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Human Exposure to Electromagnetic Fields from WLANs 

and WBANs in the 2.4 GHz Band.  

Resumen en castellano. 

Introducción 

En los últimos años, el masivo crecimiento de las comunicaciones 

inalámbricas ha incrementado la preocupación acerca de la exposición humana a 

los campos electromagnéticos debido a los posibles efectos sobre la salud. Esta 

tesis surge de la necesidad de proporcionar información acerca de este tipo de 

exposición. Se requiere un mayor conocimiento acerca de las emisiones de 

radiofrecuencia por dos motivos: para asegurar la protección humana frente a 

dichas emisiones, pero sin reducir los beneficios de la tecnología debido a 

normativas de despliegue excesivamente restrictivas, y para dar respuesta a la 

preocupación pública que normalmente está acentuada por la falta de 

conocimiento. 

La exposición a campos electromagnéticos causada tanto por los dispositivos 

de usuario como por las estaciones base se evalúa generalmente para comprobar 

el cumplimiento con la regulación vigente. Dado que la medida de la exposición 

en campo cercano es compleja, y en algunos casos inviable, las señales de 

radiofrecuencia se miden normalmente en la región de campo lejano para evaluar 

los niveles de exposición en distintos entornos. Sin embargo, para validar los 

dispositivos de usuario es esencial la evaluación de la exposición en campo 

cercano. En esta tesis se ha estudio la exposición humana a emisiones de 

radiofrecuencia en ambas regiones. 

Uno de los principales inconvenientes cuando se miden señales en el campo 

lejano se debe a la falta de un procedimiento estandarizado para la toma de 

muestras de campos electromagnéticos, especialmente agravado cuanto se trata 

de señales transmitidas en forma de ráfagas, como es el caso del WiFi, ya que la 

instrumentación de medida puede tener gran influencia en los resultados. Esta 

tesis incluye una nueva metodología de medida para evaluar la exposición debida 

a este tipo de señales. 

Por otra parte, uno de los aspectos claves a considerar a la hora de diseñar 

dispositivos que transmiten señales cerca del cuerpo es la interacción entre el 

cuerpo y la antena. En esta tesis se presentan dos antenas ‘wearables’ adecuadas 



para reducir dicha interacción, junto con un análisis detallado de la potencia 

absorbida por el cuerpo humano debido a estas antenas. 

En general, el objetivo de este trabajo consiste en presentar varias soluciones 

para mejorar la evaluación de la exposición a campos electromagnéticos, así como 

aumentar el conocimiento en cuanto a niveles de exposición. Para realizar esta 

investigación se han seleccionado dos tipos de fuentes de radiación, en la región 

de campo lejano se han estudiado las señales WiFi transmitidas en redes de área 

local inalámbricas y se han seleccionado las antenas ‘wearables’ como dispositivos 

transmitiendo en campo cercano. 

Objetivos 

Teniendo en cuenta la necesidad de aumentar el conocimiento en el área de 

la evaluación de la exposición a campos electromagnéticos, así como las carencias 

e inconvenientes detectados en los procedimientos de medida, evaluación o 

diseño de dispositivos orientados a reducir la potencia absorbida por el cuerpo, 

se plantea una serie de objetivos para esta tesis. Más concretamente, este trabajo 

está basado en el análisis de señales procedentes de dos tipos de fuentes de 

radiación: dispositivos ‘wearables’ adecuados para formar parte de redes de área 

corporales inalámbricas (WBANs, del inglés Wireless Body Area Networks), y señales 

WiFi transmitidas en redes de área local inalámbricas (WLANs, del inglés Wireless 

Local Area Networks), todas ellas transmitiendo en la banda de frecuencias de 

2.4 GHz. Como la evaluación de la exposición electromagnética se realiza de 

manera diferente en función de la región de campo en la que se haga el estudio, 

los objetivos de este trabajo se pueden agrupar en dos partes: 

1) Exposición en la región de campo lejano: 

En esta región de campo, se han analizado las señales WiFi y se propone 

como finalidad la obtención de una metodología de medida que permita estimar 

con exactitud los niveles de exposición a señales WiFi en WLANs, así como 

contribuir a aumentar el conocimiento de los niveles de radiación producidos por 

este tipo de señales. Los objetivos parciales para lograr dicha finalidad se 

mencionan a continuación: 

- Identificar inconvenientes y beneficios de metodologías de medida 

existentes y, en base a ello, seleccionar la instrumentación más apropiada 

para adquirir muestras de señal WiFi que permitan obtener niveles de 

campos electromagnéticos precisos en todo momento. 



- Caracterizar las señales WiFi en la banda de 2.4 GHz en diferentes 

situaciones, en el dominio del tiempo y de la frecuencia. 

- Definir el procedimiento adecuado y los criterios seguidos para 

establecer la configuración del equipo de medida, así como determinar y 

validar la metodología de medición de señales WiFi basada en dicha 

configuración. 

- Evaluar detalladamente la exposición de este tipo de señales en el interior 

de entornos públicos. Para ello se deben definir las campañas de medida 

basadas en el procedimiento previamente establecido. Una vez tomadas 

las muestras, se deben examinar con detalle y seleccionar los estadísticos 

adecuados para presentar los resultados. 

- Comparar los niveles obtenidos en estas campañas de medida con los 

adquiridos por otros autores, para ello es necesaria una búsqueda 

bibliográfica en la literatura científica. 

 

2) Exposición en la región de campo cercano: 

En la región de campo cercano se ha realizado una evaluación exhaustiva de 

la potencia absorbida por el cuerpo humano debido a dos tipos de antenas 

‘wearables’. Además, se han convertido los valores de medidas de WiFi realizadas 

en la región de campo lejano a niveles en campo cercano, pudiendo comparar de 

este modo las diferentes fuentes de radiación. Los objetivos parciales de esta 

segunda parte del estudio se detallan a continuación: 

- Diseñar antenas ‘wearables’ apropiadas para formar parte de una WBAN, 

de manera que la potencia radiada en el cuerpo sea la mínima posible. 

- Fabricar las antenas y validarlas colocándolas en el cuerpo de personas 

reales. Analizar el efecto de las antenas en el cuerpo, así como el efecto 

del cuerpo en el funcionamiento de la antena. 

- Llevar a cabo un análisis detallado, basado en simulaciones, de la potencia 

absorbida en el cuerpo humano. Para ello, seleccionar diferentes modelos 

de cuerpo y realizar las simulaciones con las antenas colocadas en 

diversas partes del cuerpo. 

- Convertir los valores obtenidos de las medidas WiFi a valores en campo 

cercano y comparar éstos con los valores obtenidos en las simulaciones 

de las antenas. 

 

 



Principales contribuciones de la tesis 

Las contribuciones de esta tesis dan respuesta a los objetivos previamente 

definidos. En este apartado se resumen las contribuciones más relevantes de este 

trabajo de investigación: 

- Establecer una metodología de medición apropiada para obtener 

niveles de señal WiFi precisos en todo momento. 

Esta aportación se recoge en el tercer capítulo de la tesis. El primer paso para 

determinar la metodología de medida consiste en definir la configuración 

adecuada del analizador de espectros. Para ello se definió un procedimiento que 

consiste en tres fases: adquisición de niveles de referencia, estudio de la influencia 

de los parámetros del analizador en los valores medidos e identificación de la 

configuración óptima de medida. La Tabla 1 muestra las configuraciones del 

analizador de espectros seleccionadas como las más adecuadas para la toma de 

muestras en un canal y en toda la banda WiFi de 2.4 GHz. 

Tabla 1. Configuración del analizador de espectros para realizar medidas en un canal y en toda la banda WiFi de 

2.4GHz. 

Parameter 
Value 

One channel 

Value 

2.4 GHz WiFi band 

fc  Central frequency of the channel 2441.75 MHz 

Span  20 MHz 83.5 MHz 

RBW  0.3 MHz 1 MHz 

VBW 1 MHz 3 MHz 

SWT  2.5 ms 2.5 ms 

SWP 501 points 501 points 

Detector RMS RMS 

Trace Mode clear/write clear/write 

 

A partir de estas configuraciones, se detalla en el capítulo 3 de la tesis la 

metodología de medida de exposición a señales WiFi. 

- Evaluar la exposición a señales WiFi en un entorno público 

interior. 

Utilizando la metodología definida en el punto anterior, se realizaron 

campañas de medida para estimar la evaluación a este tipo de exposición en 

diferentes lugares dentro de la Universidad del País Vasco UPV/EHU. Estas 



tareas y los resultados correspondientes están especificados en el capítulo 4 de 

esta tesis doctoral. Se realizó un análisis de los estadísticos adecuados para 

describir la exposición a señales WiFi en la banda de 2.4 GHz y su variabilidad 

espacial y temporal. Además, se realizó una comparación con los niveles 

obtenidos en otras campañas de medida. Dicha comparación se muestra en la 

Tabla 2. 

Tabla 2. Niveles de campo eléctrico (V/m) obtenidos en diferentes campañas de medida 

Ref Mean Median Range Description 

(Sagar 2018) 0.01-0.03 - - Eme Spy 201 
ExpoM-RF 

(Joseph 2010a) 0.019-0.082 - - Eme Spy 120/ 121 

(Joseph 2010c) 0.020 - 0.006-0.1 Weighting factor 

(Röösli 2008) ROS 0.05 0.02 NA-0.23 Eme Spy 120 

(Röösli 2008) Naïve 0.06 0.05 0.05-0.22 Eme spy 120 

(Karipidis 2017) 0.060-0.114 - - Radiation Meter 

(Tomitsch 2015) 0.077-0.118 0.000-0.013 - Max-hold 

Our work 0.005 0.005* 0.004-0.408 Analyzer 24 h 

Our work 0.005 0.005* 0.005*-0.269 Analyzer 1 h 

Our work 0.031 0.029 0.005-0.242 Eme Spy 200 1 h 

* The calculated values were between 0.0045 and 0.0049 V/m, but when rounding to the nearest 

third decimal a value of 0.005 V/m was set. 

- Diseño e implementación de dos antenas ‘wearables’. 

En el capítulo 5 de esta tesis se detalla el proceso de diseño y fabricación de 

ambas antenas. Una de ellas está diseñada para su uso en comunicaciones entre 

el cuerpo y un dispositivo exterior (off-body) y la otra consiste en una antena que 

se coloca en el cuerpo humano y puede comunicarse con un dispositivo situado 

en el interior (in-body). Ambas antenas fueron diseñadas con el objetivo de 

reducir la interacción entre el cuerpo y la antena. El diseño en 3D de las antenas 

se puede ver en la Figura 1. A la izquierda se encuentra el modelo diseñado para 

comunicaciones ‘off-body’, siendo las dimensiones de esta antena 

56×33×11 mm. A partir de este diseño se obtuvo la antena apropiada para 

comunicaciones ‘in-body’, ésta tiene un tamaño menor, siendo sus dimensiones 

33×33×11 mm. Como se observa, ambas tiene una ranura por donde se genera 

la mayor parte de la radiación. En el caso de la antena ‘in-body’, esta ranura estará 

en contacto con la piel. 



 

Figura 1. Modelos de antenas diseñadas en esta tesis. Una de ellas diseñada para comunicaciones 'off-body' 
(izquierda), y la otra para comunicaciones 'in-body' (derecha). 

Ambas antenas fueron fabricadas y su funcionamiento se validó cuando 

estaban colocadas en diferentes posiciones del cuerpo de personas reales. 

- Análisis de la exposición en campo cercano 

El capítulo 6 de esta tesis muestra la evaluación de la exposición realizada en 

la región de campo cercano. Primero se llevó a cabo el análisis de la potencia 

absorbida y de la Tasa de Absorción Específica (SAR, del inglés Specific Absorption 

Rate) debido a las dos antenas previamente mostradas. Para ello se realizaron 

diversas simulaciones seleccionando un modelo de cuerpo de mujer y otro de 

hombre. Finalmente, se convirtieron niveles obtenidos en medidas WiFi a valores 

en capo cercano, concretamente se calcularon niveles de SARWB del inglés, 

Whole-body SAR, que se refiere a la potencia absorbida por el cuerpo dividida 

por la masa de éste. Para realizar esta conversión se realizó una búsqueda en la 

literatura científica y se eligieron tres métodos definidos por diferentes autores. 

De manera que las diferencias debidas a la utilización de un método u otro fueron 

analizadas. También se calcularon estos resultados para los valores de potencia 

más altos obtenidos para cada una de las antenas ‘wearables’. Los resultados 

obtenidos en el campo cercano pueden verse en la Tabla 3. 

 

 

 

 



Tabla 3. Niveles de SARWB (nW/kg) calculados a partir de las medidas de WiFi en cammpo lejano y 
obtenidos a partir de las simulaciones de las antenas 'wearables'. 

SARWB (nW/kg) 

 Converted data from EMF measurements 

 
 Method 

1 
Method 2 Method 3 

 
Position 10 kg 10 

kg 
70 
kg 

DMC 10 
kg 

DMC 70 
kg 

10 
kg 

70 
kg 

Lab 1 

1 31.49 20.84 9.59 31.68 14.57 21.07 11.84 

2 40.61 26.87 12.36 64.50 29.67 27.17 15.26 

3 31.96 21.15 9.73 25.38 11.67 21.38 12.01 

4 31.72 20.99 9.66 41.98 19.31 21.22 11.92 

5 24.88 16.47 7.57 35.57 16.36 16.65 9.35 

Classroom 
1 

5 553 366 184 556 280 370 208 

Lab 2 

Morning 9.89 6.54 3.01 9.95 4.58 6.62 3.72 

Afternoon 5.18 3.42 1.58 5.21 2.39 3.46 1.95 

Night 2.91 1.92 0.88 2.92 1.34 1.94 1.09 

                           Wearable antennas 

Off-Body Max Level 61.42·103      

In-Body Max Level 115.30·103   
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Summary 

In the last years, the massive growth of wireless communications has raised 

concerns about human exposure to electromagnetic fields due to possible adverse 

health effects. This thesis arose from the need of providing scientific information 

regarding this type of exposure. A wider knowledge about radiofrequency 

emissions is necessary because of two main reasons, ensure people protection 

against these emissions, but without reducing the benefits of technology due to 

overly restrictive deployment policies, and give response to public concern, which 

is usually caused due to the lack of knowledge. 

Exposure to electromagnetic fields from both user devices and base stations 

is usually assessed in order to check compliance with regulations. As the 

assessment of exposure in the near field is complex and in some cases infeasible, 

radiofrequency signals are usually measured in the far field region for assessing 

exposure levels in different environments. However, in order to validate user 

devices, near field exposure assessment is essential. In this thesis human exposure 

to radiofrequency emissions in the two regions has been studied. 

When measuring signals in the far field region, one of the main drawbacks is 

the lack of a standardized procedure for taking samples of electromagnetic field 

levels. This is especially problematic in the case of signals transmitted in the form 

of bursts or pulses, such as in the case of WiFi, because the measurement 

instrumentation can have huge influence on the results. This thesis includes a 

novel measurement methodology for assessing exposure due to WiFi signals, as 

well as an evaluation of exposure levels due to these signals. 

Moreover, one of the key aspects to consider when designing devices that 

operate close to the body is the interaction between the antenna and the human 

body. In this thesis, two different wearable antennas appropriate for reducing that 

interaction are presented, and a comprehensive analysis of the power absorbed in 

the human tissues has been conducted. 

The main objective of this work is to present several solutions for improving 

exposure assessment, as well as enhance knowledge regarding electromagnetic 

field exposure levels. Specifically, two types of radiation sources were selected for 

the research, WiFi signals from Wireless Local Area Networks as sources in the 

far field region and wearable antennas as devices transmitting in the near field.  

  



 

 
 

 

  



 
 

Resumen 

En los últimos años, el masivo crecimiento de las comunicaciones 

inalámbricas ha incrementado la preocupación acerca de la exposición humana a 

los campos electromagnéticos debido a los posibles efectos sobre la salud. Esta 

tesis surge de la necesidad de proporcionar información acerca de este tipo de 

exposición. Se requiere un mayor conocimiento acerca de las emisiones de 

radiofrecuencia por dos motivos: para asegurar la protección humana frente a 

dichas emisiones, pero sin reducir los beneficios de la tecnología debido a 

normativas de despliegue excesivamente restrictivas, y para dar respuesta a la 

preocupación pública que normalmente está acentuada por la falta de 

conocimiento. 

La exposición a campos electromagnéticos causada tanto por los dispositivos 

de usuario como por las estaciones base se evalúa generalmente para comprobar 

el cumplimiento con la regulación vigente. Dado que la medida de la exposición 

en campo cercano es compleja, y en algunos casos inviable, las señales de 

radiofrecuencia se miden normalmente en la región de campo lejano para evaluar 

los niveles de exposición en distintos entornos. Sin embargo, para validar los 

dispositivos de usuario es esencial la evaluación de la exposición en campo 

cercano. En esta tesis se ha estudio la exposición humana a emisiones de 

radiofrecuencia en ambas regiones. 

