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A B S T R A C T

The human thalamus is a brain structure that comprises numerous, highly specific nuclei. Since these nuclei are
known to have different functions and to be connected to different areas of the cerebral cortex, it is of great
interest for the neuroimaging community to study their volume, shape and connectivity in vivo with MRI. In this
study, we present a probabilistic atlas of the thalamic nuclei built using ex vivo brain MRI scans and histological
data, as well as the application of the atlas to in vivo MRI segmentation. The atlas was built using manual
delineation of 26 thalamic nuclei on the serial histology of 12 whole thalami from six autopsy samples, combined
with manual segmentations of the whole thalamus and surrounding structures (caudate, putamen, hippocampus,
etc.) made on in vivo brain MR data from 39 subjects. The 3D structure of the histological data and corresponding
manual segmentations was recovered using the ex vivo MRI as reference frame, and stacks of blockface photo-
graphs acquired during the sectioning as intermediate target. The atlas, which was encoded as an adaptive
tetrahedral mesh, shows a good agreement with previous histological studies of the thalamus in terms of volumes
of representative nuclei. When applied to segmentation of in vivo scans using Bayesian inference, the atlas shows
excellent test-retest reliability, robustness to changes in input MRI contrast, and ability to detect differential
thalamic effects in subjects with Alzheimer's disease. The probabilistic atlas and companion segmentation tool are
publicly available as part of the neuroimaging package FreeSurfer.
1. Introduction

The thalamus is a diencephalic structure located between the cortex
and the midbrain. Traditionally, the thalamus has been considered pri-
marily a link in the flow of sensory signals (i.e., analogous to a relay
station or transponder), through its white matter connections to virtually
the entire cortex (Johansen-Berg et al., 2005). However, current views
suggest that the thalamus is more than a simple transponder, and
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continues to contribute to the processing of information within cortical
hierarchies (Sherman, 2007, 2016). Among other functions, the thalamus
is involved in the regulation of consciousness, sleep and alert states; the
motor system; and spoken language (Sherman and Guillery, 2001). The
study of these functions with MRI has attracted wide attention from the
neuroimaging community (Fern�andez-Espejo et al., 2010; Czisch et al.,
2004; Guye et al., 2003; Binder et al., 1997), and so has the in vivo study
of pathologies associated with the thalamus, such as schizophrenia
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Table 1
Demographics of the ex vivo cases that were used to build the atlas. PMI stands for
“post mortem interval”.

Case Age at death Gender Brain weight PMI

HNL4_13 97 male 1.238 Kg 9 h
HNL7_14 98 female 1.168 Kg 6 h
HNL5_13 59 male 1.020 Kg N/A
HNL8_14 61 female 1.409 Kg 10 h
HNL14_15 87 male 1.100 Kg 2 h 30m
HNL16_16 84 male 1.264 Kg 3 h 30m
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(Buchsbaum et al., 1996; Andreasen et al., 1994), Alzheimer's disease (De
Jong et al., 2008; Zarei et al., 2010), epilepsy (Natsume et al., 2003;
Bonilha et al., 2005), Huntington's disease (Aron et al., 2003; Kassubek
et al., 2005) or dyslexia (Díaz et al., 2012; Giraldo-Chica et al., 2015;
Jednorog et al., 2015).

Segmentation of the whole thalamus in structural MRI is a prerequi-
site for most MRI-based studies of this structure, and many methods have
been developed to produce automated segmentations. Fischl et al. (2002)
used a voxel-wise probabilistic atlas of anatomy and MRI intensities to
segment the thalamus, along with a number of other brain structures; this
method is implemented in the widespread, open-source package Free-
Surfer (Fischl, 2012). Patenaude et al. (2011) used a combined model of
shape and appearance, also to segment a set of brain structures including
the thalamus; an implementation of this method (“FIRST”) is available as
part of the popular FSL package (Smith et al., 2004). A number of stan-
dard segmentation algorithms have also been applied to thalamus seg-
mentation in structural MRI, such as multi-atlas segmentation
(Heckemann et al., 2006), fuzzy clustering (Amini et al., 2004), voxel
classification (Zikic et al., 2013) or Bayesian segmentation (Puonti et al.,
2016).

However, the thalamus is not a homogeneous structure; it consists of
several nuclear masses, which serve multiple and highly specific func-
tions. While many studies agree on the existence of 14 major nuclei, these
can be subdivided histologically into many more subnuclei, so the exact
number depends on the level of detail of the classification (Jones, 2012;
Morel, 2007; Mai and Forutan, 2012). In vivo segmentation of these
nuclei in MRI can enable neuroimaging studies of the thalamus (e.g.,
morphometry; structural and functional connectivity) at a much higher
level of specificity, and also has the potential to provide more accurate
surgical planning and more precise placement of deep brain stimulation
(DBS) devices. These applications have sparked the interest of the neu-
roimaging community in automated segmentation algorithms for the
thalamic nuclei.

Many thalamic nuclei segmentation methods have been based on
applying clustering techniques to diffusion MRI data, which provide
more contrast between the nuclei than structural MRI scans – despite
their lower resolution. A subset of these techniques have focused on the
local diffusion properties of the tissue. For example, Mang et al. (2012)
clustered the voxels inside the thalamus into 21 predefined groups using
the direction of the leading eigenvector of the diffusion tensor. Duan
et al. (2007) used the mean shift algorithm (Fukunaga and Hostetler,
1975) with the Frobenius distance between the tensors. Wiegell et al.
(2003) used the k-means algorithm to create 14 clusters, using a distance
function that was a linear combination of the Mahalanobis voxel distance
and the Frobenius tensor distance. Jonasson et al. (2007) also used
k-means, but only to initialize surfaces that then evolved with the level
set method; the cluster prototypes were given by the tensors minimizing
the variation within the groups. Recently, Battistella et al. (2017) moved
away from the tensor model and used a spherical harmonic representa-
tion of the full orientation distribution function, to cluster the voxels with
k-means.

Local diffusion information is typically insufficient to discriminate
between thalamic nuclei. In their pioneering work, Behrens et al. (2003)
and Johansen-Berg et al. (2005) used probabilistic tractography to par-
cellate the thalamus according to the connectivity of its voxels with
predefined target regions of the cerebral cortex. This approach and its
extensions (e.g., Kasenburg et al., 2016; Abivardi and Bach, 2017) have
been used in multiple applications, such as the definition of targets in
DBS (Akram et al., 2018; Middlebrooks et al., 2018). Other approaches
have relied on clustering connectivity patterns to parcellate the thalamus;
the connectivity can be structural (i.e., derived from diffusion MRI), as in
Lambert et al. (2017), or functional (i.e., estimated with resting state
functional MRI), as in Ji et al. (2016); Hale et al. (2015).

