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SUMMARY

Nowadays there is growing interest in patient-centered healthcare system. A patient-

reported outcome (PRO) is any report on the status of a patient’s health condition,

quality of life, or functional status associated with health care or treatment that

comes directly from the patient, without interpretation of the patient’s response by

a clinician or anyone else. PROs are increasingly used as primary outcome measures

in observational and experimental studies as they inform clinicians and researchers

about the health-status of patients and generate data to facilitate improved care.

In fact, numerous studies have recommended that objective indicators combined

with PROs would be considered a more comprehensive form of outcome evaluation.

PROs are usually obtained using rating scale questionnaires consisting of questions

or items, grouped into one or more subscales, often called dimensions or domains.

There exist some disease-specific questionnaires as well as generic questionnaires

that even can be applied to healthy subjects. Traditionally, PROs are calculated by

assigning rank scores to the patient’s item responses and summing the scores across

a group of items and creating overall scores by dimensions that are usually rescaled.

Therefore, PROs have an integer and bounded nature which typically accumulate

values in one or both edges of the score scale, leading to U, J or inverse J-shaped

distributions which the usual exponential family distributions are not able to fit

properly.

In order to overcome the poor distributional fit provided by the exponential fam-

ily members, the beta-binomial distribution has been proposed in the literature for

analysing PROs, leading to adequate distributional fits. The beta-binomial distri-

bution is defined as a mixture between a binomial and a beta distribution; or in

xxi
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other words, as a binomial distribution which probability parameter is random and

follows a beta distribution,

Y |θ ∼ Bin(m, θ) where θ ∼ Beta (α1, α2) ,

where α1, α2 > 0. Conditional and marginal mean and variances of the beta-binomial

distribution can be therefore derived as

E[Y ] = m
α1

α1 + α2
, Var[Y ] = m

α1

α1 + α2

[
1 + (m− 1)

1

α1 + α2 + 1

]
,

E[Y |θ] = mθ, Var[Y |θ] = mθ(1− θ),

where the marginal density function is given by

f(y) =

∫ 1

0
f(y|θ)f(θ)dθ =

(
m

y

)∫ 1

0
θy(1− θ)m−y θ

α1−1(1− θ)α2−1

B(α1, α2)
dθ

=

(
m

y

)
Γ(α1 + y)

Γ(α1)

Γ(α2 +m− y)

Γ(α2)

Γ(α1 + α2)

Γ(α1 + α2 +m)
.

It is straightforward to notice the complexity of the beta-binomial density function,

which does not belong to the exponential family.

When the aim is to assess the relationship of different covariates on PROs, re-

gression analysis is the most useful framework for statistical modelling. Despite of

the appropriate distributional characteristics of the beta-binomial distribution for

PRO analysis, in a regression framework, the fact that beta-binomial distribution

does not belong to the exponential family makes inappropriate the use of classical

regression models, such as generalised linear models (GLMs) or generalised linear

mixed-effects models (GLMMs).

Researchers at the Respiratory Service at Galdakao Hospital in Spain designed

a longitudinal study where the health-status of patients with Chronic Obstructive

Pulmonary Disease (COPD) was repeatedly measured. COPD is a pulmonary dis-

ease, it is one of the major causes of mortality and it is associated with high levels

of disability. In fact, according to estimates from the World Health Organization,

by 2020 it shall become the third most frequent cause of death. The objective of the

COPD Study was to measure the health-status and evolution of COPD patients who

were followed for up to five years. Two different PRO questionnaires were used to

assess the health-status of the patients: a generic, the Short Form-36 Health Survey,

and a pulmonary disease-specific, the St. George’s Respiratory Questionnaire. Ad-
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ditionally, a set of selected time-dependent and independent variables were recoded

in the study and considered as covariates for the model development.

The main goal of this thesis is to propose a beta-binomial regression approach

that could deal with longitudinal and hierarchical data in PROs framework. This

main objective is split into five specific goals: (i) a review and comparison of existing

beta-binomial regression approaches; (ii) the development of a methodology for the

analysis of multilevel or hierarchical beta-binomial data, in particular, longitudinal

data; (iii) the proposal of a multivariate regression model based on the beta-binomial

distribution for analysing jointly the dimensions provided by PRO questionnaires;

(iv) the implementation of the proposed methodology as Open Source Software to

the scientific community and (v) the application of the proposed methodologies to

COPD data providing clinically relevant interpretations.

The first beta-binomial regression approach is developed in a cross-sectional or

independent data context, and it establishes the base for more complex models.

Based on the conditional or marginal interpretation of the beta-binomial distribu-

tion, two different regression approaches have been proposed in the literature. On

the one hand, the marginal approach, denoted as BBreg, consists of a parametriza-

tion of the beta-binomial distribution assuming that α1 = p/φ and α2 = (1− p)/φ,

where 0 < p < 1 and φ > 0. That way, the marginal expectation of the beta-binomial

distribution is defined as E[Y ] = mp and p can be interpreted as a probability param-

eter, while Var[Y ] = mp(1−p)[1+(m−1)φ/(1+φ)] determinates φ as the dispersion

parameter. Therefore, similar to the logistic regression, a logit link function can be

applied to the probability parameter connecting it with the given covariates through

a linear predictor,

Yi ∼ BB(mi, pi, φ),

logit

(
pi

1− pi

)
= x′iβ,

where mi is the maximum number of score (or summed binary variables) for the

ith observation, β are the regression coefficients and xi is the ith row of a full

rank matrix composed by the given covariates, i = 1, . . . , n. Estimation of the

parameters is done via maximum likelihood. On the other hand, the conditional

approach denoted as BBhglm is based on the hierarchical generalised linear models

(HGLMs), where not necessarily Gaussian random effects are included in a linear

predictor of a GLM. Consequently, the model assumes that conditional on some
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beta distributed random effects the outcomes follow a binomial distribution. Hence,

the BBglm applies a logistic regression in the conditioned expectation including the

beta random effects in the linear predictor.

Yi|ui ∼ Bin(mi, pi), where ui ∼ Beta(1/λ, 1/λ),

logit

(
pi

1− pi

)
= x′iβ + logit

(
ui

1− ui

)
,

where β are the regression coefficients of the fixed effects, ui are the random effects,

xi is the ith row of a full rank matrix composed by the given covariates and λ is

the positive parameter of the distribution of the random effects, i = 1, . . . , n. In

this thesis, we show through a real data application and a simulation study that

when the objective is to measure the effect of the covariates in PROs, the marginal

approach offers more adequate results regarding the statistical significance of the

effect and moreover, a convenient interpretation in terms of odds-ratios.

The BBreg model assumes independence among observations, and hence, some

extension is required in order to apply it to correlated or multilevel data, the longi-

tudinal COPD Study for instance. In this thesis, we extend the BBreg approach to

the inclusion of random effects in the linear predictor in a mixed-effects regression

context,

Yi|u ∼ BB(mi, pi, φ), where u ∼ N (0,D),

logit

(
pi

1− pi

)
= x′iβ + z′iu,

where β and xi have been defined in the previous formulae, u are the random effects,

zi is the ith row of the design matrix Z that determines the correlation structure

of the data and D is the variance-covariance matrix of the random effects, i =

1, . . . , n. This way, the random effects will account for the correlation that may exist

among the observations. The model is denoted as BBmm. Due to the conditional

beta-binomial distribution, GLMM estimation theory is not directly applicable, and

therefore, we develop a specific estimation and inference process. The marginal

likelihood of the model is approximated by Laplace approximation considering the

joint likelihood and an adjusted term. Nevertheless, we show that the adjusted

term does not carry any information about the fixed effects and consequently, the

approximation can be done by means of the joint likelihood. A delta method based

procedure is proposed for the estimation of the fixed effects and the prediction of the
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random effects. However, in order to estimate the dispersion parameters (i.e., φ from

the beta-binomial distribution and the variance of the random effects), a penalisation

of the likelihood is performed to avoid the bias due to the successive estimation of

fixed and random effects in an iterative algorithm. We compare our proposal with

similar approaches in the literature, such as generalised additive models for location,

scale and shape (GAMLSS). The main difference between GAMLSS and BBmm

approaches lies in the penalisation of the likelihood used in BBmm to estimate the

dispersion parameters. We show through a simulation study that the penalisation

does not only improve the estimation of the dispersion parameters in terms of the

reduction of the bias, but also in the estimates of the rest of the parameters in the

model.

We apply the BBmm approach to the COPD longitudinal study where clinically

relevant and valid results about the evolution of patients with COPD are obtained.

However, either by BBreg or BBmm approaches, each dimension provided by PRO

questionnaires is analysed separately. In general, a PRO may be interpreted as

a multivariate outcome constructed by responses of the same patients that may

have some correlation and hence, we extend the BBmm model to a multivariate

approach. In this thesis, we develop a mixed-effects regression approach, called the

shared random effects model, for the joint analysis of all the dimensions in the same

PRO questionnaires. The model assumes that each individual has the same random

effect across all the dimensions. The implementation of this model under the mixed-

effects beta-binomial framework proposed in this thesis is straightforward and it also

has the advantage that the complexity of the model is not increased by the number

of PRO dimensions. We apply this model in both cross-sectional and longitudinal

COPD data, leading to clinically and statistically relevant results compared to the

individual analysis of each PRO dimension.

We also implement all the methodology proposed in this thesis in an R-package

called PROreg which is available at CRAN. The package includes the regression

models developed in this thesis and other functionalities.

The research of this thesis leads the way for some future work that must be con-

sidered. For instance, we show that the proposed shared random effects model has

some limitations when dealing with longitudinal multivariate data and hence, the use

of different but correlated random effects structures would be of interest for further

research. However, the correlated random effects approach leads to Laplace’s ap-

proximation problems in the marginal likelihood when more than two dimensions are

jointly analysed. Techniques for dealing with the mentioned limitation are discussed
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in the thesis within the beta-binomial framework. Additionally, several proposals

are left as future work: (i) joint modelling of mean and variance components in

BBmm approach, (ii) joint analysis of survival and longitudinal PROs, (iii) testing

of the variance components in the proposed models; and (iv) inclusion of non-linear

covariate effects in BBmm approach.

In conclusion, in this thesis we develop several regression approaches based on

the beta-binomial distribution for the analysis of PROs. Moreover, although the

illustration of the models is only performed in PRO context, they can also be useful

in any U, J or inverse J-shaped discrete and bounded data (due to overdispersion).

In fact, this type of data can appear in different contexts and research fields, such as

Finance (e.g. the estimation of the probability of a claim in an insurance product),

or Biology (e.g. presence/absence of species or bacteria in agricultural experiments).

The implementation of the methodology through the PROreg R-package provides a

useful tool that clinical researchers can use for statistical modelling in a wide variety

of studies in order to draw conclusions from PROs.



LABURPENA

Gaur egun, gero eta ohikoagoa da pazientiearen inguruan oinarritutako osasun sis-

tema, zeinak pazientetik eratorritako behaketak (PEBk) darabiltzan. PEB pazien-

tearengandik zuzenean, inolako medikuren bitartekaritza zein interpretazio gabe,

pazientearen osasun egoeraren, bizi kalitatearen edo gaixotasun zein tratamentu-

arekin lotutako egoera funtzionalaren edozein neurketa da. PEBk oinarrizko be-

haketa modura erabiltzen hasi diren ikerketen kopurua etengabe ari da hasten,

izan ere, PEBek pazienteen osasun egoeraren informazioa isladatzen diete ikertza-

ile zein medikuei eta gaixoen zaintza hobe dezaketen datuak eskaini. Are gehi-

ago, badira, informazio osoagoa lortu nahiean, indikadore objektiboak PEBekin

ustartzearen garrantzia nabarmentzen duten hainbat ikerketa. Orokorrean, PEBk

puntuazio eskaladun inkesten bitartez lortzen dira, zenbait galderaz osatua dau-

denak, galdera horiek taldeka edo dimentsioka multzokatuta egonik. Gaixotasun

zehatzentzat garatutako inkestak zein inkesta orokorrak, populazio osasuntsuan ere

aplika daitezkenak, existitzen dira. Normalean, PEBk pazienteak ihardetsi behar-

reko galderen erantzun posibleak puntuatuz eta puntuazio horiek taldeka batuz

kalkulatzen dira. Ondorioz, paziente bakoitzak neurtu nahi den PEBren puntuazio

zehatz bat lortzen du multzokatze irizpide izan den dimensio bakoitzean. Azkenik,

lortutako puntuazioen eskala eraldatzen da normalean. Beraz, PEBek izaera oso

eta bornatua daukate eta, orokorrean, balioak puntuazio eskalaren alde batetan zein

bietan multzokatzen dituzte, familia exponentzialeko banaketek ondo dohitzerik ez

duten U, J edo alderantzizko J itxurak aurkeztuz.

Familia exponentzialeko kideek daukaten dohikuntza gabezia gainditze aldera,

banaketa beta-binomiala proposatua izan da literaturan PEB analizatzeko, dohikuntza
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egokiak lortuz. Banaketa beta-binomiala, izenak adierazi bezala, banaketa binomial

eta beta banaketa baten arteko nahastura bat da, edo baliokidea dena, zorizko beta

banaketa darraien probabilitate parametrodun binomiala da,

Y |θ ∼ Bin(m, θ) non θ ∼ Beta (α1, α2)

non α1, α2 > 0. Banaketa beta-binomialaren itxaropen baldintzatu eta marginalak

hurrenez-hurren, hurrengo formulak emanak dira,

E[Y ] = m
α1

α1 + α2
, Var[Y ] = m

α1

α1 + α2

[
1 + (m− 1)

1

α1 + α2 + 1

]
,

E[Y |θ] = mθ, Var[Y |θ] = mθ(1− θ),

non dentsitate funtzio marginala

f(y) =

∫ 1

0
f(y|θ)f(θ)dθ =

(
m

y

)∫ 1

0
θy(1− θ)m−y θ

α1−1(1− θ)α2−1

B(α1, α2)
dθ

=

(
m

y

)
Γ(α1 + y)

Γ(α1)

Γ(α2 +m− y)

Γ(α2)

Γ(α1 + α2)

Γ(α1 + α2 +m)

den. Nabaria da banaketa beta-binomialaren dentsitate funtzioaren konplexuta-

sunaz ohartzea, eta bide batez, familia exponentzialaren parte ez dela konturatzea.

Helburua zenbait koaldagaiek PEBetan duten eragina aztertzea eta neurtzea de-

nean, erregresio ereduak eredugintza estatistikoaren herramintarik erabilienetakoa

dira. PEBk dohitzerako orduan banaketa beta-binomialak emaitza oso onak lortzen

baditu ere, familia exponentzialaren parte ez izateak murriztu egin du banaketa hor-

retan oinarritutako erregresioen erabilera. Izan ere, aplikazio praktikoan gehienetan

erabiltzen diren erregresio lineal orokortuek (ELOek) zein erregresio lineal orokortu

mixtoek (ELOMek), menpeko aldagaiaren banaketa familia exponentzialaren parte

izatea suposatzen dute ezinbestean.

Galdakaoko Ospitaleko arnaskatze zerbitzuko ikertzaileek birikietako burtxadura

kroniko gaixotasuna (BBKG) zuten pazienteen osasun egoeraren denboran zehar-

reko neurketak gauzatu zituzten. BBKG birikietako gaixotasun nahiko larria da,

munduko heriotz tasa handienetarikoa duena. Bestalde, ezintasun fisiko zein men-

tal handiekin lotzen den gaixotasuna da. Osasunaren Mundu Erakundearen iritziz,

2020. urterako gaixotasunek eragindako hirugarren heriotza kausa bilakatuko da.

Ikerketa honen helburua BBKG pairatzen duten pazienteen osasun egoera aztertzea

da eta, bost urtetan zehar aztertuak eta neurtuak izan diren pazienteen osasun gara-
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pena neurtzea. Pazienteen osasun egoera neurtzeko bi inkesta ezberdin erabili ziren:

batetik, inkesta generiko bat, Short Form-36 Osasun Inkesta, eta bestetik, biriki-

tako gaixotasunak aztertzeko inkesta espezifiko bat, St George Arnaskatze Inkesta.

Osasunaren egoeraren neurketa hauekin batera, denboran zehar aldakorrak zein es-

tatikoak diren beste zenbait aldagai ere neurtu zituzten, erregresio eredugintzan

koaldagai modura erabiliko direnak.

Tesi honen helburu nagusia denboran zeharreko zein korrelaturiko PEB datuak

aztertzeko banaketa beta-binomialean oinarritutako erregresio eredu bat garatzea

da. Aldi berean, helburu nagusi hau beste bost azpi-helburutan banatzen da: (i) lit-

eraturan ageri diren banaketa beta-binomialean oinarritutako erregresioen berrikuste

eta komparaketa; (ii) banaketa beta-binomialetik eratorritako datu korrelatu zein hi-

erarkikoen, bereziki denporazko datuen, azterketa ahalbidetuko duen eredua garatzea;

(iii) PEBen inkestek eragiten dituzten dimentsio guztiak amankomunean aztertuko

dituen eta banaketa beta-binomialean oinarrituko den eredu multidimentsionala pro-

posatzea; (iv) garaturiko eredu guztiak software askean implementatzea zientzia eta

ikerketa komunitateari baliagarria izan dakizkion; eta, (v) BBKG pairatzen duten

pazienteen ikerketan garaturiko ereduak aplikatzea eta klinikoki esanguratsuak diren

emaitzak ondorioztatzea.

Banaketa beta-binomialean oinarritutako lehen erregresio ereduak neurketen arteko

askatasuna beharrezkoa du eta hurrengo eredu konplexuagoak garatzeko giltzarria

izango da. Banaketa beta-binomialaren ikuspegi marginal edo baldintzatuaren arabera

erregresio eredu ezberdinak gara daitezke. Alde batetik, eredu marginala, BBreg de-

ritzoguna, banaketa beta-binomialaren parametroen eraldaketa batean oinarritzen

da, α1 = p/φ eta α2 = (1 − p)/φ non 0 < p < 1 eta φ > 0. Eraldaketa horre-

tan oinarriturik, banaketaren itxaropen marginala E[Y ] = mp moduan definitzen

da eta ondorioz, p probabilitate parametro modura interpreta daiteke; era berean,

Var[Y ] = mp(1 − p) [1 + (m− 1)φ/(1 + φ)], φ dispertsio parametro moduan zehaz-

tuz. Ondorioz, erregresio logistikoarekin egin antzera, logit funtzio lokailua aplika

dakioke probabilitate parametroari eta ereduan erabili nahi ditugun koaldagaiekin

erlazionatu herrengo ekuazioen bitartez,

Yi ∼ BB(mi, pi, φ),

logit

(
pi

1− pi

)
= x′iβ,

non mi i. neurketak lor dezaken puntuazio kopuru altuena den (edo batutako al-
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gai binario kopurua), β erregresioaren koefizienteak eta xi koaldagaiek definitzen

duten hein osoko X matrizearen i.garren errenkada den, i = 1, . . . , n. Parametroen

estimazioa egiantz handieneko prozedura erabiliz gauzatzen da. Beste alde batetik,

BBhglm deritzogun eredu baldintzatua erregresio linear okortu hierarkikoetan (ELOH)

oinarritzen da non Gaussiarrak ez diren zorizko efektuak ere gaineratu daitezkeen

ELO baten aurresale linealean. Ereduak suposatzen du behaketek beta banaketa

darraiten zorizko efektu batzuek baldintzatutako banaketa binomial bat darraitela.

Ondorioz aldagaiaren itxaropen baldintzatuan erregresio logistiko bat ezarri eta

zorizko beta efektuak gaineratzen ditu aurresale linealean,

Yi|ui ∼ Bin(mi, pi), non ui ∼ Beta(1/λ, 1/λ),

logit

(
pi

1− pi

)
= x′iβ + logit

(
ui

1− ui

)
,

non β efektu finkoak, ui zorizko efektuak, xi koaldagaiek osatutako hein osoko

matrizearen i. errenkada eta λ zorizko efektuen banaketaren parametro positiboa

diren, i = 1, . . . , n. Helburua koaldagaiek PEBn duten eragina aztertzea denean,

tesi honetan erakusten dugu, aplikazio erreal zein simulazio azterketa baten bitartez,

eredu marginalak emaitza hobeak lortzen dituela estimazioaren adierazgarritasun

estatistikoari dagokionez eta, are gehiago, oso interpretazio txukuna eskaintzen duela

odds-ratioen bitartez.

BBreg ereduak behaketen arteko askatasuna bere egiten du eta ondorioz, hedapen

bat beharrezkoa da datu korrelatuak aztertu nahi badira, denboran zeharreko datuak

kasu. Tesi honetan BBreg eredua zorizko efektuen alorretik hedatzen dugu, banaketa

normala darraiten zorizko efektuak ereduaren aurresale linealean txertatuz,

Yi|u ∼ BB(mi, pi, φ), where u ∼ N (0,D),

logit

(
pi

1− pi

)
= x′iβ + z′iu,

non u zorizko efektuak, zi datuen korrelazio egitura zehazten duen Z diseinu ma-

trizearen i. errenkada eta D zorizko efektuen bariantza-kobariantza matrizea diren,

i = 1, . . . , n. Hortaz, zorizko efektuek behaketen arteko korrelazioa berenganatuko

dute. Ereduri honi BBmm deritzogu. Baldintzatutako banaketa beta-binomiala dela

eta, ELOMen estimazio teoria ez da kasu honetan aplikagarria eta ondorioz, esti-

mazio eta inferentzia prozedura zehatza garatu dugu. Ereduaren egiantz marginala

Laplacen hurbilketa erabiliz kalkulatzen da egiantz bateratuaren eta penalizazio gai
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baten bitartez. Hala ere, tesi honetan penalizazio gaiak efekto finkoen inguruko

informaziorik eskaintzen ez duela erakusten dugu, beraz, zorizko efektu zein efektu

finkoen estimazioa egiantz bateratua erabiliz egin daitekeela ondorioztatu. Ere-

duko efektuen estimazioa gauzatzeko delta metodoan oinarritutako prozedura bat

garatzen da. Dena den, ereduko dispertsio parametroak (banaketa-beta binomi-

alaren dispertsio parametroa φ eta zorizko efektuen bariantza) estimatzerako ord-

uan, aurrez gauzaturiko zorizko zein efektu finkoen estimazioak sor dezakeen alb-

orapena ekiditeko, egiantz batertuari penalizazio irizpide bat ezartzen zaio. Gure

eredu proposamena literaturan aurki daitezkeen antzeko ereduekin alderatzen dugu,

lokalizazio, eskala eta itxurazko eredu batukor orokortuekin (LEIEBO) bereziki.

Proposaturik BBmm eta LIEEBO ereduen arteko ezberdintasunik nabariena dispert-

sio parametroak estimatzeko orduan egiantz bateratuan gauzatzen den penalizazioan

datza. Simulazio azterketa baten bitartez penalizazioak dispertsio parametroen es-

timazioaren alborapena murrizteaz gain, gainerako parametro guztien estimazioaren

alborapena ere murrizten duela erakusten dugu.

BBmm eredua BBKG pairatzen duten pazienteen luzerazko ikerketan aplikatu

dugu, klinikoki esanguratsuak eta baliagarriak diren emaitzak lortuz. Hala ere, orain

arteko azterketa erreal guztietan, BBreg zein BBmm ereduak erabiliz, PEBk osatzen

dituzten dimentsioak banan-banan analizatu ditugu, haien artean egon litekeen ko-

rrelazioa kontuan hartu gabe. Izan ere, paziente berberek beteriko inkesten er-

antzunetatik sortzen dira dimentsioak, beraz, paziente berberak dimentsio ezberdine-

tan lortutako puntazioen artean korrelazioa egon daitekela pentsatzeak logikoa dirudi.

Hori dela eta, luzerazko datuetarako proposaturiko BBmm eredua analisi multi-

demensionalak gauzatzeko garatu dugu. Tesi honetan, eredu unidimentsionaletik

multidimentsionalerako pausua eredu mixtoak erabiliz garatzen da, partekaturiko

zorizko efektuen ikuspuntutik. Ereduak dimentsio guztiek zorizko efektu amanko-

muna partekatzen dutela suposatzen du eta modu horretan, korrelazio egitura bat

gaineratzen dio ereduari. Eredu honen inplementazioa, estimazio zein inferentzia

aldetik, zuzena da aurretik garaturiko BBmm ereduan oinarrituz. Azterketa multi-

dimentsionalak gauzatzeko litearturan zenbait eredu existitzen diren arren, parteka-

turiko zorizko efektuen ereduaren aukerateka, nagusiki, dimentsioak gehitu ahala

ereduaren konplexutasuna handitzen ez delako egin dugu, eta beraz, garaturiko

egiantz hurbilketa guztiek egokiak izaten jarraitzen dute. Eredua BBKG duten

pazienteen datu basean aplikatu dugu, paziente bakoitzaren lehen neurketa bakarrik

zein denbora zeharreko neurketa guztiak kontsideratuz. Datu errealetarako ered-

uaren aplikazioak emaitza kliniko zein estatistiko baliagarriak eskaintzen ditu.
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Besteak beste, komeni da aipatzea, garaturiko banaketa beta-binomialean oinar-

rituriko eredu guztiak R software estatistikoan, PROreg paketearen bitartez, inple-

mentatu ditugula, dagoeneko CRAN-en erabiligarri dagoena. Paketeak, aipaturiko

ereduez gain, PEBk aztertzerako orduan baliagarriak izan daitezkeen beste zenbait

funtzio ere gaineratzen ditu.

Tesi honetan zehar garaturiko ikerketak etorkizunean aztertuko beharreko zen-

bait alorren azaleratzea eragin du ezinbestean. Adibidez, partekaturiko zorizko

efektuen ereduak, aplikagarritasunari dagokionean, erreztasun ugari eskaintzen ba-

ditu ere, luzerazko datuen azterketa multidimentsionala garatzeko orduan emaitzen

egokitasuna kolokan jarri dezakeen mugak ere badituela erakusten dugu. Mugak

gainditze aldera, irtenbide bat zorizko efektu ezberdin baina korrelatuak dimentsio

bakoitzean aplikatzea da. Hala ere, zorizko efektu korrelatuen eredu honek egiantz

marginalaren integralaren dimentsioa nabarmen handitzen du PEBk osatzeen diz-

tuzten eta aztergai diren dimentsio kopurua handituz gero. Integralaren dimentsioa

areagotzeak hurbilketa tekniken egokitasun eza dakar, BBmm ereduan garaturiko

Laplacen hurbilketarena adibidez. Hala eta guztiz ere, hurbilketen ezegokitasun

hau gaindituko luketen teknika ezberdinen inguruko eztabaida bat ere garatzen da

tesian. Bestalde, zenbait proposamen ere etorkizunean garatzeko aukera moduan

uzten dira: (i) BBmm ereduaren itxaropen eta bariantza parametroen modelizazio

bateratua, (ii) PEBen luzerazko eta biziraupeneko analisi bateratua, (iii) proposat-

uriko ereduen bariantza parametroen estimazioaren inferentzia, eta (iv) koaldagaien

efektu ez linealen gainerapena BBmm ereduan.

Azkenik, borobiltze aldera, tesi honetan PEBk aztertzeko banaketa beta-binomialean

oinarrituriko zeinbait erregresio eredu garatu ditugu. Hala ere, ereduen ilustrazioa

PEBen kontextuan irudikatu badugu ere, U, J edo alderantzizko J itxura duten datu

oso eta bornatuetan ere aplikagarriak izan daitezke. Izan ere, datu mota hau testuin-

guru zein aztergai diren arlo askotan ageri da, Finantzak (aseguru etxeetan beze-

roen produktu eskaera ezberdinen probabilitatea neurtzeko adibidez) eta Biologia

(laboraltza experimentuetan bakteria edo espezie zehatz baten presentzia/absentzia

aztertezko adibidez) hurrenez-hurren. Are gehiago, garaturiko metodologia PROreg

R-paketean inplementatua egoteak herreminta oso erabilgarria eta zuzena eskaintzen

die kliniko zein ikertzaileei beta-binomialean oinarritutako ereduak aplikatu ahal iza-

teko eta bide batez, emaitza erabilgarri zein adierazgarriak ondorioztatzeko euren

ikergaiaren inguruan.



CHAPTER 1

INTRODUCTION TO

PATIENT-REPORTED OUTCOMES

“Deus ez da inorena, bizitza bera ere ez”

Xabier Lete, 1944− 2010

1.1 Patient-reported outcomes

Patient-reported outcome (PRO) measurements are increasingly used as primary

outcome measures in observational and experimental studies, which play an im-

portant role in health care and understanding health outcomes. A PRO is any

report on the status of a patient’s health condition that comes directly from the

patient, without interpretation of the patient’s response by a clinician or anyone

else (US Department of Health and Human Services, 2012). PROs are used to sub-

jectively assess outcomes, such as pain, quality of life or satisfaction with care, that

are difficult or impossible to measure physically without a patient’s evaluation and

whose key questions require patient’s input on the impact of a disease or treatment.

Consequently, PROs inform clinicians and researchers about issues associated with

health-status that are most important to patients and their families (Dobrozsi and

Panepinto, 2015) and generate data to facilitate improved care of the patient. In ad-

dition, PROs have gradually become an important element and a crucial source for

monitoring disease conditions or assessing the effectiveness of treatment, especially

in some health problems such as subjective discomfort and psychological distress

1
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(Chang, 2007). Therefore, the U.S. Food and Drug Administration (FDA) has rec-

ommended that objective indicators combined with PROs would be considered a

more comprehensive form of outcome evaluation since 2006 (Speight and Barendse,

2010).

PROs are usually obtained using rating scale questionnaires, which are made up

of questions, called items, grouped into one or more subscales, often called dimen-

sions or domains. The patient is presented with a series of related items and is

asked to respond with ordered categories that represent magnitude estimates of his

or her personal experience related to the content of the items. The term instrument

is used to refer to the collection of items and response categories. Traditionally,

PRO instruments have been scored by assigning rank scores to the patient’s item

responses, summing the scores across a group of items and creating overall scores

by dimensions that are usually rescaled.

PROs provide composite scores, one by dimension, from a series of questions

around a central concept to quantify the level of distress or impairment caused by a

patient’s symptoms, disease, or treatment. A variety of PROs has been developed

and validated to assess symptoms (such as nausea and vomiting, insomnia, constipa-

tion, and pain), patient physical, social, and emotional function, and more complex

constructs such as the impact of health on peer relationships. There are generic and

disease-specific questionnaires that can be used to measure these outcomes, as well

as available measures for the use in pediatric and adult patients.

Therefore, PROs are important supplements to traditional medicine as they offer

a new insight of the health-status of patients. Indeed, some decades ago the World

Health Organization (WHO) defined the health as a complete physical, mental and

social welfare, and not only as a disability or lack of disease. In this context a new

concept appeared, the Health-Related Quality of Life (HRQoL). The measurement

of HRQoL provides information about the disease and its impact on the patient in

a standardised, comparable and objective way (Goldsmith, 1972). Indeed, HRQoL

is a general PRO which is being increasingly used as an outcome in clinical trials,

effectiveness research, and research on quality of care (Wilson and Cleary, 1995).

Factors that have facilitated this increased usage include the accumulating evidence

that measures of HRQoL are valid and reliable (McDowell and Newell, 1987), the

publication of several large clinical trials showing that these outcome measures are

responsive to important clinical changes (Croog et al., 1986) and the successful

development and testing of shorter instruments that are easier to understand and

administer (Hunt et al., 1985). Because these measures describe or characterise



1.1. Patient-reported outcomes 3

what the patient has experienced as the result of medical care, they are useful and

important supplements to traditional physiological or biological measures of health-

status.

In fact, measuring HRQoL or, PROs in general, can help determine the burden

of preventable disease, injuries, and disabilities, and it can provide valuable new

insights into the relationships between HRQoL and risk factors. Therefore, to study

the relationship of HRQoL with patient and disease characteristics has become one

of the primary aims of many PROs studies. In this framework, regression models are

necessary in order to assess the effect that clinical and socio-demographic variables

have on the HRQoL of individuals.

There exist some well-designed studies that emphasise the utility of PROs (Au

et al., 2010) especially for patients with chronic diseases. For instance, patients

with cancer commonly experience symptoms that lead to impaired physical func-

tion, emotional function and social function resulting in decreased health-status

(Fisch et al., 2012). However, patient symptoms often go undetected during typi-

cal clinic interviews, and therefore, clinicians may underestimate the impact of the

symptoms from interview alone (Buckner et al., 2014). The impact of cancer and

cancer treatment on patient health-status can be systematically quantified by PROs

(Montazeri, 2008). The use of PROs in these populations has identified symptoms

and impairments in patient function. Moreover, cancer patients with better symp-

tom management and better PRO scores live longer with less distress (Montazeri,

2009). PROs generate data that can facilitate better care regardless of diagnosis or

prognosis for patients with cancer or other chronic illnesses.

Once the nature of the PROs has been defined, and the validity of different stud-

ies has been illustrated, this chapter will continue as follows. In the next section,

we introduce some PRO instruments in the form of questionnaires, we describe the

health aspect they assess and introduce some specific characteristics such as the

number of items or number of health dimensions they provide. In Section 1.3 we

describe two PRO studies carried out for measuring different aspects of the health-

status for different disease patients. This data will be used to validate the proposed

methodology throughout this thesis. In Section 1.4 we describe the statistical fea-

tures of PROs which make commonly used modelling techniques inappropriate in

this framework. We focus our attention on the distributional fit of the PROs pro-

vided in each dataset. Finally, in Section 1.5 we describe the structure an objectives

of the thesis.
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1.2 Measuring instruments: Questionnaires

PROs are measured through instruments to assess for instance, the health-status or

HRQoL of patients. Different measuring instruments have been developed in the

literature, most of them in the form of questionnaires, which decompose the health

aspect they evaluate in different dimensions. Some questionnaires can be provided to

patients with different diseases or healthy subjects, and they are considered generic

questionnaires. On the contrary, others are designed for subjects with specific dis-

eases, the so-called specific questionnaires. Each survey contains a different number

of dimensions and decomposes each dimension in a different score scale. In Section

1.3 we are going to present two different PRO studies which contain measurements

provided by patients with different diseases. In the first study patients with Chronic

Obstructive Pulmonary Disease (COPD) were recruited and their health-status was

measured by means of two different questionnaires, one generic and the other pul-

monary diseases specific. The second study is focused on the assessment of dementia

where a specific questionnaire was used to measure the cognitive status of patients.

First, we describe the Short Form-36 (SF-36) Health Survey, a generic question-

naire which is broadly used for different populations. It provides measurements of

the HRQoL of patients in eight dimensions. The scores provided by the SF-36 in

COPD patients will be analysed in Chapter 2 and Chapter 4. Second, we describe

the St. George’s Respiratory Questionnaire (SGRQ), a specific questionnaire for

chronic airflow limitation diseases. It measures the HRQoL and the impact of the

disease in the patients and it provides three different dimensions. The same as the

SF-36, it has also been applied to patients with COPD. Therefore, the HRQoL of pa-

tients with COPD has been assessed by means of two different PRO questionnaires,

one generic and the other disease-specific. The information provided by the SGRQ

will be analysed in Chapter 3 and Chapter 4. Finally, we introduce the Mini Mental

State Examination (MMSE) which was developed for measuring the cognitive status

of individuals. It only provides one dimension that covers seven cognitive aspects.

Outcomes provided by the MMSE will be analysed in Chapter 3.

It is worth mentioning that while the SF-36 is a generic questionnaire, the MMSE

and SGRQ were developed for specific diseases. In fact, each questionnaire analyses

different aspects of the health-status of patients and provides different measures.

Therefore, we consider that the analysis of the cited questionnaires by different

methodologies will provide a global view of PROs and it will furnish the reader with

different techniques to deal with any other PRO.
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1.2.1 Short Form-36 Health Survey

The SF-36 Health Survey was developed within the Medical Outcomes Study (Ware

et al., 1993) and it is one of the most widely used generic instruments. It mea-

sures generic HRQoL concepts, and it provides an objective way to measure HRQoL

from the patients’ point of view by scoring standardised responses to standardised

questions. The validity and reliability of this instrument have been broadly tested

(Stansfeld et al., 1997).

The SF-36 questionnaire has 36 items, with different answer options. It was

constructed to represent eight health dimensions, which are physical functioning

(PF), role physical (RP), bodily pain (BP), general health (GH), vitality (VT), social

functioning (SF), role emotional (RE) and mental health (MH). Each item is assigned

to a unique health dimension. Each of the eight multi-item dimensions contains two

to ten items. The first four dimensions are mainly physical, whereas the last four

measure mental aspects of HRQoL. The standardised scoring system is thoroughly

described by the original authors (Ware et al., 1993). Briefly, each score is calculated

with an algorithm based on the original items assigned to this dimension. For each

dimension, the answers to the items are first recoded and then added in a weighted

sum fashion. The resulting raw scores are then transformed to standardised scale

scores from 0 to 100, where a higher score indicates a better health-status.

In order to provide a better understanding of the construction of the SF-36

Health Survey dimensions, we show in Table 1.1 the number of items related to each

dimension and the number of possible values each dimension can obtain.

Table 1.1: Number of items related to the construction of each SF-36 dimension and
the number of values each dimension can obtain.

Dimension No. of items No. of possible values

Physical functioning 10 21
Role physical 4 5
Bodily pain 2 27
General health 5 39
Vitality 4 21
Social functioning 2 9
Role emotional 3 4
Mental health 5 26
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Consequently, the SF-36 Health Survey generates a profile of HRQoL outcomes

on eight health dimensions. Additionally, the SF-36 includes an item related to

health transition, which is not used in the scoring of the eight health dimensions.

The authors of the SF-36 Health Survey also provide normative scores for each

health dimension. Each SF-36 score is first standardised using the mean and stan-

dard deviations obtained from the general population and then transformed to a

norm-based (mean=50, standard deviation = 10) scoring (Ware et al., 1993). Two

summary measures, one physical and one mental, can be created from the eight

main domains. These two summary scores are generated using the physical and

mental factor score coefficients from the general population, and they are also trans-

formed to norm-based scoring (Ware et al., 1994). However, we have used neither

norm-based scores nor summary scores in this work.

Finally, it is worth mentioning that the SF-36 was rated in 2002 by the British

Medical Journal (Garratt et al., 2002) as the most frequently used PRO of generic

health in the scientific publications.

1.2.2 St. George’s Respiratory Questionnaire

The SGRQ was designed to quantify the impact of chronic airflow limitation on

health and perceived well-being (quality of life), and to be sufficiently sensitive to

respond to changes in disease activity (Jones et al., 1991). The SGRQ can provide

a psychosocial impact profile of these patients that cannot be identified by the tests

of lung function. Clinically, it has been shown to be a valuable tool in quantify-

ing the impact of chronic obstructive airways diseases on the symptom, functional

measures and well-being (Doll et al., 2003; Peruzza et al., 2003) and in evaluating

the effectiveness of health care (Singh et al., 2001). Compared to other chronic

airflow limitation specific questionnaires, it offers standardised measures. In fact,

the absence of suitable sensitive and standardised questionnaires of health and well-

being limits the application and value of quality of life measurements in respiratory

medicine, as if the questionnaire is not standardised between patients, it is difficult

to compare different studies and different study populations (Jones et al., 1992).

The SGRQ consists of 50 items. Principal-component analysis of the responses

to these items supported the partition of the questionnaire into three sections or

dimensions. The first, symptoms, contains items concerned with the level of symp-

tomatology, including frequency of cough, sputum production, wheeze, breathless-

ness, and the duration and frequency of attacks of breathlessness or wheeze. The
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second, activity, is concerned with physical activities that either cause or are limited

by breathlessness. Finally, the last dimension corresponds to the impacts and it

covers such as employment, being in control health, panic, stigmatisation, the need

for medication and its side effects, and expectations for health and disturbance of

daily life. Items specifically relating to the anxiety and depression were not included

in the SGRQ, since many established measures exist for this area of health. Each of

the three dimensions of the questionnaire is scored separately in the range 0 to 100,

zero score indicating no impairment of life quality. Additionally, a summary score

utilising responses to all items is constructed, which is defined as the total SGRQ

score. This score also ranges from 0 to 100, where a lower score means a better

health-status. More details about the construction of the scores can be found at

Quirk and Jones (1990).

1.2.3 Mini Mental Score Examination

The MMSE is a questionnaire that measures the cognitive mental status of patients

(Folstein et al., 1975). The objective of the survey is to offer a brief screening

tool to provide a quantitative assessment of cognitive impairment and to record

cognitive changes over time. The MMSE consists of 11 simple questions grouped

into 7 cognitive domains: orientation to time, orientation to place, registration of

three words, attention and calculation, recall of three words, language and visual

construction. It only requires 5-10 minutes to the administer, which makes it very

practical to use serially and routinely. In fact, it has become one of the most popular

psychometric tests used to quantify global cognitive functioning and cognitive change

in population-based longitudinal studies. It is only based on the cognitive aspects

of mental functions of patients, avoiding questions about mood, abnormal mental

experiences and the form of thinking.

The MMSE is divided into two parts, the first one covers orientation, memory,

and attention, and the second part covers the ability to follow verbal and written

commands. The maximum score number an individual can obtain is 21 in the first

part and 9 in the second, therefore, a possible score of 30 is used to provide a

picture of an individual’s present cognitive performance based on direct observation

of completion of test items, where a higher value means a better cognitive status.
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1.3 Motivating data

1.3.1 COPD Study

Chronic obstructive pulmonary disease is one of the major causes of mortality world-

wide and it is associated with high level of disability (Pauwels and Rabe, 2004).

Some well-designed studies have found a measured prevalence of COPD in Europe

between 4% and 10% of adults, and it is expected to increase over the next years

(Halbert et al., 2003; Buist et al., 2008). According to estimates from the World

Health Organization (WHO), by 2020 it shall become the third most frequent cause

of death, following coronary and cerebrovascular diseases (Murray and López, 1997).

COPD is a respiratory system disease with irreversible damage of pulmonary and

bronchial tubes, which represents the state of chronic airflow limitation (Jones and

Higenbottam, 2007). It not only causes physiological discomfort but also has a psy-

chosocial influence on individuals. The clinical assessment of COPD often involves

measurement of lung function parameters (e.g. FEV1) and exacerbation level of a

patient to evaluate the disease progress and the therapeutic effect (Cosio and Agust́ı,

2010). However, the overall impact of COPD on individuals is multi-faceted and not

entirely reflected by these clinical parameters. For this reason, it is now realised that

no single measure can adequately reflect the nature or severity of COPD and it often

needs to be supplemented by other indicators from a patients perspective, such as

those related to PROs or HRQOL. To date, evaluation of the treatment effect has

emphasised the improvement of the quality of life rather than the small gains in

survival rate or physiological indicators (Wiklund, 2004).

Researchers at the Respiratory Service at Galdakao Hospital in Spain designed

the COPD Study, a longitudinal study whose main goal was to measure the health-

status and evolution of patients being treated for COPD. Patients were recruited

at five outpatient respiratory clinics affiliated with the hospital and consecutively

included in the study for one year, starting in January 2003. Patients were eligible

for the study if they had been diagnosed with COPD for at least six months and they

had been receiving medical care at one of the hospital respiratory outpatient facilities

for at least six months. Their COPD had to be stable for six weeks before enrolment.

Patients were followed for up to five years. Two main outcome measurements were

collected: (i) Generic HRQoL was measured using version 1.2 of the SF-36 Health

Survey (see Section 1.2.1), which corresponds to the version 1.4 of the Spanish

version. (ii) Respiratory specific health-status was measured with the SGRQ (see

Section 1.2.2). In addition, a set of selected time independent and time dependent
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variables recoded in the study and considered as covariates for the models were

socio-demographic variables such as gender and age at entry in the cohort, together

with forced expiratory volume in one second in percentile (FEV1%), body mass

index (BMI), dyspnea (measured with the modified scale of the Medical Research

Council, (Mahler et al., 2009)), the 6-minute walking tests (American Thoracic

Society, 2002) and presence of anxiety and depression measured by the Hospital

Anxiety and Depression (HAD) scale (Zigmond and Snaith, 1983) among others.

Esteban et al. (2016) divided the individuals participating in the COPD Study

in some clusters where four subtypes were identified. They conclude that subtypes

A, B, and C, had marked respiratory profiles with a continuum in severity of several

variables, while the fourth, subtype D, had a more systemic profile with intermedi-

ate respiratory disease severity. Subtype A was associated with less dyspnea, better

HRQoL and lower comorbidity, and subtype C with the most severe dyspnea, and

poorer pulmonary function and quality of life, while subtype B was between sub-

types A and C. Subtype D had higher rates of hospitalization the previous year and

comorbidities.

Table 1.2 shows a socio-demographic and clinical summary of the collected time

independent and time dependent exploratory variables. Both discrete and continu-

ous variables are analysed for the different time points. On the one hand, for the

discrete exploratory variables, the number of individuals in each level and the pro-

portion are shown. On the other hand, for the continuous covariates, the mean and

the standard deviation for each time point are displayed. Additionally, Table 1.2

shows the number of individuals that remain in the cohort for different time points.

In terms of the descriptive analysis of the response measurements in the COPD

Study, Table 1.3 shows the mean and standard deviation of the original standardised

scores of the SF-36 and the row scores of the SGRQ. In general terms, it can be

appreciated that the passing of time affects each dimension of both questionnaires

differently. Regarding SF-36 dimensions, Table 1.3 shows that while in some dimen-

sions the mean and standard deviation of the original standardised scores change

considerably as the time goes by (e.g. role physical), there are some others that

hardly change (e.g. physical functioning). Moreover, it can be appreciated that

patients with COPD get the worst results in average in physical dimensions such as

physical functioning, role physical or general health. In addition, it is worth noticing

that the largest variability occurs in role physical and role emotional dimensions. In

fact, these are the dimensions with the lowest number of possible values (see Table

1.1), and hence, the standardisation to the 0-100 scale scatters more the scores than
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Table 1.2: Descriptive analysis of the covariates in the COPD Study.

Time framework

Baseline 1-Year 2-Years 5-Years

No. Individuals n = 543 n = 480 n = 425 n = 324

Discrete variables n (%) n (%) n (%) n (%)

Sex∗

Male 522 (96.13) 459 (95.62) 405 (95.29) 308 (95.06)
Female 21 (3.86) 21 (4.38) 20 (4.71) 16 (4.94)

Cluster∗

A 164 (30.20) 157 (32.70) 148 (34.82) 137 (42.28)
B 195 (35.91) 177 (36.87) 155 (36.47) 114 (35.18)
C 89 (16.39) 71 (14.79) 60 (14.12) 39 (12.04)
D 95 (17.50) 75 (15.64) 62 (14.59) 34 (10.50)

Anxiety
No 459 (84.51) 409 (85.21) 368 (86.59) 265 (81.79)
Yes 84 (15.47) 71 (14.79) 57 (13.41) 59 (18.21)

Depression
No 506 (93.19) 439 (91.46) 389 (91.53) 299 (92.28)
Yes 37 (6.81) 41 (8.54) 36 (8.47) 25 (7.72)

Dyspnea
1 69 (12.71) 85 (17.71) 75 (17.65) 57 (17.59)
2 264 (48.62) 248 (51.67) 188 (44.24) 134 (41.36)
3 166 (30.57) 127 (26.46) 142 (33.41) 100 (30.86)
4-5 44 (8.10) 20 (4.17) 23 (5.41) 33 (10.19)

Continuous variables Mean (SD)

Age at baseline∗ 68.32 (8.32) 67.61 (8.36) 67.42 (8.29) 66.24 (8.36)

FEV1% 55.00 (13.31) 55.21 (16.05) 57.87 (14.66) 54.27 (14.81)

BMI 28.28 (4.43) 28.33 (5.24) 28.10 (4.44) 27.64 (4.79)

Walking Test 408.89 (92.43) 420.56 (117.55) 412.92 (115.28) 397.36 (123.00)

SD: Standard Deviation; BMI: Body Mass Index; FEV1%: Forced Expiratory Volume in one

second in percentile. Symbol ∗ stands for time independent covariates.

in the other dimensions, causing original standardised scores with higher variability.

