we look
at the simplified energy diagram of Fig. 4.8a, we can see that at close adsorbate-
cluster distance there is no potential barrier. Moreover, the low velocity allows
the electron to perturb the adsorbate levels a longer period of time and, as a
consequence, the levels go up in energy for a longer time as well. Therefore,
the cluster electrons can occupy the deepest level of the potential created by
the hole. This explains the density accumulation around the core hole shown in
Fig. 4.12a. The cluster electrons are transferred to the hydrogen-like 1s state of
the adsorbate and can not go back. An alternative way to understand this result
is using the concept of the adiabatic transformation. If the photoemitted electron
moves sufficiently slowly, we can eventually recover the adiabatic limit in which
the system is always in its ground-state configuration. Thus, for short adsorbate-
surface distances and in absence of large tunneling barriers to overcome, we start
to approach this limit for the lowest velocities in our simulations, leaving a highly
occupied 1s level. This is the reason for which there are no oscillations of the

electronic density in this case.

In the rest of the calculations for the Na cluster (d = 3 a.u., v = 1 a.u,
and d = 6 a.u., velocities v = 0.1 and v = 1 a.u.) the largest projection is
onto the hydrogen (2s + 2p,) hybrid state. One of these cases (d = 6 a.u., v =
0.1 a.u.), is shown in Fig. 4.14b. This is consistent with the structure of the
induced density in Fig. 4.12b and Fig. 4.13. In these cases the cluster electrons
populate the (2s + 2p.) hydrogen state, which is resonant with the energy levels
of the cluster. When the adsorbate-cluster distance is small (d = 3 a.u.), but
the electron velocity is high (v = 1 a.u.), the levels of the adsorbate are almost
not affected by the photoemitted electron. Therefore, the cluster electrons can
not occupy the 1s level of the hole potential. At large distances (d = 6 a.u.), the
potential barrier between the cluster and the adsorbate is high and it is impossible
for the cluster electrons to populate the 1s level of the hole potential sufficiently
fast to be influenced by the photoemitted electron. Thus, the main CT process
takes place to those levels of the ionized adsorbate that are resonant with the
cluster states and for which the effective tunneling barrier is smaller, i.e., the

2s and 2p levels. Furthermore, the interaction between 2s and 2p levels of the
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ionized adsorbate and the cluster states gives rise to hybridization and translates
into a coherent, oscillatory dynamics. This explains the oscillations in time of
the change in electronic density (Fig. 4.12b and Fig. 4.13).
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Figure 4.15: Calculated projections of the electronic states of (a) Al cluster and
(b) Na cluster onto the hydrogen-like 1s and (2s+2p,) states of the hole potential
as a function of time. The adsorbate-surface distance is d = 3 a.u., velocity is
v=1au.
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For the adsorbate/Aljps system the picture is different. The aluminum oc-
cupied energy levels are resonant with the 1s state of the ionized adsorbate. At
short distances (d = 3 a.u.) the potential barrier is low and the cluster electrons
can populate the 1s level, even when the photoemitted electron is moving with
high velocity. This is proved by the calculation of the projections. At d = 3 a.u.
for both velocities the largest projection is onto the 1s level. Figure 4.15a shows
the projections for Aljps and the hydrogen-like states at a distance d = 3 a.u.
with the electron velocity v = 1 a.u. The largest projection is onto the 1s level
of the ionized adsorbate, which is not the case for the Na cluster with the same
parameters (Fig. 4.15b). When the distance is large (d = 6 a.u.), the barrier is
higher (Fig. 4.8b) and the cluster electrons occupy the (2s + 2p,) state of the

ionized adsorbate, similarly to the case of Na.

Concluding this subsection, we have shown that, depending on the adsorbate-
surface distance and on the velocity of the photoemitted electron, the charge
transfer from the cluster to the ionized adsorbate can be different. The height of
the barrier and the action of the photoemitted electron define which level of the
ion is going to be populated by the screening charge of the cluster. The character
of the charge transfer in turn has an influence on the value of the energy gained
by the photoemitted electron. Coming back to Fig. 4.11, we can see that, for the
distance 6 a.u., the values of AE are very similar in both systems. This is because
in both systems at d = 6 a.u. the CT occurs to the hydrogen-like (2s+ 2p,) level.
But if one looks at the values of AF when the distance is 3 a.u., one can see
that the slopes of the curves are different in the two systems. Namely, in the
case of adsorbate/Aljps the values of AE are much larger than in the case of
adsorbate/Najgs at d = 3 a.u. This means that the charge transfer to the 1s
level of the ionized adsorbate (as happens in adsorbate/Aljp at d = 3 a.u.) leads
to a larger energy gain by the photoemitted electron than the charge transfer
to the (2s 4+ 2p,) state. This can be expected since, in the low velocity limit,
the energy of the photoemitted electron should reflect the changes in the binding
energy of the hole as it gets screened. The interaction with a more confined 1s
charge distribution should produce a large change in the binding energy than that
produced by the occupation of the (2s + 2p,) hybrid level.
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4.2.3 Different contributions to the total force

As we have shown, the velocity of the photoemitted electron has an influence
on the charge transfer from the cluster to the adsorbate. This is because in the
time-dependent calculations we take into account the coupled dynamic screening
of both the core hole and the photoelectron. Therefore, the screening of the core
hole is affecting the screening of the electron, and vice versa. The presence of the
electron close to the hole leads to the delay of the hole screening (and the charge
transfer). Our method allows us to take into consideration the effect of both the
charge transfer and the coupled screening of hole and electron when calculating
the energy change of the photoemitted electron.

In order to point out the importance of taking into account these two effects,
we show in Fig. 4.16 the force acting on the photoemitted electron in different
approximations. The force is shown for the electron photoemitted from the ad-
sorbate on the surface of a Najos cluster at distances d = 3 a.u. (Fig. 4.16a) and
d = 6 a.u. (Fig. 4.16b). In both figures the red curve corresponds to the force
that includes the effect of both the charge transfer from the cluster and the cou-
pled dynamic screening of the hole and the electron. This force is obtained from
the density that is calculated by propagating the cluster wave functions in the
presence of both the hole and the electron. For comparison the force experienced
by the photoelectron is calculated as a sum of two different contributions. The

blue curve corresponds to the force obtained as
Fecll—‘&s—h(z) = Fu(2) + Fi(zn). (4.15)

Here Fy(z) is the force acting on the moving electron in the case when there is no
hole. Fj (zy) is the force acting on the point in space corresponding to the electron
position when a hole is created at the position (R + d) at ¢t = 0. Therefore, the
force F5%,, includes the effect of the charge transfer, but does not include the
coupled hole-electron screening.

The green curve is obtained as
Fecllj-(—el)(z) = Fel(z) + (_1)Fel(zh>- (416)

Here Fi(z) is the same as in the previous case and Fi(zy) is the force acting

on the point in space corresponding to the electron position when there is an
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Figure 4.16: Cluster induced force acting on the electron, calculated in different
approximations. Red line shows the total dynamic force, including both the
charge transfer and the coupled electron-hole screening effects; blue line shows
the force that includes the effect of the charge transfer but does not include the
coupled electron-hole screening; green line corresponds to the force that does not
include neither the charge transfer nor the coupled electron-hole screening. All
the forces are shown as a function of the electron position for the electron emitted
from the adsorbate on the Najos cluster at a distance a) d = 3 a.u., and b) d =6
a.u. Electron velocity is 1 a.u. CT - charge transfer, CS - coupled screening.
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electron at the position (Rg + d) and then taken with the opposite sign. This
second contribution is an approximation used to replace the hole that allows us
to get rid of the effect of the charge transfer. Thus the force Feclli(_el) does not
include neither the effect of the charge transfer nor the effect of the coupled hole-
electron screening. However, it includes the effect of the long range screening of
the hole by the cluster electrons (image charge).

In Fig. 4.16 (a) and (b) we see that, if the effect of the coupled dynamic
screening of the core hole and the photoelectron is not taken into account, the
force is overestimated (blue curve is higher than the red one). Since the blue
line does not include the effect of the simultaneous presence of both hole and
electron, it does not take into consideration the delay in the hole screening due
to the presence of the electron close to the hole. The force shown by the green
line is lower than the real force (red line). This is because the green line does
not include the effect of the charge transfer which is very important and should
be taken into account. With this we can conclude that the coupled dynamic
screening of the hole and the electron is very important and has to be treated
self-consistently, as we do in this work when calculating the force acting on the

electron photoemitted from an adsorbate on the surface of a metal cluster.

4.2.4 Image force

It is known that any charged particle in front of a polarizable surface creates
an image charge in the surface. Therefore, the charged particle feels the attractive
force of the image charge induced in the material. The image potential outside
a flat surface is inversely proportional to the distance r from the charge to the
surface (—1/4r), with r = z — Zg,¢ in our system of coordinates and Zg,,s being
the location of the surface image plane on the z-axis. In our case there are
two charges: the electron moving away from the surface and the hole fixed at a
distance d from the surface. For such a combination in front of a flat surface, the

image potential on the moving electron is:

1 1
Virt(z) = — . 4.17
o (2) 4(Z - Zsurf) * Z — Zsurf + d ( )
: o : d
We find the image force as a derivative of the potential, Fi,(z) = ——Vin(2),
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and therefore it is represented by the expression:

1 1
4(Z - Zsurf)2 * (Z - Zsurf + d)Q,

Ft(z) = — (4.18)
for z > Zgu¢. This force is shown in Fig. 4.17 as a black line for Zg, .y = R, where
R is the radius of the cluster. However, in our case we deal with a spherical
cluster and the image potential (and hence the image force) outside a small sphere
is different from that of the flat surface. The classical image potential for one

charge outside a neutral sphere with radius R, has the following form [94]:

3
B Rcl

Vim(2) = =———~.
222(2%2 — R%)

(4.19)
Taking into account the image potential due to the presence of the hole near the
surface of the sphere this expression is modified:

Rgl Rc] RC]

— — . 4.2
222(22 = RY)  z(Ra+d) * 2(Rg +d) — R (4.20)

Vi (2) =

Therefore, the classical image force outside a sphere in our case is:

_R(22 - RY)  Ra(Ra+d) R (Ro + d)

Fsphr(z) _
" (2 =Ry PA(Ra+d)?  (2(Ra+d) — R)*

(4.21)

and is shown in Fig. 4.17 as a red line. The two other curves in Fig. 4.17 corre-
spond to the dynamic force experienced by the electron outside a spherical cluster
in the presence of the hole near the surface of the cluster. The dynamic forces are
obtained using Eq. (4.16) in order to exclude the effect of the charge transfer and
to be able to compare these forces with the classical ones. The dynamic forces
are shown for the case of electron velocities 0.05 a.u. (blue line) and 0.1 a.u. (pur-
ple line). All the forces are shown for the Najog cluster with the adsorbate at a
distance d = 3 a.u. from the cluster surface. We can see that for both velocities
the dynamic forces are very similar. This means that for such low velocities the

dynamic force roughly reaches a stationary value (adiabatic limit).

From Fig. 4.17 we can see that the classical image force outside a flat surface is
not a good approximation for the dynamic force. The classical image force outside
a neutral sphere is a better approximation, but it can represent the dynamic force

only at large distances from the cluster surface. At close distances, we see that
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Figure 4.17: Classical image force felt by the electron outside the flat surface in
the presence of a hole near the surface F5U*! (black line). Classical image force
felt by the electron outside of a sphere in the presence of a hole near the surface
of the sphere, FI*™ (Eq. (4.21)) (red line). Dynamic force as a superposition of
different contributions (Eq. (4.16)) is shown for electron velocities 0.05 a.u. (blue
line) and 0.1 a.u. (purple line). The force is shown as a function of the electron
position. The distance between the surface and the hole is d = 3 a.u. The Naygq
cluster radius is 18.93 a.u.

the dynamic force differs from the classical values. For small values of z, when
the photoemitted electron is close to the cluster surface, quantum effects as well

as the finite time of the dynamics in the system are important.

4.2.5 Conclusions

We have presented in this subsection a semiclassical study of the photoemis-
sion from the core level of a model adsorbate on the surface of Na and Al clusters.
The core hole and the photoelectron are modeled as classical point charges. The
response of the cluster electronic density to the presence of the hole and the
electron is studied by means of TDDFT. From the time-dependent density we
have calculated the force acting on the photoemitted electron and the change in
energy of the photoelectron. We have analyzed different charge transfer processes

depending on the adsorbate-substrate distance, on the electron velocity, and on
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the type of substrate.

We have shown that the electron is accelerated due to the repulsive force
originated by the electronic charge of the cluster that dynamically screens the
hole. Because of this, the electron gains an amount of energy which is different
depending on the character of the charge transfer. The latter depends on the
adsorbate-substrate distance, on the velocity of the photoemitted electron, and
on the substrate material. Slow electrons gain more energy because they spend a
longer time at close distance from the hole and therefore are more affected by the
charge transfer. In the case of small adsorbate-substrate distance (d = 3 a.u.),
the change in energy is larger than in the case of larger distance (d = 6 a.u.).
For the same distance d = 3 a.u. and for the same electron velocities, the change
in energy is larger in the photoemission from an adsorbate on the surface of the
Aljg, at least for our simple model adsorbate. This is not only due to the higher
electronic density of Al, which provides a more efficient screening, but also due
to the different nature of the charge transfer processes involved. While at high
and moderate velocities, for the adsorbate/Najgg system the charge transfer takes
place to the higher energy 2s and 2p levels of the ionized adsorbate, in the case
of the Alyps cluster, at short adsorption distances, the 1s level gets significantly

populated even at large velocities.

By comparing real dynamic forces with different approximations for the force,
we have shown that the influence of the charge transfer as well as the effect
of the coupled electron-hole dynamic screening are very important for a correct

calculation of the force experienced by the photoemitted electron.

Finally, we compared the dynamic force felt by the photoelectron moving
away from the cluster with the classical image force outside a flat surface and
outside a neutral sphere. We have shown that at large distances the classical
image force outside a neutral sphere is a good approximation for the dynamic
force, but at close distances from the surface of the cluster quantum effects and

a proper account of the dynamical response of the cluster become important.
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4.3 Summary

In summary, in this chapter we used a semi-classical model to study the screen-
ing of an electron photoemitted from the center of a metal cluster and from an
adsorbate on the surface of the cluster. The screening of the hole is studied as
well. The hole and the electron are modeled as point charges moving classically
and the dynamics of the electrons in the cluster is studied ab-initio using real-time
TDDFT.

We have shown that the screening of the hole can affect very much the dy-
namics of the photoemitted electron. The electron can experience an accelerating
force due to the piling up of electronic charge around the hole. As a result, the
energy loss of the electron decreases. This effect is velocity dependent and it is
larger for lower velocities of the electron. The reason for that is the local char-
acter of the hole screening which affects more when the electron spends longer
times close to the hole vicinity.