Other thalamic parcellation efforts have relied on supervisedmachine
learning techniques. For example, Stough et al. (2014) used local mea-
sures (fractional anisotropy, eigenvector directions) and connectivity
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with cortical regions as input features to a random forest (Breiman, 2001)
in order to divide the thalamus into six major nuclei. Supervision beyond
the use of cortical regions for connectivity-based parcellation ameliorates
the main disadvantage of unsupervised methods, which is the lack of
correspondence of the clusters with the underlying anatomy – even if an
expert attempts to manually map clusters to nuclei, as in Wiegell et al.
(2003).

Creating ground truth segmentations on in vivo scans can be difficult,
particularly when one tries to segment thalamic nuclei defined at finer
levels of division – when the resolution (especially in diffusion MRI) and
contrast are insufficient. For this reason, some works have used histology
to create atlases of the thalamus. Krauth et al. (2010) used manual seg-
mentations on the histology of six cases (Morel, 2007) in order to
compute an average thalamus with 42 nuclei. In follow-up work, Jakab
et al. (2012) mapped their average to MNI space to be able to use it in
registration-based segmentation. Sadikot et al. (2011) used a single
labeled case, which they also mapped to a reference space (Colin27,
Holmes et al., 1998) to be able to segment new cases. These approaches
inherit the limitations of registration-based segmentation: the inability of
a single subject-segmentation pair to cover the spectrum of variability of
a larger population, and the inability to accurately register across MRI
contrasts.

In this work, we present a probabilistic atlas of the human thalamus
and its nuclei, as well as surrounding anatomy (the latter is important to
enable segmentation of thalamus using Bayesian inference). The atlas
was derived from manual segmentations of the thalamic nuclei on the
histological images of 12 whole thalami from six autopsy samples, as well
as delineations of the whole thalamus and surrounding structures (e.g.,
caudate, putamen, hippocampus) in 39 T1 scans acquired at standard
resolution (i.e., 1 mm). The 3D reconstruction of the histology was
assisted by high resolution ex vivoMRI scans and blockface photographs.
Compared with previous histology-based atlases of the thalamus (Krauth
et al., 2010; Sadikot et al., 2011), our proposed atlas is probabilistic,
models surrounding anatomy, and can be used in combination with
Bayesian inference in order to directly segment MRI scans of arbitrary
contrast.

2. Materials and methods

2.1. Ex vivo specimens

In order to build the proposed atlas, we used data from six post mortem
cases from the body donor program of the University of Castilla - La
Mancha (UCLM)Medical School (Albacete, Spain). Informed consent was
obtained from the donors, following the Declaration of Helsinki. The use
of this brain tissue for research purposes was approved by the Ethics
Committee of the University Hospital of Albacete.

The demographic data of the cases is shown in Table 1. None of the
donors had a history of disease that affected the morphology of the brain
(or the thalamus): their clinical history did not include any confounding
factors such substance abuse or pathology (e.g., dementia), and the
weight of the specimens was approximately average. We acknowledge
that the age range of these specimens is older than that of most neuro-
science experiments. However, this issue is mitigated by the lack of pa-
thology in the samples, as well as by the fact that our probabilistic atlas



Fig. 1. (a) Sample sagittal slice of ex vivo MRI scan of case NHL8_14. (b) Cor-
rected for bias field and slab boundary artifacts. (c) Close-up of left thalami in
coronal view, uncorrected. (d) Corrected version of (c).
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also includes an in vivo dataset of brain scans of 39 subjects (including
several younger controls), as explained in Section Atlas Construction
below. This strategy of combining these 39 in vivo scans with ex vivo
images from elderly subjects has been proven successful by our earlier
works on the hippocampus (Iglesias et al., 2015a) and the amygdala
(Saygin et al., 2017).

The fixation of all the brain samples was performed in situ by
personnel of the UCLM Human Neuroanatomy Laboratory, by neck dis-
ection of both primitive carotids in the lower third of the neck, followed
by cannulation of the carotids. The fixation started with a flush of 4 l of
saline, followed by 8 l of 4% paraformaldehyde in phosphate buffer (pH
7.4). In order to allow the fixative to flow, the internal jugular vein was
sectioned on one side. After perfusion, the brain was left in situ for 48 h,
and subsequently extracted following standard autopsy procedures.
Postfixation until scanning was carried out by storage in a container filled
with 4% paraformaldehyde. This in situ fixation method better preserves
the shape of the individual brain, fitting exactly the intracranial shape (as
opposed to a generic container), and minimizes the impact of the
extraction procedure on the probabilistic atlas to be built.

2.2. MRI scanning and processing

The fixed samples were transferred to the Basque Center on Cogni-
tion, Brain and Language (BCBL, Donostia - San Sebastian, Spain) for MRI
scanning. Ex vivo MR images of the whole brains were acquired on a
3 TMagnetom TIM Trio scanner with a 12 channel receiver coil. Despite
its reduced efficiency compared with the 32 channel counterpart, the 12
channel coil enables acquisition at higher resolution without running out
of RAM in the image reconstruction. The brains were scanned in vacuum
bags filled with Fluorinert FC-3283 (3M, Maplewood, MN, U.S.A.), in
order to minimize the negative impact of air bubbles and susceptibility
artifacts. The images were acquired with a 3D multi-slab balanced
steady-state free precession sequence (McNab et al., 2009) with
TE/TR¼ 5.3/10.6ms and flip angle 35∘. Four axial slabs with 112 slices
each were used to cover the whole volume of the brains, and 57% slice
oversampling was used in order to minimize slab aliasing. The resolution
of the scans was 0.25mm isotropic, with matrix size 720 � 720 � 448
voxels (axial). MR images were acquired with four different RF phase
increments (0, 90, 180, 270�) and averaged to reduce banding artifacts.
The time of acquisition per phase was 90min. Ten repetitions of this
protocol were acquired for increased signal-to-noise ratio (SNR). The
total length of the protocol was thus 60 h.

Combined with the 12 channel receiver coil, the multi-slab acquisi-
tion described above enabled us to bypass the memory limitations of our
clinical scanner when reconstructing the images, while preserving the
SNR efficiency of 3D acquisitions. However, this type of acquisition also
introduces slab boundary artifacts at the interfaces between the slabs.
After computing a brain mask with simple Otsu thresholding (Otsu,
1975), such artifacts were corrected simultaneously with the bias field
using a Bayesian method (Iglesias et al., 2016). Sample slices of the MRI
scans are shown in Fig. 1.