In terms of the results provided by the SGRQ, apparently, as time goes by there is

no much change neither in the mean nor the standard deviation of the dimensions

for the survivors.
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Table 1.3: Descriptive analysis of PROs provided by the SF-36 and the SGRQ in
the COPD Study.

Time framework

Baseline 1-Year 2-Year 5-Year

No. Individuals n = 543 n = 480 n = 425 n = 324

Dimensions Mean (SD)

Short Form-36

Physical functioning 57.76 (24.38) 58.17 (24.95) 57.79 (24.68) 56.46 (24.96)

Role physical 65.61 (38.92) 60.99 (39.93) 62.65 (40.01) 55.48 (41.16)

Bodily pain 71.09 (29.26) 67.74 (30.33) 69.25 (29.96) 68.58 (29.00)

General health 44.67 (21.93) 43.36 (23.32) 42.28 (22.47) 41.80 (20.92)

Vitality 59.36 (24.96) 58.27 (24.00) 59.64 (23.42) 57.58 (23.88)

Social functioning 81.58 (24.46) 79.92 (25.89) 82.18 (24.14) 77.89 (26.13)

Role emotional 80.17 (35.91) 73.96 (39.42) 76.71 (37.95) 70.37 (41.14)

Mental health 73.42 (22.92) 73.17 (21.86) 73.39 (22.16) 71.63 (23.11)

St. George

Symptoms 44.54 (22.18) 42.48 (22.36) 43.40 (23.25) 44.06 (23.38)

Activity 48.69 (24.94) 45.90 (24.97) 46.89 (24.74) 47.37 (25.35)

Impacts 32.05 (20.89) 30.36 (21.21) 30.23 (20.32) 30.39 (20.89)

SD: Standard Deviation.

1.3.2 Paquid Research Programme

It is well known that increasing longevity and declining fertility rates are shifting

the age distributions of populations toward older age groups in many parts of the

world, including Europe, the United States of America and, in fact, most industri-

alised nations (Anderson et al., 2000). Improved sanitation, medical technology, and

healthcare services, as well as increased individual wealth, have all contributed to

rising life expectancy (WHO, World Health Statistics report, 2017). According to

the United Nations demographics indicator, the relative population of individuals

aged 65 and above will increase rapidly in industrialised countries by an average of

16.8 percent between 2000 and 2020 (Anderson et al., 2000).

As the population grows older, age-related diseases such as dementia will in-

crease, and issues such as providing proper health care and disease treatment will
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come to the forefront. The resulting financial and personal costs might devastate

the world’s economic and healthcare systems, in addition to burdening many fam-

ilies worldwide. Changes in public policies must be implemented to accommodate

financial security, healthcare provision and living arrangements (Chan, 2001).

Dementia is a cognitive disorder that affects the brain and results in failing

memory and personality changes (Martin, 2009). In 2010 there were an estimated

35.6 million people with dementia worldwide. This number will nearly double every

20 years, resulting in an estimated 65.7 million in 2030 and 115.4 million in 2050.

Much of this increase will occur in developing countries. At present, 58 percent

of people with dementia reside in developing countries; by 2050, this figure will

rise to 71 percent. By 2050, individuals aged 60 years and over will account for

22 percent of the worlds population, with four-fifths living in Asia, Latin America

and Africa (Ferri et al., 2005). The incidence of mental and neurological illnesses is

high in Europe too, with nearly 165 million people (38 percent of the population)

suffering from disorders such as depression, anxiety, insomnia or dementia each year

(Wittchen et al., 2011).

The Paquid research program was designed to study the incidence of dementia

and Alzheimer’s disease in elderly people in South-Western France (Letenneur et al.,

1994). Subjects were randomly selected from the electoral rolls of 37 parishes in

Gironde and followed-up over a maximum period of 20 years. Three criteria had

to be met for subjects to be included in the study: (i) to be more than 65 years

by 31 December 1987; (ii) to be living at home at the time of the initial data

collection phase; and (iii) to give their informed consent to participate in the study.

The selection procedure led to the inclusion of 4050 elderly subjects living at home,

which, finally, 2792 agreed to participate in the program. Intellectual functioning

was examined through a series of psychometric tests which were the most sensitive

for following a cognitive decline in elderly individuals. The battery test included the

MMSE questionnaire introduced in Section 1.2.3. Additionally, socio-demographical

variables of the individuals were measured, such as depressive symptomatology and

subjective health measures. More detailed information about the study and the

sample can be found in the original reference (Letenneur et al., 1994).

In this thesis, we have considered a subsample of the Paquid research programme.

The data are publicly available in lcmm R-package (Proust-Lima et al., 2017). The

data consists of 2050 observations over 498 subjects and includes dementia infor-

mation variables, such as dependency level, depressive symptomatology, dementia

status and age at dementia diagnosis and also time independent socio-demographic
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variables such as educational level and age at entry in the cohort.

Table 1.4 shows a descriptive analysis of the outcome and the exploratory co-

variates available in the subsample of the Paquid Study. For discrete covariates, we

show the number of patients and the relative percentage, while for continuous the

mean and standard deviation are displayed.

Several insights can be carried out from Table 1.4. For instance, it can be

appreciated that the number of individuals in the cohort decreases notoriously as

the study goes on. Moreover, as time goes by, the dementia status of patients

worsens considerably and, hence, while the percentage of no dependency in the

initial point was 25.30%, in the end, it decreases to 3.80%. However, as regards to

the MMSE score, apparently, there is not any evolution over time, as means and

standard deviations remain quite constant for all the time points.

1.4 Distributional features

In this section, we present the statistical challenges there exist when trying to fit

PROs. First, we present the exponential family as a very well-known class of models

which include most of the distributions used in practice. However, some special char-

acteristics that PROs usually present make the fit by exponential family distributions

inadequate. Therefore, we will define the beta-binomial distribution, which has been

illustrated in the literature to get satisfactory distributional fits of PROs (Arostegui

et al., 2007). Finally, we fit some exponential family distributions together with the

beta-binomial distribution to the PROs provided in the two datasets presented in

Section 1.3.

1.4.1 The exponential family

The exponential family is a very wide class of models that includes most of the

commonly used distributions in practice. A general p-parameter exponential family

depends on the parameter vector θ = (θ1, . . . , θp) and its log-density is of the form

log f(x|θ) =

p∑
i=1

ηi(θ)Ti(x)−A(θ) + c(x),

for known functions A(θ) and c(x), and ηi(θ) and Ti(x) for each i, i = 1, . . . , p. The

parameters ηi’s are called the natural parameters of the family, and Ti’s the natural

statistics.
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The exponential family includes both discrete and continuous random variables

such as the normal, binomial, Poisson or gamma distributions. However, although

it covers a wide range of distributions, not all the models are included in the expo-

nential family, the Cauchy and the t-distribution for instance.

Example 1.1. Consider the commonly used normal distribution with parameter

vector θ = (µ, σ2), we have that the density function is defined as

f(x|µ, σ2) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
.

If we rewrite the density function in a exponential form as

log f(x|µ, σ2) =
µx

σ2
− x2

2σ2
− µ2

2σ2
− 1

2
log(2πσ2),

we realise that the normal distribution defines a two-parameter exponential

family distribution with natural parameters η1 = µ/σ2 and η2 = −1/(2σ2),

and natural statistics T1(x) = x and T2(x) = x2.

�

Example 1.2. For the Poisson model with mean λ we have that the log-density

function is defined as

log f(x|λ) = x log λ− λ− log x!.

Hence, it is straightforward to prove that the Poisson distribution is a one-

parameter exponential family member.

�

The joint distribution of an independent and identically distributed (iid) sample

from an exponential family also belongs to the exponential family. The previous

statement is very useful when we are developing a model for a group of observa-

tions that are assumed to be drawn from the same distribution. In addition, for

exponential family distributions of the form

log f(x|θ) = θx−A(θ) + c(x), (1.1)
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it is shown that

µ = E[X] = A′(θ)

Var[X] = A′′(θ) =
∂

∂θ
E[X] = A′′

[
A′−1(µ)

]
= v(µ),

(1.2)

where v(·) is the so-called variance function for the mean µ (see McCullagh and

Nelder (1989) for further details). Therefore, A(θ) implies a certain relationship

between the expectation and the variance of the random variable. The displayed re-

lationship between the mean and the variance is very useful in modelling approaches,

as the distribution family is completely defined by knowing the first two moments.

For statistical modelling, it is often adequate to consider a two-parameter model

known as the exponential dispersion model (Jørgensen, 1987). Based on an obser-

vation x the log-likelihood of the scalar parameters θ and φ is of the form

logL(θ, φ) =
xθ −A(θ)

φ
+ c(x, φ), (1.3)

where A(θ) and c(x, φ) are assumed known functions. In this form the parameter

θ is called the canonical parameter and φ the dispersion parameter. Since A(θ)

and c(x, φ) can be anything there are infinitely many submodels in the dispersion

exponential family, though the density must satisfy

∑
x

exp

{
xθ −A(θ)

φ
+ c(x, φ)

}
= 1,

which forces a certain relationship between A(θ) and c(x, φ).

Compared to the more rigid exponential family defined in Equation (1.1), in this

case, the variance is not closely defined by the mean as

Var[X] = φA′′(θ) = φ
∂

∂θ
E[X] = φv(µ).

This is indeed, the biggest advantage of the exponential dispersion model over the

more rigid model in Equation (1.1).

In practise, while A(θ) is explicitly given, c(x, φ) is left implicit in the model.

However, this is not a problem as far as the maximum likelihood estimation (MLE)

of θ is concerned, since the score equation,

S(θ) =
∂

∂θ
logL(θ, φ) =

x−A′(θ)
φ

,
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does not involve the term c(x, φ). However, it does not allow the performance of

a likelihood based estimation of φ or a full-likelihood inference of both parameters.

One option is to estimate φ with the method of moments, although there exist some

other techniques. In this work, we are going to develop a likelihood approximation

approach, usually called as quasi-likelihood (Wedderburn, 1974), which in general is

easy to implement.

First, we need to define some regularity conditions that the density function of

the random variable must satisfy in order to develop the quasi-likelihood theory.

Definition 1.1. Assume that we have Xi, i = 1, . . . , n, iid variables distributed with

density f(x|θ) and let define θ̂ and θ0 as the MLE of the parameter vector θ and

the true but unknown parameter value respectively. Then if,

1. θ0 ∈ Int(Ω), where Ω is the parameter space

2. the true but unknown parameter value θ0 is identified, i.e.

θ0 = arg max
θ∈Ω

E log f(Xi|θ)

3. the log-likelihood function

l(θ|x1, . . . , xn) =
n∑
i=1

log f(xi|θ)

is continuous in θ

4. E log f(X1, . . . , Xn|θ) exists

5. the log-likelihood function is such that 1
n l(θ|x1, . . . , xn) converges almost surely

to E log f(Xi|θ) uniformly in θ ∈ Ω, i.e.

sup
θ∈Ω

∣∣∣ 1
n
l(θ|x1, . . . , xn)− E log f(Xi|θ)

∣∣∣ < ε almost surely for some ε > 0

6. the log-likelihood function is twice continuously differentiable in a neighbour-

hood of θ0

7. integration and differential operators are interchangeable
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8. the expected Fisher information matrix

I(θ0) = E
(
−∂

2 log f(X1, . . . , Xn|θ0)
∂θ∂θ′

)
exists and it is non-singular

then, we say that regularity conditions are satisfy.

It is worth mentioning that all the members of the exponential family and com-

monly used distributions satisfy the regularity conditional defined in Definition 1.1

(Pawitan, 2001).

On the one hand, at fixed φ, the MLE of θ, denoted as θ̂, for the observation x

is the solution of the score equation,

S(θ̂) =
∂

∂θ
logL(θ|x, φ)

∣∣∣
θ=θ̂

=
x−A′(θ̂)

φ
= 0,

which implies that A′(θ̂) = x.

On the other hand, under regularity conditions, it can be proved that the MLE

of θ follows a normal distribution,

θ̂ ∼ N (θ0, I(θ0)
−1),

where in dispersion exponential families it is equivalently to (Pawitan, 2001)

θ̂ ∼ N (θ, I(θ̂)−1),

being I(·) the observed Fisher information matrix, defined as

I(θ̂) = − ∂2

∂θ2
logL(θ|x, φ)

∣∣∣
θ=θ̂

=
A′′(θ̂)

φ
.

Consequently, we have that the asymptotic distribution of the MLE of θ is defined

as

f(θ̂) ≈ (2π)−1/2I(θ̂)1/2 exp

{
−I(θ̂)

2
(θ̂ − θ)2

}
. (1.4)

Moreover, if the likelihood for the x contribution is regular, i.e. the log-likelihood

is well approximated by a quadratic function, we can apply a second order Taylor
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series around the MLE,

logL(θ) ≈ logL(θ̂) + S(θ̂)(θ − θ̂)− 1

2
I(θ̂)(θ̂ − θ)2, (1.5)

and get the following approximation of the log-ratio of the likelihoods,

log
L(θ)

L(θ̂)
≈ −1

2
I(θ̂)(θ̂ − θ)2. (1.6)

Given Equation (1.4) and Equation (1.6) we obtain that the density function of

the MLE can be approximated by,

f(θ̂) ≈ (2π)−1/2I(θ̂)1/2
L(θ)

L(θ̂)
.

As we only have one observation, the estimation of the mean of the distribution,

µ̂, is equal to the observed unique outcome x. Additionally, from exponential families

(see Equation (1.2)) we have that µ = E[X] = A′(θ), and hence, that µ̂ = A′(θ̂).

Therefore, we can conclude that the approximated density function for the single

observation x is defined as

f(x) = f(µ̂) = f(θ̂)
∣∣∣ ∂θ̂
∂µ̂

∣∣∣ = f(θ̂)A′′(θ̂)−1 ≈ (2πφv(x))−1/2
L(θ)

L(θ̂)
(1.7)

where v(x) is the variance function evaluated in the observation x and θ̂ is the MLE

of the canonical parameter for the unique observation. Notice that the term c(x, φ)

cancels out in the likelihood ratio term, so we end up with something simpler.

The last term in Equation (1.7) is directly related to the deviance function which

is defined as

D(x, θ) = 2 log
L(θ̂, φ = 1|x)

L(θ, φ = 1|x)
= 2

[
xθ̂ − xθ −A(θ̂) +A(θ)

]
, (1.8)

where θ̂ is the MLE for the single observation x. If we had x1, . . . , xn an iid sample,

the total deviance of the model would be defined as

D =

n∑
i=1

D(xi, θ), (1.9)

where for fixed φ the MLE of θ is the parameter that minimises the total deviance

(Jørgensen, 1997). In fact, although the deviance is useful and necessary to de-
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velop the quasi-likelihood theory, it is commonly used as a goodness-of-fit criteria

to compare nested models.

Finally, we get the expression of the approximation of the log-likelihood of an

exponential dispersion family distribution for a single observation x as

logL(θ, φ|x) ≈ −1

2
log (2πφv(x))− 1

2φ
D(x, θ). (1.10)

Example 1.3 In this example, we consider the binomial dispersion model or,

simply, the binomial distribution with dispersion parameter. First of all, we

rewrite the binomial distribution in an exponential family way. Once the

canonical parameter θ and the A(·) function of the binomial distribution are

identified, we try to extend it to the dispersion model approach and we ap-

proximate the likelihood function with the theory developed above.

Let us assume that the random variable X follows a binomial distribution with

parameters m and p. Then, the density function is defined as

f(X = x|p) =

(
m

x

)
px(1− p)m−x.

Notice that we do not condition the density function on the maximum score

number m as it is usually given as known and, instead, focus our attention on

the probability parameter p.

Equivalently, we can rewrite the log-density of the binomial distribution in an

exponential family way

log f(x|p) = x log
p

1− p
+m log(1− p) + log

(
m

x

)
,

where we define θ = log [p/(1− p)] as the canonical parameter of the distribu-

tion and A(θ) = −m log(1− p) = m log
(
1 + eθ

)
.

Notice that the relationships defined in Equation (1.2) are satisfied as follows,

A′(θ) =
∂

∂θ
m log

(
1 + eθ

)
= m

eθ

1 + eθ
= mp = E[X],

A′′(θ) =
∂

∂θ
A′(θ) =

∂

∂θ
m

eθ

1 + eθ
= m

e−θ

(1 + eθ)2
= mp(1− p) = Var[X].

For that canonical parameter and A(·) function we can define the log-likelihood
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of the dispersion model as

logL(θ, φ|x) =
xθ −m log(1 + eθ)

φ
+ c(x, φ), (1.11)

where θ = log [p/(1− p)].

As it was already mentioned, the model defined in Equation (1.11) is enough if

we want to estimate the canonical parameter or, equivalently, the probability

parameter p. However, it allows neither a full likelihood inference of θ (or p)

nor a likelihood based estimation of the dispersion parameter φ. Nevertheless,

we can approximate the log-likelihood of the binomial dispersion model with

the quasi-likelihood approximation defined in Equation (1.10).

First, we know that for a single observation the estimation of the probability

parameter is defined as the ratio between the number of successes and the

number of trials, i.e. p̂ = x/m, hence, we define the deviance of the model as

D(x, θ) = 2

[
x log

x/m

1− x/m
− x log

p

1− p
+m log

(
1− x

m

)
−m log(1− p)

]
.

Consequently, using Equation (1.10), the approximated log-likelihood of the

binomial dispersion model or binomial distribution with dispersion parameter

is defined as

logL(θ, φ|x) ≈ −1

2
log
(

2πφ
x

m

(
1− x

m

))
− 1

2φ
D(x, θ).

The above formula allows the full-likelihood based estimation of all the pa-

rameters involving the binomial distribution with dispersion parameter. Ad-

ditionally, it also allow for an inference procedure of the parameters.

�

It has been mentioned that the exponential dispersion model relaxes the rela-

tionship between the mean and the variance, however, in some cases, this accommo-

dation is not enough for the correct distributional fit of the variable. In fact, most

of the PROs include some characteristics that make the fit by exponential family

distributions inefficient (Arostegui et al., 2007). For instance, we consider the SF-36

dimensions provided in the COPD Study (see Section 1.3.1) as an illustration of the

inefficient fit of PROs by exponential family distributions.
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Many of PROs studies, in particular, HRQoL studies, perform statistical analysis

assuming that the dimensions provided by the SF-36 follow a normal distribution

(Pal et al., 2017; Sánchez-Garćıa et al., 2017). Figure 1.1 shows the distribution of

the original standardised SF-36 dimensions of the COPD Study in a cross-sectional

setting, in this case corresponding to the baseline measurements. It evidences that,

on the one hand, the dimensions have different density shapes and, on the other hand,

the weak distributional fit of the normal distribution. In fact, it can be appreciated

that most of the SF-36 dimensions do not show bell-shaped or Gaussian densities,

and instead, they follow skewed distributions which accumulate values in one or

two edges of the distribution scale. Additionally, it is worth mentioning that while

the normal distribution is defined on the real line R, the original standardised SF-36

dimensions are bounded to [0,100]. Moreover, the raw dimensions are constructed by

summing up some item scores and they can only reach a finite number of values (see

Table 1.1). Therefore, although the raw scores are standardised to the 0-100 scale,

they still maintain the integer feature as it can be appreciated in the role emotional

histogram in Figure 1.1, which only can take values equal to 0, 33.33, 66.66 or 100.

This assumption does not match with the continuity of the normal distribution and,

hence, it makes the fit of the original standardised SF-36 dimensions by the normal

distribution quite senseless.

The COPD Study is a specific study that measures specific PROs in an specific

population. However, it has been illustrated in the literature that many PROs mea-

sured in different populations share the previously cited characteristics (Izem et al.,

2014; Arostegui and Núñez-Antón, 2008). Indeed, the PROs are usually bounded

and tend to accumulate values in one or both sides of the range, which makes them

far from Gaussian or bell-shaped distributions. Additionally, we must also mention

the integer feature of PROs due to the way they are constructed. Therefore, the

number of distributions available in the exponential family that may match with

the cited characteristics reduces considerably. In fact, only two distributions in the

exponential family can be adapted to the features of the PROs, although with some

limitations: (i) the beta distribution; and (ii) the binomial distribution.

The beta distribution is a continuous two parameter exponential family model

which is bounded in the open interval (0, 1). The density function of the beta

distribution is given by

f(x|α1, α2) =
xα1−1(1− x)α1−1

B(α1, α2)
, (1.12)
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Figure 1.1: Histograms of the original standardized SF-36 scores in cross sectional
COPD data. The black lines correspond to the normal distributional fit.

where α1 and α2 are the positive parameters of the distribution and B(α1, α2) is the

beta function defined as

B(α1, α2) =

∫ 1

0
tα1−1(1− t)α2−1dt. (1.13)
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Figure 1.2 shows the different shape the beta distribution can reach depending on

the values of the parameters. It can be appreciated that U, J or inverse J-shapes

can be obtained. Therefore, due to its flexibility, it has been proposed by several

authors in the literature to model PROs (Basu and Manca, 2012; Hunger et al.,

2011). Regarding the distribution domain, PROs must be rescaled to the (0, 1)

interval before they are analysed by the beta distribution. This lead to some floor

and ceiling problems as, for instance, if an individual reaches the maximum score

number, the rescale process will link the score value with 1, but the beta distribution

is not defined in the closed interval. Different techniques have been described in the

literature to overcome this problem (Smithson and Verkuilen, 2006; Verkuilen and

Smithson, 2012). However, the beta distribution has some other limitations that,

from our point of view, do not match with the nature of PROs. First, we have

mentioned that, although PRO scores are assumed continuous, they have an integer

nature and, hence, they do not fit with the continuity of the beta distribution.

Additionally, the rescale to the (0, 1) interval can lead to some loss information

because the value of the maximum score number is ignored. In fact, we need to keep

in mind that PROs are mainly constructed using questionnaires, therefore, the more

questions are performed (the more items are summed up), the better is the outcome

in terms of variability.

0.0 0.2 0.4 0.6 0.8 1.0

Parameters

α1 = 1     α2 = 5

α1 = 2     α2 = 4

α1 = 5     α2 = 5

α1 = 7     α2 = 3

α1 = 5     α2 = 0.5

α1 = 2     α2 = 10

α1 = 0.1  α2 = 0.1

α1 = 1     α2 = 1

Figure 1.2: Different shapes of the beta distribution for different values of the pa-
rameters.
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The other distribution from the exponential family that could suit with the

nature of PROs is the well-known binomial distribution. It is a bounded integer

distribution and, conversely to the beta distribution, it takes into account the maxi-

mum score number to calculate the variability of the estimates. The problem of the

binomial distribution is the rigidity of its density function that, in general terms,

displays a Gaussian form. Even if a binomial dispersion model is considered, the

dispersion parameter φ only would scale the distribution, but would not change its

shape. Consequently, U, J or inverse J-shaped forms will not be correctly fitted by

the binomial distribution (Najera-Zuloaga et al., 2017). In Section 1.4.3 we will fit

PROs provided in the studies introduced in Section 1.3 by the binomial and bino-

mial with dispersion parameter distributions. It will be shown that the binomial

distribution does not offer a good fit to the data.

We have mentioned in the previous paragraphs the advantages and disadvantages

of the beta and binomial distributions. On the one hand, we have illustrated the

flexibility of the beta distribution but, we have shown its weakness when fitting

the nature of PROs. On the other hand, we have explained that the binomial

distribution suits to the features of PROs, but offers very poor fittings due to its

rigidity. Therefore, we could think of a mixture of both distributions, where the

nature of PROs will be preserved by the binomial distribution, but assume that the

probability parameter follows a beta distribution for accommodating its flexibility

in the model. In fact, the mixture of the binomial and beta distributions is called

the beta-binomial distribution and it has already been proposed in the literature for

fitting PROs (Arostegui et al., 2007).

1.4.2 The beta-binomial distribution

The beta-binomial distribution is defined as a mixture of the binomial and beta

distributions. It consists of a finite sum of Bernoulli variables whose probability

parameter is random and follows a beta distribution.

For instance, consider that we have some binary random variables Yj , j = 1, . . . ,m

where m ∈ N. Assume that conditional on a random variable u the binary vari-

ables are iid from a Bernoulli distribution with parameter u. Additionally, consider

that the random variable u follows a beta distribution with parameters α1 and α2.

Namely, we have that for j = 1, . . . ,m

Yj |u ∼ Ber(u) and u ∼ Beta(α1, α2). (1.14)
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The density function of the beta distribution has been introduced in Equation

(1.12) where the first and second order moments are defined as

E[u] = ψ and Var[u] = ψ(1− ψ)
φ

1 + φ
, (1.15)

being ψ = α1/(α1 + α2) and φ = 1/(α1 + α2), and hence, 0 < ψ < 1 and φ > 0.

On the contrary, for a binary outcome x the density function of the Bernoulli

distribution with probability parameter u is defined as

f(x|u) = ux(1− u)1−x,

where the first and second order moments are given by

E[X] = u and Var[X] = u(1− u). (1.16)

Therefore, based on the first and second order moments of the beta and Bernoulli

distributions defined in Equation (1.15) and Equation (1.16) respectively, we can

conclude with the marginal moments of the mixed distribution as

E[Yj ] = E [E [Yj |u]] = E [u] = ψ,

Var[Yj ] = Var [E [Yj |u]] + E [Var [Yj |u]] = Var [u] + E [u(1− u)]

= Var [u] + E [u]− E
[
u2
]
.

We know from the definition of the variance function that for a random variable u

we have that

Var [u] = E
[
u2
]
− E [u]2 ,

and, hence, we have that the marginal variance for each binary variable is defined

as

Var [Yj ] = Var [u] + E [u]−
(
Var [u] + E [u]2

)
= ψ(1− ψ).

Notice that the marginal expectation and variance for each binary outcome corre-

sponds to the Bernoulli distribution with probability parameter ψ. However, due

to the fact that all the binary variables j = 1, . . . ,m are conditioned on the same

random variable, we have that the covariance and correlation within observations
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are defined as

Cov [Yj , Yk] = Cov [E [Yj |u] ,E [Yk|u]] + E [Cov [Yj , Yk|u]]

= Cov [u, u] = Var[u] = ψ(1− ψ)
φ

1 + φ
,

Corr [Yj , Yk] =
Cov [Yj , Yk]√

Var [Yj ]
√

Var [Yk]
=

φ

1 + φ
, (1.17)

∀j, k = 1, . . . ,m and j 6= k. Therefore, Equation (1.17) determines the parameter φ

as the dispersion or correlation parameter of the distribution.

If we sum up all the random variables Yj , j = 1, . . . ,m, we define a new variable

as

Y =
m∑
j=1

Yj , (1.18)

which follows the so called beta-binomial distribution.

The marginal density function of the beta-binomial distribution is defined as

f(y) =

∫ 1

0
f(y|u)f(u)du =

∫ 1

0
f

(
m∑
i=1

yi

∣∣∣u) f(u)du

=

∫ 1

0

 m
m∑
i=1

yi

 m∏
i=1

f(yi|u)f(u)du

=

(
m

y

)∫ 1

0
uy(1− u)m−y

uα1−1(1− u)α2−1

B(α1, α2)
du

=

(
m

y

)∫ 1

0

uα1+y−1(1− u)α2+m−y−1

B(α1, α2)

=

(
m

y

)
B(α1 + y, α2 +m− y)

B(α1, α2)
.

At this point, we can use the following property of the beta function,

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,

where Γ(·) is the gamma function defined as

Γ(x) =

∫ ∞
0

tx−1e−tdt. (1.19)

Therefore, the marginal density function of the beta-binomial distribution is given
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by

f(y) =

(
m

y

)
Γ(α1 + y)

Γ(α1)

Γ(α2 +m− y)

Γ(α2)

Γ(α1 + α2)

Γ(α1 + α2 +m)
,

or equivalently, using that Γ(x+ 1) = x!, ∀x ∈ N, we obtain

f(y) =

(
m

y

) y−1∏
k=0

(α1 + k)
m−y−1∏
k=0

(α2 + k)

m−1∏
k=0

(α1 + α2 + k)

=

(
m

y

) y−1∏
k=0

(ψ + kφ)
m−y−1∏
k=0

(1− ψ + kφ)

m−1∏
k=0

(1 + kφ)

, (1.20)

where if y = 0, then
y−1∏
k=0

log(φ + kφ) = 1 or equivalently,
y−1∏
k=0

(α1 + k) = 1; and if

y = m, then
m−y−1∏
k=0

log(1− ψ + kφ) = 1, or equivalently,
m−1∏
k=0

(α1 + α2 + k) = 1.

Additionally, the marginal first and second order moments of the beta-binomial

distribution are defined as

E[Y ] = E

[
m∑
i=1

Yi

]
=

m∑
i=1

E[Yi] = mψ,

Var[Y ] = Var

[
m∑
i=1

Yi

]
=

m∑
i=1

Var[Yi] +
∑
j 6=k

Cov[Yj , Yk]

=
m∑
i=1

ψ(1− ψ) +
∑
j 6=k

ψ(1− ψ)
φ

1 + φ
(1.21)

= mψ(1− ψ) +m(m− 1)ψ(1− ψ)
φ

1 + φ

= mψ(1− ψ)

[
1 + (m− 1)

φ

1 + φ

]
.

Notice, that the marginal moments defined in Equation (1.21) correspond to the

binomial distribution with probability parameter ψ and a number of trials m, except

for the variance that includes an additional multiplicative term. In fact, the binomial

distribution is constructed following a similar procedure, however, the summed up

Bernoulli variables are assumed independent. This is, indeed, the reason of the

multiplicative term in the variance of the beta-binomial distribution. The bigger
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is the correlation between the binary variables (φ/(1 + φ) >> 0), the larger is the

difference between the variance of the binomial and the beta-binomial distributions.

Finally, it is worth mentioning that when the dispersion or correlation parameter φ

is zero, the beta-binomial distribution reduces to the binomial distribution.

Alternatively, there exits a more direct way of defining a beta-binomial distribu-

tion.

Definition 1.2. The random variable Y follows a beta-binomial distribution, if

conditioned on the beta distributed random variable u, it is drawn from a binomial

distribution with probability parameter u, i.e.

Y ∼ BB(m,ψ, φ) if Y |u ∼ Bin(m,u) and u ∼ Beta(α1, α2)

where ψ = α1/(α1 + α2) and φ = 1/(α1 + α2).

There exist different packages in R to fit a beta-binomial distribution, such as

rmutil, TailRank, emdbook, VGAM and gamlss. Moreover, we have developed our

own functions available in PROreg R-package (see Chapter 5 further details).

In terms of the distributional shape of the beta-binomial distribution, Figure

1.3 shows the different forms it can reach for different parameter values and a fixed

number of summed binary variables, or in a binomial framework, a maximum score

number equal to m = 10. It can be appreciated that the beta-binomial distribution

preserves the characteristics of the binomial distribution that suit with the nature of

PROs (discrete and bounded). Nevertheless, compared to the binomial distribution,

Figure 1.3 displays the flexibility that the introduction of the beta distribution offers.

In fact, if we compare the shapes of the beta-binomial distributions with the shapes of

the beta distributions in Figure 1.2 for the same parameters, we realise that the beta-

binomial distribution is somehow a ‘discretisated’ version of the beta distribution in

the 0-m scale where both maximum and minimum values can be reached.

1.4.3 Distributional fit to the datasets

Once the beta-binomial distribution has been introduced and its suitability for the

accommodation of the nature of PROs has been exposed, we are going to estimate,

as an illustration, the distributional fit of the PROs provided in the studies we have

described in Section 1.3.
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α1 = 1     α2 = 1

Figure 1.3: Different shapes of the beta-binomial distribution for different values of
the parameters and a fixed number of summed binary observations m = 10.

Short Form-36 Health Survey

In Section 1.4.2 we have introduced the beta-binomial distribution showing its flexi-

bility and shape variety which matches with most of the shapes the SF-36 dimensions

show in the COPD Study (see Figure 1.1). In fact, we have already mentioned that

the beta-binomial distribution has been proposed in the literature for fitting PROs

(Arostegui et al., 2007), in particular, HRQoL dimensions provided by the SF-36.

However, due to the performed standardisation of the raw scores to the [0, 100] in-

terval, recoding of the scores to a binomial form is necessary in order to fit the

beta-binomial distribution to the SF-36 Health Survey scores.

Arostegui et al. (2013) proposed and evaluated a method of recoding continuous

and bounded scores, such as HRQoL scores, to a binomial form. The method was

mainly based on the possible number of values each dimension can obtain, which,

as it has been explained in Section 1.2.1 and showed in Table 1.1, it comes from the

number of items related to the construction of the score in each dimension. Indeed,

the methodology transforms the sorted scale of possible values of each dimension

score to an ordinal scale from 0 to m, i.e. to a discrete and bounded scale. The real

interval [0,100], which is the range of the original standardised scores, is divided into

some subintervals, and then, each subinterval is linked to the value it corresponds
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to in the 0−m order scale, where m+ 1 is the number of intervals. Consequently,

score values within each subinterval are recoded with the value the sub-interval was

linked to in the 0 −m scale. The way the subintervals are constructed is the main

contribution of Arostegui et al. (2013) and the subdivision of the 0 − 100 scale for

each dimension is available in the Appendix of the mentioned work. However, for

the sake of clarity, we give more detailed information about the recoding process in

Appendix A.

Conversely to Figure 1.1 where the original standardised scores are displayed,

Figure 1.4 shows the distribution of the eight recoded SF-36 scores in patients with

COPD at baseline. Additionally, it shows the fit by the beta-binomial distribution,

together with the binomial and binomial dispersion models. Although represented

in different scales, similar shapes can be observed for the original standardised scores

(Figure 1.1) and the recoded scores (Figure 1.4).

Figure 1.4 illustrates that the distributions of the recoded SF-36 scores are, gen-

erally, very skewed, accumulating values at the boundaries. It can be appreciated

that, as it was mentioned in Section 1.4.1, due to the characteristics of PROs, in

particular HRQoL, both the binomial and the dispersion binomial distributions of-

fer a poor fit in most of the recoded scores (e.g. role physical, bodily pain, social

functioning, role emotional and mental health). In fact, as it was mentioned be-

fore, the binomial distribution with dispersion parameter only scales the binomial

density function, but it does not alter its shape. Therefore, if we had performed

a regression model based on this distribution, results would not be reliable as the

binomial distribution does not reflect a good fit to the data. Figure 1.4 also shows

that the scores have different shapes (e.g. bell, U or J-shaped), due to the fact

that in some dimensions people tend to answer more or less extreme than in others.

Consequently, there is an individual within variability in each dimension, that as it

can be appreciated, the beta-binomial distribution is able to accommodate.

Figure 1.5 shows descriptively the distribution of the scores of the eight SF-36

dimensions provided by patients with COPD based on different categorical variables,

such as gender, dyspnea, anxiety, and depression. It allows a description of the effect

of each categorical characteristic in the HRQoL of patients. Each axis of the radar

chart corresponds to a recoded SF-36 dimension. The scales have been standardised

to the interval defined by the length of the axis and divided into three cut points

(25%, 50% and 75%) for a better visualisation of the mean values. In Figure 1.5b we

can appreciate the influence of the dyspnea in the different scores, where lower levels

of dyspnea are associated with higher health-status in all the dimensions. However,



32 Chapter 1

Physical functioning

Recoded scores

F
re

q
u

e
n

c
y

0 5 10 15 20

0
2

0
4

0
6

0
8

0

7 9 8 9
16

20
26

21

34
39

31
36 36 39

35
39

30

51

29

18
10

Binomial
Binomial Disp.
Beta-Binomial

Role physical

Recoded scores

F
re

q
u

e
n

c
y

0 1 2 3 4

0
5

0
1

5
0

2
5

0

88
68 65 61

261
Binomial
Binomial Disp.
Beta-Binomial

Bodily pain

Recoded scores

F
re

q
u

e
n

c
y

0 2 4 6 8

0
5

0
1

0
0

2
0

0

8
19

29
19

47 50
61 66

19

225
Binomial
Binomial Disp.
Beta-Binomial

General health

Recoded scores

F
re

q
u

e
n

c
y

0 5 10 15 20

0
2

0
4

0
6

0
8

0
4

10

23 20

32
40

48 49
41

55

41
34 32

27 28

13
19 15

8 4

Binomial
Binomial Disp.
Beta-Binomial

Vitality

Recoded scores

F
re

q
u

e
n

c
y

0 5 10 15 20

0
2

0
4

0
6

0
8

0

5 3

15
9

16 14
21 21

34 31

57

31
39

31
37 35

31
24

28 25

36

Binomial
Binomial Disp.
Beta-Binomial

Social functioning

Recoded scores

F
re

q
u

e
n

c
y

0 2 4 6 8

0
5

0
1

5
0

2
5

0

7 8 12 18

48 47
74

45

284
Binomial
Binomial Disp.
Beta-Binomial

Role emotional

Recoded scores

F
re

q
u

e
n

c
y

0 1 2 3

0
1

0
0

2
0

0
3

0
0

4
0

0

71
36 38

398
Binomial
Binomial Disp.
Beta-Binomial

Mental health

Recoded scores

F
re

q
u

e
n

c
y

0 2 4 6 8 10 12 14

0
2

0
4

0
6

0
8

0
1

2
0

1
7 5 8

15
21

32

45 46 49

82

65

86
81

Binomial
Binomial Disp.
Beta-Binomial

Figure 1.4: Histograms of the recoded SF-36 scores in cross-sectional COPD data.
The blue and the green lines correspond to the binomial and binomial dispersion fits
respectively. The red line corresponds to the fit by the beta-binomial distribution.
Frequencies are shown at the top of each bar

it can be shown that the mean effect of different dyspnea levels is not equal in all

the dimensions, as the effect in physical functioning is higher than in bodily pain,
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differentiating category effect between physical and mental dimensions. Figure 1.5a

also shows that the mean perception of HRQoL is better in males than in females in

all the dimension, being the mental dimensions where the difference is higher. On

the other hand, Figures 1.5c-1.5d show that, as expected, the anxiety or depression

status worsens in average the health-status of COPD patients in all the dimensions,

the anxiety especially in role emotional and the depression in vitality.
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Figure 1.5: Distribution of the health-status or HRQoL in COPD patients at baseline
based on some categorical variables. Numbers between parenthesis are the maximum
values of the recoded SF-36 scores in each dimension.
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St. George’s Respiratory Questionnaire

The SGRQ has been introduced in Section 1.2.2, where it was mentioned that it

provides three different domains which cover different aspects of the health-status

of the patients with respiratory diseases. In fact, a principal component analysis

was performed on the 50 items of the SGRQ, leading to the decomposition of the

outcome in the following three dimensions: Symptoms, Activity and Impacts. The

resulting three scores were then standardised to the 0−100 scale. Therefore, similar

to the dimensions provided by the SF-36, a recoding process of the SGRQ domains

might be carried out before the beta-binomial distribution is applied.

PROs are used to discriminate differences between patients and evaluate changes

within patients. Unlike most health-status questionnaires, there is evidence that the

SGRQ behaves similarly when used to make comparisons between patients or detect

changes within patients (Jones, 2005). Consequently, the same estimation of the

minimum clinically important difference can be used for both applications. Clinical

thresholds are used most commonly to judge whether a treatment has a clinically

worthwhile effect, or whether it is superior to another treatment. Jones (2002)

showed that the estimate of the SGRQ is consistently around four units, regardless

of the method of estimation and the number of the subjects contributing to the

estimate. Therefore, treatments that produce an improvement of the order of 4

units have found wide acceptance once in use, so it seems reasonable to expect any

new treatment proposed for COPD to produce an advantage over placebo that is

not significantly inferior to a 4 unit difference (Jones, 2005).

We can develop a recoding process of the SGRQ dimensions based on the idea

that a 4 points change in the 0−100 scale can be considered as a clinically significant

change. In fact, we can assume that a change in the health-status only ‘exists’ if 4

units are exceeded in the score and, hence, divide the 0 − 100 scale into 4 length

subintervals recoding the value of each score with the value of the subinterval it

belongs. Table 1.5 shows the recoding of the SGRQ scores based on that criteria.

Consequently, after the recoding has been applied, we get three recoded SGRQ

scores which are integer and take values from 0 to 24, where a higher point, as in the

original scale, means a worse health-status. Figure 1.6 displays the histograms of

the distributions of the original scores (on the left-hand side) and recoded scores (on

the right-hand side) of the SGRQ three dimensions for the patients at baseline. As it

can be appreciated, the recoding process maintains the distributional features of the

scores, which show similar shapes on both sides of the figure. Additionally, Figure
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Table 1.5: Recoding of the SGRQ scores for the three dimensions.

Interval Recoded Interval Recoded

[0, 4) −→ 0 [52, 56) −→ 13
[4, 8) −→ 1 [56, 60) −→ 14
[8, 12) −→ 2 [60, 64) −→ 15
[12, 16) −→ 3 [64, 68) −→ 16
[16, 20) −→ 4 [68, 72) −→ 17
[20, 24) −→ 5 [72, 76) −→ 18
[24, 28) −→ 6 [76, 80) −→ 19
[28, 32) −→ 7 [80, 84) −→ 20
[32, 36) −→ 8 [84, 88) −→ 21
[36, 40) −→ 9 [88, 92) −→ 22
[40, 44) −→ 10 [92, 96) −→ 23
[44, 48) −→ 11 [96, 100] −→ 24
[48, 52) −→ 12

1.6 displays the distributional fit of the scores (symptoms, activity and impacts

domains) by the normal, binomial, binomial with dispersion parameter and beta-

binomial distributions.

First of all, it is worth mentioning that the normal and binomial with dispersion

parameter distributions reach very similar fit shapes conditional on the different

scale and characteristics of the data, which it is assumed continuous in the first one

and integer in the second one. However, it is evidenced that the normal distribution

is not bounded in the 0− 100 range, which leaves distribution tails out of the scale,

especially in the impacts domain. As regards to the fit in the recoded scores, we

can state that the three domains behave quite different and, consequently, different

results are obtained from the fit of the different distributions in each dimension.

First, the symptoms shows a slightly bell-shaped (almost flat) distribution, where

both the binomial with dispersion parameter and the beta-binomial distributions

display similar results. Second, the activity only reaches values in some determined

scores, which complicates the correct fit by any distribution. However, compared

to both binomial distributions, the beta-binomial offers a flatter distribution and,

therefore, accumulates less error in the zero or low frequency scores. Finally, the

impacts scores are accumulated on the left-hand side of the scale, meaning that

there is not much impact of the disease in COPD patients. Similar to the recoded

mental health SF-36 dimension in Figure 1.4, the bell shape of the density function
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Figure 1.6: Histograms of the SGRQ scores in the COPD Study at baseline. In the
left-hand side, the original scores are displayed, while on the right-hand side the
recoded scores are shown. The figure offers the fit to the data by the normal (left),
binomial, dispersion binomial and beta-binomial (right) distributions.

of the binomial distributions does not allow an appropriate fit to the data, even

if a dispersion parameter is included. In this domain, it can be easily appreciated

that the beta-binomial distribution offers the most accurate fit. Summarizing, in

one recoded dimension the binomial distribution with dispersion parameter and the

beta-binomial distribution offer very similar results, however, in the other two the

beta-binomial is the most adequate, especially in the Impacts dimension. Therefore,

we propose the use of the beta-binomial distribution as a unified way of analysing

the SGRQ scores in the COPD Study.
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Mini Mental State Examination

In the following lines, we are going to perform the distributional fit to the MMSE

scores in the Paquid Research Programme subsample introduced in Section 1.3.2.

The MMSE offers tools for measuring the cognitive status of patients being evaluated

and, conversely to the SF-36, it only provides a unique score. Moreover, the provided

score is an integer in the 0 − 30 scale, and hence, no recoding process is required

before the beta-binomial distribution is applied.

The Paquid research programme was carried out in a longitudinal framework,

and a maximum of 9 measurements were performed for each individual in the co-

hort. Therefore, in order to show and compare the adequacy of the beta-binomial

distribution in the longitudinal study, we perform different distributional fits on

each of the time points. However, for the sake of clarity, as scores behave similarly

in each time point, Figure 1.7 only displays the distribution of the first four-time

point measurements. In addition, it shows the fit by the beta-binomial and binomial

distributions with and without dispersion parameter.

The main conclusion we obtain from Figure 1.7 is that observations tend to accu-

mulate on the right-hand side of the score scale, meaning that patients have a good

mental status in general. Consequently, it is easy to appreciate that any of the first

four measurements do not follow a Gaussian or bell-shape distribution. In fact, that

is one of the reasons for the poor performance of both binomial distributions, as they

assume a bell-shaped distribution. On the contrary, the beta-binomial distribution

does not display any bell-shaped form, which makes its adjustment more accurate

taking into account the characteristics of the data. Indeed, Figure 1.7 shows that,

in low frequency scores, the beta-binomial distribution gets much better fit than the

binomial distributions. Although, in high frequency scores the fit is not as good as

the previous ones.

We have already shown in Section 1.4.2 that the beta-binomial corresponds to

the binomial distribution when the dispersion parameter φ is equal to zero, meaning

that there is no extra variability or overdispersion. However, Figure 1.7 displays

quite different shapes for each distribution and, therefore, we can conclude that

there exists overdispersion in MMSE scores for the different time points. Therefore,

we propose the use of the beta-binomial distribution to fit MMSE scores.
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Figure 1.7: Histograms of the MMSE score at the first four visits in Paquid subsam-
ple data. The blue and the green lines correspond to the binomial and dispersion bi-
nomial models respectively. The red line corresponds to the fit by the beta-binomial
distribution.