In the case of the photoemission from the center of the cluster, the important
conclusion is that the observed acceleration of the photoemitted electron remains
even in a more realistic calculation in which the velocity of the electron is allowed
to vary according to Newton’s equations of motion, including the Coulomb at-
traction between hole and electron. Since this acceleration is due to the screening
of the hole, it should reflect the change of the binding energy of the core-level due
to the screening. In the limit of very low propagation velocities of photoelectrons
this equivalence will be, in principle, guaranteed by the adiabatic character of the
system evolution (under the appropriate constraints). However, for large photon
energies, our simulations indicate that it should be possible to detect an apparent
increase in the binding energy of the core-level as the energy of the photons is
increased.

In the case of the photoemission from an adsorbate, the same effect is observed.
The electron, photoemitted from the core level of the adsorbate, is accelerated
by the electronic charge transferred from the cluster to the adsorbate. We have
shown that the amount of energy gained by the photoemitted electron due to the
hole screening depends not only on the velocity of the electron, but also on the
adsorbate-substrate distance. The reason for that is the different charge transfer
processes from the cluster to the adsorbate. We have shown that, depending on

the distance between the cluster and the adsorbed atom, the electrons from the
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cluster can transfer to the core level of the atom and remain there or resonantly
transfer to the (2s+2p,) level and back leading to the oscillations of the electronic

density in time.






Chapter 5

Energy loss processes in the
interaction of charged and neutral

projectiles with metal clusters

The slowing down of particles travelling through metallic media is an important
problem both from fundamental and practical points of view. As it was men-
tioned in the introduction, the energy loss of heavy projectiles slowly moving
(U << Upermi) through electronic media can be calculated in the framework of
the quasistatic scattering theory using screened potentials obtained from static
self-consistent DFT calculations [36, 37, 95, 96]. For fast projectiles (v > Upermi)
the linear theory can be used to calculate the energy loss. Recent calculations
using TDDFT improve these results and widen the range of velocities that can

be treated [5, 6].

A representative result of the velocity dependent stopping power for an an-
tiproton travelling through Na clusters of different sizes, calculated using TDDFT,
is shown in Fig. 5.1. The average stopping power S = AFE/L is the average en-
ergy loss per unit path length inside the cluster. The characteristic features of
the velocity dependent stopping are the following: 1) the stopping power does
not strongly depend on the size of the cluster, i.e., it is characteristic for the
particular metal density; 2) at low velocities the stopping is linear with velocity;
3) at a certain velocity the stopping power reaches a maximum, after which it
decreases approaching zero at high velocities. The two limits of zero stopping
are the velocities v — 0 and v — oco. When the particle moves with velocity

approaching zero the process is adiabatic. This means that the typical velocities
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of the medium electrons are much higher than the projectile velocity and thus
the electronic density of the cluster has always enough time to rearrange to re-
spond to the change of position of the projectile. In the adiabatic limit and in a
homogeneous infinite electron gas, the screening cloud surrounding the projectile
is symmetric. In a finite system, as the clusters we use in this work, this is not
the case. However, the effect of the surfaces for the particle moving towards the
cluster and away from the cluster cancels when we calculate the average energy
loss, integrating the force over the whole trajectory. Therefore the average energy
loss of the particle is approaching zero for velocities v — 0.

In the limit of a very high velocity the stopping is approaching zero as well. In
this case the projectile moves much faster than the electrons of the system, which
thus have no time to respond to the movement of the projectile and therefore do
not cause any force.

In this chapter we study how the stopping power (or the energy loss) of the
projectile as a function of velocity can change depending on different initial con-
ditions, such as the initial state of the cluster (ground or excited state) and the

presence of another particle in close proximity to the moving projectile.
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Figure 5.1: Stopping power of Na clusters for an antiproton as a function of
velocity. The number of electrons in different clusters is indicated in the figure.
The colored dots are the results of the present work. The results marked with a
star (*) are taken from [5].
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5.1 Dynamic screening and energy loss of antipro-

tons colliding with excited Al clusters

The achievements of TDDFT in the non-linear description of electronic exci-
tations pave the way to answer new and challenging questions in the interaction
of charged particles with condensed matter. In the traditional description of en-
ergy loss processes, the target is always considered as initially in its ground state.
However, the energy lost by a travelling charge in a metallic medium should be
affected by the electronic state in which the target is. Otherwise said, if electronic
excitations have been already created in the system, the electronic response to
the incident perturbation, and consequently the energy loss, will be different. In
this section we try to quantify this difference for the particular case of a point

charge crossing a metallic cluster of a few A size.

We study the collision of a slow negative point charge (an antiproton) with
an Al cluster. The choice of the antiproton as a projectile allows us to avoid
complications related to the electron capture by the projectile if the latter is an
ion. Our goal is to identify the distinct effects that arise in the dynamic screening
and the projectile energy loss when the metallic target has been previously excited
by a preceding projectile. In spite of the fact that our model is simplified, the
results of our study can contribute to the understanding of the fundamentals of the

dynamical processes during collision of charged particles with metallic systems.

We perform an explicit time propagation of the electronic state of the system
and evaluate the energy lost by the charge when crossing ground-state clusters.
We compare this quantity with the amount of energy lost when the projectile
crosses a cluster excited from a previous collision. We show that the difference is
appreciable and explain this change as a consequence of the excited state of the
cluster as well as of the emission of electronic charge from the excited cluster.

Non-linear effects in the excitation of metal clusters have been previously an-
alyzed with TDDFT. In particular, electron dynamics in clusters under intense
laser fields is an active hot topic of research [97] because of the possibilities offered
to explore and control ultrafast processes. The resonance energy of collective ex-
citations (plasmons) in these systems has been shown to depend on the intensity
of the perturbation [98]. Here we focus on a different type of external perturba-

tion, namely, that derived from a point Coulomb charge crossing the system. We
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will show, nevertheless, that similar shifts in the position of the plasmon peaks

are found.

We study the energy loss in two different motion cycles. In the first cycle,
the antiproton moves towards the cluster with a constant velocity v, crosses it
following a symmetry axis through the cluster center, and eventually moves away
until it reaches a turning point arbitrarily defined. The turning point is at a
distance from the cluster far enough not to have any residual interaction. The
cluster is then left in an excited state. The electronic energy transferred to the
cluster during the collision is calculated. In the second cycle, the antiproton turns
back from the turning point and starts to approach the excited cluster with the
same constant velocity v. In the second crossing of the cluster, the latter now
in an excited state, energy is again transferred to the cluster. We calculate the
energy lost in this second cycle and compare the obtained value with that of the

first cycle.

5.1.1 Results

We have chosen a small Al (r; = 2.07) cluster with N = 18 electrons and with
radius R = 5.43 a.u. (= 0.29 nm). The projectile velocity is v = 0.5 a.u. The
ALDA-TDDFT method used here predicts very well the energy loss of antiprotons
in Al targets. The method gives very good agreement with measurements in Al
bulk for antiproton velocities up to 1.8 a.u. Above this velocity the excitations
of the inner shells in Al start to contribute to the energy loss and results deviate

from the experimental ones [6].

The antiproton starts its motion at time ¢t = 0 from the position zy = —50 a.u.
After the first collision, the projectile continues to move until ¢ = 1000 a.u. At
this time the second cycle starts and the antiproton takes the way back to collide
again with the cluster (see scheme in Fig. 5.2). In both cycles we calculate the

force F,(t) experienced by the projectile due to the interaction with the cluster:

o n(p727t> —ng(p, Z) .
F,(t) = 27r/pdpdz T — 22+ P72 (Zap — 2)- (5.1)
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1% cycle

Figure 5.2: Schematic view of the collision process for an antiproton traversing
an Al cluster in the ground state in the first cycle and then turning back and
traversing again the cluster, now excited, in the second cycle.

From F,(t) we obtain the value of the energy lost by the antiproton Ejuss:

Fiow = —v / T B (5.2)
0
In these equations, we follow the notation of Chapter 3. In addition, we consider
three other different time spots 7 for the second cycle to start: 1003.5, 1005, and
1010 a.u. The purpose of using different time delays is to check the sensitivity
of the final result to the dynamics followed by the electron density in the cluster
excited state. With our choice of time delays, the antiproton reaches the excited
cluster respectively A7 = 7, 10 and 20 a.u. of time later than in the reference
calculation. Depending on the value of A7, the antiproton will start to cross the
surface of the excited cluster meeting a minimum or a maximum in the electronic
density oscillations, or an intermediate state. The density oscillations will be

discussed later. The results for the energy loss are summarized in Table 5.1.

Table 5.1: Energy loss Flos (in a.u.) of an antiproton crossing the spherical Al
cluster in the ground state or in an excited state.

15t collision

2nd collision
AT =0

284 collision,

AT =T au

284 collision,
At =10 au

274 collision,
ATt = 20 au

Eloss

0.8527

0.7583

0.8318

0.8099

0.7554

The first interesting conclusion of the results of Table 5.1 is that the energy

loss of the antiproton crossing the excited cluster is consistently lower than the
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corresponding value for the antiproton colliding with the cluster in the ground
state. There are two reasons for the decrease of the energy loss. One reason
is that, after the first collision, the cluster has emitted an amount of electronic
charge that roughly corresponds to one electron. This means that during the
second collision the antiproton is interacting with a smaller number of electrons
and therefore loses less energy. In order to check the relevance of the change in the
electronic charge of the cluster, we performed an additional calculation, namely
that of the energy loss in a positively charged cluster which contains 17 electrons
and is in its ground state. The obtained value of 0.8211 a.u. is lower than the
value of the energy loss in the neutral cluster, which is given in the Table 5.1 and
is equal to 0.8527 a.u. The difference between these two results is around 4%.
However, the difference is not as big as in the case of time delays A7 = 0 and
20 a.u. given in the table, which is up to 11% of the value of the energy loss in
the first collision. This allows us to conclude that the emission of one electron
from the cluster only partially explains the observed decrease of energy loss in

the second collision.

Another reason for the lowering of the energy loss is that the cluster has
been excited after the first collision with the antiproton. Namely, the electronic
density of the cluster is starting to oscillate in time with a given frequency. As we
mentioned before, depending on the value of the time delay A7, the antiproton
meets different spacial locations of the electronic density oscillations at the surface

of the cluster in the second collision.

The total forces F, experienced by the antiproton during the first collision
and during the second collision at different time delays A7t are shown in Fig. 5.3
as a function of the projectile position. Large negative values of z,, correspond
to positions of the antiproton before each collision with the cluster. The two
strong features in F, correspond to the antiproton crossing the cluster surface.
Away from the cluster, the antiproton is attracted by the induced dipole. Inside
the cluster, the electronic density rearranges in order to screen the strong pertur-
bation created by the moving antiproton. The force inside the cluster oscillates
about a mean value that roughly corresponds to the effective stopping power for

this particular velocity of the projectile (v = 0.5 a.u.) [5].

For different time delays A7 of the second collision, the values of the energy
loss slightly vary. These differences are due to the different forces experienced

by the antiproton (Fig. 5.3). In order to illustrate this, we show the difference
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Figure 5.3: Force on the antiproton colliding with the cluster, F},, in the first cycle
and in the second cycle for different time delays 7 between collisions as a function
of the projectile position z,,. Dashed lines show the borders of the cluster (Ry =
5.43 a.u.).
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Figure 5.4: Difference in the force between the first and second collision of the
antiproton with the cluster, AF,, for different time delays 7 between collisions
as a function of the projectile position z,,. Dashed lines show the borders of the
cluster (R = 5.43 a.u.).
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in the force between the first and the second collision AF, = F!¢ — F2nd for
different values of A7. Here F!* is the force felt by the moving charge colliding
with the non-excited metal cluster, which is equal for all 7; 24 is the force felt
by the antiproton colliding with the excited cluster. AF, is shown in Fig. 5.4
as a function of the antiproton position. The curves in Fig. 5.4 show how the
force felt by the antiproton changes depending on the time at which the second

collision starts.

We can also analyze the different values of the energy loss at different time
delays A7 looking at the total energy of the cluster. We show the energy in
Fig. 5.5 as a function of the antiproton position. From Fig. 5.5 we can see that
the total energy of the cluster is increased by the collision. This increase in energy
is the value of the energy transferred by the antiproton to the cluster or, in other
words, the energy lost by the antiproton. We can see as well that, in all cases, the
energy loss after the second collision is lower than after the first collision. The
curves for A7 = 0 and for A7 = 20 a.u. are similar. This is consistent with the
values of the energy loss given in Table 5.1 for these two cases. We can also see
the longer range of the cluster-antiproton interaction during the second collision.

This is due to the net positive charge of the excited cluster.

We can understand the dependence of the energy loss on the time delay be-
tween collisions by looking at the time evolution of the induced electronic density.
Figure 5.6a shows the change in electronic density An(z,p = 0,t) = [n(z,p =
0,t) —n(z,p = 0,t = 0)] inside the cluster in units of the background density no,
along the z—axis and as a function of time. The results are shown for the calcula-
tion with A7 =0. The time interval in Fig. 5.6a is chosen to include the moment
at which the second collision of the antiproton with the cluster takes place. In the
figure, the projectile moves from the right to the left. The second collision starts
at t =~ 1890 a.u. We clearly see the negative change in density, originated by
the Coulomb repulsion between the incident antiproton and the cluster electrons.
From Fig. 5.6a we can see that the excitation created by the moving charge in the
cluster after the first collision leads to oscillations in the induced electronic den-
sity: minima and maxima in the induced density are observed before the second
collision. Depending on the time delay between collisions A7, the impact of the
incoming antiproton with the previously excited cluster can bump into a mini-
mum or a maximum of the electronic density oscillations. In the first calculation

(A7 = 0) and when the time delay is A7 = 20 a.u., the antiproton starts to cross
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Figure 5.5: Total energy of the cluster Fi for different collisions and for different
time delays A7, as a function of the antiproton position z,,. All the energy curves
corresponding to the second crossing are referred to the value of the energy prior
to the first crossing when antiproton is far from the cluster. Dashed lines show
the borders of the cluster (Rq = 5.43 a.u.).

the excited cluster when there is a maximum in the electronic density oscillations
at the surface of the cluster (the change in density in Fig. 5.6a is positive). In
the case of A7 = 10 a.u. the second crossing finds a minimum of the electronic
density oscillations at the cluster surface. The time delay A7 = 7 a.u. is chosen
to have a case in which the second crossing falls neither on the minimum nor on
the maximum of the change of the electronic density but in-between these two
situations. Depending on this circumstance, the value of the energy lost by the

antiproton varies.