2.3. Histological analysis

After MRI scanning, the specimenswere transferred back to the UCLM
Human Neuroanatomy Laboratory for histological analysis. First, the
brains were separated into left and right hemispheres. Then, a brain
sectioning knife was used to make a transverse cut perpendicular to the
intercommissural line. Using this plane of section, parallel blocks
(thickness 10–14mm) were extracted, from the frontal to the occipital
pole. For each case and hemisphere, and in order to avoid incomplete
sectioning of the whole thalamus, the anterior limit of the first block was
sectioned at the level of the anterior hypothalamus and head of the
caudate nucleus. The blocks containing thalamic tissue (three or four,
depending on the case) were selected for histological analysis, numbered
and subsequently immersed in cryoprotectant (Glicerol 10% and subse-
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quently 20%) during 120 h at 4∘C temperature.
After this procedure, the tissue blocks were sectioned at 50 μm in-

tervals using a sliding microtome, which was coupled to a freezing unit
and covered in dry ice. A blockface photograph was taken before each cut
using an Olympus E�420 camera mounted on a shelf over the micro-
tome; these photographs are useful for post-hoc 3D reconstruction. One
every ten sections (i.e., every 0.5mm)was selected for Nissl staining with
thionin and posterior cytoarchitectonic analysis and segmentation. The
other nine were preserved for future analyses with complementary
techniques. The selected, Nissl-stained sections were digitized at 4 μm
resolution using an Epson Perfection V800 Photo flatbed scanner. A
corresponding pair of blockface and histological images are shown in
Fig. 2.
2.4. Blockface photograph processing

In order to be useful in histology reconstruction, the blockface images
need to be registered and perspective corrected, such that, when stacked,
they render a volume that is 3D consistent. Registration is needed to
correct for the perspective distortion introduced by small movements of
the microtome and the camera setup. In order to co-register the images,
we used as reference a photograph of the microtome without any sample
on the block holder. On this photograph, we manually marked the cor-
ners of the block holder, and used them to define a binary mask covering
the whole image domain except for the block holder – so that the
registration is not influenced by the brain samples. The registration was
performed by detecting salient points inside the mask with SURF (Bay
et al., 2006), matching their (SURF) feature vectors, and robustly opti-
mizing a homography transformation with RANSAC (Fischler and Bolles,
1987). In order to introduce very salient points and thus ease the regis-
tration, we glued a checkerboard pattern and round stickers in different
colors to the microtome (see Fig. 2a).

After registration, we used an homography transform to correct for
scaling and geometric perspective distortion. The homography was
computed by matching the four corners of the block holder in the
reference image to a rectangular grid of size equal to the holder's physical
dimensions, defined at 0.1mm resolution. The transform was pre-
computed using the reference photograph, and then applied to all the
other blockface images in order to extract perspective corrected images
of known resolution. A sample blockface photograph and its corrected
counterpart are shown in Fig. 2a and b.

Finally, we segmented the tissue from the underlying block holder
(which was surrounded by dry ice) using a random forest pixel classifier



Fig. 2. Histological analysis: (a) Sample blockface photograph of case HNL4_13.
(b) Homography (i.e., perspective). corrected photograph. (c) Automated seg-
mentation with random forest classifier. (d) Digitized histology of section cor-
responding to (a). (e) Close-up of the region inside the red square in (d).
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based on visual features (Geremia et al., 2011; Criminisi and Shotton,
2013). The classifier was trained on 12 pseudorandomly selected,
manually labeled photographs – one from each case and side. We found
this small training dataset to perform sufficiently well, due to the large
contrast between the tissue and the underlying dry ice (see example if
Fig. 2c). These automated segmentations are used to mask the registra-
tion in Section 2.5.
2.5. 3D reconstruction of histology via blockface photographs

Recovering the 3D structure of the histology (Pichat et al., 2018)
requires first stacking the sections corresponding to each block (which
we know are parallel, and with what separation), and subsequently
estimating two sets of transforms: 1. nonrigid registrations of each sec-
tion within a block, in order to correct for the tissue shrinkage,
Fig. 3. Rigid alignment of stacks of blockface photographs to MRI. (a) Initialization:
grid on subfigures (b) and (c) to ease the visual assessment of the quality of the reg

317
deformation and occasional tear and folding that occur when the sections
are stained and mounted on glass slides; and 2. rigid registrations that
align the blocks with each other. Computing these transforms – partic-
ularly the nonlinear – using only histological data is an ill-posed problem:
without any additional information, we can only resort to registering
each section with its neighbors, which is well known to cause geometric
distortions such as the “banana effect” (straightening of curved struc-
tures) and “z-shift” (accumulation of errors along the stack); see further
details in Pichat et al. (2018).

A better alternative is to guide the reconstruction with 3D consistent
data acquired with another modality, typically MRI. However, using only
the MRI volume to 3D reconstruct the histology is still complicated, since
solving for the pose of the blocks and the nonlinear registrations simul-
taneously is also ill posed (Malandain et al., 2004). More precise solu-
tions can be achieved by using 3D consistent images of the whole blocks
as intermediate target, as these images can be linearly registered to the
MRI to obtain the pose of the blocks, i.e., playing the role of “stepping
stones” between the histology and the MRI.

For example, Adler et al. (2018) used MRI scans of the blocks as in-
termediate data. This approachmakes the registration to the original MRI
scan of the whole brain easier, since it is an intra-modality problem.
However, it has the disadvantage that it still requires estimating a rigid
transform between the MRI scan of the block and the histology stack,
which might not be straightforward. Here, we followed Amunts et al.
(2013) instead, and used the stacks of (perspective corrected, segmented)
blockface photographs. This choice has the advantage that the exact
correspondence between the histological sections and photographs in the
stack is known. On the other hand, the registration between the inter-
mediate images and the original MRI is slightly harder than in Adler et al.
(2018) because it is inter-modality, but, since it is a rigid registration
problem, mutual information works well.

More specifically, we first rigidly aligned the stacks of photographs to
the whole brain MRI, using the segmentations produced by the Otsu
thresholding (MRI) and the pixel classifier (photographs) to mask the
cost function, which used mutual information. For this purpose, we used
an iterative algorithm, in which we alternately: updated a global regis-
tration of the whole brain MRI to the set of blocks; and refined the set of
individual block transforms that aligned them with the MRI. The pose of
the whole brain MRI was initialized by coarse manual alignment. The
rigid co-registration algorithm is illustrated with an example in Fig. 3.