1.5 Objectives of the thesis

This thesis is focused on the development of regression approaches based on the

beta-binomial distribution for the appropriate analysis of PROs in different sce-

narios. In general terms, we can break the objectives of this thesis down in five

main goals. First, in order to detect and quantify the effect of the covariates on

PROs in cross-sectional studies, we will propose a regression model based on the

beta-binomial distribution and we will define a method to make inference in this

context. However, PRO studies are usually carried out over time where patients are

repeatedly measured leading to non-independent data. Therefore, our second ob-
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jective is to extend the cross-sectional beta-binomial regression model to multilevel

data framework, where not only longitudinal studies, but also any kind of correlated

data could be analysed. Due to the fact that that PROs often provide different

dimensions referring to several health aspects, the third objective is to develop a

regression model based on the beta-binomial distribution for the joint analysis of all

the dimensions, i.e. the third objective is to develop a multivariate beta-binomial

regression model. The theoretical development of statistical regression models may

be useless unless a practical tool is provided. Hence, the fourth goal is the imple-

mentation of the regression models as Open Source Software that could be easily

used in clinical research. Finally, the fifth and last objective is the application of the

proposed methodology to COPD data in order to get clinically valid and relevant

results involving the health-status of COPD patients.
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CHAPTER 2

CROSS-SECTIONAL ANALYSIS: A

BETA-BINOMIAL REGRESSION

APPROACH

“The limits of my language means the limits of my world”

Ludwig Wittgenstein, 1889− 1951

The work developed in this chapter has already been accepted in the Statistical Methods

in Medical Research journal and partially presented in the Conference - 31st International

Workshop on Statistical Modelling Conference.

Najera-Zuloaga, J., Lee, D.-J. and Arostegui, I. (2017). Comparison of beta-binomial re-

gression model approaches to analyze health-related quality of life data. Statistical Methods in Med-

ical Research (in press)

31st International Workshop on Statistical Modelling. Comparison of beta-binomial regres-

sion approaches to analyze health-related quality of life data. Najera-Zuloaga, J., Lee, D.-J. and

Arostegui, I. Proceedings volume II. Rennes, July 4 - 8, 2016.

2.1 Introduction

One of the most important goals of PRO studies is the measurement of the effect

that some specific observed variables, such us life habits, disease’s characteristics or

socio-demographical properties, have on the life status of the patients. A variety

41
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of statistical methods are available to deal with the mentioned objective, however,

due to PROs features referred to in Section 1.4, not all the methodologies would be

appropriate.

Typically, regression models have been developed in the literature to estimate

the relationship between an outcome variable and some given exploratory variables.

In the classical linear models (LMs) the random vector Y = (Y1, . . . , Yn), referred to

as the outcome, is connected to the given covariates by means of a linear regression

Y = Xβ + ε,

where X is a full rank matrix which each column corresponds to the measurements

of each exploratory variable, β are the regression coefficients and ε is the error

vector. Usually it is assumed that the error term is a vector of iid variables normally

distributed with zero mean and the same variance. This model specification sets up

some conditions on the outcome variable Y , such as continuity, which is not met in all

the real examples. For instance, one may be interested in the relationship between

some covariates and dichotomous or count outcomes, however, the distributional

assumption of LMs may fail in this situations. The extension of classical LMs to

cover non-normal responses is one of the largest success of the statistical inference.

McCullagh and Nelder (1989) developed the well-known generalised linear models

(GLMs) which are based on exponential family distributions, covering a huge range

of real situations.

2.1.1 Generalised linear models

Due to the fact that GLMs are a well-known regression methodology (McCullagh and

Nelder, 1989), in this section, we will shortly introduce and describe them. Unlike the

classical LMs, GLMs do not assume normality of the outcome, and instead, restrict

their assumption to the exponential family distributions. The exponential family,

which has been introduced in Section 1.4.1, covers a wide variety of distributions,

and hence, it makes GLMs useful in a huge range of studies.

In general terms, GLM methodology applies a monotonic function defined in

the real line, which is commonly called the link function, to the expectation of the

outcomes, and then, connects it with the given covariates by a linear predictor. For

instance, assume that y = (y1, . . . , yn)′ are the observed n independent outcomes
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which follow an exponential family distribution of the following form

f(yi|θi, φ) = exp

{
yiθi −A(θi)

φ
+ c(yi, φ)

}
,

where θi is the canonical parameter of the distribution i = 1, . . . , n and A(·) and

c(·) are known functions. As it was mentioned, GLMs connect the expectation of

the outcomes with the given covariates by means of a link function h(·),

h(µi) = x′iβ

where µi = E[Yi], xi is the ith row of a full rank matrixX composed by the covariates

and β are the regression parameters. From exponential family theory (see Section

1.4.1), we know that µi = A′(θi), and therefore, there exists an implied relationship,

A′(θi) = h−1(x′iβ),

between the canonical parameter and the regression parameters. The choice of h(·)
such that h(µi) = θi, or equivalently θi = xiβ, is called canonical link function.

The use of the canonical link facilitates the estimation and inference procedures,

and consequently, it is usually selected in most of the applications, although any

monotonic function could be used. Notice that the canonical link function depends

on the canonical parameter and, hence, each exponential family distribution has a

different canonical link function.

Therefore, GLM approach only needs two specifications for defining a model,

the distribution from the exponential family and the link function. However, it was

mentioned in Section 1.4.1 that, by fixing the first two moments the distribution

family is completely defined due to the relationships presented in Equation (1.2).

Consequently, a GLM could be specified by the definition of the link function and

the first two moments of the distribution of the outcome.

Following exponential family distribution theory (see Section 1.4.1) the log-

likelihood of a GLM is defined as

logL(β, φ|y) =

n∑
i=1

f(yi|β, φ) =

n∑
i=1

yiθi −A(θi)

φ
+ c(yi, φ), (2.1)

where A′(θi) = h−1(x′iβ) or θi = x′iβ if the canonical link function is used and the

dispersion parameter is assumed constant for all the outcomes.
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Regarding the estimation of the regression parameters β, the Iterative Weighted

Least Squares (IWLS) is one of the most widely used approaches (McCullagh and

Nelder, 1989). It extends the Newton-Raphson algorithm to the GLM case, where

an iterative estimating formula is obtained. More details about the construction of

the IWLS procedure are provided in Appendix B.2.

However, in some distribution, such as the binomial, if the dispersion model

defined in Equation (1.3) is considered, then we do not have an explicit formulation

of the density function because c(·) is unknown. In this situations, as well as in the

distributional inference in Section 1.4.1, the estimation of the regression parameters

β remains equal as c(·) do not depend on β, however, it does depend on φ. Therefore,

we are not allowed to perform a likelihood-based estimation of φ, neither a full

inference of β as the second derivatives of the likelihood depend on φ.

In Chapter 1, Section 1.4.1, we have introduced the so-called quasi-likelihood ap-

proximation as a full inference procedure of the parameters in an exponential family

dispersion model. The quasi-likelihood methodology is based on the normalisation

of the density function of the outcomes through a quadratic approximation of the

likelihood, which leads to a deviance approximation. Based on the quasi-likelihood

theory, the MLE of β is the value that minimises the total deviance of the model

defined in Equation (1.9) (Wedderburn, 1974). Additionally, it offers an explicit

formulation of the approximation of the log-likelihood of the model as

logL(β, φ|y) ≈
n∑
i=1

−1

2
log(2πφv(yi))−

1

2φ
D(yi, θi), (2.2)

where A′(θi) = h−1(x′iβ), h(·) is the link function, xi is the ith row of a full rank

matrix X composed by the covariates, v(·) is the variance function of the specific

exponential family member and D(·) is the total deviance of the model defined in

Equation (1.8).

The quasi-likelihood function defined in Equation (2.2) allows a full inference

process in both regression and dispersion parameters of the model.

2.1.2 Beta-binomial regression background

The classical GLMs are a very general regression methodology where a wide variety

of outcomes and covariates can be analysed. In fact, they do not restrict their dis-

tributional assumption to a unique distribution as LMs, and moreover, the possible

use of different link functions enriches the models. However, although the exponen-
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tial family includes most of the distributions that do occur in real studies, there are

some exceptions. Indeed, as it was explained in Chapter 1, the observations’ within-

correlation and overdispersion that most PROs present make the fit by exponential

family distributions inadequate.

The beta-binomial distribution was proposed in 2007 to fit the SF-36 Health

Survey scores (Arostegui et al., 2007). The proposal was mainly motivated be-

cause of the ordinal feature that many of the SF-36 scores exhibit. Furthermore,

they showed that the beta-binomial regression is a good option to detect significant

predictors of SF-36 scores and they provided a nice interpretation of the effect of

explanatory variables on HRQoL when SF-36 is used. The authors also compared

results using multiple linear regression (MLR) and beta-binomial regression for real

and simulated data, showing that performance of the beta-binomial approach was

better or similar than the MLR approach in all the dimensions of the SF-36. Com-

parison of MLR and beta-binomial regression approaches was performed based on

distributional assumptions.

In 2012, Arostegui et al. (2012) generalised the SF-36 results and presented

eight methods of analysis of PROs under different assumptions that lead to dif-

ferent interpretation of the results. The methods were: MLR with least square

and bootstrap estimations, tobit regression, ordinal logistic and probit regressions,

beta-binomial regression, binomial-logistic-normal regression and coarsening. All

methods were applied to scores obtained from two of the health dimensions of the

SF-36 Health Survey. They showed that the beta-binomial regression approach ren-

ders satisfactory results in a broad number of situations, with a very convenient

clinical interpretation of the results.

Therefore, the beta-binomial distribution has been proposed in the literature not

only for fitting the distribution of PROs but also as the given distribution of the

outcomes for performing regression models. However, there are two different ways of

implementing a regression model based on the beta-binomial distribution in the liter-

ature. On the one hand, the marginal beta-binomial regression can be implemented,

which applies a logistic regression in the probability parameter of a beta-binomial

distribution (Forcina and Franconi, 1988). In this setting, estimation is done via

maximum likelihood where the delta algorithm (Jørgensen, 1984) is applied. On the

other hand, the binomial-beta model developed by Lee and Nelder (1996) can be

used as a particular case of the Hierarchical Generalised Linear Models (HGLMs).

In the conditional or HGLM approach beta distributed random effects are included

in the linear predictor of a logistic model to accommodate the overdispersion and
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correlation of PROs. Keeping in mind that there could exist some differences in

the results due to average-specific (marginal) and subject-specific (conditional) ap-

proaches respectively, it would be reasonable if both methodologies may result in

similar conclusions. Nevertheless, none of the existing literature in the analysis of

PRO data has performed a comparison of both approaches in terms of adequacy

and regression parameter interpretation context. Therefore, in order to clarify dif-

ferences between both approaches and find out the optimal methodology in terms

of the estimation of covariate effect, in this chapter we carry out a deep comparison

study between both models in both real and simulated data.

The rest of the chapter is organised as follows. Section 2.2 presents a description

of both methodological approaches to perform a regression model based on the beta-

binomial distribution. The application to COPD Study is carried out in Section

2.3 where the defined models result on different parameter and standard deviation

estimates, that lead to different conclusions regarding the effect of the covariates

in the HRQoL of patients with COPD. Consequently, Section 2.4 is focused on a

simulation study that provides comparisons of the approaches in controlled scenarios.

Finally, in Section 2.5, we provide a brief discussion of the obtained results, as well

as some general conclusions and recommendations.

2.2 Beta-binomial regression approaches

It was described in Section 1.4.2 that the beta-binomial consists of a mixture between

a beta and a binomial distribution. Therefore, as it was explained, there exits two

ways of defining the distribution model: (i) the marginal; and (ii) the conditional.

In the marginal model we integrate out the beta distributed random variable, and

get a closed-form equation for the density function. In the conditional approach we

do not perform any integration and, instead, the model is left in a conditional form.

Each of the model definitions leads to a different regression approach. This section

is focused on the description of both methodologies where, apart from the definition,

the estimation procedure is broadly discussed.

2.2.1 Marginal approach

The first approach, which we denote as BBreg, is based on a marginal regression

model approach. BBreg assumes that the observed outcomes are drawn from a

beta-binomial distribution and applies a logistic regression model in the marginal



2.2. Beta-binomial regression approaches 47

expectation. Therefore, it does not consider the beta-binomial as a mixture, and

instead, it is focused on the marginal distribution where beta effects are integrated

out in the density function. BBreg model definition is similar to GLMs as a link

function is applied to the expectation of the outcomes before linking it with a linear

predictor consisting of the covariates. However, there is a crucial difference: the

beta-binomial distribution does not belong to the exponential family. Consequently,

GLM inference procedure cannot be directly applied as it is developed based on

some properties that exclusively exponential family distributions satisfy.

Let Y = (Y1, . . . , Yn)′ be a set of idd random variables where each Yi follows a

beta-binomial distribution with parameters pi and φ and a maximum score number

equal to mi, i = 1, . . . , n. Namely, we have that

Yi ∼ BB(mi, pi, φ), i = 1, . . . , n,

where

E[Yi] = mipi and Var[Yi] = mipi(1− pi)
[
1 + (mi − 1)

φ

1 + φ

]
. (2.3)

Notice that we assume that the dispersion parameter φ is equal for all the random

variables associated with each observation. In fact, in PRO context, φ measures

the dimension within correlation for the binary responses of the same individual.

Therefore, it is logical to think that the correlation depends on the specific dimension

and hence, that remains equal for all the patients.

Based on the binomial distribution, Equation (2.3) offers a straightforward in-

terpretation of the beta-binomial distribution parameters. In fact, this can be very

useful in the medical framework as it allows the interpretation of the regression pa-

rameters’ effect based on the meaning of the modelled distribution parameter. On

the one hand, as it can be appreciated, the mean corresponds to the binomial mean,

and hence, similar to the binomial distribution, pi can be interpreted as the probabil-

ity parameter of obtaining one success or one point in PRO framework. On the other

hand, the second order moment adds a multiplicative term to the binomial variance

allowing for overdispersion. Indeed, φ was defined as the correlation parameter be-

tween the binary outcomes in Section 1.4.2 and therefore, we can conclude that the

overdispersion of the data is generated by the intraclass correlation of the summed

up Bernoulli (binary) outcomes. Notice that when φ = 0, the model corresponds

to the binomial case. On the whole, the beta-binomial distribution can be inter-
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preted as a binomial distribution where intraclass correlation and overdispersion are

measured.

Due to the easy and useful interpretation of the distribution parameters, and

in order to simplify the notation, from now on we will consider pi the probability

parameter of the beta-binomial distribution, φ as the dispersion parameter and mi as

the maximum score number. The main objective of PRO studies is the measurement

of the effect that some covariates may have on the expected PRO being analysed.

In other words, studies are interested in modelling the mean as a function of the

covariates. Therefore, we will only connect or relate the probability parameter as a

function of the covariates, letting φ as a constant.

Assume that we have y = (y1, . . . , yn)′ a set of observations. Following Forcina

and Franconi (1988), we can connect the probability parameter of the beta-binomial

distribution with a linear predictor consisting of some given covariates X1, . . . , Xp

by means of a logit link function as

log
pi

1− pi
= ηi = x′iβ,

where ηi is the linear predictor that corresponds to the ith observation, β is the

(p+ 1)× 1 vector of regression parameters and xi the ith row of a full rank design

matrix X composed by the given covariates, i = 1, . . . , n.

The log-likelihood of the described model is defined as

logL(β, φ|y) =
n∑
i=1

log f(yi|β, φ)

=

n∑
i=1

log


(
mi

yi

) Γ

(
1

φ

)
Γ

(
1

φ
+mi

) Γ

(
pi
φ

+ yi

)
Γ

(
pi
φ

) Γ

(
1− pi
φ

+mi − yi
)

Γ

(
1− pi
φ

)
 ,

where β is included in the equation through the relationship given by

pi =
ex
′
iβ

1 + ex
′
iβ
, (2.4)

and Γ(·) is the gamma function defined in Equation (1.19).

As done in Equation (1.20), if we use that Γ(x + 1) = xΓ(x) for all x ∈ R and

Γ(0) = 1, we obtain a new expression of the beta-binomial density function, and

hence, of the likelihood, which is easier to manipulate. Therefore, the log-likelihood
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of the marginal beta-binomial regression model can be simplified as

logL(β, φ|y) =
n∑
i=1

[
log

(
mi

yi

)
+

yi−1∑
k=0

log(pi + kφ) +

mi−yi−1∑
k=0

log(1− pi + kφ)

−
mi∑
k=0

log(1 + kφ)

]
, (2.5)

where if yi = 0 then,
yi−1∑
k=0

log(pi + kφ) = 0; and if yi = mi then,
mi−yi−1∑
k=0

log(1− pi +

kφ) = 0.

In order to get the MLE of β we perform the first order derivative of the log-

likelihood, which leads to the next score equation

S(β) =
∂

∂β
logL(β, φ|y) =

[
∂

∂p
logL(β, φ|y)

]
∂p

∂β
= ξ′SX (2.6)

where S = diag (p1(1− p1), . . . , pn(1− pn)) and ξ = (ξ1, . . . , ξn)′ being

ξi =

yi−1∑
k=0

1

pi + kφ
−
mi−yi−1∑
k=0

1

1− pi + kφ
, (2.7)

(see Appendix D.2, Equation (D.1) and Equation (D.2) for further details).

Given that Equation (2.6) has no explicit solution, iterative algorithms are used

to solve Equation (2.6). The Newton-Raphson algorithm is one of the most used

procedures for solving score equations. It consists of a quadratic approximation of

the function to be solved which leads to a iterative estimation of the root based on

the approximation through the ratio between the value of the function and the value

of the derivative (see Appendix B.1). When dealing with estimation in regression

models, we try to maximise the likelihood, or equivalently, solve the derivative of the

log-likelihood function. Therefore, approximating ratio consists of the division be-

tween the first and second order derivatives of the log-likelihood function which may

have a tendency to be unstable for many reasons. One reason is that the negative

of the second derivative of the log-likelihood, or equivalently, the observed Fisher

information I(β), may be negative unless β is already very close to the MLE β̂. In

fact, I(β̂) determines the sharpness of the peak in the likelihood function around its

maximum, and consequently, it must be positive-defined. However, occasionally the

I(β) term is also used where β is arbitrary, but this can be inadequate as it may

not be positive-defined. Moreover, apart from negativity, there could be additional
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problems as I(β) can be singular and not invertible or it can have both negative and

positive eigenvalues. In order to correct the estimation procedure, the Fisher’s scor-

ing algorithm is used. This method is defined as a Newton-Raphson algorithm where

the matrix of second derivatives is replaced by its expectation, I(β) = E [I(β)], i.e,

the Fisher expected information matrix. Indeed, I(β) is always non-negative, and

even strictly positive in regular cases.

In GLMs, due to exponential family properties, if a canonical link function is

used, the Fisher observed information matrix is equivalent to the expected infor-

mation matrix as ∂2θi/∂β∂β
′ = 0 (see Appendix B.2). Therefore, in these model

approaches, the Newton-Raphson algorithm is accurate and stable. However, we

have mentioned before that the beta-binomial distribution does not belong to the

exponential family, and therefore, Newton-Raphson or GLM estimation procedure

cannot be applied directly. Moreover, due to the complexity of the beta-binomial

distribution, I(β) is very hard to calculate and approximation procedures must be

used. Therefore, in this work, we have developed a modification of the Newton-

Raphson estimating procedure based on the delta algorithm (Jørgensen, 1984).

Basically, the delta algorithm generalises Fisher’s scoring method, and it is de-

rived from a modification of the Newton-Raphson algorithm where the matrix of the

second derivatives is replaced by an approximation of the form

− ∂2L

∂β∂β′
≈ T (β)′K(µ)T (β), (2.8)

where K(µ) is a suitable n× n symmetric positive-defined matrix called the weight

matrix, T (β) is the n× p matrix ∂µ/∂β and µ is an intermediate parameter vector

of length n× 1, being n the number of observations.

There are several options for the election of the weight matrix in the delta algo-

rithm. In fact, we have that the negative second derivative of the log-likelihood is

defined as

− ∂2L

∂β∂β′
= T (β)′I(µ)T (β)−

n∑
i=1

∂2µi
∂β∂β′

u(µi), (2.9)

where u(µ) = ∂L/∂µ. Hence, we choose K(µ) close to I(µ). But as the second

term in Equation (2.9) is ignored in the approximation, this term must be small in

absolute value if the delta algorithm is to have a reasonable rate of convergence.

Jørgensen (1984) showed that the delta algorithm is expected to work well only for

models which are nearly linear or fit the data well (Jørgensen, 1984).

For additive log-likelihood models, I(µ) and I(µ) are diagonal, so we take K(µ)
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diagonal and denote by K(µi) the ith diagonal element. The election of K(µi) equal

to the expected information weight

I(µi) = E
[
−∂

2 logL

∂µ2i

]
simplifies the delta algorithm to the Fisher’s scoring method. Moreover, whereas

other choices of K(µi) depend on the particular parametrisation of µ, the expected

information weight is invariant to reparametrisation of µ (Jørgensen, 1984). Addi-

tionally, as we have mentioned before, the expected weights are always positive for

any regular model.

In the BBreg approach the intermediate parameter µ corresponds to the prob-

ability parameter p and therefore, the second derivative of the log-likelihood with

respect to the regression parameters can be approximated using expected informa-

tion weights, as

∂2 logL

∂β∂β′
≈ E

[
−∂p

′

∂β

∂ logL

∂pp′
∂p

∂β

]
= X ′SE[V ]SX (2.10)

where S and ξ = (ξ1, . . . , ξn)′ have been previously defined in Equation (2.7) and

V = diag(v1, . . . , vn) being

vi = −∂ξi
∂pi

=

yi−1∑
k=0

1

(pi + kφ)2
+

mi−yi−1∑
k=0

1

(1− pi + kφ)2
, (2.11)

(see Appendix D.2, Equation (D.1) and Equation (D.3) for further details).

Consequently, the estimation equation for the MLE of β is defined as

β̂
(r+1)

= β̂
(r) −

{
−∂p

′

∂β
E
[

∂2

∂p∂p′
logL(β, φ|y)

]
∂p

∂β

}−1 [
∂

∂β
logL(β, φ|y)

]′
= β̂

(r)
+
{

(SX)′E [V ] (SX)
}−1

X ′Sξ

= β̂
(r)

+
{
X ′SE[V ]SX

}−1
X ′Sξ,

and after some simple calculations it leads to

β̂
(r+1)

= (X ′SE [V ]SX)−1X ′SE [V ]Sν,

where ν = Xβ(r) + (SE [V ])−1ξ, and the previous matrices are evaluated at β̂
(r)

.

However, due to the complexity of the beta-binomial density function and, espe-
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cially, the vi terms i = 1, . . . , n, the computation of E[V ] is intractable. Therefore,

it is necessary to replace E[V ] with V and use the observed weights instead. This

adjustment will usually increase the rate of convergence, though the algorithm may

be less stable if the starting points are far from the maximum (Jørgensen, 1984).

However, Forcina and Franconi (1988) tested the algorithm and convergence was

always obtained in two to four iterations.

Therefore, we get the MLE of β by the iterative use of the following equation

β̂
(r+1)

= (X ′SV SX)−1X ′SV Sν, (2.12)

where ν = Xβ(r) + (SV )−1ξ, and the previous matrices are evaluated at β̂
(r)

.

The estimates of β are functions of φ. Hence, if we replace β with β̂ or, equiv-

alently, p with p̂, in the log-likelihood function, we obtain the profile log-likelihood

with respect to φ (see Appendix D.2, Equation (D.4)). This function is easy to com-

pute, and simple numerical methods are available to locate the maximum φ̂ (Forcina

and Franconi, 1988).

2.2.2 Conditional approach

The second approach considers the beta-binomial distribution as a mixture and,

unlike the BBreg approach, it models the probability parameter of the conditional

binomial distribution. In fact, it performs a logistic regression in the probability

parameter of the conditional binomial distribution but includes specific beta dis-

tributed random effects in the linear predictor to accommodate both the overdis-

persion and observations within correlation. Therefore, compared to the previous

marginal approach, the conditional model is constructed in a mixed-effects frame-

work.

Generalised linear mixed models (GLMMs) are a very widely used methodology

in different frameworks, as they allow the inclusion, in addition to the usual fixed

effects, one or more random effects in the linear predictor of GLMs (McCulloch and

Searle, 2001). However, the distribution of the random effects is better decided by

the properties of the data or the purposes of inference. Therefore, although the nor-

mal distribution is convenient for specifying correlations in the data, the use of other

distributions for the random effects greatly enriches these class of models. Lee and

Nelder (1996) extended GLMMs to hierarchical GLMs (HGLMs), in which the dis-

tribution of random components is extended to conjugates of arbitrary distributions

from the exponential family.
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On the one hand, the HGLMs are defined as, the response vector Y , conditioned

on some given random components u, follows an exponential family distribution

satisfying that

E[Y |u] = µ and Var[Y |u] = λV (µ),

and the linear predictor takes the form

η = g(µ) = Xβ +Zv,

where v = l(u), the random effects, are the transformation of the random com-

ponents u through the scale, and β are the fixed effects. On the other hand, the

random components u follow a distribution conjugate to an exponential family of

distributions with parameter ϕ where

E[ui] = ψc and Var[ui] = ϕVc(ψc),

for i = 1, . . . , q, and q is the number of random effects.

In Bayesian probability theory, a prior distribution is considered conjugate to

another distribution (likelihood) if the posterior distribution through the Bayes the-

orem belongs to the same family of distributions. For instance, we have shown that

the beta-binomial distribution consists of a conditional response following a bino-

mial distribution whose probability parameter is assumed random and drawn from

a beta distribution. Indeed, we assume that the observation y is drawn from a beta-

binomial distribution, if conditional on the random parameter u, u ∼ Beta(α1, α2),

it follows a binomial distribution with probability parameter u. The posterior dis-

tribution of the model is defined as

f(u|α1, α2, y) =
f(y|u)f(u|α1, α2)

f(y|α1, α2)

=

(
m
y

)
uy(1− u)m−yuα1−1(1− u)α2−1B(α1, α2)

−1∫ 1
0

(
m
y

)
uy(1− u)m−yuα1−1(1− u)α2−1B(α1, α2)−1du

=
uy+α1−1(1− u)m−y+α2−1∫ 1

0 u
y+α1−1(1− u)m−y+α2−1du

=
uy+α1−1(1− u)m−y+α2−1

B(y + α1,m− y + α2)

∼ Beta(y + α1,m− y + α2),

which follows a beta distribution of parameters y + α1 and m − y + α2, being B(·)
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the beta function defined in Equation (1.13). Therefore, we have shown that the

binomial and beta are conjugate distributions. Hence, we can consider the beta-

binomial model as a special case of HGLMs, and define it as

Yi|ui ∼ Bin(mi, pi) and ui ∼ Beta(α1, α2),

where pi is connected to ui by a linear predictor i = 1, . . . , n, being n the number

of observations.

In fact, when we construct a HGLM we must choose l(·) the scale on which

the random effects occur linearly in the linear predictor, that is called the weak

canonical scale (Lee et al., 2006). This weak canonical scale allows the model to

maintain invariance of inference with respect to equivalent modelling approaches.

The linear predictor of the binomial-beta regression model is defined as

ηi = logit(pi) = x′iβ + vi, (2.13)

where x′i is the ith row of a full rank design matrix X composed by the given

covariates, β are the fixed effects and vi = l(ui) = logit(ui) is the random effect

attributed to observation i, i = 1, . . . , n. Therefore, in the binomial-beta HGLM,

the scale of the random effects corresponds to the logit transformation. Note that the

model in Equation (2.13) is the binomial-beta HGLM, which we denote as BBhglm.

Constraints must be specified in either the random or fixed part of the model

to maintain the structure of the model. Lee and Nelder (2001) proposed to impose

constraints in the random part of the model, fixing ψc, the expectation of the random

components ui i = 1, . . . , n, equal to the value that the scale transforms to zero.

Namely, in BBhglm they imposed,

E[ui] = ψc = 1/2. (2.14)

The restriction in Equation (2.14) leads to a strict relationship between the param-

eters of the distribution of the random effects,

E[ui] =
α1

α1 + α2
=

1

2
=⇒ α1 = α2,

and hence, it is assumed that the random components satisfy ui ∼ Beta(1/α, 1/α),

where α > 0 (Lee et al., 2006). This assumption fixes the dispersion parameter of

the beta distribution as ϕ = α/2.
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In HGLMs, especially in the BBhglm, the computation of the marginal likelihood

is not straightforward, and moreover, it is totally uninformative about the random

effects v. Consequently, Lee and Nelder (1996) proposed the so-called h-likelihood

(or hierarchical-likelihood) as an approach to perform inference in HGLMs.

Let y = (y1, . . . , yn)′ be a set of the observed outcomes. The h-likelihood of any

HGLM is defined by

h = h(β,v, λ, α|y) = log f(y|β,v, λ) + log f(v|α), (2.15)

where the first term is the conditional log-likelihood of the response and the second

term is the log-likelihood corresponding to the random effects in the linear predic-

tor. In the BBhglm the first term corresponds to the binomial density function,

while the second term corresponds to the beta density function through the logit

transformation. Consequently, the h-likelihood in BBhglm is given by

h(β,u, α|y) = log f(y|β,u, λ) + log

[
f
(
l−1(v)|α

) ∂l−1(v)

∂v

]
= log f(y|β,u, λ) + log

[
f(u|α)l−1(v)

(
1− l−1(v)

)]
=

n∑
i=1

yiθi −mi log
(
1 + eθi

)
λ

+ c(yi, λ)

+ log

[
u
1/α−1
i (1− ui)1/α−1

B(1/α, 1/α)
ui(1− ui)

]

=
n∑
i=1

yi log pi
1−pi +mi log (1− pi)

λ
+

1

α
log (ui(1− ui)) + d(yi, λ, α)

=
n∑
i=1

yi log pi
1−pi +mi log (1− pi)

λ

1
2 log ui

1−ui + log(1− ui)
α/2

+ d(yi, λ, α)

=

n∑
i=1

yi log pi
1−pi +mi log (1− pi)

λ
+
ψc log ui

1−ui + log(1− ui)
ϕ

+ d(yi, λ, α)

where d(yi, λ, α) = c(yi, λ)− log B(1/α, 1/α).

In fact, conjugacy allows to consider log f(v|α) as the log-likelihood of quasi-data

ψ = 1nψc, where 1n is a vector of 1s with length n, with quasi-fixed parameters ui,

satisfying the relationship E[ψi] = ui and Var[ψi] = ϕV (ui), i = 1, . . . , n. Therefore,
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the estimation of HGLMs can be seen as an augmented GLM with the response

variable ya = (y′,ψ′)′, where

E[Y ] = µ, E[ψ] = u,

Var[Y ] = λV (µ), Var[ψ] = ϕV (u).

Moreover, the augmented linear predictor is defined as

ηa = (η′,η′c)
′ = Tω,

where η = g(µ) = Xβ+Zv is the linear predictor of the original model, ηc = l(u) =

v is the augmented linear predictor, ω = (β′,v′)′ are fixed unknown parameters and

quasi-parameters and T is the augmented model matrix which is defined as

T =

(
X Z

0 I

)
.

I the dispersion parameters λ and α are fixed, based on the augmented GLM

approach, we can compute the IWLS algorithm to estimate ω, and consequently β

and v. Therefore, the estimating equations are defined as

T ′ΣaT ω̂ = T ′Σ−1a za

where, on the one hand, the augmented adjusted dependent variable za = (z′, z′c)
′

consists of

zi = ηi + (yi − µi)(∂ηi/∂µi) and zci = vi + (ψc − ui)(∂vi/∂ui).

And on the other hand, the prior weight J −1 is defined as

J =

[
Λ 0

0 A

]
,

where Λ = diag(λi) and A = diag(αi), and the weight function

W a =

[
W 0

0 W c

]
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is defined as

W = (∂µ/∂η)2V (µ)−1 and W c = (∂u/∂v)2V (u)−1,

which leads to the overall weight function Σ−1a defined as

Σa = JW−1 =

[
Σ 0

0 Σc

]
=

[
ΛW−1 0

0 AW−1
c

]
.

However, for the estimation of the dispersion parameters λ and α, the MLE

may be substantially biased owing to the estimation of β (Lee and Nelder, 1996).

Therefore, a modification of the h-likelihood must be applied in order to obtain a

consistent estimation of the dispersion parameters. Let us consider the following

function which consists of a likelihood function l and a parameter α,

pα(l) =

{
l − 1

2
log

[
det

(
1

2
D(l, α)/π

)]} ∣∣∣
α=α̂

,

where D(l, α) = −∂2l/∂α2 and α̂ solves ∂l/∂α = 0. The defined pα(l) is a profile

likelihood that eliminates nuisance effects α from l. In fact, D(l, α) is called the

adjusted term for such elimination. On the one hand, Cox and Reid (1987) showed

that for fixed effects β the use of pβ(l) is equivalent to conditioning the likelihood

on β̂. On the other hand, Lee and Nelder (2001) proved that the use of pv(l) for

the random effects is equivalent to integrating them out.

Therefore, for the estimation of the dispersion parameters, Lee and Nelder (1996)

proposed to use the adjusted profile h-likelihood

pω(h) =

{
h− 1

2
log

[
det

(
1

2
D(h,ω)/π

)]} ∣∣∣
ω=ω̂

,

where h is the h-likelihood defined in Equation (2.15), D(h,ω) corresponds to the

Hessian matrix of the HGLM and ω corresponds to the fixed parameters of the aug-

mented model. Iterative use of ∂pω(h)/∂λ and ∂pω(h)/∂ϕ (or ∂pω(h)/∂α) leads to

the maximum adjusted profile h-likelihood estimations of the dispersion parameters.

2.3 Application to the Short Form-36

In this section we will analyse data from the COPD Study in order to conclude

with remarkable relationships between the HRQoL of patients and clinical and
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socio-demographical variables listed in Section 1.3.1. It has been stated that re-

gression models based on the beta-binomial distribution are appropriate candidates

for analysing PRO data and, in particular, HRQoL provided by the SF-36 Health

Survey (Arostegui et al., 2012). However, we have mentioned in the previous section

that there are two different approaches, the marginal (BBreg) and the conditional

(BBhglm), for implementing that type of model. Therefore, we are going to make

use of both regression approaches to analyse data from the COPD Study and, that

way, we will not only look for relationships between the HRQoL and covariates, but

also check the performance of both methodologies in real data application.

In terms of statistical packages and software, on the one hand, we have imple-

mented the BBreg approach in the R-package PROreg available at CRAN, https://

cran.r-project.org/web/packages/PROreg/index.html. Further discussion about

the specific function that performs the BBreg approach is provided in Chapter 5.

On the other hand, the BBhglm approach is implemented in the hglm R-package

(Ronnegard et al., 2010) also available at CRAN.

The eight dimensions of the SF-36 Health Survey were the response variables

and clinical and sociodemographic variables listed in Table 1.2 were considered as

independent variables. Separated models were performed for each of the health di-

mension of the SF-36 and exclusively data from the first visit to the outpatient clinic

was considered. For variables selection, we retained in the model those covariates

whose influence in HRQoL was statistically significant (p-value< 0.05) in at least

one of the modelling approaches. For simplicity, clarity and brevity of exposition,

we only show results for three of the eight health dimensions of the SF-36. The

selected three dimensions (physical functioning, mental health and role emotional)

illustrate different shapes of the distribution (see Figure 1.4) and a wide range of

maximum number of scores (m), from 4 to 20.

Tables 2.1-2.3 provide the results obtained from the analysis of the mentioned

SF-36 dimensions in the COPD Study by both beta-binomial regression approaches.

Estimates of the regression coefficients, their standard deviations and test of sig-

nificance associated with the BBreg and the BBhglm modelling approaches for the

selected three health dimensions of the SF-36 Health Survey are displayed. We also

show the estimates in logarithmic scale of the dispersion parameter of each approach,

α for BBhglm and φ for BBreg.

Real data application leads to several conclusions and interpretation. As regards

to the effects of the covariates in the SF-36 dimensions, it can be appreciated that

while in physical functioning dimension both algorithms lead to similar estimates,

https://cran.r-project.org/web/packages/PROreg/index.html
https://cran.r-project.org/web/packages/PROreg/index.html
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Table 2.1: Effect of explanatory variables in the physical functioning dimension
measured by both regression approaches based on the beta-binomial distribution.

BBhglm BBreg

Physical functioning β̂ SD(β̂) p-value β̂ SD(β̂) p-value

Dyspnea
Mild -0.616 0.111 <0.001 -0.580 0.112 <0.001
Moderate -1.339 0.122 <0.001 -1.281 0.120 <0.001
Severe -2.317 0.178 <0.001 -2.207 0.176 <0.001

Depression
Yes -0.541 0.139 <0.001 -0.544 0.130 <0.001

Anxiety
Yes -0.416 0.096 <0.001 -0.404 0.090 <0.001

Sex
Female 0.469 0.167 0.005 0.461 0.155 0.003

FEV1% 0.007 0.003 0.011 0.006 0.002 0.012
BMI -0.019 0.007 0.011 -0.018 0.007 0.009
Age 0.013 0.004 0.002 0.012 0.004 0.002
Walking Test 0.004 10−4 <0.001 0.004 10−4 <0.001

log(α) -2.656 0.084 − − − −
log(φ) − − − -2.826 0.115 −

SD: Standard Deviation; BMI: Body Mass Index; FEV1%: Forced Expiratory Volume in one

second in percentile.

in mental health and, especially, in role emotional dimension regression parameter

estimates and statistical significances are completely different. For example, for role

emotional dimension, on the one hand, the estimation of the coefficient correspond-

ing to anxiety is −6.145 in BBhglm approach and −1.649 in BBreg, being both

statistically significant in the model. On the other hand, the p-value corresponding

to the estimate of moderate dyspnea is statistically significant in BBreg approach

(< 0.001), but not in BBhglm (0.434).

Due to the fact that the logit link function is used in both methodologies, the

interpretation of the regression coefficients β in both approaches is equivalent to

the log odds-ratio in a binomial logistic regression model. For instance, the coeffi-

cient of depression in the physical functioning model for BBreg approach is −0.544,

which means that based on this model the presence of depression increases by

1/ exp(−0.544) = 1.72 the odds of having a smaller physical functioning score.
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Table 2.2: Effect of explanatory variables in the mental health dimension measured
by both regression approaches based on the beta-binomial distribution.

BBhglm BBreg

Mental health β̂ SD(β̂) p-value β̂ SD(β̂) p-value

Dyspnea
Mild -0.353 0.234 0.134∗ -0.294 0.141 0.037
Moderate -0.853 0.246 <0.001 -0.704 0.145 <0.001
Severe -1.132 0.320 <0.001 -0.961 0.181 <0.001

Anxiety
Yes -1.480 0.204 <0.001 -1.290 0.108 <0.001

Depression
Yes -0.966 0.298 0.002 -0.853 0.157 <0.001

log(α) -0.7647 0.069 − − − −
log(φ) − − − -2.263 0.115 −

SD: Standard Deviation. Symbol ∗ stands for regression coefficients that are not statistically

significant.

Table 2.3: Effect of explanatory variables in the role emotional dimension measured
by both regression approaches based on the beta-binomial distribution.

BBhglm BBreg

Role emotional β̂ SD(β̂) p-value β̂ SD(β̂) p-value

Anxiety
Yes -6.145 2.062 0.003 -1.649 0.226 <0.001

Dyspnea
Mild -2.600 5.229 0.619∗ -0.614 0.418 0.142∗

Moderate -3.981 5.080 0.434∗ -1.379 0.413 <0.001
Severe -5.603 5.496 0.309∗ -2.048 0.467 <0.001

log(α) 2.735 0.095 − − − −
log(φ) − − − 0.668 0.150 −

SD: Standard Deviation. Symbol ∗ stands for regression coefficients that are not statistically

significant.

Therefore, at first sight, it seems that both regression approaches lead to com-

pletely different conclusions about the effect of the covariates in the HRQoL of pa-
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tients with COPD. However, care must be required when comparing marginal and

conditional models. In fact, although the interpretation of the parameters is made

in the same way, it is worth noticing that they refer to different measurements. For

instance, the BBreg approach should be interpreted in terms of a marginal response,

and hence, conclusions should be taken in terms of population. Indeed, the linear

predictor of BBreg approach is constructed based on the marginal expectation of

the outcome variable,

logit (E [Yi]) = logit (pmi ) = x′iβ.

On the contrary, the linear predictor of the BBhglm approach depends on the con-

ditional mean,

logit (E [Yi|ui]) = logit (pci ) = x′iβ + vi.

We denote pm and pc to refer to the marginal and conditional means respectively,

where E[pc] = pm. Therefore, the conditional BBhglm approach describes individual

responses, and consequently, interpretation of the parameters is done holding the

value of the random effect (a particular value that corresponds to each individual).

Due to the fact that the logit and the expectation operator do not commute (i.e.

E [logit (pci )] 6= logit (E [pci ]) = logit (pmi )), it has been shown that each approach is

modelling a different measurement, and hence, we cannot compare them directly.

However, there are still some features shown in the real data application that should

be explained. First of all, as mentioned before, due to the model definition, we know

that regression coefficients estimates through marginal and conditional models may

differ. However, differences seem to be larger than expected. Moreover, we know that

if a covariate does not affect the individuals, it has no effect on populations; however,

the real data application does not show the same. In fact, it can be appreciated

in Table 2.3 that the effect of the mild dyspnea is statistically significant in the

marginal approach, but not in the conditional approach, which does not make sense

with the previous statement. Furthermore, standard deviations of the estimates are

completely different in both approaches, which could tell that one of the models is

over or under estimating the variances.

Figure 2.1 shows the distribution of the analysed three SF-36 dimensions and

the model-fit by the BBhglm approach. It can be appreciated the subject-specific

feature of the approach, where the inclusion of a beta random effect per individual

accommodates the dispersion of the fitted values. Therefore, it is shown that the

distribution of the fitted values corresponds to the observed distribution of the re-
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sponses, especially in role emotional dimensions, where results tended to be more

misleading (see Table 2.3). Consequently, Figure 2.1 shows that, apparently, the

BBhglm approach is correct, at least concerning fitted values, and that it is fitting

the relationship between the HRQoL of the patients and covariates adequately.
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Figure 2.1: Observed distribution and fitted distribution by the BBhglm approach
of the analysed SF-36 scores.
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In general, we have explained that due to the model specification we cannot

compare estimates from both approaches directly. However, from our point of view,

there are some issues, such as statistical significance and over/under inflation of the

variance, that must be addressed in order to conclude with the most appropriate

approach to measure the effect of the covariates in PROs, for instance, the HRQoL

of patients with COPD. It seems that as the dispersion parameter increases, both

approaches conclude in more different results. Therefore, in the next section, we

focus on the comparison of the two methodological approaches through a complete

simulation study which is divided in different scenarios depending on the value of

the dispersion parameter.

2.4 Simulation study

In this section we perform a simulation study to compare the adequacy in terms of

parameters estimation, standard deviation and significance of both beta-binomial

regression modelling approaches in PROs framework.

In terms of the software implementation, the R-packages described in Section 2.3

have been used in order to perform the simulation study, i.e. PROreg for BBreg

approach and hglm for BBhglm.

2.4.1 Scenarios set up

First of all, we set up some controlled scenarios defining specific values for the

parameters of the model. Different scenarios correspond to different situations that

can occur in real practise.

Given the recoded 8 health dimensions provided by the SF-36, we consider three

groups based on the maximum score m, i.e.: few (3 and 4), standard (8, 9 and 10)

and large (19 and 20) (see Figure 1.4). Consequently, in order to generalise the

results, the simulation study has been also divided into three scenarios considering a

maximum score of 4, 10 and 20. Finally, we have generated 500 random realizations

of 100 observations of a dependent variable Y assuming a beta-binomial distribution

with fixed probability and dispersion parameters.

In order to understand the behaviour of the methodologies in PROs framework,

we are going to focus the simulation exercise on a regression approach with a single

continuous covariate. The probability parameter of the beta-binomial distribution

has been calculated as shown in Equation (2.4) for a fixed value of β0 and β1 equal
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to 1 and −0.3 respectively, and a fixed covariate X simulated assuming a normal

distribution with mean 3 and standard deviation equal to 2.

0 2 4 6 8 10

(a) Binomial (φ = 0)

0 2 4 6 8 10

(b) Bell-shaped (φ = 0.01)

0 2 4 6 8 10

(c) Flat-shaped (φ = 0.5)

0 2 4 6 8 10

(d) U-shaped (φ = 2)

Figure 2.2: Distribution of the beta-binomial distribution for p = 0.5, m = 10 and
different values of φ.

The value of the dispersion parameter φ defines different scenarios (the shape

of the beta distribution), as for a fixed probability parameter the shape of the

distribution changes considerably for different values of φ. Values greater than 0.5

provides U-shaped distributions, values lower than 0.5 bell-shaped and a value equal

to 0.5 flat-shaped. Figure 2.2 illustrates possible scenarios showing how the shape of

the beta-binomial distribution changes for a fixed probability parameter equal to 0.5

considering the values φ = 0.01 (see Figure 2.2b), φ = 0.5 (see Figure 2.2c) and φ = 2
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(see Figure 2.2d) for the dispersion parameter. If there is no overdispersion, φ = 0,

it corresponds to the usual binomial distribution (see Figure 2.2a). Hence, when the

value of the dispersion parameter becomes greater the distribution is further from

the mean value and the observations are accumulated at both extremes of the scale.

2.4.2 Results

As it was mentioned before, the main objective of most PROs analysis is focused on

the estimation of the effect that some previously measured variables may have on the

health-status of some population. Therefore, regression models are applied to the

data where the interest lies in the estimation and interpretation of the regression

coefficients β. It was detailed in Section 2.4.1 that, for the sake of clarity, the

regression model performed in this simulation study only consists of a covariate, and

hence, two regression parameters are included in the linear predictor: the intercept

(β0) and the slope (β1). Consequently, although some details about the estimation of

the intercept are provided, the objective of the simulation study lies in the correct

measurement of the slope, the regression coefficient that multiplies the simulated

covariate in the linear predictor.

In order to compare the performance of both beta-binomial regression approaches,

the marginal (BBreg) and the conditional (BBhglm), Tables 2.4-2.6 include the em-

pirical mean and expected mean square error (EMS) of the estimates of the intercept

coefficient (β0). In addition, Tables 2.4-2.6 also show a deeper comparison analysis

of the slope (β1) where, apart from the mean and EMS, the empirical standard de-

viation (ESD) and the average standard deviation (ASD) of the estimates are shown

together with the coverage probability of the 95% Wald confidence intervals for the

estimates of the slope (β1 = −0.3) and the percentage the simulated covariate effect

is statistically significant in each model (PCSS). Moreover, Figures 2.3-2.5 show the

boxplots of the estimates of the slope in the 500 simulations for both beta-binomial

regression approaches.

The simulation study shows that similar to the real data application, differences

in the results provided by both beta-binomial regression approaches depend on the

scenarios. Indeed, results begin to differ as the dispersion parameter φ and maximum

score number m increase. For instance, Table 2.4 and Figure 2.3 show that when

there is a low dispersion in the data (φ = 0.01) results provided by both approaches

tend to be very similar. However, if a large dispersion is considered (φ = 2) results

provided by both approaches are completely different (see Table 2.6 and Figure 2.5).
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Table 2.4: Results of the simulation study for the bell-shaped distribution (φ = 0.01)
for n = 100 individuals and R = 500 replicates.