From Fig. 5.6a, we can also see that the minima and maxima in the induced
electronic density become more pronounced after the second collision, indicating
that the cluster is further excited by the second collision. This can also be
seen in Fig. 5.6b where the change in density is shown as a function of time
for the particular value of z = 4 a.u., marked with a dashed line in Fig. 5.6a.
The amplitude of the electronic density oscillations increases after the second
collision. This is also observed in Fig. 5.6c and Fig. 5.6d where we illustrate
the density distribution in the cluster before (t = 1812 a.u.) and after (t =

1992 a.u.) the second collision. The change in density is plotted in a plane in
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Figure 5.6: (a) Time evolution of the induced electronic density inside the cluster
along the z—axis (p = 0.02 a.u.) including the time at which the antiproton
crosses the excited cluster. The color code shows the change in density [n(z, p =
0,t) —n(z,p =0,t = 0)] in units of the background density ny. The dashed line
in panel (a) indicates the position z = 4 a.u., for which, in panel (b), we show
the change in density as a function of time. Dashed line in panel (b) indicates
the moment when the second collision starts. (c) and (d) show the change in the
electronic density [n(r,t) — n(r,0)] of the spherical cluster (color codes) in (p, z)
coordinates at times ¢ = 1812 a.u. and ¢ = 1992 a.u. respectively.

(p, z) coordinates with the center of the cluster at (p = 0,z =0). The negative
and positive peaks in the right panel (Fig. 5.6d) are much more intense than
in the left panel (Fig. 5.6¢). These pronounced oscillations show that, after the
second collision, the oscillations of the induced electronic density are stronger.

The excitation created by the second antiproton enhances that created during
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the first collision. However, the similar distribution of the induced charge seems

to indicate that similar electronic modes are excited in both events.
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Figure 5.7: Dipole power spectra |P(w)|? (arbitrary units) for the excited cluster
after one collision (red solid line) and after two collisions (black dashed line).
Frequency is shown in a.u.

In order to calculate the frequency of the density oscillations we perform a
Fourier analysis of the time evolution of the dipole moment P(t) — P(w) created
by the electronic density in the excited cluster. The Fourier transform is done for
two different cases: a) after one single collision and without including the second
collision, and b) after the two collisions. In this analysis we use the time evolution
of the dipole during ~1200 a.u after each collision and an exponential mask
function (centered in the middle of such interval) to avoid spurious effects due to
the use of finite time interval. The results for the respective dipole power spectra
|P(w)|* are shown in Fig. 5.7. Two peaks are shown by arrows at frequencies w =
0.261 and 0.284 a.u. (corresponding periods of these frequencies are 7' ~ 24.1 and
22.1 a.u.). They roughly correspond to the expected value of the plasmon energy
in the cluster: We calculate the plasmon frequency for a perfect metal sphere
from the value of the density ng as wy = w,/v3 = \/W (Mie resonance
frequency), which is generally referred to as a surface plasmon [74|. For an Al
cluster (rs = 2.07) this value is ws = 0.34 a.u. In our calculations the obtained

frequency is lower than the frequency given by the classical Mie theory. This
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is due to the small size of the cluster and because we use quantum theory for
the calculation of the frequency. A red shift with respect to its classical Mie
value is frequently observed in clusters of simple metals [22, 72, 99, 100]. In
Fig. 5.7 we also see that the plasmon peak is shifted to higher frequencies after
the second collision. This behavior is consistent with the non-linear shift of
the plasmon frequency under non-perturbative conditions [98]. The blue shift
of the frequency after the second collision is in part related to the emission of
electronic charge from the cluster due to the interaction with the antiprotons.
It was observed that the resonance position moves to higher frequencies when
increasing the positive charge of the cluster [100]. Both the non-perturbative
effect and the charged-cluster effect hence contribute to the blue shift of the
plasmon frequency. Lower-energy excitations are also present in the spectra and

can be attributed to excitations of electron-hole pair character [98].

5.1.2 Conclusions

In summary, we have calculated the energy loss of an antiproton colliding
with a small Al cluster, both when the cluster is in the ground state and when
the cluster is in an excited electronic state. We have shown that the antiproton
loses less energy when penetrating a cluster previously excited. The lowering of
the energy loss is related not only to the fact that the cluster is transferred to an
excited state, but also to the fact that the cluster loses one electron during the
first collision with the antiproton.

We have also shown that the projectile creates a plasmon in the cluster and
that the plasmon peak shifts to higher frequencies in the second collision. This
corresponds to the observed larger amplitude of the electron density oscillations
in the cluster after the second collision of the antiproton with the cluster. The
shift of the plasmon peak to higher frequencies is partially due to the emission of

one electron from the cluster, which thus becomes positively charged.
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5.2 Vicinage effect in the energy loss
of antiprotons traversing Na and Al

clusters of different sizes

Until now we considered only the interaction of a single projectile with a
target. Indeed, if, in a given experiment, the projectiles are sufficiently separated
among each other, each collision can be treated separately. Under such conditions
there is no interference between the interactions of different particles with matter.
However, if the projectiles move through the solid in close proximity to each other,
they will interact in a combined way with the target electrons. In this case new
physical phenomena can appear.

The difference between twice the energy loss of a single particle interacting
with a target and the energy loss of two particles, traveling in close proximity to
each other, is usually called in this context the vicinage effect. In this section,
we use TDDF'T to study the vicinage effect in the energy loss of two antiprotons.
We analyze in detail the energy loss of each antiproton individually and we show
that under certain conditions the second antiproton is accelerated while the first
one is slowed down. This leads to an effective attraction between the antiprotons
due to the dynamic screening of the antiprotons inside the cluster.

One interesting phenomenon arising from the correlated motion of charges
through the solid is the pairing of particles. This is in a way related to the forma-
tion of the so-called Cooper pairs in superconductivity — pairs of electrons bound
together due to attractive forces originated by the dynamic polarization of the
solid. In our study the pair of antiprotons is formed because of a similar reason.
The antiprotons moving inside the metal cluster polarize the metallic medium.
As a result the Coulomb potentials of the antiprotons are completely screened
at long distances. The polarization leads to the appearance of an oscillating ef-
fective potential between the antiprotons with attractive regions. The difference
between our system and the Cooper pairing of electrons is that our particles are
external to the metallic target. Additionally, for standard superconductors, the
mechanism for pairing is related to the excitation of phonons in the solid, while
here we only consider the effect of the screening by the valence electrons of the
metal. An additional difference is the mass of the particles, since the antiprotons

are almost 2000 times heavier than the electrons.
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Another interesting analogy is the formation of dust clusters in plasma physics.
Clusters of dust particles of the same charge can be formed due to the effective
attractive forces in plasmas [101, 102]. The origin of the dust-dust attraction is
the wake behind the dust originated by the ion flow over the dust grain. In our
case, at high velocities of the antiproton inside the cluster, the screening cloud
has the form of a wake, since the cluster electrons are too slow to be able to
rearrange in response to the antiproton’s movement. The dust-dust interaction is
a complex phenomenon, which is very important in the physics of dusty plasmas.
Our study may be therefore useful to understand how the dynamic screening of
massive particles in electronic media can influence the correlated motion of these

particles under different conditions.

e

Figure 5.8: Sketch of the process treated in this section. Two antiprotons move
at a distance d from each other and cross the spherical cluster through the geo-
metrical center.

Here we consider as targets three sodium clusters with 20, 106 and 1074
valence electrons, and two aluminum clusters with 18 and 556 electrons. The
antiprotons are chosen as projectiles and are modeled as negative (Q = —1)
point charges. Initial positions of the projectiles are at distances zy and (2o + d)
from the cluster center, such that the interaction with the cluster is negligible.
The antiprotons move along the z—axis at a distance d from each other and cross
the cluster through the geometrical center (see scheme in Fig. 5.8).

We perform our calculations in two different approximations. In the first
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approximation, we consider that the two charges move with constant velocity v at
a constant distance d from each other. We calculate the force on each antiproton
F, from the equation (5.1) at every time step of the propagation. From the force
we obtain the energy loss of each antiproton using equation (5.2). The average
energy loss per unit path length inside the cluster is the average stopping power

of the material:
o Eloss

2Ry’

The constant velocity approximation allows for the analysis of the velocity de-

S (5.3)

pendence of the energy loss.

In the second approximation, we perform the real dynamics of two antipro-
tons in the cluster. In this case we allow for the velocity to change according
to Newton’s equations of motion, including the Coulomb repulsion between the
projectiles. The antiprotons start to move with initial velocity vy at a distance d
between them. Then we look at how velocities of both particles and the distance

between them evolve in time, depending on the initial conditions.

5.2.1 Induced density and forces

When two antiprotons move through the cluster, the electronic density of the
cluster starts to rearrange in order to screen the negative charges of projectiles.
To illustrate the process under study, we show in Fig. 5.9 the snapshots of the
change in electronic density of the cluster perturbed by one or two antiprotons.
In Fig. 5.9a the change in the density is induced by one antiproton moving with
velocity v = 1 a.u. In Fig. 5.9b the change in the density is induced by two
antiprotons moving with velocity v = 1 a.u. at a distance d = 22 a.u. between
them. From both plots we can see that the antiprotons moving with velocity
1 a.u. (twice the Fermi velocity for Na, vp = 0.48 a.u.) create a wake pattern
behind them. From Fig. 5.9b we can see that, in this particular case, the second
antiproton will experience a larger stopping force than the first one, because of
the large accumulation of electrons on its’ way. This is conspicuous as well if we
compare the forces acting on both antiprotons.

In Fig. 5.10 we show the total force acting on the moving antiprotons during
the collision process as a function of time. As it was previously mentioned, the up

and down peaks correspond to the crossing the surface in and out of the cluster,
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Figure 5.9: Snapshots of the induced electronic density inside the Najg74 cluster
in response to the movement of a) one antiproton and b) two antiprotons (d = 22
a.u.), in (z, p) coordinates. Velocity of antiprotons is 1 a.u. Black line shows the
cluster border.
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because we include the effect of the positive background in the force. Inside the
cluster the force is roughly constant and corresponds to the average stopping

power of the metal.
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Figure 5.10: Cluster-induced force acting on the antiprotons traversing a Najgr4
cluster as a function of time. Distance between the antiprotons is d = 22 a.u,
velocity is v = 1 a.u. Radius of the cluster is 40.96 a.u.

As was expected, the antiprotons experience different forces. The first an-
tiproton enters the cluster when the cluster is in the ground state and creates
electronic excitations in the cluster which in turn have an influence on the sec-
ond antiproton. This influence strongly depends on the time delay between the
entrance of the first antiproton and the entrance of the second antiproton in the
cluster, or in other words, on the distance between them. The velocity of the
moving particles is also an important parameter. In the particular case of the
distance d = 22 a.u. between the antiprotons, moving with velocity v = 1 a.u.
(Fig. 5.10), the second one experiences a larger stopping force than the first one.
This results in a larger energy loss of the second antiproton. We will show that,
depending on the inter-particle distance, the energy loss of the first antiproton
can be larger or smaller than the energy loss of the second one.

In the next subsection, we analyze in detail the vicinage effect in the energy
loss of two antiprotons travelling at different distances from each other through

Na clusters of different sizes. The influence of the velocity is investigated. For
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the sake of comparison we show the results for the vicinage effect in Al as well,

for one particular velocity.

5.2.2 Vicinage effect in the constant velocity approxima-

tion

The quantity of interest to measure the vicinage effect in the energy loss of
two particles is the stopping power ratio. In our particular system, the stopping
power ratio is the ratio between the total stopping power of the cluster for two

antiprotons Si42 and twice the stopping power for a single antiproton Sginge:

Sit2
R = m. (5.4)

In Fig. 5.11 we show the stopping ratio as a function of the inter-particle
distance for two antiprotons moving through Na clusters with 20, 106 and 1074
electrons. We consider three different velocities of the antiprotons to explore: a)
the low velocity regime (v = 0.5 a.u.), in which the stopping power in metallic
media is linear with velocity; b) the intermediate regime (v = 1 a.u.), in which the
maximum of the stopping power in Na appears, and c¢) the high velocity regime
(v =2 a.u.), for which linear theory should be applicable.

In all the results presented in Fig. 5.11 the stopping ratio has a similar behavior
as a function of d. Starting from R > 1 at d = 0, it then decreases and has a
minimum, which is different for different velocities. After the minimum, the
stopping ratio increases and at large d is approaching (or is oscillating around)
the value of R = 1.

In the analysis of the stopping power ratio we have to take into account two
limits for the distance d between the antiprotons. When the distance d — 0,
the two particles move as one particle with charge Z = —2. In linear theory
the stopping power scales as Z2. This means that in the limit of high velocity
(linear regime) the stopping ratio R for d = 0 should converge to R =~ 2. In
Fig. 5.11(c) we see that at velocity 2 a.u. and at distance d = 0 the stopping ratio
almost reaches the limit of the linear theory. However, at lower velocities, where
non-linear effects are important, the value of R at d = 0 is different.

When the distance is very large (d — 00), there is no interference in the inter-

actions of the antiprotons with the electronic medium of the cluster. Therefore
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Figure 5.11: Stopping power ratio, R, in Na clusters as a function of the inter-
particle distance d. Velocities of the antiprotons are: (a) 0.5 a.u, (b) 1 a.u., and
(c) 2 a.u. Points show the calculated data and solid lines show the numerical
interpolation.
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the stopping power of each antiproton should be equal to that of the single an-
tiproton and the stopping ratio should converge to 1. We see that at velocity 0.5
a.u. (Fig. 5.11(a)), at large distances between the projectiles, the stopping ratio
is roughly equal to 1, except for the case of the smallest Nag, cluster. In such a
small jellium cluster the quantum size effects play an important role. For a small
Nagq cluster, the dynamics after collisions always corresponds, even at low veloc-
ities, to the creation of a few excitations with well-defined energies (frequencies).
For larger clusters, however, we excite many more different transitions and there
is not a well-defined oscillatory behavior until we are able to excite the plasmon,
which is a well-defined collective excitation of the whole cluster.

At larger velocities v > vp (Fermi velocity in Na is 0.5 a.u.) the stopping
ratio oscillates around one. The oscillations have the same amplitude for the
clusters Najos and Najg74, and the amplitude is twice larger in the case of v = 2
a.u, as compared with the case of v = 1 a.u. This means that the oscillations are
characteristic for this particular metal, and are not determined by the finite size
of the cluster. The frequency of the oscillations is the same as the frequency of
the collective charge density oscillations (discussed later, Fig. 5.14). This allows
us to conclude that the origin of the oscillations of the stopping power ratio is the
excitation of the plasmon mode created in the cluster by the moving antiprotons.
The bulk plasmon frequency of an electron gas with a given ry is calculated as
Wp = \/W In the case of Na (r; = 4 a.u.) this nominal value is equal to
wp ~ 0.22 a.u. Similarly, the frequency of the oscillations in our case is w ~ 0.23
a..

