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Abstract

A major drawback of functional Magnetic Resonance Imaging (fMRI) concerns the lack of detection accuracy of
the measured signal. Although this limitation stems in part from the neuro-vascular nature of the fMRI signal, it
also reflects particular methodological decisions in the fMRI data analysis pathway. Here we show that the signal
detection accuracy of fMRI is affected by the specific way in which whole-brain volumes are created from individually
acquired brain slices, and by the method of statistically extracting signals from the sampled data. To address these
limitations, we propose a new framework for fMRI data analysis. The new framework creates whole-brain volumes
from individual brain slices that are all acquired at the same point in time relative to a presented stimulus. These whole-
brain volumes contain minimal temporal distortions, and are available at a high temporal resolution. In addition,
statistical signal extraction occurred on the basis of a non-standard time point-by-time point approach. We evaluated
the detection accuracy of the extracted signal in the standard and new framework with simulated and real-world fMRI
data. The new slice-based data-analytic framework yields greatly improved signal detection accuracy of fMRI signals.
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Brain function is frequently investigated using the1

Blood Oxygen Level Dependent (BOLD) signal in func-2

tional Magnetic Resonance Imaging (fMRI; Ogawa3

et al., 1990). Improving the accuracy of methods that4

detect the BOLD signal is of primary importance in5

many fMRI research contexts. One recent approach has6

relied on the implementation of advanced MRI pulse-7

sequences and updated hardware configurations to ac-8

quire whole-brain fMRI data with a high temporal res-9

olution (e.g., Chang et al., 2013; Feinberg et al., 2010;10

Lin et al., 2006; Moeller et al., 2010; van der Zwaag11

et al., 2006). The higher temporal resolution enables a12

more precise sampling of the BOLD signal and leads to13

improved statistical detection and estimation of BOLD14

signal dynamics in task-based fMRI studies (Chen et al.,15

2015; Constable & Spencer, 2001; Dilharreguy et al.,16

2003; Sahib et al., 2016; Vu et al., 2016; Witt et al.,17

2016). In addition, a complimentary approach to im-18

prove BOLD signal detection has relied on specialized19

paradigm design and statistical techniques. For exam-20
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ple, past studies have used jittered stimulus presentation21

with Finite Impulse Response (FIR) modeling to yield22

higher temporal resolution BOLD signals (e.g., Josephs23

et al., 1997; Lindquist et al., 2009; Maccotta et al., 2001;24

Miezin et al., 2000; Price et al., 1999; Serences, 2004;25

Toni et al., 1999). Here we attempted to further improve26

these latter data-analytic methods of BOLD signal de-27

tection by focusing on two specific issues that hamper28

the accuracy of BOLD signal extraction: 1) the volume-29

creation method, and 2) the statistical method.30

The first reason why BOLD signal detection in the31

current fMRI data-analytical framework may be subop-32

timal is due to the specific method of volume creation.33

Volume creation refers to the way in which individu-34

ally acquired brain slices are inserted into whole-brain35

volumes. A peculiar aspect of fMRI data acquisition is36

that instead of sampling the entire brain at once, spa-37

tially separate brain slices that cover the entire brain are38

sampled at different moments in time (Cohen & Weis-39

skoff, 1991; Moeller et al., 2010). The current standard40

practice to create whole-brain volumes from such in-41

dividually acquired brain slices is to simply time-shift42

spatially adjacent slices into whole-brain volumes (see43
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Figure 1 and Appendix 1 for a formal treatment). Given44

typical whole-brain fMRI sampling parameters of 1 to45

3 seconds, this means that time-varying signals sampled46

from spatially adjacent brain locations may be tempo-47

rally shifted. Several studies have shown that such data48

yield BOLD signals that are detected with poor accu-49

racy (Calhoun et al., 2000; Henson et al., 1999; Parker50

et al., 2017; Sladky et al., 2011). Consequently, these51

studies also show that signal detection can be improved52

by a procedure called Slice-Time Correction (STC).53

STC attempts to alleviate the temporal distortions by ei-54

ther interpolating signals between timepoints (Calhoun55

et al., 2000; Henson et al., 1999; Sladky et al., 2011), or56

by first low-pass filtering and then re-aligning signals in57

time (Parker et al., 2017). However, while these studies58

demonstrate that STC enhances BOLD signal extrac-59

tion, it is also clear that STC is only required because60

of the temporal distortions introduced by the specific61

method of volume creation. It therefore remains to be62

seen whether signal extraction can be further improved63

by alternative methods of volume creation that crucially64

do not introduce such temporal distortions and hence do65

not require STC.66

A second reason why BOLD signal extraction may
be suboptimal is because of the statistical method
of signal extraction. Specifically, within the current
data-analytical framework, BOLD signal extraction is
performed using so-called FIR basis functions (e.g.,
Josephs et al., 1997; Lindquist et al., 2009; Maccotta
et al., 2001; Miezin et al., 2000; Ollinger et al., 2001;
Price et al., 1999; Serences, 2004; Toni et al., 1999).
The FIR basis functions represent parameters in a Gen-
eral Linear Model (GLM) that each capture a particular
point in the progression of the BOLD signal generated
by the presentation of stimuli in an imaging run. For-
mally, within this framework, for a given set of stimuli
S , the design matrix X with m volumes (rows) and n
basis functions (columns) is represented by:

Xi j =

1, if j = i − (S p − 1)
0, otherwise,

(1)

where S p ranges over all possible volume-based stim-
ulus onsets. The number of basis functions is typi-
cally determined by the ratio between the desired epoch
length and the repetition time TR and represents the
temporal resolution of the extracted signal. Addi-
tional basis functions and appropriate jittering of stim-
uli can be used to increase the temporal resolution (e.g.,
Josephs et al., 1997; Toni et al., 1999). Given the design
matrix X determined above, modeling of fMRI time-
series data Y for a given voxel is performed using the

standard GLM function:

Y = Xβ0..n + e, (2)

where each β j is a value that indexes the strength of the
BOLD signal at a particular time point since the presen-
tation of the stimulus. Importantly, given the design of
matrix X, note that the number of datapoints to go into
the estimation of each β j value is equal to the number
of stimuli in the imaging run (i.e., the number of 1s in
each column of X). Approximate values for the β js in
this set of linear equations is typically obtained by the
least-squares solution:

β0..n = (XT X)−1XT Y. (3)

Obtaining an associated t-value with each beta coeffi-
cient first involves calculating the mean square error of
this model:

σ2 =
(Y − Xb)(Y − Xb)T

n − m
, (4)

where the numerator term Y−Xb refers to the difference
between the obtained and fitted data (i.e., the residuals),
and n−m to the available degrees of freedom. Next, the
variance associated with each estimated beta-coefficient
is given by:

var(β1..n) = σ2(XT X)−1, (5)

where the standard error for a given β j is obtained by67

taking the square root of the diagonal values in this ma-68

trix. The final t-value can then simply be calculated as69

the ratio between a given β j and its standard error. An70

appropriate ordering of the beta coefficients or t-values71

will then result in the statistically extracted BOLD sig-72

nal.73

There are at least three main problems with this FIR74

based approach that may hamper optimal detection of75

the BOLD signal. First, parameter estimation in the FIR76

modeling approach is optimal only if the stimulus in-77

duced BOLD signal is stationary across the imaging run78

(Donnet et al., 2006). Under such conditions, a given79

β j corresponding to a particular timepoint in the BOLD80

signal progression is estimated from data that contains a81

minimal amount of distortion in time, and the estimates82

will therefore be optimal. However, previous studies83

have observed attentional and top-down influences on84

the trial-by-trial variability in BOLD signal onset and85

shape across an imaging run (e.g., Donnet et al., 2006;86

Duann et al., 2002; Grill-Spector et al., 2006), and there-87

fore undermine the assumption of stationarity. The data88

from these studies raise the question of whether alter-89

native methods exist that are better suited to address90
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the trial-by-trial variability in BOLD signal onset and91

shape.92

Second, a particular statistical limitation of the GLM93

is that it precludes the modeling of random sources94

of variance such as those due to item variability (e.g.,95

Bedny et al., 2007; Westfall et al., 2016). It is well-96

known that ignoring sources of variance in the data may97

introduce biases in parameter estimation. As before,98

this raises the question of whether BOLD signal de-99

tection may be improved by alternative modeling tech-100

niques in which the aforementioned trial-by-trial vari-101

ability is brought under statistical control.102

Finally, the FIR modeling approach ascribes a rather103

counterintuitive meaning to the standard errors associ-104

ated with the beta js at each timepoint. Specifically, in105

the FIR modeling approach, data from the entire imag-106

ing run is used to estimate all the timepoints simultane-107

ously. This means that the standard error that is asso-108

ciated with each β j corresponding to a particular time-109

point is not only determined by the quality of the model110

fit at that particular timepoint, but by the quality of the111

model fit at all timepoints (see Equation 5). In other112

words, the standard error at a particular timepoint does113

not reflect the quality of data fitting at that particular114

timepoint alone, but reflects the quality of data fitting115

at all other timepoints as well. A practical implication116

of this is that a noise event in the fMRI signal at one117

particular timepoint will increase the standard error at118

all extracted timepoints. Consequently, if BOLD signal119

extraction relied on t-values, this will affect the accu-120

racy of BOLD signal extraction at all timepoints, even if121

the noise event affected only a single timepoint.1 Thus,122

for these three reasons, the FIR based method of sig-123

nal extraction may lead to a suboptimal detection of the124

BOLD signal from fMRI data.125

To summarize, within the current framework of fMRI126

data analysis, BOLD signal extraction is hampered by127

the specific method of volume creation as well as by the128

specific method of statistical modeling. Here we pro-129

posed a new framework for the analysis of fMRI data.130

This framework incorporates a new method of volume131

creation, as well as a non-standard technique of statisti-132

cal signal extraction. The framework places special im-133

portance on the slice acquisition times, that is the exact134

points in time when each slice in the fMRI data stream is135

acquired. Specifically, in the new method, whole-brain136

volumes are created out of slices that are all acquired137

at the same point in time relative to a presented stimu-138

1This may suggest that only beta-values should be used. How-
ever, ignoring the standard error introduces new complications in the
modeling efforts.