β0 = 1 β1 = −0.3

Model Mean EMS Mean ESD ASD EMS CP PCSS

m = 4 BBhglm 1.015 0.048 -0.305 0.061 0.065 0.004 97.8 100
BBreg 1.009 0.046 -0.303 0.059 0.064 0.003 97.4 100

m = 10 BBhglm 0.997 0.019 -0.299 0.039 0.041 0.001 96.4 100
BBreg 0.995 0.019 -0.298 0.038 0.041 0.001 96.2 100

m = 20 BBhglm 1.013 0.013 -0.303 0.031 0.030 0.001 93.8 100
BBreg 1.010 0.013 -0.302 0.031 0.030 0.001 93.4 100

EMS: Expected Mean Square errors; ESD: Empirical Standard Deviation; ASD: Average

Standard Deviation; CP: Coverage Probability of 95%; PCSS: Percentage the Covariate effect is

Statistically Significant.

φ=0.01

β

m=4 m=10 m=20

-0
.5

-0
.4

-0
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.2

-0
.1

BBreg
BBhglm

Figure 2.3: Boxplots of the slope estimates in the simulation study for the bell-
shaped scenario (φ = 0.01). Simulations performed for n = 100 individuals and
R = 500 replicates.

It has been mentioned before that, due to the fact that marginal and conditional

approaches do not model the same quantity, they cannot be compared directly.

Therefore, conclusions of the simulation study will not be obtained by comparing
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Table 2.5: Results of the simulation study for the flat-shaped distribution (φ = 0.5)
for n = 100 individuals and R = 500 replicates.

β0 = 1 β1 = −0.3

Model Mean EMS Mean ESD ASD EMS CP PCSS

m = 4 BBhglm 1.286 0.346 -0.385 0.143 0.124 0.028 93.8 94.2
BBreg 0.967 0.090 -0.291 0.082 0.086 0.007 96.8 96.0

m = 10 BBhglm 1.426 0.421 -0.427 0.131 0.125 0.033 90.0 96.0
BBreg 0.957 0.072 -0.289 0.071 0.074 0.005 95.8 98.6

m = 20 BBhglm 1.589 0.649 -0.478 0.150 0.132 0.054 81.4 96.0
BBreg 0.997 0.066 -0.303 0.070 0.070 0.005 95.8 99.4

EMS: Expected Mean Square errors; ESD: Empirical Standard Deviation; ASD: Average

Standard Deviation; CP: Coverage Probability of 95%; PCSS: Percentage the Covariate effect is

Statistically Significant.

φ=0.5
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Figure 2.4: Boxplots of the slope estimates in the simulation study for the flat-
shaped scenario (φ = 0.5). Simulations performed for n = 100 individuals and
R = 500 replicates.

both approaches like with like, but instead, we will analyse results provided by each

approach on its own. Finally, some conclusion about the adequacy of the approaches

will be offered together with some recommendations.
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Table 2.6: Results of the simulation study for the U-shaped distribution (φ = 2) for
n = 100 individuals and R = 500 replicates.

β0 = 1 β1 = −0.3

Model Mean EMS Mean ESD ASD EMS CP PCSS

m = 4 BBhglm 1.990 2.433 -0.610 0.347 0.270 0.217 91.4 61.0
BBreg 0.798 0.134 -0.250 0.091 0.103 0.011 93.6 73.0

m = 10 BBhglm 2.719 6.002 -0.823 0.481 0.369 0.505 86.8 41.2
BBreg 0.791 0.130 -0.248 0.085 0.096 0.010 93.8 77.0

m = 20 BBhglm 3.027 8.050 -0.920 0.539 0.413 0.675 78.2 24.2
BBreg 0.777 0.134 -0.247 0.084 0.093 0.010 93.4 79.8

EMS: Expected Mean Square errors; ESD: Empirical Standard Deviation; ASD: Average

Standard Deviation; CP: Coverage Probability of 95%; PCSS: Percentage the Covariate effect is

Statistically Significant.
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Figure 2.5: Boxplots of the slope estimates in the simulation study for the U-shaped
scenario (φ = 2). Simulations performed for n = 100 individuals and R = 500
replicates.

On the one hand, as regards BBreg approach, several remarkable conclusions

can be appreciated. First of all, regarding the bias of the estimates, it is shown

that the EMS of the estimates remain very small in all the scenarios, especially
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in the slope parameter where the highest value is equal to 0.011 (see Table 2.6).

Therefore, we conclude that variability in the data does not affect the parameter

estimation by BBreg approach, which maintains very close to the real value. In

terms of the variance of the estimates, Tables 2.4-2.6 show that the ESD and ASD

of the estimates are almost equal in all the scenarios, concluding that the algorithm is

coherent with the estimation process. Additionally, it can be appreciated that as the

maximum score number m increases the variance of the estimates (both empirical

and average) decreases and, as the bias remains constant, the EMS is reduced.

Indeed, this is a logical result as increasing the maximum score number m we are

somehow increasing the sample size, and therefore, the estimator is more efficient.

Finally, we have to remark that the interpretation of the regression parameters in

BBreg approach is made in terms of population average, which can be very useful

for clinical applications.

On the other hand, regarding BBhglm approach, results differ for several rea-

sons. Firstly, we have to keep in mind that the interpretation of the bias does not

make any sense in this case where the value being modelled was not the marginal

expectation, but the logit of the conditional mean instead. In fact, the simulation

study was performed in a marginal context, and hence, regression parameters in a

conditional approach do not have the same meaning. Nevertheless, it can be ap-

preciated in Figures 2.3-2.5 and Tables 2.4-2.6 that the estimates begin to distance

from the marginal approach value as the dispersion parameter increases. Indeed,

as noticed by Lee and Nelder (2004), in a mixed-effects regression context, differ-

ent model approaches tend to be more similar as the heterogeneities of individuals

are small. However, not only the bias but the standard deviation of the estimates

(empirical and average) increase for larger values of the dispersion parameter φ.

Compared to BBreg approach, we realise that the BBhglm approach doubles the

variances in large variability scenarios. Consequently, significance tests of the pa-

rameter estimates based on the estimated standard deviations tend to accept the

null hypothesis, and therefore, conclude that there does not exist any relationship

between the covariate and the response variable. In this sense, we find a contradic-

tion between marginal and conditional models, because as it was stated by Senn in

the comments to the paper by Lee and Nelder (2004): “After all, if the treatment

cannot affect individuals, it has no effect on populations...”. However, Tables 2.5-2.6

show that the previous statement does not hold in the simulation study, because,

for instance, in the last scenario (m = 20 and φ = 2) the percentage the covariate

effect is statistically significant in the model is equal to 79.8% in BBreg, but only
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24.2% in BBhglm. In addition, it can be appreciated that the increment of the

maximum number of scores m does not reduce the variability of the estimates in

BBhglm approach, in fact, it increases, which in our opinion could be because the

estimator is not efficient.

To sum up, we have shown that the BBreg approach performs adequately in

terms of bias and variances of the estimations. Moreover, even in large variability

scenarios, it is able to capture the effect of the covariate on the response variable. In

contrast, BBhglm results cannot be interpreted based on the marginal mean because

conditional approaches are considered, and instead, they should be interpreted on an

individual level holding the same value of the predicted random effect. However, we

have shown that when the variability in the data is large enough (φ = 1 or φ = 2),

the BBhglm approach is not able to capture the effect of covariates that do affect

the population average.

Finally, it is worth mentioning that while the BBreg approach converged in all

the simulated scenarios, the BBhglm approach had several convergence problems,

especially in the U-shaped scenario (φ = 2) where it got a convergence rate of

45.09%, 39.18% and 37.37% when m = 4, m = 10 and m = 20 respectively.

2.5 Conclusions and discussion

It is known that differences in the behavior of regression coefficients in so-called

marginal and conditional models are based on a failure to compare them like with

like. In fact, it was shown by Lee and Nelder (2004) that these differences are

mainly caused by the choice of unidentifiable constraints on the random effects.

When we are defining a mixed-effect model, it may be reasonable to assume that an

individual’s unobserved trail (vi) follows a certain distribution. However, the center

of this distribution cannot be identified as it is confounded with the intercept term.

One solution is to fix the first moment of the random effects to some previously

defined constraint. Nevertheless, the restriction of the expectation of the random

effects affects the estimation procedure of the model (Lee and Nelder, 1996) and, in

fact, the election of the constraints is crucial if the fixed effects in different models

are going to be comparable in general (Lee and Nelder, 2004).

Some HGLMs, for instance, models based on a conditional Poisson distribution,

display an easy decomposition of the model which allows the comparison of different

random effects models, but even the marginal model. For example, assume two

random effects models based on the Poisson distribution. On the one hand, the
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normal-Poisson HGLM (Poisson GLMM), which we will denote as NP, is defined as

Yi|vi ∼ Poisson(µni ) and vi ∼ N (0, λn)

ηni = log(µni ) = x′iβ
n + vi.

On the other hand, the gamma-Poisson HGLM, denoted as GP, is defined as

Yi|ui ∼ Poisson(µgi ) and ui ∼ Gamma(1, λg)

ηgi = log(µgi ) = x′iβ + log ui,

or equivalently,

µgi = exp(x′iβ)ui,

where Gamma(1, λg) denotes the gamma distribution with mean 1 and variance λg.

Note that the superscript n makes reference to the NP model and g to the GP.

Each conditional model leads to a specific marginal model. The GP model leads

to the marginal model

logE[Yi] = logE [E [Yi|ui]] = logE[µgi ] = x′iβ
g

while the NP leads to

E [log (µni )] = x′iβ
n.

These two models are different because the expectation does not commute with the

log function, and hence, fixed coefficients cannot be directly compared. Indeed,

the definition of the marginal mean depends on the scale on which the margins are

formed. However, even the NP model offers an easy decomposition to the marginal

mean as

E[Yi] = E
[
exp

(
x′iβ

n + vi
)]

= exp
(
x′iβ

n
)
E [v∗i ] ,

where v∗i follows the well known log-normal distribution. Indeed, the expectation of

the log-normal distribution has an analytic known expression

E [v∗i ] = exp

(
λn

2

)
.

Therefore, we have that

x′iβ
g = x′iβ

n +
λn

2
,

and hence, βg and βn are comparable.
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In the binomial-beta HGLM, however, the transformation of the linear predictor

to the marginal first order is not so direct. In fact, in BBhglm approach we have

that

ηbi = logit (E [Yi|ui]) = logit
(
pbi

)
= x′iβ

b + log
ui

1 + ui
,

where E [yi|ui] = pbi is the conditional mean and the superscript b makes reference

to the use of beta distributed random effects. If we try to calculate the marginal

expectation of the outcome variable in BBhglm approach, we have that

E[Yi] = E [E [Yi|ui]] = E
[
mpbi

]
= mE

[
pbi

]
,

where

pbi =
ui exp

(
x′iβ

b
)

1 + ui
[
exp

(
x′iβ

b
)
− 1
]

which does not follow any known distribution, but specially, it does not have an

analytic expectation. Therefore, we cannot compare BBreg and BBhglm regression

coefficients like to like. Nevertheless, from a practical point of view, researchers

working on PROs must be provided with a valid method of analysis for this kind of

data.

Therefore, in this chapter, we have carried out a simulation study where the ad-

equacy of BBreg and BBhglm approaches when analysing PRO data was examined.

Among different conclusions, the most relevant one was that, in some situations,

the conditional BBhglm approach is not able to identify covariates which had an

statistically significant effect on the marginal mean of the outcome. However, it

seems clear to think that if a covariate cannot affect individuals, it has no effect

on populations. In fact, the previous result does not go with marginal and condi-

tional models assumption, as if a variable has a statistically significant effect on the

marginal mean, the effect on the conditional mean must be statistically significant as

well (Lee and Nelder, 2004). Consequently, due to the fact that the main objective

of most of the PROs studies is to find out relationships that could exist between

the measured covariates and the response variables, we recommend the use of the

marginal approach as a unified technique for analysing PRO data.

In conclusion, our results showed that when the goal of the study is to detect

and interpret the effect of explanatory variables in the health-status of patients, the

method of analysis must be cautiously selected. In fact, when there is large vari-

ability in the data, we showed that the BBhglm approach does not offer appropriate
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results in terms of covariates statistical significance. Therefore, we recommend the

use of BBreg approach as a unified technique for analysing PRO data and, in order

to provide a useful tool to the researchers, it has been implemented by the authors

in the PROreg R-package available in CRAN (further discussion about the PROreg

R-package is compiled in Chapter 5).
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CHAPTER 3

LONGITUDINAL ANALYSIS: A

BETA-BINOMIAL MIXED-EFFECTS

MODEL APPROACH

“As far as the law of mathematics refer to reality, they are not

certain; and as far as they are certain they do not refer to

reality”

Albert Einstein, 1878− 1955
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3.1 Introduction

3.1.1 Introduction to longitudinal models

Longitudinal studies play a key role in many frameworks such as health, social and

behavioural sciences. They are indispensable to study the change in an outcome over

time. The measurement of study participants repeatedly through the time allows the

direct analysis of temporal changes within individuals and the factors that influence

the change. Due to the fact that the study of the temporal change is so essential to

almost every discipline, the number of longitudinal studies has increased in the past

30 to 40 years (Fitzmaurice et al., 2008).

A longitudinal study is defined as an investigation where participant outcomes

and possibly treatments or exposures are collected at multiple follow-up times. In-

deed, a longitudinal study generally contains multiple or repeated measurements

on each subject in the research. Consequently, the repeated measurements are

correlated within subjects and, thus, it requires special statistical techniques for

valid analysis and inference. There is a wide variety of statistical challenges when

analysing longitudinal data:

Heterogeneity: it is usual, specially in behavioural sciences, that there exist dif-

ferences between individuals. The overall mean response in a sample drawn

from a population does not provide any information about each individual de-

viation. Indeed, when the same subjects are repeatedly measured over time,

their responses are multivariate and have a complex random-error structure

that must be accommodated in the model. Moreover, each individual can be

expected to have each own trend line, which deviates systematically from the

overall mean trend line. Furthermore, in many studies personal features can

be unobservable, leading to unexplained heterogeneity in the population. Con-

sequently, the modelling of this unobserved heterogeneity is one of the main

challenges of longitudinal models. For example, the modelling of the unob-

served heterogeneity in terms of variance components (or random effects in

mixed-effects models) is one way to accommodate the correlation between the

repeated measurements over time and to better describe individual differences

in the statistical characterization of the observed data.

Time-dependent covariates: longitudinal studies allow repeated measurements not

only of the outcome variable, but also of the covariates. Consequently, time-

dependent covariates can be included in the model. The inclusion of covariates
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in the model that change over time can result in many complex analytic issues.

The goal is to estimate the dynamic relationship between the variables over

time, but notice that it is an individual within relationship, and may vary from

individual to individual. Consequently, while our main goal is to determine if

there exists a relationship between the variables in the whole population, one

must be able to model the dynamic relationship within individuals.

Missing data: longitudinal studies tend to present missing data, as not all the

subjects remain in the study until it finishes. Indeed, the basic problem is that

even in randomized and well-controlled clinical trials, subjects available at the

beginning of the study can be considerably different from subjects available at

the end.

Hierarchical structure: in addition to the correlation structure produced by the

repeated measurements of the same individual, the clustering of individuals

within some grouping units (schools, hospitals, clinics, etc.) produces an ad-

ditional correlation structure between the observations, that violates the inde-

pendence assumption of traditional fixed-effects models.

There are still more challenges when analysing longitudinal data, however as

it has been stated we could consider the cited as the most relevant. Moreover,

as the complexity of the model increases, challenges to deal with the correlation

structure of the defined model increase. The advantage of longitudinal models,

however, is that all the available information from each subject can be used in the

analysis, increasing both the statistical power and the ability to estimate subject-

specific effects. Furthermore, the use of the full information decreases the bias due

to arbitrary exclusion of subjects with incomplete response or the simple imputation

of values for replacing missing responses.

3.1.2 Methodologies for analysing longitudinal data

During the last years, several modelling approaches have been developed by many

authors in order to deal with the previous mentioned challenges associated with lon-

gitudinal models. In this section, we will enumerate the most widely used method-

ologies when analysing longitudinal data. We will also introduce them shortly, and

we will define the advantages and disadvantages of each one.

Reduction: the reduction approach, referred as derived variable by some authors

(Hedeker and Gibbons, 2006), is based on the reduction of the repeated mea-
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surements into a summary variable. Indeed, once reduction has been per-

formed, this approach is no longitudinal any more, since there is only one

observation per subject. The main problem of this approach is that the un-

certainty in the derived variable is proportional to the number of repeated

measurements for which it was computed. In unbalanced cases each sub-

ject has a different number of measurements and hence different uncertainties.

Consequently, the homoscedasticity assumption of the model is not ensured.

Moreover, the reduction of the repeated measures decreases the number of ob-

servations and hence, there is a considerably loss of statistical power. Finally,

the reduction of the outcome does not allow the inclusion of time-dependent

variables in the model, as the temporal aspect of the data is removed.

Analysis of variance: the analysis of variance (ANOVA) for repeated measure-

ments (Winer, 1971) is used to compare three or more group means where

the participants are the same in each group. The model assumes compound

symmetry which implies constant variances and covariances over time. This is

an assumption that hardly will be held in longitudinal data for two different

reasons. First, attrition, variances will increase over time because the number

of people that response reduces. Second, it looks reasonable to assume that co-

variances for proximal measurements will be larger than covariances for distal

measurements. The model allows a different trend line per subject, however,

the trends only differ in the intercept, which implies that all the subjects be-

have equally over time. It looks more reasonable that subjects differ not only

in the baseline, but also in the rate of change (slope) from the overall trend

line.

Multivariate analysis of variance: the multivariate analysis of variance (MANOVA)

was proposed for longitudinal data analysis by Bock (1985). The MANOVA

model is simply an ANOVA model with several dependent variables, i.e., while

the ANOVA model tests for differences in means between two or more groups,

the MANOVA model tests differences in two or more vectors of means. This

approach transforms the repeated measurements to orthogonal polynomial co-

efficients (e.g. constant, linear, quadratic growth rates), which are used as

multivariate responses in the MANOVA model. The main disadvantage of

this approach is that it does not deal with missing data, so all the subjects

must have the same number of repeated measurements, which is very unlikely

in practise.
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Mixed-effects models: mixed-effects regression models are quite widely used in dif-

ferent frameworks, specially for the analysis of longitudinal data (Laird and

Ware, 1982). For example, as it was introduced in Section 2.1.1 GLMMs are

a general methodology that include random effects in the linear predictor of a

GLM, which can easily accommodate the correlation structure of longitudinal

data. We will develop these models in more detail in Section 3.2. Mixed-

effects regression models include the term mixed-effects because they consists

of a fixed component (regression coefficients) and a random component (ran-

dom effects). Mixed-effects regression models are quite robust to missing data

and irregularly spaced measurements, furthermore, they can easily deal with

time-independent and time-dependent covariates.

Generalised estimating equations: The generalised estimating equations (GEEs)

(Zeger and Liang, 1982) are a general alternative to mixed-effects models,

which are computationally very convenient. GEE approach extends the clas-

sical GLMs (see Section 2.1.1) to the case of correlated data. They can be

used to analyse a wide variety of outcomes and do not require complex numer-

ical evaluation of the likelihood for nonlinear models. They model the overall

mean relationship of the variables and the within-subject dependency sepa-

rately. GEE models are also called marginal models, where the term marginal

makes reference to the assumption that the mean response only depends on

the covariates of interest and not on any random effects or previous responses.

Among the previously defined methodologies for analysing longitudinal data, the

most widely used and appropriate include the mixed-effects regression approaches

and GEE. The larger difference between these two approaches is that GEE models

are based on quasi-likelihood estimation, and so the full likelihood of the data is

not specified. Therefore, while GEE models are considered partial-likelihood meth-

ods, the mixed-effects models are considered full-likelihood methods as they use all

the available data from each subject. The advantage of statistical models based on

partial-likelihood is that they are computationally easier and generalise quite easily

to different distribution forms of the repeated outcome variables. However, they

are more restrictive in their assumption regarding missing data, limiting their ap-

plicability in some cases. Moreover, full-likelihood models provide subject-specific

effects which are quite useful when analysing individual-within variability and when

predicting future responses for a given subject or a group of subjects in hierarchical

structures.
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On the one hand, GEE approach calculates the marginal mean for each subject,

even if some of those means have limited information due to subject drop out. Then

standard errors are adjusted taking into account the correlation structure of the

repeated measures over time and/or subject clustering. On the other hand, mixed

effects regression approaches use all the available information to calculate subject-

specific trends that would have been observed if the subjects had stayed until the

end of the study. Hence, if future subject responses are related to previous mea-

surements, both approaches can conclude quite different estimated mean responses

at the end of the study. In fact, the main difference between both methodologies

appears when the missing data are dependent on the previous observed responses for

each subject. However, it is difficult to imagine that if the missing data for a given

subject had been observed, the response would not have been related to previous

measurements of the same subject. That is, GEE assume that the missing data are

missing at random and do not depend on the previous measurements.

Therefore, in this thesis we will consider a mixed-effects approach as the most

appropriate for the analysis of hierarchical or longitudinal PRO data. In fact, this

chapter is based on the development of a mixed-effects model based on the beta-

binomial distribution. To achieve that goal, in Section 3.2 we make a review of

the existing literature describing the most used mixed-effects regression approaches.

Then, in Section 3.3 we present the description of the model we propose, the de-

velopment of an estimation and inference methodology and the comparison of its

performance with similar approaches in the literature. In order to show the perfor-

mance of our proposal and compare it with available methodology in the literature,

a simulation study is carried out in Section 3.4. Finally, with the purpose of showing

the applicability of the developed methodology, we apply it in both COPD Study

and Paquid Research Programme described in Section 1.3.1 and Section 1.3.2 re-

spectively. We finish the chapter providing some conclusions in Section 3.6.

3.2 Mixed-effects models in the literature

During the last years, many authors have described in the literature different ap-

proaches to deal with mixed-effects regression models in a longitudinal data frame-

work: variance component models (Dempster et al., 1981), random-effects models

(Laird and Ware, 1982), empirical Bayes models (Hui and Berger, 1983), random

coefficient models (De Leeuw and Kreft, 1986), mixed models (Longford, 1987),

random regression models (Gibbons et al., 1988), two-stage models (Bock, 1989),
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multilevel models (Goldstein, 1995) and hierarchical linear models (Raubenbush

and Bryk, 2002). In fact, all the previous mentioned approaches have a common

characteristic, they accommodate the dependence of the repeated measurements

by the inclusion of random effects per subject. These random subject effects de-

scribe subject-specific trends over time and measure the correlation structure of the

data. In addition, they calculate the degree of subject variation that exists in the

population of subjects. Apart from that, as it has been mentioned in Section 3.1,

mixed-effects model are very useful for analysing longitudinal data, basically be-

cause they are very flexible with missing data, allowing the inclusion of subjects

with incomplete data in the model. Consequently, compared to procedures where

complete data is necessary, the use of all the available information increases the

statistical power of the model and decreases the bias estimation, as subjects with

complete data may not be a representative set of all the population. Additionally,

studies where the follow-up times are not uniform can be incorporated in the model,

as mixed-models assume the time as a continuous variable, and hence, subjects’

responses do not have to be measured at the same time points.

During the last years many regression models have been proposed for analysing

various types of data, where, in most cases, the underlying mean structure is still

the linear model defined as

h(µ) = Xβ,

where h(·) is defined as a monotonic link function, X is a full rank matrix composed

by the covariates and β is a fixed parameter vector of length p+ 1, being p typically

small.

We have mentioned that the use of mixed-effects models arises when the inde-

pendence assumption of the observed measurements fail. In the next section we will

describe in more detail the scenarios where the essential independence assumption

of the observations fail. For instance, assume that Yij is the random variable asso-

ciated with jth observation of the ith subject. We will consider that the number of

measurements change from subject to subject, so for each subject i, i = 1, . . . , n, we

denote the number of observations as ti. Consequently, we can determine each Yij

as

Yij = µ+ ui + eij , (3.1)

where µ is the fixed overall mean parameter, ui is the subject effect that determines

the mean for subject i, and eij is the residual effect that accounts for the error of

each j observation of the ith subject, i = 1, . . . , n, j = 1, . . . , ti.
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The random effects are usually assumed Gaussian with mean zero and known

variance structure, however, other types of distributions could be considered. For

instance, as it was deeply discussed in Section 2.2.2, Lee and Nelder (1996) developed

the HGLMs, where the random effects can follow any distribution conjugate to the

distribution of the conditioned dependent variable. Nevertheless, in this section

we will only focus on the usual mixed-effects models, where the random effects are

assumed normal with mean zero.

Hence, we assume that the subject specific random effects ui are iid ui ∼
N (0, σ2u), and that the residual effects eij are iid eij ∼ N (0, σ2), being indepen-

dent random effects. Additionally, we assume that observations from the same

subjects are correlated. Given the model in Equation (3.1), the covariance between

two different measurements of the same subject is determined by

Cov(Yij , Yik) = Cov(µ+ ui + eij , µ+ ui + eik)

= Cov(ui + eij , ui + eik)

= Cov(ui, ui) + Cov(ui, eik) + Cov(eij , ui) + Cov(eij , eik)

= Var(ui) = σ2u,

for i = 1, . . . , n and j, k = 1, . . . , ti, being k 6= j. Consequently, by the definition

in Equation (3.1), we have determined a correlation structure between different

observations for the same subject, which matches with the dependence assumption

of the data. Hence, the correlation between different observations of the same subject

is defined as,

Corr(Yij , Yik) =
Cov(Yij , Yik)√
Var(Yij)Var(Yik)

=
σ2u

σ2u + σ2
.

In summary, we have shown that the inclusion of subject-specific random effects

not only allows subjects to differ from the overall mean, but also accommodates the

dependence structure of different observations of the same individual.

It is straightforward to define the model in Equation (3.1) as

Y i = µ1ti + vi,

where Y i = (Yi1, . . . , Yiti)
′ is the vector of the measurements of individual i, 1ti is

the vector of 1s of length ti and vi are the random effects, which follow a multivariate
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normal distribution with mean 0 and variance-covariance matrix

D = σ2Iti + σ2uJ ti ,

where Iti is a ti × ti identity matrix and J ti is a ti × ti matrix of 1s. Different

variance-covariance matrices can be chosen depending on the dependence structure

of the data, such as uncorrelated subjects, uncorrelated between and within subjects,

uncorrelated between and autocorrelated within subjects, correlated between but not

within subjects, etc (McCulloch and Searle, 2001).

In the next section, we will discuss on when a covariate effect should be considered

as fixed or as random. Then, we will describe the most commonly used mixed-effects

model approaches: the linear mixed model (LMM), where the dependent variable

follows a normal distribution, and, the already mentioned GLMM for dependent

variables following any distribution from the exponential family.

3.2.1 Fixed or random effects?

When fitting a statistical model, assumptions must be considered in order to the

model be appropriate. When we are interested in applying a regression model to a

dataset, one of the most important decisions we have to make is if a covariate that

we want to introduce in the model is going to be considered as fixed or, conversely,

it is going to be assumed as a random sample of a random distribution. We have

already mentioned that in longitudinal studies, due to heterogeneity, i.e. the lack of

independence in the repeated measurements, a random effect is usually considered

for each subject. However, apart from the correlation between repeated responses of

the same subject, there could be other reasons why an additional covariate should

be assumed as random. As it was pointed out in the previous section, subjects could

be clustered in grouping units (schools, clinics, hospitals, etc.), and consequently,

the data could present a correlation structure due to hierarchies. We present two ex-

amples in order to understand when a subject clustering factor should be considered

as fixed or random.

Example 3.1: Weight loss by pills

Suppose we have a clinical trial in which five pills are administered to indi-

viduals trying to reduce their weight. Assume that Yij is the random variable

associated with the weight reduction for jth person receiving the pill i. We
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can consider that

E[Yij ] = µi = µ+ αi, (3.2)

where µ is a general mean and αi is the effect on the weight reduction due to

pill i, i = 1 . . . , 5.

In this modelling of the expected value of Yij , the µi’s (and αi’s) are fixed

effects because the five pills used in the clinical trial are the only pills being

studied. They are the only five being used, and in using them there is no

though for any other pill. This is the concept of fixed effects. We consider the

pills being used and no others, and so the effects are called fixed effects, and

the model, fixed effects model.

�

Example 3.2: Nutritional centres

Assume that we choose a pill, anyone, for losing weight from Example 3.1 and

develop a clinical trial where the pill is administered to patients from 7 random

nutritional centres in the Basque Country. The model for the random variable

Yij , which represents the weight loss for patient j at the ith nutritional centre,

would be

E[Yij ] = µ+ ui (3.3)

with i = 1, . . . , 7 for the 7 nutritional centres. Notice that it is reasonable to

think of those centres as a random sample of centres from some distribution

of nutritional centres, maybe all the centres in the Basque Country.

Notice that Equation (3.3) is essentially the same algebraically as Equation

(3.2), except for having ui in place of αi. However, the underlying model

assumptions are different. On the one hand, in Equation (3.2) the effect of pill

i in the loss weight, αi, is considered a fixed effect as it was already decided that

it was a pill of interest in the study. On the other hand, in Equation (3.3) each

ui is the effect of weight loss of patients being observed in nutritional centre

i, but i centre is not a pre-selected centre, it is just one centre from among

all the nutritional centres in the Basque Country that has been numbered in

the trial as centre i. Consequently, nutritional centres in the study have been

randomly selected with the object of treating them as a representation of all

the nutritional centres in the Basque Country. Hence, inference and results

from the study can be made about all the population. In fact, the main feature
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of random effects is that they can be used as the basis for making inferences

about populations from which they were selected. Therefore, ui is called a

random effect and the model in Equation (3.3) is considered a mixed-effects

model, as it combines fixed-effects, µ, and random-effects, ui. As result, the

model in Equation (3.3) allows the inference about the variance of the random

effects, which measures the variation among nutritional centres. Furthermore,

they allow the prediction of centres that are likely to have the best weight

reduction.

�

We have shown two examples where the decision of whether certain effects are

fixed or random was quite obvious, but there are some cases that it is not. The

context the data was collected and the approach that is given to a covariate in the

model are determinant so as to decide if the covariate should be treated as fixed or

random. The main question when deciding the behaviour of a factor in the model

is if it is reasonable to consider the levels of the factor as a random sample from a

population which have a distribution. If the answer is yes, then the effects should

be considered as random, otherwise, if it is not, then they are fixed.

3.2.2 Linear mixed-effects model

In this subsection we will study the LMMs whose definition allows the extension

to non-Gaussian models. Moreover, theoretical results are ’clean’ in the sense that

estimation through approximated likelihood matches with the estimation through

the marginal likelihood. Basically, the LMMs are the generalization of the LMs to

the inclusion of random effects. The standard LMM specifies that

Y = Xβ +Zu+ e, (3.4)

where Y is a n × 1 vector of the random dependent variable, X and Z are n × p
and n× q known design matrices, β is a p× 1 vector of the fixed effects, u is a q× 1

vector of the random effects and e corresponds to the n × 1 vector of error terms.

The model assumes that u and e are independent and normally distributed.

Without loss of generality we can assume that the expectation of the random

effects is 0 as, if it were otherwise, E[u] = τ , we could rewrite Equation (3.4) as

Y = Xβ+Zτ +Z(u−τ ). Defining X∗ = [X Z], β∗ = (β′, τ ′)′ and u∗ = (u−τ ),
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we obtain an equivalent formulation of the model as Y = X∗β∗ + Zu∗ + e where

E[u∗] = 0.

Although the elements of u are random variables, it is useful to define the model

conditional on their unobservable but realised values. This specification of the model

allows an immediate extension to non-normal models. We assume that conditional

on the unobservable random effects u, the dependent outcome variable is normally

distributed with expectation equal to

E[Y |u] = Xβ +Zu, (3.5)

where E[Y |u] means E[Y |U = u], being U the random variable and u the realiza-

tions of the random variable.

Let’s assume that the variance-covariance matrices of the random effects D and

error term Σ are parametrized by an unknown vector of variance components θ.

Hence, the conditional variance of the measured outcome variable is defined as

Var[Y |u] = Σ. Therefore, we assume that conditional on the unobservable ran-

dom effects u, the outcome variable is drawn from the following distribution

Y |u ∼ N (Xβ +Zu,Σ), (3.6)

where u ∼ N (0,D) and Σ is a matrix parametrized by the unknown parameter

vector θ. The advantage of this new definition in Equation (3.5) is that we do

not have to specify an error term, which does not make sense in non-linear models.

Following we present the parameter estimation process for LMMs which is very

useful for future developments of more complicated models.

First, from Equation (3.6) we conclude that the marginal expectation and vari-

ance of the outcome variable are defined as

E[Y ] = E
[
E[Y |u]

]
= E[Xβ +Zu] = Xβ

Var[Y ] = Var
[
E[Y |u]

]
+ E

[
Var[Y |u]

]
= Var[Xβ +Zu] + E[Σ]

= ZDZ ′ + Σ = V .

(3.7)

Notice, that the fixed effects enter only through the mean, while the random effects

design and variance-covariance matrices enter only through the marginal variance

of the outcome variable.
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Based on the first and second order moments defined in Equation (3.7), the

marginal log-likelihood of the model is defined as

logL(β,θ|y) = logf(y|β,θ)

= −1

2
log|V | − 1

2
(y −Xβ)′V −1(y −Xβ),

(3.8)

where θ enters in the equation through the marginal variance V and y = (y1, . . . , yn)′

is the observed vector for the outcome variables.

For fixed θ, if we derive the marginal log-likelihood with respect to β, we obtain

the score equations for the fixed effects of the model as

S(β) =
∂

∂β
logL(β,θ|y) = (y −Xβ)′V −1X. (3.9)

Matching Equation (3.9) equal to zero, we reach the well-known generalised or

weighted least-squares formula, from which we get the maximum likelihood esti-

mation of the fixed effects in the model,

(X ′V −1X)β = XV −1y. (3.10)

We obtain the standard errors of the estimates of the fixed effects by the negative

of the inverse of the Fisher information matrix, which in LMMs is defined as

I(β̂) = X ′V −1X.

Sometimes, specially when observations are grouped by a specific characteristic,

the interest of the analysis is not only to estimate the fixed coefficients, but also to

predict the realized values of the random effects. Note that assumptions concerning

random and fixed effects are completely different. While the fixed effects are con-

sidered constant values, the random effects are considered effects that come from a

larger population of effects. Consequently, the way of dealing with the two kind of

effects should not be the same. Hence, to emphasize this distinctions, we would say

that fixed effects are estimated, but we would use the prediction for the obtained

realized values of the random effects. The problem is that, in these situations, the

marginal log-likelihood function in Equation (3.8) does not offer any information

concerning the random effects.

The log-likelihood of all the parameters in the model is based on the joint density
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of the dependent outcome variable and random effects, i.e.

L(β,θ,u|y) = fy|u(y|u)fu(u),

where the first term is the conditional distribution of the outcome variable, which

from Equation (3.6) we know that follows a normal distribution, and the second term

corresponds to the distribution of the random effects, which by model assumption is

considered normal. Hence, we can express the joint log-likelihood of the parameters

as,

logL(β,θ,u|y) =− 1

2
log|Σ| − 1

2
(y −Xβ −Zu)′Σ−1(y −Xβ −Zu)

− 1

2
log|D| − 1

2
u′D−1u.

(3.11)

Again, for fixed θ, given the fixed effects parameters β, we take the derivative of

the log-likelihood with respect to the random effects and obtain the score equation

for u as

S(u) =
∂

∂u
logL(β,θ,u|y) = Z ′Σ−1(y −Xβ −Zu)−D−1u.

Setting it to zero, the prediction of the random effects is the solution of

(Z ′Σ−1Z +D−1)u = Z ′Σ−1(y −Xβ). (3.12)

Equation (3.12) offers the so-called best linear unbiased predictor (BLUP) of the

random effects, best in the sense of minimized mean square error of prediction

(Robinson, 1991).

Notice that the maximum likelihood estimates of the fixed effects in Equation

(3.10) and the BLUP of the random effects in Equation (3.12), are the joint max-

imiser of the joint log-likelihood in Equation (3.11) (Pawitan, 2001). This provides

a useful technique when dealing with non-normal models, where the computation of

the marginal likelihood is not so direct.

Combining both score equations for β and u from the joint log-likelihood in

Equation (3.11), we have that(
X ′Σ−1X X ′Σ−1Z

Z ′Σ−1X Z ′Σ−1Z +D−1

)(
β

u

)
=

(
X ′Σ−1y

Z ′Σ−1y

)
. (3.13)
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The advantage of this formulation is that we can estimate fixed effects and predict

random effects without having to compute the marginal variance V or its inverse.

The estimating procedure, which is called Jacobi or Gauss-Seidel method in lin-

ear algebra, also known as the iterative backfitting algorithm in statistics, is fully

explained in Breiman and Friedman (1985).

Until now, we have considered the variance parameters fixed in the estimation

of the fixed and random effects in the model. However, following, we develop the

estimation algorithm of the variance parameter θ. From the marginal log-likelihood

in Equation (3.8) we can derive the profile log-likelihood of the parameter vector θ

as

logL(θ|y,β) = −1

2
log|V | − 1

2
(y −Xβ̂)′V −1(y −Xβ̂) (3.14)

where β̂ is the maximum likelihood estimation of the fixed effects obtained from ei-

ther the marginal score equation in Equation (3.10) or the joint estimation procedure

in Equation (3.13). The disadvantage of this formulation of the profile log-likelihood

for θ is that we have to compute the marginal variance V , but specially its inverse.

However, an alternative formulation has been developed in the literature which is

based on the decomposition of all the terms involving the variance-covariance ma-

trix V . By Woodbury formula in Property D.2 and a partitioned matrix result in

Appendix D.1, the profile log-likelihood in Equation (3.14) is reduced to

logL(θ) =− 1

2
log|Σ| − 1

2
(y −Xβ̂ −Zû)′Σ−1(y −Xβ̂ −Zû)

− 1

2
log|D| − 1

2
û′D−1û− 1

2
log|Z ′Σ−1Z +D−1|

= logL(β̂,θ, û)− 1

2
log|Z ′Σ−1Z +D−1|,

(3.15)

where θ enters in the function through Σ,D, β̂ and û (see Pawitan (2001) for more

details). Again, β̂ and û are the maximum likelihood joint estimates in Equation

(3.13). It is important to note that, the profile log-likelihood of the variance param-

eters in Equation (3.15), also called modified profile log-likelihood, is equal to the

joint-likelihood function in Equation (3.11) plus the additional term

−1

2
log |Z ′Σ−1Z +D−1|,

where Z ′Σ−1Z +D−1 corresponds with the Fisher information matrix of the ran-

dom effects, i.e. the negative of the second derivative of the joint log-likelihood in
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Equation (3.11) with respect to u. A full inference procedure can be carried out for

the dispersion components θ through the modified profile log-likelihood. Further-

more, the modified profile log-likelihood is much easier to manipulate than likelihood

functions involving the term V or its inverse.

Generalisation and extension to several random effects is straightforward, as if

the model were defined as

E[Y |u1,u2] = Xβ +Z1u1 +Z2u2,

we could define the random effects as u = (u′1,u
′
2)
′ and the random effects design

matrix as Z = [Z1 Z2]. Hence, the previous model will reduce to

E[Y |u] = Xβ +Zu

and all the previous theory would be now applicable.

3.2.3 Generalised linear mixed-effects model

The use of a random structure is not only restricted to linear models, as we have

explained in the previous section. Sometimes, it is useful to incorporate random

effects into non-linear models to accommodate correlated data, or to consider levels

of a factor as selected from a population of levels (hierarchies) in order to make

inference to that population. GLMMs extend the previously developed LMMs to

non-linear models and the classical GLMs (see Section 2.1.1) to the inclusion of

random effects (McCulloch and Searle, 2001).

The GLMM model, like the LMM model, assumes that the outcome response

vector Y consists of conditionally independent elements, i.e. given a vector of ran-

dom effects u, the dependent outcomes Y1, . . . , Yn are conditionally independent,

each with a distribution density from the exponential family,

Yi|u ∼ fyi|u, indep. i = 1, . . . , n

fyi|u = exp{[yiψi −A(ψi)]/φ− c(yi, φ)}.
(3.16)

where yi is the observation that corresponds to the random variable Yi.

From the exponential family theory we know that the conditional expectation of

the outcomes, which we denote µi, is related to ψi via the identity µi = ∂A(ψi)/∂ψi.

Indeed, it is the transformation of this mean what we want to model as a linear
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function of both fixed and random effects,

E[Yi|u] = µi,

h(µi) = x′iβ + z′iu,

where h(·) is a known link function, x′i is the ith row of the full rank model matrix

X for the fixed effects, β are coefficients of the fixed effects, z′i is the ith row

of the model matrix Z for the random effects and u are the random effects. We

complete the model specification assigning a distribution to the random effects,

which is usually assumed normal with mean 0 and variance-covariance matrix D,

i.e. u ∼ N (0,D). Finally, we assume that the variance-covariance matrix of the

random effects D is specified by a vector of parameters λ.

Let be θ defined as a unknown vector of variance components of the model which

consists of the dispersion parameter of the exponential family distribution, φ, and

the parameters needed for specifying the variance-covariance matrix of the random

effect, λ.

In LMMs, we have shown in Equation (3.7) that the marginal expectation of

the response variable is modelled in the same way as in LMs, i.e. E[Y ] = Xβ.

Consequently, as it has been mentioned, in LMMs the estimation of the fixed ef-

fects by the marginal model matches with the conditional model estimation (joint

estimation). However, due to the fact that the model specification in GLMMs is

made conditional on the value of u, and not in a marginal way, some aspects must

be taken into account. In this case, the marginal expectation of Yi is defined as

E[Yi] = E[E[Yi|u]] = E[µi] = E[h−1(x′iβ + z′iu)],

which, in general, cannot be simplified due to the non-linear function h−1(·). More-

over, the marginal variance of Yi is computed as

Var[Yi] = Var
[
E[Yi|u]

]
+ E

[
Var[Yi|u]

]
= Var[µi] + E[φv(µi)]

= Var[h−1(x′iβ + z′iu)] + E[φv(h−1(x′iβ + z′iu))],

where Var[Yi|u] = φv(µi) is the variance of an exponential family distribution (see

Section 1.4.1). Again, the marginal variance cannot be simplified due to the non-

linear function h−1(·). Similar to LMMs, the introduction of random effects in the

linear predictor of a GLMM also defines a correlation structure between observations
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which have any random effect in common. Namely, for i, j = 1, . . . , n being i 6= j,we

assume that

Cov(Yi, Yj) = Cov(E[Yi|u],E[Yj |u]) + E[Cov(Yi, Yj |u)]

= Cov(µi, µj) + E[0]

= Cov(h−1(x′iβ + z′iu), h−1(x′jβ + z′ju)),

which cannot be implicitly solved due to non-linear terms in the formula.

Based on GLMMs specification in Equation (3.16), we can derive the marginal

likelihood of the model as

L(β,θ|y) =

∫
Rq

n∏
i=1

fyi|u(yi|u,θ)fu(u|θ)du (3.17)

where fyi|u(yi|u,θ) is the exponential family distribution of the conditional out-

comes, fu(u|θ) is the normal density function and yi is the observation of the out-

come variable Yi. Notice that the integration is over the q-dimensional distribution

of u.

While in LMMs the marginal likelihood in Equation (3.8) is relatively simple,

the general case is notoriously difficult. In general, there is no closed form solution

for integrating the random effects out. Hence, numerical methods, such as Gauss-

Hermite quadrature (McCulloch and Searle, 2001), must be applied. However, al-

though the numerical approximation of the marginal likelihood works relatively well

in some cases (e.g. independent random effects), for more complicated structures

(e.g. correlated random effects) the exact approach is no longer tractable.

The basis of the likelihood approximation in GLMMs is the extended or joint

likelihood approach (Pawitan, 2001), which it is defined as

logL(β,θ,u) = logfy|u(y|u,θ) + logfu(u|θ), (3.18)

where, as before, logfy|u(y|u,θ) corresponds to the exponential family distribution

of the conditional outcome vector and logfu(u|θ) is the normal density function

of the random effects. This approximated log-likelihood is generally much easier

to evaluate and optimize than the marginal likelihood presented in Equation (3.17).

For fixed θ, unlike in LMMs, in GLMMs estimations through the extended likelihood

are not exactly equal to those through the marginal likelihood. However, Lee and

Nelder (1996) showed that under fairly general conditions the two estimates are



3.2. Mixed-effects models in the literature 93

asymptotically close.

For a fixed value of θ, similar to GLMs, we can use a quadratic approximation

of the conditional log-density function logfy|u(y|u) to normalize the log-likelihood

form and derive an iterative weighted least squares algorithm for performing the

estimation (see Appendix B.2). Hence, given some initial values of the fixed and

random effects, β0 and u0, the conditional log-likelihood of the outcomes in Equation

(3.18) can be approximated by

−1

2
log|Σ| − 1

2
(yw −Xβ −Zu)′Σ−1 (yw −Xβ −Zu) ,

where yw is defined as the working vector with elements

ywi = x′iβ
0 + z′iu

0 +
∂h

∂µi
(yi − µ0i ) where µ0i = h−1(x′iβ

0 + z′iu
0), (3.19)

and Σ is a diagonal matrix of the variance of the working vector defined as

Σii =

(
∂h

∂µi

)2

φvi(µ
0
i ), (3.20)

where φvi(µ
0
i ) is the conditional variance of Yi given u, i = 1, . . . , n. Notice that

the derivatives ∂h/∂µi are also evaluated at the current values of β and u.

Hence, we can derive an approximation of the extended log-likelihood of GLMMs

in Equation (3.18) as

logL(β,θ,u) ≈− 1

2
log|Σ| − 1

2
(yw −Xβ −Zu)′Σ−1 (yw −Xβ −Zu)

− 1

2
log|D| − 1

2
u′D−1u,

(3.21)

which leads to the usual log-likelihood of a LMM shown in Equation (3.11). Con-

sequently, based on LMM’s joint estimation development, we can conclude the fol-

lowing estimation equations,(
X ′Σ−1X X ′Σ−1Z

Z ′Σ−1X Z ′Σ−1Z +D−1

)(
β

u

)
=

(
X ′Σ−1yw

Z ′Σ−1yw

)
,

where, in this case, yw is the working vector defined in Equation (3.19) through

the normalization of the conditional log-likelihood of the responses and Σ is the

variance matrix of the working vector defined in Equation (3.19), which needs to be
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recomputed in each iteration of the estimation procedure. Therefore, notice that the

computation of the estimates of the fixed and random effects in GLMMs requires

repeated applications of norm-based formulas.

We have shown that even in LMMs the computation of the profile log-likelihood

of the variance components θ cannot be done directly from the joint or extended

log-likelihood owing to the bias of the estimates of fixed and random effects. It is

shown in Equation (3.15) that the profile log-likelihood of the variance components

is equivalent to a modification of the joint log-likelihood. The approximation meth-

ods of variance components estimation in GLMMs can be performed in different

ways (Pawitan, 2001), however one of the most widely used technique is to estimate

θ by maximising a modified profile log-likelihood similarly as in the normal case.