Uno de los principales inconvenientes cuando se miden señales en el campo 

lejano se debe a la falta de un procedimiento estandarizado para la toma de 

muestras de campos electromagnéticos, especialmente agravado cuanto se trata 

de señales transmitidas en forma de ráfagas, como es el caso del WiFi, ya que la 

instrumentación de medida puede tener gran influencia en los resultados. Esta 

tesis incluye una nueva metodología de medida para evaluar la exposición debida 

a este tipo de señales. 

Por otra parte, uno de los aspectos claves a considerar a la hora de diseñar 

dispositivos que transmiten señales cerca del cuerpo es la interacción entre el 

cuerpo y la antena. En esta tesis se presentan dos antenas ‘wearables’ adecuadas 

para reducir dicha interacción, junto con un análisis detallado de la potencia 

absorbida por el cuerpo humano debido a estas antenas. 

En general, el objetivo de este trabajo consiste en presentar varias soluciones 

para mejorar la evaluación de la exposición a campos electromagnéticos, así como 

aumentar el conocimiento en cuanto a niveles de exposición. Para realizar esta 

investigación se han seleccionado dos tipos de fuentes de radiación, en la región 



 

 
 

de campo lejano se han estudiado las señales WiFi transmitidas en redes de área 

local inalámbricas y se han seleccionado las antenas ‘wearables’ como dispositivos 

transmitiendo en campo cercano. 

 

 

  



 
 

 

Laburpena 

Azken urte hauetan, hari gabeko komunikazioen hazkundea nabaria izan da 

eta jendea eremu elektromagnetikoen esposizioaz arduratuta dago, osasunerako 

efektu potentzialengatik. Tesi hau sortu da mota honetako esposizioari buruzko 

informazioa emateko beharragatik. Irrati frekuentziako emisioen ezaguera 

handiagoa izatea beharrezkoa da bi arrazoiengatik. Bata da teknologiaren 

abantailak murriztu gabe gizakiak eremu elektromagnetikoengatik babesteko. 

Bigarrena biztanleei zientzian oinarritutako erantzunak ematea da, modu honetan 

ardurak gutxitzeko. 

Erabiltzaileek dauzkaten gailu elektronikoek, adibidez telefono mugikorrek, 

edo oinarri-estazioek eragiten dituzte irrati frekuentziako esposizioa. Normalean, 

eremu elektromagnetikoen esposizio mailak neurtzen dira, araudiak betetzen 

diren egiaztatzeko. Neurketa-prozedura desberdina da erradiazio-iturriak 

gizakiarengandik hurbil edo urrun badaude. Erradiazioa sortzen duten antenak 

hurbil badaude, zailagoa da eremu elektromagnetikoak neurtzea eta, batzuetan 

bideraezina da. Beraz, normalean esposizioaren estimazioa erradiazio-iturritik 

urrun egiten da. Teknika hauek oso baliagarriak dira eremu elektromagnetikoen 

mailak ezagutzeko. Hala ere, gailu batzuen erradiazioak estimatzeko, adibidez 

telefono mugikorren, tableten edo soinean eramateko gailuen (ingelesez, 

‘wearable devices’), hargailua gailuaren ondoan egon behar da. Tesi honetan, 

eremu elektromagnetikoen esposizioari buruzko ikerketa egin da bi egoeretetan 

erradiazio-iturritik urrun eta erradiazio-iturritik hurbil. 

Eremu elektromagnetikoen mailak neurtzen direnean, arazo nagusietako bat 

neurri-metodologiarekin erlazionatuta dago. Nahiz eta araudi ofizial batzuk 

argitaratuta egon, ez dago metodologia zehatz bat esposizioa estimatzeko. 

Dokumentu ofizial hauek, azalpen orokorrak eta jarraibideak ematen dituzte, 

baina ezin dute prozesua zehatz-mehatz deskribatu, kasuaren arabera instrumentu 

edo metodo desberdinak behar direlako. Adibidez, pultsuz transmititzen diren 

seinaleak neurtzeko, instrumentuek neurketetan  eragina daukatela kontuan izan 

behar da. Tesi honetan, WiFi seinaleak neurtzeko metodologia bat proposatzen 

da eta hari gabeko sare lokalek sortzen duten esposizio mailak neurtu dira. 

Bestalde, gorputzaren ondoan jartzeko gailuak garatzen direnean, oso 

inportantea da gailuaren eta gorputzaren interakzioa ikertzea. Gorputzak 

gailuaren errendimendua murriztu ahal du eta bestalde gorputzean erradiatutako 

energiaren absortzioa kontuan hartu behar da ere. Tesi honetan gorputz-



 

 
 

hedadurako sare batean parte izan daitezken bi antena ‘wearable’- k aurkezten 

dira. , gailuaren eta gorputzaren interakzioa gutxitzeko oso egokiak direnak. 

Gainera, gorputzean energiaren absortzioari buruzko ikerketa ere egin da. 
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CHAPTER 1: INTRODUCTION AND 

THESIS OBJECTIVES 

This chapter includes a brief introduction as well as the motivation and main 

objectives of this thesis. Also, the organization of the thesis contents is described 

in the last section. 
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1. INTRODUCTION 

Human exposure to radiofrequency (RF) fields is nowadays a matter on the 

spotlight of our society due to the current massive use of this type of 

communications. Several standards and regulations have been defined by 

regulatory bodies to protect people against these emissions (ICNIRP 1998), 

(IEEE 2005). Some of these standards include limits for human exposure to 

electromagnetic fields (EMFs) and others provide guidance on the measurement 

methods and procedures that should be carried out in order to check compliance 

with the exposure limits. Data collection by means of robust methods is a need 

in order to quantify the exposure levels and its variability. The good knowledge 

of the exposure distribution can contribute to an efficient deployment of 

networks taking into account emissions levels.  

Different types of sources of EMFs are present in everyday life, and the 

services provided by many of them have become essential for people, since they 

improve the quality of life of individuals. Figure 1.1 illustrates some of the most 

common sources of RF fields. As shown, some devices are transmitting close to 

the body, this is the case of mobile phones, tablets or wearable devices, such as 

smart watches. 

 

Figure 1.1. Different sources of RF fields in everyday life. 

Base stations are usually located at longer distances. For example, mobile 

communication base stations can be placed on the roof of a building and radio 
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or television transmitters can be located on the outskirts of a city or town. 

However, in the case of Wireless Local Area Networks (WLANs) using WiFi 

technology, the access points are situated at closer distances. In indoor 

environments, these transmitters are usually located inside buildings at few meters 

from people, or even closer. This is one of the main reasons why there is special 

concern about WiFi networks. 

When assessing EMF exposure, it is important to note that the procedures 

for evaluating the emissions coming from transmitters in the vicinity of the 

human body (near field), such as devices that are part of Wireless Body Area 

Networks (WBANs), are different than those methods applied for sources 

located at further distances (far field), such as WiFi access points or other base 

stations. 

The work developed during this thesis can be divided into two parts.  

 The first one includes the tasks carried out for improving the assessment 

and analysis of EMF exposure in the far field region. Specifically, WiFi 

signals at 2.4 GHz were analyzed. For this purpose, several measurement 

campaigns were carried out. 

 The second part of this thesis involves the tasks performed for improving 

the methods and knowledge in the near field. In this case, two wearable 

antennas working at 2.4 GHz were designed and the power absorbed in the 

body due to these devices was evaluated. The antennas were also fabricated 

to validate their performance on real humans. The evaluation of the power 

absorbed was done by means of simulations. In addition, measured WiFi 

electric field strength was converted to power absorbed in the body using 

different methods. 

Finally, it is worth highlighting that the design of the antennas and the first 

works related to the evaluation of the power absorbed in the human body were 

performed during a research stay of 8 months at Griffith University in Brisbane, 

Australia, under the supervision of the Professor David V. Thiel. His experience 

and the support of his research group have been very valuable to obtain many of 

the results that will be described in the following chapters. 
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2. MOTIVATION 

There is a need of providing scientific information regarding exposure to 

EMFs for two main reasons, ensure people’s protection against these emissions 

but without reducing the technological benefits because of overly restrictive 

deployment policies, and give response to public concern, usually caused due to 

the lack of knowledge. In this regard, two types of studies regarding RF exposure 

are of interest, those aimed at characterizing RF emissions in specific scenarios 

and those based on quantify personal exposure due to different sources. 

Although several standards and guidelines have been proposed with the 

objective of protecting people from potential adverse effects, several disparities 

can be found in different official documents. One of the main problems lies in 

the disagreements on the established exposure limitations and the second one, in 

the lack of a standardized procedure for evaluating exposure levels, necessary for 

checking compliance with regulations and for having more knowledge about this 

type of radiation. 

In particular, the starting motivation of this thesis was to provide an 

alternative for the measurement methodologies used for measuring pulsed 

signals, since in the case of these emissions, substantial overestimation of the 

results is produced when applying usual measuring techniques. Specifically, the 

exposure to WiFi signals was investigated because of their nature, since they are 

transmitted in the form of pulses of short duration, and due to the public concern 

raised in the last years about WLANs. 

The second part of the thesis is focused on the assessment of personal 

exposure due to devices emitting close to the body. In this part, special attention 

has been paid to consider exposure reduction when designing wearable antennas, 

obtaining final antenna models suitable for reducing the interaction between the 

human body and the antenna. These types of devices are part of emerging 

technologies and systems useful for contributing to the progress in many areas, 

such as in medical applications. However, several factors including the exposure 

to EMFs can slow down their deployment. For this reason, research into power 

absorption and distribution due to wearable antennas is indeed essential. 

As, in general, emissions from base stations cause greater concern than 

signals from user devices, a comparison of the exposure levels produced by both 

types of sources was carried out to complete this thesis. Due to the different 

distance from each type of these sources to the people exposed, exposure levels 

are characterized using different quantities. Thus, a proper comparison has 
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required a literature review to investigate methods for converting WiFi signal 

levels to exposure values in terms of power absorbed, so as to compare the 

exposure levels produced by the different sources analyzed in this thesis. These 

methods can also be applicable to other technologies.  
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3. OBJECTIVES 

The thesis aims to contribute to enhance the scientific knowledge of human 

exposure to EMFs in the 2.4 GHz frequency band. Specifically, two types of 

radiation sources were selected for the research, WiFi signals from WLANs as 

sources in the far field region and wearable antennas as devices transmitting in 

the near field. As the assessment of EMFs exposure differs significantly 

depending on the field region, the objectives can be grouped into two different 

areas: 

Exposure in the far field region 

The objectives about human exposure to WiFi signals are focused on 

determining the proper measurement methodology to accurately assess exposure 

in WLANs, as well as on contributing to enhance the knowledge of the EMF 

levels caused by this type of signals. Specifically, these objectives are: 

 Establish a measurement methodology suitable for recording accurate and 

actual WiFi signal samples in the far field region. This methodology aims at 

improving the accuracy on the measured levels in comparison to the existing 

methodologies, saving measuring time and reducing the complexity of work 

of those new techniques that try to provide accurate levels. In order to define 

the proper methodology for acquiring WiFi signal samples, the following 

goals have to be achieved. 

 Identify the drawbacks and benefits from previous measurement 

methodologies. 

 Select the appropriate instrumentation that allows the acquisition of 

robust, accurate and actual signal levels in WLANs. 

 Characterize WiFi signals in different situations in the time and 

frequency domain, theoretically and by means of experimental tests. 

 Define the procedure to be followed and the criteria for establishing 

the proper configuration of the measurement equipment once it has 

been selected. 

 Determine and validate the measurement methodology based on the 

previously defined configuration. 
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 Assess human exposure to WiFi signals in public indoor environments, 

providing in this way specific information needed for enhancing scientific 

knowledge of EMF exposure. 

 Define the measurement campaigns based on the methodology 

previously proposed. 

 Perform the measurements of WiFi signal levels. 

 Examine in detail the obtained results and determine the appropriate 

statistics and criteria for presenting the values. 

 Assess WiFi exposure values, compare with the limitations given in the 

standards and regulations, and analyze the spatial and temporal 

variability of WiFi emissions in the selected environment. 

 Exposure in the near field region 

The objectives related to human exposure assessment in the near field region 

are focused on the contribution towards understanding and gaining knowledge 

about radiation assessment and analysis from wearable antennas, as well as 

comparing these values with the exposure measurements in the far field region. 

 Propose and implement wearable devices suitable for different applications 

while ensuring human protection against electromagnetic radiation. The 

antennas performance was analyzed through simulations and measurements, 

while the exposure evaluation was conducted by means of simulations. 

 Evaluate the literature review of the wearable antenna models in order 

to select suitable antenna designs for achieving the goal of satisfying 

user’s demands while maintaining low power absorption. 

 Design antenna models and fabricate them in order to validate the 

designs on real human bodies. Analyze the effect of the antenna on the 

body together with the effect of the body on the antenna performance. 

 Conduct a comprehensive study of the electromagnetic field absorption in 

human bodies. 

 Define the simulation scenarios appropriate for evaluating exposure 

levels due to wearable antennas, select suitable body models, 

measurement locations, exposure analysis parameters. 
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 Analyze exposure levels from wearable antennas and compare these 

results with those obtained from the WiFi measurements. To do that, 

a previous conversion from the recorded WiFi signal levels to near field 

values is required. A research of the methods proposed in the literature 

for undertaking this conversion has to be conducted. 
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4. THESIS ORGANIZATION 

This thesis will provide technical solutions and knowledge for the assessment 

and analysis of human exposure to electromagnetic fields in both the near and far 

field regions.  

This thesis is organized in 7 chapters. The second chapter shows the context 

of this work. Following, there are two chapters dedicated to the exposure in the 

far field region and another two focused on the exposure in the near field. Finally, 

the last chapter summarizes the main contributions of the thesis, the results 

dissemination and some future lines. 

Chapter 1. A brief introduction to the topic of this thesis, the motivation and 

the main objectives of this work are explained in this first chapter. 

Chapter 2. The context of the research is presented by means of a 

description of the regulations and standards involved in defining exposure limits 

and procedures for checking compliance with these limitations. A scientific 

literature review of studies related to exposure assessment is provided and finally, 

the two types of networks involved in this thesis are described (WLAN and 

WBAN). 

Chapter 3. This chapter describes the drawbacks of the existing techniques 

for measuring WiFi signals in order to assess WiFi exposure levels. A new 

measurement methodology is proposed and the procedure followed to identify 

this methodology is described in detail. 

Chapter 4. An evaluation of the WiFi exposure levels and its variability in an 

indoor public environment is presented. The measurement campaigns carried out 

to record the signal samples and the procedure for analyzing these data are 

described. Moreover, a comparison between WiFi levels acquired in different 

measurement campaigns is made. 

Chapter 5. This chapter presents the design and fabrication of two different 

wearable antennas, one designed for its use in off-body applications and the other 

one suitable for in-body communications. An investigation of the power 

absorption in human tissues, as well as the body effect on antenna performance 

is presented. 

Chapter 6. The evaluation and analysis of the power absorption in the 

human body due to the different studied sources are presented in this chapter. 

The EMF exposure caused by the two wearable antennas is studied by means of 
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simulations, while the power absorption due to WiFi signals was calculated from 

data acquired in the measurements. Specifically, the measurements in which the 

highest level of exposure was obtained were selected for these calculations 

together with new sets of measurements taken for this purpose. 

Chapter 7. In this last chapter, the main contributions of the thesis are 

summarized, detailing the most relevant results. Furthermore, the results 

dissemination is presented and the identified future lines are provided. 
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CHAPTER 2: STATE OF THE ART 

This chapter includes the description of the research context of this thesis. A 

brief introduction and some basic concepts regarding EMF exposure are given. 

A description of the standards and studies related to exposure assessment are 

provided. Finally, some information about WLAN and WBAN is given. 
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1. INTRODUCTION 

In the last years, the massive growth of wireless communications has raised 

concerns about human exposure to RF fields due to possible adverse health 

effects. In the year 2011, the International Agency for Research on Cancer 

(IARC) classified RF EMFs as possibly carcinogenic to humans (Group 2B), after 

the meeting of a Working Group of experts. This decision was based on a slight 

increase in the risk for glioma - a malignant type of brain cancer - among heavy 

users of wireless and cordless telephones. In the IARC report of 2014 they 

specified: “Associations between heavy use of mobile phones and certain brain 

cancers have been observed, but causal interpretation is controversial; more data 

are needed, particularly on longer-term use of mobile phones.” In addition, based 

on the information and literature analyzed in that meeting, the above mentioned 

Working Group decided not to limit the RF EMFs evaluation to the frequency 

bands used by mobile phones and instead, included also other sources such as, 

base station antennas, Wireless Local Area Networks, radio and television 

antennas and smart meters (IARC 2014). 