lus. This is achieved by presenting stimuli in-phase with139

the slice acquisition times, and then calculating when140

each slice was acquired relative to a presented stimu-141

lus. These relative acquisition times for each slice can142

then be used to compose whole-brain volumes in which143

each slice was acquired at the same moment in time rel-144

ative to a stimulus. (see Figure 2 and Appendix 1 for145

a formal treatment). Importantly, this method of whole-146

brain volume construction does not rely on time-shifting147

slices as in the standard method. This means that no148

temporal distortion is introduced in the data and hence,149

no STC is required.150

In addition, in this new fMRI data format, the BOLD151

signal is extracted using a non-standard Timepoint by152

Timepoint approach. Although this statistical approach153

to signal extraction is commonly used in EEG/MEG154

research (Janssen et al., 2014; Lage-Castellanos et al.,155

2010; Smith & Kutas, 2015), it is only rarely applied156

to fMRI data (but see Cohen et al., 1997; Leung et al.,157

2000). In the Timepoint by Timepoint approach, the158

raw, sliced-based fMRI signal is first epoched into time159

periods where the BOLD response is likely to occur160

(i.e., stimulus-locked), and then signal intensities from161

a baseline period (e.g., time points prior to stimulus on-162

set) are compared to signal intensities obtained at later163

time points in the epoch. Similar to previous studies164

(e.g., Josephs et al., 1997), because stimuli are presented165

in-phase with the slice acquisition times, the number of166

timepoints in an epoch and therefore the maximum tem-167

poral resolution with which the BOLD signal can be ex-168

tracted is determined by TR
num slices , and may be on the169

order of tens of milliseconds. Crucially, the Timepoint170

by Timepoint approach may be less affected by variabil-171

ity in the BOLD signal onset and shape because model172

coefficients depend on the direct comparison of inten-173

sity values between the timepoints in the epoch and the174

baseline, and leading to more accurate parameter esti-175

mation. In addition, parameter estimation in this ap-176

proach is performed using Linear Mixed Effect (LME)177

modeling (Bates, 2005; Pinheiro & Bates, 2000; West-178

fall et al., 2016). This modern statistical modeling ap-179

proach permits the inclusion of multiple sources of ran-180

dom variance (see Appendix 2). Finally, because sepa-181

rate models are fitted at each timepoint instead of fitting182

all timepoints simultaneously, standard errors are less183

sensitive to potential noise events at other timepoints.184

Given the central role of slices in this method, we will185

refer to this framework as Slice-Based fMRI.186

The current paper reports on tests that evaluated the187

accuracy of BOLD signal detection in the new Slice-188

Based method versus the standard FIR based models189

with STC and without STC. Given that the Slice-Based190
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method contains both a new method of volume creation191

and a different method of statistical signal extraction,192

a fourth, intermediate model was considered that relied193

on a standard method of volume creation with STC, but194

used the Timepoint by Timepoint method of statistical195

signal extraction. We will refer to this latter model as196

the Timepoint by Timepoint with STC method. The197

comparison of these four models allowed for an eval-198

uation of both the new volume creation method as well199

as the new Timepoint by Timepoint technique on the200

accuracy of BOLD signal extraction from fMRI data.201

Specifically, a contrast of the FIR with STC model with202

the Timepoint by Timepoint with STC model uses the203

same volume creation method yet uses a different statis-204

tical technique and therefore allowed for the evaluation205

of the new statistical method of signal extraction. In ad-206

dition, the comparison of the Timepoint by Timepoint207

with STC and the Slice-Based model uses the same sta-208

tistical method but relies on different methods of volume209

creation and therefore allowed for the evaluation of the210

new volume creation technique.211

These four models were evaluated in the context of212

three simulations and one real-world experiment. The213

simulations were not designed to examine signal extrac-214

tion under ideal circumstances, but instead, provided an215

evaluation of the four models under relatively realistic216

conditions in an fMRI experiment. In Simulation 1, we217

examined the impact of trial-by-trial variability in the218

onset of the BOLD response in consecutive stimulus219

presentations in an imaging run. In Simulation 2 we ex-220

amined the impact of trial-by-trial variability in BOLD221

shape, and in Simulation 3 we examined the impact of222

a single noise event in the imaging run (a signal inten-223

sity spike). Each method’s performance was examined224

in the context of a slow event-related imaging run with225

36 stimuli. The data were sampled from 3 slices con-226

taining only a single voxel. To examine the impact of227

increasing the sampling frequency the simulations were228

repeated with TRs of 3 and 1 second. BOLD signal229

extraction was performed using t-values. Performance230

was evaluated in terms of two measures: (i) the Pear-231

son correlation between the ground-truth signal and the232

extracted signal, and (ii) the mean absolute difference233

between the ground-truth signal and the extracted sig-234

nal. Given the arguments presented above we expected235

superior performance of the Slice-Based method com-236

pared to all other methods.237

Finally, the four methods were evaluated in the con-238

text of in-vivo fMRI data collected from 30 participants239

performing a picture naming task. This task was cho-240

sen because of its various cognitive components (visual241

identification, name retrieval from memory, and motor242

output) which may yield complex BOLD signal dynam-243

ics across different areas of the brain. The question was244

which of the four methods were best suited to detect ac-245

tivity under such conditions. We first evaluated the basic246

signal detection capabilities of the Slice-Based method247

by comparing group-level activation maps obtained us-248

ing this method to the standard GLM and Timepoint by249

Timepoint methods using Pearson and Dice indices. In250

addition, we compared BOLD signal extraction using251

the aforementioned methods from three adjacent slices252

covering left motor cortex. BOLD signal extraction was253

compared in terms of four measures: (i) the mean inter-254

slice correlation, (ii) the mean number of unique peaks255

(UP), (iii) the mean Time To Peak (TTP), and (iv) the256

mean maximum t-value (MAXT). Given the reduced257

impact of temporal distortions on volume creation and258

the more sensitive statistical method, we expected better259

performance for the Slice-Based method.260

Methods261

Simulation 1 - variability in BOLD onset262

Simulations were performed in the software R263

(v3.4.0) using the neuRosim package (v0.2-12; Wel-264

vaert et al., 2011). To simulate an fMRI imaging run, 36265

stimuli presented at long 18 s intervals induced a series266

of hemodynamic responses that were modeled with a267

double gamma function with default parameters (a1=6,268

a2=12, b1=0.9, b2=0.9, c=0.35). This signal was gen-269

erated at a very high temporal resolution (accuracy = 0.1270

s). The precise onsets of the stimuli were constructed271

to be in-phase with the slice acquisition times deter-272

mined by the fMRI sampling parameters described be-273

low. Variability in the onset of the BOLD response was274

modeled by a stochastic process that for each BOLD275

response either shifted the onset by +0.5 s in time or276

did not shift onset (P=0.5). This means that for a given277

simulation, about 18 out of 36 stimuli yielded a BOLD278

onset that was 0.5 s off a (stimulus-induced) stationary279

onset. If such shifts in onset yield commensurate delays280

in behavioral response times, then they would yield a281

standard deviation in response time across all stimuli of282

around 250 ms. This value is well within the range ob-283

served in many behavioral tasks such as picture naming284

and therefore justifies our choice of realistic parameters285

for this simulation (e.g., Szekely et al., 2004).286

Next, the hemodynamic signal was sampled by three287

slices in a simple bottom up sequential fashion. Each288

slice had only a single voxel, meaning that only a single289

time course was obtained for a given slice. The signal290

was sampled at two different sampling frequencies. At291
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the TR of 3 s with 3 slices this meant that every slice292