Breslow and Clayton (1993) developed a restricted likelihood approach for perform-

ing estimation of variance components in GLMMs based on a heuristic justification

in terms of Laplace’s integral approximation. The method consists of a penalisation

of the extended likelihood defined in Equation (3.21) as

logL(θ) = logL(β̂,θ, û)− 1

2
log|Z ′Σ−1Z +D−1|,

where β̂ and û are the computed joint estimations for fixed θ. Notice that the

formula corresponds to the penalisation of the joint likelihood in LMMs. However

there are some differences. For instance, in the normal case, Σ is typically a simple

function of a variance component, but in GLMMs it is also a function of µ, and,

consequently, of β and u. Therefore, since µ is unknown it is convenient to compute

Σ using β̂ and û. It has been shown in many examples that the estimation procedure

provides solutions that are close to the exact marginal estimates (Pawitan, 2001).

3.3 Beta-binomial mixed-effects model

The objective of this section is to extend the BBreg approach presented in Chapter

2 allowing for the inclusion of random effects in the linear predictor. As it has

been stated though the thesis, the beta-binomial distribution does not belong to

the exponential family and, consequently, GLMM (McCulloch and Searle, 2001),

or even, HGLM (Lee and Nelder, 1996), theory cannot be directly applied in this

framework.

In the next sections, we will define a mixed-effects regression model based on

the beta-binomial distribution. Additionally, we will develop an estimation and
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inference procedure for all the parameters involved in the model. However, not all

the parameters in the model share the same characteristics, and hence, care must

be taken when estimating them, considering different approaches. Moreover, we will

provide a goodness-of-fit test based on the deviance. Finally, we will present some

approaches that fit similar models in the literature and we will compare them with

our proposal.

3.3.1 Model definition

Let Y = (Y1, . . . , Yn)′ be a set of random outcome variables of length n, which con-

ditioned on the random effects u, are assumed to be iid drawn from a beta-binomial

distribution. To complete the model specification, as in LMMs and GLMMs, we as-

sume that the random effects u follow a multivariate normal distribution with mean

0 and variance-covariance matrix D, which depends on a vector of parameters λ

and it is non-singular. Summarizing, we assume that we have

Yi|u ∼ BB(mi, pi, φ), i = 1, . . . , n, (3.22)

where u ∼ N (0,D). In the same way as in GLMMs, we define the parameter vector

θ = (φ,λ′)′ consisting of all the dispersion or variance components of the model, i.e.

the correlation or dispersion parameter of the conditional beta-binomial distribution

φ and the vector of all variance parameters of the random effects λ.

Consider that the response outcomes Y depend on a set of given covariates

X1, . . . , Xk. Hence, following BBreg approach, we connect the probability parameter

of the beta-binomial distribution with the observed covariates and random effects,

assumed fixed when conditioning, by means of a logistic link function, i.e.

ηi = logit(pi) = log

(
pi

1− pi

)
= x′iβ + z′iu, i = 1, . . . , n, (3.23)

where ηi is the linear predictor of the model, pi is the probability parameter of the

conditional beta-binomial distribution, β are the fixed effects, xi is the ith row of

the full rank model matrix X composed by the given covariates, u are the random

effects and zi is the ith row of the model matrix for the random effects. Notice that,

as in all mixed-effects models, the correlation structure of the observed data, such as

longitudinal repeated measures or hierarchies, is defined by the model matrix of the

random effects Z. We will denote the presented beta-binomial mixed-effects model

as BBmm.
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3.3.2 Estimation

Let assume that y = (y1, . . . , yn)′ is the vector of the n observations of the outcome

variables. The marginal likelihood in BBmm approach is defined as

L(β,θ|y) =

∫
Rq

n∏
i=1

fy|u(yi|β, φ,u)fu(u|λ)du (3.24)

where q is the number of levels or components of the random effects, fy|u(yi|β, φ,u)

is the beta-binomial density function defined in Equation (1.20) and fu(u|λ) is the

distribution of the random effects which is assumed normal. Similar to GLMMs,

the marginal likelihood cannot be evaluated in closed form, and moreover, due to

the complexity of the beta-binomial distribution, numerical computation is almost

intractable. Therefore, approximation procedures must be developed to perform the

inference in the model.

Equivalently, we can consider the marginal likelihood of the model in Equation

(3.24) in an exponential form as

L(β,θ|y) =

∫
Rq

exp

{
n∑
i=1

logfy|u(yi|β, φ,u) + logfu(u|λ)

}
du.

Thus, considering that the summation of twice differentiable regular functions is

a twice differentiable regular function, we can apply the Laplace’s method for the

integral approximation of the marginal likelihood of the model (see Appendix C for

further details). Consequently, ignoring multiplicative constant terms, we have that

logL(β,θ|y) ≈ l(β,θ|y, ũ) = h(β,θ|y, ũ)− 1

2
log|M | (3.25)

where,

h(β,θ|y,u) =

n∑
i=1

logfy|u(yi|β, φ,u) + logfu(u|λ)

=

n∑
i=1

[
yi−1∑
k=0

log(pi + kφ) +

mi−yi−1∑
k=0

log(1− pi + kφ)−
mi−1∑
k=0

log(1 + kφ)

]

− 1

2
log|D| − 1

2
u′D−1u

(3.26)

is the joint log-likelihood of the model, ũ is the solution of ∂h/∂u = 0 and M is
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the adjusted term defined as

M =
∂2h

∂u∂u′

∣∣∣
u=ũ

.

The resulting marginal likelihood approximation in Equation (3.25) is the first

order Laplace approximation, and it is equivalent to integrating the random effects

out (see Lee and Nelder (2001) for further details).

Joint estimation of fixed and random effect

For the estimation of the fixed effects, we assume that the dispersion parameter

vector θ is fixed and try to maximise the approximated log-likelihood of the model

defined in Equation (3.25). For fixed θ, we denote the approximated log-likelihood

as

l(β|y, ũ,θ) = A(β) + h(β|y, ũ,θ). (3.27)

Hence, the score equations of the fixed parameters of the model correspond to

S(β) =
∂

∂β
l(β|y, ũ,θ) =

A(β)

∂β
+
∂h(β|y, ũ,θ)

∂β
. (3.28)

In GLMMs, Breslow and Clayton (1993) showed that A(β) depends on β through

the variance of the working vector or weight matrices defined in Equation (3.20).

Assuming that this variance or weight matrix varies slowly as a function of β, they

proposed to ignore the term ∂A(β)/∂β in obtaining the marginal MLEs.

Given that the beta-binomial distribution does not belong to the exponential

family, the normalization of the density function through the working vector theory

cannot be applied directly. Hence, the previous statement is not directly extensible

in this case. However, in BBmm approach we have that the adjustment term is

defined as

A(β) = −1

2
log|M | = −1

2
log|Z ′WSZ −D−1| (3.29)

where S = diag(pi(1− pi)), W = diag(wi), wi = −vipi(1− pi) + ξi(1− 2pi),
ξi =

∑yi−1
k=0

1

pi + kφ
−
∑mi−yi−1

k=0

1

1− pi + kφ

vi =
∑yi−1

k=0

1

(pi + kφ)2
+
∑mi−yi−1

k=0

1

(1− pi + kφ)2

(3.30)

and pi = 1/[1 + exp(−x′iβ − z′iu)] for i = 1, . . . , n, being all the previous formulas
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evaluated at u = ũ (see Appendix D.2, Equation (D.11) for further details). There-

fore, similar to GLMMs, we have shown in Equation (3.29) that in BBmm approach

the adjustment term, A(·), only depends on β through the weight matrices W and

S.

In order to show that the weight matrices vary slowly as a function of the fixed

effects, we randomly fix some values of a covariate X, dispersion parameter vector

θ and random effects u, and compare the joint-likelihood in Equation (3.26), the

adjustment term in Equation (3.29) and the sum, or equivalently, the approximation

of the log-likelihood of the model in Equation (3.27), as functions of β. Figure 3.1

shows the distribution of each mentioned function and the value where they reach

the maximum. It can be appreciated that the low scale of the adjustment term

does not alter the summation and that we get identical distributions for the joint

likelihood and the approximated likelihood. Therefore, as it is shown in the left-hand

side figure, both functions get the maximum in the same point, meaning that the

effect of the adjustment term is redundant, and that the effects of the fixed effects

in the weight matrices is insignificant.
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Figure 3.1: Distribution of the approximated marginal likelihood, joint log-likelihood
and the penalisation term. The value where each function gets the maximum is also
displayed.

Consequently, we can assume that the adjustment term in Equation (3.29) is flat

with respect to β and, following Breslow and Clayton (1993) argument, ignore it in
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the maximisation process of the fixed effects in the model.

We have shown that the adjusted term in the approximated log-likelihood in

Equation (3.25) does not carry (almost) any information about the fixed effects,

and hence, that all the information regarding β is collected by the joint likelihood

in Equation (3.26). The adjusted term in the approximated log-likelihood does not

depend on β, and hence, the random effects are canonical for the fixed effects. Lee

et al. (2006) proved that if the random effects in the model are canonical for the fixed

effects, then the MLE of the fixed effects through the marginal likelihood coincides

with the MLE from the joint maximiser of the joint log-likelihood. Therefore, based

on the previous statement, we can derive the MLE of the fixed effects by the joint

maximisation of the log-likelihood presented in Equation (3.26).

Differentiation of the joint log-likelihood in Equation (3.26) with respect to β

and u leads to the next score equations for the mean parameters,
S(β) =

∂h1
∂p

∂p

∂β
= ξ′SX

S(u) =
∂h1
∂p

∂p

∂u
+
∂h2
∂u

= ξ′SZ − u′D−1

where ξ = (ξ1, . . . , ξn)’ and ξi and S have been defined in Equation (3.30), and

h1 and h2 correspond to the log-density function of the beta-binomial and normal

distributions respectively (see Appendix D.2 for further details).

Different numerical algorithms may be used to solve the previous equations it-

eratively, such as the Newton-Raphson procedure. However, similarly to the cross-

sectional model, we derive a estimation algorithm based on the delta method for

several reasons. As it was explained in Section 2.2.1, due to the complexity of the

beta-binomial density function and the fact that it does not belong to the exponen-

tial family, estimation process based on the Newton-Raphson algorithm could be

hard to obtain, and even sometimes inappropriate (see Section 2.2.1). For instance,

the second derivatives of the joint log-likelihood with respect to the fixed and ran-

dom effects are quite complicated and the application of the expectation operator

to conclude to the Fisher scoring algorithm intractable.

First, we assume that u is fixed and try to get the estimation of β for those

fixed realizations of the random effects. Following the delta algorithm described

in Equation (2.8), we have that the approximation of the matrix of the second
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derivatives corresponds to

∂2h

∂β∂β′
≈ ∂p

∂β

′ ∂2h

∂p∂p′
∂p

∂β
.

Consequently, we have that

∂2h

∂β∂β′
≈ −X ′SV SX,

where V = diag(v1, . . . , vn) and vi = −∂ξi/∂pi has been defined in Equation (3.30)

for i = 1, . . . , n (see Appendix D.2, Equation (D.6) and Equation (D.8) for further

details).

At this point, we can apply the Fisher scoring algorithm where the negative of the

second derivatives is replaced by its expectation in a Newton-Raphson procedure.

However, as it was explained in the cross-sectional beta-binomial regression model in

Section 2.2.1, the expectation of V is intractable, and therefore,the observed Fisher

information must be used in the algorithm instead. This adjustment will usually

increase the rate of convergence, though the algorithm may be less stable if the

starting points are far from the maximum (Jørgensen, 1984). Therefore, we have

that the estimation equations for the fixed effects are defined as

β̂
(r+1)

= β̂
(r) − (−X ′SV SX)−1X ′Sξ.

where S,V and ξ are evaluated at the current r value of β. Hence, after some easy

operations we have that

β̂
(r+1)

= (X ′SV SX)−1X ′SV Sνβ, (3.31)

where νβ = Xβ(r) + (SV )−1ξ being V and ξ evaluated at β̂
(r)

.

Once fixed the estimated β̂, the same procedure can be developed to get the

estimation equations for the random effects. Given that the development of the

estimation procedure for the random effects is almost equal to the one performed for

the fixed effects, we will only show the final estimating equation which corresponds

to

û(r+1) = (Z ′SV SZ +D−1)−1Z ′SV Sνu, (3.32)

where νu = Zu(r) + (ZV )−1ξ being ξ and V evaluated at û(r). More details about

the derivatives of the approximated log-likelihood can be found in Appendix D.2.
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Estimation of variance components

For the estimation of the dispersion or variance component vector θ, the (marginal)

maximum log-likelihood estimator might be substantially biased due to the esti-

mates of β (Lee and Nelder, 2001). Many authors have defined different likelihood

adjustments to perform inferences in the variance components in several situations

in the literature. For instance, Patterson and Thompson (1971) developed a re-

stricted or residual maximum likelihood (REML) criteria in LMMs and Breslow

and Clayton (1993) extended the approach to GLMMs. However, Lee and Nelder

(1996) developed a more general approach based on the so called adjusted profile

h-likelihood, which they proved that it is equivalent to the previously defined like-

lihood adjustments in each situation. The adjusted profile h-likelihood is defined

as

hp = hA

∣∣∣
β=β̂,u=û

,

where hA is an adjusted h-likelihood defined as

hA = h+
1

2
log{det(2πH−1)}, (3.33)

where h is the joint log-likelihood defined in Equation (3.26) and H is the corre-

sponding Hessian matrix of the model. The performed penalisation on the joint

log-likelihood is equivalent to integrating the random effects out, as in the first or-

der Laplace approximation in Equation (3.25), and then, eliminating nuisance fixed

effects β by conditioning on the maximum likelihood estimates β̂ (Lee and Nelder,

2001). Therefore, maximum adjusted profile h-likelihood estimators can be derived

for variance parameters by solving iteratively

∂hA
∂θi

∣∣∣
β=β̂,u=û

= 0,

where β̂ and û are evaluated in each iteration.

As shown in Chapter 2, the delta algorithm offers an approximation procedure

of the second derivatives of the log-likelihood, which defines the Hessian matrix of

the model as

H ≈

(
X ′SV SX X ′SV SZ

Z ′SV SX Z ′SV SZ +D−1

)
, (3.34)

where all the terms involving the formula have been previously defined (see Appendix

D.2, Equations (D.5), (D.6), (D.8) and (D.10) for further details). It is worth
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noticing that D is the only term in the Hessian matrix that depends on λ, the vector

of the variance components of the random effects. Besides, unlike the usual GLMM

or even HGLM where the dispersion parameter of the conditional distribution can be

explicitly taken out from the Hessian matrix, in the BBmm the matrix V depends

implicitly on the dispersion parameter φ. Consequently, the computation of the score

equation for the dispersion parameter of the conditional beta-binomial distribution

is computationally more expensive than in models where the conditional distribution

belongs to the exponential family.

Hence, the score equations for the variance parameters of the BBmm approach

are defined as

∂hp
∂θi

=
∂h(β,θ,u)

∂θi

∣∣∣
β=β̂,u=û

+
1

2

∂log
(
det(H−1)

)
∂θi

, (3.35)

for i = 1, . . . , k + 1, where k is the number of parameters needed for specifying D,

i.e. the length of the vector λ. Notice that θi refers to either the beta-binomial

dispersion parameter φ or a parameter of the vector of variance components λ.

Property D.4 (see Appendix D.1) offers an easy decomposition of the second

term in Equation (3.35) as,

∂log
(
det(H−1)

)
∂θi

= −∂log (det(H))

∂θi
= −trace

[
H−1

∂H

∂θi

]
,

which simplifies the score equation of the variance components. In addition the score

equations can be even more simplified depending on the variance parameter we are

trying to estimate.

On the one hand, as it has been mentioned, due to the fact that the dispersion

parameter φ cannot be taken out from the Hessian matrix, the score equation for

φ is more complicated than in usual approaches. In BBmm approach, the score

equation for the dispersion parameter φ of the conditioned beta-binomial distribution

is defined as

∂hp
∂φ

=

n∑
i=0

[
yi−1∑
k=0

k

pi + kφ
+

mi−yi−1∑
k=0

k

1− pi + kφ
−
mi−1∑
k=0

k

1 + kφ

]

+ trace

[
H−1

(
X ′SJSX X ′SJSZ

Z ′SJSX Z ′SJSZ

)]
,

(3.36)
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where J = diag(ji), and

ji =
1

2

∂vi
∂φ

=

yi−1∑
k=0

k

(pi + kφ)3
+

mi−yi−1∑
k=0

k

(1− pi + kφ)3

for i = 1, . . . , n. Numerical algorithms, such as Newton-Raphson can be applied to

get the maximum adjusted profile h-likelihood of the dispersion parameter of the

conditioned beta-binomial distribution.

On the other hand, by Property D.6, the score equation for the variance param-

eters of the random effects is defined as

S(θi) =− 1

2
trace

[
D−1

∂D

∂θi

]
+

1

2
u′D−1

∂D

∂θi
D−1u

+
1

2
trace

[
PD−1

∂D

∂θi
D−1

] (3.37)

where P is the right bottom block of H−1 defined as

P =
[
Z ′SV SZ +D−1 −Z ′SV SX

(
X ′SV SX

)−1
X ′SV SZ

]−1
. (3.38)

Example 3.3: One independent random component

The easiest situation is the assumption of an unique independent random com-

ponent. Suppose that the random effects u = (u1, . . . , uq)
′ are iid with a nor-

mal distribution of mean 0 and variance σ2u. Namely, the variance-covariance

matrix of the random effects is defined as

D = σ2uIq.

Thus, after some calculus, following Equation (3.37) we have that

S(σu) = −σ−1u trace [Iq] + σ−3u u
′Iqu+ σ−3u trace [P ] ,

and hence, the maximum adjusted profile estimator of σu is achieved by the

iterative use of

σ̂u
(r+1)2 =

1

q
û′û+

1

q
trace [P ] ,

where P has been defined in Equation (3.38) and the matrices involving the

formula are evaluated at σ̂u
(r), the estimate of σu in the rth iteration.
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�

Example 3.4: Two independent random components

Another possible scenario is the assumption of two independent random com-

ponents. Assume that we have u1 = (u11, . . . , u1q1)′ and u2 = (u21, . . . , u2q2)′

where they are independent with variance-covariance matricesD1 = σ21Iq1 and

D2 = σ22Iq2 respectively. Similarly, without loss of generalisation, we could

assume that the model consists of a unique random component u = (u′1,u
′
2)
′

where the variance-covariance matrix is defined as

D =

(
D1 0

0 D2

)
=

(
σ21Iq1 0

0 σ22Iq2

)
.

Following Equation (3.37), we have that the score equations for each dispersion

parameter σ1 and σ2 are defined as

S(σ1) = −σ−11 trace

(
Iq1 0

0 0

)
+ σ−31 u′

(
Iq1 0

0 0

)
u+ σ−31 trace

[
P

(
Iq1 0

0 0

)]

= − q1
σ1

+
1

σ31
u′1u1 +

1

σ31
trace(1:q1) [P ]

and

S(σ2) = −σ−12 trace

(
0 0

0 Iq2

)
+ σ−32 u′

(
0 0

0 Iq2

)
u+ σ−32 trace

[
P

(
0 0

0 Iq2

)]

= − q2
σ2

+
1

σ32
u′2u2 +

1

σ32
trace(q1+1:q2) [P ] ,

where trace(a:b) corresponds to the trace of the matrix only considering the

diagonal elements that are between the ath and bth position, i.e.

trace(a:b)[P ] =

b∑
i=a

P ii.

Notice that as the variance parameters are independent the score equations
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correspond to the first example where only a random component was assumed.

Estimation of σ1 and σ2 is performed by the iterative use of

σ̂1
(r+1)2 =

1

q1
û1
′û1 +

1

q1
trace(1:q1) [P ] ,

σ̂2
(r+1)2 =

1

q2
û2
′û2 +

1

q2
trace((q1+1):(q1+q2)) [P ] ,

where matrices involving the formulae are evaluated at σ̂i
(r), the estimate of

σi in the rth iteration, i = 1, 2.

Following Example 3.4, it is straightforward to generalise the estimating equa-

tions for any number of independent random components in the model.

�

Example 3.5: Two correlated random components

It is common in some studies the assumption that two random effects are

correlated with each other (Hedeker and Gibbons, 2006). For instance, assume

that we have a study where n individuals are measured at ti scenarios, i =

1, . . . , n, and that we construct the following linear predictor of the model,

ηij = x′ijβ + z′1iju1i + z′2iju2i,

for i = 1, . . . , n and j = 1, . . . , ti or in matrix notation,

η = Xβ +Z1u1 +Z2u2,

where u1 = (u11, . . . , u1n)′ and u2 = (u21, . . . , u2n)′ are two individual level

random effects. Equivalently, we can rewrite the model for a unique random

component as,

η = Xβ +Zu

where Z = [Z1 Z2] and u = (u′1,u
′
2)
′.

As well as in the previous examples, we assume that u1 and u2 are normally

distributed random effects with mean 0 and variance-covariance matrix D1 =

σ21In and D2 = σ22In respectively. However, in this example we assume that

the first random component is correlated with the second random component
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for each individual. Namely, we assume that the variance-covariance matrix

of the unique random component u is defined as

D =

(
σ21In ρIn

ρIn σ22In

)
,

where ρ is the covariance term between the two random effects for the same

individual.

We know by Property D.6 in Appendix D.1 that the inverse of D is defined as

D−1 =

( (
σ21 − ρ2σ

−2
2

)−1
In −

(
σ21 − ρ2σ

−2
2

)−1
ρσ−22 In

−
(
σ22 − ρ2σ

−2
1

)−1
ρσ−21 In

(
σ22 − ρ2σ

−2
1

)−1
In

)
,

which is much more complicated than in the previous examples.

For instance, in order to evidence the complexity of the estimation of the

dispersion parameters when correlation is included, we are going to show the

score equation for σ1. Before applying Equation (3.37) some calculus must be

done, such as

D−1
∂D

∂σ1
= D−1

(
2σ1In 0

0 0

)
= 2σ1

(
(σ21 − ρ2σ

−2
2 )−1In 0

(σ22 − ρ2σ
−2
1 )−1ρσ−21 In 0

)
,

and,

D−1
∂D

∂σ1
D−1 = 2σ1

(
(σ21 − ρ2σ

−2
2 )−1In 0

(σ−22 − ρ2σ
−2
1 )−1ρσ−21 In 0

)
D−1

=
2σ1

σ21 − ρ2σ
−2
2

×

(
(σ1 − ρ2σ−22 )−1In −(σ21 − ρ2σ

−2
2 )−1ρσ−22 In

−(σ−22 − ρ2σ
−2
1 )−1ρσ−21 In (σ−22 − ρ2σ

−2
1 )−1ρ2σ−21 σ−22 In

)
.

Therefore, we obtain that the score equation for the variance parameter of the

first random component u1 is defined as

S(σ1) = − nσ1

σ21 − ρ2σ
−2
2

+
σ1

σ21 − ρ2σ
−2
2

u′D̆1u+
σ1

σ21 − ρ2σ
−2
2

trace
[
PD̆1

]
,
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where

D̆1 =

(
(σ1 − ρ2σ−22 )−1In −(σ21 − ρ2σ

−2
2 )−1ρσ−22 In

−(σ−22 − ρ2σ
−2
1 )−1ρσ−21 In (σ−22 − ρ2σ

−2
1 )−1ρ2σ−21 σ−22 In

)
.

It can be appreciated the complexity of the solution of the equation due to

all terms involving σ1. The score equations for the rest of the variance pa-

rameters σ2 and ρ are quite similar to the presented equation. Therefore,

numerical algorithms, such as Newton-Raphson, should be used to solve the

score equations of the variance parameters of the random effects.

�

Estimation algorithm

The estimation algorithm of the BBmm approach can be formulated in the following

way:

Step 1. Give initial values for β̂
(0)

, û(0) and θ̂
(0)

= (φ(0),λ(0)).

Step 2. Set r1, r2 ←− 0.

Step 3. Fix θ̂
(r2)

:

Step 3.1. fix û(r1) and iterate Equation (3.31) until convergence of

β̂
(r1+1)

,

Step 3.2. fix β̂
(r1+1)

and iterate Equation (3.32) until convergence of

û(r1+1),

Step 3.3. set r1 ←− r1 + 1,

Step 3.4. iterate between Step (3.1.), Step (3.2.) and Step (3.3.)

until convergence.

Step 4. Fix β̂
(r1)

and û(r1):

Step 4.1. fix λ(r2) and estimate φ(r2+1) iterating Equation (3.36),

Step 4.2. fix φ(r2+1) and estimate λ(r2+1) iterating Equation (3.37),

Step 5. r2 ←− r2 + 1.

Step 6. Iterate between Step 3., Step 4. and Step 5. until convergence.
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3.3.3 Inference

In order to perform inference of the fixed effects, we must provide a procedure to

estimate the variance of the estimation of β. The following property proved by Lee

and Nelder (1996) will allow us to estimate Var[β̂] in a simple and closed form.

Property 3.1. Let

V =

(
V 11 V 12

V 21 V 22

)
= n

(
Var[β̂] Cov[β̂, û− u]

Cov[û− u, β̂] Var[û− u]

)
and M =

1

n

(
B C

C ′ D

)
,

where B,C and D are matrices such that

Bij = − ∂2h

∂βi∂βj

∣∣∣
β=β̂,u=û

, Cij = − ∂2h

∂βi∂uj

∣∣∣
β=β̂,u=û

and Dij = − ∂2h

∂ui∂uj

∣∣∣
β=β̂,u=û

.

Then, if E[M ] is non-singular, under appropriate regularly conditions, M−1 con-

verges to V as n→∞.

In addition, this holds when entries of M are replaced by corresponding expec-

tations since B, C and D are sums of matrices. Therefore, the variance-covariance

matrix of the estimates in BBmm approach is given by the inverse of the Hessian

matrix H defined in Equation (3.34). Nevertheless, Lee and Nelder (1996) proved

that when the realized values of the random effects are known (estimated) the esti-

mation of Var[β̂] corresponds to the inverse of the first block of H. Therefore, in

BBmm approach we have that

Var[β̂] = (X ′SV SX)−1. (3.39)

Hence, the estimation of the variance of the MLE of the fixed effects takes into

account the information loss caused by estimating the random effects.

Danaher (1987) showed that the beta-binomial distribution satisfies the regular-

ity conditions in Definition 1.1 in Chapter 1. Hence, we have that the MLE of the

regression parameters in BBmm approach follows a normal distribution. Therefore,

the relationship in Equation (3.39) allows us performing statistical test on the esti-

mates of β = (β1, . . . , βp+1), such as the Wald’s test (Pawitan, 2001). The Wald’s

test is used to test H0 : βi = β0,

H1 : βi 6= β0
, i = 1, . . . , p+ 1
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assuming that under H0 the Wald statistic

z =
β̂i − β0√
Var[β̂i]

follows a normal distribution with mean 0 and variance 1.

Deviance

When dealing with random effects regression models, Lee and Nelder (1996) pro-

posed the use of three different deviance functions depending on the model compo-

nent we want to test. First, they proposed the deviance based on the joint likeli-

hood in Equation (3.26), i.e. −2h, for testing random effects. Second, the deviance

consisting of the marginal likelihood, −2 logL, for testing the fixed effects, and, fi-

nally, the deviance based on the marginal likelihood conditional on the fixed effects,

−2logfθ(y|β̂) for testing the variance components where fθ(y|β̂) is the marginal

density function of the model. However, in models where the marginal likelihood

is hard to obtain, for instance the BBmm, they proposed the use of approximation

likelihoods instead. Consequently, for testing fixed effects Laplace approximation

of the marginal likelihood defined Equation (3.25) can be used, whereas for testing

the variance components the adjusted profile likelihood defined in Equation (3.33)

should be used instead.

Nevertheless, the main utility of the deviance function lies in the goodness-of-fit

criterion. The same authors defined a scaled deviance as

D(y, µ̂) = −2 [l(µ̂, φ|y,u)− l(y, φ|y,u)] (3.40)

where l(µ̂, φ|y,u) = logf(y|u, β̂) and µ = E[y|u], for testing the goodness-of-fit of

the model. In addition, they proposed the following formula to estimate the degrees

of freedom of the model

d.f. = n− trace
(
H−1H∗

)
,

where in BBmm approach H∗ is defined as

H∗ =

(
X ′SV SX X ′SV SZ

Z ′SV SX Z ′SV SZ

)
.
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They conclude that if the computed scaled deviance is much larger than the

estimated degrees of freedom, we may suspect the absence of some necessary fixed

or random effects in the linear predictor of the model. Notice that the scaled deviance

is based on the conditioned density function of the model, so it cannot be used for

testing dispersion parameters (Lee and Nelder, 1996).

3.3.4 Latent variable interpretation

In linear regression models, either fixed or mixed effects models, it is straightforward

to determine with the variance-covariance structure of the residuals. However, notice

that in non-linear regression models, the specification of the linear predictor does

not allow the inclusion of any error term. In this context, the latent variable theory

results of main interest as it allows estimating the variability that exits between the

errors of underlying latent variables associated with each observation.

For instance, assume that there is an unobservable continuous random variable

Y ∗i defined in the real line R, such that the binary variable Yi takes the value 1 if and

only if Y ∗i exceeds a certain threshold γ. We will denote Y ∗i as the latent variable.

Therefore, we have the following relationship,

πi = Pr(Yi = 1) = Pr(Y ∗i > γ).

Without loss of generality, as the location and scale of Y ∗i are arbitrary, we take

the threshold to be zero and standardize the latent variable Y ∗i to have standard

deviation equal to one.

Suppose now that the outcome depends on some given covariates X1, . . . , Xp. In

order to model the dependence of the correlated data, we define the following linear

model for the latent variable,

Y ∗i = x′iβ + εi,

where εi is the error term, which it is assumed to have a distribution with cumulative

density function F (εi).

Under this model, the probability of observing a positive outcome is given by

πi = Pr(Y ∗i > 0) = Pr(εi > −ηi) = 1− F (−ηi),

where ηi = x′iβ is the linear predictor. If the distribution of the error term εi is
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symmetric about zero, we have that F (x) = 1− F (−x), and consequently

πi = F (ηi),

which defines a GLM for binary responses with a link function equal to F−1(·).

Depending on the features of the data to be analyzed there is a wide variety of

link functions available in the literature. In particular, when dealing with binary or

binomial data it is common to link the expectation of the dependent variable with

the given covariates by means of a logit function as it corresponds to the canonical

link function (see Section 2.1.1 for more details). The logit link function is defined

as

ηi = log
πi

1− πi
,

where the cumulative density function of the logistic distribution is defined as

πi = F (ηi) =
eηi

1 + eηi
,

being −∞ < ηi <∞. Therefore, we can derive the standard density function as,

f(x) =
∂F (x)

∂x
=

ex

(1 + ex)2
,

which maintains the following symmetric property

f(−x) =
e−x

(1 + e−x)2
=

1

ex(1 + e−x)2
=

1

(1 + ex)(1 + e−x)

=
1

e−x(1 + ex)2
=

ex

(1 + ex)2
= f(x).

Moreover, the first and second order moment of the distributions are defined as

E[x] =

∫ ∞
−∞

xf(x)dx =

∫ ∞
−∞

xex

(1 + ex)2
=

xex

1 + ex
− log(1 + ex)

]∞
−∞

= 0,

Var[x] =

∫ ∞
−∞

x2f(x)dx =

∫ ∞
−∞

x2ex

(1 + ex)2
=
π2

3
.

Consequently, the standard logistic distribution is symmetric, has mean zero and

variance π2/3. The shape is very close to the normal distribution but it has heavier

tails as it can be appreciated in Figure 3.2 where both distributions shapes are

displayed.
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Figure 3.2: Distribution of the standard logistic distribution together with the nor-
mal distribution of mean 0 and variance π2/3.

Therefore, the coefficients in a regression model where the logit link function has

been applied can be interpreted not only in terms of log-odds, but also as effects of

the covariates on a latent variable that follows a LM with logistic residuals. One of

the main contributions of this new specification of a regression model based on the

logit link function is that we can conclude with correlations between latent variables

associated with observations.

For instance, assume that we have a longitudinal study where n individuals

are measured in ti time points, i = 1, . . . , n. Moreover, assume that the BBmm

approach, which is based on a logit link function as shown in Equation (3.23), is

used for the modelling the data. Assume that Y ∗ij is the latent variable associated

with the observation of the ith individual on the jth observations, i = 1, . . . , n and

j = 1, . . . , ti. As explained before we can link the latent variable with the linear

predictor concluding that

Y ∗ij = x′ijβ + ui + εij ,

where ui ∼ N (0, σ2u) are independent random effects and εij are independent error

terms that follow a logistic distribution, being ui and εij independent i = 1, . . . , n and

j = 1, . . . , ti. Therefore, the expectation, the variance and the covariance between
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two latent variables of the same individual in BBmm approach are defined as,

E[Y ∗ij ] = E[x′ijβ + ui + εij ] = x′ijβ

Var[Y ∗ij ] = Var[x′ijβ + ui + εij ] = Var[ui] + Var[εij ] = σ2u +
π2

3

Cov[Y ∗ij , Y
∗
ik] = Cov[x′ijβ + ui + εij ,x

′
ikβ + ui + εik] = Cov[ui + εij , ui + εik]

= Var[ui] + Cov[εij , εik] =

σ2u if j 6= k

σ2u + π2/3 if j = k

where in a matrix notation corresponds to

E[Y ∗i ] = E[x′iβ + 1tiui + εi] = x′iβ

Var[Y ∗i ] = Var[x′iβ + 1tiui + εi] = σ2uJ ti +
π2

3
Iti

where Y ∗i = (Y ∗i1, . . . , Y
∗
iti

)′, 1ti is a ti length vector of 1s, εi = (εi1, . . . , εiti)
′, Iti is the

ti×ti identity matrix and J ti is a ti×ti matrix of 1s. Consequently, the inclusion of a

random intercept per individual defines a specific correlation structure between the

latent variables associated with the observations of the same individual. Different

linear predictors, i.e. different random effect structures, lead to different correlation

structures. Specially, it is worth noticing that in longitudinal models where random

slopes are included, correlation between different latent variables is not fixed, but

instead depends on the slope variable, which it is usually defined as the time variable.

Therefore, the introduction of random effects that interact with the time variable

defines a correlation structure that changes over time, which measures the dynamic

relationship between the covariates and the outcome variables.

3.3.5 Similar approaches in the literature

It has been mentioned before that PROs have some special features, such as cor-

relation within patient responses and overdispersion, which make the fit through

exponential family distributions inappropriate (Arostegui et al., 2007). We have

defined in Section 3.2 the most widely used mixed-effects models when dealing with

longitudinal data, however, these regression approaches strict the model assumption

to exponential family distributions and Gaussian random effects. Due to the fact

that in cross-sectional data the analysis of PROs through regression models based
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on exponential family distributions is not appropriate enough, the extension to the

inclusion of Gaussian random effects for longitudinal studies will fail in the same

assumption, as Gaussian random effects are only included to model the hierarchical

structure of the correlated data.

In the literature, although few, there exist some flexible models which allow the

correct analysis of PROs in a longitudinal framework, at least in the model assump-

tion. The are two different ways of solving the fitting problem caused by the features

of PROs in mixed-effects framework: (i) include non-Gaussian random effects in a

GLMM approach or, (ii) assume conditional distributions that do not belong to the

exponential family. Following, we define the most widely used regression models

based on the cited two approaches.

We have defined in Section 2.2.2 the so-called HGLMs, where additional non-

Gaussian random effects can be included in the linear predictor of a classical GLM

(Lee and Nelder, 1996). Therefore, in PROs longitudinal framework, these models

assume that conditional on some beta and Gaussian random effects, the outcomes

follow a binomial distribution, defining the so-called binomial-beta-normal regression

model. That way, the beta random effects account for the PROs characteristics,

while the Gaussian random effects accommodate the hierarchical structure of the

longitudinal data. However, in Section 2 we have shown that in independent data

framework the performance of the marginal approach is more appropriate than the

conditional beta-binomial regression approach in terms of parameter estimation and

statistical significance. Therefore, in a longitudinal framework, even if Gaussian

random effects are introduced in the linear predictor of the BBhglm to accommodate

the correlation given by the repeated measurements, the incapacity of the conditional

model approach to assess the effect of some covariates may have on the PROs, will

lead again to the same estimation problems (see Chapter 2, Section 2.4 for more

details).

Based on a similar approach, Molenberghs et al. (2010) developed a general

methodology which combines both mixed-effects models (GLMMs) and non-Gaussian

effects to accommodate overdispersion. Similar to the HGLMs the election of the

distribution of the non-normal random effects is based on the conjugacy assumption.

Nevertheless, in contrast to HGLM where the conjugate random effects are included

as additive terms in the linear predictor of a GLMM, in the combined model the

effects multiply the parameter being modelled.

For instance, Molenberghs et al. (2012) defined the beta-binomial model with
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logit link as

yi ∼Bin(mi, pi = θiκi),

κi =
exp(x′iβ)

1 + exp(x′iβ)
(3.41)

where θi ∼ Beta(1/α, 1/α). When normal random effects are included in Equation

(3.41), closed forms cannot be reached for the mean or the variance of the model.

In addition, only when beta dispersion random effects are assumed in the model

conjugacy applies. Therefore, the authors defined the concept of strong conjugacy

as a way of expressing in which cases conjugacy remains when normal random effects

are included in the linear predictor. The strong conjugacy allows the construction

of combined models, i.e. the inclusion of Gaussian random effects and conjugate

multiplicative effects in the linear predictor of a GLM. This approach leads to the

following definition of the combined beta-binomial model,

κi =
exp(x′iβ + z′iu)

1 + exp(x′iβ + z′iu)
, (3.42)

where u ∼ N (0,D) are the usual Gaussian random effects. However, it ends up

that the combined beta-binomial regression does not satisfy the strong conjugacy

criteria if the logistic function is used. The authors avoided the strong conjugacy

problem by defining the logit model from the probit link function which does satisfy

the strong conjugacy. The authors used that

exp(y)

1 + exp(y)
≈ Φ(cy) (3.43)

where Φ(·) is the normal cumulative density function and c = (16
√

3)/(15π).

Summarizing, the definition in Equation (3.42) performs the model assuming

a binomial distribution of the outcome and including two different random effects,

different in the distribution and in the form they are included in the linear predictor.

Therefore, it is straightforward to assess the differences that exists between the model

in Equation (3.42) and our proposed BBmm approach. From our point of view it

seems more reasonable to assume the marginal beta-binomial distribution as given

rather than assuming a conditional binomial distribution. In Chapter 2, we showed

that in independent data the marginal beta-binomial regression approach turned to

be more appropriate than the conditional approach in terms of the estimation and
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interpretation of the effects of the covariates. Therefore, although we do not directly

compare our proposal with the model in Equation (3.41), similar results may be

obtained due to the conditional feature of the approach. In addition, the extension

to the combined models in Equation (3.42) include two random effects that interact

in the linear predictor, which may mask the interpretation of the subject-specific

realizations and the variance of each random component.

Until now, we have defined mixed-effects model approaches based on the first

criteria, i.e. the addition of non-Gaussian random effects in the linear predictor of a

GLMM to account for the PROs characteristics. However, there exists in the liter-

ature a widely used methodology based on the second criteria, i.e. the assumption

of non-exponential family distributions. The so-called generalised additive model

for location, scale and shape (GAMLSS) was developed by Rigby and Stasinopoulos

(2005) and it is a very flexible methodology which not only deals with a very wide

range of distributions, but also allows the inclusion of random effects to accommo-

date correlation of longitudinal data in all the parameters of the given distribution.

The beta-binomial GAMLSS specification corresponds to the proposed BBmm ap-

proach, however differences in the estimation procedure lead to different parameter

estimates as it will be shown.

Due to the similarity that exists in the beta-binomial mixed-effects model def-

inition between the proposed BBmm and GAMLSS approaches, we will define

GAMLSS in more detail in the following lines. The GAMLSS approach models

the vector of parameters ζ = (ζ1, . . . , ζs)
′ of a general population probability den-

sity function f(y|ζ). It assumes that, for j = 1, . . . , s, each distribution parameter

ζj is connected to some given covariates and random effects, and hence, that, for

i = 1, . . . , n, the observations yi are independent given those random effects.

Let y = (y1, . . . , yn)′ be the observations of the response variables and, for

j = 1, . . . , s, gj(·) be a known monotonic link function connecting ζj to the given

covariates and random effects through

gj(ζj) = ηj = Xjβj +

Kj∑
k=1

Zkjukj , (3.44)

where ζj and ηj are vectors of length n, βj = (β1j , . . . , βpjj)
′ is the fixed effects

parameter vector of length pj , Xj is a known design matrix of order n×pj composed

by the given covariates, Zkj is a fixed known n× qkj design matrix composed by the

random structure of the model and ukj is a random vector of length qkj . The model
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assumes that, for each j = 1, . . . , s and k = 1, . . . ,Kj , the random effects vector ukj

has a normal distribution with mean 0 and variance-covariance matrix Dkj , where

Dkj depends on a vector of hyperparameters λkj . Notice that for each distribution

parameter ζj , j = 1, . . . , s, the random effects vectors ukj , k = 1, . . . ,Kj , can be

combined into a single vector uj = (u′1j , . . . ,u
′
Kjj

)′ with a single design matrix

Zj = [Z1 · · ·ZKj ]. Therefore, the formulation of the GAMLSS approach is now

defined as

gj(ζj) = ηj = Xjβj +Zjuj ,

where gj(·), ηj , βj and Xj have been previously defined in Equation (3.44), but

now uj is a random effects vector of length qj =
Kj∑
k=1

qkj and Zj is a known n × qj
design matrix of the random effects.

In BBmm approach we have considered that the only parameter that depends

on the given covariates is the mean or probability parameter and hence, we have

assumed that the dispersion parameter φ is equal for all the individuals. Therefore,

in terms of the BBmm approach specification, GAMLSS beta-binomial regression

model is defined as g1(ζ1) = η1 = Xβ1 +Zu

g2(ζ2) = η2 = β2
(3.45)

where, on the one hand, ζ1 = (ζ1i, . . . , ζ1n)′ is the location parameter assumed dif-

ferent for each individual, which corresponds to the probability parameter of the

conditional beta-binomial distribution p and g1(·) is the logistic link function. On

the other hand, ζ2 is the scale parameter assumed equal for all the individuals, which

corresponds to the dispersion parameter of the conditional beta-binomial distribu-

tion φ and g2(·) is the logarithm link function. As it can be appreciated the model

assumptions match with the BBmm approach, however, we will show that there

exist remarkable differences in the estimation procedure that lead to misleading

conclusions.

Finally, it is worth noticing that Wu et al. (2017) proposed a longitudinal beta-

binomial model for overdispersed binomial data where they estimated regression

parameters under a probit model using the GEE approach (Zeger and Liang, 1986).

It has been stated in Section 3.1.2 that mixed-effects model approaches are more

appropriate for analyzing longitudinal data as they are more flexible regarding drop

out (missing data), but specially, because they do allow for subject-specific effects

which could be quite useful to understand individual variability in the longitudinal
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response process and predicting responses for a given subject or a set of individuals

from a particular grouping hierarchy. Therefore, as we have mentioned before, we

will only focus on mixed-effects regression models for the analysis of longitudinal

PROs.

3.3.6 Comparison to other approaches

It is straightforward to find out differences between BBmm and previously cited

regression approaches where the conditional distribution belongs to the exponen-

tial family and non-Gaussian random effects are included in the linear predictor.

However, it is not straightforward to appreciate the differences among BBmm and

approaches considering non-exponential family distributions, such as GAMLSS. In-

deed, as we have mentioned before, the main difference between BBmm and GAMLSS

methodologies remains in the estimation process. In fact, while the estimation proce-

dure of BBmm approach is based on a classical full likelihood framework, GAMLSS

is based on an empirical Bayesian argument to make the inference.

As it was shown in Section 3.3.5, the GAMLSS approach is able to model all

the parameters of the conditional distribution by the inclusion of fixed and random

effects in the linear predictors. In particular, the beta-binomial distribution consists

of two parameters, the probability parameter p and the dispersion parameter φ.

Therefore, GAMLSS approach allows for the modelling of both parameters through

fixed and random effects. However, in order to compare like with like the GAMLSS

and the BBmm approaches, the linear predictor corresponding to the dispersion

parameter is restricted to the inclusion of a unique fixed effect. Let us denote β∗ the

vector that contains the fixed effects β1, for modelling the probability parameter,

and β2, for the dispersion parameter (see Equation (3.45) for more details).

The estimation procedure of the fixed and random effects (in all the linear pre-

dictors) in GAMLSS methodology is done by means of a posterior mode estimation

(Berger, 1985). Indeed, the model assumes that the joint distribution of all the

parameters involving the model is given by

f(y,β∗,u,λ) = f(y|β∗,u)f(u|λ)f(λ)f(β∗),

where f(y|β∗,u) corresponds to the beta-binomial distribution and f(u|λ) is the

normal distribution of the random effects, and f(λ) and f(β∗) are appropriate prior

distributions of λ and β∗ parameters respectively. Assuming that the hyperparam-

eters λ, i.e. the variance components of the random effects, are fixed and, assuming
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a constant improper prior for β∗, then the posterior distribution for the fixed and

random effects is given by

f(β∗,u|y,λ) ∝ f(y|β∗,u)f(u|λ). (3.46)

Therefore, the estimation of β∗ and u in GAMLSS approach is done by the joint

maximisation of the posterior distribution in Equation (3.46). Notice that the log-

arithm of the defined posterior distribution for β∗ and u coincides with the joint

log-likelihood in BBmm presented in Equation (3.26), i.e.

log f(β∗,u|y,λ) ∝ log f(y|β∗,u) + log f(u|λ) = h(β,θ|y,u),

where β is the fixed effect in BBmm approach which corresponds to β1 in GAMLSS

approach and φ (or β2 in GAMLSS) is included in the variance components vector θ.

Consequently, the estimation of the fixed and random effects in GAMLSS is done by

maximising the joint likelihood exactly as in BBmm approach. However, notice that

there is a crucial difference. In GAMLSS approach the dispersion parameter φ is

modelled by a unique fixed effect (exp(β2)), and hence, as the rest of the fixed effects,

it is estimated by maximising the joint log-likelihood (posterior likelihood). On the

contrary, in BBmm approach the dispersion parameter φ is considered as a variance

parameter and included in the variance parameter vector θ. Lee and Nelder (1996)

showed that the estimates of dispersion parameters must be done by a penalisation

of the joint likelihood in order to avoid the bias owing to the estimates of the fixed

and random effects. The idea is based on the assumption that only parameters

that are canonical can be estimated jointly. Therefore, in contrast to GAMLSS,

in BBmm approach the joint log-likelihood is penalised before maximisation with

respect to θ, and hence to φ, is performed. Indeed, based on the idea of avoiding

the bias of previous estimations of fixed and random effects, even in GAMLSS,

the joint log-likelihood (posterior likelihood) is penalised for the estimation of the

hyperparameters λ.