In Fig. 5.12 we compare the stopping power ratio, R, for two antiprotons
moving through the Najgz4 cluster with different velocities. The stopping ratio
is shown as a function of the unitless parameter d/v(7},), where inter-particle
distance d is divided by the velocity of the antiprotons v and by the period of
plasmon oscillations T}, = 27 /w,,. For distances d > 100 a.u. the stopping power

ratio is obtained by the fitting to an analytical function
Rgi = a1 exp(—aad) cos(wd + Dgpigt), (5.5)

where w is the frequency of the plasmon oscillations created in the cluster, d
is the distance between the antiprotons, and the parameters aq, as, and Dgy;g
are chosen numerically to fit the calculated stopping ratio. Figure 5.12 better

illustrates that at high velocities v > vp the frequency of the stopping power
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Figure 5.12: Stopping power ratio, R, for antiprotons in Najgz4 cluster as a func-
tion of the parameter d/(vT},). Velocities of the antiprotons are 0.5, 1, and 2 a.u.
Points show the calculated data and solid lines show the numerical interpolation
for d < 100 and the fitting function for d > 100.
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Figure 5.13: Stopping power ratio, R, for antiprotons in Al clusters as a function
of the inter-particle distance d. Velocity of the antiprotons is 0.5 a.u. Points show
the calculated data and solid lines show the numerical interpolation.
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Figure 5.14: Change in electronic density, An(z,t), of the Najgr4 cluster along
the z—axis induced by the moving antiprotons as a function of time. a) d = 22
au, v =1au b)d=20au v=0.5au Radius of the cluster is 40.96 a.u.
Arrows indicate when the first and the second antiprotons enter and leave the
cluster.
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ratio oscillations do not depend on the velocity of antiprotons.

We have also studied the vicinage effect in the energy loss of two antiprotons
moving through Al clusters of two sizes: Al;g and Alssg. In Fig. 5.13 we show the
stopping power ratio R for two antiprotons moving with velocity 0.5 a.u. The
behavior is very similar to the one in Na clusters for the same velocity. Again, in
the smallest cluster, we see some oscillations at large d due to the quantum size
effects, but in the Alssg cluster the stopping ratio has almost no oscillations and
it roughly equals R ~1.

The plasmon oscillations can be seen in Fig. 5.14(a), in which we show the time
evolution of the electronic density along the z—axis. The time evolves along the
vertical axis. The color code shows the change in electronic density normalized
to the density of the positive background (3.2) and calculated at p = 0.02 a.u.,
i.e., the quantity An(z,t) = [n(z,t) — n(z,t = 0)]/ng. The two antiprotons move
with constant velocity at a distance d = 22 a.u. from each other. The trajectories
of both antiprotons inside the cluster are clearly seen in Fig. 5.14(a) as a large
negative change in density. After both particles leave the cluster the latter is left
in an excited state. The oscillations of the electronic density inside the cluster
after the collision are the plasmon oscillations. If we look at panel (b) of Fig. 5.14,
which corresponds to a velocity 0.5 a.u. (= vr) of the antiprotons and a similar
inter-particle distance d = 20 a.u., we can see that the plasmon oscillations do
not appear. In this case we only find the creation of charge wave-front that is
reflected back and forth between the cluster boundaries and moves roughly with

the Fermi velocity of the system.

5.2.3 Particle-resolved analysis of the energy loss

We can analyze in further details the stopping power for each particle indi-
vidually. In Fig. 5.15 we show the stopping power of the Najgz4 cluster for the
first (S7) and for the second (S3) antiprotons moving with velocity v = 1 a.u. as
a function of the inter-particle distance d.

At short distances d, the stopping power for the first antiproton is larger,
as compared with a single antiproton crossing the cluster. This is because the
second antiproton, moving behind, pushes ahead electronic density, towards the
first antiproton. The latter finds then a higher electronic density in its way and

therefore is stopped more. As the distance between the antiprotons increases, the
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difference between the stopping power for the first antiproton and for a single
antiproton diminishes and at d > D (D = 82 a.u. in this case) these quantities
are equal.

The motion of the second antiproton is affected by the plasmon created in
the cluster by the first antiproton. From Fig. 5.15 it is clear that the oscillations
observed in the total stopping ratio (Fig. 5.11 (b) and (c)) are due to the stopping
of the second antiproton. At large d the stopping power for the second antiproton
S, oscillates with the plasmon frequency around S;. At short distances d, the
stopping power for the second antiproton is smaller than for the first one and at
some d it even becomes negative. This means that, at some distances from the
first antiproton, the second one can be accelerated instead of being slowed down.
In the particular case of the velocity 1 a.u, shown in Fig. 5.15, the minimum of
the stopping power is around d = 12 a.u. The second antiproton is accelerated
because the first antiproton repels the electrons of the cluster from its path,
leaving behind an area of positive charge that attracts the second antiproton.
Otherwise said, the second antiproton is affected by the attractive part of the

wake created by the first antiproton.

We have shown in Fig. 5.14 the change in the electronic density of the cluster
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Figure 5.15: Stopping power of the Najgr4 cluster for the first and the second
antiproton moving with velocity v = 1 a.u. as a function of the inter-particle
distance d.
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Figure 5.16: Change in electronic density An(p = 0, z,t) of the Najgr4 cluster
along the z—axis induced by the moving antiprotons as a function of time. The
induced density is normalized to the positive background density. The distance
between the antiprotons is 40 a.u. Velocity of the antiprotons is 1 a.u. Radius of
the cluster is 40.96 a.u. Arrows indicate when the first and the second antiprotons
enter and leave the cluster.

in response to the movement of two antiprotons at a distance d = 22 a.u. At this
distance, as can be seen in Fig. 5.15, the stopping power for the second antiproton
is larger than the stopping power for the first one (S > S7). This can be well
understood from Fig. 5.14, in which we see that when the second antiproton enters
the cluster it passes through an area with excess of negative charge. Therefore,
it experiences a larger stopping force than the first antiproton. In Fig. 5.16 we
also show the change in electronic density of the cluster, but in this case the
antiprotons move at a distance d = 40 a.u. At this distance S, < S;. As we can
see in Fig. 5.16, in this case the second antiproton enters the cluster when there is
less negative charge (negative change of the electronic density). Thus, depending
on the delay between the passage of the two particles through the cluster, the
second particle finds a minimum or a maximum (or an intermediate state) of the

plasmon oscillations and therefore the stopping power for the second particle is
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smaller or larger than (or equal to) the one of the first particle.

5.2.4 Real dynamics

In the case of two charges moving through the Na cluster with velocity 1 a.u,
the minimum of the stopping power for the second antiproton is at d = 12 a.u.
(Fig. 5.15). At this value of d the stopping is negative, which means that the
second antiproton is accelerated. This result is obtained in the constant velocity
approximation where the Coulomb repulsion between the two antiprotons is not
included in the dynamics. In this subsection we consider the case of the real
dynamics of the antiprotons. The antiprotons start to move with velocity vg = 1
a.u. at a distance dy = 12 a.u. from each other. And then we allow for the
velocities of both particles to change according to Newton’s equations of motion,
in which we include the cluster induced force Fi; on each antiproton as well as
the repulsive Coulomb force between them F},;. The mass of the antiprotons is
m = 1836 a.u. We will show in the following that the effect of the acceleration
of the second antiproton remains, because the Coulomb forces created by both

antiprotons on each other are screened inside the cluster.
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Figure 5.17: Total force, Fi., acting on the antiprotons traversing a Najg74 cluster
as a function of time. Initial velocity of both antiprotons is vy = 1 a.u. Initial
distance between antiprotons is dyp = 12 a.u.
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Figure 5.18: Velocity of the antiprotons traversing a Najg74 cluster as a function
of time. Initial distance between antiprotons is dq = 12 a.u.
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Figure 5.19: Distance between two antiprotons traversing a Najg74 cluster as a
function of the position of the center of mass. Dashed lines show the borders of
the cluster.

In Fig. 5.17 we show the total force acting on each antiproton Fio, = Fy+ Fin

as a function of time. Far from the cluster, the only non-zero component of the
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force is the Coulomb repulsion between the antiprotons. Inside the cluster, the
force on the first antiproton is negative, and the antiproton is slowed down. How-
ever, the force acting on the second antiproton is positive, i.e., it is an accelerating
force. The plot of the velocity as a function of time confirms that (Fig. 5.18).
At the beginning, when the antiprotons move towards the cluster the first an-
tiproton is accelerated, while the one behind is slowed down, as a consequence of
the Coulomb repulsion between them. When the particles approach the cluster
surface and further move inside the cluster, the situation is reversed. Now the
second antiproton is accelerated, while the first one is slowed down. As a result,
the distance between the two particles decreases.

The distance d as a function of the position of the center of mass of the
two antiprotons is shown in Fig. 5.19. We can see that inside the cluster the
distance between the antiprotons starts to decrease and it continues to decrease
even outside the cluster. Although outside the cluster the velocity of the first
particle grows and the velocity of the second particle drops, the first particle
is slower than the second one still for a long time (Fig. 5.18). Thus, we can
conclude that the force due to the interference between the dynamic screening of
the antiprotons inside the cluster leads to an effective attraction between these

two negatively charged particles.

5.2.5 Model calculation in an extended system

We have shown that the screening of two antiprotons inside the cluster leads
to attraction between them. In the particular case considered in the previous
subsection, the distance between the antiprotons is reduced by almost 0.5 a.u.
But the size of the cluster is relatively small (the diameter of the Najg74 cluster
is 82 a.u.) and therefore the reduction of the distance is also small. One would
expect that in a large metallic system (thin film or metal surface) this effect should
be much stronger. Since it is complicated to treat such a large systems with our
method, we resort to the help of classical dynamics using effective inter-particle
potentials obtained from our quantum mechanical results. Using Velocity Verlet
algorithm we investigate how the distance between two particles would change if
they move in an extended metallic system. We consider that the dynamics of the
antiprotons is ruled by the Coulomb interaction between them as well as by the

stopping force acting on the antiprotons in a Najgz4 cluster (Fig. 5.15) due to the
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dynamic screening. The latter is a function of the inter-particle distance. Thus,
the antiprotons move in an effective potential that includes both interactions
mentioned above. Our model, however, will be oversimplified and only valid for
relatively short dynamics (still much larger than those that we can treat with
TDDEFT calculations) since we will neglect the effect of stopping in the center of
mass velocity and only focus on the effect of the effective inter-particle potential
in the motion of the relative position of the antiprotons.

The effective potential is shown in Fig. 5.20. The figure also includes the pure
Coulomb potential as a function of the inter-particle distance. At d — 0 the
effective potential is of the Coulomb form. At large d it oscillates around zero.
Unlike the Coulomb potential, which is always repulsive, the effective potential

in our case is attractive for some values of d.
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Figure 5.20: Effective potential in which two antiprotons move as a function of
the parameter d/(vT),) for three different velocities of the antiprotons. Here, v
refers to the center of mass velocity. The two antiprotons are assumed to move
with velocities close to this values.

We performed the Velocity Verlet calculations for two antiprotons with initial
velocity 1 a.u. and different initial distances between them, for a time of 5000 a.u.
inside the metal. The results are presented in Fig. 5.22 for a set of selected values
of the initial distance d between the antiprotons, indicated in Fig. 5.21. In the
upper panel of Fig. 5.22 the initial distance is dy = 2 a.u. At such short distance

the effective potential is very repulsive (see Fig. 5.20) and as a consequence the
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Figure 5.21: Effective potential for antiprotons moving with velocities close to
v = 1 a.u. and pure Coulomb potential as a function of the distance between the
antiprotons. Blue lines indicate the values of d used for the Verlet calculations.
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Figure 5.22: Distance between the antiprotons as a function of time for three

different values of the initial distance, namely dy=2, dy=3, and dy=12. The
initial velocity of the antiprotons is vy = 1 a.u.

antiprotons move away from each other over the full trajectory. In the middle

panel the antiprotons start to move at a distance dy = 3 a.u. from each other.
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Under these initial conditions, at first, the distance between the two particles
grows. When the distance reaches the value of approximately 12 a.u., it starts to
decrease. Subsequently, under our hypothesis that disregards the effect of losses
in the velocity and, thus, in the effective potential for this relatively short prop-
agation time, we observe an oscillating behavior of the relative distance between
the antiprotons. In the lower panel, the initial distance is dy = 12 a.u. Here
we also observe the oscillations of the distance in time, but in opposite phase as
compared with the previous case. This behavior is consistent with the form of
the effective potential. The oscillating character of the effective potential leads
to the pairing of the antiprotons. As a consequence and according to our simple
model, we conclude that two antiprotons may move through a metallic medium
for a long time in a correlated way. Of course, in a more refined model, under
development at the moment, the pairing of the particles only takes place for a

finite time interval.

5.2.6 Conclusions

In this section we presented the study of the interaction of two antiprotons
with metallic clusters. We have studied the vicinage effect in the energy loss
of the antiprotons colliding with metal clusters of different sizes. We calculated
the stopping power ratio for three different velocities of the antiprotons and for
a wide range of distances d between the particles. We have shown that, at low
velocities of the antiprotons and at large distances between them, the stopping
ratio is roughly equal to 1. At intermediate and high velocities the stopping ratio
oscillates around 1 and the origin of the oscillations lies on the plasmon created
by the antiprotons in the metal. At short distances between the antiprotons the
stopping ratio has a minimum that corresponds to different values of d depending
on the velocity.

Furthermore, we have studied in detail the energy loss of each antiproton in-
dividually and we have shown that the first antiproton creates a plasmon which
affects the motion of the second antiproton. We have shown as well that, at some
distances between the antiprotons, the second one can be accelerated. We proved
this by performing a dynamic calculation in which we allowed for the velocities
of both particles to change according to Newton’s equations of motion. This

calculation includes the cluster induced force on each antiproton as well as the
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Coulomb force between them. As a result we have shown that the Coulomb repul-
sion between the antiprotons inside the cluster is dynamically screened and that,
under certain initial conditions, an effective attraction between the antiprotons
can appear. We think that this is a quite remarkable result. Although there has
been much speculation to date on the possibility of trapping charged particles in
the wake of a moving projectile in a metallic medium, most of those results were
based on models where the simultaneous effect of the two particles in the medium
was approximated. To the best of our knowledge this is the first non-perturbative
calculation at the TDDFT level of theory that predicts that such pairing among
equally charged particles can be obtained.

