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ABSTRACT

Multi-slab MRI overcomes some of the hardware limi-
tations of today’s clinical scanners (e.g., memory size), en-
abling the acquisition of ultra-high resolution ex vivo MRI of
the whole human brain with high SNR efficiency. However,
multi-slab MRI suffers from slab boundary artifacts (SBA)
that can greatly bias subsequent analyses. Since SBA heavily
interplays with the bias field (BF) present in MRI, we propose
a Bayesian method that corrects for SBA and BF simultane-
ously. The method, which combines a probabilistic brain at-
las with an Expectation Maximization inference algorithm, is
shown to outperform state-of-the-art SBA and BF correction
techniques – even when used in combination.

Index Terms— Ex vivo MRI, bias field, slab boundary
artifact, Venetian blind, Bayesian image enhancement

1. INTRODUCTION

Ex vivo MR has recently gained popularity in the building of
human brain atlases. Since motion artifacts are eliminated,
long acquisitions (tens of hours) can be used to obtain ultra-
high resolution (UHR) images with high SNR [1, 2, 3]. These
studies typically utilize high-field animal scanners and dedi-
cated coils to obtain resolutions as low as 100 µm isotropic.
However, the use of such equipment has two main disadvan-
tages. First, the application is limited to the very few sites that
possess such specialized resources. And second, such scan-
ners and coils are too small to accommodate whole human
brains, which is desirable in order to study human-specific
conditions, e.g., psychiatric disorders.

Achieving UHR in ex vivo whole brain MR requires 3D
acquisition sequences, which are more SNR efficient than
their 2D counterparts. Since UHR 3D MRI simultaneously
requires a large number of slices and small voxel dimen-
sions, the resolution and volume size that can be achieved
with clinical scanners are hampered by their limited hardware
specifications. For instance, their limited memory size does
not allow the reconstruction of large image volumes.
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This limitation can be circumvented with multi-slab 3D
MRI, i.e., stacking slabs in the slice-encoding direction. How-
ever, RF pulses do not have a rectangular profile across the
slab thickness, but exhibit a transition bandwidth between the
passband and the stopband, with ripples and side lobes in both
bands. Moreover, the flip angle applied to the slices in the
transition band is lower than in the passband [4]. These im-
perfections give rise to the slab boundary artifact (SBA, a.k.a.
“Venetian blind”), which consists of a reduction in image in-
tensities at the boundaries between adjacent slabs (see “NO-
CORR” in Figs. 1-2). SBA is also common in MRA and dif-
fusion MRI, and biases subsequent analyses on the images.

SBA can be partially mitigated during the MR acquisi-
tion with oversampling in the slice direction (e.g., [5]), and
can also be partially compensated in the image reconstruc-
tion [6, 7]. However, correction of SBA during image post-
processing is still desirable in order to decrease the amount
of required overlap slab (thus increasing the efficiency of the
MR acquisition), and also to remove effects that could not be
corrected in the acquisition or reconstruction.

To our best knowledge, the only post-processing method
for SBA correction is Kholmovski’s [8], which computes an
intensity scaling factor for each slice that maximizes the cor-
relation between its histogram and that of the previous slice.
However, the performance is considerably affected by inten-
sity inhomogeneities, i.e., the bias field (BF) effect, which ap-
pears as spatially smooth multiplicative noise. While the BF
can subsequently be corrected with specific algorithms (e.g.,
N4 [9]), higher performance can potentially be achieved if
both artifacts are simultaneously considered in the correction.

Here we propose a Bayesian method for simultaneous cor-
rection of SBA and BF. We build on ideas from the Bayesian
segmentation literature, in which MR images are assumed to
be generated by a model consisting of a prior (a probabilistic
atlas) and a likelihood (a Gaussian mixture combined with a
model of image artifacts). Within this framework, we obtain
restored images by “inverting” the model with Bayes’ rule.
The proposed method is shown to outperform a combination
of Kholmovski’s and N4, and enables UHR scanning of whole
brains with standard clinical scanners and coils.