3.4 Simulation study

In this section, we carry out a simulation study in order to evaluate the performance

of BBmm and GAMLSS approaches when analyzing beta-binomial mixed-effects

models. In order to perform the simulation study, we use our R-package PROreg

presented more in detail in Chapter 5, while the GAMLSS approach is implemented
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with the gamlss R-package version 5.0-2 (Stasinopoulos and Rigby, 2007).

We have generated 100 random realizations of 200 observations of a dependent

variable Y , which conditional on some simulated random effects follows a beta-

binomial distribution with fixed maximum number of scores m, probability param-

eter p and dispersion parameter φ. For the sake of clarity, we only consider a single

covariate in the linear predictor, which follows a normal distribution of mean 1 and

standard deviation 2. Consequently, only two fixed effects (in BBmm terminology)

have been considered, β0 = 1 and β1 = −1.5. Furthermore, we have considered

50 realizations of the random effects assuming a normal distribution of mean 0 and

standard deviation σ, where each component is randomly connected from 1 to 9

observations. Note that, according to the general notation in Equation (3.22), in

this case we consider the vector of the variance components of the random effects λ

equal to σ and D = σ2I50. Therefore, the model is defined as

logit(p) = Xβ +Zu

where β = (β0, β1), u is the random effects vector of length 50,

X =


X1

...

X50


200×2

where Xi =


1 xi,1
...

...

1 xi,ni


ni×2

and Z =


1n1 0 · · · 0

0 1n2 · · · 0
...

...
. . .

...

0 0 · · · 1n50


200×50

where 1ni is a column vector of 1s of length ni, being ni ∈ {1, . . . , 9} and
50∑
i=1

ni = 200.

Indeed, this case study can be considered as a longitudinal study where each of the

50 individuals has from 1 to 9 repeated realizations of an event.

The simulation study has been divided in several scenarios depending on the

variability of both the random effects and the conditional beta-binomial distribution.

We consider three possible values, {0.5, 1, 1.5}, for the dispersion parameters φ and

σ, and hence, a total of 9 scenarios with all the possible combinations are defined.

Estimates of all the parameters have been obtained with both methodologies.

However, only results for the slope, β1, and the beta-binomial dispersion parame-

ter φ will be shown due to the following reasons. First, for simplicity, clarity and

brevity, given that including the same analysis for all the parameters can make the

reading quite dense and mask relevant conclusions. Second, to study the relation-

ship between the outcome variable with individual or patient characteristics has
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become one of the primary aims of many longitudinal studies in medical or biolog-

ical framework. Consequently, we consider that the slope, β1, is the focus of many

studies, and hence, it needs an in-depth analysis in order to check the efficiency

of the algorithms. Finally, as we have mentioned in Section 3.3.6, the main dif-

ference between the estimation approaches lies in the estimation of the dispersion

parameter of the conditional beta-binomial distribution. Hence, in order to look for

differences between the algorithms, we also show a detailed analysis of the estima-

tion of log(φ). Nevertheless, adequacy of the estimates for the other parameters has

been also checked.

Table 3.1 shows the results of the simulations for the mentioned parameters. On

the one hand, the mean, ASD, ESD, EMS and coverage probability of the 95% Wald

confidence intervals for the estimates of the slope β1 are shown. On the other hand,

the mean, ASD, ESD and EMS of the estimates of the logarithm of the conditional

beta-binomial dispersion parameter φ are also shown for the defined scenarios.

Results show that the ASD and ESD in BBmm approach remain quite similar in

all the scenarios. However, as regards to the GAMLSS approach, results are more

contradictory. Even in the lowest dispersion case, i.e. σ = 0.5, φ = 0.5, the ASD

doubles the value of the ESD. Hence, GAMLSS approach inflates the standard devi-

ation of the estimates and consequently, confidence intervals for the slope parameter

are larger than they should, which makes the coverage probability pointless. Fur-

thermore, although in GAMLSS confidence intervals are over-estimated, it can be

appreciated in Table 3.1 that as variance parameter σ increases BBmm approach

gets much better results in terms of coverage percentage of the slope. For instance,

in the largest variability scenario (φ = 1.5 and σ = 1.5) the coverage probabil-

ity of the GAMLSS approach is equal to 33%, while in the BBmm approach it is

83%. Therefore, we can conclude that as the dispersion parameter of the random

effects increases, results provided by the GAMLSS approach worsen in terms of the

significance of the parameters.

Regarding the EMS of the parameters, Table 3.1 shows than when the dispersion

of the random effects is low (σ = 0.5) both methodologies perform similarly. How-

ever, when the variance parameter σ increases there exist differences between the

approaches. EMS in the BBmm approach remains quite constant in all the scenarios,

nevertheless in the GAMLSS approach they increase as the dispersion parameter of

the random effects increases.

Figure 3.3 shows the estimates of parameters β1 and log(φ) for the different

scenarios. In the right panel, we can observe the resulting estimations for the slope
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Figure 3.3: Boxplots of the estimates of the parameters β1 and log(φ). In the right
panel the plots show the estimates for β1, while in the left panel estimates for log(φ)
appear. Each group of boxplots describes three scenarios corresponding to the all 9
scenarios.



3.4. Simulation study 123

Table 3.1: Results for 100 converged simulations with 200 number of observations.

Scenarios β1 log(φ)

σ φ Method Mean ESD ASD EMS CP Mean ESD ASD EMS

0.5 0.5 BBmm -1.500 0.127 0.110 0.016 92 -0.727 0.232 0.162 0.055
GAMLSS -1.449 0.120 0.244 0.017 99 -0.549 0.195 0.395 0.059

1 BBmm -1.520 0.151 0.131 0.023 91 -0.051 0.182 0.163 0.036
GAMLSS -1.456 0.128 0.256 0.019 100 0.106 0.143 0.400 0.032

1.5 BBmm -1.530 0.166 0.143 0.028 88 0.323 0.208 0.171 0.050
GAMLSS -1.469 0.147 0.255 0.023 100 0.466 0.186 0.410 0.038

1 0.5 BBmm -1.472 0.113 0.105 0.014 91 -0.774 0.193 0.165 0.044
GAMLSS -1.280 0.096 0.215 0.058 95 -0.254 0.151 0.387 0.215

1 BBmm -1.441 0.145 0.121 0.025 85 -0.091 0.227 0.164 0.060
GAMLSS -1.255 0.112 0.214 0.073 90 0.311 0.171 0.394 0.126

1.5 BBmm -1.494 0.180 0.137 0.032 88 0.296 0.180 0.174 0.044
GAMLSS -1.279 0.126 0.217 0.065 89 0.686 0.169 0.408 0.107

1.5 0.5 BBmm -1.462 0.117 0.100 0.015 90 -0.752 0.217 0.171 0.051
GAMLSS -1.092 0.074 0.182 0.172 30 0.121 0.137 0.382 0.681

1 BBmm -1.483 0.142 0.119 0.021 93 -0.314 0.198 0.171 0.057
GAMLSS -1.097 0.093 0.186 0.171 35 0.585 0.134 0.394 0.361

1.5 BBmm -1.469 0.180 0.132 0.033 83 0.309 0.208 0.178 0.052
GAMLSS -1.098 0.114 0.187 0.174 33 0.904 0.165 0.407 0.275

ESD: Empirical Standard Deviation; ASD: Average Standard Deviation; EMS: Expected Mean

Square errors; CP: Coverage Probability of 95%.

β1, while in the left panel estimates for the logarithm of the beta-binomial dispersion

parameter φ are shown. It is worth mentioning that BBmm approach gives similar

bias of the slope parameter in all the scenarios, and hence, we can conclude that

it is a stable methodology as the variance of the data do not alter its performance.

However, it can be noticed that as the variance parameter σ increases, the bias of

the estimate of the slope parameter in GAMLSS increases as well. Besides, similar

results can be obtained from the estimation of the dispersion parameter of the beta-

binomial distribution φ. Apparently, the increase of σ do not affect the estimations

of φ through BBmm approach, but, on the contrary, it worsens the performance of

GAMLSS approach considerably.

In summary, we have shown that, not only estimates of the slope, but also

estimates of the dispersion parameter φ are more accurate in terms of bias and
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expected mean square error in BBmm approach than in GAMLSS. In addition,

we also have evidenced the over-estimation of the standard deviation of the es-

timates in GAMLSS approach, which could conclude on inappropriate statistical

inference. Consequently, based on the results of the simulation study we can state

that, although both methodologies perform similarly with low variance parameter

σ, estimates with BBmm approach are better in general as σ increases. Hence, we

propose the use of BBmm methodology as an unified way to analyse real data by a

beta-binomial mixed-effect model.

3.5 Application to real data

In this section, we apply the developed beta-binomial mixed-effects model approach

to the data introduced in Chapter 1.

First of all, as an illustration of the applicability of the proposed regression

approach, we analyse the Paquid research programme data (see Section 1.3.2). As

it was mentioned, the Paquid research programme was developed to measure the

cognitive status and incidence of dementia and Alzheimer’s disease in elderly people

in South-Western France. It contains MMSE measurements which have already

been fully described in Section 1.2.3. For the real application, we use a subsample of

the Paquid dataset which is freely available at lcmm R-package (Proust-Lima et al.,

2017). In order to show the adequacy of the proposed methodology, we validate

the obtained results in terms of the effects of the covariates in the cognitive status

comparing them with the results in the literature when analysing the incidence of

dementia and Alzheimer.

Finally, once the applicability of the proposed methodology has been illustrated

by the analysis of the Paquid data, we focus our attention on the COPD Study

introduced in Section 1.3.1. However, compared with the cross-sectional analysis of

the COPD Study in Chapter 2, in this case, we will analyse longitudinal measure-

ments provided by the SGRQ which was introduced in Section 1.2.2. Therefore, we

will not only restrict the analysis to the first measurement of each individual and

instead, all the longitudinal features of the study will be considered.

3.5.1 Mini Mental Score Examination: Paquid Research Programme

It is well known that MMSE scores have a skewed distribution, accumulating values

at one or both edges (0 and 30) of the scale (Folstein et al., 1988). In fact, we
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have shown in Figure 1.7 in Section 1.4.3, that the distribution of the MMSE scores

of the Paquid program subsample tend to accumulate in the right side of the scale,

displaying a J-shaped curve, which exponential family distributions are not able to fit

appropriately. Instead, the beta-binomial distribution has been shown to be a good

candidate due to its distributional flexibility allowing for a reasonable fit compared

to the exponential family distributions. Therefore, we consider the analysis of the

Paquid research programme using a mixed-effects regression model based on the

beta-binomial distribution. The data were collected in a longitudinal context where

the measurements of each patient were observed along time. This process led to the

so-called repeated measurements and consequently, to non-independent structures

in the data. Hence, in order to accommodate the correlation that may exit among

longitudinal measurements provided by each patient, we include individual level

random effects in the linear predictor of the model. That way, we assume that the

ni observations of the ith patient are iid drawn from a beta-binomial distribution.

Following BBmm approach, we link the probability parameter of the beta-binomial

distribution with the given covariates and random effects by means of a logit link

function. In other words, we assume that,

yij |ui ∼ BB(mi, pij , φ) indep. j = 1, . . . , ni

ηij = logit(pit) = x′ijβ + ui,
(3.47)

where β are the fixed effects, xij is a row of the full rank design matrix composed by

the covariates and ui is the random component attributed to the ni observations of

the ith individual, i = 1, . . . , n, n = 498 and j = 1, . . . , ni. Hence, we assume that

observations from different individuals are independent, while the observations from

the same individual are connected through a random component. Therefore, we pro-

pose a random intercept model where the random effects vector u = (u1, . . . , un)′ is

drawn from a multivariate normal distribution with mean 0 and variance-covariance

matrix D = σ2uIn.

If we consider the latent variable interpretation described in Section 3.3.4, we

can assume that a continuous latent variable Y ∗ij underlines the observed yij for the

ith individual in time j, i = 1, . . . , n and j = 1, . . . , ni. That way, the variance of

the random effects u, σ2u, represents the between-subject variation of the model, and

the variance of the logistic distribution of the errors in the model for y∗ij , π
2/3, rep-

resents the variation within subjects (McCullagh and Nelder, 1989). Consequently,

correlation between two latent observations of the same individual, y∗ik and y∗ij , is
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defined as ρ = σ2u/(σ
2
u + π2/3).

Table 3.2: Results for the application of the random intercepts beta-binomial mixed-
effects model in the Paquid research programme subsample.

Covariates Levels Estimate SD p-value

(Intercept) - 3.580 0.216 <0.001

Dependency level no - - -
mild -0.094 0.043 0.027

moderate -0.358 0.046 <0.001
severe -1.145 0.061 <0.001

Age - -0.050 0.003 <0.001

Age at dementia diagnosis - 0.043 0.003 <0.001

Dementia diagnosis no - - -
yes -0.570 0.028 <0.001

Age at the entry of the cohort - -0.015 0.003 <0.001

Educational level no - - -
yes 0.604 0.028 <0.001

log(φ) - -6.567 0.806 -
σ - 0.615 0.043 -

SD: Standard deviation.

Table 3.2 illustrates the results after the application of the BBmm approach in

the Paquid data subsample. It can be appreciated that all the covariates in the

model are statistically significant, concluding that they alter the cognitive status of

patients. The standard deviation of the heterogeneity between the individuals at

baseline is 0.615. The total deviance of the model is 1898.1, and the null deviance or

deviance of the null model is equal to 6791.1, where the p-value associated with the

goodness-of-fit deviance test is lower than 0.001. Several conclusions can be obtained

from the clinical interpretation of data in Table 3.2. First, as it was expected, a more

severe dependency status worsens the cognitive status of the subject. Second, the

increase of the age also worsens the cognitive mental status of the patients. Indeed,

an increase of 5-year increases by 1/exp(−5 × 0.050) = 1.284 the odds of having

a smaller MMSE score or worse cognitive status. Moreover, both the diagnosis of
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dementia (βdem = −0.570) and a later entry in the study (βage init = −0.015) also

increase the risk of having worse cognitive status (lower MMSE score). However,

a later dementia diagnosis (βage dem = 0.043) and having at least primary school

educational level (βCEP = 0.604) increases the odds of having a larger MMSE score,

i.e. a better cognitive status. The estimated standard deviation of the random effects

is 0.615, which means that the correlation between latent observations of the same

individual is 0.6152/(0.6152 + π2/3) = 0.103. Additionally, Table 3.2 shows that

the estimation of the dispersion parameter of the beta-binomial distribution is φ =

0.001 (log(φ) = −6.567), indicating that dispersion of the outcome data decreases

when the covariates are included in the model (the beta-binomial distributional fit

performed in Chapter 1 led to φ = 0.113).

The obtained results are similar to the results available in the literature regard-

ing the effect of the analysed covariates in the MMSE scores. For instance, in other

study, Matallana et al. (2011) stated that there exists a correlation between the edu-

cational level and the cognitive status of the patients and, in fact, they showed that

a higher educational level is related with a higher score in the MMSE questionnaire.

On the whole, we have applied the proposed methodology to the Paquid research

programme and we have reached clinically valid results which are in line with the

available literature for the analysis of the MMSE questionnaire. In addition, re-

garding the interpretation of the covariate effect, we have shown that the BBmm

approach offers an easy quantification of the effects in terms of odds-ratio which is

very familiar to clinical researchers.

3.5.2 St. George’s Respiratory Questionnaire: COPD Study

One of the main objectives of the COPD Study was to assess the evolution of the

health-status of the patients during the cohort. Although in the COPD Study

longitudinal data was picked up by means of two different PRO questionnaires,

we will only show the analysis of the lung disease specific, the SGRQ (see Section

(1.2.2)). We believe that results for one instrument are enough to illustrate practical

validity of the proposed methodology. Moreover, pneumologists were interested in

measurements provided by the SGRQ due to the fact that it is an specific respiratory

questionnaire, and therefore, it could show the clinical evolution of patients more

precisely than the SF-36. They were interested to know if there is a substantial

(statistically and clinically significant) worsening, or at least a change, in the health-

status of COPD patients as time goes by, and in that case, quantify the evolution



128 Chapter 3

and detect variables related to it. More detailed results over time will be discussed

jointly with clinical researchers in a future work.

In Section 1.2.2, we have described the SGRQ, which decomposes the health-

status of the patients in three dimensions: activity, symptoms and impacts. We have

mentioned that originally, each dimension is bounded in a 0−100 scale. However, as

it was displayed in Figure 1.6 the normal distribution does not offer an appropriate

fit of the scores, and additionally, it does not match with the boundary condition,

leaving tails out of the 0 − 100 scale. Therefore, we have proposed a recoding

procedure of the scores in order to apply the beta-binomial distribution. Based on

the result provided by Jones (2005), there exits a clinically significant change in the

score only if a four points threshold is exceeded. Consequently, we have divided the

SGRQ scores in four length subintervals and then recode them as it was shown in

Table 1.5 in Chapter 1.

As regards to the statistical methodology, we will use the BBmm approach to

assess the health evolution of the COPD patients. For that purpose, for each di-

mension a longitudinal study is carried out where subject-specific random intercepts

and slopes are included in the model. In fact, the model is defined as follows: as-

sume that we have n individuals where each individual provides ki measurements

over time, i = 1, . . . , n. We denote as yij the observation of the ith individual in

the jth time point which, conditioned by the random effects u and v, is iid drawn

from a beta-binomial distribution with parameters mi, pij and φ, i = 1, . . . , n and

j = 1, . . . , ki. In addition, we assume that we measure the day each response was

provided and include them in a year-scale in the time covariate t. Finally, we apply

the following model to the data

ηij = log

(
pij

1− pij

)
= (β0 + ui) + (β1 + vi)tij , (3.48)

where ηij is the linear predictor of the model, β0 and β1 are the regression pa-

rameters, ui ∼ N (0, σu) and vi ∼ N (0, σv) are the random effects of the model

and pij is the probability parameter of the beta-binomial distribution i = 1, . . . , n,

j = 1, . . . , ki. For the sake of clarity, we are going to describe the meaning of each

parameter in Equation (3.48):

• holding the contribution of each individual ui and vi, β0 stands for the intercept

of the regression, i.e. the expected health-status of the population at baseline.

• holding the contribution of each individual ui and vi, β1 stands for the slope
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of the regression, i.e. the expected evolution of the health-status of the popu-

lation.

• ui represents the difference of the population’s and ith individual’s health-

status at baseline.

• vi represents the difference of the health-status evolution between the ith in-

dividual and the population.

• σu determines the standard deviation of the health-status of the individuals

at baseline.

• σv determines the standard deviation that exists in the health-status evolution

between the patients.

Table 3.3 shows the results of the model in Equation (3.48) applied to the three

SRGQ dimensions of the COPD Study. It displays the estimation, standard de-

viation and p-values associated with the estimation of each regression parameter.

Additionally, it shows the odds-ratio for the estimation of the slope. Table 3.3 also

displays the estimation and standard deviation of the dispersion parameters of the

model σu, σv and log(φ).

It must be mentioned that the algorithm failed to converge showing that the

estimation of σv tended to zero for the impacts dimension. Therefore, we adjusted

the model in Equation (3.48) removing the random slopes effects from the linear

predictor and evaluated it again in the mentioned dimension. Consequently, the

estimation of σv is not displayed in Table 3.3 for impacts.

Regarding the interpretation of the results, Table 3.3 shows that the evolution of

the patients differs from one dimension to the others. For the activity component of

the SGRQ, the estimated coefficient of time in years is 0.027. Therefore, the odds-

ratio of having a worsening in activity dimension is 1.027 (exp(0.0270) = 1.027)

for each year of evolution. In terms of the interpretation, each year of evolution is

associated with an odds-ratio of 1.028 for a worse activity, in other words, each year

of evolution is associated with a 2.8% worsening in activity, which is statistically

significant (p= 0.001). Moreover, the standard deviation of the random effects are

σu = 1.180 and σv = 0.123 for the random intercepts and slopes respectively. On the

one hand, it means that centred in −0.186 the standard deviation of the scores of the

individuals in activity is 1.180 at baseline. On the other hand, as time goes by, and

centred in 0.027, the slopes of the regression (evolutions) for different individuals

have a standard deviation equal to 0.123.
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Table 3.3: Results for the beta-binomial longitudinal model applied to the three
SGRQ dimensions provided in the COPD Study.

Dimension Covariate Estimate SD OR p-value

Activity
(Intercept) -0.186 0.026 − <0.001
Year 0.027 0.008 1.027 0.001
σu 1.180 0.037 − −
σv 0.123 0.006 − −
log(φ) -3.295 0.086 − −

Symptoms
(Intercept) -0.306 0.029 − <0.001
Year 0.007 0.009 1.007 0.493
σu 0.760 0.025 − −
σv 0.093 0.006 − −
log(φ) -2.610 0.057 − −

Impacts
(Intercept) -1.320 0.023 − <0.001
Year 0.003 0.007 1.003 0.673
σu 0.972 0.030 − −
log(φ) -4.050 0.115 − −

SD: Standard deviation; OR: Odds-ratio.

For the symptoms component of the SGRQ, the estimated coefficient of time

in years is 0.007. Therefore, the odds-ratio of having a worsening in the symptoms

dimension is 1.007 (exp(0.007) = 1.007) for each year of evolution. In terms of the

interpretation, each year of evolution is associated with an odds-ratio of 1.007 for

worse symptoms, in other words, each year of evolution is associated with a 0.7%

worsening in symptoms, which is not statistically significant (p= 0.493). Regarding

the variability of the random effects, on the one hand, the standard deviation of the

random intercepts or status at baseline is 0.760, which shows less variability than

activity. On the other hand, centred in 0.007, the standard deviation of the random

slopes (evolutions) is 0.093.

Finally, for the impacts component, the estimated coefficient of time in years is

0.003. Therefore, the odds-ratio of having a worsening in the impacts dimension is

1.003 (exp(0.003) = 1.003) for each year of evolution. In terms of the interpretation,

each year of evolution is associated with an odds-ratio of 1.003 for worse impacts, in



3.5. Application to real data 131

other words, each year of evolution is associated with a 0.3% worsening in impacts,

which is not statistically significant (p= 0.673). As it has been mentioned, the stan-

dard deviation of the random slopes was equal to zero, meaning that there is no

variability in the evolution among patients. Therefore, the model is implemented

with a single random component (random intercepts) whose standard deviation is

equal to 0.972. In conclusion, in the impacts dimension the expected population evo-

lution is not statistically significant and, moreover, there are no differences between

the evolution trend of different patients.

It must be mentioned that the standard deviations of the random slopes in both

activity (σv = 0.123) and symptoms (σv = 0.093) dimensions are much larger than

the expected population evolution (β̂1 = 0.027 and β̂1 = 0.007 respectively). Conse-

quently, although in activity the population evolution is expected to worsen, there

are even patients that improve their health-status. In symptoms we may not expect

any change in the status of patients however, due to the previous argument, there

are patients that improve their quality of life while others deteriorate. In fact, this

shows the variability that exists in the PRO analysis due to the implicit subjective

nature of the outcomes. Figure 3.4 displays the expected population evolution and

the evolution of each patient in activity dimension. It is straightforward to notice in

the figure the variability that exists between the baseline health-status and evolution

in the data.

Once the unadjusted evolution of the patients has been assessed, we will fit the

same longitudinal model described in Equation (3.48), but adjusted by covariates.

In Chapter 1, we have mentioned that Esteban et al. (2016) divided the patients

participating in the COPD Study in four subtypes, were each subtype was associated

with different health-status and characteristics. Therefore, in order to measure the

evolution over time of the patients taking into account the special characteristics

they may have, we are going to fit the following model,

ηij = log

(
pij

1− pij

)
= (β0 + ui + β1Si) + (β2 + vi + β3Si)tij , (3.49)

where Si is a vector consisting of three binary variables which indicate the subtype

the ith patient belongs and β1 and β3 consist of 3 components for the B, C and D

subtypes (the A subtype has been taken as reference). As it can be appreciated in

Equation (3.49), we do not consider the option that individuals transit over subtypes

as the objective is to asses the evolution of patients that belonged to a specific

subtype at baseline.
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Figure 3.4: Estimated evolution trends in activity dimension for the individuals in
the cohort. The red line stands for the expected evolution, whereas the grey lines
refer to each individual.

Table 3.4 displays the estimation, standard deviation and p-values associated

with the estimation of each regression parameter. Additionally, it also shows the

exponential of the fixed effects coefficients that could be directly interpreted as

odds-ratios. Table 3.4 also displays the estimation and standard deviation of the

dispersion parameters of the model σu, σv and log(φ). Regarding the interpretation

of the results, Table 3.4 shows that the evolution of the patients differs from one

dimension to the others.

Several conclusions can be obtained from Table 3.4. For instance, it is worth

mentioning that the only dimension where there were differences between the evo-

lution of patients within subtypes was symptoms. In the other two, patients in

each subtype evolved equally over time hence, we did not include random slopes

as σv tended to zero in the BBmm algorithm. Table 3.4 shows that although there

are statistically significant differences between the subtypes at baseline in all the

dimensions, all of them evolve equally. Moreover, the only dimension where the evo-

lution of patients is statistically significant is activity (p-value= 0.038 for subtype
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Table 3.4: Results for the longitudinal beta-binomial model including cluster classi-
fication applied to the three SGRQ dimensions provided in the COPD Study.

Dimension Covariate Estimate SD OR p-value

Activity
(Intercept) -0.900 0.050 − < 0.001
Year 0.031 0.015 1.031 0.038
Subtype B 0.787 0.066 2.197 < 0.001
Subtype C 1.801 0.089 6.056 < 0.001
Subtype D 0.780 0.085 2.18 < 0.001
Year × Subtype B 0.013 0.021 − 0.530
Year × Subtype C -0.023 0.029 − 0.422
Year × Subtype D -0.012 0.029 − 0.691
σu 1.032 0.032 − −
log(φ) -3.013 0.073 − −

Symptoms
(Intercept) -0.561 0.053 − < 0.001
Year 0.004 0.016 1.004 0.825
Subtype B 0.282 0.071 1.326 < 0.001
Subtype C 0.740 0.090 2.096 < 0.001
Subtype D 0.189 0.091 1.208 0.037
Year × Subtype B 0.026 0.022 − 0.239
Year × Subtype C -0.033 0.030 − 0.263
Year × Subtype D -0.001 0.031 − 0.985
σu 0.726 0.024 − −
σv 0.096 0.005 − −
log(φ) -2.619 0.058 − −

Impacts
(Intercept) -1.485 0.050 − < 0.001
Year 0.010 0.015 1.010 0.503
Subtype B 0.497 0.065 1.644 < 0.001
Subtype C 1.304 0.078 3.684 < 0.001
Subtype D 0.563 0.082 1.756 < 0.001
Year × Subtype B 0.013 0.020 − 0.510
Year × Subtype C -0.047 0.025 − 0.063
Year × Subtype D -0.013 0.028 − 0.643
σu 0.983 0.031 − −
log(φ) -3.547 0.095 − −

SD: Standard deviation; OR: Odds-ratio. Subtype A was stated as reference.

A and differences between subtypes were not statistically significant). For instance,

considering the activity dimension the odds-ratios for worse initial activity were 2.2,

6.2 and 2.2 for subtypes B, C and D versus subtype A being all of them statistically

significant. As regards to evolution, the exponential of the fixed effects coefficients

cannot be interpreted directly as odds-ratios, due to the presence of interaction
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terms in the model. As an example, each year of evolution is associated with a

3.1% of worsening activity for subjects on subtype A (OR= exp(0.031) = 1.031),

whereas it is associated with a 4.5% of worsening activity for subjects on subtype

B (OR= exp(0.031 + 0.013) = 1.045), although this difference was not statistically

significant (p-value=0.530). The rest of the effects would be interpreted in a similar

way.

Therefore, in general terms, we can state that the evolution of COPD patients

does not depend on the initial health-status defined by the cluster classification, as

all of them evolve similarly over time.

3.6 Conclusions and discussion

Mixed-effects regression models are a useful technique to deal with many types of

data with hierarchical or non-independent structures. LMMs (see Section 3.2.2),

but specially GLMMs (see Section 3.2.3) are in practice the most used methodolo-

gies for analysing longitudinal or correlated data. GLMMs restrict their conditional

assumptions to exponential family distributions, which cover most of the real scenar-

ios, and include Gaussian random effects to accommodate the hierarchical structure

of the data. In Chapter 1, we have shown that PROs consist of some specific

characteristics which make the fit by exponential family distributions inadequate.

In addition, regression based on a mixture between two exponential family distri-

butions, the beta-binomial distribution, has been proposed as a good alternative

to analyse PROs in an independent data framework. However, the beta-binomial

distribution does not belong to the exponential family and, consequently, GLMM

estimation and inference theory cannot be directly applied.

In Chapter 2, we have proposed the use of BBreg approach for the analysis

of independent PROs in a regression context. In fact, we have shown through

a simulation study that BBreg obtains appropriate results in terms of parameter

estimation and variance when applied to highly dispersed binomial data. However,

the model does not allow the analysis of dependent outcomes and hence, it cannot

be applied in correlated data, longitudinal studies for instance. Therefore, in order

to provide a solution to non-independence, in this chapter we have developed the

BBmm approach. Basically, the BBmm is the extension of the BBreg to the inclusion

of Gaussian random effects in the linear predictor of the model. The random effects

accommodate the correlation that could exist between different outcomes which

allows BBmm approach to provide a new insight to perform hierarchical regression
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analysis based on the beta-binomial distribution. We have developed an estimation

algorithm based on the first order Laplace approximation for the random and fixed

effects and a penalised profile likelihood for the dispersion parameters of the model.

Based on a similar approach, the assumption of a conditional beta-binomial dis-

tribution, GAMLSS performs the model defined in Equation (3.23). GAMLSS is

a general methodology that does not restrict the distributional assumption to the

exponential family and instead, any type of density function can be analysed in a

mixed-effects approach. GAMLSS can model all the parameters involving a given

distribution and, as it was explained in Section 3.3.6, it is based on a empirical

Bayesian argument to make the inference. For instance, GAMLSS links the proba-

bility parameter p and the dispersion parameter φ of the beta-binomial distribution

with some given covariates and random effects by means of logit and log link func-

tions, respectively. For the estimation of the fixed and random effects in the model,

the joint distribution of all the parameters in the model is maximised. However, the

estimation procedure does not make any difference between fixed effects belonging

to the probability parameter or the dispersion parameter. Consequently, compared

to BBmm approach, GAMLSS does not penalise the likelihood function when esti-

mating φ, avoiding the property that only canonical parameters should be estimated

jointly. In order to compare the performance of both regression approaches, a sim-

ulation study has been carried out in some controlled scenarios. Results showed

that the penalisation of the likelihood when estimating the dispersion parameter

φ improves the results in terms of bias and coverage percentage. In this chapter,

we have focused on the development of a new estimating procedure for a mixed-

effects regression model based on the beta-binomial distribution. However, as it

was mentioned, GAMLSS does not restrict the conditional assumption to a unique

distribution or family of distributions. Therefore, although simulation only for the

beta-binomial distribution have been performed, the penalisation of the likelihood

to estimate non-canonical parameters can be useful in other situations.

On the contrary, based on a conditional approach, there exist in the literature two

methodologies that can deal with highly dispersed hierarchical binomial data. On

the one hand, in Chapter 2 we have introduced the HGLM, which can be extended

from a cross-sectional to a hierarchical framework. Avoiding the comparison between

the BBreg and HGLM approaches carried out in Chapter 2, we are now going to

focus our discussion on the interpretation of the random effects when the binomial-

beta HGLM is extended to the inclusion of Gaussian random effects. For instance,

assume that we perform a random intercepts model such as in the Paquid application
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in Section 3.5.1. The beta-binomial-normal model with random intercepts for the

jth observation of the ith individual will be defined as

Yij |ui, ωi ∼ BB(mi, pij , φ)

ηij = logit(pij) = x′ijβ + vi + ωi,
(3.50)

where vi = logit(ui/(1− ui)) and ui ∼ Beta(1/α, 1/α) are the same as in the cross-

sectional model, but we include ωi ∼ N (0, σω) random effects. Under this model,

vi is the random effect that accounts for the overdispersion in the binomial data,

whereas ωi accommodates the hierarchical structure. However, it seems that the

model could have identifiability problems as both random effects affect the linear

predictor in the same way. Additionally, the interpretation of the standard deviation

of the intercept random effect, as the heterogeneity at baseline, can be masked due

to the fact that results are obtained conditioned on the transformation of the beta

random effects.

On the other hand, Molenberghs et al. (2010) defined the so-called combined

models which include conjugate and normal random effects. However, unlike the

HGLM approach, the conjugate random effects do not enter additively in the linear

predictor and instead, they multiply its transformation through the antilogit func-

tion (see Section 3.3.5). Compared to BBmm model definition in Equation (3.23),

Molenberghs et al. (2012) stated that the parameters in the combined model have

a different meaning, as they are interpreted conditional on the assumed random-

effects structure. In addition, differences may be very noticeable when binomial

measurements are collected repeatedly over time or in any other hierarchical fash-

ion. Indeed, from our point of view, not only the interpretation of the fixed effects,

but specially the interpretation of the random effects is much more intuitive in the

BBmm approach as it follows classical GLMM perspective. If we fit a random inter-

cept combined beta-binomial-normal model based on Equation (3.41) and Equation

(3.42), similar to the HGLM approach, we would not be able to interpret the normal

random realizations as individual baseline differences because another beta random

realization multiplies the transformation of the linear predictor. Moreover, the stan-

dard deviation of the random intercepts would not represent the heterogeneity of

the individuals at baseline any more.

Finally, we have applied the BBmm approach in two different real datasets. The

analysis of the Paquid data has been performed as an illustration of the applicability

of our proposal. However, much more effort has been dedicated in the longitudinal
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analysis of the COPD Study. In fact, this was the motivation of this thesis as

there was no available methodology which could analyse the evolution of patients

with COPD in an appropriate way. Section 3.5.2 shows that the BBmm approach

offers clinically valid and relevant results in terms of the evolution of patients with

COPD. Moreover, all the results obtained from the longitudinal analysis of both

questionnaires included in the COPD Study, the SF-36 and the SGRQ, are being

discussed with clinical researchers and they will be included in a clinical publication

that is in preparation.
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CHAPTER 4

MULTIVARIATE ANALYSIS

“Evolution has ensured that our brains just aren’t equipped to

visualise 11 dimensions directly. However, from a purely

mathematical point of view it’s just as easy to think in 11

dimensions, as it is to think in three or four.”

Stephen Hawking , 1942-

The article based on the work developed in this chapter is under preparation for submit-

ting it to a journal.

Najera-Zuloaga, J., Lee, D.-J. and Arostegui, I. (2017). Multivariate analysis of patient

reported-outcomes based on beta-binomial mixed-effects model approach. (under preparation)

4.1 Introduction

In the previous chapters we have developed regression models based on the beta-

binomial distribution for dealing with different statistical challenges that usually

occur in PRO analysis. In Chapter 2, we have proposed a marginal beta-binomial

regression model (denoted as BBreg) for analysing overdispersed binomial data in

an independent data framework. However, in many scientific applications, we often

need to analyse data resulting from experiments in which outcomes have been mea-

sured repeatedly on a set of units, leading to the so-called repeated measurements.

A correct statistical analysis of such data should account for the hierarchical nature

of the data, allowing those measurements within subjects to be correlated, while

139
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observations from different individuals are independent. Marginal beta-binomial re-

gression approach is not applicable in this case, as it assumes the independence of

the outcomes being modelled. Therefore, in Chapter 3 we have developed a beta-

binomial mixed-effect model (denoted as BBmm) for the correct analysis of overdis-

persed hierarchical binomial data, hierarchical meaning that there exists a correla-

tion structure. Application of both presented methodologies has been addressed to

the analysis of PROs, which usually show an integer and bounded dispersed feature.

In Chapter 1 we have introduced different questionnaires for assessing different

types of PROs, such as cognitive status, HRQoL and so on. We have explained

that there are generic or disease-specific questionnaires and consequently, that each

questionnaire is commonly applied in different populations. We have also detailed

that questionnaires usually decompose the health aspect they are assessing in dif-

ferent dimensions, providing a multi-dimensional insight of the health-status of the

patients. Until now, either by a cross-sectional (Chapter 2) or longitudinal (Chapter

3) approach, we have analysed each of the dimensions separately, and results have

been obtained dimension by dimension.

In some cases, independent analysis of each outcome separately is enough to re-

spond all research questions, subject-matter questions for example. However, when

the interest lies in assessing the relation between some covariates and all the dimen-

sions simultaneously, in comparing longitudinal trends between dimensions, or in

the association between the dimensions and how that association evolves over time,

joint analysis of all the outcomes is preferable. In fact, dimensions are constructed

by responses from the same individuals, then, it is reasonable to think that there

may exist some correlation among different dimension scores for the same patient.

Consequently, the joint analysis of all the dimensions could accommodate some ex-

tra variability that the independent model cannot account, and therefore, improve

the modelling technique. Several regression approaches have been proposed in the

literature for the joint analysis of different responses, some of them focusing on

longitudinal data framework (Verbeke et al., 2014). In this chapter we propose a

regression approach based on the beta-binomial distribution for the joint analysis of

more than one dimension, both in cross-sectional and longitudinal framework.

In terms of notation, from now on and the rest of the chapter, we will refer to the

joint analysis of more than one response variable as multivariate analysis, whereas

the separately analysis of each outcome variable will be considered as univariate

analysis.

This chapter is organised as follows. In Section 4.2, we present a short review
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of some multivariate analysis approaches proposed in the literature, especially for

the joint analysis of different dimensions containing repeated measurements over

time. In Section 4.3, we introduce a model proposal for the joint analysis of all the

PRO dimensions provided by a questionnaire. Following, considering the proposed

model approach we carry out a multivariate analysis of the questionnaires applied

in the COPD data which have been analysed in Chapter 2 and Chapter 3 in a

univariate approach. Finally, in Section 4.5, we present a discussion about the

proposed methodology and introduce some limitations that allow us to think about

some future work.

4.2 Background

A number of approaches have been proposed in the literature for the joint mod-

elling of multivariate longitudinal outcomes (Verbeke et al., 2014). These model

approaches belong to different modelling traditions and their construction is based

on different arguments. In fact, they differ in a number of formal characteristics,

such as the structure (balanced or unbalanced), the scale of the observed outcomes

(continuous, ordinal or binary), or the way the association between and across out-

comes is modelled (with or without latent variables). In fact, the latter aspect is

important given that the use of latent variables allows for more flexible data struc-

tures but usually also has some limitations with respect to the interpretation of the

parameters.

For the remainder of the chapter, assume that Y 1, . . . ,Y k are the vectors of ran-

dom variables associated with the longitudinal measurements for the k dimensions

and let Y be the vector of all random variables.

The first modelling approach attempts to specify directly the joint density f(y)

of Y . Specification of a marginal model for Y requires assumptions about the

marginal association among the repeated measurements within each of the dimen-

sions, but also must include assumptions on the association between elements of

any two dimensions Y l and Y s, where l 6= s. However, when the dimensions Y l,

l = 1, . . . , k, are of different types (e.g. continuous or discrete) and/or in the case

of unbalanced data this approach becomes hard to deal with. When the data are

discrete, likelihood-based marginal models can be formulated (Molenberghs and Ver-

beke, 2005), but unlike the Gaussian case, they are difficult to implement unless tk

is sufficiently small (Verbeke et al., 2014), where t is the number of time points at

which measurements have been taken. In COPD Study (see Chapter 1) for exam-
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ple, measurements of different individuals are provided in different time points. In

fact, the number of different days where an outcome was measured, is equal to 656

and taking into account that a maximum of 4 measurements is provided by each

patient, the data can be considered highly unbalanced. Therefore, due to continuity

assumption of the time variable, the number of instances where observations were

measured is very high, making the specification of the joint density extremely hard.

One way to avoid the direct specification of a joint distribution for Y is to model

a subject’s measurement on a given outcome at a particular time point, conditioned

on all other tk − 1 observations. In a longitudinal context, it is often considered

natural only to condition on the past, which can be done through the so-called tran-

sition models. Transition models for discrete longitudinal data (Diggle et al., 2002)

consider the time course as a sequence of states and that transition probabilities

to be in a specific state at a particular time point depends on the previous time

point(s), but extensions to multivariate longitudinal data are possible (Zeng and

Cook, 2007). However, these extensions differ in the way the associations among

observations are modelled for the different outcomes. In fact, with more than two

outcomes, many possible factorizations are possible, all potentially leading to differ-

ent results (Diggle et al., 2002). Hence, transition models are often not considered

as the preferred choice to analyse high-dimensional multivariate longitudinal data.

In addition, similar to the specification of the marginal density function approach,

the assumption that the time, measured as continuous, is divided in instances leads

to highly unbalanced data which complicates the model development.

It is known that when either the number of dimensions or the number of instances

is high, the models defined above lead to several estimation problems (Verbeke et al.,

2014). When modelling high-dimensional longitudinal data, one option is to use one

or more latent variables for the outcome dimension, reducing the dimensionality of

the multivariate vector of outcomes. For example in PRO context, the model as-

sumes that the observed dimensions are measuring one or more underlying concepts

characterising the health-status the questionnaire is trying to assess. The general

idea is to use a factor-analytic, or principal-component type, analysis to first reduce

the dimensionality of the response vector and to use standard longitudinal models

for the analysis of the principal factors (Oort, 2001). Although dimensionality prob-

lems are solved by applying the reduction, the disadvantage is that we cannot always

interpret the resulting outcome and therefore, the model cannot be properly inter-

preted. In addition, this methodology does not correct the unbalancedness problem

of the presented multivariate analysis approaches.
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However, there exists a very flexible class of models often used for the analysis of

multivariate longitudinal data, the family of mixed-effects models. In fact, we have

made use of this approach when analysing, in a univariate approach, longitudinal

data in Chapter 3. This approach assumes that the observations represent realiza-

tions of a latent subject-specific trajectory which can be modelled parsimoniously

using relatively a small number of subject-specific parameters. Such models have

the main advantage that they do not assume balancedness, allowing for different

number of observations per individual and/or measurements of different individuals

taken at different time points.

In the next section we present two different mixed-effects models for analysing

longitudinal data in a multivariate approach. We detail the models proposal, ad-

vantages and disadvantages of each approach and offer an ‘easy’ way to compare

univariate and multivariate regression parameters in some circumstances.

4.3 Beta-binomial mixed-effects model approach

In this section we present a multivariate regression approach based on mixed-effects

models for the joint analysis of correlated dimensions drawn from a beta-binomial

distribution. Therefore, based on the mixed-effects theory, we consider the BBmm

general approach developed in Chapter 3 for performing the estimation and infer-

ence of the multivariate model proposal. The idea consist of using random effects

to accommodate not only the correlation of the repeated measurements within the

dimensions, but also the correlation that could exist among the different dimensions.

Although many authors have proposed the use of random-effects models for multi-

variate repeated measurements (Reinsel, 1984; MacCallum et al., 1997), it must be

pointed out that examples in the context of multivariate nonlinear or GLMM are

less common (Verbeke et al., 2014).

It is worth noticing that the estimation and inference theory for BBmm approach

has already been developed in Chapter 3. Hence, the objective of this section will

be the proposal of a model definition adapted to the characteristics of multivariate

longitudinal beta-binomial data.

4.3.1 Shared random effects approach

McCulloch (2008) proposed the shared random effects approach for jointly mod-

elling multiple outcomes of mixed types. He defined the model in a cross-sectional
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context however, its extension to longitudinal data is straightforward. The basic

idea is to use a random effect to build in the correlation between the dimensions,

assuming that conditional on the random effect u the dimensions are independent.

The conditionally independent assumption reflects the belief that a common set u

of underlying characteristics of the individual governs the outcomes process.

For instance, consider that we have two vectors of beta-binomial random vari-

ables Y 1 and Y 2 associated with the measurements of the same n patients for

different dimensions, and assume that we are interested in modelling them as a

function of a covariate X. For the sake of clarity, we only consider two dimensions

although extension to more dimensions is immediate. If we analyse the outcomes

separately, as done in Chapter 2, we get that

Y 1
i ∼ BB(m1

i , p
1
i , φ

1) indep. i = 1, . . . , n

logit(p1i ) = β10 + β11xi,

Y 2
i ∼ BB(m2

i , p
2
i , φ

2) indep. i = 1, . . . , n

logit(p2i ) = β20 + β21xi.

(4.1)

However, while Equation (4.1) would be sufficient for separate analysis, it does not

accommodate the correlation between Y 1
i and Y 2

i , i = 1, . . . , n. An option to skip the

problem is to introduce a random effect per individual that will be shared by both

dimensions. Equation (4.1) is modified accordingly by modelling the distributions

conditional on the random effect u = (u1, . . . , un)′,

Y 1
i |ui ∼ BB(m1

i , p
1
i , φ

1) indep. i = 1, . . . , n

logit(p1i ) = γ10 + γ11xi + ui,

Y 2
i |ui ∼ BB(m2

i , p
2
i , φ

2) indep. i = 1, . . . , n

logit(p2i ) = γ20 + γ21xi + λui, ,

ui ∼ N (0, σ2u).

(4.2)

In general model formulation, the λ multiplying ui in the equation for Y 2
i is included

to account for the fact that the linear predictors for Y 1 and Y 2 may be measured

on different scales. This formulation is useful when, for instance, we are modelling

outcomes following different distributions and hence, the random effects are included

in different transformations of the linear predictor (e.g. logit, probit, logarithm,

exponential). However, in this case, we are modelling outcomes drawn by the same

distribution using the same transformation of the conditioned expectation for the



4.3. Beta-binomial mixed-effects model approach 145

linear predictor construction. Therefore, as both linear predictor are defined in the

same scale, we can assume that λ = 1.

Although we have defined the model assuming that all the dimensions follow

a beta-binomial distribution, one of the main characteristics of the shared random

effects approach is that dimensions can be drawn from different distributions and

hence, different discrete and continuous variables can be analysed jointly. In ad-

dition, the number of dimensions involving the analysis does not alter the dimen-

sionality of the joint density or likelihood integration as increasing the number of

dimensions does not alter the number of random effects in the model,

f(y) =

∫
f(y1, . . . , yk|u)f(u)du =

∫ k∏
l=1

f(yl|u)f(u)du,

where k is the number of dimensions. In fact, this is the main advantage of the

shared random effects models compared to other commonly used approaches.