The World Health Organization (WHO) set up the International EMF 

Project in 1996 with the aim of assessing the scientific evidence of potential health 

effects of this type of exposure (WHO 2016). The different regions of the WHO 

are shown in the map of Figure 2.1.  

 

Figure 2.1. Regions of the World Health Organization (WHO 2016). 
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By clicking on any location of the map, which is on the webpage of the EMF 

(WHO 2016) project, information on activities about EMF in the area of interest 

can be found. This project was created in response to public concern regarding 

health effects of EMFs in the frequency range up to 300 GHz and it was 

established in order to protect public health. Other objectives of the project are 

to encourage focused research programs, make possible the development of 

international standards for EMF exposure, provide information related to the 

management of protection programs or provide advice about any hazard of 

exposure to these emissions. 

The dosimetry and exposure assessment is one of the research needs listed 

in the WHO research agenda for RF fields, updated in the year 2010 (WHO 

2010). Two of the high-priority types of studies included in this agenda are the 

assessment of characteristic RF EMF emissions, exposure scenarios and its 

corresponding exposure levels and the quantification of personal exposure due 

to different sources operating at these frequencies. In the last years, several 

studies have been carried out in this regard and with the aim of checking 

compliance with standards and regulations. Different national and international 

institutions have provided guidelines in which limits for human exposure to 

radiofrequency fields were established, differentiating between occupational and 

general public exposure limitations. Occupational exposure refers to adults who 

are exposed under known conditions, so they are aware of potential risk and are 

trained to take safety precautions. On the contrary, general public refers to people 

of all ages and health status that many times are not aware of their exposure to 

EMFs and are not expected to take precautions in order to minimize the 

radiation. For these reasons, exposure limits for general public are more 

restrictive than those limitations imposed to the occupational population. 

Occupation and general public exposure levels due to radio communication 

systems are increasingly being tested in order to verify their compliance to 

standards. Although several guidelines and regulations for assessing exposure to 

EMF have been published, there is a lack of agreement on some terms of the 

procedure, such as the proper duration of the measurement. Furthermore, there 

is a free choice of instruments and equipment configuration, which can lead to 

an increase of the measurement uncertainty. In order to measure accurately 

exposure levels that can be mutually compared and suitable for testing 

compliance with safety standards, methodologies must be harmonized.  
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2. HUMAN EXPOSURE TO EMFS 

In this section basic concepts, regulations and methods to assess human 

exposure to EMFs in the near and far field regions are described.  

Regarding EMF standards, several documents that include regulations and 

guidelines have been developed in order to provide human health protection. 

First of all, a distinction between the types of standards that ensure EMF 

protection is drawn. 

 Exposure standards are aimed at providing the maximum permitted 

exposure levels. 

 Measurement standards are those that provide guidance on the 

measurement methods and procedures that should be carried out in 

order to check compliance with exposure limitations. 

 Emission standards give specifications for electrical devices in order to 

consider aspects such as electromagnetic interference or device 

efficiency. They have been developed by institutions such as the 

International Electrotechnical Commission (IEC) or the European 

Committee for Electrotechnical Standardization (CENELEC). 

Although these last types of standards are not explicitly based on health 

aspects, they must ensure compliance with exposure limits and usually they 

guarantee that even when more than one device are close to each other, exposure 

limits will not be exceeded. 

In the following subsections, details regarding exposure and measurement 

standards are provided, since these two types of regulations and guidelines are of 

interest when assessing human exposure to RF fields. 

Then, methods and procedures followed in different studies to assess human 

exposure to EMFs are described. But first, some basic concepts about human 

exposure assessment are presented. 
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2.1. Basic Concepts about human exposure to EMFs 

The assessment of human exposure to EMFs can be performed by obtaining 

values associated with different quantities. A first classification consists of 

distinguishing between the physical units that can be readily measured out of the 

body and those that are associated to energy absorbed in body tissues, whose 

values are harder to obtain. Some explanations regarding the quantities used for 

assessing exposure to RF fields, as well as some theoretical aspects are given 

below. More concepts and details can be found in standards and regulations, such 

as in (IEEE 2013; CENELEC 2008). 

Electric (𝐸) and magnetic (𝐻) field strengths are vector quantities obtained 

at a given point. The first one is expressed in volt per meter (V/m) and represents 

the force (𝐹) of an infinitely small charge (𝑞) divided by the charge: 

𝐸 =
𝐹

𝑞
 (2.1) 

𝐻 field strength is expressed in ampere per meter (A/m): 

𝐻 =
𝐵

𝜇0

− 𝑀 (2.2) 

Where 𝜇0 is the permeability of the free space, 𝑀 the magnetization and 𝐵  

the magnetic flux density, which is the field vector in a point that results in a force 

on a charge moving at a velocity (𝑣) : 

𝐹 = 𝑞(𝑣 × 𝐵) (2.3) 

𝐵 is expressed in teslas (T) and in vacuum the magnetic field strength is equal 

to the magnetic flux density divided by the permeability of the free space. 

The power density (𝑆), expressed in watts per square meter (W/m2), can be 

calculated from the 𝐸 field strength and the 𝐻 field strength: 

𝑆 = 𝐸 × 𝐻 (2.4) 

Moreover, in the case of plane waves, 𝐸 and 𝐻 are related by the impedance 

of free space 𝑍0: 

𝐸 = 𝐻 × 𝑍0 (2.5) 
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To be able to use (2.5), far field conditions must be fulfilled, since in the far 

field region of an antenna the field has mostly a plane-wave character. For 

calculating the minimum distance where the far field region starts (𝑑𝑓), if the 

antenna is physically larger than half a wavelength (𝜆), being 𝐷 the largest 

dimension of the antenna, the following equation can be applied (Rappaport 

2010):  

𝑑𝑓 =
2𝐷2

𝜆
 (2.6) 

On the contrary, for antennas physically shorter than 𝜆/2, 𝑑𝑓 can be 

considered equal to 3 𝜆. 

For internal dosimetry specific absorption rate (SAR) values are used, whose 

units are (W/kg). SAR is a measure of the power absorbed per unit of mass and 

can be averaged over the whole body or over a smaller part of mass. SAR can be 

related to the electric field at a point by: 

𝑆𝐴𝑅 =
𝜎|𝐸|2

𝜌
 (2.7) 

where 𝜎 is the conductivity of the tissue (S/m) and 𝜌 is the mass density of 

the tissue (kg/m3).  

SAR can also be related to an increase in temperature at a point: 

𝑆𝐴𝑅 =
𝑐∆𝑇

∆𝑡
 (2.8) 

where ∆𝑇 is the change in temperature (℃), ∆𝑡 is the duration (s) and 𝑐 is the 

specific heat capacity (𝐽 (𝑘𝑔 ℃)⁄ ).  
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2.2. Standards regarding EMF exposure limits 

These standards provide the maximum permitted levels of exposure and 

usually include safety factors and guidelines for limiting personal exposure to this 

type of radiation. They have been developed by the International Commission on 

Non-Ionizing Radiation Protection (ICNIRP 1998), the Institute of Electrical 

and Electronic Engineers (IEEE 2005) and many national authorities. 

Following the ICNIRP guidelines (ICNIRP 1998), which is a non-

governmental organization formally recognized by the WHO, the 

recommendations are expressed in terms of basic restrictions and reference levels. 

Basic restrictions are based directly on established health effects and depending 

upon the frequency of the radiation source, they are expressed in current density 

(J) and SAR values for frequencies up to 10 GHz. In the specific case of 

frequencies between 10 MHz and 10 GHz only SAR values are applicable. The 

reference levels are used for a practical exposure assessment and they are 

expressed in terms of electric and magnetic field strengths, magnetic flux density 

and power density, the latter only for frequencies higher than 10 MHz. The WHO 

states in the EMF Project that the main conclusion from their reviews is that 

exposure to EMF levels below the ICNIRP limits do not appear to have any 

known consequence on health. It is important to remark that the fulfillment of 

reference levels ensure the compliance with basic restrictions. 

One of the main problems regarding EMF regulations lies in the disparities 

between standards around the world, which has caused an increase in the public 

anxiety about these emissions. For that reason, the WHO provides the chance to 

develop a framework for harmonization of EMF standards with the objective of 

establishing limitations on exposure levels identical for all people, as well as 

control measures that offer the same level of health protection to everyone 

(WHO 2006). This framework gives advice for developing science-based 

exposure limits to national regulatory bodies that are developing new standards 

or reviewing the basis of the existing ones. Figure 2.2 illustrates the different steps 

of the procedure proposed in the above mentioned framework for developing 

EMF exposure standards, together with some considerations to be taken at each 

stage.  
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Figure 2.2. Procedure for developing EMF exposure standards. 

The first step consists of reviewing and analyzing the scientific literature. 

Criteria has to be defined to determine if a study is worthy of being included in 

the scientific database. After performing the risk estimation, the threshold levels 

have to be determined. The threshold exposure level is the minimum level below 

which no health adverse effects have been found. However, if the exposure level 

is above the threshold, biological hazards can be produced. A safety factor should 

be added to this threshold to take into account possible imprecisions when 

determining the threshold level, for example the uncertainty derived from lack of 

knowledge of the biological effects. The final exposure limit is obtained after 

adding the safety factor to the threshold. The guidelines developed by the 

ICNIRP (1998) and IEEE (2005) are based on this approach. But there is another 

way of setting the exposure levels that consists of establishing the threshold as 

the minimum level below which no biological effect is observed, regardless 
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whether is an adverse effect or not (WHO 2006). Then the safety level has to be 

added to this threshold so as to set the reference level. This second method of 

obtaining the exposure reference level can result in a very conservative standard, 

which could derive in overly restrictive deployment policies when designing 

systems or devices emitting EMFs.  

The reference levels in terms of electric field specified by the ICNIRP are 

illustrated in Figure 2.3. These reference levels are expected to be spatially 

averaged values to consider the entire body of the exposed person and always 

with the important requirement that the basic restrictions on localized exposure 

are not exceeded. The maximum permitted electric field levels for the general 

public and occupational population are provided for frequencies up to 300 GHz 

(unperturbed RMS values). For example, for frequencies from 2 GHz to 

300 GHz the maximum permissible electric field level is 61 V/m for the general 

public, and 137 V/m in the case of occupational exposure. In addition, the 

maximum permissible peak values are given for frequencies exceeding 100 kHz. 

 

Figure 2.3. Reference levels for exposure to time varying electric fields given in the ICNIRP Guidelines 
(ICNIRP 1998). 

The basic restrictions detailed in these international guidelines and from 

which the reference levels were determined can be seen in Table 2.1. All SAR 

values have to be averaged over any period of 6 min and in the case of localized 

SAR, the averaging mass has to be any 10 g of contiguous tissue. The results that 

have to be compared with the regulations should be the maximum SAR obtained 
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from the 10 g averaged values. The whole-body average SAR is obtained by 

dividing the total power absorbed in the human body by the body weight. 

Table 2.1. Basic restrictions of ICNIRP guidelines for time varying electric and magnetic fields for 
frequencies up to 10 GHz (ICNIRP 1998) 

 

For frequencies between 100 kHz and 10 GHz, the whole-body average SAR 

provided in these regulations is 0.08 W/kg for general public and 0.4 W/kg for 

occupational exposure. These levels increase in the case of localized SAR. 

As previously mentioned, apart from the limitations provided by the ICNIRP 

and the IEEE, several national standards have been created in the last years. 

Focusing on the Global Health Observatory data repository of the WHO (2017), 

exposure limits in different countries can be observed for the frequency bands of 

900 MHz and 1800 MHz in the case of reference levels and up to 10 GHz for the 

basic restrictions. These data were updated in the year 2017 and there are still 

several countries that have not provided these data to the repository, probably 

because they do not have exposure standards with limits different from those 

specified in the international guidelines.  Amongst the contributing countries it is 

noteworthy the reduction in some exposure limits compared to ICNIRP or IEEE 

limitations. For example, examining the general public limitations, in Greece the 

regulation sets reference levels at 70% of those provided by the ICNIRP at 900 

MHz and 1800 MHz, and 60% when antenna stations are located closer than 300 

m from the property boundaries of schools, kindergartens, hospitals or eldercare 

facilities. The basic restrictions in that country are also established at 70% of the 

international guidelines. In Italy, the electric field imposed for those frequency 

bands is equal to 20 V/m. Moreover, in homes, schools, playgrounds and places 

where people may stay for longer than 4 hours, an 'attention value' of 6 V/m is 

applied and averaged over any 24-hour period. In other countries, more restrictive 

limits have been established for mobile phone antenna installations at places of 

sensitive use, such as in Switzerland or in Turkey, where 4V/m and 3V/m, 

respectively are the reference levels only in some specific places. The highest 
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value is found in United States, where 47.6 V/m is the maximum electric fields 

permitted at 900 MHz. This value of electric field has to be averaged over a period 

of 30 min, like in the guidelines provided by IEEE and in contrast to the ICNIRP 

guidelines, in which the average time is 6 min. 

The European Commission has also published official documents including 

the minimum health and safety requirements. In some of them, limitations 

regarding EMF exposure of workers are provided, such as in the Council 

Directive 2013/35/EU (EU 2013). Nevertheless, when considering such 

directive it is important to bear in mind that the limitations are given in terms of 

exposure limit values and action levels. There are also regulations such as the 

Council Recommendation 1999/519/EC (EC 1999) that provides basic 

restrictions and the derived reference levels for exposure of the general public. 

These directives and recommendations are based on ICNIRP guidelines. The 

exposure limit values of the Directive and the basic restrictions given in the 

Recommendation are the basic restrictions given in the ICNIRP guidelines for 

occupational and general public exposures respectively. Similarly, the action levels 

and the reference levels of the above mentioned Directive and Recommendation 

are the same as the reference levels provided by the ICNIRP. 

In Spain, the exposure limits indicated in European recommendations are 

adopted, thus, the reference levels and basic restrictions given in the ICNIRP 

guidelines must be fulfilled. These exposure limits are incorporated in the Royal 

Decree 1066/2001 (RD 2006). 

The decision of a country of developing its own standard is usually based on 

the premise that in some circumstances the application of the international 

guidelines may be unclear. This is the case of Australia, whose standard is based 

on the guidelines developed by the ICNIRP committee. The Australian standard 

specifies that the ICNIRP guidelines were reworked in order to provide an 

unambiguous technical framework (Arpansa 2002). The differences between the 

ICNIRP guidelines and the requirements of the Australian standard are provided 

in the Table 12 of that standard and some of the contributions are, among others, 

the inclusion of basic restrictions for instantaneous spatial peak SAR in the head 

and torso or the method for spatial averaging of reference levels. 

2.3. Measurement Standards 

As explained at the beginning of this section, measurement standards provide 

guidance on the measurement methods and procedures that should be carried out 

in order to check compliance with exposure limitations. Among other things, they 
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give advice about the necessary instruments or the appropriate measurement 

duration. 

Several standards and guidelines giving instructions for assessing human 

exposure to EMF are in use at present. The most popular ones are those 

developed by the IEEE (1991) in America, CENELEC (2008) in Europe and 

those from the International Telecommunications Union ITU (2008, 2011). 

These standards provide instructions to establish methods for assessing exposure 

to EMFs up to 300 GHz, but they cannot go into details extensively because of 

the broad range of frequency and the huge number of different applications. It is 

also recommended to ensure that exposure assessment is conducted in 

accordance with the applicable national or regional standards and regulations. 

The previously described international EMF project, created by the WHO, 

provides information regarding the standards developed in different countries 

(WHO 2017). In Spain the procedure for measuring EMFs is given in Orden 

CTE (CTE 2002). 

Regarding the most widely used exposure standards, there is a lack of 

agreement between some of them on some aspects related to exposure 

assessment, such as the proper time for measuring EMFs. In this regard, ICNIRP 

guidelines specify that SAR values are averaged over any 6-min period, as well as 

EMFs for frequencies between 100 kHz and 10 GHz. For radiofrequency fields 

exceeding 10 GHz, an averaging period of 68 𝑓1.05⁄ minutes is proposed, being 𝑓 

the frequency in GHz. Nevertheless, considering the IEEE Standard (2005) 

different averaging times are proposed. Focusing on Table 9 of such standard an 

average period of 30 min is proposed for obtaining exposure values for the 

general public between 100 MHz and 5 GHz. Between 5 GHz and 30 GHz the 

specified averaging time is 150 𝑓⁄ , and for frequencies lower than 100 MHz also 

6 min are specified in some cases. 

Based on the above mentioned documents (IEEE, CENELEC, ITU), some 

aspects to consider when measuring radiofrequency fields are detailed below. 

The field region where the measurements are performed is essential, since in 

the far field region obtaining only the E field or the H field is enough and the 

other quantities can be calculated using equations (2.4) and (2.5). Nevertheless, in 

the near field region, E and H fields must be measured separately. 