sampled the signal at a 1 second interval; At the TR of293

1 s with 3 slices, the signal was sampled at a 0.33 s in-294

terval. Thus, each slice sampled the exact same hemo-295

dynamic response, although as mentioned before, the296

sequential nature of this serial sampling procedure in-297

troduces temporal shifts. In the last step of data sam-298

pling white noise with sigma=0.15 was added to the299

generated time series. Although fMRI data is known300

to contain other sources of noise (i.e., machine noise,301

physiological noise), in order to facilitate interpretation302

it was decided to only add white noise.303

Next, three data sets of whole-brain volumes were304

created from the raw fMRI data. First, a standard vol-305

ume creation method was used to create a time series306

of 362 whole-brain volumes in which it was assumed307

that all three slices within a volume were acquired at308

the same point in time (see Figure 1). A second data set309

was created by applying AFNI’s 3dTshift STC function310

to the first data set. Importantly, signals were aligned311

to the first slice in the volume meaning that no adjust-312

ments to the design matrix were required. Interpolation313

was based on the default Fourier method which is as-314

sumed to be the most accurate. This therefore yielded315

a slice time corrected dataset. Finally, the Slice-Based316

method of volume creation was applied to the raw fMRI317

data to create a third data set in which all slices within a318

volume were acquired at the same moment in time rela-319

tive to a stimulus (see Figure 2). As mentioned before,320

this was achieved by combining slices with identical rel-321

ative acquisition times acquired during the presentation322

of different stimuli into the same volume. At the TR323

= 3 s, this epoch had 18 timepoints (i.e., 1 s tempo-324

ral resolution), whereas at TR = 1 s the epoch had 54325

time points (i.e., 0.33 s temporal resolution). Impor-326

tantly, these three data sets created by different volume327

creation methods were always based on the same raw328

fMRI data.329

Statistical extraction of the BOLD signal by the FIR,330

Timepoint by Timepoint, and Slice-Based methods was331

performed on these data. For the FIR methods, we con-332

structed a design matrix with epoch length
TR basis functions333

(e.g., 6 basis functions for an epoch length of 18 s and334

a TR of 3 s; See Equation 1). To obtain a temporal res-335

olution higher than the TR and equal to the resolution336

obtained using the Slice-Based method, two additional337

sets of epoch length
TR basis functions were added and cor-338

responded to (jittered) stimulus onsets close to multi-339

ples of 0.33 and 0.67 * TR (e.g., Dale, 1999; Josephs340

et al., 1997; Price et al., 1999; Toni et al., 1999). This341

led to a design matrix with a number of parameters that342

depended on the TR. Specifically, at TR = 3 s there343

were 18 parameters in the design matrix, whereas for344

TR = 1 s, there were 54 parameters in the design ma-345

trix. Note that all basis functions were orthogonal, and346

that although the number of parameters is high, it re-347

mained well below the total number of available dat-348

apoints, thereby avoiding overfitting risks. No tempo-349

ral derivatives were used. This same design matrix was350

used for the FIR without STC and the FIR with STC351

methods, where the FIR without STC used the standard352

dataset for signal extraction, and the FIR with STC used353

the slice time corrected data set. All statistical modeling354

was done using the linear modeling (lm) function of R.355

For the Timepoint by Timepoint method, epochs were356

extracted from the standard volume creation dataset357

with slice-time correction. It was assumed that each vol-358

ume in the dataset was acquired at the onset of the TR.359

Next, for each stimulus onset, a set of volumes corre-360

sponding to the epoch length were chosen and for each361

volume in the epoch the relative time since stimulus on-362

set was calculated. BOLD signal extraction took place363

on the basis of comparing signal intensities at baseline364

(define as timepoint 0) with those of subsequent time-365

points in the epoch. No averaging of data was per-366

formed. Model fitting took place using the R pack-367

age lme4 (v1.1 13) (Bates, 2005). Specifically, the for-368

mula used was lmer(Intensity∼Time+(1|epoch)),369

where Time was a fixed-effect factor with two levels370

(the baseline and the relevant timepoint), and epoch371

was random-effect variable referring to the item num-372

ber. Finally, the Slice-Based method used the same sig-373

nal extraction method as the Timepoint by Timepoint374

method, except that the volume creation method was375

slice-based and not volume-based. This difference in376

volume creation method may lead to more accurate sig-377

nal extraction in the Slice-Based method for two rea-378

sons: First, given that no STC is required, and hence379

no data is interpolated, extraction of a more veridical380

signal is expected than in the Timepoint by Timepoint381

with STC method. Second, given that in the Slice-Based382

method the onset and offsets of epochs are determined383

by the precise slice-acquisition times and not by the TR-384

based volume acquisition times, extracted epochs corre-385

spond more closely to actual stimulus onsets and offsets386

and therefore result in a more precise allocation of dat-387

apoints to timepoints in the epoch than in the Timepoint388

by Timepoint method. This improved alignment may389

then result in a more accurate extraction of the BOLD390

signal (see Discussion and Supplementary Materials for391

further discussion of this point).392

Performance of each model was evaluated by the
comparison to a ground-truth signal. Because the origi-
nal signal was specified in different units than the statis-
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tically extracted signal, no direct comparisons were pos-
sible. Instead, the ground-truth signal was set to have
a maximum t-value amplitude of 25. This amplitude of
the ground-truth signal was found to be sufficiently high
such that the simulations performed with the particular
noise levels did not reach this value. The ground-truth
signal was then calculated with this maximum effect-
size parameter using the double gamma function that
formed the basis of the original fMRI data. Importantly,
the same ground-truth signal was used across all simu-
lations and was the same for all four evaluated methods.
The accuracy of BOLD signal detection was determined
using two measures: First, accuracy was determined by
the Pearson correlation between the ground-truth sig-
nal and the signal at a particular slice. The mean Pear-
son correlation (denoted r̄1) was then computed as the
mean correlation across all slices. In addition, the accu-
racy was also determined by the mean absolute distance
between the ground truth and the signal at a particular
slice:

d =

∑n
i=1|ai − bi|

n
(6)

where n is the number of timepoints in the epoch, a is393

the ground truth signal and b is the extracted BOLD394

signal at a given slice. The value d̄ was then calcu-395

lated as the mean d value across all slices. The main396

advantage of this distance measure over a Pearson cor-397

relation is that the distance measure takes into account398

the amplitude of the response and therefore provides399

a more precise indication of the degree to which the400

extracted BOLD signal approximated the ground-truth401

signal. Note that lower d̄ values indicate a more closely402

extracted signal. In total 100 simulations were per-403

formed at each TR.404

Simulation 2 - variability in BOLD shape405

In Simulation 2, the impact of variability in the406

BOLD shape across an imaging run on BOLD signal407

extraction by the four methods was examined. Vari-408

ability in the BOLD shape was modeled by changing409

the parameter values of the double gamma function that410

was used to generate the baseline BOLD signal. Specif-411

ically, for half the stimuli in this simulation experiment,412

the BOLD response was generated by a double gamma413

function with adjusted values (a1=6, a2=12, b1=0.7,414

b2=0.7, c=0.25), while the other half had default pa-415

rameter values (see above). Note that the b1 parameter416

controls the dispersion of the response, the b2 parameter417

controls the dispersion of the undershoot, and that the c418

parameter controls the scale of the undershoot. With re-419

spect to the default settings in the gamma function, these420

parameters were reduced to yield a BOLD response that421

was slightly more narrow. All other aspects of Simula-422

tion 2 were identical to Simulation 1.423

Simulation 3 - impact of single spike424

In Simulation 3, the impact of a single intensity spike425

on BOLD signal extraction by the four methods was in-426

vestigated. This spike was modeled by changing a sin-427

gle intensity value in the fMRI simulated time series of428

slice 1 at a timepoint that was sampled at the end of an429

epoch (i.e., during the BOLD undershoot). This partic-430

ular intensity value at this timepoint was set to 5 times431

the maximum BOLD signal (i.e., the maximum BOLD432

signal was 1, the value was set to 5). In other words, the433

fMRI time series of slice 1 consisted of 362 time points,434

and the intensity value at a single timepoint that was lo-435

cated at the end of a stimulus induced BOLD signal was436

set to 5 times the maximum BOLD signal. Intensity437

values at all other 361 timepoints for slice 1 remained438

unchanged. Note that such spikes in the signal are a439

frequent occurrence in fMRI data and are thought to be440

the result of head motion and the resulting spin-history441

artifacts (e.g., Friston et al., 1996).442

In-vivo data - Picture Naming443

Participants444

Thirty native speakers of Spanish took part in the445

experiment (20 females, 10 males, mean age 22 yrs).446

Participants were students at the University of La La-447

guna, and received course credit or were paid 10 Euro.448

Twenty-nine participants were right-handed. The study449

was conducted in compliance with the declaration of450

Helsinki, and all participants provided informed con-451

sent in accordance with the protocol established by the452

Ethics Commission for Research of the university of La453

Laguna (Comit de tica de la Investigacin y Bienestar454

Animal).455

Experimental setup and procedure456

Two stimuli were used in the task: First, an image457

which participants were asked to name aloud, and sec-458

ond, a fixation cross (’+’) which indicated rest (see Fig-459

ure 3 for an overview). Twenty-seven pictures were se-460

lected from an image database that contained standard-461

ized line-drawings that were normed on various aspects462

(Szekely et al., 2004). Only those images were selected463

that had names that were consistently produced across464

participants in the norming study (i.e., those with ¿ 90%465

name-agreement).466

Stimuli were presented in a slow event-related design,467

where a stimulus was presented for 0.5 s followed by an468

ISI blank screen for 12 s plus an additional jitter period.469
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The duration of the jitter period was randomly chosen470