In order to compare fixed effects in the separate or joint model, care must be

taken. As it was discussed in Chapter 2, we cannot compare like with like fixed effects

of marginal and conditional models. In fact, if we try to calculate the marginal

mean of each dimensions for the BBmm approach we end up that there is not a

closed form. However, we could apply the approximated relationship between the

logit and the probit link functions defined in Equation (3.43) to conclude with an

approximated comparison of the fixed effects in both approaches. Let us assume

that Φ(X) = Pr{Z < X|X}, where Z ∼ N (0, 1) and Φ() is the standard normal

cumulative density function. On the one hand, we have that

E[Y l
i ] = E

[
exp(γl0 + γl1xi + ui)

1 + exp(γl0 + γl1xi + ui)

]
≈ E

[
Φ(c(γl0 + γl1xi + ui))

]
= E

[
Pr
(
Z < c(γl0 + γl1xi + ui)|ui

)]
= Pr

[
Z < c(γl0 + γl1xi + ui)

]
= Pr

[
Z − cui√
1 + cσu

<
c√

1 + cσu
(γl0 + γl1xi)

]
= Φ

(
c√

1 + cσi
(γl0 + γl1xi)

)
,

(4.3)

where the fourth identity holds because the expected value of the conditional prob-
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ability is the unconditional probability (McCulloch, 2008) and c = (16
√

3)/(15π),

l = 1, 2. On the other hand, based on the marginal model, it is straightforward to

conclude that

E[Y l
i ] = E

[
exp(βl0 + βl1xi)

1 + exp(βl0 + βl1xi)

]
≈ Φ

(
c(βl0 + βl1xi)

)
. (4.4)

Therefore, based on Equation (4.3) and Equation (4.4), we can compare the fixed

effects in the univariate and multivariate approaches by

βlr =
γlr√

1 + cσu
, r = 0, 1. (4.5)

In terms of the BBmm approach definition in Equation (3.23), we can rewrite the

multivariate longitudinal (or hierarchical) model in the following way. Assume that

we have n different individuals which report ti outcomes repeatedly in k dimensions,

so

Y l
ij |ui ∼ BB(ml

i, p
l
ij , φ

l) indep.

ηlij = logit(plij) = βl0 + βl1xij + zijui

u = (u1, . . . , un)′ ∼ N (0,D)

i = 1, . . . , n, j = 1, . . . , ti, l = 1, . . . , k. Or equivalently, in a matrix way

η = Xβ +Zu

where,

X = Ik ⊗X∗, X∗i =


1 xij1 · · · xijp
...

...
. . .

...

1 xiti1 · · · xitip

 ,

Z = 1k ⊗Z∗,Z∗ =


1t1 0 · · · 0

0 1t2 · · · 0
...

...
. . .

...

0 0 · · · 1tn

 ,

β = (β1, . . . ,βk)′, βl = (βl0, . . . , β
l
p)
′,

u = (u1, . . . , un)′,
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being p the number of covariates in the model and 1s a 1s vector of length s,

i = 1, . . . , n, j = 1, . . . , ti and l = 1, . . . , k. Notice that compared to the BBmm

approach defined in Chapter 3, in the multivariate model we allow φl the dispersion

parameter of the beta-binomial distribution vary from one dimension to the other.

One of the disadvantages of the shared random effects approach when analysing

repeated measurements jointly, is that the correlation between different dimensions

is determined by the dimension’s intrinsic correlation given by the repeated mea-

surements. For example, assume that Y 1 and Y 2 are vectors of random variables

representing different dimensions which contain repeated measurements for a set of

n individuals and that we apply a longitudinal model with shared random intercepts,

η1 = logit(p1) = β01n + u+ β1t,

η2 = logit(p2) = β21n + u+ β3t,

where u ∼ N (0, σuIn) and p1 and p2 are the probability parameters of the con-

ditional Y 1 and Y 2 beta-binomial vectors of variables respectively. Based on the

latent approach developed in Chapter 3 Section 3.3.4, we can define the latent vari-

ables associated with each dimension as

y1∗ = β01n + u+ β1t+ ε1

y2∗ = β21n + u+ β3t+ ε2

where εl are independent error terms that follow a logistic distribution, l = 1, 2.

We can calculate the correlation between the latent variables associated with each

dimension for the ith individual as

Corr[Y 1∗
ij , Y

2∗
is ] =

Cov
[
Y 1∗
ij , Y

2∗
is

]
√
Var

[
Y 1∗
ij

]√
Var

[
Y 2∗
is

]
=

Cov
[
β0 + ui + β1tij + ε1ij , β2 + ui + β3tis + ε2is

]
√
Var

[
β0 + ui + β1tij + ε1i j

]√
Var

[
β2 + ui + β3tis + ε2is

]
=

Var [ui]√
σ2u + π2/3

√
σ2u + π2/3

=
σ2u

σ2u + π2/3
,

(4.6)
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where 1 ≤ j ≤ s ≤ ti and j 6= s.

Additionally, we have that the correlation between observations of the same

individual in each dimension is defined as

Corr
[
Y 1∗
ij , Y

1∗
is

]
=

σ2u
σ2u + π2/3

, (4.7)

where 1 ≤ j 6= s ≤ ti, l = 1, 2.

Therefore, the correlation structure within each dimension dictates the associ-

ation between the different dimensions. For example, the model would not allow

that Y 1 and Y 2 to be independent if repeated measurements of Y 1 are strongly

correlated. In fact, the assumption that the error components follow a logistic dis-

tribution does not impose any restriction and, if any distribution has been chosen,

we would have reached the same conclusion (Verbeke et al., 2014). The restriction

of the correlation can be relaxed by allowing different but correlated random effects

for the various dimensions.

4.3.2 Correlated random effects approach

In the previous section we have described that the shared random effects approach

contains many desirable properties such as (i) allowing for different types of out-

comes; (ii) allowing for (highly) unbalanced data; and (iii) ‘easy’ transition of the

comparison of the fixed effects form the multivariate to the univariate model. How-

ever, we have mentioned that in some occasions the rigidity of the imposed corre-

lation structures makes them unrealistic to be useful in real practise. This can be

solved by allowing for different random effects for each dimension as,

Y l
ij |uli ∼ BB(ml

i, p
l
ij , φ

l) indep.

ηlij = logit(plij) = βl0 + βl1xij + ziju
l
i

u = (u1′, . . . ,uk
′
)′ ∼ N (0,D)

(4.8)

where ul = (ul1, . . . , u
l
n)′, i = 1, . . . , n, j = 1, . . . , ti, l = 1, . . . , k.

This new model relaxes the shared random effects assumption in the sense that

the correlation structure of the individual outcomes no longer dictates the association

between pairs of measurements from different dimensions. Under the conditional
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independence the joint marginal density is given by

f(y) =

∫
f(y1, . . . ,yk|u)f(u)du

=

∫
· · ·
∫ k∏

l=1

f(yl|ul)f(u1, . . . ,uk)du1 · · · duk,
(4.9)

which increases the dimensionality as more dimensions and, hence, more random

effects, are included in the model. In fact, the Laplace approximation developed in

Chapter 3, Section 3.3.2, for the calculation of the marginal likelihood may involve

in inappropriate approximations if the dimensionality of the integral is high (Shun

and McCullagh, 1995). Moreover, due to the complexity of the beta-binomial dis-

tribution, when more than two dimensions are analysed the estimation procedure

developed in Chapter 3 is not tractable any more. In fact, many PRO questionnaires

decompose the health-status that are assessing in more than two dimensions. Con-

sequently, in thesis, the real data will be analysed by the proposed shared random

effects approach.

4.4 Application to COPD Study

In this section, we perform the COPD Study analysis carried out in Chapter 2 and

Chapter 3 in a multivariate approach. On the one hand, we are going to adjust a

model for the joint analysis of the eight dimensions provided by SF-36 in a cross-

sectional fashion and compare the results with the univariate analysis provided in

Chapter 2. On the other hand, we carry out a longitudinal joint analysis of the three

dimensions provided by the SGRQ. We will compare the obtained results with the

results provided in Chapter 3, where each of the dimension was analysed separately

in a univariate approach.

4.4.1 Cross-sectional analysis

In this section, we analyse the eight dimensions provided by the SF-36 Health Survey

in the COPD Study simultaneously, using a multidimensional approach based on

the shared random effects model. In fact, the shared random effects approach is

applied for accommodating the correlation that may exist between measurements

of the same patients in different dimensions. In Chapter 2 we have analysed each

of the dimension separately in an univariate approach. Consequently, in order to
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maintain the model assumption for assessing the differences that may exist between

the univariate and multivariate models, following Chapter 2, exclusively data from

the first visit to the outpatient clinic is going to be considered. Consequently, the

joint analysis of the SF-36 dimensions is going to be performed in a cross-sectional

framework.

In Section 4.3.1 we have shown that the shared random effects approach is based

on a general mixed-effects model where the model is specified in a particular way.

Therefore, estimation and inference of the parameters involving the model do not

require any extension of the BBmm approach developed in Chapter 3, with the

exception of the dispersion parameter of the beta-binomial distribution, which can

vary for different dimensions. In fact, the model we are going to apply for the joint

analysis of the eight dimensions of the SF-36 in COPD Study is defined as

Y l
i |ui ∼ BB(ml

i, p
l
i, φ

l) indep.

ηli = log
pli

1− pli
= x′iβ

l + ui
(4.10)

where xi is the ith row of a full rank matrix composed by the given covariates, βl

are the regression parameters for each dimension and ui are independent random

effects being ui ∼ N (0, σ2u), i = 1, . . . , 543, l = 1, . . . , 8. Notice that in the COPD

Study the number of individuals is equal to 543. The model defined in Equation

(4.10) can be redefined following the generic notation of BBmm approach as

Y |u ∼ BB(m,p,φ) indep.

η = log
p

1− p
= X∗β + u

where X = I8 ⊗ X being X the model matrix composed by the given covari-

ates defined in Equation (4.10), Y = (Y 1′, . . . ,Y 8′)′ being Y l = (Y l
1 , . . . , Y

l
543) the

outcomes variable vector of the lth dimension, β = (β1′, . . . ,β8′)′ a vector con-

taining the regression coefficients involving the linear predictor of each dimension,

φ = (φ1, . . . , φ8)′ the vector of the dispersion parameters of the beta-binomial distri-

bution and u = (u1, . . . , u543)
′ independent normally distributed random effects with

variance-covariance matrix equal to σ2uI543. Hence, the BBmm approach developed

in Chapter 3 has been used to fit the model.

Table 4.1 and Table 4.2 show the results for the univariate and multivariate

analysis of the SF-36 dimensions in COPD data. Although in the multivariate
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approach all the dimensions have been analysed jointly, due to the lack of space,

results are displayed dividing physical dimensions (Table 4.1) and mental dimensions

(Table 4.2). For the variable selection, we retain in the model those covariates whose

influence in the outcome variable was statistically significant (p-value< 0.05) in at

least one of the approaches. The tables show the estimated value of the regression

parameters β together with the standard deviation and the p-value associated with

the significance of the estimation in both approaches. Additionally, they display

the estimation and standard deviation of the vector of dispersion parameters of the

beta-binomial distributions, φ.

The first conclusion we address from Table 4.1 and Table 4.2 is that the estimated

values of the regression parameters are quite similar in the two approaches, both in

magnitude and sign. Therefore, they lead to similar interpretations regarding the

effect of the covariates in the analysed dimensions. However, there are some differ-

ences that could lead to contradictory results in terms of the significance of the effect

of the covariates. As it can be appreciated, the inclusion of a shared random effect

that accounts for the correlation between different dimensions reduces the dispersion

parameter of the beta-binomial distribution, as the variance structure is split in two

components. Consequently, the standard deviations associated with the estimates of

the regression parameters differ, being lower for the multivariate approach in most

of the dimensions (6 out of 8). Therefore, different conclusions will be obtained

for instance in mental health dimension if a univariate or a multivariate approach

would have been implemented. In fact, age and FEV1% covariates do not have a

statistically significant effect (p-values equal to 0.051 and 0.069 respectively) in the

univariate approach, while in the joint analysis of the dimensions both covariates

offer statistically significant effects (p-values equal to 0.045 and 0.023 respectively).

Summarizing, we can state that, although the joint analysis of cross-sectional

dimensions do not alter the estimates of the regression parameters in the model, there

could be differences in the variance of the estimates leading to contradictory results

in terms of the significance of the effect. Therefore, in cases where it is possible, we

recommend the use of the multivariate approach as it offers a better measurement

of the variability of the data splitting it in two components, the correlation and the

overdispersion.
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Table 4.1: Multivariate and univariate analysis of the eight dimensions provided by
the SF-36 in COPD patients. Results for the physical dimensions are displayed.

Multivariate (σ = 0.535) Univariate (Chapter 2)

Estimate SD p-value Estimate SD p-value

Physical functioning
Intercept -0.478 0.386 0.215 -1.091 0.455 0.017

Dyspnea2 -0.652 0.096 < 0.001 -0.580 0.112 < 0.001
Dyspnea3 -1.417 0.102 < 0.001 -1.281 0.120 < 0.001
Dyspnea4 -2.432 0.151 < 0.001 -2.207 0.176 < 0.001
Depression -0.521 0.109 < 0.001 -0.544 0.130 < 0.001
Anxiety -0.415 0.076 < 0.001 -0.404 0.090 < 0.001
Age 0.009 0.003 0.005 0.012 0.004 0.002
BMI -0.021 0.006 < 0.001 -0.018 0.007 0.009
FEV 0.007 0.002 0.001 0.006 0.003 0.012
Sex 0.467 0.130 < 0.001 0.461 0.155 0.003
WalkingTest 0.003 < 0.001 < 0.001 0.004 < 0.001 < 0.001

log(φ) -3.845 0.214 − -2.826 0.116 −

Role physical
Intercept 1.310 0.707 < 0.001 1.100 0.690 0.111
Dyspnea2 -1.366 0.354 < 0.001 -1.296 0.340 < 0.001
Dyspnea3 -2.478 0.356 < 0.001 -2.349 0.341 < 0.001
Dyspnea4 -3.429 0.417 < 0.001 -3.291 0.405 < 0.001
Anxiety -0.812 0.204 < 0.001 -0.732 0.199 < 0.001
Age 0.020 0.009 0.030 0.021 0.009 0.020

log(φ) -0.306 0.117 − -0.103 0.109 −

Bodily pain
Intercept 2.575 0.393 < 0.001 2.454 0.396 < 0.001
Dyspnea2 -0.495 0.227 0.030 -0.504 0.227 0.027
Dyspnea3 -0.837 0.239 < 0.001 -0.811 0.239 0.001
Dyspnea4 -1.160 0.312 < 0.001 -1.091 0.316 0.001
Anxiety -0.652 0.162 < 0.001 -0.612 0.163 < 0.001
FEV -0.013 0.005 0.010 -0.012 0.005 0.020

log(φ) -0.742 0.089 − -0.559 0.085 −

General health
Intercept -0.950 0.307 0.002 -1.005 0.343 0.004
Dyspnea2 -0.412 0.099 < 0.001 -0.391 0.110 < 0.001
Dyspnea3 -1.012 0.108 < 0.001 -0.969 0.120 < 0.001
Dyspnea4 -1.235 0.155 < 0.001 -1.175 0.173 < 0.001
Depression -0.539 0.139 < 0.001 -0.560 0.156 < 0.001
Anxiety -0.390 0.094 < 0.001 -0.362 0.105 0.001
Age 0.018 0.004 < 0.001 0.018 0.004 < 0.001
FEV 0.006 0.003 0.041 0.005 0.003 0.056

log(φ) -2.636 0.108 − -2.297 0.117 −

SD: Standard Deviation; BMI: Body Mass Index; FEV1%: Forced Expiratory Volume in one
second in percentile.
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Table 4.2: Multivariate and univariate analysis of the eight dimensions provided by
the SF-36 in COPD patients. Results for the mental dimensions are displayed.

Multivariate (σ = 0.535) Univariate (Chapter 2)

Estimate SD p-value Estimate SD p-value

Vitality
Intercept 0.417 0.286 0.145 0.342 0.335 0.308
Dyspnea2 -0.792 0.119 < 0.001 -0.765 0.137 < 0.001
Dyspnea3 -1.592 0.123 < 0.001 -1.544 0.142 < 0.001
Dyspnea4 -1.947 0.157 < 0.001 -1.893 0.183 < 0.001
Depression -0.928 0.142 < 0.001 -0.927 0.166 < 0.001
Anxiety -0.644 0.094 < 0.001 -0.598 0.112 < 0.001
Age 0.018 0.004 < 0.001 0.018 0.005 < 0.001

log(φ) -2.557 0.107 − -1.891 0.084 −

Social functioning
Intercept 2.859 0.249 < 0.001 2.674 0.250 < 0.001
Dyspnea2 -0.657 0.266 0.014 -0.565 0.268 0.035
Dyspnea3 -1.402 0.265 < 0.001 -1.254 0.267 < 0.001
Dyspnea4 -1.780 0.310 < 0.001 -1.598 0.314 < 0.001
Depression -0.459 0.225 0.041 -0.471 0.232 0.043
Anxiety -1.232 0.158 < 0.001 -1.179 0.163 < 0.001

log(φ) -1.278 0.120 − -1.036 0.109 −

Role emotional
Intercept 2.924 0.404 < 0.001 2.769 0.390 < 0.001
Dyspnea2 -0.664 0.434 0.126 -0.612 0.418 0.143
Dyspnea3 -1.495 0.429 < 0.001 -1.376 0.414 0.001
Dyspnea4 -2.164 0.485 < 0.001 -2.042 0.467 < 0.001
Anxiety -1.705 0.233 < 0.001 -1.642 0.227 < 0.001

log(φ) 0.579 0.154 − 0.669 0.150 −

Mental health
Intercept 1.229 0.409 0.003 0.994 0.460 0.031
Dyspnea2 -0.380 0.128 0.003 -0.333 0.142 0.019
Dyspnea3 -0.872 0.134 < 0.001 -0.793 0.149 < 0.001
Dyspnea4 -1.225 0.174 < 0.001 -1.135 0.196 < 0.001
Depression -0.852 0.137 < 0.001 -0.866 0.157 < 0.001
Anxiety -1.302 0.095 < 0.001 -1.244 0.108 < 0.001
Age 0.011 0.004 0.045 0.010 0.005 0.051
BMI 0.018 0.008 0.024 0.018 0.009 0.044
FEV -0.007 0.003 0.023 -0.006 0.003 0.069

log(φ) -3.046 0.177 − -2.297 0.117 −

SD: Standard Deviation; FEV1%: Forced Expiratory Volume in one second in percentile; BMI:
Body Mass Index.
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4.4.2 Longitudinal analysis

The second real data application of the beta-binomial shared random effects ap-

proach is performed in a longitudinal or repeated measurements context. Similar to

the joint analysis of the SF-36 Health Survey, one of the objectives of this section

is the comparison of the longitudinal analysis of some dimensions in univariate and

multivariate approaches. For this aim, have considered the analysis of the SGRQ in

COPD Study which was carried out in Chapter 3, where each of the three dimensions

was analysed separately. As a result of the univariate analysis, several conclusions

were addressed in terms of the evolution of the patients with COPD. Therefore, in

this section we will perform the same analysis of the dimensions but analysing them

all together in a multivariate approach. Therefore, differences in the results in terms

of the evolution of the patients provided by both approaches will be compared.

In Chapter 3, we have analysed each dimension separately with a random inter-

cept and slope model. In order to maintain the model assumption, we propose a

shared random intercept and slope effects model for the joint analysis of the dimen-

sions provided by the SGRQ. In fact, the model could be defined for any longitudinal

multivariate analysis where random intercepts and slopes would be shared. For in-

stance, assume that we have n individuals measured in k dimensions where the lth

dimension contains tli repeated measurements of the ith individual, i = 1, . . . , n,

l = 1, . . . , k. Then, we can propose the following multivariate random intercept and

slope model based on BBmm approach,

Y l
ij |ui, vi ∼BB(ml

i, p
l
ij , φ

l) indep.

ηlij = log
plij

1− plij
= (βl0 + ui) + (βl1 + vi)Tij

(4.11)

where Y l
ij is the random variable associated with the jth repeated measurement of

the ith individual in the lth dimension, Tij is the time in years from the beginning

of the study where the jth observation of the ith individual was performed, βl0 is

the overall intercept, βl1 is the overall slope and ui and vi are the random intercept

and slope of the ith individual respectively assuming that ωi = (ui, vi) ∼ N (0,D),

where

D =

(
σ2u 0

0 σ2v

)
,

l = 1, . . . , k, i = 1, . . . , n, j = 1, . . . , tlij .
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Table 4.3 shows the results of the multivariate longitudinal model proposed in

Equation (4.11) applied to activity, impacts and symptoms dimensions of the SGRQ

in the COPD Study. It also displays the longitudinal univariate results of each

dimension. The main aim of this analysis is to measure the evolution of the patients

with COPD and hence, contrary to the previous COPD multivariate analysis in

Section 4.4.1, all the repeated measurements of each individual have been introduced

in the model. In addition, in order to assess the evolution of the patients, such as

performed in Chapter 3 Section 3.5.2 and as it was showed in Equation (4.11), only

time has been introduced as a covariate in the model.

Table 4.3 displays the estimates and standard deviations of all the parameters

in the model together with the p-values associated with the effect of the covariates.

It must be noticed that in the impacts dimension there is no estimation of the

random slope in the univariate model because, as it was pointed out in Chapter 3,

the estimation of σv tended to zero.

Table 4.3: Multivariate and univariate longitudinal analysis of the SGRQ in COPD
Study.

Multivariate Univariate (Chapter 3)

Estimate SD p-value Estimate SD p-value

Activity
Intercept -0.151 0.030 < 0.001 -0.185 0.026 < 0.001
Time 0.012 0.010 0.212 0.027 0.008 0.001

log(φ) -2.627 0.058 − -3.305 0.087 −
σu 0.941 0.029 − 1.180 0.037 −
σv 0.130 0.005 − 0.126 0.006 −

Impacts
Intercept -0.962 0.025 < 0.001 -0.993 0.026 < 0.001
Time -0.003 0.008 0.715 0.004 0.008 0.670

log(φ) -3.627 0.095 − -3.541 0.095 −
σu 0.941 0.029 − 1.060 0.033 −
σv 0.130 0.005 − − − −

Symptoms
Intercept -0.356 0.033 0.000 -0.305 0.029 0.000
Time 0.025 0.011 0.019 0.006 0.009 0.499

log(φ) -2.228 0.045 − -2.617 0.058 −
σu 0.941 0.029 − 0.759 0.025 −
σv 0.130 0.005 − 0.097 0.006 −

SD: Standard Deviation; σu: standard deviation of the random intercepts; σv: standard deviation
of the random slopes.
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The first conclusion we address from Table 4.3 is that, although estimates re-

garding the intercept are quite similar in both approaches, there are considerably

differences in both the estimation and significance of the time covariate. In fact, it

can be appreciated in Table 4.3 that in the univariate analysis the unique dimen-

sion where the evolution of the patients is statistically significant is the activity,

whereas in the multidimensional approach it is the symptoms. Therefore, it seems

that both regression approaches lead to different conclusions about the evolution of

the patients with COPD. However, in our opinion, some details must be taken into

account before performing that comparison, and we will discuss them in the next

section.

4.5 Discussion and future work

In this chapter we have proposed a model based on a beta-binomial mixed-effect

model approach for the joint analysis of different but correlated dimensions provided

by different PRO questionnaires. The model is based on the shared random effects

approach proposed by McCulloch (2008) and as the name indicates, several random

effects are shared by different dimensions in order to accommodate the correlation.

The model can be applied to cross-sectional as well as longitudinal (hierarchical)

multivariate data. The advantage of the model is that, compared to other commonly

used multivariate analysis techniques, such as transition or reduction approaches,

dimensions drawn from different distributions can be jointly analysed and especially,

that the unbalanceness of the data, or continuity of the time variable, is not a

problem. In addition, compared to the correlated random effects model introduced

in Section 4.3.2, we do not have to concern about the dimensionality of the model

when a large amount of correlated dimensions are analysed, because the random

effects in the model are the same regardless of the number of dimensions.

In Section 4.4.1, we have shown in Table 4.1 and Table 4.2 that in cross-sectional

application the shared random effects approach lead to similar estimates compared

to the univariate approach, however the measurement of the correlation between

dimensions accommodates an extra variability. In fact, the estimates of the disper-

sion parameter of the beta-binomial distribution reduces in most of the times and

consequently, standard deviations of the estimates became smaller. Hence, variables

that in the univariate analysis were treated as non-informative, turned out to have

a statistically significant effect in the multivariate approach.

On the contrary, in Section 4.4.2, Table 4.3 displays a completely different situa-



4.5. Discussion and future work 157

tion for the longitudinal application where variables that were statistically significant

in the univariate analysis are not significant in the multivariate analysis and vice

versa. These results lead to completely misleading conclusions about the evolution

of patients with COPD. In Section 4.3.1, we have developed a procedure to compare

regression coefficients in univariate and multivariate approaches in cross-sectional

framework. Equation (4.5) shows that the relationship between regression parame-

ters lies in a multiplicative term that depends on the variance of the random effects.

However, as we will show in the longitudinal context the relationship is not so direct.

In shared random effects context, if we try to compare the fixed effects between

both univariate and multivariate longitudinal approaches, the marginal expectation

of an outcome in the multivariate approach is obtained by

E[Y l
ij ] = E

[
exp

(
(γl0 + ui) + (γl1 + vi)Tij

)
1 + exp

(
(γl0 + ui) + (γl1 + vi)Tij

)]
≈ E

[
Φ
(
c((γl0 + ui) + (γl1 + vi)Tij)

)]
= E

[
Pr
(
Z < c

(
(γl0 + ui) + (γl1 + vi)Tij

)
|ui, vi

)]
= Pr

[
Z < c

(
(γl0 + ui) + (γl1 + vi)Tij

)]
= Pr

[
Z − c(ui + viTij)√
1 + c(σu + σvTij)

<
c√

1 + c(σu + σvTij)
(γl0 + γl1Tij)

]

= Φ

(
c√

1 + c(σu + σvTij)
(γl0 + γl1Tij)

)
,

and in the univariate approach is given by

E[Y l
ij ] = E

[
exp

(
(βl0 + uli) + (βl1 + vli)Tij

)
1 + exp

(
(βl0 + uli) + (βl1 + vli)Tij

)]

≈ Φ

(
c√

1 + c(σlu + σlvTij)
(βl0 + βl1Tij)

)
,

where c = 16
√

3/(15π), l = 1, . . . , k, i = 1, . . . , n, j = 1, . . . , tlij . Notice that,

while in the first marginal expectation the random effects ui and vi correspond to

the shared random effect model, in the second equation they correspond to the

univariate analysis.
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Therefore, we have the following relationship

1√
1 + c(σu + σvTij)

(γl0 + γl1Tij) =
1√

1 + c(σlu + σlvTij)
(βl0 + βl1Tij), (4.12)

which as it can be appreciated, does not allow a straightforward comparison of the

parameters β. Consequently, unlike in the cross-sectional comparison in Equation

(4.5), the estimates of the fixed effects can differ considerably in univariate and

multivariate approaches. In fact, the shared random effects approach considers that

the subject-specific intercept and slope is equal in all the dimensions, i.e. that

the initial status and evolution of each patient differs in the same magnitude from

the population’s overall initial status and evolution in all the dimensions. Therefore,

based on this assumptions, compared to the univariate approach, modifications must

be done in the estimation of the fixed effects in order to the model be correct. In

addition, due to the shared random effects assumption, each of the approach leads to

different estimations of the dispersion parameters φ, σu and σv. Indeed, compared to

the cross-sectional framework, as it has been shown in Equation (4.6) and Equation

(4.7), each random effect must account for two correlations, the within dimension

and between dimensions. Consequently, as it can be appreciated in Table 4.3, the

longitudinal multivariate approach enlarges the estimated value of φ in most of the

dimensions, increasing the standard deviation of the estimation of the fixed effects.

Hence, different estimations and standard deviations can lead to different significance

test, leading to different interpretation of the effects of the covariates.

In fact, we have mentioned that the shared random effects modelling approach

could have some inconveniences when dealing with longitudinal data as the same

random effects must accommodate the correlation between dimensions and within

dimensions and in some cases, the considered assumption could be too rigid. In Sec-

tion 4.3 we have detailed that the correlation between two latent variables associated

with two different dimensions is determined by the correlation within dimensions,

which may be inappropriate in cases where there is a high correlation between the re-

peated measurements, but dimensions are slightly correlated. The assumption that

the initial value and the evolution of each individual behaves equally with respect to

the population overall trend in all the dimensions may be quite unrealistic indeed.



CHAPTER 5

SOFTWARE DEVELOPMENT

“We have the duty of formulating, of summarizing, and of

communicating our conclusions, in intelligible form, in

recognition of the right of other free minds to utilize them in

making their own decisions.”

Ronald Fisher, 1890-1962

The article based on the work developed in this chapter is under preparation for submit-

ting it to a journal.

Najera-Zuloaga, J., Lee, D.-J. and Arostegui, I. (2017) PROreg: An R Package for Analysis

of Patient Reported Outcomes. (under preparation)

This chapter is focused on the implementation of the different analysis models

we have described and developed throughout the thesis in R language. We have

repeatedly mentioned that the beta-binomial distribution does not belong to the

exponential family and consequently, classical estimation procedures cannot be ap-

plied. That is why there is not much literature regarding modelling approaches

dealing with the beta-binomial distribution. Hence, due to the fact that few meth-

ods have been developed, implementation of algorithms based on the beta-binomial

distribution are not common.

The objective of this chapter is divided in two parts. In the first part, we intro-

duce and describe the R-packages available in the literature for the beta-binomial

distribution. As far as we know, it does not exist an R-package containing all the

methodology developed in this thesis. In fact, most of the packages we will mention

159
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restrict their performance to distributional fit and consequently, they do not offer

any regression approach based on the beta-binomial distribution. Therefore, the

second objective is to implement, among others, the statistical models developed

in this thesis in a R-package called PROreg, as there is no software implementation

for some of regression approaches. Additionally, the package contains many other

functions focus in the analysis of PROs, such as binomial with dispersion parameter

distribution based regression approaches or questionnaire specific functions. Indeed,

the objective of PROreg is to unify in a single R-package all the required statistical

methodology to analyse PROs, or any overdispersed binomial form, discrete and

bounded data.

5.1 R-packages for the beta-binomial distribution

There do not exist many functions that offer statistical analysis based on the beta-

binomial distribution in public domain software, especially in R language. In fact,

most of the packages containing functions to deal with the beta-binomial distribution

restrict their applicability to distributional fits. Therefore, we think that the exist-

ing R implementation has limitations when trying to analyse in both, independent

or hierarchical data framework, beta-binomial data through a regression approach,

favouring the use of GLMMs or GLMs, or even LMMs.

Table 5.1 shows the different R-packages which contain functions for dealing with

the beta-binomial distribution in a variety of analysis approaches. In the table, it

can be appreciated that although all the packages contain functions to calculate the

density and generate random realizations from a beta-binomial distribution for a

given set of parameters, most of them do not extend the analysis to an estimation

framework. Indeed, the VGAM and gamlss are the only packages which can perform

regression models based on the beta-binomial distribution, and furthermore, the

VGAM limits its applicability to independent data. Therefore, we conclude that the

gamlss is the most complete package regarding the beta-binomial distribution as

it contains functions that cover all the analysis situations displayed in Table 5.1.

However, it has been mentioned and discussed in Chapter 2 and Chapter 3 that

although the gamlss() cross-sectional regression analysis is based on the marginal

beta-binomial regression approach, there are substantial differences between the

estimation procedure of the proposed BBmm and gamlss() implementations. In

fact, in Chapter 3 it was shown that the penalisation of the profile likelihood of the

dispersion parameter of the beta-binomial in BBmm approach, improves the results
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of the parameter estimation in terms of reducing the bias. However, there is no

R-package that performs the BBmm approach developed in Chapter 3.

Table 5.1: R-packages for beta-binomial analysis.

Distribution Regression

R-package Version Dens. Rand. Est. Indep. Corr.

rmutil 1.1.0 dbetabinom() rbetabinom() − − −
TailRank 3.1.3 dbb() rbb() − − −
emdbook 1.3.9 dbetabinom() rbetabinom() − − −
VGAM 1.0-4 dbetabinom() rbetabinom() vglm() vglm() −
gamlss 5.0-2 dBB rBB gamlss() gamlss() gamlss()

Dens.: Density function; Rand: Random realizations; Est.: Estimation of the distribution; Inped.:
Independent (cross-sectional) framework; Corr.: Correlated (hierarchical) framework; Mult.:

Multivariate (shared random effects approach).

5.2 PROreg R-package

PROreg R-package is available at https://cran.r-project.org/web/packages/PROreg/.

The name of the package stands for ‘Patient Reported Outcomes Regression’ and it

offers a variety of tools, such as specific plots and regression model approaches, for

analysing different patient reported questionnaires. However, although it is focused

on the analysis of PROs, any binomial form outcome can be analysed using PROreg.

In fact, it contains regression models based on the binomial, binomial with dispersion

parameter and beta-binomial distribution for the correct analysis of any discrete

and bounded data. In addition, regression models have been developed in either

cross-sectional or hierarchical data, which increases its applicability in many real

situations.

There are many packages such as stats, that offer the analysis of regression

models in cross-sectional or hierarchical data based on the binomial or binomial with

dispersion parameter distributions (family=quasibinomial). In fact, the novelty

of the package lies in the variety of regression models based on the beta-binomial

distribution which are not so typical, especially in hierarchical framework. Apart

from the mentioned regression models, PROreg package contains additional plotting

or questionnaire-specific recoding algorithms. Indeed, the objective of the package is

to unify all the requires techniques when dealing with PROs in a regression context

in an R-package. Therefore, the PROreg R-apackage consists of the following main

https://cran.r-project.org/web/packages/PROreg/
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functions:

Table 5.2: Different functions available in PROreg R-package

Beta-binomial Binomial Additional functions

BB() BI() SF36rec()

·dBB() ·dBI() HRQoLplot

·rBB() ·rBI()
BBest()† BIest()†

BBreg()†‡ BIreg()†‡

BBmm()†‡ · BIiwls
· EffectsEst BBDelta() BImm()†‡

· EffectsEst NR()

· BBmm VarEst()

† stands for functions that contain print(); ‡ stands for functions that contain summary() and

print.summary().

PROreg package contains dependencies from other packages: fmsb, RColorBrewer,

car, matrixcalc, rootSolve, numDeriv, Matrix.

As mentioned before, the novelty of the package lies in the different regression

approaches that can be performed based on the beta-binomial distribution. There-

fore, following we are going to fully describe, both theoretically and practically, the

functions for analysing beta-binomial distributed data.

5.2.1 BB: The beta-binomial distribution

Description

Density and random generation for the beta-binomial distribution.

Usage

dBB(m,p,phi)

rBB(k,m,p,phi)
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Arguments

k number of simulations.

m maximum score number in each beta-binomial observation.

p probability parameter of the beta-binomial distribution.

phi dispersion parameter of the beta-binomial distribution.

Details

The beta-binomial distribution consists of a finite sum of Bernoulli dependent

variables whose probability parameter is random and follows a beta distri-

bution. Assume that we have Yj a set of variables, j = 1, ...,m, with m

integer, that conditioned on a random variable u, are independent and follow

a Bernoulli distribution with probability parameter u. On the other hand,

the random variable u follows a beta distribution with parameter p/φ and

(1− p)/φ. Namely,

Yj ∼ Ber(u), u ∼ Beta(p/φ, (1− p)/φ),

where 0 < p < 1 and φ > 0. The first and second order marginal moments of

this distribution are defined as

E[Yj ] = p, Var[Yj ] = p(1− p),

and correlation between observations is defined as

Corr[Yj , Yk] = φ/(1 + φ),

where j, k = 1, ...,m are different. Consequently, φ can be considered as a

dispersion parameter.

If we sum up all the variables we will define a new variable which follows a

new distribution that is called beta-binomial, and it is defined as follows. The

variable Y follows a beta-binomial distribution with parameters m, p and φ if

Y |u ∼ Bin(m,u), u ∼ Beta(p/φ, (1− p)/φ).
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Value

dBB gives the density of a beta-binomial distribution with the defined m, p and

phi parameters.

rBB generates k random observations based on a beta-binomial distribution

with the defined m, p and phi parameters.

Examples

> set.seed(12)

> # We define the parameters for the simulation.

> m <- 10

> p <- 0.4

> phi <- 1.8

>

> # We perform k beta-binomial simulations for those parameters.

> k <- 100

> bb <- rBB(k,m,p,phi)

> bb

[1] 0 10 10 9 10 10 8 0 10 4 7 10 1 0 0 10 8 5 3 0 9 2 4

[24] 0 7 0 1 0 8 6 5 0 0 0 8 0 0 0 1 10 9 7 10 1 10 3

[47] 8 4 0 8 0 10 0 2 0 1 10 10 0 4 9 2 0 8 0 0 3 9 7

[70] 4 0 5 0 0 6 7 0 1 10 0 0 0 0 0 0 3 0 0 2 0 0 3

[93] 10 0 10 10 10 0 10 1

>

> # We estimate the probability of each point for the fixed parameters.

> dd <- dBB(m,p,phi)

> # We are going to plot the histogram of the created variable,

> # and using dBB() function we are going to fit the distribution:

> hist(bb,col="grey",breaks=seq(-0.5,m+0.5,1),probability=TRUE,

main="Histogram",xlab="Beta-binomial random variable")
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5.2.2 BBest: Estimation of the parameters of a beta-binomial dis-

tribution

Description

This function performs the estimation of the parameters of a beta-binomial

distribution for the given data and maximum score number in each observation.

There are two different approaches available for performing the estimation of

the parameters: (i) method of moments, and, (ii) maximum likelihood ap-

proach.

Usage

BBest(y,m,method="MM")

Arguments

y response variable which follows a beta-binomial distribution.

m maximum score number in each beta-binomial observation.

method the method used for performing the estimation of the probability and
dispersion parameters of a beta-binomial distribution, ”MM” for the
method of moments and ”MLE” for maximum likelihood estimation.
Default ”MM”.

Details

BBest function performs the estimation and inference of the parameters of a

beta-binomial distribution for the given data. The estimations can be per-

formed using two different approaches, the method of moments (MM) and the

maximum likelihood estimation (MLE) approach.

The density function of a given observation y that follows a beta-binomial

distribution with parameters m, p and φ is defined as

f(y|p, φ) =

(
m

y

)
Γ(p/φ+ y)

Γ(p/φ)

Γ((1− p)/φ+m− y)

Γ((1− p)/φ)

Γ(1/φ)

Γ(1/φ+m)
.
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The first and second order moments are defined as

E[Y ] = mp,

Var[Y ] = mp(1− p)
[
1 + (m− 1)

φ

1 + φ

]
.

Hence, if y = (y1, ..., yn)′ is the given data, we can conclude with the MM from

the previous as

p̂MM = E[y]/m,

φ̂MM =
Var[y]−mp̂MM (1− p̂MM )

m2p̂MM (1− p̂MM )− Var[y]

where E[y] is the sample mean and Var[y] is the sample variance.

On the other hand, the MLE of both parameters is obtained from the max-

imisation of the log-likelihood of the model defined as

logL(p, φ|y) =
n∑
i=1

[
log

(
m

yi

)
+

yi−1∑
k=0

log(p+ kφ) +

m−yi−1∑
k=0

log(1− p+ kφ)

−
mi∑
k=0

log(1 + kφ)

]
,

where if yi = 0 then
yi−1∑
k=0

log(p + kφ) = 0 and if yi = mi then
m−yi−1∑
k=0

log(1 −

p+kφ) = 0. Therefore, the MLE of p and φ are obtained solving the following

score equations,

S(p) =
∂

∂p
logL(p, φ|y) =

n∑
i=1

[ yi−1∑
k=0

1

p+ kφ
+

m−yi−1∑
k=0

1

1− p+ kφ

]
= 0

S(φ) =
∂

∂φ
logL(p, φ|y) =

n∑
i=1

[ yi−1∑
k=0

k

p+ kφ
+

m−yi−1∑
k=0

k

1− p+ kφ

−
m∑
k=0

k

1 + kφ

]
= 0

Numerical algorithms are required to solve both equations. In the PROreg

package we have implemented a numerical approximation algorithm based on

the Newton-Raphson procedure.
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Value

BBest returns an object of class ‘BBest’.

The function summary (i.e., summary.BBest) can be used to obtain or print a

summary of the results.

p estimated probability parameter of the beta-binomial distribution.

phi estimated dispersion parameter of the beta-binomial distribution.

pVar variance of the estimation of the probability parameter p.

psi estimation of the logarithm of the dispersion parameter phi.

psiVar variance of the estimation of the logarithm of the dispersion
parameter psi.

m maximum score number in each beta-binomial observation.

balanced if the response variable is balanced it returns ‘yes’, otherwise ‘no’.

method the used approach for performing the estimations.

Examples

> y <- rBB(k,m,p,phi)

>

> # Performing the estimation of the parameters

>

> # Method of moments:

> MM <- BBest(y,m)

>

> MM

The probability parameter of the beta-binomial distribution: 0.7124

The dispersion parameter of the beta-binomial distribution: 1.629548

Balanced data, maximum score number: 10

>

> # Maximum likelihood approach

> MLE <- BBest(y,m,method="MLE")

>

> MLE

The probability parameter of the beta-binomial distribution: 0.7066453

The dispersion parameter of the beta-binomial distribution: 1.621879

Balanced data, maximum score number: 10



168 Chapter 5

5.2.3 BBreg: Fit a marginal beta-binomial regression model

Description

BBreg function fits a marginal beta-binomial regression model, i.e., it links the

probability parameter of a beta-binomial distribution with the given covariates

by means of a logistic link function. The estimation of the parameters in the

model is done via maximum likelihood estimation.

Usage

BBreg(formula,m,data,maxiter=100)

Arguments

formula an object of class ‘formula’ (or one that can be coerced to that class):
a symbolic description of the model to be fitted.

m maximum score number in each beta-binomial observation.

data an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model.
If not found in data, the variables are taken from environment
(formula).

maxiter the maximum number of iterations in the estimation process. Default
100.

Details

The BBreg function performs a marginal beta-binomial regression model for a

given outcome and covariates. Assume that we have a set of variables Y =

(Y1, . . . , Yn)′ which follow a beta-binomial distribution which we want to model

as a function of some covariates X1, . . . , Xk. Hence, similar to the logistic

regression, we can connect the probability parameter of the beta-binomial

distribution with the given covariates by means of a logistic link function as

ηi = logit(pi) = log
pi

1− pi
= x′iβ,

where xi is the ith row of a full rank matrix X composed by the given covari-

ates and β are the regression coefficients.
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The estimation of the parameters in the model is done via maximum likelihood

estimation. The log-likelihood of the model for a set of observations y =

(y1, . . . , yn)′ is defined as

logL(β, φ|y) =

n∑
i=1

[
log

(
mi

yi

)
+

yi−1∑
k=0

log(pi + kφ) +

mi−yi−1∑
k=0

log(1− pi + kφ)

−
mi∑
k=0

log(1 + kφ)

]
,

where β enters in the equation through pi.

Regarding the estimation procedures, the the regression coefficients β are cal-

culated solving the following score function,

S(β) =
∂

∂β
logL(β, φ|y) = ξ′SX

where S = diag (p1(1− p1), . . . , pn(1− pn)) and ξ = (ξ1, . . . , ξn)′ being

ξi =

yi−1∑
k=0

1

pi + kφ
−
mi−yi−1∑
k=0

1

1− pi + kφ
.

In this package we have developed an estimation procedure based on the delta

algorithm which leads to the following iterative estimation equation,

β̂
(r+1)

= (X ′SV SX)−1X ′SV Sν,

where ν = Xβ(r) +(SV )−1ξ, and the previous matrices are evaluated at β̂
(r)

.

The estimates of β are functions of φ. Hence, if we replace β with β̂ or,

equivalently, p with p̂, in the log-likelihood function, we obtain the profile log-

likelihood with respect to φ. In BBreg function we have developed a Newton-

Raphson based algorithm for the estimation of φ.

Value

BBreg returns an object of class ‘BBreg’.

The function summary (i.e., summary.BBreg) can be used to obtain or print a

summary of the results.
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coefficients the estimated value of the regression coefficients.

vcov the variance-covariance matrix of the estimated coefficients of the
regression.

phi the estimation of the dispersion parameter of the beta-binomial
distribution.

psi the estimation of the logarithm of the dispersion parameter of the
beta-binomial distribution.

psi.var the variance of the estimated logarithm of the dispersion parameter of
the beta-binomial distribution.

conv convergence of the methodology. If the method has converged it
returns ‘yes’, otherwise ‘no’.

fitted.values the fitted mean values of the model.

deviance the deviance of the model.

df degrees of freedom of the model.

null.deviance null-deviance, the deviance for the null model. The null model will
only include an intercept as the estimation of the probability
parameter.

null.df the degrees of freedom for the null model.

iter number of iterations in the estimation process.

X the model matrix.

y the dependent response variable in the model.

m maximum score number in each beta-binomial observation.

balanced if the response beta-binomial variable is balanced it returns ‘yes’,
otherwise ‘no’.

nObs number of observations.

call the matched call.

formula the formula supplied.

Examples:

> # We simulate a covariate, fix the parameters of the beta-binomial

> # distribution and simulate a response variable. Then we apply the

> # model, and try to get the same values.

>

> set.seed(18)

> k <- 1000

> m <- 10

> x <- rnorm(k,5,3)
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> beta <- c(-10,2)

> p <- 1/(1+exp(-(beta[1]+beta[2]*x)))

> phi <- 1.2

> y <- rBB(k,m,p,phi)

>

> model <- BBreg(y~x,m)

> model

Call: BBreg(formula = y ~ x, m = m)

Beta coefficients:

Intercept x

[1,] -10.13476 2.032702

Dispersion parameter: 1.264069

Deviance: 1236.094 on 997 degrees of freedom

Null deviance: 3437.819 on 999 degrees of freedom

Balanced data, maximum score in the trials: 10

5.2.4 BBmm: Fit a beta-binomial mixed-effects regression model

Description

BBmm function performs beta-binomial mixed-effects models, i.e., it allows the

inclusion of Gaussian random effects in the linear predictor of a marginal beta-

binomial logistic regression model in order to accommodate the correlation

among the outcomes. It allows the joint estimation of more than one outcome

vector in a multivariate framework.

Each component of the model can be specified by means of two different ways:

Outcomes: (i) determining the fixed.formula argument, or (ii) including

the vector of the outcomes y.

Fixed part: (i) determining the fixed.formula argument, or (ii) specifying

the model matrix of the covariates X.

Random part: (i) determining the random.formula argument, or (ii) spec-

ifying the model matrix of the random effects, Z, and determining the

number of random effects in each random component, nRandComp.

The estimation of the fixed and random effects in the model can be done by

means of two approaches: (i) BB-Delta, the delta algorithm developed for

the beta-binomial mixed-effects model, and (ii) using the NR R-package. The

selected method must be specified in the arguments of the function.
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Usage

BBmm(fixed.formula=NULL,X=NULL,y=NULL,random.formula=NULL,Z=NULL,

nRandComp=NULL,m,data=list(),method="BBNR",maxiter=50,show=FALSE,

nDim=1)

Arguments

fixed.formula an object of class ‘formula’ (or one that can be coerced to that class):
a symbolic description of the fixed part of the model to be fitted.