The EMF measurement equipment consists of two parts, the probe or 

antenna and the measuring instrument. The directivity of the antenna or the 

probe is an important parameter. When radiation from a specific and well-known 
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source is measured, a directive antenna can be utilized aiming at the source under 

study in order to detect the emissions coming from it. However, for compliance 

measurements, usually an isotropic probe is required, since the radiation source 

may be not known, more than one source can exist, or the emissions can come 

from different directions. Therefore, using an isotropic device the signals from 

different directions can be detected. In fact, if a tri-axial probe is not available, a 

probe with a single axis sensor should be aligned in the three mutually orthogonal 

directions to measure separately the three spatial components of the field. Then 

the total electric field is calculated as follows: 

𝐸𝑇𝑜𝑡𝑎𝑙 = √|𝐸𝑥|2 + |𝐸𝑦|2 + |𝐸𝑧|2 (2.9) 

where 𝐸𝑥, 𝐸𝑦 and 𝐸𝑧are the components of the electric field in the three 

different directions. 

An example of a commercial tri-axial probe is shown in Figure 2.4, where the 

three axes can be observed. On the right illustration, a tri-axial probe connected 

to the measuring instrument is presented. 

 

Figure 2.4. Tri-axial probe for EMF measurements (left) and a tri-axial probe together with the measuring 

instrument (right). 

The frequency range of the measuring equipment is another key aspect to 

take into consideration. Broadband probes indicate the value of the field strength 

in a wide range of frequencies without distinguishing between frequencies, while 

selective instrumentations provide field strength levels in different frequency 

ranges. Moreover, the spectral characteristics of the measured signals can be 

obtained with the latter instruments. In the case of measuring electric or magnetic 

field strength by means of different selective instruments suitable for the different 

frequency ranges, the total field strength value of the location is calculated by: 
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𝐸𝑇𝑜𝑡𝑎𝑙 = √∑ 𝐸𝑖
2

𝑖

 (2.10) 

𝐻𝑇𝑜𝑡𝑎𝑙 = √∑ 𝐻𝑖
2

𝑖

 (2.11) 

Where 𝐸𝑖  and 𝐻𝑖 are the electric and magnetic field strength obtained in each 

frequency range. 

To comply with the exposure limits when multiple frequency fields are 

present, the following equations must be fulfilled: 

∑ (
𝐸𝑖

𝐸𝐿,𝑖

)

2300 𝐺𝐻𝑧

𝑖>1 𝑀𝐻𝑧

≤ 1 (2.12) 

∑ (
𝐻𝑗

𝐻𝐿,𝑗

)

2300 𝐺𝐻𝑧

𝑗>1 𝑀𝐻𝑧

≤ 1 (2.13) 

where 𝐸𝑖 and 𝐻𝑗 are the electric and magnetic field strength at frequencies 𝑖 

and 𝑗 respectively. 𝐸𝐿,𝑖 is the electric field reference level given in the guidelines 

and 𝐻𝐿,𝑗 the magnetic field reference level also provided in the guidelines. 

Another parameter that should be provided together with the results is the 

uncertainty associated to the measurement. The contributions of each 

component of uncertainty can be obtained by means of appropriate 

measurements carried out on the equipment, or considering the specifications 

from the manufacturer. The combined uncertainty is then calculated considering 

the contributions of each component of uncertainty 𝑢𝑖 and its corresponding 

weighting coefficient (sensitivity coefficient)  𝑐𝑖 using: 

𝑢𝑐 = √∑ 𝑐𝑖
2𝑢𝑖

2

𝑚

𝑖=1

 (2.14) 

The expanded uncertainty with a confidence interval of 95% shall not exceed 

4 dB, which is calculated as follows: 

𝑢𝑒 = 1.96𝑢𝑐 (2.15) 
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Finally, it is important to remember that whenever the measured EMF levels 

are below the reference levels, the basic restrictions are also met. Nevertheless, 

when a measured or calculated value exceeds the reference level, it does not imply 

that the basic restrictions will be exceeded, but in such case the compliance with 

the relevant basic restriction is necessary, otherwise the reduction in the field 

levels or additional protective measures are needed. 

Some general considerations regarding SAR measurements contained in the 

described standards are given below.  

As previously shown in equation (2.7) SAR can be obtained from internal 

E field measurements, which are performed using a small probe positioned in a 

liquid-filled phantom model of the human body or a part of it, such as the head 

or a hand (See Figure 2.5). The liquids simulate the dielectric properties of the 

human body tissues and the probe should have an isotropic response. Moreover, 

it should influence the field as little as possible. The measurements may be taken 

at many individual points and then these points should be considered to 

characterize the E field and the SAR distribution. An automatic probe positioning 

system, such as a robot should be used to move the probe throughout the 

phantom. 

 

Figure 2.5. Commercial head and hand phantoms from IndexSAR (2018). 

With regard to the phantom models, their outer shape and the internal tissues 

should simulate the anatomical details of a real human body, being as similar as 

necessary. Phantom models can be homogeneous or heterogeneous. The first 

ones can be used for conservative exposure assessment. But if higher accuracy is 

required, a heterogeneous model should be use. Moreover, in the applications in 

which local SAR values are desired, partial-body phantoms are appropriate. 

Important factors when evaluating SAR are the dielectric properties of the 

phantoms (relative permittivity and conductivity), which should be selected 

considering the measurement frequencies. 
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The typical measurement uncertainties when performing these types of 

measurements are associated with the accuracy of the measurement instrument, 

the influence of the probe on the measured field level, the difference between the 

actual position of the probe and the planned measurement point and the 

influence or effect of the environment. 

 When testing devices such as mobile phones, the measurements are 

performed at all the operating frequencies and with the device transmitting the 

maximum power. In addition, the wireless device should be placed at different 

positions using a mobile phone holder so as not to influence the results. An 

example of a SAR assessment system is presented in Figure 2.6, where a phantom 

is deposited on a SAR table and a robot is used to move the probe. 

 

Figure 2.6. System for assessing SAR. 

Numerical methods and theoretical approaches can also be used for 

estimating EMF and SAR levels and, as specified in CENELEC (2008) these 

methods are not only a complement to verify results, they are also useful tools 

for analyzing exposure to RF fields, especially when measurements are difficult 

or impossible to perform. In ICNIRP guidelines they conclude that SAR data 

obtained in measurements are consistent with the data obtained from numerical 

modeling. 

There are also computational models of human bodies to be used in 

numerical modeling. The above described characteristics of body phantoms are 

applicable when using calculation methods. Furthermore, body models of 
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different age, sex and physical conditions have been developed in order to make 

them similar to real humans and consider the existing differences between people. 

An example of different body models is the voxel family available in the CST 

software (CST 2016) and shown in Figure 2.7. This family includes a baby, a child, 

a man, three women and a pregnant woman. 

 

Figure 2.7. Voxel body models available in the software CST (2016). 

 Several numerical methods are useful for evaluating human exposure to 

EMFs. To select the proper method, the following factors have to be taken into 

consideration: 

- The field region where the exposure will be evaluated 

- The quantity that will be evaluated 

- The environment where the exposure will be evaluated 

In this thesis the Finite-Difference Time-Domain (FDTD) method has been 

used. It is applicable for evaluating E and H fields and SAR values in the near 

field region for different environments. This is one of the most widely accepted 

numerical method for SAR assessment, since it offers high flexibility in modeling 

the complex structures of body tissues and organs (Kunz 1993). 
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2.4. Studies related to EMF exposure assessment 

In order to perform measurements of EMF strength, measurement 

instrumentation has to be selected in accordance with the characteristics of the 

source of the field, such as the frequency range of interest, and the aim of the 

measurement. Some of the instruments widely used for this purpose are the 

broadband isotropic probes connected to a portable measuring equipment. These 

probes are designed to record samples of the electric and magnetic field in a wide 

range of frequencies and provide the value of the total field strength in that 

frequency range. A few examples of these instruments are those from Narda 

Safety Test Solutions (Narda 2018), Wavecontrol (2018) or ETS Lindren (2018). 

These types of probes are often used to assess RF fields and check 

compliance with limits because of its ease of use. For example, they are part of 

several of the EMF monitoring networks developed in the last years, such as the 

Italian national EMF monitoring network, where probes to record emissions 

from 100 kHz to 3 GHz were installed (Troisi 2008). Also, in the Serbian EMF 

monitoring network, SEMONT, broadband measurements were performed 

using a field meter and an electric isotropic probe with a frequency range from 

100 kHz to 6 GHz placed at a height of 1.7 m (Djuric 2015). In the latter network, 

some preliminary samples were acquired to evaluate the spatial variability of the 

field strength and to determine the point with the maximum field strength level 

(hot-spot) within the considered location. Then, the instruments were placed in 

such point to carry out more detailed measurements. Figure 2.8 shows a picture 

of the different points considered for the evaluation of the spatial variability (P1, 

P2,...P22) and the measurement equipment placed at the hot-spot. 

 

Figure 2.8. Broadband measuring equipment used in (Djuric 2015). 
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The reasons of installing these networks in some cities are to inform people 

about the exposure levels, as well as provide scientific knowledge in order to 

reduce the social concerns that many times arise because of the lack of 

information and scientific bases. Moreover, in this way it is possible to 

demonstrate that RF emissions are usually well below exposure limits, even in the 

countries with more restrictive levels than the ones provided by ICNIRP 

guidelines, such as in Italy (Troisi 2008), and in the case of acquiring levels higher 

than expected, procedures to reduce these levels can be activated. 

Apart from the monitoring networks, these broadband probes were used in 

various measurement campaigns. Sánchez-Montero et al. (2017) used these 

probes to evaluate human exposure to RF fields between 100 kHz and 3 GHz 

over a ten-year period in outdoor environments of the city of Alcala de Henares, 

Spain. The obtained E field levels ranged from 0.02 V/m to 2.05 V/m in the 

measurement campaigns carried out from the year 2006 to the year 2015. They 

concluded that a moderate increase in the field strength levels was detected 

between the years 2006 and 2010 and these emissions did not vary too much from 

2010 to 2015. Measurements in the same frequency band were taken in 

(Seyfi 2013), where exposure to EMFs was assessed during a week in an 

apartment. The maximum instantaneous E field value was equal to 6.9 V/m. 

Recently, some authors have used broadband probes to evaluate the level of 

exposure between 300 kHz and 18 GHz (Fernández-García 2017). The study was 

done in an urban area of 2.25 km2 in Spain, a total of 271 points were selected 

for taking the measurements, which were performed from September 2016 to 

December 2016 between 15:00 and 17:00. Samples were recorded during 6 min 

at each point at a height of 1.5 m and results showed a maximum 6 min averaged 

field level equal to 3.39 V/m and a maximum sample level of 4.28 V/m. Although 

the measurement instrumentation could capture emissions up to 18 GHz, 

probably, and based on the description of the radiofrequency transmitters given 

in that paper, there are no significant transmissions at frequencies higher than 6 

GHz. These measurements were carried out in the street, but previously, authors 

used the same equipment in an indoor scenario, where they obtained a maximum 

electric field of 2.53 V/m (Gil, 2016). 

In many cases, the broadband instruments are useful for identifying the 

maximum field strength points so as to perform additional measurements in that 

location. In (Verloock 2014) measurements of 24-hour duration were carried out 

in schools and homes with spectrum analyzers. But before performing these long-
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term measurements, the maximum radiation point was searched by means of a 

broadband probe and a broadband field meter. 

Other instruments easy to use in order to record signal levels from RF 

services, but providing more information about the emissions, are the portable 

selective radiation meters and the personal exposure meters, also known as 

exposimeters. Both of them are easy to configure and easy to carry since they are 

handheld, as in the case of the broadband equipment. 

The exposure meters have been widely used in these types of studies. They 

have tri-axial field probes, but they can give different field strength levels for 

different frequency bands. The frequency ranges are associated to different RF 

services, allowing in this way the distinction between contributions coming from 

different types of transmitters. Two examples of the visualization of the results 

measured with the exposimeter EME Spy 200 of Satimo (EME SPY) are 

presented in Figure 2.9 and Figure 2.10. In the first one, the instantaneous levels 

of the measured samples are provided for each frequency band, while in Figure 

2.10 the field strength values are averaged over 6 min. In many studies, 

participants carry an exposimeter with them, for example worn on a belt or in a 

backpack, during a specific time (1 day, 1 week) in order to estimate radiation 

levels (Röösli 2008; Frei 2010; Joseph 2010a; Sagar 2018). Participants usually fill 

in an activity diary so that the measured data can be correlated with the activities 

written in the diary (Burgi 2008). But these devices are also used for taking 

samples at a fix point, without having them worn by individuals (Vermeeren 

2013). 

In the review published in (Bhatt 2016a) 6 different exposimeters were 

analyzed and compared, giving details of the sampling intervals, detection limits, 

frequency bands, measurement uncertainty, type of parameter that can be 

measured (maximum, mean, root mean square…), batteries duration and sizes of 

the devices. In addition, in the same study various mobile phone-based 

applications and software-modified phones designed for characterizing exposure 

in the near field are presented and compared. These applications provide data 

such as the number and duration of calls, the received power, the amount of 

transmitted and received data, some of them even give information regarding 

WiFi transmissions. All these parameters are important and useful to characterize 

exposure due to the phone use and they can complement the diaries and agendas 

filled by participants. Some validation studies were carried out to compare the 

agreement or matching between the actual mobile phone use and the data 

provided by the participant regarding that use (Goedhart 2015). 
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Figure 2.9. Instantaneous sample levels measured with the exposimeter EME SPY 200. 

 

Figure 2.10. 6 min averaged values measured with the exposimeter EME SPY 200. 

Some authors have investigated the accuracy of broadband probes 

(Letertre 2011; Adamson 2010) and personal exposure meters (Bolte 2011) and 

although they are useful for checking compliance with regulations, correction 

factors should be applied in order to improve the accuracy of the measurements. 

In Section 3 of Chapter 3, some examples of the differences in the measured 

results with these instruments and with a more professional one are presented. 

The reasons of having higher uncertainties when using these instruments have 

been associated to the body shielding, the wide range of frequencies measured 

with the same antenna or the elevation angle of the device (Bolte 2011). These 

effects have also been analyzed by means of computational tools (Iskra 2010). In 
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some measurement campaigns, two exposure meters were carried to reduce the 

uncertainty due to the factors described before. 

If more accurate results are required when measuring EMFs, the equipment 

for taking samples should consist of a spectrum analyzer and an appropriate 

antenna. For example, in (Cansiz 2016) measurements using these types of 

equipment were performed in the streets of a city in Turkey during a whole week 

between 17:00 and 18:20. The maximum E field value was equal to 6.09 V/m and 

was recorded in the UMTS frequency band. The measurement campaign carried 

out in (Estenberg 2014) was also in outdoor environments. They proposed a car 

based measuring system that had the advantage of a fast estimation of exposure 

to RF fields in a large area. Tomitsch et al. (2015) assessed radiation levels in 

several bedrooms during nights, repeating the measurements during three 

different years. The average obtained values were 0.077 V/m in 2006, 0.118 V/m 

in 2009 and 0.105 V/m in 2012. However, the measurements of this last 

campaign were recorded with a spectrum analyzer set to ‘maximum hold’ mode 

and this can produce an overestimation of the exposure level, as shown in 

Chapter 3 of this thesis.  

Some authors focused on evaluating the exposure due to a specific service 

rather than measuring in a wide range of frequencies. Several people investigated 

emissions from mobile communication networks (Gkonis 2017; Lunca 2014; 

Bhatt 2016b; Miclaus 2013; Baltrenas 2013; Cala 2015; Colombi 2013) or 

WLANs, which use WiFi technology (Pachon-Garcia 2015; Karipidis 2017; 

Joseph 2013). 

Regarding the basic restrictions, the power absorption in human tissues is 

often investigated, especially when the RF source is close to the human body. 

This is the case of user devices, such as mobile phones, laptops or tablets, whose 

radiation can be evaluated by means of certain standardized laboratory 

measurements in order to certify the device (Davis 2009). Numerous 

investigations were conducted to evaluate the energy distribution due to mobile 

phones (Cardis 2008; Hadjem 2010), concluding that the SAR values depend not 

only on the use and position of the phone, but also on the different phantom 

models used in the measurements. More detailed researches were conducted 

using computational tools or measurements with the aim of investigating the 

exposure due to personal devices in different situations, such as inside vehicles 

(Anzaldi 2007; Leung 2012) or considering different postures of a person (Krayni 

2017). The variation of the antenna performance due to the power absorption 

when these devices are close to the body was investigated in (Sibille 2012).  
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In addition, the probes used for taking samples were analyzed in order to 

develop new minimally invasive solutions and techniques (Person 2008; Picard 

2008), since as detailed above this is one of the requirements provided in the 

standards when performing SAR measurements. 