Finally we have studied how two antiprotons would interact if they move in
an extended metallic system using a very simplified model fitted to our first-
principles results. Using Velocity Verlet algorithm we have shown that the ef-
fective attraction between two antiprotons due to the screening processes inside
the metal may lead to the pairing of particles. Under certain initial conditions
two antiprotons can move in a correlated way inside the metal for a long time.
We are currently developing a more sophisticated model that accounts for the
overall stopping of the pair of particles and, thus, gives rise to pairing during a
finite time. Still, according to our estimations, this time could easily exceed the

picosecond time scale depending on the initial conditions.
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5.3 Vicinage effect in the energy loss of hydrogen

dimers

In the previous chapters we presented the studies of the interaction of charged
particles with metals. We used the SJM to represent metallic targets. Here we
apply SJM to study the problem of the stopping of hydrogen dimers, and how it
differs from that of a single hydrogen atom. Our calculations are then compared to
experimental results obtained in different types of targets, including SiO,, Al;Os3,
TiOs and carbon thin films. These targets are very different from the metal
particles considered so far. Indeed, the use of the SJTM can be questioned for such
insulating and semiconducting materials. However, under certain conditions, the
jellium model gives reasonable results for stopping provided that the electronic

density is properly defined.
The study of the vicinage effect in the energy loss of a hydrogen dimer Hy

moving inside this kind of materials is motivated by the existence of experimental
measurements for hydrogen ions Hj colliding with SiO, [61]. In the experiments
the main observation is that for low projectile energies the stopping power ratio
R < 1. However, after some threshold velocity, at high energies, the stopping
ratio becomes R > 1. The transition region from R < 1 to R > 1 is quite
sharp. In their paper, Shubieta et al. [61] explain this transition as associated
to the plasmon excitation threshold. Using TDDFT we calculate the stopping
power ratio for the hydrogen dimer Hy moving with different velocities through a
spherical cluster and give an alternative explanation for the behavior of R trying
to disentangle the contribution of each constituent atom in the dimer to the total
stopping power. We compare our results with the already published experimental
stopping ratio for hydrogen ions Hj colliding with SiO, [61] and also with new
experimental results for different targets, obtained by the same authors.

We also study the effect of the charge-state of the projectile in the stopping
ratio. From previous studies it is known that, depending on the impact param-
eters (incident energy, target thickness) the hydrogen ion Hy can either lose the
bound electron or to be neutralized, while moving inside the solid [103, 104]. We
consider three different charge-state fractions for the projectile, namely H *, H
and Hy. We keep the distance between the two protons in the dimer constant

for all three charge-state fractions. The target material in our system of interest
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is a thin film of about 10 — 25 A. Thus, the distance between the dissociated
fragments do not increase significantly and therefore the two fragments move in
a correlated way. We calculate the stopping power for the hydrogen dimer in all
three possible charge-states and analyze the effect of the charge-state in detail.
The same is done for the H* and H fractions of the hydrogen atom. It should be
noted that these are the initial charge-states of the projectiles before entering the
cluster. Inside and after leaving the cluster the charge-states can be modified.
In this section we use the same methodology as in the previous one with
the only difference that now we can set different orientations of the dimer with
respect to the direction of motion (z—axis). This became possible thanks to some
modifications in the WPP code made by the author of the code, Dr. Andrey
Borissov, which allows us to perform fully three-dimensional calculations in the
cylindrical coordinates (p, ¢, z). A schematic view of the process is shown in
Fig. 5.23. The distance between the two protons in the dimer is fixed and equals
d = 2 a.u., which corresponds to the distance between them in the experiment.
The velocity v of the projectiles is kept constant during propagation. The angle
© between the axis connecting the two protons and the z—axis determines the

orientation of the dimer and is fixed in time.

Figure 5.23: Sketch of the process. A hydrogen dimer (with a bond length d =
2 a.u., corresponding to the equilibrium bond length of Hj) moves along the
z—axis with a constant velocity v and crosses the spherical cluster through the
geometrical center. The axis of the hydrogen dimer makes an angle © with the
direction of motion.

The ground state of the cluster and of the hydrogen projectiles (with a bound
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state) are calculated separately. For the cluster, the ground state is calculated
within the SJM using spherical symmetry. The ground states of Hy, Hy, and H
projectiles are calculated using cylindrical coordinates. This allows us to set an
angle O for the orientation of the dimer. The total ground state wave functions,

in the case in which target and projectile are still decoupled, are the sum

UM, 0,2) = 0o, 0 2) + 02 (p, 6, 2), (5.6)
where the KS states of the cluster are interpolated to cylindrical coordinates.

We consider first a cluster with a density defined by ry = 1.56 a.u., corre-
sponding to the effective density of SiOs (to the observed plasma frequency of
SiOs [61]). The total number of electrons in the system is equal to the number of
electrons in a closed-shell cluster (N = 338) plus the number of electrons travel-
ing with a projectile. The radius of the cluster is Ry = 10.87 a.u. (5.75 A). Our
results for r;, = 1.56 a.u. can also be applied to the experimental stopping ratio
of hydrogen dimers interacting with Al,O3 (rs = 1.5 a.u.) and carbon (ry = 1.6

a.u.) thin films. The difference in 7, for these systems has a negligible effect.

In order to represent the density of TiOy we use rg = 1.35 a.u. In this case
the number of electrons in the cluster is N = 562. The radius of the cluster is
Rg= 1114 au. (5.9 A).

The time-dependent electronic density of the system n(p, ¢, z,t) is obtained
by time-propagation. From the density we calculate the forces acting on each
projectile inside the cluster. The stopping power is calculated as the average
energy loss per unit path length (5.3). In the case of the dimer, the stopping
power is calculated for each proton separately. The total stopping for the dimer is
a sum of two contributions: Sy, = Sy1+Sy2. The details of the three-dimensional

calculations are given in Appendix A.

The stopping power ratio is calculated as

_ Su,

R‘zSH’

(5.7)

where Sy is the stopping power of a hydrogen atom moving with the same velocity

as the Hy dimer.
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5.3.1 Stopping power and stopping ratio for neutral

projectiles

Let us consider first the neutral fractions of both molecular and atomic hydro-
gen. For long interaction times and low impact velocities we usually expect that
our charged projectiles will be eventually neutralized. Although the relevance
of this assumption for the experimental data on very thin films that we will be
addressing can be questioned, particularly at high impact energies, we will start
our analysis using neutral projectiles. In this case the stopping ratio is calculated
as the ratio between the stopping power for the neutral hydrogen molecule and
twice the stopping power for the hydrogen atom.

In order to correctly compare our calculated results with the experiment we
consider two main orientations of the hydrogen dimer with respect to the direction
of motion. First, a parallel orientation (© = 0°), when the internuclear axis
is aligned along the trajectory of the center of mass of the dimer. Second, a
perpendicular orientation (© = 90°), when the internuclear axis is perpendicular
to the direction of motion. In Fig. 5.24 we show the results of our calculated
electronic stopping power for the Hy dimer in the two different orientations and
twice the stopping power for the hydrogen atom as a function of the projectiles’
kinetic energy. The results are shown for two different densities of the target
cluster, s = 1.56 a.u. in panel (a), and 7y = 1.35 a.u. in panel (b).

The stopping power for the dimer is not the same as twice the stopping for
the hydrogen atom for both orientations of the dimer and for both densities
of the cluster. The maxima of the stopping in all three curves are shifted one
with respect to another. This gives us a hint of what is the ratio between those
values and, therefore, the vicinage effect for the Hy dimer in both orientations.
In particular, the perpendicular stopping power never crosses the stopping for
the single atom, which means that the perpendicular component of the stopping
ratio never crosses R = 1 in the range of energies considered here.

The stopping ratio, Eq. (5.7), as a function of the projectile incident energy
is shown in Fig. 5.25 for the dimer in two different orientations and is compared
with the experimental data for the two densities considered. In the case of the
lower density (rs = 1.56 a.u.) shown in Fig. 5.25(a), the parallel component of the
calculated stopping ratio crosses R = 1 at an energy of about 90 keV /amu, which

is very close to the experimental results. Both components (parallel and per-
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Figure 5.24: Stopping power, S, as a function of the kinetic energy per proton for
the hydrogen dimer (Hs) in two different orientations, parallel and perpendicular.
The results for twice the stopping power of the hydrogen atom are plotted as well.
Two different densities are shown: a) r, = 1.56 a.u., b) r¢ = 1.35 a.u.
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Figure 5.25: Stopping power ratio, R, as a function of the kinetic energy per
proton for the hydrogen dimer Hs in two different orientations, parallel and per-
pendicular. The results are shown for a) r, = 1.56 a.u., b) ry = 1.35 a.u. and
compared with the experimental stopping ratio.
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pendicular) of the stopping ratio agree well with the experiment at low energies.
However, at large energies, above 70 keV/amu, the perpendicular component is
much lower than the experimental values and never crosses the R = 1 value. On
the contrary, the parallel component crosses the R = 1 value and becomes R > 1
at high energies, although still with values lower than the experimental ones. For
the stopping power ratio averaged over orientations we include twice the con-
tribution from the perpendicular orientation and once from the parallel, which

corresponds to a totally random orientation of the dimer in the experiment:
Raver = (2Rperp + Rparal)/?)- (58)

We see that, although the result for the average stopping ratio shows the same
tendency of increasing R with the incident velocity observed in the experiment,
at high energy R is underestimated in the simulations as compared to the exper-
imental results.

At higher density (rs = 1.35 a.u.), corresponding to TiO, (Fig. 5.25 (b)), the
behavior is similar. The calculated stopping ratio for the perpendicular orienta-
tion of the dimer is again too small at high energies. The parallel orientation gives
the stopping ratio with qualitatively the same behavior as the experimental stop-
ping ratio. However, in this case the crossing point between the "parallel" and
"perpendicular" ratios and also the crossing of R = 1 for the parallel component
of the stopping ratio are shifted towards higher energies as compared with the
previous density (panel (a)). The average stopping power ratio is in agreement
with the experiment at low energies, but is far from the experimental values at
intermediate and high energies.

The fact that the parallel stopping ratio is closer to the experiment may
indicate that it is the parallel orientation the preferential one for the dimers.
This conclusion would be consistent with the torque acting on the dimer inside
the cluster. The calculation of the torque is shown in Fig. 5.26 for different
angles of the dimer axis with respect to the direction of motion (see the details
of the calculations in Appendix A). From this figure we see that the torque is
negative for all angles and for all energies considered. The negative torque means
that the cluster induced forces acting on the dimer tend to rotate it towards
the positive direction of the z—axis, i.e., to align it parallel to the direction of
motion. However, at high projectile velocities, the crossing of the thin films used

in experiments is too fast and there is not enough time for the dimer to be rotated
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Figure 5.26: Torque, 7y, acting on the hydrogen dimer Hy as a function of the
incident energy for angles ©= 30, 45 and 60 degrees.

and the angle © cannot change significantly. The concluding remark of this
subsection is therefore that we should look for alternative arguments to explain
the difference between the calculated stopping power ratio and the measured one
(Fig. 5.25) at high energies.

5.3.2 Charge-state effect in the stopping power

The discrepancy between experimental measurements and theoretical results
in Fig. 5.25 can be rectified if we consider the role of other charge-states of the
projectiles at high energies. In order to show this we calculate the stopping power
for all possible initial charge-states of the projectiles, such as Hy*, HJ , Hy and
also H" and H. The results of such calculations are shown in Fig. 5.27.

From Fig. 5.27(a) we see that at high energies the stopping power differs
significantly depending on the charge-state, being much larger for a proton than
for a neutral hydrogen atom. At low energies, however, both curves reach the
same limit. Below 40 keV the stopping power is the same for both projectiles. The
same is observed in the case of the dimer in parallel orientation (Fig. 5.27(b)). For

the perpendicular dimer the different charge-state values of the stopping power
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Figure 5.27: Stopping power, S, as a function of the projectile energy for hy-
drogen in different initial charge-states: (a) hydrogen atom; (b) dimer in parallel

orientation; (c) dimer in perpendicular orientation. Results are shown for fully
ionized, partially ionized, and neutral species.

are not the same, but close to each others at low energies. Similar stopping power
at low energies means that although initially the projectiles are in different charge-

states, during the collision process the total electron density around the moving
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protons is similar.

The charge-state of hydrogen projectiles interacting with a solid is known to
be dependent on the energy. Both for atomic and molecular hydrogen at energies
above 40 keV the fully ionized fractions dominate, reaching 100% at about 200
keV, as can be seen in Fig. 5.28 for the case of Mg targets. Below 40 keV the
neutral fractions dominate [103, 105]. Although the exact distribution of the
charge fractions as a function of the projectile energy is material dependent,
the general behavior is, in general, similar. This means that at high energies we
should take the HT fraction for the atomic projectile and the H * fraction for the
molecular projectiles to calculate the stopping ratio. At low energies, however,
the neutral fractions (H atom and Hy molecule) will be dominant. Taking into
account that at low energies the stopping powers for both neutral and fully ionized
projectiles are very similar (Fig. 5.27), we can use H* and Hj " projectiles to

estimate the stopping power ratio in the whole range of energies considered.
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Figure 5.28: Equilibrium charge-state fractions for protons (®,) and for neutral
hydrogen (®g) for the solid and the gas phase of Mg [105].

5.3.3 Stopping power and stopping ratio for fully ionized

projectiles

Figure 5.29 shows the stopping power for the hydrogen dimer Hj ™ in par-
allel and perpendicular orientations as well as twice the stopping power for a

single proton. We see that, in contrast to the results for initially neutral dimers
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Figure 5.29: Stopping power, S, as a function of the projectile energy for Hi*
in parallel and perpendicular orientations, as compared with twice the stopping
power for a single proton. Density of the cluster is defined by ry = 1.56 a.u.

(Fig. 5.24), in the case of fully ionized dimers both the stopping power for parallel
and for perpendicular dimers are larger than the stopping for a single proton at
high energies. This means that in the case of fully ionized dimers not only the
stopping ratio for the parallel dimer, but also the one for the perpendicular dimer

are larger than 1 at high energies. This can be seen in Fig. 5.30.

In Fig. 5.30 we show the results of our calculated stopping power ratio as
a function of the incident kinetic energy of the projectiles for a Hf * dimer in
two different orientations and compare it with the experimental data for SiO,,
Al;O3 and C. From Fig. 5.30 one can see that the calculated average stopping
ratio (Eq. (5.8)) perfectly agrees with the experiments. The transition from
R < 1to R > 1 is well reproduced. At high and intermediate energies the
calculated and the experimental results fit within the error bars. The agreement
between the experimental data and the calculated results is remarkable taking
into account the simplicity of our approach based on the jellium model. At
low energies there is a small deviation of the calculated stopping ratio from the
experimental, being the consequence of the differences in the stopping power for
different charge-states of the perpendicular dimer at E < 40 keV (Fig. 5.27(c)).

Also, at low velocities we eventually expect to find discrepancies between our



112 Chapter 5. Energy loss processes in particle-cluster interaction

16 || —e— exp.S0, ]
o exp. Al,Og o« !
“m exp,C .o

14| ¢ Hy  pasd o %
A + ° g A
° :2++ g\(:;‘re? ‘ é 3 <I>

12 | 2 20 ¢ :

T S S

08l 7 47 & _

0 . 6 1 1 1 1
0 50 100 150 200

E (keV/amu)

Figure 5.30: Stopping power ratio, R, for Hi * as a function of the projectile
energy. Calculated stopping ratio for the dimer moving in parallel, perpendicular
and averaged orientations through the jellium cluster with ¢ = 1.56 a.u. is com-
pared to the experimental stopping ratio for randomly oriented hydrogen ions in
SiO,, Al;O3 and carbon C thin films.

approach based on a description of the target as a metal (although with an
effective electron density of experimental targets) and the experimental results

obtained in insulating and semiconducting materials.