2. METHODS

2.1. Generative model

Let i = (i1, . . . , iV )T be the log-transformed intensities of
the test MRI scan to be corrected (V is its number of voxels).
We assume that this scan has been generated by a model very
similar to those used in the Bayesian segmentation literature,
e.g. [10]. The proposed model requires that a probabilistic at-
las has been coarsely (linearly) registered to the native space
of the test scan. This atlas defines a prior probability p(s) over
the segmentation of the scan s = (s1, . . . , sV )T into four tis-
sue types: white matter, gray matter, cerebrospinal fluid and
background (and thus sv ∈ {1, 2, 3, 4}). The prior is assumed
to factorize over voxels, such that p(s) =

∏V
v=1 pv(sv),

where pv(s) is a categorical distribution over tissue types at
voxel v that is specified by the atlas.

Given the segmentation, the log-transformed intensities
are assumed to be conditionally independent samples of four
Gaussian mixture models as indexed by s, and further cor-
rupted by SBA and BF. These artifacts are modeled as a lin-
ear combination of B basis functions {Ψb} that is added to
the signal (the effect is thus multiplicative in the natural do-
main). The likelihood function connecting i to s is given by:

p(i|s, c,θ) =

V∏
v=1

pv(iv|sv, c,θ), where

pv(i|s, c,θ) =

Cs∑
c=1

wscN

(
i−

B∑
b=1

cbΨbv;µsc, σ
2
sc

)
,

where Cs is the number of mixture components of tissue type
s; N is the Gaussian distribution; wsc, µsc and σ2

sc are the
mixture weight, mean and variance of mixture component c
of tissue type s; c = (c1, . . . , cB)T are the SBA/BF coef-
ficients; and Ψbv is the value of basis function b at voxel
v. We also use θ to group the Gaussian parameters, i.e.,
θ = {{wsc}, {µsc}, {σ2

sc}}.

2.2. Bayesian inference

Given this generative model, bias field correction can be cast a
Bayesian inference problem: ĉ = arg maxc p(c|i). However,
the computation of p(c|i) involves an intractable integral over
the Gaussian parameters θ: p(c|i) =

∑
s

∫
θ
p(c, s,θ|i)dθ.

Instead, we propose to optimize the SBA/BF coefficients c
and Gaussian parameters θ simultaneously:

{ĉ, θ̂} = arg max
{c,θ}

p(c,θ|i) = arg max
{c,θ}

p(i|c,θ)p(c)p(θ),

where we have assumed independence between c and θ. Fur-
ther assuming a flat prior for the Gaussian parameters θ, and
taking logarithm, the problem becomes:

arg max
{c,θ}

V∑
v=1

log

(
4∑

s=1

pv(iv|s, c,θ)pv(s)

)
+ log p(c). (1)

The expression in Eq. 1 can be maximized with a gen-
eralized expectation maximization (GEM) algorithm, which
iterates between an expectation (E) and a maximization (M)
step. In the E step, a lower bound to Eq. 1 that touches it at
the current estimate of the parameters ({c,θ}) is computed,
which involves calculating soft assignments to each Gaussian
component of each tissue type at each voxel:

qscv =
wscN

(
iv −

∑B
b=1 cbΨbv;µsc, σ

2
sc

)
pv(s)∑

s′
∑

c′ ws′c′N
(
iv −

∑B
b=1 cbΨbv;µs′c′ , σ2

s′c′

)
pv(s′)

.

The M step updates the parameters such that the value
of the bound is increased; this is guaranteed to increase the
value of the log-likelihood (Eq. 1) as well. In our case, if we
choose a quadratic penalty for the SBA/BF coefficients (i.e.,
p(c) ∝ exp[−λcT c]), the updates can be shown to be [10]:

µsc ←
∑V

v=1 q
sc
v (iv −

∑B
b=1 cbΨbv)∑V

v=1 q
sc
v

σ2
sc ←

∑V
v=1 q

sc
v (iv −

∑B
b=1 cbΨbv − µsc)

2∑V
v=1 q

sc
v

wsc ←
∑V

v=1 q
sc
v∑Cs

c=1

∑V
v=1 q

sc
v

c← (ATDA+ 2λI)−1ATDr,

where I is the identity matrix and:

A = [Ψ1, · · · ,ΨB ] , D = diag(dv), dv =

4∑
s=1

Cs∑
c=1

dscv ,

dscv =
qscv
σ2
sc

, r = (r1, . . . , rV )T , rv = iv −
∑

s

∑
c d

sc
v µsc∑

s

∑
c d

sc
v

2.3. Choice of basis functions

The model and inference method described in Sections 2.1
and 2.2 above are independent of the choice of basis functions
{Ψb}. Here we describe a number of choices for {Ψb} that
encode different SBA/BF correction methods, which will be
compared in the experiments in Section 3 below:

• GLOBAL: {Ψb} is a set of 3D, fourth order polynomi-
als with global support (i.e, the whole image domain).

• SLAB: an independent set of polynomials with slab-
wide support is defined for each slab in the stack.

• SLAB+SL: SLAB plus a slice-wise gain, achieved by
adding one basis function per slice, such that Ψbv = 1
if voxel v is in the slice, and Ψbv = 0 otherwise [10].

• INDEP-SL: an independent set of 2D, fourth order
polynomials is defined for each slice in the volume.
Smoothness within slabs is not guaranteed by the
model, but preserved in practice by the smoothness
of the data and of the statistical atlas.



3. EXPERIMENTS AND RESULTS

3.1. MRI data and manual delineations

We used MRI data from two selected postmortem cases from
the body donor program of the UCLM medical school. The
brain extraction and fixation (intravascular) were performed
by R.I. The MRI acquisition was carried out on a 3T Siemens
Magnetom TIM Trio scanner using a 12 channel receiver
coil. The samples were scanned in vacuum bags filled with
Fluorinert, in order to minimize the impact of air bubbles
and susceptibility artifacts. We used a 3D multi-slab bSSFP
sequence with TE/TR = 5.3/10.6 ms and flip angle 35◦. The
entire volume was covered with four axial slabs with 112
slices each, and 57% slice oversampling to minimize slab
aliasing, at 0.25×0.25×0.25 mm voxel resolution (matrix
size 720×720×448). Images were acquired with RF incre-
ments of 0◦, 90◦, 180◦ and 270◦ (90 minutes per RF phase)
and averaged to reduce banding artifacts. This protocol was
repeated 10 times to increase SNR (total time: 60 hours).
For evaluation purposes, manual annotations of the cerebral
white matter were made by J.E.I. on the two cases. Rather
than labeling the whole volumes, he traced the white matter
on 10 equidistant coronal slices on each of the two cases.

3.2. Experimental setup

Seven competing methods where evaluated in this study:
no correction (“NO-CORR”); N4 bias field correction [9]
(“N4”), which has been shown to outperform the popular N3
algorithm; Kholmovski’s algorithm (“KHOL”); a combina-
tion of the both (“KHOL+N4”), in which N4 is applied to the
output from Kholmovski’s method (this approach produced
better results than running the algorithms in the opposite or-
der); and four versions of our proposed method, using the
four different sets of basis functions described in Section 2.3
(“GLOBAL”, “SLAB”, “SLAB+SL”, “INDEP-SL”).

The performance of the methods was assessed with two
different metrics. We evaluated the BF correction with the
widely used coefficient of variation (CV = σ/µ) of the white
matter intensities. Because slices at the boundaries of the
slabs do not have a large impact on the CV (since they are
overweighted by the rest of slices), we used a different metric
to quantitatively evaluate the SBA correction.

More specifically, we took the slices at the boundaries of
the slabs (4 slabs yield 3 boundaries, and thus 6 bordering
slices in total), and computed the distribution (mean and vari-
ance) of the white matter intensities in them. These 6 slices
are affected the most by SBA. Then, we considered the 10
most-central slices within each slab (40 slices in total), which
are affected the least by SBA. We also computed the distri-
bution of white matter intensities in this region. Finally, we
used the Hellinger distance H between the two distributions
as a proxy for the performance of the methods; the better the

SBA correction, the smaller we would expect H to be. As-
suming Gaussianity, the (squared) Hellinger distance is:

H2 = 1−

√
2σ1σ2
σ2
1 + σ2

2

exp

(
− (µ1 − µ2)2

4(σ2
1 + σ2

2)

)
,

where µ1, µ2 and σ2
1 , σ

2
2 are the means and variances of the

two distributions to compare. Note that both CV and H were
computed in the natural domain, even if the correction was
carried out using log-transformed image intensities.