Numerical methods are widely used in EMF exposure assessment and in 

dosimetry studies, one of their advantages is that they can be applied to a wide 

range of analysis providing useful results without having to perform 

measurements that, many times, are difficult to conduct and much more 

expensive. For example, numerical calculations were used for assessing the 

absorption and distribution of EMF levels in different body tissues (Alekseev 

2009), to study the influence of the permittivity on SAR calculations (Hurt 2000) 

and for investigating the near field exposure of mobile phone base stations 

(Meyer 2003). Espinosa et al. (2014) used different computational tools for 

analyzing the near field radiation zones of an antenna, making a comparison 

between the different simulation tools. 

Finally, as EMF levels are usually easier to measure than SAR values, some 

authors proposed methods for converting electric or power density levels to 

whole-body SAR levels (Joseph 2010b; Piuzzi 2011; Bamba 2014). In this way, 

data collected with personal exposure meters or spectrum analyzers can be easily 

converted to quantities that give information of the near field exposure. 

Conclusions: 

As shown in this section, several instruments and methods have been used 

to assess human exposure to EMFs. Guidelines and Standards provide general 

instructions on procedures and equipment, but they cannot go into details 

extensively because of the broad range of frequency and the huge number of 

different applications. The measurements performed in the above described 

studies were useful to check compliance with regulations or to obtain information 

about exposure distribution. However, the application of different procedures for 

recording samples makes difficult the comparison between exposure levels 

acquired in different measurement campaigns. In addition, some instruments give 

more accurate results than others. For these reasons, there is a need of 

establishing appropriate measurement procedures for different applications, this 

includes the service under study or aim of the study. An analysis of the 

instruments and methods (including those described in this section) used for 

measuring WiFi exposure levels is presented in Chapter 3. 
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3. STUDY CASES 

3.1. Wireless Local Area Networks 

In the last years the deployment of WLANs has experienced a significant 

growth with the objective of meeting the users demands. These networks have 

been established in a wide range of scenarios in both public and private areas 

backed by the huge amount of emerging user devices, such as smart phones or 

laptops, and the attempt by the authorities and operators to make internet 

accessible to all users. WiFi is the technology used in these networks, under the 

standard IEEE 802.11. The original IEEE 802.11 standard for WLAN was 

published in 1999, reaffirmed in 2003 and some revisions have been published 

later (IEEE 2016). 

These wireless networks have significant advantages and provide great 

opportunities to users solving the limitations imposed by wired networks. The 

main benefits of this technology consist of the flexibility and the reduction in the 

installation time and in the final cost. WLANs offer the possibility of reaching 

connectivity in areas with difficulties to lay cables and it can eliminate the need 

of having cables through walls. It provides flexibility to the user since devices can 

connect to the network from any place within the coverage area of the access 

point and it is easy to add or remove workstations. Moreover, in some scenarios 

where the facility is located on different sites, such as on two sides of a road, 

wireless communications prevent from the need of digging trenches to connect 

the different sites. Finally, the advantages of eliminating cables in dynamic 

environments, which require frequent changes, are obvious (Mittal 2014). 

3.1.1. WLAN architectures 

There are different approaches for deploying WLANs, as well as different 

ways of establishing communication between the different elements 

(Sridhar 2006). 

Infrastructure and ad hoc modes 

 WLAN can operate in two different modes, ad hoc or infrastructure mode. 

In the ad hoc networks two or more devices can establish a wireless connection 

with each other without the need of an access point (see Figure 2.11(a)). In the 

infrastructure mode, the user devices communicate between them through an 

access point. Figure 2.11(b) shows several laptops communicating with two 

access points; every computer has to use the access point to reach another device 
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rather than connecting directly with the other computer or device. Furthermore, 

in the case of establishing a communication between devices located in the 

coverage area of different access points, also the wired network is used. 

 

  
                      (a)                                                           (b) 

Figure 2.11 (a) ad hoc network, (b) infrastructure mode. 

  

Distributed and centralized approaches  

The approaches for deploying WLAN in the enterprise can be categorized 

into two groups, distributed and centralized networks (Sridhar 2006). 

The first WLAN architecture presented is the centralized architecture. It is a 

hierarchical architecture that involves one or more WLAN controllers, which can 

be implemented on switches and are responsible for the configuration, control, 

and management of several wireless termination points (WTPs). All the traffic 

from the wireless elements is sent to the controller. An example of a centralized 

architecture is illustrated in Figure 2.12. 
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Figure 2.12. Example of centralized WLAN Architecture. 

Another approach is the distributed WLAN architecture, which has the 

wireless traffic load distributed across the access points and does not depend on 

a centralized element to process all the wireless traffic. In this case various WTPs 

can form networks with other WTPs through wired or wireless connections. The 

above described ad hoc mode can be a part of a distributed WLAN. 

The main drawback of the centralized approach is that any problem 

concerning the WLAN controller affects all the traffic of the wireless network, 

while in the case of the distributed architecture there is no single point of failure. 

3.1.2. WiFi channels and frequencies 

Most of the devices using WiFi technology operate in the 2.4 GHz or 5 GHz 

WiFi bands. In Europe the maximum permitted effective isotropic radiated 

power (EIRP) from access points and user devices are 100 mW at 2.4 GHz and 

200 mW at 5 GHz. In the 2.4 GHz WiFi band transmission is set between 

2.4 GHz and 2.4835 GHz as allocated by regulatory bodies in China, United 

States, Europe and Japan, or also in the frequency range from 2.471 GHz to 

2.497 GHz in the case of Japan. These frequencies correspond to a part of the 

bands assigned for industrial, science and medical (ISM) applications, while at 

5 GHz devices can operate in the ISM band (5.725-5.850 GHz) or at different 

frequencies (5.150-5.350 GHz). The channel bandwidth of most of the devices 

using IEEE 802.11 is equal to 20 MHz, but in some cases 40 MHz of channel 

bandwidth is possible so as to increase the data rate. 
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A summarize of different versions of IEEE 802.11 standards taken from the 

review conducted by Foster and Moudler (Foster, 2013) is presented in Table 2.2. 

As shown, the modulation techniques for WiFi signals are Direct Sequence 

Spread Spectrum (DSSS), Frequency Hopping Spread Spectrum (FHSS) and 

Orthogonal Frequency Division Multiplexing (OFDM). 

Table 2.2. Different versions of IEEE 802.11 standard 

 

 

In this thesis the WLANs operating in the 2.4 GHz frequency band have 

been studied. This frequency band is divided in 14 channels, but in Europe only 

13 are allowed by the European Telecommunications Standard Institute 

(ETSI 2016). Moreover, the separation between adjacent channels is 5 MHz and 

as described above the channel bandwidth is 20 MHz, having in this way 

overlapping channels as can be seen from Figure 2.13, where the channel number 

and its corresponding center frequency are given. Typically, channels 1, 6 and 11 

are the most frequently used in a given WLAN. In order to avoid interference 

from adjacent channels, the proper channel should be selected. Now, most of the 

access points are able to switch channels dynamically when they detect 

undesirable signals, being able to choose the channels taking into consideration 

the least interference. 

 

Figure 2.13. WiFi channels in the 2.4 GHz frequency band. 

IEEE 802.11 version 
Frequency band 

(GHz) 

Channel bandwidth 

(MHz) 

Modulation 

Technique 

IEEE 802.11 (original) 2.4 20 DSSS/FHSS 

IEEE 802.11a 5 20 OFDM 

IEEE 802.11b 2.4 20 DSSS 

IEEE 802.11g 2.4 20 OFDM/DSSS 

IEEE 802.11n 2.4/5 20/40 OFDM 
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As can be observed from Figure 2.13, channel center frequencies (fc) in the 

2.4 GHz band are defined at every integer multiple of 5 MHz. The relationship 

between center frequency and channel number 𝑛𝑐ℎ is given by (IEEE 2016): 

𝑓𝑐 = 2407 + 5 · 𝑛𝑐ℎ  (𝑀𝐻𝑧) (2.16) 

When using the OFDM modulation technique, such as in the case of the 

standards IEEE 802.11g and 802.11n, each 20 MHz channel comprises 64 

subcarriers equally spaced 312.5 kHz. The signal is specifically transmitted on 

subcarriers -26 to -1 and 1 to 26, being the 0 subcarrier the one located at the 

center frequency. No signal is transmitted in that center frequency. Moreover, in 

each OFDM symbol four of the subcarriers are dedicated to pilot signals in order 

to make the coherent detection robust against frequency offsets and phase noise. 

These pilot signals are located in subcarriers -21, -7, 7 and 21, as shown in Figure 

2.14.  

 

Figure 2.14. Subcarrier frequency allocation (IEEE 2016). 

3.1.3. Exposure assessment in WLAN 

Emissions specifically due to WiFi signals have caused concerns in the last 

years, especially because the transmitters are very close to people and WLAN are 

deployed in indoor environments, such as schools, homes or office buildings 

where people spend many time. 

According to the review carried out by Foster et al. (Foster 2013), different 

studies state the existence of potential risks and effects caused by the exposure to 

WiFi radiation. Consequently, EMF levels generated by wireless communication 

systems operating in different environments should be measured in order to 

check the compliance with the human exposure limits established by different 

regulation bodies. 

In the last years, considerable effort has made in order to assess exposure in 

WLANs, measuring the radiation produced by user devices and access points. In 

addition to the research works mentioned in Section 2.4 of this chapter, some 
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other measurement campaigns that can be cited are those developed in (Schmid 

2007; Peyman 2011; Lunca 2012; Foster 2007; Khalid 2011). However, due to the 

nature of WiFi emissions, which are transmitted in the form of pulses of short 

duration, professional equipment is required in order to obtain accurate values of 

WiFi exposure. Some authors have introduced new techniques in order to obtain 

more accurate WiFi signal levels. In Chapter 3 of this thesis, a detailed discussion 

of all these techniques is provided. 
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3.2. Wireless Body Area Networks 

WBANs consist of a number of wireless sensors, strategically placed on the 

human body, whose main objective is to monitor vital signs (blood pressure, heart 

rate, activity) or environmental parameters (location, humidity, temperature) 

(Chris 2005). The aim of WBANs is to improve speed, accuracy and reliability of 

sensors communication within, on and in the immediate proximity of a human 

body, which final purpose is to improve the user’s quality of life. The use of 

wireless devices operating on the body solves the problems caused by wires, such 

as the limitation of the person activity or the decrease in the level of comfort, 

which can influence the measured results (Martin 2000). In many medical 

applications such as in electrocardiography or in capsule endoscopy, wireless 

sensors can replace the electrodes affixed on the body. These electrodes consist 

of pads with gel that can cause skin irritation, allergic reactions, and inflammation. 

In addition, as the gel dehydrates over time, the signal quality is reduced (Nemati 

2012).  

The IEEE 802.15.6 standard (IEEE 2012) was specifically developed for 

providing an international reference for a short-range (i.e., about human body 

range), low power and highly reliable wireless communications to be used in the 

vicinity or inside a human body. This standard is defined for the industrial 

scientific and medical (ISM) frequency bands together with those bands approved 

by local regulatory authorities. Moreover, it takes into account the effects that the 

presence of a person can have on the antenna, the reduction in the SAR into the 

body and the changes in the characteristics of the antenna due to the human 

movements. 

In a WBAN there are several sensor or actuator nodes placed in the vicinity 

or inside the body that communicate with a hub. These actuators perform some 

specific actions according to the data received from the sensors or due to the 

interaction with the user, for example the administration of the correct dose of 

insulin to a diabetic patient. The hub is an entity that apart from having the 

functionality of a node, coordinates the medium access and power management 

of the nodes in the body area network (BAN). The hub receives and stores the 

information from the nodes and can also communicate with the exterior, for 

example with other networks via Internet or other existing wireless technology. 

Personal devices, such as smartphones or tablets can act as hubs. Figure 2.15 

illustrates an example of a WBAN. As shown, the nodes placed on the body are 

called wearable nodes and they can be located directly on the skin or on the 

clothes. These nodes, as well as the ones implanted on the body not only gather 



Chapter 2 

44 
 

information, but also can communicate with the hub and, in some cases, between 

them. In the example, the hub interchanges information with an access point 

connected to the internet network, and capable of sending information to a 

medical network. The different devices of a WBAN establish on-body 

communications when both devices are on the body, or in-body communications 

when at least one of the sensors is inside the body. Off-body communications 

are established when a sensor is placed on the body and communicates with an 

external source.  

 

Figure 2.15. Example of a Wireless Body Area Network. 

3.2.1. Applications of WBANs 

One of the advantages of WBANs is that their use can be extended to a wide 

range of applications and areas, such as health care, military, sport or 

entertainment. Several scientific articles can be found in the literature describing 

and classifying examples of the applications of this type of networks. Also, many 

reference two big groups, those related to medical purposes and the non-medical 

applications, as categorized in the IEEE 802.15.6 standard (IEEE 2012). This 

standard establishes that the different senders (nodes) in these networks are given 

a priority over the others according to the type of service provided to the body 

area network, giving the maximum priority to the highest priority medical 

services. The priorities of the services are detailed below, from the services 

associated to the lowest priorities to the ones with the highest priority.  

- Non-medical services (lowest priority) 
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- Mixed medical and non-medical 

- General health services 

- Highest priority medical services (highest priority) 

Medical applications 

The use of WBANs in medical applications can be very beneficial and useful 

for the society, since new and effective methods that allow the comfort and 

improvement in the quality of elderly´s lives are required because of the 

population aging. As shown in Figure 2.16(a) the aging of the population in 

Europe is noticeable, in 2001 the largest group of people was between 35 and 39 

years old, while in 2016 people between 45 and 49 years old were more numerous. 

Moreover, this trend is expected to continue as can be seen from Figure 2.16(b), 

where the expected population pyramid in the year 2080 is represented, together 

with the distribution of the population in 2016 (Eurostat 2017). Some authors 

talk about an overload on the health care systems caused by a significant increase 

in the age of the population, so a shift in current health systems is required in 

order to meet the society’s needs (Patel 2010; Movassaghi 2013). The use of these 

networks will not only be useful for elderly people, but also for the rest of 

population, since all the patients can take advantage of WBANs that make 

possible to continue their normal activities instead of going to a specialized 

medical service. 

  

Figure 2.16. Population pyramids in Europe showing the distribution of the population by sex and by five-year age 
groups (a) solid color: 2016, bordered 2001; (b) solid color 2080, bordered: 2016 

According to the different reviews and surveys carried out in the last years 

regarding these types of networks, the medical applications of WBANs can be 

categorized depending on the location of the sensors: on-body or wearable 

applications and in-body applications (Movassaghi 2013; Ullah 2009; Chen 2011). 

Some examples of this types of applications are given below. 
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o Wearable applications: 

 WBANs used by soldiers, firefighters and policemen 

In this case, WBANs are used to report the activities and movements of 

soldiers in the battlefield to the commander. Also, the policemen and firefighters 

can take advantage of this technology, for example, by monitoring the levels of 

toxics in the air in order to send a notification if a life threatening level is detected 

(Latre 2011). 

 Sport Training 

Athletes can control and tuned their training by means of WBANs allowing 

professionals to effectively measure the athlete training sessions and perform 

early diagnosis and treatment (Sabti 2015). Moreover, fatigue monitoring during 

training is important because of different reasons. First, sportspeople may need 

to be revitalized in order to maximize performance. Second, to aid injury 

prevention as tendon and muscle functions become impaired with overuse. 

Third, to diagnose post-injury rehabilitation.  

 Sleep Staging 

Sleep disorders affect a significant part of the population, for example a 4% and 

a 2% of the male and female population respectively suffer from sleep apneas in 

Europe. Furthermore, the consequences of this disorder can be dramatic and lead 

to cardiovascular diseases, drowsy driving and sleepiness at work place. For these 

reasons sleep monitoring is of interest and techniques to implement a system 

capable of recording parameters while sleeping have been investigated in the last 

years. WBANs are a solution for sleep staging without the necessity of having 

cables around the patient, which disturb his/her sleep (De Vicq 2007). 

 Asthma 

The detection of allergic agents in the air by monitoring environmental 

factors by means of a WBAN allows a real-time feedback to a professional or to 

the patient himself if possible. For example, Chu et al. (Chu 2006) developed a 

portable Global Positioning System (GPS) device that continuously consults a 

remote server by sensing users’ reports to decide whether current ambient air 

quality will threaten their health. 

 Wearable health monitoring systems 
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In general, wearable sensors can be used by patients to sense their vital signs. 

One example is its use in electrocardiography (ECG) applications to provide 

appropriate information about the cardiovascular system. The use of wireless 

sensors has a definite advantage over the conventional ECG system, which 

usually needs 12 or 15 electrodes affixed to different parts of the body 

(Nemati 2012). Other examples of medical applications using wearable sensor 

systems that can substitute the cables are both, the electromyography (EMG) 

(kundu 2011; Hussain 2016) and the electroencephalographic (EEG) 

(Singh 2014). 

o In body applications: 

 Diabetes control  

There is a need of monitoring and treating Diabetes to avoid long-term 

medical issues derived from this disease and thus, glucose sensing techniques 

have been under active investigation. Minimally invasive, subcutaneously 

implanted devices can perform continuous glucose monitoring with the aim of 

giving a rapid response to glucose concentration changes (Zhao 2007). 