Given the pose of the blocks, it is still necessary to compute the
nonlinear registration of each stained section. For this purpose, we first
took the photograph to which the section corresponded, resampled the
MRI volume onto it with the corresponding rigid transform, and masked
it with the corresponding mask, given by the pixel classifier. This
resampled MRI was used as target to register the corresponding histo-
logical section. We used Elastix (Klein et al., 2010) for the registration,
combining mutual information with a B-spline transform (control point
spacing: 3mm).

We found the registration based solely on image intensities not to be
robust enough for our application, particularly when tears and folds had
occurred when mounting the tissue on the slide. To increase the
robustness, pairs of corresponding landmarks were manually placed by
J.E.I. on the images (between 6 and 18 per pair of images). Quality
control on landmark placement was based on outlier detection as follows.
axial view across the thalamus. (b) MRI. (c) Aligned stacks. We have overlaid a
istration.



Fig. 4. Nonrigid registration of histology and MRI. (a) Sample histological section, same as in Fig. 2. (b) Corresponding blockface photograph, masked by the cor-
responding automated segmentation. (c) MRI scan resampled to the space of the photograph. (d) Registered histology. The manually placed landmarks are marked
with red circles in subfigures (a) and (c).

Fig. 5. Examples of reconstructed histology. (a) Axial view of thalamus in MRI. (b) Corresponding slice through the stack of reconstructed histology. (c) Sagittal slice
of thalamus in MRI. (d) Corresponding histology.
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First, an affine transform was robustly fitted to the pairs of landmarks
using RANSAC (Fischler and Bolles, 1987). Second the transform was
applied to the landmarks on the MRI. Third, the distance between the
actual and predicted landmark locations on the histology was computed.
And fourth, if any of these distances was larger than 5mm, the user was
prompted to revise the placement of the corresponding landmark pairs.

Once the landmarks were in place, we optimized a cost function equal
to the sum of the mutual information and the mean distance between
corresponding landmarks after registration. A preliminary experiment, in
which 1000 registrations from randomly selected sections were
computed leaving one (randomly selected) landmark out, revealed that
the registration error of this approach was 0.92 � 0.64mm, which we
considered sufficient for the purposes of this article. The nonrigid
registration is illustrated with an example in Fig. 4. Sample orthogonal
slices of the reconstructed histology stacks are shown in Fig. 5.

2.6. Manual segmentation of nuclei on histology

The analysis of the histological sections was carried out by an
expert neuroanatomist (R.I.), using a stereo microscope (Leica EZ4)
with 50� magnification, an optic microscope (Nikon Eclipse E600),
and the digitized histology. R.I. manually delineated the nuclei with
ITK-Snap (http://www.itksnap.org), following the rostrocaudal axis of
the thalamus, from the anterior thalamus to the end of the pulvinar
nuclei. The delineation protocol was based on the characterization of
the human and mammalian thalamus by Jones (2012), and is sum-
marized in Table 2. Further details on the protocol and criteria for
delineation will be described in an additional publication in a
specialized journal.

2.7. 3D reconstruction of manual segmentations: filling the gaps

The rigid and nonrigid deformations that were computed to recover
the 3D structure of the histological images can be directly applied to the
manual segmentations in order to warp them to the space of the MRI
scan. However, the directly warped labelings do not immediately yield
usable 3D segmentations due to the gaps between blocks and the in-
consistencies between the manual segmentations of adjacent sections
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(see Fig. 6a). To refine the segmentation in MRI space, we used the
following automated approach. First, we performed a 2D erosion on each
section and label (including the background) with a small circular kernel
(radius: 1 mm), in order to generate a thin uncertainty zone around the
edges of the segmentation – which models the registration error. Next,
we deformed these eroded segmentations to the space of the MRI scan.
Finally, we automatically assigned labels to the eroded voxels, as well as
to the voxels in the gaps between blocks, by minimizing the following
cost function:

C ðSÞ ¼ �
X
j

log p
�
Ij; θSj

�þ α
X
j

D
�
j; Sj

�þ β
X
j

X
j0 2ΓðjÞ

δ
�
Sj 6¼ Sj0

�
; (1)

where S ¼ fSjg is the segmentation we want to compute (Sj is the seg-
mentation of voxel j); Ij represents the MRI intensity at voxel j; θl are sets
of Gaussian parameters associated with each label l; Dðj; SjÞ represents
the (physical) distance of voxel j to the initial segmentation of label Sj;
δð�Þ is the Kronecker delta; ΓðjÞ is the 6-neighborhood of voxel j; and α
and β are nonnegative weights.

The first term in Equation (1) encourages voxels with similar in-
tensities to share the same label. The parameter set θl correspond to the
weights, means and variances of a Gaussian mixture model associated
with label l. These were estimated using the voxels labeled as l in the
initial, eroded segmentation. The second term penalizes distance from
the original segmentation; we set the distance Dðj; SjÞ ¼ �∞ for voxels
that are inside the segmentation, which effectively preserves these labels
in the minimization. The third term is a Markov random field that pe-
nalizes pairwise differences in labels of neighboring voxels, thus ensuring
the smoothness of the final result.

In order to minimize the cost in Equation (1), we used α-expansion
(Boykov et al., 2001). The number of Gaussian components was set to
three for the background, and one for all other labels. The relative
weights of the terms were set to α ¼ β ¼ 1. A preliminary experiment, in
which 100 reconstructions from randomly selected cases were computed
leaving one (randomly selected) deformed section out, revealed that the
pixel classification accuracy of this approach was 89.1� 2.6%, which we
considered sufficient for the purposes of this article. A sample output of
the algorithm is shown in Fig. 6.

http://www.itksnap.org


Table 2
Summary of protocol for manual delineation of the thalamic nuclei on the histological images.

Fig. 6. Filling the gaps between blocks and refining the segmentation. (a) Sample sagittal slice of the thalamus. (b) Propagated manual segmentations. (c) Labels
estimated by minimizing Equation (1). The color coding is the same as in Table 2.
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2.8. Atlas construction

In order to build a probabilistic atlas of the thalamic nuclei and sur-
rounding tissue, we used our previously presented atlas construction
method (Iglesias et al., 2015a). Compared with its conventional coun-
terpart (Van Leemput, 2009), which cannot mix manual delineations at
different levels of detail, this method relies on a generative model in
which joint segmentations of the thalamic nuclei and the surrounding
structures are assumed to exist, but are hidden. Instead, we observe a
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modified version in which sets of labels have been deterministically
merged into coarser labels: in the in vivo scans, all the thalamic nuclei are
merged into a generic thalamus label, whereas in the ex vivo images, the
extrathalamic labels are fused into a single, generic background. Within
this framework, Bayesian inference can be used to derive the most likely
atlas of the thalamic nuclei and surrounding (whole) structures that
generated the observed coarse labels, effectively combining the seg-
mentations made on the in vivo and ex vivo images.