without replacement from a uniform distribution of 36471

times from 0 to 1855 ms in steps of 53 ms. This method472

of stimuli presentation resulted in the optimal jittering473

of stimuli for the Slice-Based method (see Figure 2 for474

further details). Stimulus presentation was directly syn-475

chronized with the MRI machine.476

The Experiment involved three consecutive runs. In477

each run, 36 stimuli were presented, of which half were478

pictures and half were rest (i.e, fixation cross). In each479

run, nine different pictures were randomly selected and480

which were presented twice. Different pictures were se-481

lected for each run, and all twenty-seven pictures were482

presented in the experiment. For each run, the order483

of the stimuli was fully randomized on a by-participant484

basis. Stimulus presentation was controlled by Neurobs485

Presentations (v14). Participants in the scanner viewed486

the stimuli with MRI compatible goggles made by Vi-487

suaStim. These goggles provided an image resolution488

of 800 by 600 pixels at 60 Hz.489

MRI acquisition parameters490

MR-images were acquired using a 3T Signa Excite491

scanner (General Electric, Milwaukee, WI, USA) us-492

ing a standard transmit/receive 8 channel gradient head493

coil. Head movement was strenuously avoided by fixat-494

ing each participant’s head with spongepads inside the495

coil. T2*-weighted images were obtained using stan-496

dard Gradient Echo, Echo Planar Imaging (EPI) se-497

quences.498

Each run started with 10 dummy volumes that al-499

lowed for steady-state tissue magnetization. Each vol-500

ume contained 36 slices that were acquired top-down,501

axially and interleaved. Slice thickness was 3.7 mm502

with 0.3 mm gap. The FOV was 256 x 256 mm, matrix503

size 64 x 64, resulting in 4 x 4 x 4 mm isometric voxels.504

TR was 1908 ms, echo time (TE) 21.6 ms, and the flip505

angle 75◦. This unusual TR was chosen because it was506

the fastest TR possible in the context of the other pa-507

rameter settings and therefore would generate the max-508

imum amount of data. In addition, 1908 is a multiple509

of 36 and this simplifies determining the slice acquisi-510

tion times and stimulus presentation times. In each run511

255 volumes were collected and lasted 8 minutes and 6512

seconds.513

Separate high resolution T1-weighted images were514

acquired using the 3D FSPGR sequence: TI/TR/TE:515

650/6.8/1.4 ms, flip angle = 12◦, 196 slices, slice thick-516

ness 1 mm, matrix 256 x 256, voxel size = 1 x 1 x 1517

mm.518

Pre-processing519

Only minimal data pre-processing was applied: Low520

frequency drifts were removed using a high pass filter521

at 0.01 Hz (Smith et al., 2004), and the data were mo-522

tion corrected using FSL MCLFLIRT (Jenkinson et al.,523

2002). Note that in the context of the Slice-Based524

method, motion correction poses a certain challenge.525

This is because the Slice-Based method not only as-526

sumes that a given voxel samples the same physical527

brain area throughout the imaging run (as in all fMRI528

methods), but also assumes that this voxel is sampled529

at regular well-known time intervals. Motion correc-530

tion may lead to the translation of a physical brain area531

across slices and therefore impact the time interval at532

which this brain area was sampled. To address this533

issue we implemented a method for motion correction534

that allowed for standard spatial motion correction and535

provided an additional temporal correction that updates536

the time intervals of the physical areas underlying the537

voxels that were sampled (see Janssen et al. (submit-538

ted) for further details). However, it should be pointed539

out that our data set did not include a sufficiently large540

amount of motion to accurately verify the efficacy of541

this motion correction method. Finally, a second data542

set was created that was slice-time corrected using the543

AFNI 3dTshift using the first slice as a reference and the544

standard Fourier interpolation method. The STC func-545

tion was applied before the motion correction. Spatial546

smoothing was not used in any of the data sets.547

Comparison of activation maps548

The activation map for the standard method was ob-549

tained using the GLM method implemented in FSL Feat550

(Jenkinson et al., 2012) and used the STC dataset de-551

scribed above. Precise picture naming onsets were ex-552

tracted from the participant-specific Presentation log-553

files. The rest periods were not explicitly modeled (Per-554

net, 2014). The expected HRF was modeled as a double555

gamma function with default parameters, pre-whitening556

was applied, and the temporal derivative was included in557

the GLM model. The analysis only included the first run558

of each participant. A final group level map was gener-559

ated by performing a one-sample t-test on the standard560

space transformed beta-coefficient maps of each partic-561

ipant using FSL randomise (Winkler et al., 2014).562

The activation maps for the Timepoint by Timepoint563

with STC and Slice-Based method were constructed by564

comparing signal intensities at a baseline timepoint be-565

tween one TRs before and one TR after stimulus pre-566

sentation to signal intensities at timepoints between one567

and 5 TRs following stimulus presentation (i.e., captur-568

ing the peak of the BOLD signal). As in the simulation569
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data, signal intensities were modeled using LME with570

the lme4 package in R. Signal intensities were modeled571

as a function of a fixed effect variable Timepoint (signal572

intensities at baseline versus timepoint 1). In addition,573

the variations that arise due to items were brought into574

the model by including a random intercept for Item (i.e.,575

the formula was lmer(Intensity∼Time+(1|Item)).576

This model therefore provides for each participant a sin-577

gle activation map that indicates how signal intensity in-578

creased or decreased at timepoint 1 relative to baseline.579

The group level maps for the Timepoint by Timepoint580

and Slice-Based methods were generated in the exact581

same way as for the standard method. Note that as we582

mentioned earlier, the Timepoint by Timepoint method583

is volume-based and therefore may introduce uncertain-584

ties in the signal extraction compared to the Slice-Based585

method. Note also that the same transformation matri-586

ces to normalize each participant’s scanner space image587

to standard space were used between the three methods.588

BOLD signal extraction from left motor cortex589

BOLD signals were extracted from three adjacent590

slices in the left motor cortex that all showed strong591

involvement in the task. To identify the active voxels592

on adjacent slices in left motor cortex we first created593

a mask of each participant’s left precentral gyrus using594

the lateralized Harvard-Oxford probabilistic atlas (De-595

sikan et al., 2006). Any voxels included in the mask596

on the medial surface of the left hemisphere were re-597

moved as those regions are unlikely to be involved in598

primary motor cortex control of speech. Next, the voxel599

with the maximum t-value in the masked GLM signal600

detection map (see above) was identified for each par-601

ticipant, which corresponds to the voxel with the max-602

imum t-value in the left motor cortex. This resulted in603

three times series from adjacent slices in left motor cor-604

tex that were strongly involved in the task. This set of605

three time series for every participant formed the input606

to the four techniques.607

Specifically, the BOLD signals extracted from these608

three slices in left motor cortex were examined with the609

FIR without STC, FIR with STC, Timepoint by Time-610

point with STC, and Slice-Based methods. The extrac-611

tion was performed exactly as described above using612

the simulated data. Note no temporal derivates were613

included in the model. We examined the mean inter-614

slice correlation, the mean UP, the mean TTP, and the615

mean MAXT in the BOLD signal across the three slices616

for all participants. The TTP was calculated in the stan-617

dard way as the mean timepoint at which the extracted618

BOLD signal at each slice reached its maximum value.619

The UP indicated the number of unique peaks found for620

each slice and was calculated by counting the number of621

unique TTPs found across slices. The Maximum t-value622

was the maximum t-value across all slices. We extracted623

the BOLD signal in the thee slices in left motor cor-624

tex at two temporal resolutions, the TR (1908 ms), and625

TR/2 (954 ms). We performed statistical comparisons626

of these values on a by-participant basis.627

Results628

Simulation - variability in BOLD onset629

A graphical presentation of a single representative630

result from this simulation experiment is presented in631

Figure 4. A visual impression of this result suggested632

that the Slice-Based method yielded the BOLD signals633

in closest correspondence with the ground-truth signal634

(dashed line). Given the high value of the mean corre-635

lation with the ground-truth signal (r̄1) for all methods636

(suggesting ceiling effects), the analyses were focused637

on the mean absolute difference between the ground-638

truth signal and the mean extracted signal across all639

slices (d̄). An overview of the means and statistics of640

the d̄ value for each method across all simulations in641

presented in Figure 7.642

For the simulation on the variability in the onset of643

the BOLD signal, the analyses revealed that for TR = 3,644

the lowest d̄ values were observed for the Slice-Based645

method. Specifically, the Slice-Based method yielded a646

lower d̄ value compared to FIR without STC (F(1,198)647

= 3555.5, p ¡ 0.0001), FIR with STC (F(1,198) =648

1589.8, p ¡ 0.0001), and Timepoint by Timepoint with649

STC methods (F(1,198) = 8.7, p ¡ 0.004). In addition,650

the Timepoint by Timepoint with STC differed from651

the FIR without STC (F(1,198) = 4170.3, p ¡ 0.0001),652

and the FIR with STC methods (F(1,198) = 1761.6, p653

¡ 0.0001). Finally, the FIR with STC differed from654

the FIR without STC method (F(1,198) = 747.1, p ¡655

0.0001).656

Likewise, for TR = 1, the Slice-Based method again657

had the lowest d̄ values. In particular, the Slice-Based658

method had lower d̄ values than FIR without STC659

(F(1,198) = 350.4, p ¡ 0.0001), FIR with STC (F(1,198)660

= 67.4, p ¡ 0.0001), and Timepoint by Timepoint with661

STC methods (F(1,198) = 5.3, p ¡ 0.03). And as before,662

the Timepoint by Timepoint with STC differed from the663

FIR without STC (F(1,198) = 258.0, p ¡ 0.0001), and the664

FIR with STC methods (F(1,198) = 27.9, p ¡ 0.0001).665

Finally, the FIR with STC differed from the FIR with-666

out STC method (F(1,198) = 482.6, p ¡ 0.0001).667
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Simulation 2 - variability in BOLD dispersion668