The stopping ratio at high energies is much larger than unity. In order to
understand this behavior, we analyzed in detail the individual contributions of
protons in dimers HJ * to the total stopping power in the cluster with 7, = 1.56
a.u. In Fig. 5.31 we show the stopping power for each proton in a parallel dimer
separately as well as for one of the protons in a perpendicular dimer and for a
single proton. This figure shows that at high energies the stopping power for
the single proton is lower than the stopping power for any proton in a dimer.
This means that, for the particular inter-particle distance considered here, the
interference in the dynamic response of the target electrons to the motion of two
particles in close proximity to each other tend to increase the energy loss (and
therefore the stopping power of the target) for each of these particles as compared
with the energy loss of an individual particle. Another interesting observation

here is that the stopping power for the second proton of the parallel dimer is much
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Figure 5.31: Stopping power, S, as a function of the projectile energy for the first
(S1) and the second (Ss) protons in the parallel dimer, for a single proton (S,)
and for one of the protons of the perpendicular dimer (S, ).

larger than the stopping power for the first proton. This can be easily understood

if we take a look at how these particles are screened inside the cluster.

5.3.4 Nonlinear screening of protons in a cluster

The energy loss or the stopping power is a consequence of the dynamic screen-
ing of the moving projectiles by the electrons of the cluster. In Fig. 5.32 we show
the snapshots of the induced electronic density inside the cluster when two pro-
tons in different orientations or a single proton are passing through the center
of the cluster with velocity 2.5 a.u. (corresponding to 150 keV/amu of kinetic
energy). The protons move along the z—axis from left to right. The induced
density is the difference between the electronic density at a given time ¢ and the

electronic density at time t = 0:
An(r,t) = n(r,t) — n(r,t = 0). (5.9)

This quantity is plotted in the (p, z, » = 0) plane, which contains the two protons
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Figure 5.32: Snapshot of the induced electronic density inside the cluster (ry =
1.56 a.u.) due to the movement of a) two protons with the axis aligned along the
trajectory; b) two protons with the axis perpendicular to the trajectory; c¢) one
proton. Panel d) shows the induced density along the trajectory (z—axis) at p =
0 for a) and c) and at p = 1 for b). Velocity in all the cases is v = 2.5 a.u. Black
dots indicate the positions of the protons.
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in the dimer. The center of the cluster is located at (p = 0,z = 0). In the panel
(a) of Fig. 5.32 the change in electronic density varies in the range [—5 : 30] x 1072
a.u. In the two other panels, (b) and (c), the scale for An(r,t) is limited to the
same values to facilitate the visual comparison. In the panels (a), (b), and (c) of
Fig. 5.32 we see the cone-shaped screening cloud behind each projectile, which
means that the projectiles create a wake within the target. This form of the
screening cloud is characteristic for high projectile energies. The velocity of the
protons is much higher than the Fermi velocity of the electrons (vp = 1.23 a.u.)
in the cluster. Thus, the response of the cluster electrons to the movement of the
projectiles is delayed. Moreover, the distance between two protons is small and
therefore the parallel dimer is screened as a single object by the cluster electrons.
This leads to a much larger accumulation of charge behind the second proton
than behind the first one (Fig. 5.32(a)) and gives rise to a larger stopping power

for the second proton in the parallel dimer.

For the perpendicular dimer the picture is different (Fig. 5.32(b)). Both pro-
tons are screened equally and the screening cloud behind each one looks similar

to the screening of the single proton (Fig. 5.32(c)).

In order to quantify the differences shown in panels (a), (b), and (c) we show
in Fig. 5.32(d) the change in the electronic density of the cluster along the tra-
jectory (z—axis) for p = 0 in the case of the parallel orientation of the dimer
and the single proton and for p = 1 in the case of the perpendicularly oriented
dimer. Figure 5.32(d) shows that there is an interference in the screening of both
protons in the perpendicular dimer, not noticeable in Fig. 5.32(b). This explains
the smaller change in electronic density around the single proton (and therefore
the smaller value of the stopping power) as compared with the proton in the

perpendicular dimer.

A nonlinear treatment of electron dynamics in the cluster perturbed by the
moving protons is essential for the correct estimation of a vicinage effect. In
order to prove this we plot in Fig. 5.33 the change in electronic density induced
by the moving parallel dimer Hj ¥ in two different approximations. In panel (a)
of Fig. 5.33 we plot a snapshot of the density change induced by a pair of protons
moving through the cluster. In turn, in panel (b) of Fig. 5.33 we plot the sum of
two snapshots of the density change induced by a single proton at two different
positions (at a distance 2 a.u.). Therefore, the latter is the linear combination of

the change in density. In panel (¢) we compare both results, plotting the induced
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Figure 5.33: (a) Snapshot of the induced electronic density inside the cluster by
a hydrogen dimer. (b) The sum of the induced densities by a single proton at two
different positions. (c¢) A cut of the induced densities from (a) and (b) at p = 0.

density along the z—axis for p = 0. From this figure we see that the induced
density around the second proton (as well as the minimum between the two
maxima in the induced density) is underestimated in linear theory, as compared

with the nonlinear calculation.

5.3.5 Conclusions

In this section we have shown the results for the stopping power ratio for a hy-

drogen dimer in different orientations traversing a jellium cluster in a large range
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of projectile energies. The influence of the charge-state of the hydrogen projectiles
on the stopping power is investigated. We compared our calculated results with
experimental measurements. A good agreement with the experimental stopping
power ratio at all energies is only achieved in the case of the initially fully ionized
projectiles. At low energies the calculated results for neutral projectiles also give
a reasonable agreement with the experiment. The similarity of the theoretical
results for the stopping power of projectiles with different initial charge-states at
low energies indicates that the total amount of the electron density around the
moving protons inside the target are similar.

We analyzed in detail the individual contributions of each proton in the dimers
to the total stopping power and have shown that the stopping power for the
second proton in the parallel dimer is much larger than for the first one. We
explained this behavior in terms of the dynamic screening of the protons inside
the cluster. We have stressed as well the importance of the nonlinear treatment

of the dynamic screening processes.

5.4 Summary

In this chapter we have shown that the energy loss of projectiles travelling
through metallic media can vary depending on the initial state of the projectile-
target system. First, in Section 5.1, we have shown that the energy loss of an
antiproton crossing an Al cluster previously excited is lower than the energy loss
of an antiproton crossing a ground state cluster. Second, in Section 5.2, we have
made a systematic study of the energy loss of two antiprotons moving at different
distances from each other through different metallic clusters. We have shown
that the total energy loss of the pair of particles strongly depends on the distance
between them. At high antiproton velocities the total energy loss oscillates as
a function of the distance between the particles. The oscillations arise because
of the interaction between the second antiproton and the wake created by the
antiproton which first enters the cluster. Due to the oscillations, the second
antiproton can even have a negative energy loss, i.e., it can gain energy and
thus can be accelerated. As a result the distance between the two particles can
decrease. This can lead to an effective bonding of the two antiprotons which then

move in a correlated way through the cluster.
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In Section 5.3, we performed a fully three-dimensional study of the vicinage
effect in the energy loss of a hydrogen dimer moving with different orientations
through the spherical cluster. We have shown that the calculated stopping ratio
for the dimer of protons is in good agreement with the experiment if the charge-
states of the projectiles are correctly accounted for. The detailed analysis of the
induced density inside the cluster and also of the individual stopping powers for
each proton in the dimer helped us to understand the behavior of the stopping

ratio.



Chapter 6

TDDEFT calculation of the
electronic friction of antiprotons

colliding with metal clusters

In this chapter we study the dissipative force experienced by a negatively charged
particle (an antiproton) penetrating a metal cluster. In our case, the antiproton
is chosen as a projectile because it has large mass as compared to the electrons
of the cluster. Therefore we can assume that the velocity of the antiproton does
not change while crossing the cluster. This allows us to study the dependence of

the dissipative force on the projectile velocity.

The metal cluster is represented in the framework of the SJM. We study two
different metals - Na (rs = 4) and Al (ry = 2.07). The antiproton (ap) moves
along the z-axis with a constant velocity v and crosses the cluster through its
center (as shown in Fig. 6.1). The initial position of the antiproton is such that

there is no interaction between the antiproton and the cluster.

The total force felt by the moving antiproton is made of two contributions - the
adiabatic component Fyqian[2ap(t)] and the nonadiabatic (dissipative) component

Fiissip[zap(t), t]. Therefore, the dissipative force on the antiproton is:

Fdissip[zap(t)7 t] = Ftot [Zap (t), t] - Fadiab [Zap (t)] (6'1)
We can find the total force acting on the antiproton crossing a spherical cluster
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Figure 6.1: Sketch of the process. An antiproton crosses the spherical cluster
through the geometrical center.

from the time-dependent electronic density:

n z — 7”L+ z
Frotlzap(0),1] = 27 / pipi (Zii’(t)’t_) = 0+<z;]332 Fa() —2  (62)

In order to find the dissipative force we first need to calculate the adiabatic
component of the force. The adiabatic force only depends on the position of the
particle and, as far as the process for which the particle appears at that position
is sufficiently slow, this force and the energy of the system should not depend on
the concrete history of the system. This is the so-called adiabatic switching which
tells us that, under certain conditions, the slow switching on of an interaction does
not alter the quantum state of the system. In our case, we start with the metal
cluster in its ground state and slowly switch on the particle at a given position on
the z-axis, either inside or outside the cluster, while following the time evolution
of the electron wave functions. During this process the system will remain very
close (in principle, the slowest the process the closest) to the ground state of the
each instantaneous configuration. The charge ) should be switched on from 0 to

—1 very slowly and for this purpose we use a sin function:

Q(t) = —sin (%t) , (6.3)



6 TDDFT calculation of the electronic friction 121

with the constant T = 225 a.u. After time ¢ = T the charge is equal to —1, thus
the antiproton has been created at a given position while the system remains in
its ground state. At this time we calculate the force acting on the charge. By
calculating the force at different positions of the antiproton we can obtain the
adiabatic force for the whole trajectory. The full curve is obtained by numerical
interpolation of the adiabatic values. The same method is used to calculate the
adiabatic component of the total energy of the system.

For velocities below the Fermi velocity of the electrons (for Na it is vp = 0.48
a.u. and for Alit is vp = 0.93 a.u.) the dissipative force can be described, at least

in bulk metals, as a friction force and we expect the following linear relation:

Fdissip[zap(t)] = _n[zap(t)]vapa (6.4)
from which we can find the friction coefficient:

tlp(t)] =~ 2l (6.5
The validity of this approximation, in which a position dependent friction coef-
ficient is defined for an inhomogeneous system (metallic cluster), will be tested
in the present work by means of the explicit time-dependent simulation of the

electron dynamics of the cluster electrons.

6.1 Total energy and forces

We consider as targets three sodium clusters (s = 4), composed by 20 (Nag,
radius of the cluster is Ry = 10.86 a.u.), 106 (Najpg, R = 18.93 a.u.), and 1074
(Najgrs, R = 40.96 a.u.) electrons. This allows us to study the effect of the size
of the cluster on the friction coefficient. We consider as well one Al cluster (rs =
2.07) composed by 106 electrons (Aljgs, Rq = 9.8 a.u.) in order to account for
the effect of a different density.

In Fig. 6.2 we show the total energy of the Najps cluster as a function of the
antiproton position when the antiproton crosses the cluster moving with different
velocities. The orange curve is the adiabatic energy shown as a reference. Point
z = 0 corresponds to the center of the cluster. From Fig. 6.2 we see that, when

the antiproton is still far from the cluster, the energy keeps a constant value.
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Figure 6.2: Total energy of the system for different antiproton velocities (Najgg
cluster). Orange line shows the adiabatic component.
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Figure 6.3: Total force felt by the antiproton crossing the Najgs cluster with
different velocities as a function of the antiproton position. Orange line shows

the adiabatic component. Vertical dashed lines show the border of the positive
background of the cluster.

This value is the total energy of the ground state cluster. When the antiproton

approaches and crosses the cluster surface there is a rapid decrease of the energy.
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This reduction of the energy depends on the velocity of the antiproton. At high
velocities there is not enough time to fully develop the attractive polarization
charge around the antiproton at the time of the crossing of the cluster surface.
At small velocities, however, we get a large decrease of the energy upon crossing
the surface because a slow charge is more effective in polarizing the medium.
After the crossing of the surface, the energy increases and it reaches finally a
constant value. The difference between the adiabatic energy and the energy for a
given velocity when the antiproton has left the cluster corresponds to the energy

loss of the antiproton moving with this particular velocity.

Figure 6.3 shows the total force acting on the moving antiproton as a function
of its position. The peaks in the force when the antiproton crosses the cluster
surfaces are due to the polarization charge created in the cluster by the moving
charge. The singular character of the force at the surface is due to the fact that
the positive background charge is given by a step function. Inside the cluster
the force is almost flat and roughly corresponds to the stopping power for each
velocity of the projectile. The same behavior of the total energy and force is

observed for all other clusters studied.

Subtracting the adiabatic force (Fig. 6.3, orange curve) from the total force we
obtain the dissipative force experienced by the antiproton. The dissipative force
is shown in Fig. 6.4 as a function of the antiproton position for several projectile
velocities. From this figure we see that, when the antiproton approaches the
cluster surface, the dissipative force increases. Inside the cluster it is oscillating
around a mean value which, as in the case of the total force, corresponds to the
stopping power. The reason for this is that the mean value of the adiabatic force
is roughly zero. An interesting observation is that the dissipative force is not the
same on the way "in" and "out" of the cluster. The value of the force is larger

when the antiproton crosses the border moving out from the cluster.

The asymmetry is better seen from Fig. 6.5, where the dissipative force is
shown outside the cluster in the way in and in the way out from the cluster. In
order to understand the asymmetry in the dissipative force, let us look at the
electronic density distribution in the Najgg cluster for different positions of the

antiproton outside and inside the cluster.