In this study, we combined our reconstructions of the thalamic nuclei
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with manual delineations at the whole structure level made on 39 in vivo,
T1-weighted scans, acquired at 1 � 1 � 1.25mm resolution (sagittal) on
a Siemens 1.5 T plaform with an MP-RAGE sequence. Thirty-six struc-
tures, including the left and right whole thalamus, were manually
delineated using the protocol described by Caviness et al. (1989). We
note that this is the dataset that was used to build the atlas in Freesurfer
(Fischl et al., 2002; Fischl, 2012); further details on the acquisition can be
found in the original publication. Both the in vivo and ex vivo datasets
were augmented with left-right flips to increase their effective size. The
atlas is represented as a tetrahedral mesh, which is locally adaptive to the
complexity of the anatomy (Van Leemput, 2009). Sample slices of the
atlas are displayed in Fig. 7.
2.9. Segmentation of in vivo MRI

Given a probabilistic atlas and a generative model of MRI scans,
segmentation can be posed as a Bayesian inference problem within the
model. As in previous work (Van Leemput et al., 1999; Iglesias et al.,
2015a,b; Puonti et al., 2016; Saygin et al., 2017), and following the
literature of Bayesian segmentation (Wells et al., 1996; Zhang et al.,
2001; Ashburner and Friston, 2005; Pohl et al., 2006), we assumed the
following forward model: first, the atlas is spatially warped following a
deformation model (Ashburner et al., 2000). Second, a segmentation is
drawn for each voxel independently, following the categorical distribu-
tion specified by the (deformed) atlas at each location. And third, image
intensities are drawn independently at each voxel, as independent sam-
ples of Gaussian mixture models conditioned on the underlying seg-
mentation, i.e., each label has an associated set of Gaussian parameters
describing the distribution of the intensities of its voxels.

In order to obtain an automated segmentation using the atlas, we first
compute point estimates of the model parameters, namely the deforma-
tion of the atlas and the Gaussian parameters. This is done with a coor-
dinate ascent strategy, in which the deformation and the Gaussian
parameters are alternately updated while keeping the other fixed. The
deformation is updated with a conjugate gradient algorithm, whereas the
Gaussian parameters are estimated with the Expectation Maximization
(EM) algorithm (Dempster et al., 1977). The deformation is initialized by
fitting the atlas to the automated segmentation of brain structures pro-
vided by the FreeSurfer main recon-all stream (aseg.mgz, Fischl et al.,
2002). Once the point estimates have been computed, the posterior
probability of the segmentation is obtained as a by-product of the EM
algorihtm. Further details are given in Iglesias et al. (2015a); Puonti et al.
(2016).

An important design choice of the segmentation algorithm is which
classes are grouped in tissue types. Forcing different labels with similar
intensity characteristics (e.g., gray matter structures such as the cerebral
cortex, the hippocampus and the amygdala) to share Gaussian parame-
ters improves the robustness of the algorithm. Here, we chose to group
the thalamic nuclei into three different sets, representing different tissue
types. First, the reticular nucleus was grouped with the rest of cerebral
white matter structures in the atlas, as the large amount of fibers that
cross it gives it a very similar appearance to that of white matter. A
second set includes the mediodorsal and pulvinar nuclei (i.e., MDm, MDl,
Fig. 7. Probabilistic atlas, with tetrahedral mesh superimposed. The color of each vox
label probabilities. For the surrounding structures, we used the standard FreeSurfer
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PuA, PuM, PuL, and PuI). All other nuclei are grouped into a third set. The
division of nuclei between the second and third sets reflects the internal
boundary that can be observed in in vivoMRI, even at standard resolution
(see top row in Fig. 9). Fitting the atlas to this internal boundary provides
a more reliable estimate of the segmentation.

3. Experiments and results

To validate the built atlas and its application to segmentation, we
performed four different sets of experiments. As a first basic check, we
conducted a volume comparison of the thalamic nuclei derived with the
proposed atlas with those obtained with the atlas described in Krauth
et al. (2010) (also derived from histology) using registration-based seg-
mentation. The other three experiments aimed at evaluating the perfor-
mance of the proposed segmentation method indirectly – as direct
evaluation would require labeling in vivo scans with the ex vivo protocol,
which is not feasible. Specifically, the second experiment evaluated the
reliability of our segmentation over time using an in vivo test-retest T1
MRI dataset. The third set of experiments evaluated the robustness of the
proposed atlas with respect to changes in MRI contrast of the input scan,
using a heavily multimodal MRI dataset. The fourth and last set of ex-
periments assessed the ability of the proposed method to detect differ-
ential effects in the thalamus in a group study of Alzheimer's disease,
using the publicly available ADNI dataset.
3.1. Volumetric comparison with Krauth's atlas

To initially examine our proposed atlas in relation to existing
thalamic atlases derived from histology, we selected Krauth et al. (2010).
We conducted volumetric analysis for six representative nuclei (one per
thalamic group, see Table 2), which are also present in Krauth's atlas, and
which are well characterized in terms of functional and structural con-
nectivity: anteroventral (AV), lateral posterior (LP), centromedian (CM),
mediodorsal (MD, equal to the union of MDl and MDm), ventral lateral
(VL, equal to the union of VLa and VLp), and pulvinar (PU, equal to the
union of PuA, PuM, PuL and PuI).

Comparing the volumes of the nuclei in the two atlases directly is
problematic, particularly given that Krauth's model is a non-probabilistic
mean derived from a small number of subjects. Instead, we compared the
distributions of volumes of the nuclei when the atlases were applied to
the automated segmentation of 66 subjects. For the proposed atlas, we
used the method described above in this paper. For Krauth, we used
direct registration-based segmentation: we took the MNI template with
thalamic labels overlaid (see Jakab et al., 2012 for details); deformed it to
the target subjects with ANTS (Avants et al., 2008); and used the
resulting deformation fields to warp the labels to target space and create
the segmentations.

The 66 subjects (age 24.31 � 3.70 years; 40 females) were right-
handed healthy adults, with no history of psychiatric, neurological,
attention or learning disorders. They were scanned at the BCBL on a
3TMagnetom TIM Trio scanner, using a 32-channel head coil. T1-
weighted images were acquired with a ME-MPRAGE sequence (van der
Kouwe et al., 2008) with TE¼ 1.64, 3.5, 5.36, 7.22ms, TR¼ 2530ms,
el is a linear combination of the colors in Table 2, weighted by the corresponding
color map. (a) Sample coronal slice. (b) Axial slice. (c) Sagittal slice.