As with the previous simulation, a visual impression669

of Figure 5 suggested that the Slice-Based method was670

also superior under conditions of variability in peak671

BOLD signal dispersion. The statistical analyses re-672

vealed that for TR = 3, the Slice-Based method yielded673

a lower d̄ value compared to FIR without STC (F(1,198)674

= 2158.3, p ¡ 0.0001), FIR with STC (F(1,198) = 269.8,675

p ¡ 0.0001), and Timepoint by Timepoint with STC676

methods (F(1,198) = 35.1, p ¡ 0.0001). In addition,677

the Timepoint by Timepoint with STC differed from678

the FIR without STC (F(1,198) = 1780.8, p ¡ 0.0001),679

and the FIR with STC methods (F(1,198) = 94.3, p680

¡ 0.0001). Finally, the FIR with STC differed from681

the FIR without STC method (F(1,198) = 3480.4, p ¡682

0.0001).683

Likewise, for TR = 1, the Slice-Based method also684

had lower d̄ values than FIR without STC (F(1,198) =685

163.8, p ¡ 0.0001), FIR with STC (F(1,198) = 74.2, p ¡686

0.0001), and Timepoint by Timepoint with STC meth-687

ods (F(1,198) = 26.5, p ¡ 0.0001). And as before, the688

Timepoint by Timepoint with STC differed from the689

FIR without STC (F(1,198) = 43.7, p ¡ 0.0001), and690

marginally from the FIR with STC methods (F(1,198)691

= 4.1, p = 0.05). Finally, the FIR with STC differed692

from the fir without STC method (F(1,198) = 189.7, p ¡693

0.0001).694

Simulation 3 - impact of single spike695

In line with previous simulations, Figure 6 suggested696

that the Slice-Based method extracted a more accurate697

BOLD signal when a single spike was present in the698

data for a single voxel. The statistical analyses revealed699

that regarding the d̄ value, for TR = 3, the Slice-Based700

method differed from FIR without STC (F(1,198) =701

3941.4, p ¡ 0.0001), FIR with STC (F(1,198) = 595.2,702

p ¡ 0.0001), but not from Timepoint by Timepoint with703

STC methods (F(1,198) = 2.7 , p = 0.10). In addition,704

the Timepoint by Timepoint with STC differed from705

the FIR without STC (F(1,198) = 3629.7, p ¡ 0.0001),706

and the FIR with STC methods (F(1,198) = 489.3, p707

¡ 0.0001). Finally, the FIR with STC differed from708

the FIR without STC method (F(1,198) = 7673.5, p ¡709

0.0001).710

Likewise, for TR = 1, the Slice-Based method also711

had lower d̄ values than FIR without STC (F(1,198) =712

210.2, p ¡ 0.0001), FIR with STC (F(1,198) = 30.2, p713

¡ 0.0001), but not Timepoint by Timepoint with STC714

methods (F(1,198) = 0.22, p = 0.63). As previously,715

the Timepoint by Timepoint with STC differed from the716

FIR without STC (F(1,198) = 121.3, p ¡ 0.0001), and717

from the FIR with STC methods (F(1,198) = 14.5, p ¡718

0.0002). Finally, the FIR with STC differed from the fir719

without STC method (F(1,198) = 883.4, p ¡ 0.0001).720

In-vivo Results721

Comparison of activation maps722

Figure 8 presents the comparison of the whole-brain723

group analysis of overt picture naming using the stan-724

dard GLM with STC obtained with FSL Feat (panel725

A), a map obtained using the Timepoint by Timepoint726

with STC method (panel B), and that of the Slice-Based727

method (panel C). Inspection of the difference maps728

(Figure 8, panels D, E, F, and G), revealed that the Slice-729

Based method yielded substantially higher t-values in730

some areas of the brain such as the medial frontal cortex731

compared to the other two methods (see Figure 8 panels732

D and E). Quantitative comparisons confirmed these vi-733

sual impressions. The Pearson’s correlation coefficient734

between the non-thresholded and vectorized versions of735

the Slice-Based and GLM maps was high at 0.95 (p ¡736

0.001) and between the Slice-Based and Timepoint by737

Timepoint map was 0.94 (p ¡ .001), suggesting com-738

parable activation patterns. However, the Dice index739

(see black line Figure 9), revealed that at higher t-value740

thresholds, the similarity between the Slice-Based and741

GLM map (Figure 9 panel A) and between the Slice-742

Based and Timepoint by Timepoint map (Figure 9 panel743

B) decreased. Further examination revealed that this de-744

crease was due to the presence of more active voxels in745

the Slice-Based map at higher t-value thresholds (see746

gray line Figure 9), indicating improved signal detec-747

tion for the Slice-Based method.748

BOLD signal extraction from left motor cortex749

Figure 10 provides an overview of the extracted750

BOLD signals for the four methods from the three ad-751

jacent slices in left motor cortex for three representative752

participants from a single imaging run with 18 stimuli at753

the TR temporal resolution of 1.908 s. Figure 11 relied754

on the same data but BOLD signals were extracted at755

twice the temporal resolution (0.954 s). Overall the vi-756

sual impression is that the Slice-Based method extracted757

the BOLD signal with increased t-values. A graphi-758

cal overview of the means and statistical differences for759

each method can be seen in Figure 12. Statistical analy-760

ses confirmed these visual impressions. Specifically, for761

the TR = 1.908 s, the interslice correlation was highest762

for the FIR with STC (mean = 0.76) and differed from763

the FIR without STC (0.69; t(29) = 4.2, p ¡ 0.0003) and764

Slice-Based methods (0.73; t(29) = 3.1, p ¡ 0.004). For765

the TR = 0.954 s, Slice-Based and FIR with STC had766
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comparable interslice correlations. In addition, the in-767