X design matrix composed by the given covariates in the model. It must
be only specified in cases where the fixed.formula argument is not
determined.

y the vector of the outcomes that are going to be modelled as a function
of the covariates. It must be only specified in cases where the
fixed.formula argument is not determined.

random.formula an object of class ”formula” (or one that can be coerced to that class):
a symbolic description of the random part of the model to be fitted.

Z design matrix composed by the correlation, or random effects
structure, of the model. It must be only specified in cases where the
random.formula argument is not determined.

nRandComp the number of random effects in each random component of the
model. It must be specified as a vector where the ith value
corresponds with the number of random effects of the ith random
component. It must be only included when the random structure of
the model is described through the matrix of the random effects Z.

m maximum score number in each beta-binomial observation.

data an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model.
If not found in data, the variables are taken from environment
(formula).

method the method for the estimation of the fixed and random effects in the
model. Two options are available: (i) ‘BB-Delta’, the delta algorithm
developed for the estimation procedure of the beta-binomial
mixed-effects regression approach; (ii) ‘NR’, general Newton-Raphson
algorithm for estimating the root of a set of n (nonlinear) equations.

maxiter the maximum number of iterations in the estimation process. Default
50.

show logical, if TRUE, then the tolerance of the stop criterion together
with the maximum difference of the fixed effects, beta-binomial
log-dispersion parameter and random effects standard deviation with
respect to the previous estimation is shown in each iteration.

nDim number of dimensions that are going to be jointly analysed. Default 1.
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Details

BBmm function performs a beta-binomial mixed effects models. It extends the

marginal beta-binomial logistic regression to the inclusion of random effects

in the linear predictor of the model. It is assumed that, conditional on some

Gaussian random effects u, each variable of the the response variable vector

Y follows a beta-binomial distribution of parameters mi, pi and φi,

Yi|u ∼ BB(mi, pi, φi), u ∼ N (0,D)

where

η = log

(
p

1− p

)
= Xβ +Zu

being X and Z model matrices composed by the given covariates and random

structure respectively and D(λ) is determined by some dispersion parameters

λ, which are included in the parameter vector θ = (φ,λ′)′.

The estimation of the fixed regression parameters β and the prediction of the

random effects u is done via the maximum likelihood, where the marginal

likelihood of the model is approximated though the joint-likelihood by a first

order Laplace approximation,

l(β,u,θ|y) ≈ log f(y|β,u,θ) + log f(u|θ). (5.1)

The previous formula does not have a closed form and numerical methods are

needed for developing a estimation procedure. Two approaches are available in

the BBmm function in order to perform the fixed and random effects estimation:

(i) A special case of the delta algorithm developed for the beta-binomial mixed-

effects model estimation, and (ii) a general Newton-Raphson algorithm.

The estimation of the dispersion parameters θ by the joint-likelihood may be

substantially biased due to the previous estimation of the fixed and random

effects. Consequently, a penalisation of the joint-likelihood must be performed

in order to get an unbiased estimation of the dispersion parameters. Lee

and Nelder (1996) proposed the adjusted profile h-likelihood for the correct

estimation of the dispersion parameters in mixed-effects model framework,

h(θ|β̂, û,y) = log f(y|β,u,θ) + log f(u|θ) +
1

2
log
[
det
(
2πH−1

)]
,

where H is the Hessian matrix of the model, i.e. the second derivatives of the
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log-likelihood with respect to β and u.

The BBmm methodology iterates between the estimations of the regression and

dispersion parameters until convergence is reached. The convergence is reached

when the tolerance of the model is lower than 10−6, where the tolerance for

the (r + 1)th iteration is defined as

tolerance(r+1) =

n∑
i=1

[
η
(r)
i − η

(r+1)
i

]2
∑n

i=1

[
η
(r+1)
i

]2 .
Value

BBmm returns an object of class ‘BBmm’.

The function summary (i.e., summary.BBmm) can be used to obtain or print a

summary of the results.

fixed.coef estimated value of the fixed effects of the regression.

fixed.vcov the variance-covariance matrix of the estimated fixed effects of the
regression.

random.coef predicted random effects of the regression.

sigma.coef estimated value of the standard deviations of the random effects.

sigma.var variance of the estimation of the standard deviation of the random
effects.

phi.coef estimated value of the dispersion parameter of the beta-binomial
distribution.

psi.coef estimated value of the logarithm of the dispersion parameter of the
beta-binomial distribution.

psi.var variance of the estimation of the logarithm of the dispersion
parameter of the beta-binomial distribution.

fitted.values the fitted mean values of the probability parameter of the
beta-binomial distribution.

conv convergence of the methodology. If the method has converged it
returns ‘yes’, otherwise ‘no’.

deviance deviance of the model.

df degrees of freedom of the model.

null.deviance null-deviance, deviance of the null model. The null model will only
include an intercept as the estimation of the probability parameter.
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null.df degrees of freedom of the null model.

nRand number of random effects.

nComp number of random components.

nRandComp number of random effects in each random component of the model.

namesRand names of the random components.

iter number of iterations in the estimation method.

nObs number of observations in the data.

y the vector of the outcomes that are going to be modelled as a function
of the covariates.

X design matrix composed by the given covariates in the model.

Z design matrix composed by the correlation, or random effects
structure, of the model.

D variance-covariance matrix of the random effects.

balanced if the response beta-binomial variable is balanced it returns ‘yes’,
otherwise ‘no’.

m maximum score number in each beta-binomial observation.

nDim number of dimensions that are going to be jointly analysed.

call the matched call.

formula the fixed and random supplied formulas. It only provides the formula
if it has been previously specified in the arguments of the function.
The first formula corresponds to the fixed part of the model, while the
second formula corresponds to the random structure.

Examples

> set.seed(15)

> # Defining the parameters

> nObs <- 500 # 500 observations

> m <- 10# balanced data, maximum score number equal to 10.

> nRandComp <- c(70,50) # number of random effects in each random component

> phi <- 1.1 # dispersion parameter of the beta-binomial distribution

> sigma1 <- 1.2 # standard deviation of the first random effect

> sigma2 <- 0.5 # standard deviation of the second random effect

> beta <- c(-1,3.25) # the fixed effects

>

> # Simulate

> x <- rnorm(nObs,0.5,1.5) # the covariate

> u1 <- rnorm(nRandComp[1],0,sigma1) # first random effects

> u2 <- rnorm(nRandComp[2],0,sigma2) # second random effects

> u <- as.vector(c(u1,u2))
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> # Desing matrices

> X <- model.matrix(~x)

> z1 <- as.factor(rBB(nObs,nRandComp[1]-1,0.5,2)) # correlation structure for

the first random effect

> z2 <- as.factor(rBB(nObs,nRandComp[2]-1,0.5,2)) # correlation structure for

the second random effect

> Z1 <- model.matrix(~z1-1) # model matrix of the correlation structure for

the first random effect

> Z2 <- model.matrix(~z2-1) # model matrix of the correlation structure for

the second random effect

> Z <- cbind(Z1,Z2) # correlation structure of both random effects

>

> # Calculate the linear predictor and simulate the outcome variable

> eta <- X%*%beta+Z%*%u # the linear predictor

> p <- exp(eta)/(1+exp(eta)) # apply the antilogit to the linear predictor

> y <- rBB(nObs,m,p,phi) # simulate the outcome variable

>

> # Apply the model

> model <- BBmm1(fixed.formula=y~x,random.formula=~z1+z2,m=m)

Iteration number: 1

Iteration number: 2

Iteration number: 3

Iteration number: 4

Iteration number: 5

Iteration number: 6

Iteration number: 7

Iteration number: 8

Iteration number: 9

Iteration number: 10

Iteration number: 11

Iteration number: 12

Iteration number: 13

Iteration number: 14

Iteration number: 15

> summary(model)

Call: BBmm1(fixed.formula = y ~ x, random.formula = ~z1 + z2, m = m)

Fixed effects coefficients:

Estimate StdErr t.value p.value

(Intercept) -1.02274 0.13551 -7.5474 4.44e-14 ***

x 3.26362 0.20147 16.1990 < 2.2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

---------------------------------------------------------------

Random effects dispersion parameter(s):

Estimate StdErr

z1 1.2337309 0.1435245

z2 0.5323015 0.1105570
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---------------------------------------------------------------

Logarithm of beta-binomial dispersion parameter log(phi):

Estimate StdErr

1 0.08360297 0.1357834

---------------------------------------------------------------

Deviance of the model: 215.3224 ; with 495 degrees of freedom.

Deviance of the null model 1334.249 ; with 496 degrees of freedom.

Deviance goodness-of-fit test p-value: 0

Number of observations: 500

Number of iterations: 15

Balanced data, maximum score number: 10

Number of random effects in each random component: 70 50

Number of analysed dimensions: 1

5.2.5 Additional functions

Apart from the described functions for dealing with beta-binomial data in different

scenarios, the PROreg package also contains some other functions. As it was shown

in Table 5.2, functions based on the binomial distribution can also be performed,

whose implementation is very similar to the presented functions. For instance we

can make use of:

BI: The binomial distribution

Similar to dBB() and rBB() in Section 5.2.1 we can use dBI() and rBI()

to compute the density and random generation of the binomial with optional

dispersion parameter distribution respectively.

BIest: Estimation of the parameters of a binomial distribution with

optional dispersion parameter

BIest() estimates the parameters of a binomial distribution for a given out-

come. The estimation of a dispersion parameter, which accommodates overdis-

persion, can be selected. Implementation is similar to BBest() in Section 5.2.2.

BIreg: Fit a logistic regression model with optional dispersion parameter

BIreg() fits a logistic regression with optional dispersion parameter which in

case, it is calculated through quasi-likelihood theory introduced in Chapter 1.

The implementation is quite similar to BBreg() function in Section 5.2.3.
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BImm: Fit a logistic mixed-effects regression model

BImm() fits a logistic mixed-effects regression model where random effects are

included in the linear predictor of a logistic regression. Implementation of the

algorithm is quite similar to BBmm() introduced in Section 5.2.1.

Additionally, PROreg R-package includes some questionnaire-specific functions.

For instance, two functions are available for the SF-36 Health Survey. First, the

SF36rec() function performs the recoding of the SF-36 Health Survey based on

Arostegui et al. (2013) (see Appendix A). The inputs of the function are (i) the

dimension to be recoded and (ii) a scalar number from 1 to 8 which identifies the

input vector with a SF-36 dimension. Second, the HRQoLplot() offers a nice visual

descriptive analysis of all the dimensions provided by the SF-36. The HRQoL status

of the individuals can be drawn by groups, clusters or covariates. Following we are

going to display some code in order to show the easy application of the function and

the nice output it provides.

> set.seed(9)

> # We insert the columns in the order that has been determined:

> m <- c(20,4,9,20,20,8,3,13)

> k <- 3

> p <- runif(3,0.2,0.8)

> phi <- runif(3,0.5,1)

> dat <- data.frame(rbind(ID1=rBB(8,m,p[1],phi[1]),

ID2=rBB(8,m,p[2],phi[2]),

ID3=rBB(8,m,p[3],phi[3])))

> colnames(dat) <- c("RF", "RP", "BP","GH","VT","SF","RE","MH")

> HRQoLplot(dat,TRUE)

Short Form−36 Health Survey

PF (20)

RP (4)

BP (9)

GH (20)

VT (20)

SF (8)

RE (3)

MH (13)
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CHAPTER 6

CONCLUSIONS AND FURTHER WORK

“There is nothing permanent except change”

Heraclitus of Ephesus, c. 535− c. 475

PROs are important supplements to traditional medical outcomes which play

an important role in health care and understanding health outcomes as they offer a

new insight of the health-status of patients. PROs are increasingly used as primary

outcomes and have gradually become an important element and a crucial source for

monitoring disease condition or assessing the effectiveness of treatment, especially

in chronic diseases or some health problems such as subjective discomfort and psy-

chological distress (Chang, 2007). In fact, the U.S. Food and Drug Administration

(FDA) has recommended that objective indicators combined with PROs are con-

sidered a more comprehensive form of outcome evaluation since 2006 (Speight and

Barendse, 2010). Measuring PROs can help determine the burden of preventable

diseases, injuries, and disabilities, and it can provide valuable new insights into the

relationships between PROs and risk factors.

The measurement of the effect that some risk factors may have on the health-

status of patients provided by PROs, requires the development of regression models.

Most of the regression techniques developed in the literature, such as GLMs (Mc-

Cullagh and Nelder, 1989) or GLMMs (McCulloch and Searle, 2001), are based on

the assumption that the outcome variable follows a distribution from the exponen-

tial family. In fact, exponential family distributions offer good properties which

simplify the estimation and inference procedure of regression models in many situa-
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tions. However, it has been shown in the literature that PROs are usually displayed

following a discrete and bounded U, J or inverse J-shaped distribution, accumulat-

ing values in one or both edges of the scale (Arostegui et al., 2007; Najera-Zuloaga

et al., 2017). Hence, exponential family distributions, and especially, due to the

nature of PROs, the binomial distribution, offers an inappropriate distributional

fit to PROs. In order to overcome the inappropriate distributional fit provided by

exponential family distributions, the beta-binomial distribution has been proposed

in the literature as a good candidate for modelling the shape of PROs (Arostegui

et al., 2007). The beta-binomial distribution is defined as a binomial distribution

whose probability parameter is random and drawn from a beta distribution. Hence,

it does not belong to the exponential family. Therefore, regression models based on

the beta-binomial distribution are not so common in the literature.

The first objective of the thesis was to stablish methods to provide inference in a

cross-sectional beta-binomial regression model for the analysis of PROs. In Chapter

2, we have shown that the beta-binomial distribution can be defined by means of

two different approaches, marginally or conditionally, where each approach leads to

a different regression model, BBreg and BBhglm. In that chapter, we have com-

pared the performance of both approaches when analysing PROs. It is well-known

that marginal and the conditional approaches provide different regression results

as they are modelling different expectations (Lee and Nelder, 2004). The marginal

approach refers to the whole population and it models the marginal expectation.

On the contrary, conditional approach refers to individuals and it models the condi-

tional expectation. However, we have shown through a real data application and a

simulation study that covariates that have a marginally statistical significant effect

in PROs turn out not to be statistically significant in the conditional approach. The

objective of PRO studies is usually the measurement of the effect of risk factors on

the health-status of some patients, and therefore, conclusions are drawn from the

whole population suffering from the disease. Therefore, the use of the conditional

approach can sometimes mask the effect of some covariates, making them not rele-

vant when they are statistically significant. Moreover, the assumption of a covariate

that does not affect the individuals, but affects the population can be misleading.

Following the argument by Senn in the comments to the paper by Lee and Nelder

(2004), “After all, if the treatment cannot affect individuals, it has no effect on

populations...”. Therefore, we suggest the use of the marginal BBreg approach for

the analysis of PROs when there is not correlation in the data.
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The second objective of the thesis was the extension to the of the cross-sectional

beta-binomial model to a hierarchical regression framework. In Chapter 3, we have

developed the BBmm approach which consists of the inclusion of Gaussian random

effects in the linear predictor of BBreg. That way, the Gaussian random effects

account for the hierarchical, or correlation, structure of the data while the beta-

binomial distribution accommodates the properties of PROs. We propose a proce-

dure based on the Laplace approximation and the Delta method for the estimation

of all the parameters involving the model. The proposal consists of the estimation

of fixed and random effects in the model through the maximisation of the joint like-

lihood, while the dispersion parameters are estimated by maximising a penalised

profile likelihood proposed by Lee and Nelder (2001). We compare the performance

of BBmm with other similar approaches in the literature. For instance, BBmm has

been compared to hierarchical generalised linear models (HGLMs)(Lee and Nelder,

1996) and combined models (Molenberghs et al., 2010). However, special attention

has been focused on the comparison of the BBmm with the generalised additive mod-

els for location, scale and shape (GAMLSS) by Rigby and Stasinopoulos (2005), due

to the similarities between both modelling approaches. The main difference between

GAMLSS and BBmm approaches is the penalisation of the profile likelihood in or-

der to estimate the dispersion parameter of the beta-binomial distribution. We have

shown through a simulation study that the proposed penalisation not only improves

the estimation of the dispersion parameter of the beta binomial distribution in terms

of bias, but also the estimation of the rest of parameters in the model. Therefore, we

conclude that BBmm approach is more convenient than GAMLSS to make inference

based on the beta-binomial mixed-effects model. Although, BBmm estimation pro-

cedure has been restricted to the beta-binomial distribution case, the penalisation of

the profile likelihood in order to estimate dispersion (or non-canonical) parameters

of the model, it can be useful in any other situation. However, the previous hypoth-

esis goes beyond the objectives of this thesis and therefore, it will be considered as

future work.

PROs are usually measured using questionnaires that decompose the health as-

pect they are assessing in different dimensions. Until now, either in a cross-sectional

or hierarchical scenario, the models we have proposed analysed each health dimen-

sion separately. However, it seems logical to think that dimensions that contain

measurements provided by the same individuals may have a correlation. Therefore,

the third objective was the proposal of a multivariate regression model based on

the beta-binomial distribution, which has been carried out in Chapter 4. Due to
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the advantages that mixed-effects model framework provide, we have considered the

shared random effects approach (McCulloch, 2008) and we have applied it to the

beta-binomial mixed-effects models developed in Chapter 3. Therefore, the shared

random effects model consist of including the same random effects in the linear

predictor of each dimension and, in such a way that they allow for a correlation

structure among them. We have obtained quite consistent results for cross-sectional

studies and some preliminary results when analysing longitudinal data.

The development of statistical models may be pointless unless a tool would be

provided for researchers. Therefore, the fourth objective of the thesis consisted of

the development of an R-package which compiles, among others, all the method-

ologies proposed in this thesis. The name of the implemented R-package is PROreg

(Patient-Reported Outcomes regression analysis) and it is already available at CRAN

https://cran.r-project.org/web/packages/PROreg/. The description of the main

functions as well as any other information has been provided in Chapter 5. Fig-

ure 6.1 shows the number of downloads of the R-package since it was uploaded to

CRAN untill october 2017.

Figure 6.1: Number of weekly downloads of PROreg and HRQoL R-
packages. Originally in Najera-Zuloaga et al. (2017) the package was
called HRQoL. This plot was obtained from the shiny application available at
https://dgrtwo.shinyapps.io/cranview/

Finally, researchers at the Respiratory Service at Galdakao Hospital in Spain

designed a longitudinal study where the health-status of patients with COPD was

repeatedly measured. The objective was to measure the health-status and evolu-

https://cran.r-project.org/web/packages/PROreg/
https://dgrtwo.shinyapps.io/cranview/
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tion of COPD patients who were followed for up to five years. Therefore, the last

objective of the thesis was to achieve clinically relevant and useful results regarding

the evolution and COPD patients, and to detect significant relationships between

their health-status and risk factors. This last objective was developed in Chapter 2

and Chapter 4, where relationship between the health-status of COPD patients and

covariates is assessed in a univariate and a multivariate framework. On the contrary,

the evolution of the patients was developed in Chapter 3 and Chapter 4 analysing

the dimensions separately and jointly. For instance, we conclude that patients with

COPD does not evolve in their symptomatology and disease impact as time goes by

and moreover, that the initial status at baseline does not influence that evolution.

On the contrary, the activity of COPD patients is expected to worsen over time, al-

though the initial severity of the disease does not determine the evolution, meaning

that all the patients evolve similarly.

As some final remarks, we would like to mention that part of the modelling

approaches presented in this thesis have some limitations that we will explore in

further research. On the one hand, we shown in Chapter 4 that although the mul-

tivariate shared random effects approach offers valid results in cross-sectional data,

in longitudinal data they can be quite restrictive and hence, and they can lead to

misleading conclusions. In fact, the assumption that all the patients distance in the

same quantity in baseline and evolution from the overall population trend in all the

dimensions can be quite unrealistic. In order to avoid the this assumption, one may

consider a model with correlated random effects, where each dimension depends on

different random effects that are correlated among dimensions. The correlated ran-

dom effects model is much more flexible than the shared random effects approach,

however, when more than two dimensions are analysed, the approximation of the

marginal likelihood through the Laplace approximation becomes cumbersome. Most

of the PRO questionnaires provides more than two dimensions, and consequently,

the correlated random effects approach would not be useful due to dimensionality

problems. Fieuws and Verbeke (2006) proposed an inference strategy in order to

avoid the high dimensionality of the marginal likelihood of the model. Their pro-

posal was based on the idea that all parameters in the joint model can be estimated

by fitting all bivariate models implied in the multivariate model. More specifically,

for all
(
k
2

)
(Y l,Y s) dimension pairs, 1 ≤ l ≤ s ≤ k, they proposed to fit using MLE

the model defined by

f(yl,ys) =

∫ ∫
f(yl|ul)f(ys|us)duldus,
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where ul and us are random effects associated with Y l and Y s dimensions. Then,

they proposed to obtain the estimates of the correlated random effects model by

averaging over the results for the
(
k
2

)
pairwise model fits. Obviously, the resulting

estimates do not maximise the likelihood, hence inference does not follow from clas-

sical maximum likelihood theory. Instead, Fieuws and Verbeke (2006) showed that

pseudo-likelihood theory could be used to derive the asymptotic distribution of the

obtained estimates. Alternatively, the proposed estimation procedure based on the

replacement of the log-likelihood of the original model by a sum of implied marginal

or conditional log-likelihoods is also referred to as composite likelihood (Lindsay,

1988). However, the implementation of the pairwise estimation procedure for the

beta-binomial distribution goes beyond the scope of this thesis, and hence, it is left

as future work. On the other hand, in Chapter 3, we have shown the evolution

of patients with COPD adjusted by patients’ subtypes. Nowadays, we are working

with clinicians in order to incorporate covariates that can have both clinically and

statistically significant effect in the evolution of COPD patients.

Further work

The research that has been undertaken for this thesis has highlighted a number of

topics on which further research would be beneficial in the statistical analysis of

PROs. For instance:

1. The jointly modelling of the conditional mean and variance components in

hierarchical beta-binomial data.

An important issue that needs to be addressed when modelling hierarchical

data, is how to correctly account for both individual and group level vari-

ation that might be present in the data. The main focus in (generalised)

linear mixed effects models has been on modelling the mean structure of the

data while treating the variances/covariances as nuisance parameters. Taking

into account the structure but misspecifying or oversimplifying the covariance

structure can still have a serious impact on the efficiency of the mean param-

eters. In some circumstances, like the mean, the variance may depend on a

set of explanatory variables, McCullagh and Nelder (1989) proposed the joint

modelling of mean and dispersion in the GLM framework. However, the litera-

ture on joint modelling for generalised linear mixed models (GLMMs) is rather

limited. Pan and McKenzie (2007) proposed modelling the conditional vari-
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ance using the Cholesky Decomposition of the covariance matrix, for the linear

mixed model. Lee et al. (2006) proposed a joint mean–covariance modelling

for hierarchical data via HGLMs with structured dispersions and the so-called

double HGLMs Lee and Nelder (2006). Modelling dispersion and conditional

variance in the beta-binomial context would be of interest for further research.

2. Joint modelling of survival and longitudinal PROs.

In many longitudinal studies measurements also may include the time at which

an event of particular interest occurs (e.g. death, development of a disease or

drop out from the study). These outcomes are often separately analysed; how-

ever, in many instances, a joint modelling approach is either required or may

produce a better insight into the mechanisms that underlie the phenomenon

under study (see Tsiatis and Davidian, 2004, for a detailed overview). Usually,

the joint distribution of the event times and the longitudinal measurements

is modelled via a set of random effects that are assumed to account for the

associations between these two outcomes (see Hsieh et al., 2006; Rizopoulos

et al., 2009, for a review). Related to this topic, a joint modelling of PROs

and survival analysis of chronic disease patients will be of interest for further

research where the longitudinal modelling is based on the beta-binomial mixed

effects model developed in this thesis.

3. Testing for variance components in the beta-binomial mixed-effects model.

Testing zero variance components is one of the most challenging problems in

the context of linear mixed-effects models. The usual asymptotic Chi-square

distribution of the likelihood ratio and score statistics under this null hypoth-

esis is incorrect because the null is on the boundary of the parameter space.

Previous work by Greven et al. (2008) addressed this issue and provide Re-

stricted Likelihood Ratio Tests. Other authors introduce a simple test statistic

based on the variance least square estimator of variance components (Drik-

vandi et al., 2013). In this thesis, we did not explore this issue when testing

for the variance components in BBmm, although it would be an interesting

topic for further research.

4. Inclusion of non-linear covariate effects.

The real data applications presented in this thesis did not show evidence of

non-linear covariate effects. However, when the relationship between the re-

sponse variable and covariate effects are non-linear, the inclusion of non-linear
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effects in the BBmm under the modelling framework presented in this thesis is

straightforward by means of smooth effects with penalised splines reformulated

as a mixed-effects models (Ruppert et al., 2003; Wood, 2006). The estimation

of the variance components with the estimation procedure developed in this

thesis would be of great interest for researchers in PROs.

5. Incorporation of new features and efficient algorithms in PROreg R-package.

As part of the further research in the analysis of PROs, the incorporation of

new features and more efficient implementations of the BBreg and BBm func-

tions will be considered for further research.
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APPENDIX A

RECODING PROCESS OF THE SHORT

FORM-36 HEALTH SURVEY

The SF-36 Health Survey recoding methodology is fully explained in Arostegui et al.

(2013) however, for the sake of clarity as it was mentioned in Section 1.2.1, we are

going to define more in detail the recoding process in this appendix. For simplicity

and brevity of exposition, we only show results for three of the eight health di-

mensions of the SF-36. The selected three dimensions (physical functioning, mental

health and role emotional) illustrate different distribution shapes as shown in Figure

1.1 and a wide range of number of possible values (see Table 1.1).

Table A.1 shows the possible values of the raw and standardized original scores,

as well as the sub-interval division of the 0-100 scale and the final recoded scores

for physical functioning, mental health and role emotional dimensions. Arostegui

et al. (2013) evaluated and validated the proposed method of recoding the scores

provided by the SF-36 Health Survey. They showed that the recoding has a natural

interpretation, not only for ordinal scores but also for questionnaires with many

dimensions and different profiles, where a common method of analysis is desired,

such as the SF-36. Briefly, let Y denote the original standardized score observed in

[0, 100] and Z the recoded ordinal score, from 0 to m, where Z ∼ Bin(m, p). Thus, Z

could be interpreted as grouped data for a dichotomous outcome that represents the

number of successes in m binomial trials and p represents the probability of success

in each trial. In the HRQoL context, Z is interpreted as the number of ‘points’ that

an individual has, p as the probability of obtaining one point more and m represents
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the maximum number of points that can be obtained.

Table A.1: Recoding methodology for role emotional, mental health and physical
functioning dimensions of the SF-36.

Role emotional Mental health

Raw Stdr. Inter. Recoded Raw Stdr. Inter. Recoded

3 0 [0, 16.67] 0 5 0 [0,2] 0
4 33.3 (16.67, 50] 1 6 4 (2,10] 1
5 66.7 (50, 83.33] 2 7 8
6 100 (83.33, 100] 3 8 12 (10,18] 2

9 16
10 20 (18, 26] 3

Physical functioning 11 24
Raw Stadr. Inter. Recoded 12 28 (26,34] 4
10 0 [0, 2.5] 0 13 32
11 5 (2.5, 7.5] 1 14 36 (34,42] 5
12 10 (7.5, 12.5] 2 15 40
13 15 (12.5, 17.5] 3 16 44 (42,50] 6
14 20 (17.5, 22.5] 4 17 48
15 25 (22.5, 27.5] 5 18 52 (50,58] 7
16 30 (27.5, 32.5] 6 19 56
17 35 (32.5, 37.5] 7 20 60 (58,66] 8
18 40 (37.5, 42.5] 8 21 64
19 45 (42.5, 47.5] 9 22 68 (66,74] 9
20 50 (47.5, 52.5] 10 23 72
21 55 (52.5, 57.5] 11 24 76 (74,82] 10
22 60 (57.5, 62.5] 12 25 80
23 65 (62.5, 67.5] 13 26 84 (82,90] 11
24 70 (67.5, 72.5] 14 27 88
25 75 (72.5, 77.5] 15 28 92 (90,98] 12
26 80 (77.5, 82.5] 16 29 96
27 85 (82.5, 87.5] 17 30 100 (98,100] 13
28 90 (87.5, 92.5] 18
29 95 (92.5, 97.5] 19
30 100 (97.5, 100] 20

Raw: Raw scores; Stdr.: Standardized original scores; Inter.: The subinterval division of the

0 − 100 scale; Recoded: Recoding of the values. The decomposition in raw and original

standardized scores of the HRQoL dimensions is developed in Ware et al. (1993), while the

subinterval division and recoding process are explicitly explained in Arostegui et al. (2013).
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ITERATIVE ESTIMATION

METHODOLOGIES

Numerical algorithms to find the maximum likelihood estimates and standard errors

are crucial for regression analysis including non-normal outcomes. In these cases, the

computation of the marginal likelihood has not a closed form, and hence, likelihood

approximations are needed. Moreover, even with approximated likelihoods, there is

no explicit formula to obtain both maximum likelihood estimations and standard

errors. It turns out that there is one general algorithms, called the iterative weighted

least squares (IWLS), that works reliably for exponential family distributions. Al-

though there are many ways to derive an IWLS procedure, we will focus on the

development of the methodology by the Newton-Raphson technique. Therefore, we

are going to, first, briefly introduce the well known Newton-Raphson procedure and

then, we are going to derive the IWLS algorithm

B.1 Newton-Raphson procedure

The Newton-Raphson procedure is a powerful technique for solving equations of the

form g(x) numerically. Although, it is widely used for finding out the root of a

function, it is simply based on the idea of a linear approximation.

Let define r as the root of the equation g(x) = 0. Assume that x0, the initial

value, is a good estimate for r, good in terms of distance. Hence, we have that

r = x0 + h, where h is not a large number. Since the true root is r and h = r − x0,
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the number h measures how far the estimate x0 is from the truth.

Considering that h is small we can use the linear or tangent approximation to

conclude that

0 = g(r) = g(x0 + h) ≈ g(x0) + hg′(x0)

and, therefore, unless g′(x0) is close to 0,

h ≈ − g(x0)

g′(x0)

and hence, we have that

r = x0 + h ≈ x0 −
g(x0)

g′(x0)

Consequently, we get a new improved estimate x1 in the following way

x1 = x0 −
g(x0)

g′(x0)

The repetition of the previous formula, getting new improved estimates for r,

results in the following iterative procedure: if xn is the current estimate, then the

next estimate xn+1 is define as

xn+1 = xn −
g(xn)

g′(xn)

B.2 Iterative weighted least squares algorithm

Now we are going to extend the Newton-Raphson procedure to the GLM framework

(see Chapter 2 Section 2.1.1). First, we start with a log-likelihood contribution of

an observation yi of the exponential family form,

logL(θi, φ|yi) =
yiθi −A(θi)

φ
+ c(yi, φ)

where θi is the so-called canonical parameter, φ is the dispersion parameter and c(·)
and A(·) are known functions. The exponential family distributions have very useful

characteristics, which make them very flexible for estimation procedures. The most

relevant feature of the exponential family distributions, compared with other more

rigid models, is that the variance is not closely defined by the mean,

µi = E[Yi] = A′(θi)



Appendix B 193

Var[Yi] = φA′′(θi) = φ
∂

∂θi
E[Yi] = φv(µi)

Let us assume that we have n independent observations yi and consider that the

connection between the given covariates and the observed responses is defined as

h(µi) = x′iβ

where h(·) is called the link function. If we try to get the estimate of β, for a fixed

value of φ,we get the following score equation

S(β) =
∂

∂β
logL(θi|φ,y) = φ−1

n∑
i=1

∂θi
∂β

(yi −A′(θi))

while the Fisher information matrix is defined as

I(β) = φ−1
n∑
i=1

[
− ∂2θi
∂β∂β′

(yi −A′(θi)) +
∂θi
∂β

∂θi
∂β′

A′′(θi)
]

which in general a very complex expression.

If we use the exponential family property, A′(θi) = µi, we have that

A′′(θi) = ∂µi/∂θi = vi

∂θi
∂β

=
∂θi
∂µi

∂µi
∂h

∂h

∂β
= v−1i

∂µi
∂h
xi

Hence, the second term of I(β) reduces to

U ≡
n∑
i=1

[( ∂h
∂µi

)2
φvi

]−1
xix

′
i

In the same way we have that,

S(β) =
n∑
i=1

[( ∂h
∂µi

)2
φvi

]−1
xi
∂h

∂µi
(yi − µi)

Furthermore, if we use a canonical link function in the model, i.e., if we use a link

function such as θi = h(µi) = x′iβ, we have that

∂θi
∂β

= xi
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∂2θi
∂β∂β′

= 0

and consequently, I(β) = U , from where we obtain a Newton-Raphson update equal

to

β1 = β0 +U−1S(β)

If we define X as the design matrix of the covariates and Σ as a diagonal matrix

with elements

Σii =
( ∂h
∂µi

)2
φvi (B.1)

we have that U = XΣ−1U and

S(β) = X ′Σ−1
∂h

∂µ
(y − µ)

where ∂h/∂µ(y − µ) is a vector that contains the elements ∂h/∂µi(yi − µi).

Finally, we can rewrite the β update formula as

β1 = β0 + (X ′Σ−1X)−1X ′Σ−1
∂h

∂µ
(y − µ)

= (X ′Σ−1X)−1X ′Σ−1
[
Xβ0 +

∂h

∂µ
(y − µ)

]
= (X ′Σ−1X)−1X ′Σ−1yw

where yw is called the working vector. Indeed, it is a vector with elements

ywi = x′iβ
0 +

∂h

∂µi
(yi − µi)

where all the unknown parameters are evaluated in their current values.

The updating formula can be connected to a quadratic approximation of the

log-likelihood. Indeed,

E[Yi] = x′iβ
0

Var[Yi] = Var
[ ∂h
∂µi

yi

]
=
( ∂h
∂µi

)2
Var[yi] =

( ∂h
∂µi

)2
φvi = Σii

Indeed, starting with β0, the log-likelihood of any distribution of the exponential

family is approximated by

−1

2
log|Σ| − 1

2
(yw −Xβ)′Σ−1(Y −Xβ)
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with yw and Σ defined above.

At convergence, we can evaluate the standard errors for the estimates from the

inverse of

I(β) = X ′Σ−1X

where the variance matrix is evaluated using the estimates β̂ and φ̂.
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APPENDIX C

LAPLACE APPROXIMATION

Laplace method is a technique used to approximate integrals of the form,∫ b

a
eMf(x)dx

where f(x) is a twice-differentiable function, M is a large number and the integral

endpoints a and b could be possibly infinite.

Assume that the function f(x) has a unique global maximum at x0. Then, the

value f(x0) will be larger than other values f(x). If we multiply this function by a

large number M , the ratio between Mf(x0) and Mf(x) will stay the same, but it

will grow exponentially in the function exp(Mf(x)).

If we expand f(x) around x0 by Taylor’s theorem,

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f(x0)(x− x0)2 +R (C.1)

where R = O
(
x− x0)3

)
.

since f(·) has a global maximum at x0, and since x0 is not an endpoint, it is

a stationary point hence, the derivative of f(·) vanishes at x0. Consequently, the

second term in Equation (C.1) equals to zero and we get that

f(x) ≈ f(x0)−
1

2

∣∣f(x0)
′∣∣ (x− x0)2

for x close to x0. Notice that the second derivative is negative at the global maxi-
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mum. The assumptions made ensure the accuracy of the approximation∫ b

a
eMf(x)dx ≈ eMf(x0)

∫ b

a
e−M |f

′′(x0)|(x−x0)2/2dx (C.2)

The integral in Equation (C.2) is a Gaussian integral if the limits of the integration

go from −∞ to ∞ (which can be assumed because the exponential decays very fast

away from x0), and thus it can be calculated. In fact, we find that

∫ b

a
eMf(x)dx ≈

√
2π

M |f ′′(x0)|
eMf(x0) as M −→∞. (C.3)



APPENDIX D

MATRIX DIFFERENTIATION

In this Appendix we collect some useful formulas of matrix calculus that appear

through the thesis.

D.1 Properties and definitions

Definition D.1. Through this work we are going to use the numerator notation for

the matrix derivatives. Hence, if y and x are scalars, yn×1 and xt×1 are vectors and

Y n×m and Xt×k are matrices, we define the derivatives in the following way:

By scalar:

∂y

∂x

∂y

∂x
=


∂y1
∂x
...
∂yn
∂x

 ∂Y

∂x
=


∂y11
∂x

· · · ∂y1m
∂x

...
. . .

...
∂yn1
∂x

· · · ∂ynm
∂x


By vector:

∂y

∂x
=

(
∂y

∂x1
· · · ∂y

∂xt

)
∂y

∂x
=


∂y1
∂x1

· · · ∂y1
∂xt

...
. . .

...
∂yn
∂x1

· · · ∂yn
∂xt


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By matrix:

y

∂X
=


∂y

∂x11
· · · ∂y

∂xt1
...

. . .
...

∂y

∂x1k
· · · ∂y

∂xtk


Property D.1. We present commonly used derivatives properties, which are not

difficult to prove. Assume that the scalar a, vector a and matrices A and B are not

functions of x or x.

• Derivatives of scalar, vector and matrix by scalar.

(SS1)
∂(u+ v)

∂x
=
∂u

∂x
+
∂v

∂x

(SS2)
∂uv

∂x
= u

∂v

∂x
+ v

∂u

∂x
(product rule)

(SS3)
∂g(u)

∂x
=
∂g(u)

∂u

∂u

∂x
(chain rule)

(VS1)
∂au

∂x
= a

∂u

∂x

(VS2)
Au

∂x
= A

∂u

∂x

(VS3)
∂u′

∂x
=

(
∂u

∂x

)′
(VS4)

∂(u+ v)

∂x
=
∂u

∂x
+
v

∂x

(VS5)
∂g(u)

∂x
=
∂g(u)

∂u

∂u

∂x
(chain rule)

(MS1)
aU

∂x
= a

∂U

∂x

(MS2)
AUB

∂x
= A

∂U

∂x
B

(MS3)
∂(U + V )

∂x
=
∂U

∂x
+
∂V

∂x

(MS4)
∂UV

∂x
= U

∂V

∂x
+
∂U

∂x
V

• Derivatives of scalar and vector by vector.

(SV1)
∂au

∂x
= a

∂u

∂x

(SV2)
∂(u+ v)

∂x
=
∂u

∂x
+
∂v

∂x
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(SV3)
∂uv

∂x
= u

∂v

∂x
+ v

∂u

∂x
(product rule)

(SV4)
∂g(u)

∂x
=
∂g(u)

∂u

∂u

∂x
(chain rule)

(SV5)
∂u′v

∂x
= u′

∂v

∂x
+ v′

∂u

∂x
(product rule)

(SV6)
∂a′x

∂x
=
∂x′a

∂x
= a′

(SV7)
∂x′x

∂x
= 2x′

(SV8)
∂x′Ax

∂x
= x′(A+A′)

(VV1)
∂au

∂x
= a

∂u

∂x
+ u

∂a

∂x
(product rule)

(VV2)
∂Au

∂x
= A

∂u

∂x

(VV3)
∂(u+ v)

∂x
=
∂u

∂x
+
∂v

∂x

(VV4)
∂g(u)

∂x
=
∂g(u)

∂u

∂u

∂x
(chain rule)

(VV5)
∂Ax

∂x
= A

(VV6)
x′A

∂x
= A′

• Derivatives of scalar by matrix.

(SM1)
∂au

∂X
= a

∂u

∂X

(SM2)
∂(u+ v)

∂X
=

∂u

∂X
+

∂v

∂X

(SM3)
∂uv

∂X
= v

∂u

∂X
+ u

∂v

∂X
(product rule)

(SM4)
∂g(u)

∂X
=
g(u)

∂u

∂u

∂X
(chain rule)

Property D.2 (Woodbury matrix identity).

(A−BD−1C)−1 = A−1 +A−1B
(
D −CA−1B

)−1
CA−1

for matrices A, B, C and D with appropriate dimensions and assuming A, C, D

and A−BD−1C are invertible.
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Alternative names for this formula are the matrix inversion lemma, Sherman–

Morrison–Woodbury formula or just Woodbury formula. The proof of the formula

can be found at Harville (1997) Theorem 19.2.8 in Equation (2.22).

Property D.3 (Jacobi’s formula).

∂det(H)

∂x
= trace

[
adj(H)

∂H

∂x

]
and, moreover, if H is nonsingular we have that

∂det(H)

∂x
= det(H)trace

(
H−1

∂H

∂x

)
.

The proof can be found at Harville (1997) Equation (8.5).

Property D.4. Let be H a nonsingular matrix, then

∂ log det(H)

∂x
= trace

(
H−1

∂H

∂x

)
The proof can be found at Harville (1997) Equation (8.6).

Property D.5.
∂H−1

∂x
= −H−1∂H

∂x
H−1

The proof can be found at Harville (1997) Equation (8.15).

Property D.6 (Inverse of a block matrix). If

Σ =

(
A B

C D

)
,

then

Σ−1 =

( (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1(

D −CA−1B
)−1

CA−1
(
D −CA−1B

)−1
)
.

The proof of the formula can be found at Harville (1997) Theorem 8.5.11 in

Equation (5.17a).
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D.2 Matrix differentiation of the proposed models

In this section we present all the matrix analysis of the BBreg and BBmm approaches

developed in Chapter 2 and Chapter 3 respectively.

BBreg approach

The log-likelihood contribution of the BBreg approach is given by (see Chapter 2,

Equation (2.5))

logL(p, φ|y) =

n∑
i=1

[
log

(
mi

yi

)
+

yi−1∑
k=0

log(pi+kφ)+

mi−yi−1∑
k=0

log(1−pi+kφ)−
mi∑
k=0

log(1+kφ)

]
.

Therefore, we present all the derivatives that are used in the estimation procedure

in Chapter 2, i.e.:

∂pi
∂βj

=
1

∂βj

(
exp(x′iβ)

1 + exp(x′iβ)

)
=

xij exp(−x′iβ)

(1 + exp(−x′iβ))2
= xijpi(1− pi),

∂p

∂β
=


∂p1
∂β1

· · · ∂p1
∂βp

...
. . .

...
∂pn
∂βp

· · · ∂pn
∂βp

 = SX,

(D.1)

where S = diag(p1(1− p1), . . . , pn(1− pn)).

∂ logL

∂pi
=

yi−1∑
k=0

1

pi + kφ
+

mi−yi−1∑
k=0

1

1− pi + kφ
= ξi,

∂ logL

∂p
=

(
∂ logL

∂p1
· · · ∂ logL

∂pn

)
= ξ′,

(D.2)

where ξ = (ξ1, . . . , ξn)′.
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∂2 logL

∂p∂p′
=

∂

∂p′
ξ′ =

(
∂ξ1
∂p′

· · · ∂ξn
∂p′

)
=


∂ξ1
∂p1

· · · ∂ξn
∂p1

...
. . .

...
∂ξ1
∂pn

· · · ∂ξn
∂pn

 = −V ,

vij = − ∂ξi
∂pj

=


0, if i 6= j
yi−1∑
k=0

1

(pi + kφ)2
+
m−yi−1∑
k=0

1

(1− pi + kφ)2
, if i = j.

.

(D.3)

∂ logL

∂φ
=

n∑
i=1

[
yi−1∑
k=0

k

pi + kφ
+

mi−yi−1∑
k=0

k

1− pi + kφ
−
mi−1∑
k=0

k

1 + kφ

]
. (D.4)

BBmm approach

The approximated marginal likelihood of the model in Equation (3.25) is defined as

logL(β,θ|y) ≈ h(β,θ|y, ũ)− 1

2
log|M |

where

h(β,θ|y,u) =

h1︷ ︸︸ ︷
n∑
i=1

logfy|u(yi|β, φ,u) +

h2︷ ︸︸ ︷
logfu(u|λ)

h1 =
n∑
i=1

[
yi−1∑
k=0

log(pi + kφ) +

mi−yi−1∑
k=0

log(1− pi + kφ)−
mi−1∑
k=0

log(1 + kφ)

]

h2 = −1

2
log|D| − 1

2
u′D−1u,

and

M =
∂2h

∂u∂u′

∣∣∣
u=ũ

.

where ũ is the solution of ∂h/∂u = 0.

Therefore, we present all the derivatives that are used in the estimation procedure

in Chapter 3, i.e.:
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∂pi
∂uj

=
1

∂uj

(
exp(x′iβ + z′iu)

1 + exp(x′iβ + z′iu)

)
= zijpi(1− pi)

∂p

∂u
=


∂p1
∂u1

· · · ∂p1
∂uq

...
. . .

...
∂pn
∂u1

· · · ∂pn
∂uq

 = SZ

(D.5)

where S = diag(p1(1− p1), . . . , pn(1− pn)).

∂pi
∂βj

=
1

∂βj

(
exp(x′iβ + z′iu)

1 + exp(x′iβ + z′iu)

)
= xijpi(1− pi)

∂p

∂β
=


∂p1
∂β1

· · · ∂p1
∂βp

...
. . .

...
∂pn
∂β1

· · · ∂pn
∂βp

 = SX

(D.6)

∂h1
∂pi

=

yi−1∑
k=0

1

pi + kφ
+

mi−yi−1∑
k=0

1

1− pi + kφ
= ξi

∂h1
∂p

=

(
∂h1
∂p1

· · · ∂h1
∂pn

)
= ξ′

(D.7)

vij = − ∂ξi
∂pj

=


0, if i 6= j
yi−1∑
k=0

1

(pi + kφ)2
+
mi−yi−1∑
k=0

1

(1− pi + kφ)2
, if i = j.

∂2h1
∂p∂p′

=
∂

∂p′
ξ′ =


ξ1
∂p1

· · · ξn
∂p1

...
. . .

...
ξ1
∂pn

· · · ξn
∂pn

 =


−v11

. . .

−vnn

 = −V

(D.8)

By Property D.1 (SV8),

∂h2
∂u

=
1

2
u′(D−1 +D−1) = u′D−1 (D.9)

∂2h2
∂u∂u′

=
∂

∂u′
u′D−1 = D−1 (D.10)
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By Equations (D.7), (D.5), (D.7) and (D.10),

∂2h

∂u∂u′
=

∂2h1
∂u∂u′

− ∂2h2
∂u∂u′

=
∂

∂u′

[
∂h1
∂p

∂p

∂u

]
−D−1

=
∂

∂u′
[
ξ′SZ

]
−D−1 =

∂p

∂u′
∂

∂p

[
ξ′S
]
Z −D−1

= Z ′S


∂

∂p1
ξ1p1(1− p1) · · · ∂

∂pn
ξ1p1(1− p1)

...
. . .

...
∂

∂p1
ξnpn(1− pn) · · · ∂

∂pn
ξnpn(1− pn)

Z −D−1

= Z ′SWZ −D−1

(D.11)

where W = diag(w11, . . . , wnn) being

wij =
∂

∂pj
ξipi(1− pi) =

0, if i 6= j

−vipi(1− pi) + ξi(1− 2pi), if i = j.
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