3.3. Implementation details

Throughout the experiments, we used the linear LPBA40 at-
las [11] to define the anatomical priors. We used Elastix [12]
to register the atlas to the test scans using an affine transform
optimized at 1 mm resolution with mutual information. For
the proposed method, each slice was downsampled by a factor
of 4 in order to speed up the algorithm; the resulting estimated
correction field was upsampled back to the native resolution.
The number of mixture components was set to Cs = 2 for all
four tissue types. The regularization parameter λ was set to
1. Finally, we shall note that our implementation optimizes
the SBA/BF coefficients c one slab at the time for SLAB and
SLAB+SL; and one slice at the time for INDEP-SL.

3.4. Results

Table 1 shows the mean CV and H for the different ap-
proaches. N4 provides a considerable decrease in the CV
compared with the original image, though H increases since
it is not the goal of the algorithm to correct for SBA. Khol-
movski’s method, on the other hand, successfully reduces H ,
but only produces a limited BF correction. When N4 is added
to the pipeline, both CV and H decrease compared with the
use of N4 or Kholmovski’s algorithm alone.

The version of our method with global support takes ad-
vantage of the statistical atlas to reduce the CV further than
N4, while its effect on H is similar. When basis functions
with limited support are used, our methods outperform the
Kholmovski/N4 combination. The polynomials with slab-
wide support greatly decrease H , while producing a smaller
decrease in CV with respect to the global version, as well.
As the complexity of the basis functions increases (slabs plus
slices; and finally 2D polynomials with support limited to
single slices), CV and (especially) H consistently decrease.

Even though the differences in CV and H might appear
modest at first, the qualitative results in Figs. 1-2 clearly illus-
trate the superiority of the proposed methods with respect to
the baseline approaches. In Fig. 1, the generative model better
estimates the BF, providing much more uniform images (e.g.,
note the bright temporal regions and dark subthalamic regions
given that N4 cannot correct). In Fig. 2, the model with in-
dependent 2D polynomials for each slice eliminates the SBA
much more effectively than the other competing algorithms.



Metric NO-CORR N4 KHOL KHOL+N4 GLOBAL SLAB SLAB+SL INDEP-SL
CV 0.209 0.125 0.138 0.108 0.091 0.085 0.083 0.082
H 0.141 0.182 0.112 0.099 0.181 0.098 0.077 0.063

Table 1. Means across the test cases for CV of the white matter and for the H distance between the intensity distributions at
the boundaries and in the centers of the slabs. In both cases, lower is better.

   NO-CORR                 N4                    KHOL             KHOL+N4 

     GLOBAL               SLAB                SLAB+SL           INDEP-SL 

Fig. 1. Coronal slice of sample scan, corrected with the dif-
ferent competing methods.

    NO-CORR                  N4                      KHOL               KHOL+N4 

     GLOBAL                  SLAB                  SLAB+SL             INDEP-SL 

Fig. 2. Close-up of the hippocampal head and amygdala in a
sagittal slice of a sample scan (input and outputs).

4. CONCLUSION

A Bayesian method for simultaneous correction of SBA and
BF artifacts has been presented in this study. The method cap-
italizes on the relation between these two artifacts, as well as
on prior knowledge encoded in a probabilistic atlas, to outper-
form standard methods that correct the artifacts independently
(even when used in conjunction). The algorithm was used
to produce high-quality, UHR ex vivo images using a clini-
cal scanner, and successfully corrected for the BF and SBA
that was present despite the large slice oversampling factor
(57%). The method is computationally efficient; our naive
Matlab implementation runs in less than 5 minutes despite
the large size of the scans and the need for linear registration.

The main limitation of this study is its small sample size
– a problem that is inherent to ex vivo human brain studies,
due to the scarcity of samples and the long scanning times.
Testing the method on a larger dataset, combining it with
reconstruction-based SBA correction, and application to other
modalities (e.g., diffusion MRI) remain as future work.
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