terslice correlation of the FIR with STC model differed768

from the Timepoint by Timepoint (0.62; t(29) = 2.4,769

p ¡ 0.03) and FIR without STC (0.59; t(29) = 4.7, p ¡770

0.0001) methods.771

Regarding the mean unique number of peaks across772

each slice, for TR = 0.954 s, the Slice-Based method773

had the highest number of unique peaks (2.6), and dif-774

fered from the Timepoint by Timepoint STC (2.3; t(29)775

= 2.1, p ¡ 0.05), the FIR with STC (2.1; t(29) = 3.3, p776

¡ 0.003), and the FIR without STC (2.3; t(29) = 2.6, p ¡777

0.02) methods.778

For the mean time to peak, at TR = 0.954 s, the Time-779

point by Timepoint model had the earliest time to peak780

(4.0), and differed from the FIR without STC method781

(4.4; t(29) = 2.2, p ¡ 0.04).782

For the mean maximum t-value observed across all783

slices, at TR = 1.908 s, the Slice-Based method had the784

higest mean maximum t-value (9.2), and differed from785

the Timepoint by Timepoint with STC (8.6; t(29) = 2.7,786

p ¡ 0.02), the FIR with STC (8.4; t(29) = 2.2, p ¡ 0.04),787

and FIR without STC (7.9; t(29) = 3.7, p ¡ 0.001) meth-788

ods. In addition, the FIR without STC had a lower max-789

imum t-value than the FIR with STC (t(29) = 4.4, p ¡790

0.0002). Similarly, at TR = 0.954 s, the Slice-Based791

method again had the higest maximum t-value (8.7),792

and differed from the Timepoint by Timepoint with STC793

(7.8; t(29) = 3.1, p ¡ 0.005), the FIR with STC (6.7;794

t(29) = 5.6, p ¡ 0.0001), and without STC (6.4; t(29)795

= 6.4, p ¡ 0.0001) methods. In addition, the Timepoint796

by Timepoint method differed from both FIR with STC797

(t(29) = 3.4, p ¡ 0.003) and without STC (t(29) = 4.2, p798

¡ 0.0003), and the FIR with STC differed from the FIR799

without STC (t(29) = 3.5, p ¡ 0.002) methods.800

Finally, the above results give the impression that the801

Slice-Based method was more robust against increased802

in temporal resolution compared to the FIR based meth-803

ods. Further analyses confirmed this impression: For804

the FIR with STC method, the statistical difference in805

maximum t-value between TR and TR/2 was larger806

(t(59) = -9.11, p ¡ 0.0001) than for the Slice-Based807

method (t(59) = -2.55, p ¡ 0.02), suggesting that the808

Slice-Based method indeed provides better BOLD sig-809

nal extraction accuracy under conditions of increased810

temporal resolution than the FIR based methods.811

Discussion812

The current study evaluated four methods that dif-813

fered in how the BOLD signal can be extracted from814

fMRI data. These four methods differed in how volumes815

were created from individually acquired brain slices,816

and in how the statistical extraction of the BOLD signal817

takes place. Specifically, whereas the FIR without STC,818

FIR with STC, and Timepoint by Timepoint with STC819

methods all relied on the same standard volume creation820

technique (see Figure 1), the Slice-Based method relied821

on a new volume creation technique that does not re-822

quire STC (see Figure 2). In addition, statistical ex-823

traction of the BOLD signal relied on the standard FIR824

with GLM approach (i.e., the FIR without and with STC825

methods), or a non-standard Timepoint by Timepoint826

approach using LME modeling (i.e., the Timepoint by827

Timepoint with STC, and Slice-Based methods). Re-828

sults from three simulation experiments revealed that829

the best performance was observed for the Slice-Based830

method (mean increased accuracy in terms of d̄ of Slice-831

Based vs FIR with STC for TR 3 was 32%, for TR832

1 it was 13%). Similarly, analyses of real-world data833

revealed that the Slice-Based method yielded dramati-834

cally improved signal detection in group level maps (at835

a t-value threshold of 8, the Slice-Based map contained836

about 3 times more active voxels compared to the stan-837

dard GLM map, and 8 times more active voxels com-838

pared to the Timepoint by Timepoint map), as well as839

higher maximum t-values of the extracted BOLD sig-840

nal in the motor cortex (mean increased accuracy in841

terms of maximum t-value of Slice-Based vs FIR with842

STC for TR resolution was 9%, for TR/2 it was 24%).843

Overall, the Slice-Based method significantly improved844

BOLD signal extraction accuracy compared to the stan-845

dard methods.846

Before discussing the main implications, two aspects847

of these data deserve further scrutiny. First, in the real-848

world data, the FIR with STC method yielded a higher849

inter-slice correlation (r̄2) at the TR resolution and a850

lower number of unique peaks (UP) at the TR/2 res-851

olution than the Slice-Based method (see Figure 12).852

This may suggest that the FIR with STC method yielded853

more coherency in the BOLD signals extracted from854

different slices than the Slice-Based method. However,855

note that this increase in similarity between signals on856

adjacent slices was directly caused by the STC function857

that effectively smoothed the data, which led to more858

similar signals on adjacent slices (e.g., Parker et al.,859

2017; Sladky et al., 2011). However, it is not obvious860

that these more similar signals reflect the veridical un-861

derlying signal. Indeed, although the simulation studies862

revealed that STC increased the accuracy with which the863

ground-truth signal was extracted, these studies also re-864

vealed that this accuracy of signal extraction in the FIR865

with STC method was relatively poor when compared866

to the accuracy of the Slice-Based method (see Figure867

7). Thus, whereas the FIR with STC method will pro-868
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duce signals that appear similar across adjacent slices,869

this does not necessarily imply more accurate signal870

detection, and the simulation results indicated BOLD871

signals were extracted more accurately with the Slice-872

Based method.873

Another aspect of the data that deserves further men-874

tion is that whereas signal detection accuracy greatly875

improved due to the Timepoint by Timepoint statisti-876

cal method, additional improvements due to the slice-877

based method of volume creation were seemingly more878

modest (comparing FIR with STC, Timepoint by Time-879

point with STC to Slice-Based methods, see Figure 7D).880

Given that the Slice-Based technique comprises both the881

Timepoint by Timepoint technique and the new volume882

creation method, one possible conclusion from these re-883

sults is therefore that the main contribution of the Slice-884

Based framework lies primarily in the statistical model-885

ing technique and not in the new method of volume cre-886

ation. However, this conclusion would be premature for887

the following three reasons: First, note that in the sim-888

ulation experiments, although improvements between889

the Timepoint by Timepoint and Slice-Based methods890

were modest, they were statistically significant (Figure891

7D). In addition, in the real-world data, there were rela-892

tively large differences between the Timepoint by Time-893

point and the Slice-Based methods in terms of the max-894

imum extracted t-value (especially at 954 ms temporal895

resolution, see Figure 12D). Finally, as mentioned ear-896

lier, epoching of data is more precise in the Slice-Based897

framework, leading to more accurate allocation of dat-898

apoints to timepoints in the Slice-Based method com-899

pared to the Timepoint by Timepoint method. Addi-900

tional simulations presented in the Supplementary Ma-901

terials (see Figure S2 and S3) further highlight condi-902

tions in which the Timepoint by Timepoint with STC903

method yielded inaccurate signal detection (and may ex-904

plain the differences observed in Figure 12D). Overall,905

these observations suggest that the new method of Slice-906

Based volume creation confers additional advantages of907

BOLD signal detection over and above the advantages908

already accrued by the Timepoint by Timepoint method909

of statistical signal extraction.910

How did the new volume creation technique improve911

BOLD signal extraction accuracy? There are two major912

differences between the new and the standard method913

of volume creation. First, as mentioned in the Introduc-914

tion, in the new method, whole-brain volumes contain915

slices with signals that are temporally aligned, mean-916

ing that there are no within volume temporal distor-917

tions of signals across adjacent slices. By contrast, in918

the standard method these signals are not temporally919

aligned, meaning that there are within volume tempo-920

ral distortions of signals across slices (cf., Figures 1921

and 2). The important implication of the presence of922

temporally aligned signals across slices within consec-923

utive volumes is that the STC procedure is no longer924

required. Removing the STC procedure from the fMRI925

processing pipeline means that less data transformations926

are required, and this means that in the new method a927

more accurate and veridical BOLD signal can be ex-928

tracted. Second, the new volume creation method leads929

to a reorganization of the fMRI data that fundamentally930

differs from the standard method of volume creation.931

Specifically, the new method reorganizes the data into932

stimulus-locked epochs where each datapoint in this933

epoch is labeled with timing information that is deter-934

mined by the exact slice acquisition times (on the order935

of tens of milliseconds). By contrast, in the standard936

method, datapoints are labeled with timepoints deter-937

mined by the TR (on the order of hundreds to thousands938

of milliseconds). This means that in the Slice-Based939

volume creation technique, timing information is much940

more precise. In our data, the availability of this highly941

precise timing information enabled statistical modeling942

approaches that improved the accuracy of BOLD signal943

extraction. Thus, the new volume creation technique944

improved the accuracy of BOLD signal extraction be-945

cause it removes the need for STC and it includes more946

precise timing information in the data.947

Besides the new volume creation technique, the cur-948

rent study also introduced a new method of statistical949

BOLD signal extraction. Specifically, the modeling ap-950

proach used in the current study relied on a Timepoint951

by Timepoint technique. While the method of compar-952

ing timepoints in an epoch to a baseline timepoint has953

been used in previous fMRI studies (e.g., Leung et al.,954

2000), the specific implementation that uses LME mod-955

eling proposed here is new. This modeling approach956

improved BOLD signal extraction over the standard FIR957

based GLM approach in three ways. First, in the Time-958

point by Timepoint technique, model coefficients are959

estimated by comparing signal intensities at all time-960

points in an epoch to a baseline timepoint (e.g., data961

collected prior to stimulus onset). The direct compari-962

son of signal intensities between a baseline and a time-963

point means that more data is available for coefficient964

estimation compared to a no baseline FIR model (as965

used here), avoids problems associated with subtracting966

model coefficients in FIR models that use a baseline,967

and avoids the need for explicit baseline (rest) periods968

in the experimental design. This leads to more stable969

model estimates in BOLD signal extraction. In addi-970

tion, the specific statistical modeling technique used in971

the current study was LME modeling implemented in972
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R (Bates, 2005; Pinheiro & Bates, 2000). A major ad-973