Fig. 9. Sagittal (left), coronal (middle), and axial (right) slices of a brain MRI
scan segmented with the proposed atlas and Krauth's. The color map for our
atlas is that described in Table 2. For Krauth, we attempted to match the color
map as much as possible; we note that their atlas includes the red nucleus (in
red, pointed by yellow arrows) and subthalamic nucleus (in green, pointed by
blue arrows), in the inferior region, which are not part of our proposed atlas. On
the left thalamus of the input scan, we have overlaid a manually delineated
boundary between the mediodorsal and pulvinar nuclei, and the rest of the
nuclei; this is the main feature we use to fit the internal boundaries of
the thalamus.

Table 3
Intraclass correlation coefficients for representative thalamic nuclei and whole
thalamus. As in Fig. 8, MD is the union of MDm and MDl; VL is the union of VLa
and VLp; and PU is the union of PuA, PuM, PuL and PuI.

Structure Left Right

Anteroventral (AV) 0.86 0.93
Lateral posterior (LP) 0.85 0.90
Centromedian (CM) 0.94 0.92
Mediodorsal (MD) 0.89 0.95
Ventral lateral (VL) 0.96 0.99
Pulvinar (PU) 0.96 0.87
Whole thalamus 0.97 0.98

J.E. Iglesias et al. NeuroImage 183 (2018) 314–326
TI¼ 1100ms, α ¼ 7∘, FOV¼ 256mm, 176 slices, resolution 1mm
isotropic.

Fig. 8 displays violin plots (box plots with a rotated kernel density
plot on each side) comparing the distribution of volumes of the repre-
sentative nuclei. In qualitative terms, the agreement between the nuclei
is good, even though Krauth's atlas yields slightly larger volumes for the
anteroventral and lateral posterior nuclei (bilateral); and the left pulvinar
nucleus. This good agreement is also apparent in Fig. 9, which displays a
case segmented with both atlases. We note that direct comparison of
whole thalamic volumes is not straightforward, due to different inclusion
criteria, e.g., Krauth's atlas covers the red nucleus, subthalamic nucleus
and mammillothalamic tract, while the proposed atlas does not (see
Fig. 9).

3.2. Test-retest reliability

In order to evaluate the test-retest reliability of the proposed seg-
mentation method, we used MRI data from 31 of the 66 subjects (age
24.34� 2.96 years; 17 females), who also participated in a second session
between seven and 10 days after the first session. The scanning protocol
was the same as in the first experiment. The intraclass correlation co-
efficients (ICC) between the volumes derived from the scans in the first
and second session are displayed in Table 3. Despite the fact that the
thalamus is notoriously difficult to segment due to its faint lateral
boundary, our algorithm produces very high ICCs for the left and right
whole thalami (above 0.97). Moreover, and despite the fact that the in-
ternal boundary used by the algorithm to fit the atlas is also faint, the
ICCs for the individual representative nuclei are also excellent – all scores
are over 0.85, and most are over 0.90 and even 0.95.

3.3. Robustness against changes in MRI contrast

Compared with discriminative approaches, a general advantage of
Bayesian segmentationmethods is their robustness against changes in the
MRI contrast of the input scans. In order to test this robustness, we used a
separate dataset consisting of multimodal MRI data from 11 subjects,
acquired on a 3T Prisma scanner (32 channel head coil) at the Martinos
Center for Biomedical Imaging. For each subject, we first acquired two
T1-weighted, MP2RAGE scans (Marques et al., 2010) with parameters:
TI¼ 700ms and 2500ms; α ¼ 4∘ and 5∘, TE¼ 2.98ms, image size¼ 256
� 240 � 176, GRAPPA accelaration factor¼ 3, bandwith 240Hz/pixel,
resolution 1mm isotropic. The two T1s were motion corrected and
averaged. The two inversion times were used to compute the quantitative
T1 relaxation time at each voxel. Given the quantitative T1 data and the
individual MPRAGEs, we computed the proton density. Using these data,
Fig. 8. Violin plots (box plots with a rotated kernel density plot on each side) for
Krauth's. MD, VL and PU represent the whole mediodorsal, ventral lateral and pulvina
and PU is the union of PuA, PuM, PuL and PuI.
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we synthesized the k-space for a single-inversion MPRAGE with α ¼ 7∘,
TR¼ 2530ms, TE¼ 0ms, with inversion times ranging from 300ms to
940ms using a Bloch simulator (Ma et al., 2013). Within the simulation,
the data were acquired instantaneously (i.e., infinite bandwidth). The
simulated k-space data was then reconstructed using an FFT and the
absolute value taken.
volumes of representative nuclei, computed with our proposed atlas and with
r nuclei, i.e., MD is the union of MDm and MDl; VL is the union of VLa and VLp;



Fig. 10. Coronal slice from sample subject in multimodal MRI dataset, with
corresponding automated segmentations with the proposed atlas.
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We also acquired two additional volumes for each subject. First, a T2-
weighted volume with the following parameters: TR¼ 3200ms,
TE¼ 564ms, acceleration factor¼ 2, bandwidth¼ 651Hz/pixel, echo
spacing 3.66ms, resolution 1mm isotropic. And second, an additional
MPRAGE with a contrast that is typically used in DBS: TR¼ 3000ms,
TE¼ 3.56ms, TI¼ 406ms, α ¼ 8∘, phase field of view¼ 81.3%, resolu-
tion 0.8 mm isotropic.

The segmentationalgorithmfor thealternativeMRIcontrasts is the same
as for the T1 data, and also uses the automated segmentation aseg.mgz in the
initialization. Since this segmentation is computed by FreeSurfer from the
T1 images, the results of this experiment are positively biased by the com-
mon initialization. However, we note that this will be the scenario of the
public release of the algorithm in FreeSurfer, in which the availability of a
T1 scan is always assumed.