 Cardiovascular Diseases 

Cardiovascular diseases are the principal cause of death in developed 

counties. About one-half of those who die do so within 1 hour of the start of 

symptoms and before reaching the hospital (Abidoye 2011). Using WBANs to 

continuously sense and transmit the information to a medical server is an 

improvement in this field of medicine.  

 Cancer Detection 

A set of sensors integrated in a WBAN can be employed to distinguish 

between cancerous cells and healthy ones, identifying in this way tumors without 

carrying out a biopsy.  

 Endoscope capsule  

Ingested implants, such as the radio pill employed in capsule endoscopy, are 

emerging technologies that contribute to the progress in these medical research 

area, since the capsule endoscopy permits to observe the complete length of the 

gastro-intestinal tract (Basar 2012). 

 Artificial  retina 
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Retina prosthesis chips can be implanted in the back of human eye in order 

to assist people with no vision or with low vision to see (Abidoye 2011). 

Non-medical applications 

WBANs are also used for non-medical purposes. Some examples of these 

types of applications are listed below. 

 Non-medical emergencies 

Sensors located out of the body can detect emergency situations and 

communicate it to a person using wearable devices. For example, fire or gas leak 

situations in a home can be reported directly and quickly to the user (Movassaghi 

2013). 

 Real-time streaming 

Real-time video and audio streaming are included in the many non-medical 

applications. One example of audio streaming is the use of headsets in a museum 

to listen the explanations given through voice communication (Movassaghi 2013; 

Kwak 2009).  

 Entertainment and gaming 

Gamers can use body sensors to get a feedback from the console after 

performing body movements or to be involved in a virtual reality scenario. This 

type of applications can involve different devices such as microphones, motion 

cameras, accelerometers, gyroscopes or head-mounted displays (Chen 2011; 

Movassaghi 2013). Moreover, the sensors attached on the body can be utilized 

for communicating to devices such as cell phones or music players for 

entertainment. 

 Emotion detection 

Biosensors can detect signals produced by the body due to physical 

manifestations, enabling in this way the detection of human emotions. For 

example, the consequences of fear are the increment of heart-beat and respiration 

rate, which leads to palm swearing. Biosensors implanted in the body or placed 

on the body or in the clothes can identify these symptoms (Movassaghi 2013). 

 Secure Authentication 
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Biometric characteristics can be used for secure authentication in WBANs. 

In (Ramli 2013) a system to secure medical information using the patient 

electrocardiogram feature was proposed. The utility of various biometric 

characteristics for security purposes was analyzed in (Cherukuri 2003). These 

authors examined biometrics such as blood glucose, blood pressure, temperature 

or hemoglobin and analyzed whether they were random enough to be used to 

build the security system. 

 Personal information sharing 

Personal information can be stored in body sensors for many daily life 

applications such as shopping and information exchange (Jaimes 2016; 

Malik 2013). 

3.2.2. WBAN Communication architecture 

The communication architecture of a WBAN can be divided in three tiers: 

 Tier 1: intra-WBAN communications. This tier refers to communications of 

about 2 m around the body, which includes the communication between 

nodes placed inside, on or close to the body and the communication with 

the hub. 

 Tier 2: inter-WBAN communications. Although the node-node and the 

node-hub communications can be enough in the applications that not 

require real-time feedback and the hub stores the data for further processing, 

usually a connection to other networks is required. The aim of this tier is to 

interconnect WBAN with these other networks. In the example of the 

previously shown Figure 2.15, the inter-WBAN communication is made 

between the hub and the access point. This last device can be considered 

part of the infrastructure or can be strategically placed in a dynamic 

environment in order to handle emergency situations. 

 Tier 3: beyond-WBAN communications. The design of this communication 

tier is for use in metropolitan areas. The beyond-WBAN refers to the final 

network and it can be connected to the inter-WBAN network by means of 

a gateway. The deployment of this last tier is specific for the involved 

application. 
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3.2.3. RF Communication technologies: frequency bands, 

interferences and coexistence with other technologies 

Different wireless technologies can be used for establishing communications 

in a WBAN. Concretely in the case of RF communications, these networks can 

work at different frequencies that are regulated by the corresponding authorities 

in this regard. 

Frequency bands 

One of the reference documents that should be considered by regulatory 

bodies is the IEEE 802.15.6 standard (IEEE 2012), which distinguishes between 

narrowband physical layer (PHY) and ultra wideband (UWB) PHY. Table 2.3 and 

Table 2.4 show the operating frequencies and the corresponding channel 

bandwidths for narrowband and UWB PHY. As shown, there are seven different 

frequency bands for RF WBANs operating in narrowband PHY and the channel 

bandwidths vary from 300 kHz to 1 MHz in these cases. The UWB band is 

divided into two band groups: low band (3.24-4.75 GHz) and high band (6.6-

10.25 GHz).  

Table 2.3. Frequency bands in narrowband systems. 
 

 

 

 

 

 

 

 

 

 
Table 2.4. Frequency bands in UWB systems. 

 

 

 

 

 

Narrowband 

Frequency  

Band (MHz) 

Channel 

Bandwidth 

402-405 300 kHz 

420-450 320 kHz 

863-870 400 kHz 

902-928 400 kHz 

950-958 400 kHz 

2360-2400 1 MHz 

2400-2483.5 1 MHz 

Ultra wideband 

Frequency  

Band (Ghz) 

Channel 

Bandwidth 

3.24-4.75 499.2 MHz 

6.6-10.25 499.2 MHz 
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The work developed in this thesis is focused on the 2.4 GHz band, which is 

one of the frequency bands for industrial, science and medical (ISM) applications. 

In the 2.4 GHz band, the IEEE 802.15.6 standard specifies that a transmitter 

shall be capable of transmitting at least –10 dBm EIRP, but devices should 

transmit lower power when possible in order to reduce interference to other 

devices and systems and to protect the safety of the human body. At these 

frequencies there are 79 channels. The relationship between center frequency 𝑓𝑐 

and channel number 𝑛𝑐 is given by equation (2.17) 

𝑓𝑐 = 2402 + 1 × 𝑛𝑐  (𝑀𝐻𝑧), 𝑛𝑐 = 0, … , 78 (2.17) 

 

Interferences  

 The unlicensed ISM bands are defined by the ITU and the frequency range 

from 2.4 GHz to 2.5 GHz is widely used in WBAN applications, in part because 

of its worldwide availability (Cavallari 2014). However, as it is an unlicensed part 

of the spectrum, coexistence issues must be considered when designing the body 

area network. Cavallari et al. studied these types of coexistence problems in 

WBANs in their survey carried out in 2014 (Cavallari 2014). Also, other research 

works investigating this issue can be found in the scientific literature as described 

below. Some authors analyzed the interference caused by IEEE 802.11 networks 

in devices using the IEEE 802.15.6 (2012) or the IEEE 802.15.4 (2006) standards 

(Chen 2009). The latter specifies the physical and medium access control (MAC) 

layers for short-range wireless communications and its first version was published 

in 2006. For example, in (De Francisco 2009) and (Chen 2009) experimental 

measurements to test these technologies were carried out in a hospital room and 

in an apartment, respectively. Yuan et al. (2007) proposed a coexistence model 

for these standards and verified it by means of simulations. In (Martelli 2012) 

authors concluded that an appropriate WBAN channel selection is crucial when 

WiFi interference is present and the procedure to select this channel should be 

periodically repeated due to the high variability of the environment where body 

area networks operate. Interference from house appliances, such as microwaves 

was also investigated in (Huo 2009) and authors concluded that the impact of this 

interference source was negligible for distances longer than 2 m. 

It has to be emphasized that interference in WBAN is not only due to other 

transmitting devices such as user equipment or base stations, but also because of 

other WBANs in the closest environment. An example of this is depicted in 
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Figure 2.17. The nodes in a WBAN can be centrally coordinated by the hub so 

interference between the nodes of one network can be solved easily. The problem 

comes when multiple people wearing WBANs come into range of each other, 

since people’s movements are unpredictable (Boulis 2012). The inter-WBAN 

interference occurs when there is no coordination between the different 

networks, and several interference mitigation schemes have been proposed with 

this regard (Yang 2011; De Silva 2009). 

 

Figure 2.17. Interferences in WBANs 

Radio technologies in WBANs 

Different radio technologies can be used to implement a WBAN. In addition, 

communication between WBANs and other wireless networks is crucial, and 

thus, at least one node in a body network, which can be the hub, should be 

capable of sending or/and receiving information from WLANs, Bluetooth or 

cellular networks (Domenicali 2007). Due to the quite large number of available 

standards, it is necessary to identify the best solution, depending on the 

application requirements. In the surveys carried out by Movassaghi et al (2013) 

and Chen et al. (2011) the technologies employed in different projects on 

WBANs were detailed. Some of these projects using different RF technologies in 

the 2.4 GHz band are summarized in Table 2.5, showing also the application 

purpose of each project.  
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Table 2.5. Technologies employed in different projects on WBANs. 

 

* The sensors communicate directly with the base stations (two-tier network) 

3.2.4. Antenna design 

The design of antennas for WBANs is a great challenge due to different 

factors that can degrade the performance of the sensor network, such as the 

adaption of the antenna to the shape of the human body or suiting it for 

wearers’ comfort. In the scientific literature can be found several proposals that 

are less or more suitable depending on the antenna substrates, being more 

appropriate those solutions designed using stretchable materials (Ma 2008; 

Salonen 2004; Arriola 2011; Cheng 2009). 

One of the main differences when working with these networks is that 

reliable communication with each node is vital, as opposed to the redundant 

character of information sensing and exchange in regular wireless sensor 

networks (WSNs). For this reason, the location of the sensor containing the 

antenna is particularly important in specific situations, for example in acceleration 

measurements for biomechanical analyses (Nordsborg 2014; Sabti 2014). In 

(Sabti 2014) authors analyzed the best node locations on a human body in order 

to get the maximum connectivity at 2.4 GHz with the receiving node placed on 

the chest. The experiments were carried out while the participants were running 

in a sports field to consider body movements in these kinds of activities. 

Project Application 
Intra-WBAN 

Comm. 

Inter-WBAN 

Comm. 

Beyond WBAN 

Comm. 

MIMOSA 

(Jantunen 2004) 
Several 

Bluetooth, 

Wibree, RFID 
UMTS, GPRS Internet 

CareNet (Cao 2008) 
Remote 

healthcare 
N/A* IEEE 802.15.4 IEEE 802.11 

MobiHealth 

(Wac 2009) 

Ambulatory 

patient 

Monitoring 

Bluetooth 
IEEE 802.11, 

GPRS, UMTS 
GPRS/UMTS 

WHMS 

(Milenkovic 2006) 

Health 

monitoring 
Zigbee WLAN Internet 

MAHS (kang 2007) Healthcare Bluetooth 
Wireless 

Network 
Internet 

LifeMinder 

(Ouchi 2002) 
Daily selfcare Bluetooth Bluetooth Internet 

Asnet (Sheltami 2006) 
Health 

Monitoring 
WiFi WiFi, Ethernet Internet, GSM 
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Apart from the above mentioned challenges, the main drawback when 

designing an antenna to be used in a WBAN is due to the interaction between the 

antenna and the body tissues. The human body itself can reduce significantly the 

antenna efficiency, since part of the power radiated from such antenna is 

absorbed by the tissues. Several techniques have been proposed in order to 

reduce the interaction between the body and the antenna, some examples are the 

use of band-gap (EBG) structures (Zhu 2009) or substrate integrated waveguide 

(SIW) cavities (Kaufmann 2013). However, the sizes of the wearable antennas 

using these methods are too big to be implemented on small wearable wireless 

sensors. 

The power absorbed in human body is another key aspect of interest, as the 

transmitters operate in close proximity to the body. The evaluation of the SAR is 

crucial for the compliance with the safety levels assigned by international 

standards (ICNIRP 1998; IEEE 2005), and it is often investigated (Anguera 2012; 

De Santis 2012; Risco 2012; Soh 2015). Designing efficient antennas while 

maintaining a low SAR is one of the challenges in body area networks. Specifically 

in the case of 2.4 GHz band, several antenna designs with low SAR have been 

proposed, e.g. the inverted-F antenna by Sabrin and Rahman (2015), the patch 

antenna by Rosaline et al. (2015). In (Soh 2015) the exposure of textile antennas 

was evaluated at different frequencies including the 2.45 GHz, and they 

concluded that most measured SAR values were well below their respective 

simulated equivalent.  

Regarding the biomedical implants, only non-corrosive and biocompatible 

material can be employed, such as titanium or platinum. These devices have to 

work in highly dissipative and dense media (muscle, brain…) and, thus, the 

surrounding environment of the antenna is different depending in the location. 

The impedance matching in these antenna designs is essential and hard to achieve, 

especially when the implant moves inside the body since the surrounding tissue 

properties vary. In the last years, some antennas that operate inside the human 

body at 2.45 GHz have been proposed, such as cavity slots antennas to be 

embedded on the arm (Xia 2009; Usui 2006) or capsule-shaped antennas 

(Dissanayake 2009). 
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CHAPTER 3: METHODOLOGY FOR 

ASSESSING WIFI EXPOSURE 

In this chapter a new methodology for assessing WiFi exposure is proposed. 

Firstly, the drawbacks of actual procedures for measuring WiFi signals are 

described and several tests carried out to prove the disadvantages and inaccuracies 

of these methods are presented. Secondly, a procedure for determining the 

optimal spectrum analyzer configuration that allows obtaining accurate WiFi 

signal samples is defined. This procedure is based in time and frequency domain 

measurements. However, the final configuration for assessing human exposure 

to WiFi signals requires only frequency domain measurements, simplifying in this 

way the measurement procedure. Finally, the measurement methodology based 

on the proposed configuration is presented, giving an example of the WiFi 

exposure assessment. 
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1. INTRODUCTION 

RF fields are usually measured in order to be compared with electromagnetic 

exposure limits defined by international standardization organizations with the 

aim of preserving the human health. In the case of WiFi signals, there is special 

concern about this radiation since WLAN that use this technology are 

increasingly being deployed in indoor environments, such as homes, schools or 

offices and the transmitters are very close to people. 

However, accurate measurement of WiFi radiation coming from user 

terminals and access points is a great challenge due to the nature of these 

emissions, which are non-continuous signals transmitted in the form of pulses of 

short duration. One of the major problems when measuring these signals is that 

the measured levels depend directly on the measurement system and its 

configuration (Verloock 2010). Most of the methodologies defined up to now for 

determining WiFi exposure levels use or take as reference exposimeters, 

broadband probes and spectrum analyzers without taking into account that WiFi 

signals are not continuously transmitted. This leads to an overestimation of the 

radiation level that cannot be considered negligible when data of the actual 

exposure are needed. To avoid this, other procedures apply empirical weighting 

factors that account for the actual duration of burst transmissions (Bechet 2012; 

Miclaus 2014). However, this implies the implementation of additional 

measurements for calculating the weighting factors, and thus, increases the 

complexity of the work. According to this, it was still necessary to define the 

frequency domain measurement setup that is optimal for obtaining realistic WiFi 

signal values, without requiring the performance of additional recordings. Thus, 

the definition of an appropriate methodology to achieve this goal was established 

as one of the main objectives of this chapter. The set of tasks carried out to 

identify such configuration, as well as the limitations obtained for other 

measurement settings have been deeply investigated. 

Previous knowledge regarding emissions in the form of pulses 

Before assessing WiFi exposure, previous experience regarding signals 

transmitted in the form of bursts had been acquired, since techniques to 

characterize impulsive noise were investigated. In fact, impulsive noise can be 

considered as emissions that are present only for a certain percentage of the time, 

usually consisting of pulse trains of a limited short duration and sometimes 

repeating at a certain rate (ITU 2009). As happens in the case of WiFi emissions, 
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when measuring this type of radio noise, the measured levels also depend on the 

receiver configuration due to the nature of the emissions. 

To illustrate this, several examples of radio impulsive noise and WiFi signal 

emissions are depicted in Figure 3.1. Time domain measurements were taken 

using a spectrum analyzer and in both cases rough transitions from low power 

levels to much higher power levels can be seen. The duration of the pulses 

depends on the noise source in the case of impulsive noise and on the data traffic 

in the case of WiFi signals. Figure 3.1(a) and Figure 3.1(b) show impulsive noise 

emissions at 1720 kHz generated when turning on flickering and fluorescent 

lights, respectively. Measurements from the signals transmitted by an access point 

at 2417 MHz when there was no data traffic or it was very low are represented in 

Figure 3.1(c) and recordings taken at 2457 MHz when data traffic was produced 

due to a file download are illustrated in Figure 3.1(d). As shown, although the 

frequencies of the emissions are different, the nature of these signals is quite 

similar. 