vantage of LME modeling over the standard GLM con-974

cerns the use of more complex random effect structures975

(Westfall et al., 2016). For example, the current study976

included random-intercepts for the effect of item in the977

statistical model. The inclusion of known sources of978

variance in the model leads to more stable model esti-979

mates, and improved signal extraction. Finally, because980

in the Timepoint by Timepoint approach separate mod-981

els are fitted at each timepoint, the standard errors are982

less sensitive to sudden noise events at other timepoints983

in the epoch (Friston et al., 1996), and hence, lead to984

more stable estimates. In short, the Timepoint by Time-985

point approach for statistical signal extraction improved986

the accuracy of BOLD signal extraction over the stan-987

dard GLM based methods.988

As mentioned in the Introduction, current advances989

in MRI pulse sequence design and hardware coils have990

enabled the acquisition of fMRI data at very short991

TRs. For example, several studies have shown that with992

Simultaneous Multi-Slice acquisition methods (SMS),993

whole-brain volumes can be acquired at TRs of 500994

ms and less (Chen et al., 2015; Feinberg & Setsom-995

pop, 2013; Vu et al., 2016). Interestingly, although996

reductions in TR are generally associated with lower997

SNR, studies have demonstrated that the TR reductions998

yielded increased statistical power, suggesting that the999

additional data offset the reductions in SNR (Constable1000

& Spencer, 2001; Sahib et al., 2016). The Slice-Based1001

method proposed here may be combined with these ex-1002

isting SMS techniques to further improve BOLD sig-1003

nal detection. In practical terms, this combination is1004

straightforward since all that the Slice-Based method re-1005

quires is a list of the specific timepoints at which each1006

slice was acquired. Although the impact of temporal1007

distortions produced by time-shifting slices is expected1008

to be reduced with short TRs in SMS techniques (Sahib1009

et al., 2016), further minimizing the impact of such dis-1010

tortions can be achieved with the Slice-Based method.1011

In addition, the Slice-Based method has the advantage1012

of not requiring state-of-the-art MRI pulse sequences or1013

hardware, but can extract BOLD signals with high tem-1014

poral resolution and accuracy at long TRs with good1015

SNR using run-of-the-mill pulse sequences. In short,1016

the Slice-Based method could improve signal detection1017

for existing cutting-edge techniques, as well as provide1018

a method for BOLD signal extraction with high tem-1019

poral resolution and accuracy that is not restricted by1020

specific hardware configurations.1021

The current study has several limitations. First, as1022

explained in the Method section, although head mo-1023

tion is considered a problem for all fMRI techniques,1024

it poses special challenges to Slice-Based fMRI. Al-1025

though the results presented here relied on the standard1026

procedures implemented in FSL to alleviate head mo-1027

tion artefacts (i.e., MCFlirt), they were accompanied by1028

specialized Slice-Based fMRI procedures developed to1029

alleviate any temporal distortions induced by head mo-1030

tion (see Janssen et al., submitted for details). Although1031

these specialized Slice-Based motion correction proce-1032

dures improved signal detection (Janssen et al., submit-1033

ted), further validation of these procedures is required1034

in dedicated future studies. Second, the current study1035

relied on real-world fMRI data collected from a picture1036

naming task. We are currently planning studies that use1037

different tasks in which expectations about BOLD sig-1038

nal dynamics are more easily verified, such as, for ex-1039

ample, inducing delayed BOLD responses between left1040

and right motor cortex (e.g., Menon et al., 1998; Miezin1041

et al., 2000). Third, although the Slice-Based tech-1042

nique works with both slow event-related and blocked1043

designs, it currently does not work for fast event-related1044

designs. Note, however, that fast event-related designs1045

pose challenges to all linear modeling approaches (e.g.,1046

Vazquez & Noll, 1998). Finally, the Slice-Based frame-1047

work requires more statistical tests than the standard1048

FIR based approaches. In the Slice-Based framework,1049

a statistical model is fitted to each voxel in the brain at1050

each timepoint, and therefore raises issues about mul-1051

tiple comparisons. In our data we dealt with this is-1052

sue by using high t-value thresholds. In the future, this1053

issue may be addressed by implementing 4D cluster1054

correction techniques such as those available for EEG1055

and MEG data (Guthrie & Buchwald, 1991; Maris &1056

Oostenveld, 2007). To facilitate further development1057

on all these issues an example data set and tutorial1058

script for analyzing an fMRI data set within the Slice-1059

Based framework is available at https://github.1060

com/iamnielsjanssen/slice-based. In brief, we1061

think that despite these limitations the Slice-Based tech-1062

nique is a feasible alternative for the analysis of fMRI1063

data.1064

To conclude, current methods for extracting BOLD1065

signals rely on volumes constructed by time-shifting1066

slices, STC, and FIR-based statistical modeling tech-1067

niques (Josephs et al., 1997). Here we show that such1068

an approach leads to a relatively poor detection of the1069

true underlying BOLD signal. By contrast, the Slice-1070

Based framework that was proposed here relies on a1071

fundamentally different method of volume construction,1072

does not require STC, and uses non-standard Timepoint1073

by Timepoint modeling for signal extraction. The re-1074

sults from both simulated and real-world data showed1075

that this new fMRI data-analytic method led to im-1076
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proved BOLD signal detection accuracy. Although the1077

Slice-Based framework places more strict constraints on1078

paradigm design, the new framework is a relatively sim-1079

ple data-analytic method that does not require special-1080

ized MRI hardware, is more robust against trial-by-trial1081

variability in BOLD onset and shape, is more robust1082

against sudden noise events, allows for an easy appli-1083

cation of modern LME modeling techniques, and can1084

be applied to a wide variety of fMRI research contexts1085

that rely on both event-related and blocked designs. Ul-1086

timately we think that further improvements in BOLD1087

signal detection will come from a combination of the1088

Slice-Based framework with newer hardware oriented1089

techniques.1090
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Appendix 11261

Formally, fMRI data D can be represented as a set of
m slices S that are repeatedly sampled n times:

D = [S 1,1, ..., S m,n], (7)

where each S is itself a two dimensional matrix of ac-
quired fMRI signal intensities (not shown here). This
data matrix of slices D is accompanied by a similar size
m × n matrix of slice acquisition times DT .

DT = [t1,1, ..., tm,n]. (8)

Under the assumption of a standard sequential slice ac-
quisition scheme, each specific time point t(a, b) in this
matrix can be determined by the following function:

t(a, b) =
TR
m
× (a + (b − 1) × m), (9)

where a and b index the specific slice and acquisition1262

number.1263

In the standard way to create whole-brain volumes,
raw fMRI data D is transformed from m × n individ-
ual slices, to a n size vector D′ of whole-brain volumes
V1, ...,Vn:

[S 1,1, ..., S m,n]→ [V1, ...,Vn]. (10)

In this new formulation of the data D′, it is simply as-
sumed that all slices within a given volume are acquired
at the same point in time given by:

D′T = [tv1, ..., tvn], (11)

where each volume acquisition time tv(v) is determined
by the function:

tv(v) = TR × v, (12)

where v ranges from 1 to n.1264

In the Slice-Based method, volume-creation requires
a set P of m stimuli [p1, ..., pm], whose corresponding
stimulus presentation times PT coincide precisely with
the slice acquisition times determined by equation 8:

PT = [pt1,a, ..., ptm,y] = [t1,a, ..., tm,y], (13)

Next, we create m epochs E1, ..., Em corresponding to
each stimulus presentation. Each epoch has length ∆t.
A given epoch E j then contains raw fMRI signal inten-
sities as defined as the set of slices:

E j = [S j,a, ..., S k,d], (14)

where j correspond to the slice acquired during stimulus
presentation, and k to the slice acquired at the end of an
epoch. The corresponding set of slice acquisition times
for an epoch is:

ET j = [t j,a, ..., tk,d], (15)

where each specific time point in this set is determined
by Equation 8. Next, for each given epoch E j we com-
pute the relative time difference RET j between the exact
presentation time of the stimulus pt( j, a) and each time
point in the epoch:

RET j = [t j,a−pt j,a, ..., tk,d−pt j,a] = [rt j,a, ..., rtk,d]. (16)

Following this step, we create a single epoch L with r
whole-brain volumes

L = [V1, ...,Vr], (17)

where r is determined by the ratio between the epoch
length ∆t and the slice sampling frequency TR

m . The cor-
responding vector of volume acquisition times LT is de-
termined by

LT = [lt1, ..., ltr], (18)

where each lt is determined by the function:

lt(v) =
TR
m
× v. (19)

Each volume in the epoch L contains slices that are ac-
quired at the same time point relative to the onset of the
stimulus. This is achieved by combining slices from dif-
ferent epochs E1, ..., Em on the basis of their RET val-
ues. Specifically slices 1, ...,m can be combined into
a whole-brain volume if their corresponding relative
times rt match. For a given volume:

Ve = [S 1,a, S 2,d, ..., S m,y] ⇐⇒ rt1,a = rt2,d = ... = rtm,y.
(20)

This then leads to an epoch of whole-brain volumes that1265

do not contain any temporal distortions, and where vol-1266

umes are available at a temporal resolution equal to the1267

sampling frequency. Finally, note that binning across1268

timepoints may be used to improve the SNR. In this1269

case, the temporal resolution is determined by the ratio1270

between the epoch length and the number of bins.1271
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Appendix 21272

The particular statistical modeling technique that1273

is used in the Slice-Based framework is called Lin-1274

ear Mixed Effect modeling (LME; Pinheiro & Bates,1275

2000). LME modeling is best seen as an extension of1276

the GLM, meaning that both techniques are multiple1277

linear regression techniques. However, LME model-1278

ing offers a number of advantages over the GLM tech-1279

nique. First, the LME technique is a multilevel tech-1280

nique which can handle complex random effect struc-1281

tures. This means that, for example, fMRI data can be1282

modeled while taking into account random variability1283

between participants and items, instead of just between1284

participants as is currently the standard. Second, the1285

LME technique can handle unbalanced data sets. This1286

means experimental conditions can have missing val-1287

ues, and model estimation will still work. Finally, the1288

LME parameter estimation takes into account a statisti-1289

cal phenomenon known as shrinkage (Efron & Morris,1290

1977). This means that parameter estimates are adjusted1291

in the context of what the model knows about the other1292

estimates, thereby preventing overfitting of the model.1293

Overall, these features improve model estimation and1294

reduce the probability of biased parameter estimates.1295

One way to formally present a LME model is as fol-
lows:

Y = Xβ + Zγ + ε,

γ ∼ Nr(0,G),
ε ∼ NN(0,R),

(21)

where Y is a N × 1 vector of fMRI signal intensities at1296

a particular voxel p, at a particular time point t, X is the1297

design matrix of size (N× (1+k)), β are the estimates of1298

the fixed effects ((1+k)×1), Z is the design matrix of the1299

random effect predictors with g clusterings (e.g., items)1300

and r random effects (N × (r × g)), γ the random effect1301

estimates (r×g)×1, and ε the residual errors. The γ pa-1302

rameter is assumed to be a random variable chosen from1303

a normal distribution with a mean of zero and a covari-1304

ance matrix G, while the residual error ε is assumed to1305

be normally distributed with mean of zero and covari-1306

ance matrix R. The unknown model parameters for β,1307

G, and R can be estimated using Maximum Likelihood1308

or Restricted Maximum Likelihood methods. The pa-1309

rameter γ is not a parameter of the model but its values1310

are simply derived once the other parameters have been1311

discovered.1312
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Figure 1: Current standard method for creating whole-brain volumes from raw fMRI data. Panel A shows an imaging run where a
set of three slices are sequentially sampled at well defined points in time. Panel B reveals the same data, reorganized to illustrate
that at no sampled time point information from the whole-brain is available, requiring data transformation. Panel C shows the
standard solution, where slices are time-shifted to new positions in time (arrows indicate shift direction), using the middle slice as
an arbitrary reference. Panel D shows the final transformed data, where whole-brain volumes are available every TR. Note how the
final volumes contain slices acquired at different points in time, and how time points where data was sampled are no longer used.
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Figure 2: Slice-based method for creating whole-brain volumes from raw fMRI data. Panel A shows an imaging run where again
three slices are sampled sequentially. Three stimuli S1, S2, and S3 of the same experimental class are presented during the run.
Panel B shows that these stimuli are presented in-phase with slice acquisitions: S1 is presented in-phase with acquisition of slice
1, S2 with slice 2, and S3 with slice 3. Panel C shows how whole-brain volumes are created. Slices acquired at the same point
in time relative to the onset of a stimulus can be combined (e.g., those highlighted in red and magenta). Panel D shows the final
transformed data, where whole-brain volumes are available that only contain slices that are acquired at the same moment in time
relative to a presented stimulus, and where whole-brain volumes are available at the sampling frequency (here TR/3).
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Figure 3: Temporal structure of the picture naming task used in the experiment. Stimuli consisted of either a picture or a fixation
point that was presented for 0.5 s. Each stimulus presentation was followed by a blank screen that lasted for 12 s plus an additional
jitter period. The jitter period was randomly selected without replacement from a uniform distribution of times that coincided with
the slice acquisition times and ranged from 0 to 1855 ms in steps of 53 ms (see text for further details). Participants were instructed
to name aloud presented pictures and remain quiet (i.e., rest) for presented fixation points. The order of stimuli presentation was
fully randomized, and was different for every participant.
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Figure 4: Differences in the detection accuracy of the BOLD signal due to trial-by-trail variability in the onset of the BOLD signal
in a simulated fMRI experiment. Each column in the figure represents a different method (first column = FIR without STC; second
= FIR with STC; third = Timepoint by Timepoint with STC; fourth = Slice-Based), and each row represents a different TR (TR = 3
top row; TR = 1, bottom row). BOLD response variability was modeled by randomly delaying its onset by 0.5 seconds for half the
stimuli. In all simulations, white noise was modeled with σ = 0.15. Shown are the extracted signals from a single representative
simulation. Figure titles list the mean absolute difference between the ground-truth signal and the extracted signals across slices
(d̄), and the mean correlation between the ground-truth signal and the signal from each slice (r̄1). Note the overall high r̄1 values,
and that the lowest d̄ values are found in the Slice-Based method.

23



FIR NO STC
d  =  4.16;  r1  =  0.84

1 4 7 10 13 16

−
5

0
5

10
15

20
25

30
t−

va
lu

es
T

R
 3

.0

FIR STC
d  =  3.18;  r1  =  0.98

1 4 7 10 13 16

−
5

0
5

10
15

20
25

30

TP BY TP STC
d  =  2.88;  r1  =  0.98

1 4 7 10 13 16

−
5

0
5

10
15

20
25

30

SLICE−BASED
d  =  2.64;  r1  =  0.99

1 4 7 10 13 16

−
5

0
5

10
15

20
25

30 slice 1

slice 2

slice 3

d  =  2.96;  r1  =  0.97

1 7 16 25 34 43 52

−
5

0
5

10
15

20
25

30
t−

va
lu

es
T

R
 1

.0

d  =  2.82;  r1  =  0.99

1 7 16 25 34 43 52

−
5

0
5

10
15

20
25

30

d  =  2.76;  r1  =  0.98

1 7 16 25 34 43 52

−
5

0
5

10
15

20
25

30

d  =  2.54;  r1  =  0.98

1 7 16 25 34 43 52

−
5

0
5

10
15

20
25

30

Figure 5: Differences in detection accuracy due to trial-by-trial variability in the shape of the BOLD signal in a simulated fMRI
experiment. Half of the stimuli evoked a BOLD response with standard parameters, while the other half yielded a BOLD response
with alternative parameters that indicated reduced dispersion of the main peak (see text for details). Note again that the Slice-Based
method yielded the lowest d̄ values, suggesting this method extracted the most similar ground-truth signal.

24



FIR NO STC
d  =  5.37;  r1  =  0.85

1 4 7 10 13 16

−
5

0
5

10
15

20
25

30
t−

va
lu

es
T

R
 3

.0

FIR STC
d  =  3.75;  r1  =  0.98

1 4 7 10 13 16

−
5

0
5

10
15

20
25

30

TP BY TP STC
d  =  2.76;  r1  =  0.98

1 4 7 10 13 16

−
5

0
5

10
15

20
25

30

SLICE−BASED
d  =  2.66;  r1  =  0.99

1 4 7 10 13 16

−
5

0
5

10
15

20
25

30 slice 1

slice 2

slice 3

d  =  3.15;  r1  =  0.98

1 7 16 25 34 43 52

−
5

0
5

10
15

20
25

30
t−

va
lu

es
T

R
 1

.0

d  =  2.8;  r1  =  0.99

1 7 16 25 34 43 52

−
5

0
5

10
15

20
25

30

d  =  2.61;  r1  =  0.99

1 7 16 25 34 43 52

−
5

0
5

10
15

20
25

30

d  =  2.58;  r1  =  0.99

1 7 16 25 34 43 52

−
5

0
5

10
15

20
25

30

Figure 6: Differences in detection accuracy due to a single signal intensity spike in a simulated fMRI experiment. The single
spike was modeled by changing a single intensity value in the time series sampled at the voxel on slice 1 (red line) to 5 times
the maximum BOLD signal. The statistical impact of this single spike can be seen in the small peak in the undershoot of the
extracted BOLD signal on slice 1. Note that this single spike strongly affected detection accuracy for the FIR based methods at all
timepoints (note the overall reduced t-values for the red line), whereas detection accuracy was largely unaffected for the timepoint
by timepoint methods.
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Figure 7: Graphical overview of the means and statistics of the three simulation experiments (panels A-C) and an additional simula-
tion experiment combining all three previous simulations (panel D). Each bar represents the mean absolute difference between the
ground-truth signal and the signal at each slice (d̄). Note that for the Slice-Based method had the lowest d̄ values, suggesting that
the extracted signal more closely resembled the ground-truth signal. (*) denotes significant at p ¡ 0.001, see text for details.
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Figure 8: Comparison of standard GLM (panel A), Timepoint by Timepoint with STC (panel B) and Slice-Based (panel C) methods
in basic signal detection during picture naming at the group-level with a threshold t ¿ 6.0. The same minimally preprocessed data
was used for all three analyses (see text for details). Panels D-G reveal subtractions between unthresholded maps: Slice-Based
minus GLM (panel D); Slice-Based minus Timepoint by Timepoint (panel E); GLM minus Slice-Based (panel F); Timepoint by
Timepoint minus Slice-Based (panel G). Presented are saggital slices, slice number in upper left corner. Note that although all
three methods yielded overall similar pattens of activity, the Slice-Based method has improved signal detection (most notably in
medial frontal cortex, panels D and E).
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Figure 9: Similarity between the t-value maps of the standard Slice-Based method vs GLM (panel A) and Slice-Based vs Timepoint by Timepoint
STC (panel B) at different t-value thresholds (x-axis). The lefthand y-axis shows the Dice index, an index of similarity between two statistical maps.
The righthand y-axis shows the relative number of active voxels ( S lice Based

GLM and S lice Based
T PT P ). Note that the Dice index (black line) revealed decreased

similarity between maps at higher thresholds (t > 4.0). Furthermore, this decreased similarity at higher thresholds is caused by a dramatic increase
in active voxels in the Slice-Based map relative to the GLM and TPTP maps (grey line), suggesting improved signal detection for the Slice-Based
method.
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Figure 10: Method comparison using real data from left motor cortex activity obtained using the picture naming task. Each column
in the figure represents a different method (first column = FIR without STC; second = FIR with STC; third = Timepoint by
Timepoint with STC; fourth = Slice-Based). Signals are extracted from three voxels that appear on adjacent slices (see legend) in
the left motor cortex in three representative subjects (top, middle, and bottom row for subjects 17, 23, and 24, respectively). Figure
titles list the interslice correlation (r̄2), the mean number of Unique Peaks (UP), and the mean Time To Peak (TTP) for the extracted
signals in the graph. Note how the STC methods yielded smoother signals due to signal interpolation but had lower t-values than
the Slice-Based method.
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Figure 11: Method comparison using real data from left motor cortex activity obtained using the picture naming task. BOLD signal
extracted using the four aforementioned methods at a fixed temporal resolution of 1/2 TR (954 ms). Other aspects identical to those
used to obtain Figure 10. Not again how the Slice-Based method detected higher t-value signals despite the increase in temporal
resolution.
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Figure 12: Mean interslice Pearson correlation (A), mean number of Unique Peaks (B), mean Time To Peak (C), and mean Max
t-value (D) for the four methods at TR (1908 ms) and TR/2 (954 ms) temporal resolutions. Values obtained from three adjacent
slices covering left motor cortex in 30 participants performing the picture naming task. (*) denotes significant at p ¡ 0.05. The
slice-based method yielded increased t-values and more stable performance at higher temporal resolution.
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