An example of a coronal slice with all available MRI contrasts and
associated segmentations is shown in Fig. 10. The segmentation is quite
stable across contrasts, though some differences can be observed both in
the internal and external boundaries of the thalamus. Quantitative results
are displayed in Fig. 11, which shows, for each representative nucleus,
Fig. 11. Dice overlap (left-right averaged) for the segmentations yielded by differen
nuclei and whole thalamus. As in previous figures, MD is the union of MDm and MDl
The times in ms refer to the synthetic MPRAGE scans. The color bar is the same for
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the Dice overlap between the segmentations for each pair of MRI con-
trasts. The agreement between the segmentations of the whole thalamus
is quite high, near or above 0.90 in almost all cases. For the individual
nuclei, the overlaps are moderately high, given that we are considering
substructures, particularly for CM and VL (Dice approximately between
0.75 and 0.85). The overlaps are slightly lower for AV, MD and PU, with
Dice scores approximately between 0.65 and 0.75. In terms of MRI
contrast, the best agreement is observed (as expected) between the
synthetic MPRAGEs with inversion times over 600ms – since TI <

600ms produces a contrast flip. The least consistent MRI contrast is the
T2, in which the boundary between MD/PU and the rest of nuclei is
almost invisible (see example in Fig. 10). In general, the agreement is
good between most pairs of contrasts.

3.4. Alzheimer's disease study

In order to assess the effectiveness in neuroimaging group studies of
our proposed automated segmentation method based on the ex vivo atlas,
we ran the algorithm on a subset of the publicly available ADNI dataset.
The ADNI (adni.loni.usc.edu) was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial MRI, positron
emission tomography, other biological markers, and clinical and neuro-
psychological assessment can be combined to measure the progression of
mild cognitive impairment and early Alzheimers disease. Here we
considered T1-weighted scans from 213 subjects with Alzheimer's and
161 age-matched controls (Alzheimer's: 76.04 � 5.42 years; controls:
75.58� 7.37 years); we note that these are the subjects that we have used
in previous studies from our group (e.g., Iglesias et al., 2015a; Saygin
et al., 2017). The resolution of the T1 scans was approximately 1mm
isotropic; further details on the acquisition can be found in the ADNI
website. The volumes of the thalamic nuclei and of the whole thalamus
were corrected by age and intracranial volume (as estimated by Free-
Surfer) and left-right averaged in all analyses.

To discriminate the subjects into the two classes, we considered three
different approaches. First, thresholding of the whole thalamic volume, as
estimatedwith themain FreeSurfer recon-all stream (i.e, aseg.mgz). Second,
thresholding of the whole thalamic volume, as estimated by the proposed
atlas (i.e., summing all the nuclei). And third, thresholding of the likelihood
ratio given by a linear discriminant analysis (LDA, Fisher, 1936), computed
t MRI contrasts. The six matrices correspond to the six representative thalamic
; VL is the union of VLa and VLp; and PU is the union of PuA, PuM, PuL and PuI.
all six matrices.

http://adni.loni.usc.edu


Fig. 12. ROC curves for Alzheimer's vs. controls classification based on left-
right averaged thalamic volumes. The red curve is for the whole thalamic vol-
ume estimated by FreeSurfer's recon-all stream (AUC¼ 0.632). The blue curve is
for the whole thalamic volume, estimated as the sum of the volumes of the
nuclei given by our proposed atlas (AUC¼ 0.645). The black curve corresponds
to a leave-one-out LDA classifier that simultaneously considers the volumes of
all nuclei, as estimated by the proposed atlas (AUC¼ 0.830). The volumes were
left-right averaged and corrected by age and intracranial volumes in all cases.
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in a leave-one-out fashion. LDA is a simple linear analysis, which enables us
toconsiderall nuclei simultaneously,while ensuring that theperformance is
mostly determined by the input data, rather than stochastic variations in a
more complex classifier.

The receiver operating characteristic (ROC) curves are shown in
Fig. 12. The area under the curve (AUC), which is a threshold-
independent measure of performance for a classifier, was 0.632 for the
thalamic volumes given Freesurfer's main stream. When using the whole
thalamic volumes given by the proposed atlas, the AUC was slightly
higher (AUC¼ 0.645), though the difference was not statistically sig-
nificant (p ¼ 0:4) according to a paired DeLong test (DeLong et al.,
1988). However, when using all nuclei simultaneously, the AUC
increased considerably to 0.830 (p � 10�10 against the whole thalamic
volumes, given by recon-all or our proposed atlas).

While AUC¼ 0.830 is modest in terms of Alzheimer's classification, it
represents a very large increase with respect to using the volume of the
whole thalamus alone. The reason for this increase is apparent from
Table 4, which shows the p-values for the individual nuclei that display
significant differences between the two groups, after Bonferroni correc-
tion by the number of nuclei. The table shows that fitting the internal
boundary of the thalamus, even if faint (and hence prone to segmentation
mistakes), enables some thalamic structures to separate the two classes
with much more accuracy than the whole thalamus. These results are
consistent with the literature (Aggleton et al., 2016; Pini et al., 2016) and
may be explained by the distinct pattern of connections and functions of
these thalamic regions, and by the fact that not all thalamic nuclei are
equally affected by the disease – see further details below under Section
4.

4. Discussion

Human cortical information flow and dynamics cannot be fully un-
derstood without taking into account thalamocortical interactions. Due
to its critical functions and widespread structural connections with
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practically the entire cortex, the availability of accurate and reliable
automated segmentation algorithms for the thalamic nuclei is of high
interest for the neuroimaging community. Here we have introduced a
probabilistic atlas of 26 human thalamic nuclei built upon 3D recon-
structed histological data from 12 thalami; presented a Bayesian seg-
mentation method that applies the atlas to the automated segmentation
of thalamic nuclei in in vivo brain MRI scans of arbitrary contrast; and
validated the atlas and segmentation with four different sets of experi-
ments, whose results are discussed next.

First, we compared the proposed atlas with a previously presented
histology-based atlas (Krauth et al., 2010) by segmenting the thalamic
nuclei in a population of 66 subjects and comparing the distribution of
the volumes. To produce the segmentations, our proposed atlas was
combined with a Bayesian segmentation technique presented in this
article. For Krauth, we used direct registration-based segmentation.
Leaving aside discrepancies in the anatomical definition of nuclei, the
two models yielded very similar volumes, which is reassuring in terms of
scientific reproducibility. The advantage of our model lies in its proba-
bilistic nature, which enables segmentation of scans of arbitrary MRI
contrast within a Bayesian framework.

Second, we conducted a test-retest reliability study of our segmen-
tation tool using 1mm T1 scans acquired approximately one week apart.
This experiment revealed excellent repeatability, with ICC scores mostly
above 0.90 (which is higher than that of some whole structures in
FreeSurfer; seeMorey et al., 2010). This result reassures that the obtained
volumes are reliable, i.e., they are an accurate representation of a mea-
surement, rather than attributed to random fluctuations.