 

Figure 3.1. Measured emissions (a) of impulsive noise produced by turning on flickering lights, (b) of impulsive 
noise generated by turning on fluorescent lights; (c) of WiFi signals when there is low data traffic, (d) of WiFi 

signals when data traffic is generated due to a file download. 
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A procedure for measuring and characterizing impulsive noise emissions 

from specific sources was developed. In that first work, the methodology was 

based only on time-domain measurements since the measurement duration was 

very short. The objective was to record samples of the noise produced by some 

devices when performing specific actions, such as switching on a computer, so 

only few seconds were necessary to obtain the noise samples. This is not the case 

of WiFi exposure assessment, since longer measurement durations are required 

and the knowledge of the signal level in the whole WiFi channel or WiFi band is 

needed.  

Regarding the procedure for noise assessment, the integration of the peaks 

of a pulse train into a burst was investigated and several steps were found to be 

necessary in order to achieve this integration. First, a distinction between the 

impulsive noise and the Gaussian noise (WGN) had to be performed (see Figure 

3.2). For this purpose, a threshold was set to 13 dB above the root mean square 

(RMS) value of the Gaussian noise and all the samples above this threshold were 

treated as impulses. This threshold was selected because 13 dB is the crest factor 

for WGN, which is the difference between the RMS and the peak value (ITU 

2012). Second, the impulse noise samples had to be integrated into bursts. The 

methodology for including samples in a burst was based on ITU-RSM.1753 (ITU 

2012), but some contributions were added. 

 

Figure 3.2. Distinction between gaussian and impulsive components. 

Once the bursts were defined, four parameters were found to be appropriate 

for describing the impulsive noise generated by a main source:  

- the burst amplitude, 

- the burst duration, 
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- the number of bursts, 

- and in the case of more than one burst, the separation between them. 

These two last parameters were added to those defined in (ITU 2012). 

Moreover, as there were changes in the pulses amplitude, the burst amplitude was 

defined as the linear average of all samples belonging to a burst, regardless of 

whether they were above or below the threshold. 

An example of the combination of pulse trains to bursts is depicted in Figure 

3.3. On the left figure, the measured noise samples, the RMS of the Gaussian 

noise and the calculated threshold are shown. Each burst is comprised of all the 

noise samples located between the first impulsive sample of a burst and the last 

one. Combining pulses to bursts ensures that more than 50% of all samples inside 

each burst are above the threshold. Consequently, some samples below the 

threshold can be part of a burst if they satisfy some conditions. In the figure on 

the right the results presentation is provided and as shown, four bursts can be 

distinguished.  

 
(a)                                                                (b)  

Figure 3.3. Example of combination of pulses to bursts (a) radio noise measurement, (b) presentation of impulsive 
noise results. 

After defining the procedure for measuring and characterizing the impulsive 

noise, the impulses produced by several events were analyzed, the event being 

understood as the change in the operation of a device. Specifically, the noise 

produced by a power supply, a computer CPU, fluorescent lights and flickering 

fluorescent lights was studied. The studied impulses were associated to plugging 

in and unplugging the power supply, turning on the computer and turning on the 

lights, in the case of the flickering ones they flickered for few seconds before 

turning on completely. The noise was measured at different frequencies free of 
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local emissions, between 630 kHz and 1910 kHz. The average burst duration 

obtained for the power supply ranged between 0.25 ms and 1.45 ms, longer bursts 

were found when unplugging it and in all the cases a unique burst was found. In 

the case of the computer CPU, the average burst duration took values between 

0.39 ms and 0.70 ms and bursts were separated between 0.49 ms and 1.25 ms. 

When turning on eight fluorescent tubes simultaneously much longer bursts were 

observed, varying the average duration from 25.29 ms to 48.95 ms, while in the 

case of turning on seven flickering fluorescent tubes at the same time several 

bursts appeared, between 27 and 34, with an average duration between 0.48 ms 

and 0.64 ms and larger burst separation than in the other measurements was 

observed, between 104.60 ms and 146.31 ms. 

The obtained results are comparable to WiFi bursts. For example, when there 

is no traffic, beacon signals are transmitted by the access point and, as described 

in the following sections of this chapter, in the measurements taken in controlled 

conditions, these beacons had a duration of 0.5 ms and were separated 50 ms. 

When data traffic existed, the bursts were longer and the separation between 

consecutive bursts decreased. As WiFi exposure assessment has to be done in a 

wide range of frequencies, taking time domain measurements is not practical, 

since measurements at many frequencies are required. For this reason, the 

development of a methodology based on frequency domain measurements for 

assessing WiFi exposure was established as one of the main objectives of this 

chapter. The procedure followed to achieve this goal implies time domain 

measurements in order to fully characterize the WiFi signal levels. 
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2. EXISTING METHODOLOGIES FOR MEASURING 

WIFI EXPOSURE LEVELS 

Several guidelines and standards have been developed in order to provide 

general information and techniques for measuring EMFs. However, in the case 

of WiFi signals they do not provide specific information (ICNIRP 1998; 

CENELEC 2008). One of the main drawbacks in this regard is that the accurate 

assessment of this type of radiation poses a challenge because of the quasi-

stochastic nature of these emissions resulting from their transmission in the form 

of bursts. Inexpensive radiofrequency detectors can lead to misleading results 

(Foster 2015; Bolte 2016). Moreover, the configuration of specialized equipment, 

such as spectrum analyzers, has significant influence on the obtained values 

(Verloock 2010). In fact, the influence in the frequency domain of different 

parameters of a spectrum analyzer when measuring WiFi signals was analyzed in 

(Betta 2008), considering a power meter equipped with a broadband probe as a 

reference system. The use of these instruments is suitable for having a rough 

approximation of exposure that may be useful as long as the levels are well below 

the exposure limits. Hence, the accuracy of the measurements can be improved 

if a more appropriate reference system is taken. As stated in (Letertre 2011) and 

(Adamson 2010), broadband probes do not provide enough accuracy for 

measuring the radiation caused by OFDM communication systems, and thus, it 

is necessary to employ other instruments when the objective of the measurements 

is to obtain realistic values to be used, for example, in medical studies carried out 

for the characterization of the influence of specific signal levels on the human 

body, or in the design of network planning methodologies according to criteria 

based on the actual exposure conditions. 

Different methods for measuring human exposure due to WiFi signals with 

a spectrum analyzer have been defined. Nevertheless, there is still no standardized 

methodology for this purpose. The most common technique considered up to 

now is to record maximum power values in the frequency band of interest, so as 

to analyze the worst-case scenario. However, this also implies an overestimation 

of the radiation, which could derive in overly restrictive deployment policies 

because of social concern.  

To avoid this, some authors introduced weighting techniques that account 

for the time variability of these emissions. In (Verloock 2010) an empirical factor 

called duty cycle T (%) was defined as the ratio of the pulse duration or active 

duration 𝑡𝑎𝑐𝑡𝑖𝑣𝑒  (s) to the total duration 𝑡𝑡𝑜𝑡 (s) of the WLAN signal, in order to 

consider the time variability of the signal in a specific situation:  
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𝑇 = 100 ·
𝑡𝑎𝑐𝑡𝑖𝑣𝑒

𝑡𝑡𝑜𝑡

 [%] (3.1) 

The duty cycle is estimated from time domain measurements and it has to be 

calculated for the different active channels, with fc equal to the channel center 

frequency (2412 MHz + 5·k MHz, k = 0,…, 12). This results in a measurement 

time, which is 13 times larger if 13 WiFi channels are present. 

Then, the total average electric field 𝐸𝑡𝑜𝑡
𝑎𝑣𝑔

 has to be calculated by multiplying 

the electric field obtained from frequency domain measurements 𝐸𝑡𝑜𝑡
𝑎𝑐𝑡𝑖𝑣𝑒 with the 

corresponding duty cycle: 

𝐸𝑡𝑜𝑡
𝑎𝑣𝑔

= 𝐸𝑡𝑜𝑡
𝑎𝑐𝑡𝑖𝑣𝑒 · √𝑇 [𝑉/𝑚] (3.2) 

Also, the spectrum analyzer settings in the frequency domain for measuring 

maximum signal levels that should be subsequently weighted by that factor were 

analyzed in that study. These settings as well as the ones employed for calculating 

the duty cycle are summarized in Table 3.1. As shown, the given parameters are 

aimed at obtaining WiFi levels in the whole 2.4 GHz WiFi band.  

Another approach that takes into account both the amplitude and time 

variability of the received signals was described in (Trinchero 2008; Bechet 2012; 

Miclaus 2014). In that case, the weighting factor 𝑊𝐹 was determined as the ratio 

of the time-averaged power level 𝑃𝑡𝑖𝑚𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒 to the maximum power level of 

the signal 𝑃𝑡𝑖𝑚𝑒𝑀𝑎𝑥:  

𝑊𝐹 =
𝑃𝑡𝑖𝑚𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒

𝑃𝑡𝑖𝑚𝑒𝑀𝑎𝑥

 (3.3) 

As in the previous case, the maximum electric field obtained from the 

frequency domain measurements has to be multiplied by the weighting factor in 

order to obtain the total average electric field value. The spectrum analyzer 

settings in the time and frequency domain that were selected as appropriate for 

assessing WiFi exposure using this weighting factor are also summarized in Table 

3.1. In this case, the given parameters are aimed at assessing WiFi exposure in 

one of the channels of the 2.4 GHz frequency band. 
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Table 3.1. Spectrum analyzer settings proposed in two studies for assessing WiFi exposure considering wighting 
factors. 

 

* n is the number of display points 

All the above mentioned techniques were the solution adopted in different 

measurement campaigns carried out to assess human exposure to WiFi emissions. 

For example, the electric field coming from access points and portable devices 

when doing different activities was analyzed from recordings taken by means of 

exposimeters (Pachón-García 2015; Gallastegi 2016) or other frequency selective 

radiation meters (Karipidis 2017). Max-hold WiFi measurements given by a 

spectrum analyzer were studied for different environments in (Schmid 2007). In 

(Verloock 2014) different values of the Duty Cycle were considered to correct 

the empirical measurements. Nevertheless, the methodologies defined in all the 

previous studies were not optimal. In the case of portable exposure meters, 

uncertainties due to different factors such as the body influence have been 

reported in (Bolte 2011). Moreover, the maximum values of WiFi exposure do 

not reveal a realistic situation and, although these maximum levels can be 

corrected by using weighting factors, two types of recordings are required in that 

case: one in the frequency domain to determine those maximum levels, and 

another in the time domain to fix the proper weighting value for the 

characteristics of the environment and users’ activity under test.  

Bearing in mind the problems derived from the previous methodologies, a 

rigorous procedure to identify the optimal configuration for determining realistic 

WiFi exposure values was established as the main objective of this work. That 

 Settings from (Miclaus 2014) Settings from (Verloock 2010) 

Parameter 
Value in the 

time domain 

Value in the 

frequency 

domain 

Value in the 

time domain 

Value in the 

frequency domain 

fc  Channel fc Channel fc Channel fc 2.45 GHz 

Span (MHz) 0 20 0 100 

RBW (MHz) 1 1 1 1 

SWT (ms) 1 20 1 

10 if signal is not 

known tactive·n if 

signal is known* 

VBW (MHz) 3 3 10 10 

Detector RMS RMS RMS RMS 

Trace clear/write Max hold clear/write Max hold 

Number of sweeps 1700 
Until stable 

status (4 min) 
2200 

Until stable status or 

1 min 
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optimal configuration must allow acquiring samples only and exclusively in the 

frequency domain.  

The procedure developed for identifying that configuration has been based 

on both time and frequency domain measurements. The first type of 

measurements was necessary to obtain a set of reference samples of the radiation 

caused by a perfectly known WiFi signal. Once obtained those reference samples, 

they were compared with the levels registered for the same type of signal 

considering different values of the spectrum analyzer parameters in order to 

analyze their influence on the measurements. Finally, the optimal configurations 

for taken measurements in one WiFi channel and in the whole WiFi band were 

identified from recordings taken for different cases of WiFi reception.  
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3. SELECTION OF THE MEASUREMENT 

INSTRUMENTS 

The measurement instruments that are commonly used to acquire values of 

the exposure to EMFs are broadband probes, exposimeters and spectrum 

analyzers. As stated in the previous section, the first ones do not provide enough 

accuracy for measuring the radiation caused by OFDM communication systems, 

and thus, they were discarded for the acquisition of WiFi radiation samples in the 

frequency domain.  

3.1. Equipment selection 

Among exposimeters and spectrum analyzers, it is logical to assume that the 

second ones are the best option for recording values of the radiation caused by 

different types of signals, in different environments and under very different 

conditions, since most of the models include several parameters and options that 

confer them great measurement versatility. Even so, a set of tests carried out to 

compare the accuracy of a professional spectrum analyzer connected to a tri-axial 

antenna with the one provided by a portable exposimeter were initially performed 

as part of the tasks carried out in this study to identify the optimum solution for 

obtaining realistic WiFi exposure values.   

The specific models utilized to do this were the EMI ESPI3 spectrum 

analyzer of Rohde & Schwarz (R&SEspi) and the EME Spy 200 exposimeter of 

Satimo (EME SPY) (Figure 3.4).  

          
             (a)                                                  (b) 

Figure 3.4. (a) Exposimeter EME Spy 200, (b) Spectrum analyzer EMI ESPI3. 

Both of them were selected because they fulfill the specifications defined for 

the professional equipment to be used for exposure assessment. Nevertheless, 

the conclusions derived from the results included not only in this section, but also 

in the following ones are applicable to a great variety of models such as Agilent 
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E4402B or Agilent E443A from Keysight technologies (Keysight), MS2840A 

from Anritsu (Anritsu) or FSC from Rohde and Schwarz (R&SFSC) in the case 

of spectrum analyzers, and ExpoM-RF from Fields at Work (ExpoM) or ESM-

140 from Maschek (ESM) in the case of exposimeters,  since  according to their 

data sheets all of them present similar measurement characteristics.  

Figure 3.5 shows the differences for a set of WiFi field strength samples 

recorded with both instruments at the same time, separated each other a distance 

of 40 cm in order to ensure the corresponding far field conditions 

(Rappaport 2010). Ten measurements of 6-minute duration were taken at two 

different positions (in total, twenty measurements with each equipment) and the 

electric field levels were averaged over these 6 minutes, as recommended by the 

ICNIRP (1998). 

 

Figure 3.5. Difference between the averaged electric field measured with the exposimeter and with the spectrum 
analyzer. 

As deduced from the curves depicted in that figure, the levels measured with 

the exposimeter were always higher than the ones recorded with the analyzer. 

This is in part because the minimum detection threshold of the exposimeter is 

5 mV/m, and consequently, that was the value stored by this instrument when 

lower levels were received. On the contrary, the spectrum analyzer not only 

captured levels below that threshold, but also recorded samples four times faster 

than the EME Spy, concluding that it is a better option to obtain empirical values 

of the radiation caused by amplitude and time varying WiFi signal bursts. 
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3.2. Equipment configuration 

Nevertheless, it has to be considered that the accuracy of the spectrum 

analyzer is directly related with the configuration used during the measurements, 

the comparison between the exposimeter and the analyzer previously described 

was done using the clear/write trace and the RMS detector of the spectrum 

analyzer. These two parameters were selected in order to take actual values of the 

signal sample. In contrast to other trace modes, the clear/write trace erases any 

data previously stored in the trace and continuously displays the signal received 

at any time. For this reason, in order to reach our objective this trace mode is 

more suitable than the max-hold trace, which maintains the maximum level for 

each point in a trace and only updates each point if a new maximum level is 

detected in successive sweeps. With regard to the detector, it is used to compress 

the data samples measured in a sweep into the number of displayed pixels. An 

overview of the results obtained by means of using different types of detectors is 

provided in Figure 3.6, which is based on the example presented in (R&S 2003). 

In this figure, 8 samples per pixel are used and as shown, the displayed sample is 

different for each detector type. The sample detector samples the envelope 

voltage only once per pixel and displays that result on the screen, so using the 

sample detector can cause a significant loss of information. The positive peak and 

negative peak detectors displays the highest and the lowest level detected within 

the pixel respectively. 

 

Figure 3.6. Results obtained when using different types of detector. 

The RMS detector is not depicted in the example because it does not take 

one of the detected samples as a result. Instead, it considers all the detected 

samples within the pixel for calculating the RMS power level. 
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3.2.1. Preliminary tests 

Some preliminary measurements were performed to test the influence of the 

spectrum analyzer settings on the obtained WiFi levels. One channel 

measurements of 6 min duration were carried out in controlled conditions when 

there was no data traffic and thus, only beacon signals were transmitted by the 

access point. First, a configuration defined for taking actual signal samples 

(Test 1) was compared with a configuration aimed at obtaining worst-case 

exposure levels (Test 2). The spectrum analyzer was equally configured in the two 

tasks, except for the trace mode. The clear/write trace was selected for obtaining 

the actual WiFi levels and the max-hold trace in the second case. In both cases, 

the sweep time (SWT) was set to 2.5 ms, the resolution bandwidth (RBW) to 

0.3 MHz, the video bandwidth (VBW) to 1 MHz, the sweep points (SWP) to 501 

and the RMS detector was used. Table 3.2 shows the average electric field 

strength measured using these two setups and differences in the mean electric 

field of up to 28.54 dB were found.  