In Fig. 6.6 we show the electronic density of the spherical cluster Najog as a
function of the (z, p) coordinates at different time steps. The antiproton crosses

the cluster moving with velocity v = 0.3 a.u. Pictures correspond to six different
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Figure 6.4: Dissipative force felt by the antiproton moving with different velocities
through the Najgg cluster as a function of the antiproton position. Vertical dashed
lines show the border of the positive background of the cluster.
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Figure 6.5: Left — the dissipative force felt by the antiproton approaching the
Najog cluster with different velocities is shown up to the cluster surface; right —
the dissipative force felt by the antiproton leaving the cluster is shown from the
cluster surface.

antiproton positions: a) z = —30 a.u, b) z = =20 a.u, ¢) z = —10 a.u, d) 2z =10
a.u, e) z = 20 a.u, f) z = 30 a.u. When the antiproton is still far from the cluster
(Fig. 6.6a) the cluster is unperturbed. Approaching the surface of the cluster the
antiproton polarizes it and we see a depletion of electronic charge at the cluster
surface (Fig. 6.6b). Therefore, when entering the cluster, the antiproton crosses

an area of low electronic density. While moving inside the cluster, the antiproton
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Figure 6.6: Electronic density of the spherical cluster Najos as a function of (z, p)
coordinates at different time steps. Cluster radius is R, = 18.93 a.u. Antiproton
velocity is v = 0.3 a.u. Pictures correspond to six different antiproton positions:
a) z=-30au,b) z=-20au,c) z=—-10a.u,d) z=10 a.u, e) z = 20 a.u, f)
z = 30 a.u.

pushes the cluster electrons away from its path and we can see the screening
hole around the antiproton (Fig. 6.6¢ and 6.6d). When the antiproton enters the
cluster, the screening hole is not yet fully developed (Fig. 6.6b) and the force is
not sufficiently attractive. On the other hand, when the antiproton moves away
from the cluster, the hole is still large (Fig. 6.6e), because the antiproton moves
too fast for the adiabatic polarization limit to be valid. When the antiproton is
already far from the cluster, we can still see some polarization at the surface of the
cluster (Fig. 6.6f), which was not observed when the antiproton was approaching
the cluster, at the same distance. (Fig. 6.6a). This is why the dissipative force
on the antiproton on its way out of the cluster is larger than on its way in (see
Fig. 6.5).
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6.2 Friction coefficient

Knowing the dissipative force we now can calculate the friction coefficient
using Eq. (6.5). The friction coefficient is shown in Fig. 6.7 as a function of
the antiproton position for the cluster Najgs. We can see that far from the
cluster surface the friction coefficient is equal to zero. Approaching the cluster
surface, the friction coefficient increases showing a behavior almost independent
on velocity. Inside the cluster the friction coefficient oscillates. At low velocities
of the antiproton the oscillations are very large, because in this case cluster size
effects play a role and strong oscillations in the electronic density of the cluster
arise. However, in the case of the fast antiproton motion, the collision timescale
is shorter and the antiproton creates a wake behind similar to the one arising in
an infinite medium. We compare our results with the friction coefficient obtained
using the local density friction approximation (LDFA, orange line). In the LDFA,
the friction coefficient of the projectile is that of the same projectile moving in
a homogeneous free electron gas (FEG) with electron density equal to that of
the system at the point in which the projectile is located. The LDFA has been
successfully applied, for instance, for the description of electron-hole pairs excited
in physico-chemical processes at surfaces [62, 106].

From Fig. 6.7 we can see that the values of the friction coefficient obtained
with LDFA and with TDDFT are of the same order of magnitude. Let us look
at the friction coefficient in the area close to the surface of the cluster when the
antiproton is approaching it (Fig. 6.8 left) and when the antiproton is moving
away from the cluster surface (Fig. 6.8 right). From these plots we can see that
the friction coefficient depends on the direction of motion of the antiproton. It is
smaller for the motion towards the cluster and larger for the motion away from
the cluster. In the left panel the LDFA friction coefficient is above the values
obtained with TDDFT while in the right panel it is below the TDDFT values.
We can understand this if we look at Fig. 6.6. Comparing panels Fig. 6.6a and
Fig. 6.6f we see that, when the antiproton is moving towards the cluster but is
still far away, the cluster is unperturbed. However, when the antiproton is at the
same distance from the cluster but is moving away from it, the cluster is in an
excited state, i.e., it is still polarized. The antiproton feels this polarization and
therefore experiences a larger force, which leads to a larger value of the friction

coefficient. In LDFA this effect is not taken into account because the friction



6 TDDFT calculation of the electronic friction

127

0.14
0.12
0.10
0.08
0.06

n(au.)

0.04
0.02
0.00
-0.02

v:O.ll E—
L | v=0.3
v=10 ——
L | LDFA
-
-60 -40

Zap (au.)

Figure 6.7: Friction coefficient for the antiproton moving with different velocities
through the Najpg cluster. Orange line shows the result for the friction coefficient
in LDFA approximation.
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Figure 6.8: Friction coefficient for an antiproton moving with different velocities
through the Naqgg cluster: left — for the antiproton approaching the cluster up to
the cluster surface; right — for the antiproton leaving the cluster, starting from
the cluster surface. Orange line is the friction coefficient in LDFA approximation.

coefficient is calculated from the unperturbed local density at the position of the

projectile. Hence, the LDFA friction coefficient is the same for the charge moving

towards and away from the cluster surface.

The same behavior is observed in the case of a smaller cluster Nayy (Fig. 6.9)

and in the case of a larger cluster Najgr4 (Fig. 6.10). It is also similar for an Al
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cluster (Fig. 6.11), which means that this behavior is general for the interaction of

the antiprotons with metals. The fact that the friction coefficient depends on the
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Figure 6.9: The same as Figure 6.8 but for the cluster Nayy. Cluster radius is
10.86 a.u.
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Figure 6.10: The same as Figs 6.8 and 6.9 but for the cluster Najg74. Cluster
radius is 40.96 a.u.

direction of motion of the projectile was already observed by Baer et al. They
calculated the friction coefficient for a hydrogen atom colliding with a sodium
cluster using TDDFT (Ehrenfest molecular dynamics) [38].

One can notice that at low projectile velocities the friction coefficient has
oscillations which are not seen at high velocities. To explain this behavior we
show in Fig. 6.12 and Fig. 6.13 the snapshots of the induced electronic density
inside the cluster as a function of the (z, p) coordinates for low and high antiproton
velocities. The three panels correspond to different positions of the antiproton

as indicated on each plot. From Fig. 6.12 we can see that at low velocity the
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Figure 6.11: The same as Figs. 6.8 - 6.10 but for the cluster Alygs. Cluster radius
is 9.8 a.u.
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Figure 6.12: Change in electronic density of the spherical cluster Najgs as a
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antiproton excites the cluster electrons yet before crossing the surface of the
cluster. The oscillation wave of the cluster electrons moves towards the other side
of the cluster and then turns back. Therefore, it can act back on the projectile
which by that time is entering the cluster. The rebound of these excited electrons
at the cluster surface is reflected in the force as oscillations. Therefore, the
oscillations are a consequence of the finite size of our system and would not be
found, in principle, in an infinite system, as our results for the largest cluster
suggest (see Fig. 6.10).

At large projectile velocity (Fig. 6.13) the situation is completely different.
There is no wave front moving back because the cluster electrons are slower than
the projectile and the force shows no oscillations. The projectile creates a wake
behind it. The screening cloud surrounding the antiproton is strongly asymmetric,

which is a sign of the nonadiabaticity of the process.

6.3 Conclusions

In summary, the friction coefficient obtained with TDDF'T is showing a be-
havior nearly independent on the velocity for velocities below 1 a.u., but depends
on the projectile-surface distance. In other words, the friction coefficient depends
on the density profile of the cluster. The direction of motion of the projectile
(towards or away from the cluster) plays an important role for all systems stud-
ied. The reason for that is that the electronic state of the cluster is not the same
at different stages of the collision. We have shown that due to the polarization
effects the friction coefficient on the way out of the cluster is larger than the
friction coefficient on the way into the cluster in many cases. The LDFA results
are in qualitative agreement with our TDDFT results. However, in the LDFA,
the friction coefficient only depends on the local electronic density and therefore
this approximation does not take into account the asymmetry in the polarization
effects discussed above.

These conclusions are valid for all cluster sizes due to the local character of the
screening process. For the same reason our results for an antiproton approaching
the surface of a metal cluster are expected to be reasonably similar in the case of
an infinite metal surface.

The total and the induced density plots help to interpret the obtained results
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for the forces and the friction coefficient. In particular, they are useful to explain

the existence of oscillations in the friction coefficient at low projectile velocities.






Chapter 7
Summary and outlook

In summary, in this thesis we focused on the study of the dynamic screening and
energy loss of charged (antiproton, electron, proton, molecular hydrogen ion) and
neutral (hydrogen atom and molecule) particles interacting with spherical jellium
clusters. The time-dependent density functional theory (TDDFT) is used to
calculate the time-evolution of the electronic density inside the cluster in response
to the field of the moving projectiles. The real-time TDDFT approach is an
efficient tool for studying dynamical processes in matter in a broad range of
projectile energies. The use of this method has allowed us to understand more
about the energy loss and dynamic screening processes when a particle penetrates

a solid.

In particular, in Chapter 4 we used a semi-classical model to study the energy
loss of an electron photoemitted from the center of a metal cluster or from an
atom adsorbed on the cluster surface. We have shown that the dynamic screening
of the core-hole left behind affects significantly the movement of the photoemit-
ted electron. Namely, it leads to the reduction of the electronic energy loss. The
reduction is especially large at low electron velocities. This is a consequence of
the repulsive (accelerating) force acting on the electron from the cluster elec-
trons piled up around the hole at the first stage of the photoemission, when the
photoemitted electron is still close to the hole. In the adiabatic limit (very low
electron velocities) we expect to recover the reduction of the binding energy of
the hole due to the screening provided by the metal. This is routinely taken into
account in the analysis of photoemission spectroscopy from core shells. However,
in our analysis we stressed the importance of the coupled electron-hole dynamic

screening, and how the overall effect must depend on the average velocity of the
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photoemitted electron, i.e., on the photon energy used to create the excitation.
We stressed as well the importance of the coupled electron-hole dynamic screen-
ing. Further steps in the investigation of this subject can be the calculation of
the photoemission spectra including the effect of the hole screening in order to
provide information that can be used to interpret photoemission experiments and

to obtain information about the dynamics of screening from them.

In Chapter 5 we focused on the effect of the initial state of the metal cluster
and of the projectile on the energy loss processes. First we calculated the energy
loss of an antiproton traversing small Al clusters initially either in the ground
state or in an excited state. We have shown that the antiproton interacting with
a previously excited cluster loses less energy than the antiproton traversing a
cluster in its ground state. This is partially due to the emission of one electron
from the cluster during the first collision with the antiproton, which also leads to

the blue shift of the cluster plasmon frequency.

Furthermore, in Chapter 5 we investigated how the energy loss of a particle
can be modified by the presence of another particle in its close proximity. This
was done for two different systems, namely, two antiprotons and two protons
(and hydrogen atoms) with spherical jellium cluster. When dealing with two
antiprotons oriented parallel to the direction of motion, the main conclusion of
our study is that the stopping power ratio (the ratio between the stopping of the
pair divided by twice the stopping of a single projectile) oscillates around 1 for
large distances between the antiprotons and for velocities larger than the Fermi
velocity. The oscillations are due to the plasmon excited by the first antiproton
in the cluster. We performed a dynamical calculation including the Coulomb
force between the antiprotons and showed that inside the cluster the Coulomb
repulsion between the two particles is completely screened. The complex effects
of the dynamic screening can thus lead to an effective attraction between two

negatively charged particles moving through a metallic medium.

In the second case, we have calculated the stopping ratio for a hydrogen dimer
interacting with a spherical cluster with an effective electronic density represen-
tative of SiOy and compared our results with experiments. We have considered
different orientations of the hydrogen dimer with respect to the direction of mo-
tion and a broad range of projectile velocities. We have emphasized the strong
dependence of the stopping ratio on the charge-state of projectiles. This is instru-

mental to understand the experimental results. For the fully ionized hydrogen
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dimer our calculated stopping ratio perfectly reproduced the experimental find-
ings. Further study of this subject can include the calculation of the stopping
power ratio for heavier projectiles, such as LiF. This will require the use of pseu-
dopotentials instead of the Coulomb potential to represent the core of the atomic
projectiles.

Finally, in Chapter 6 we studied the dissipative effects in the interaction of an
antiproton colliding with spherical metal clusters of different densities and sizes.
We have calculated the dissipative (friction) force acting on the antiproton and
the friction coefficient. As a result we have shown that the friction coefficient for
an antiproton approaching the cluster surface is almost independent of the size of
the cluster. We also show that the friction coefficient is weakly dependent on the
velocity of the antiproton for the range of velocities considered, but shows a strong
dependence on the position outside the cluster, indicating that, as expected, it
approximately follows the density profile. Interestingly, we show that the friction
coefficient shows a systematic dependence on the direction of motion, namely, the
friction coefficient is different for an antiproton approaching the cluster and going
away from the cluster. This can be easily understood in terms of the dynamics
of the cluster polarization which, at sufficiently large velocities, is delayed with
respect to the antiproton motion. Our results are in qualitative agreement with
the local density friction approximation (LDFA) frequently used to calculate the

friction coefficient in the context of physico-chemical processes at surfaces.






Appendix A

Details of the three-dimensional

calculations

The ground state of the hydrogen dimer in Section 5.3 is calculated in a two-
dimensional cylindrical grid (p, z) with two protons of the dimer located on the

z—axis and the center of mass of the dimer at z = 0.
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Figure A.1: Coordinate system for the hydrogen dimer. The dimer electrons are
described in the coordinate system rotated by an angle © with respect to the
global coordinate system.

After obtaining the ground state wave function of the dimer ¢y, (p, 2), we
interpolate it into a three-dimensional grid, ¥y, (p, ¢, z), of a larger size together
with the cluster wave functions in order to start the time propagation. Different
orientations of the dimer with respect to the direction of motion are introduced

by rotating the system of coordinates of the dimer (2’,y, 2’) by an angle © with
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respect to the global system of coordinates (z,y, z), with the y—axis being the
rotation axis (Fig. A.1), thus being ¢y’ = y. The hydrogen atoms are located on
the z/—axis with the center of mass at the origin of coordinates. The distance

between the two protons in the dimer is a = 2 a.u.
The coordinates of the two protons in the global system (z,y, z) are:

Ty = ig sin(0),
Yo = Oa (A].)
2o = :I:g cos(©) + zem,

where z., is the position of the center of mass of the dimer, which can be defined
as Zem = Ziit + UL, where v is the velocity with which the dimer moves and zj,;; is
the initial position of the dimer on the z—axis. The initial position of the dimer
is chosen to be at zy,;; = —40 a.u., far enough from the cluster surface to avoid
interaction between the cluster and the projectile at the begining of the time

propagation.

We use cylindrical coordinates in our time-dependent calculations, in which

z = pcos(o),
y = psin(¢), (A.2)

The dimer moves along the z—axis and crosses the cluster through the geometrical
center. The parameters of the three-dimensional cylindrical grid (i.e., the step
on each of the three axes) are the following: Az = 0.25 a.u., Ap = 0.35 a.u.,
A¢ = 0.26 rad. The time-step for the propagation is At = 0.05 a.u.

In order for the electrons of the dimer to move with the same velocity as the
protons at ¢ = 0 we need to apply a phase to the wave function computed for the

static hydrogen dimer. This is done in the following way:

U, (py 6, 2) = YEe(p, ¢, z) el mit)y, (A.3)

The potential for each proton due to the electrons and the positive background
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of the cluster is:

i fima B n+ y P, 2) —1n\p, P, 2, t
v(x07y07 ZO) - / d¢/ P dp/ dz 0 (p;b ) (p;b ) _
0 0 Zumin V(T —20)2+ (y — y0)2 + (2 — 20)

(A.4)
where ng (p, ¢, z) is the positive background density and n(p, ¢, z,t) is the time-

dependent electronic density.
In order to calculate the stopping power for the hydrogen dimer, we need to

find the force acting on each proton along the trajectory (z—axis):

0
FZ = _8_20 V(:EovyOaZO)a (A5)
2m R VA
- - ny(p, &, 2) —n(p, d,2,t)] (z— 20)
/0 ¢/° ’ p/me Tl w0 (- o+ (= 20)2]3/§A 6)

Another two components of the force along the r—axis, F,, and along the y—axis,
F,, needed for the calculation of the torque on the dimer, are calculated in a way
similar to Eq. (A.6).