A third experiment assessed the robustness of the tool to changes in
the MRI contrast of the input scan. This experiment was also successful,
as the agreement between segmentations is good across a wide array of
contrasts. This result supports the hypothesis that our structural seg-
mentation algorithm will be able to take advantage of MRI pulse se-
quences that produce good contrast in the thalamus in vivo, such as fast
gray matter acquisition T1 inversion recovery scans (FGATIR).

The most intriguing results are those from the experiment with Alz-
heimer's disease subjects, as a large boost in classification performance
(increase of 0.20 in AUC) is observed when switching from the volume of
the whole thalamus to the volumes of its subregions. Looking at indi-
vidual nuclei, large differences were found in mediodorsal, anteroventral
and ventral anterior areas. This is consistent with previous results in
neuroimaging studies. Antero-ventro-medial regions have been reported
as main foci of impairment in Alzheimer's disease in several neuro-
imaging studies (Aggleton et al., 2016; Pini et al., 2016; Step�an-Buksa-
kowska et al., 2014; Zarei et al., 2010). Moreover, a three-year
longitudinal study reported that thalamic atrophy was first localized in
the ventromedial regions, and spread to anterior regions in later stages
(Cho et al., 2014), which are well represented in the ADNI dataset.
Mediodorsal regions have also been reported as foci of atrophy: for
example, a voxel-based morphometry study in genetic Alzheimer's dis-
ease showed that mutation carriers exhibit a decreased gray matter
density localized in the medial-dorsal regions of the thalamus within 5
years of symptoms onset (Cash et al., 2013).

Our results are also supported by neuropathological studies. For
example, Braak and Braak (1991) and Xuereb et al. (1991) have shown
that the primary site of Alzheimer's disease degeneration in the thalamus
is the anterodorsal nucleus, which showed severe neuronal loss and
tangle formation. In our proposed atlas, the anterodorsal nucleus (due to
its small size) has been included in the anteroventral (AV) nucleus. The
AV nucleus not only shows a strong effect between Alzheimer's and
controls, but is also the nucleus with the strongest ICC in the repeatability
experiment. These anterior thalamic nuclei are densely and directly
connected to the medial temporal lobe structures (e.g., hippocampus,
amygdala and entorhinal cortex), in addition to the relay in the
mammillary nuclei of the hypothalamus, all of which are typically
affected in Alzheimer's disease and linked to its episodic memory deficits
(Aggleton et al., 2016). Moreover, Zarei et al. (2010) showed that
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atrophy of the mediodorsal thalamus (which shows the second to largest
effect in our experiment) corresponds to changes in connectivity with
cortical and subcortical areas. Finally, Braak and Braak (1991) also found
amyloid deposition in the anteroventral, laterodorsal, and the central
medial nucleus; the first two of these regions (anteroventral and later-
odorsal) correspond with our volumetric findings.

While these neuroimaging and neuropathological studies support the
outcome of our experiment, our results could also be a partial correlate of
the expansion of the neighboring ventricles in Alzheimer's disease. For
example, the thalamic atrophy detected by Zarei et al. (2010) through a
shape analysis was characterized by an inward movement of vertices in
the dorsomedial and ventral aspects of the thalamus, which may be
associated with ventricular enlargement. However, we may also argue
that such ventricular effect should also affect the volume of the whole
thalamus, which is only the case to a much lesser extent in our experi-
ment. Another aspect that requires further inspection is the atrophy
detected in the lateral and medial geniculate nuclei (LGN/MGN), for
which there is little evidence in the literature. The measured atrophy
might be a false positive due to small nuclei sizes, lack of contrast with
neighboring cerebral white matter, or both. However, it could also be a
true effect, e.g., a correlate of the visual impairments associated with
Alzheimer's disease (Kirby et al., 2010), as the LGN is a major relay of the
visual pathway; a similar effect is potentially possible for theMGN, which
is linked to auditory processing. We note that, even when the LGN (the
single most discriminating nucleus; see Table 4) and the MGN are
removed from the LDA analysis, the AUC of the classifier is 0.783, which
is still considerably higher than the values given by the whole thalamus
(AUC¼ 0.645).

5. Conclusion

We have presented a probabilistic atlas of the human thalamus based
on ex vivo imaging techniques (ex vivo MRI, histology), and a companion
tool that enables segmentation of thalamic nuclei from in vivo MRI of
arbitrary contrast. At the technical level, future work will focus on
integrating diffusion MRI data in the segmentation algorithm. While
segmentation based solely on structural MRI enables analysis of large
amounts of legacy datasets that do not include diffusion data, the local
diffusion information and structural connectivity are strong signatures of
the divisions between different thalamic nuclei. Therefore, including
these data in the generative model should greatly inform the Bayesian
segmentation algorithm, which currently relies on faint boundaries and
prior knowledge to fit the atlas to the input images.

Improvements in the segmentation will also enable more advanced
studies of multiple disorders, e.g., Alzheimer's disease, Parkinson's dis-
ease, dyslexia, schizophrenia, etc. Future analyses will include: further
investigation of the results of the group study reported in this article;
correlation of thalamic nuclei with clinical scores, subtypes of the dis-
ease, and disease duration; investigation of specific thalamic networks
(functional and structural) using the segmented nuclei as seeds; or cluster
Table 4
Thalamic nuclei showing statistically significant differences between Alzheimer's
and controls, sorted by increasing p-value (two-side, non-parametric Wilcoxon
test). The threshold for statistical significance is p < 0:0019, which is equivalent
to p < 0:05 Bonferroni-corrected by 26 multiple comparisons. In all cases, the
volume of the nuclei was bigger in the control population. The table also displays
the average volume across the population, as a measure of the size of the nuclei.

Structure Avg. vol. p-value

Lateral geniculate (LGN) 124mm3
< 10�16

Medial magnocellular (MDm) 606mm3
< 10�12

Lateral parvocellular (MDl) 245mm3
< 10�9

Medial Geniculate (MGN) 99mm3
< 10�5

Ventral anterior (VA) 343mm3 0.0001
Anteroventral (AV) 100mm3 0.0004
Whole thalamus 5571mm3 0.0004
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analysis of nuclei volumes for subtyping the disease.
Our proposed atlas and segmentation tool are publicly available as

part of the neuroimaging software package FreeSurfer (https://surfer.
nmr.mgh.harvard.edu), and the ex vivo data used for building the atlas
will be published in the future along with a paper focused on the
morphology of the human thalamus. Our proposed atlas will enable
neuroimaging studies of the human thalamus at sites that do not possess
the expertise or staff resources to manually delineate the thalamic nuclei
in 3D MRI data.
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