The torque acting on the particle is:
r=Fxr (A.7)

where r is the displacement vector, i.e., the distance from the point at which the
torque is calculated to the point at which the force is applied. In our case the
torque is computed with respect to the center of mass of the dimer. Taking into
account the symmetry of the process, namely that the dimer axis is rotated in

the (x, z)-plane and therefore F;, = 0, the torque on each atom is the following:

. = 0,
Ty = F, zo — F, Xo, (A8)
. = 0

a a
Here zg = j:§ cos(0) and xy = £—sin(O), because we calculate the torque with
respect to the y—axis. Knowing the force and the torque on each atom in the
dimer we can find the total force and the total torque on the dimer by summing

up the individual contributions.






Resumen en castellano

La estructura electronica y las propiedades de los solidos, superficies y nanoestruc-
turas se pueden estudiar experimentalmente mediante diferentes técnicas espec-
troscopicas. En estos experimentos, el material se estudia mediante la interac-
cion con particulas incidentes tales como electrones (espectroscopia electronica
de perdida de energia, EELS), fotones (espectroscopia de fotoemision, PES), o
iones (dispersion de iones, IS). Los proyectiles que penetran en el solido o en la
superficie crean excitaciones electronicas en el material estudiado. La descrip-
cién cuantitativa de la dinamica de dichas particulas en las superficies y en los
solidos, asi como la dindmica electronica asociada, es esencial para la correcta

interpretacion de los resultados de los experimentos.

Esta tesis estd dedicada al estudio de las excitaciones electronicas creadas
durante la interaccion de particulas cargadas y neutras con agregados metélicos.
Las excitaciones electronicas estan asociadas con la disipacién de la energia, lo
que en nuestro caso significa la transferencia de energia cinética de un proyectil
en movimiento a los electréones de un agregado metalico o viceversa. En con-
creto, estudiamos los procesos de disipacién en fenémenos fisicos tales como el
apantallamiento electrénico y el frenado de electrones durante la fotoemision,
el apantallamiento electronico y el frenado de iones y moléculas que atraviesan
agregados metélicos y la friccion electronica en superficies metéalicas. La investi-
gacion de estos procesos nos permite obtener informacién sobre las propiedades

de ambos, el material estudiado y el proyectil.

La complejidad de estos procesos dinamicos en sélidos es un reto para los méto-
dos teodricos. En esta tesis estudiamos la interaccion de los agregados metélicos
con particulas en movimiento utilizando una metodologia eficiente basada en la
teorfa del funcional de la densidad dependiente del tiempo (TDDFT), un método
ab initio basado en la mecénica cuantica que nos permite estudiar los procesos

dindmicos que tienen lugar durante la interacciéon de las particulas con la mate-
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ria en una amplia gama de velocidades de los proyectiles. Mas concretamente,
usamos el método de propagacion de paquetes de onda (WPP), una herramienta

eficaz para el tratamiento de procesos dindmicos en el dominio temporal.

En esta tesis estudiamos estos fenémenos en dos contextos diferentes, aunque

los métodos que usamos para este propdsito son similares en ambos casos.

El primer tema, que se describe en el Capitulo 4 de la presente tesis, se
relaciona con la fotoemision. La fotoemision, o el efecto fotoeléctrico, es la emision
de los electrones de un objeto después de la absorcion de un fotén. Fue descubierto
hace més de 100 anos por H. Hertz. En 1905 Albert Einstein explico este efecto
como un fenémeno cuéntico. Hoy en dia, la espectroscopia de fotoemision es
una de las técnicas més importantes que se utilizan para estudiar la estructura
de moléculas, superficies y s6lidos. En esta técnica se utiliza un analizador para
medir la energia cinética de los electrones emitidos. El espectro de fotoemision,
como resultado de tal experimento, proporciona informaciéon sobre las energias
de enlace de los electrones de valencia o méas ligados en el material, dependiendo
de la energia de los fotones entrantes (UV o rayos X). Esto permite analizar la

composicion del material estudiado, asi como su estado electronico y quimico.

En los dltimos anos, los avances en la tecnologia laser han hecho posible el
desarrollo de la espectroscopia de fotoemision en el rango de attosegundos (1 as
= 107!® 5). Estas espectroscopias permiten el acceso a la escala de tiempo del
movimiento electrénico en los &tomos. Debido a este avance experimental, hay un
creciente interés en la descripcion teodrica de los procesos electronicos dinamicos
que tienen lugar en la escala de tiempo de attosegundos. Por eso, en esta tesis
estudiamos el apantallamiento dindmico y la pérdida de energia de un electron
emitido desde un agregado metéalico, asi como la dindmica del apantallamiento
del hueco localizado dejado atras. Ademas estudiamos el caso de la fotoemision
desde un adsorbato sobre la superficie del agregado. En este caso, ademas de los
procesos de pérdida de energia y apantallamiento se analiza la transferencia de

carga del sustrato de metal al adsorbato.

Consideramos el caso en que un electron interno es fotoemitido desde uno de
los atomos en el agregado metélico (o el &tomo adsorbido). El movimiento del
electron esta representado clasicamente, mientras que la dindmica de la densidad
electronica del agregado se calcula con TDDF'T. Calculamos la pérdida de energia
del electron emitido para velocidades diferentes. Como resultado vemos que el

apantallamiento dinamico del hueco creado por los electrones del agregado afecta
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al movimiento del electron emitido, lo que da lugar a una reduccién significativa
de la energia perdida por el fotoelectron. Esto es el resultado de una fuerza
de aceleracion debido al apilamiento de carga electronica alrededor del hueco.
Este efecto depende de la velocidad y es mayor cuando menor es la velocidad
del electréon emitido. La aceleracion observada del electron emitido se mantiene
incluso en un calculo mas realista en el que se permite que la velocidad del electron
varie de acuerdo con las ecuaciones de movimiento de Newton, incluyendo la

atraccion de Coulomb entre el hueco y el electron.

En el caso de la fotoemision desde el adsorbato se observa el mismo efecto. El
electron emitido desde el adsorbato se acelera por la carga electronica transferida
del agregado metéalico al adsorbato, asi como por la carga apilada en la superficie
para apantallar el hueco (carga imagen). Hemos demostrado que la cantidad
de energia obtenida por el electron emitido debido al apantallamiento del hueco
depende no solo de la velocidad del electron, sino también de la distancia entre la
superficie y el adsorbato. La principal razén detrés de dicha dependencia esta en
los diferentes procesos de transferencia de carga que acompanan la fotoemision en
cada caso. Hemos demostrado que, dependiendo de la distancia entre el agregado
metalico y el atomo adsorbido, los electrones del agregado pueden pasar a un
nivel mas ligado del a&tomo y permanecer alli o pasar al nivel resonante (2s+ 2p,)

resultando en oscilaciones de la densidad electrénica con el tiempo.

El segundo tema, que se describe en los Capitulos 5 y 6 de la tesis, se relaciona
con los procesos de pérdida de energia y los efectos disipativos en la interaccion
de antiprotones y protones, asi como de moléculas, con agregados metéalicos de
diferentes tamanos. Una particula cargada moviéndose a través de un objeto
metalico es capaz de crear excitaciones electronicas en el medio a expensas de su
propia energia cinética. La investigacion sobre este fendémeno ha sido amplia en
fisica de materia condensada y ciencia de materiales debido a su relevancia en
varios campos fundamentales y aplicados, tales como el dano por radiacion, la

fisica médica, y la pulverizacion catédica de iones.

En el Capitulo 5 investigamos cémo el poder de frenado para el proyectil en
funciéon de la velocidad puede cambiar dependiendo de las condiciones iniciales,
tales como el estado de excitacion inicial del agregado (si se encuentra en su fun-
damental o no) y la presencia de otra particula en las proximidades del proyectil
en movimiento. En primer lugar, calculamos la pérdida de energia de un antipro-

ton atravesando un pequeno agregado de aluminio, tanto cuando el agregado esté
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inicialmente en el estado fundamental como cuando esta inicialmente en un es-
tado electronico excitado. Se muestra que el antiprotéon pierde menos energia al
penetrar una particula previamente excitada. Mostramos también que el proyec-
til crea un plasmoén en la particula y que el maximo de la frecuencia de plasmoén
se traslada a frecuencias méas altas en la colisién con el agregado previamente
excitado. Esto se corresponde con el periodo méas corto y la amplitud més grande
observados en las oscilaciones de la densidad electronica después de la segunda

colision del antiprotéon con el agregado metéalico.

En segundo lugar, investigamos el efecto de vecindad, es decir, como cambia
el poder de frenado para un proyectil moviéndose préoximo a otro proyectil. In-
vestigamos este efecto para dos antiprotones en funcion de la velocidad de los
proyectiles y de la distancia entre ellos. Para cuantificar el efecto de vecindad en
la pérdida de energia de dos particulas hacemos el calculo del poder de frenado
relativo, R. El poder de frenado relativo es el cociente entre el poder de frenado
total de la agrupacion de dos antiprotones y el doble del poder de frenado para
un solo antiprotéon. Hemos demostrado que a bajas velocidades de los antipro-
tones y a grandes distancias entre ellos el poder de frenado relativo es igual a
uno. A velocidades medias y altas el poder de frenado relativo oscila alrededor
de uno y la causa de las oscilaciones es el plasmoén creado por los antiprotones en
el metal. A distancias cortas entre los antiprotones el poder de frenado relativo
tiene un minimo que corresponde a diferentes distancias entre los antiprotones

dependiendo de la velocidad.

Ademés, hemos estudiado en detalle la pérdida de energia de cada antiproton
individualmente y hemos demostrado que el primer antiprotéon crea el plasmoén
que afecta al movimiento del segundo antiprotéon. Hemos demostrado también
que, para algunas distancias entre los antiprotones, la segunda particula se puede
acelerar en vez de ser frenada. Para ello, hemos realizado un célculo dindmico real
en el que permitimos que las velocidades de las dos particulas varien de acuerdo
a las ecuaciones de movimiento de Newton, incluyendo la fuerza inducida por los
electrones del medio en cada antiproton y la fuerza de Coulomb entre ellos. Como
resultado de este calculo hemos demostrado que dentro del agregado metalico
la repulsion de Coulomb entre los antiprotones esta apantallada y, bajo ciertas

condiciones iniciales, esto conduce a la atraccion efectiva entre los antiprotones.

La dltima parte del Capitulo 5 esta dedicada al estudio del efecto de vecindad

en el frenado del dimero de hidrogeno. Utilizamos agregados con altas densidades



Resumen 145

electrénicas que corresponden a las densidades efectivas en 6xidos de Al, Ti y Si.
En este caso investigamos el efecto de vecindad como una funciéon de la energia
cinética del proyectil y comparamos nuestros resultados con medidas experimen-
tales. Realizamos el estudio utilizando céalculos tridimensionales y comparando
el efecto de vecindad para dimeros con diferentes orientaciones (eje del dimero
paralelo o perpendicular) con respecto a la direcciéon de movimiento. Nuestros
resultados para el poder de frenado relativo estdn en buen acuerdo con los resul-
tados experimentales si el estado de carga de los proyectiles se toma en cuenta
correctamente. En particular, demostramos que para explicar los datos obtenidos

a altas velocidades debe considerarse un proyectil totalmente ionizado.

Analizando individualmente el poder de frenado para cada proton en el dimero
ionizado demostramos que el poder de frenado para el segundo protén es mucho
més grande que para el primero, cuando el dimero esta orientado paralelamente.
Esta observacion se correlaciona con la mayor acumulaciéon de carga inducida
calculada alrededor del segundo protén con respecto al primer protén y a un
proton que viaje solo. Esto es una consecuencia de la respuesta de los electrones
del medio a la perturbaciéon producida por el par de protones y a la estructura
conica de la nube de apantallamiento para altas velocidades del proyectil. Como
resultado, la mayor parte de la nube de apantallamiento se encuentra detras del
segundo protéon que a su vez apantalla al primer protéon de la influencia de los
electrones apilados. Esto da lugar a un poder de frenado mayor para el segundo
proton en el dimero. Para la orientacion perpendicular del dimero la imagen
es completamente diferente. La nube de apantallamiento es igual para ambos

protones y similar a la nube de apantallamiento de un tinico protoén.

El Capitulo 6 esta dedicado a la investigacion de la fuerza disipativa y de
friccién experimentada por un antiprotén que penetra un agregado metalico. Se
demuestra que el coeficiente de fricciéon es casi independiente de la velocidad
del proyectil, pero depende fuertemente de la distancia entre la particula y la
superficie del agregado. En otras palabras, el coeficiente de friccion depende del
perfil de densidad electronica del agregado metéalico. La direccion del movimiento
del proyectil (entrando o saliendo de la particula) también influye en la fuerza
disipativa calculada para todos los sistemas considerados. Nuestros calculos de-
muestran que, debido a los efectos de polarizacion de la superficie del agregado,
el coeficiente de friccién para la particula saliente es mayor que el coeficiente de

friccién para la particula entrante en la mayoria de los casos. Los resultados de
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la aproximacion de la friccion de densidad local (LDFA) estan en acuerdo cuali-
tativo con nuestros resultados TDDFT. Sin embargo, en la aproximacion LDFA
el coeficiente de friccion solamente depende de la densidad local y por lo tanto
esta aproximacion no tiene en cuenta los efectos de polarizacion del medio. FEs-
tas conclusiones son vélidas para todos los tamanos de agregados considerados
debido al caracter local del proceso de apantallamiento. Por la misma razén se
espera que nuestros resultados para un antiprotéon que penetra un pequeno agre-
gado metalico puedan ser vélidos en el caso de una superficie metalica infinita.
Los graficos de la densidad inducida y de densidad total ayudan a interpretar los
resultados obtenidos para las fuerzas y para el coeficiente de friccion. En partic-
ular, pueden explicar la existencia de oscilaciones en el coeficiente de friccion a
bajas velocidades de proyectil.

La conclusion final de este trabajo es que la metodologia TDDFT en tiempo
real es una herramienta muy eficaz para el estudio de los procesos electronicos
dindmicos en la materia. Permite describir con precision la interacciéon de particu-
las atémicas con diferentes blancos en una amplia gama de energias del proyectil.
El uso de este método nos ha permitido avanzar en la comprension de los proce-
sos de pérdida de energia y de apantallamiento dinamico cuando una particula

penetra en un soélido.
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