Test 3 consisted on weighting the electric field level obtained from Test 2 

(levels obtained using the max-hold trace) in order to consider the temporal 

variations of the signal. The weighting factor was calculated following equation 

(3.1) and the final electric field using (3.2). In the studied scenario, the beacon 

period was equal to 50 ms and the duration of the beacons, this is the 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 , was 

0.5 ms. Consequently, a weighting factor of 1% was obtained. The difference in 

the average field level between the one calculated in Test 3 and that obtained 

when measuring the actual signal levels in the first setup was equal to 8.54 dB, as 

may be seen from Table 3.2. 

As in the work developed by Verloock et al. in (2010), they proposed a 

formula for calculating the appropriate SWT that should be used to perform the 

frequency domain measurements when the signal is known, the next step was to 

repeat Test 2 and Test 3 using the corresponding SWT for a known burst. Having 

knowledge of the value of the 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 and the SWP, the equation proposed in 

(Verloock 2010) for calculating the optimal SWT is: 

𝑆𝑊𝑇 = 𝑡𝑎𝑐𝑡𝑖𝑣𝑒 · 𝑆𝑊𝑃 (3.4) 

In our case, the number of display points of the spectrum analyzer was 501, 

obtaining a SWT of 250 ms. Test 4 was performed setting this value of SWT and 

using the max-hold trace. The result of Test 5 was obtained after weighting the 

field level of Test 4 by the weighting factor previously calculated. The average 

electric field strength obtained in these two tests are also presented in Table 3.2. 
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Table 3.2. Average electric field levels obtained in the different tests. 

 Method SWT Eavg (dBµV/m) 

Test 1 Clear/write trace 2.5 ms 61.97 

Test 2 Max-hold 2.5 ms 90.51 

Test 3 Max-hold and weighting factor 2.5 ms 70.51 

Test 4 Max-hold 250 ms 86.12 

Test 5 Max-hold and weighting factor 250 ms 66.12 

As shown when using a weighting factor, results approach much better to the 

actual exposure. However, in this case two measurements are required. The 

described examples were done when no data traffic was generated, thus in all the 

other situations the weighting factor would be higher and the final average electric 

field value would be weighted in a smaller proportion. In addition, when there 

are different traffic situations, an appropriate weighting factor for each case is 

necessary, increasing in this way the number of measurements. 

But even when using a spectrum analyzer which is not configured for taking 

max-hold measurements, the setup of the equipment can have a significant 

influence on the results. Some more measurements of 6 minutes were taken in 

the same scenario, using the clear/write trace together with the RMS detector and 

varying only the SWT from one test to another. Changing only the SWT 

parameter between 2.5 ms and 100 ms led to differences in the median measured 

power levels of 4.6 dB and differences in the maximum measured power levels 

of 12.3 dB.  

Having concluded that an analyzer configured to use the clear/write trace 

together with the RMS detector and connected to a tri-axial antenna is a more 

accurate and versatile measurement solution than an exposimeter, the following 

step was to identify the optimum configuration for acquiring realistic WiFi 

exposure values by performing measurements only and exclusively in the 

frequency domain. To do this, a comparison of a set of reference levels measured 

in the time domain for a perfectly known WiFi signal with the ones obtained for 

the same type of signal with different frequency domain configurations was 

required. Details in this regard, as well the corresponding results and conclusions 

are given in this chapter. 
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4. METHODOLOGY FOR DETERMINING THE 

OPTIMAL CONFIGURATION 

4.1. Description of the measurement scenario 

The time and frequency domain measurements required to determine the 

optimal configuration of the spectrum analyzer for measuring accurate WiFi 

exposure levels in the frequency domain were performed in a laboratory of the 

University of the Basque Country, Spain, where a Cisco Aironet 1702 Access 

Point (Cisco 2016) provides access to the Eduroam WiFi network of the 

university. Tests were carried out at night from 00:00 to 05:00 in order to 

guarantee that no one was within the coverage area of that access point and that 

all the computers located in that area were turned off, ensuring this way that the 

only traffic received was the one produced for the testing. Furthermore, during 

the post-processing phase, all the recordings were analyzed to check that the 

received signals matched exactly the WiFi activity desired for the trials. 

Specifically, for those time and frequency domain measurements carried out to 

analyze the levels recorded when the access point was working in idle mode, it 

was confirmed that, as described in the IEEE 802.11 standard (IEEE 2016), only 

beacons were received periodically, while in the rest of cases, bi-univocal 

correspondence was observed between the signal traces and the data bursts 

particularly generated for tests. The access point operated on Channel 1 of the 

frequency band allocated to services that implement the IEEE 802.11g standard. 

The center frequency and bandwidth of this channel are 2.412 GHz and 20 MHz 

respectively. Also, it comprises 64 subcarriers equally spaced 312.5 kHz and 

modulated by applying the Orthogonal Frequency Division Multiplexing 

(OFDM) technique, so that the signal is concretely transmitted on subcarriers -

26 to -1 and 1 to 26, being the 0 subcarrier the one located at the center frequency 

previously mentioned, as described in (IEEE 2016).  

According to the IEEE Standard C95.3 (IEEE 1991), the measurement of 

potentially hazardous exposure fields coming from a well-known single-source 

may be performed with a tunable field-strength meter connected to a directive 

antenna, which in fact makes full sense, since in that case the exposure levels 

come from the specific location where that source is placed. Thus, bearing in 

mind that the objective of the study here described was to define a measurement 

methodology for determining the optimal settings to record actual WiFi radiation 

values and that it was necessary to use different WiFi signals coming from a 

specific access point for achieving that purpose, a Yagi antenna suitable for 

carrying out measurements in the 2.4 GHz WiFi band and was selected as 



Chapter 3 

74 
 

appropriate solution to be connected to the spectrum analyzer. Such antenna is 

shown in Figure 3.7 and it was installed on a mast, aiming at the access point 

from a distance of 2 m in order to receive as much power as possible from the 

radiation source under study. Besides, a computer using a wired Ethernet 

connection to the analyzer was employed to establish the analyzer configuration 

and save the recorded data. A laptop was used to generate data traffic from the 

access point. 

 

Figure 3.7. Yagi antenna suitable for the 2.4 GHz frequency band. 

During the trials, several data files of three different sizes were downloaded 

from a server that was part of the same local area network as the access point, so 

Internet traffic constraints were negligible. Also, two working modes of the 

access point were considered:  

 idle mode, where only beacon packets are transmitted, 

 traffic mode, in which apart from the beacons data traffic is generated. 

Details of the specific tests performed for each mode are given in the 

following subsections, where the three measurement phases of the defined 

methodology can be distinguished. 

4.2. Phase 1: Acquisition of reference WiFi exposure values  

The purpose of the first trials carried out with the measurement system 

previously described was to obtain a set of samples of the radiation caused by a 

perfectly known WiFi signal to be used as reference values for determining the 

optimal frequency domain configuration of the spectrum analyzer. 

To do this, the power levels of the signal generated by the access point when 

working in idle mode were recorded in the time domain using the configuration 

indicated in the first column of Table 3.3, which is placed in the second phase of 

this methodology. Measurements in the frequency domain were discarded during 

this phase of the methodology since the idle mode signal consisted of a sequence 

of beacons of 0.5-ms duration transmitted every 50 ms, and according to the 
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spectrum analysis basics reported in (Keysight 2016), it is impossible to configure 

an analyzer for sweeping a WiFi channel in that short period of 0.5 ms, without 

losing the tradeoff between the values of the SWT, Span and RBW required to 

perform accurate recordings. For this reason, the channel power 𝑃𝑐ℎ𝑎𝑛𝑛𝑒𝑙 was 

calculated from the power levels recorded at the different frequencies 𝑃𝑖 in the 

time domain using equation (3.5), which makes the integration of the 𝑃𝑖 values as 

the spectrum analyzer does when it calculates the channel power from the 

displayed values at the different frequencies (Keysight 2016). These 

measurements were taken separately at 65 different frequencies within the WiFi 

channel, recording data during intervals of one hour at each frequency:  

𝑃𝑐ℎ𝑎𝑛𝑛𝑒𝑙 =
𝐶𝐻𝐵𝑊

𝑅𝐵𝑊
·

1

𝑁
· ∑ 𝑃𝑖

𝑁

𝑖=1

 (3.5) 

where both 𝑃𝑐ℎ𝑎𝑛𝑛𝑒𝑙 and 𝑃𝑖 are the before mentioned power values in linear 

units, 𝐶𝐻𝐵𝑊 is the channel bandwidth (20 MHz), 𝑅𝐵𝑊 is the resolution 

bandwidth (0.3 MHz) and 𝑁 is the number of frequencies within the WiFi 

channel at which samples were recorded ( 𝑁=65).  

An example of the WiFi signal measured in the time domain at 2.415 GHz 

when the access point was working in idle mode is depicted in Figure 3.8(a), 

where two beacons can be distinguished. Figure 3.8(b) shows the values registered 

at each one of the frequencies measured within the channel whenever the beacons 

were received, that is, every 50 ms. These values correspond with the maximum 

power levels recorded during the 1-hour duration measurements, so that the 

channel power obtained after converting to dBm the result calculated using 

equation (3.5) was -43.07 dBm in that case. 

 
                            (a)                                                                  (b) 

Figure 3.8. Amplitude of the signal coming from the access point in idle mode (a) time domain (b) frequency 
domain level when the beacon is transmitted, being the channel power in this case equal to -43.07 dBm.  
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4.3. Phase 2: Study of the influence of the measurement 

parameters  

Although the most accurate way of characterizing the WiFi exposure is to use 

the power levels obtained by means of the above-mentioned procedure, it is not 

practical due to the amount of recordings that are required. Moreover, that 

method is not applicable to perform actual traffic measurements when changing 

the transmission conditions, since the different time domain measurements 

cannot be taken at the same time. However, it is the most accurate methodology 

for obtaining reference power values to assess the accuracy of other techniques. 

Bearing this in mind, the following objective was to determine the influence of 

the spectrum analyzer parameters on the measurements, in order to identify the 

optimal frequency domain configuration for registering the power levels that best 

fit the reference channel power values calculated by applying the time domain 

measurement method previously described. 

To do this, samples of the signal transmitted by the access point when 

working in idle mode were taken in the frequency domain at the center frequency 

of 2.412 GHz, by using the RMS detector and the clear/write trace, while varying 

the RBW, the VBW and the SWT of the spectrum analyzer. It was observed that 

501 points were enough to display that signal. That is, a greater amount of points 

did not improve the results, and thus, this was the value selected for the SWP 

parameter of the analyzer. As shown before when describing the detector types, 

several data points were used for calculating each displayed point value. In this 

case, as the RMS detector was used, the frequency width 𝐹𝑟𝑒𝑞𝑊𝑖𝑑𝑡ℎ utilized for 

obtaining the RMS value of each displayed point is determined as follows, as 

stated in (Keysight 2016): 

𝐹𝑟𝑒𝑞𝑊𝑖𝑑𝑡ℎ =
𝑆𝑝𝑎𝑛

𝑆𝑊𝑃 − 1
 (3.6) 

According to this, the RBW had to be larger than 40 kHz, as this was the 

separation between the displayed points. This fixed also the minimum VBW 

since, as described in the CENELEC EN 50492 Recommendation, the value of 

this parameter should be at least 3 times higher than the RBW (CENELEC 2008).  

Taking into account the previous thresholds, the measurements carried out 

during this second phase were finally performed varying the RBW between 

0.3 MHz and 1 MHz, the VBW between 1 MHz and 3 MHz and the SWT 

between 2.5 ms and 40 ms, as indicated in the second column of Table 3.3.  
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Table 3.3. Spectrum analyzer configurations in the time and frequency domain. 

Parameter Time Domain Frequency domain 

fc (MHz) 2412 ± 0.3125·N 

N= 0, 1, 2, … 32 
2412 

Span (MHz) Zero Span 20 

RBW (MHz) 0.3 0.3 - 1 

VBW (MHz) 1 1 - 3 

SWT (s) 1 2.5×10-3 - 40×10-3 

SWP 8001 points 501 points 

Detector RMS RMS 

Trace Mode clear/write clear/write 

 

Results of these tests are included in Section 5 of this chapter and led to 

conclude that the SWT is the most influential parameter when measuring WiFi 

emissions, due to the variability of this type of signals; an effect that was also 

confirmed in (Verloock 2010).  

Nevertheless, although the effect caused by the SWT parameter was clearly 

observed during the measurements, the error associated with each one of the 

frequency domain configurations was quantified by applying the following 

equation, in order to make an objective comparison between them: 

𝑒 (%) =
|𝑃𝑐ℎ𝑎𝑛𝑛𝑒𝑙 − 𝑃𝑓𝑟𝑒𝑞|

|𝑃𝑐ℎ𝑎𝑛𝑛𝑒𝑙|
· 100 (3.7) 

where 𝑒 is the error, 𝑃𝑐ℎ𝑎𝑛𝑛𝑒𝑙 is the power value obtained for the idle mode 

signal from the reference samples recorded in the time domain and 𝑃𝑓𝑟𝑒𝑞  is the 

one obtained for the same signal with a specific frequency domain configuration 

of the spectrum analyzer, both of them expressed in linear units. 

4.4. Phase 3: Identification of the spectrum analyzer optimal 

configuration 

Apart from the recordings of the signal transmitted by the access point when 

working in idle mode, measurements of WiFi signals derived from different data 

traffic situations were required to identify the optimal configuration of the 

spectrum analyzer for acquiring actual WiFi exposure values only and exclusively 

in the frequency domain. To do this, files of three different sizes were 
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downloaded from a server operating in the same local area network as the access 

point under test. Data traffic was generated by using a laptop located at a distance 

of 4 m from the receiver. Frequency domain measurements were taken in 

different intervals of 6-minute duration, as proposed by the ICNIRP Guidelines 

(ICNIRP 1998). Specifically, the recording technique was the one following 

described: each measurement started when the access point was in idle mode, one 

minute later data traffic was generated and when reaching the 6 minutes, the 

spectrum analyzer stopped recording samples. Thus, the synchronization of the 

two software tools designed, on one hand, to download the files from the server, 

and on the other hand, to configure the analyzer and save the results, was essential 

for the success of these tests. 

Again in this case, different values of the spectrum analyzer parameters in the 

frequency domain were considered to perform this third set of measurements, 

with the objective of studying the relationship between the periods of time in 

which data traffic was generated and the power levels obtained with each 

configuration. An example of one of the traces recorded in the frequency domain 

when the access point was working in traffic mode can be seen in Figure 3.9. In 

this specific case the resolution bandwidth was set to 0.3 MHz. 

 

Figure 3.9. Trace of the WiFi signal recorded in the frequency domain when downloading a data file. 

In view of such WiFi activity, it was necessary to determine the percentages 

of signal reception during the 6-minute measurement intervals. Data 

downloading took between 2 s and 6 s for File 1, between 50 s and 60 s for File 

2 and between 228 s and 240 s for File 3. Under such conditions, the access point 

was transmitting almost continuously, and therefore, taking into account that the 

duration of each measurement was six minutes, and considering that beacons 
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were transmitted during the 1% of the time (that is, 0.5 ms each 50 ms) when 

data traffic was not generated, the time percentage of WiFi reception was 2-3% 

for the first type of file, 15-18% for the second type and 64-68% for the third 

one. Table 3.4 summarizes the details of the different file downloads. These 

values led to conclude that the three file types were suitable to generate WiFi 

exposure situations different from each other, as well as different from the 

situation where the access point worked in idle mode. 

Table 3.4 Description of the downloads details. 

File Downloading time 
Percentages of 
WiFi activity 

File 1 2 – 6 s 2 – 3% 

File 2 50 – 60 s 15 – 18% 

File 3 228 – 240 s 64 – 68% 
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5. RESULTS OBTAINED IN CONTROLLED 

CONDITIONS AND DEFINITION OF SPECTRUM 

ANALYZER CONFIGURATION 

This section includes an analysis of the power levels and error values obtained 

from the sets of measurements described in the previous section that finally led 

to determine the optimal setup of the spectrum analyzer for acquiring realistic 

WiFi exposure values in the frequency domain. To do this, the results were 

classified according to the types of WiFi signals recorded during the tests. 

5.1. Results obtained for the idle mode signal 

A suitable function to describe the measured WiFi signal is the cumulative 

distribution function (CDF), since this function gives information of the 

probability that the WiFi level takes a value lower or equal to a specific level. In 

the specific case of idle mode, the WiFi bursts transmitted by the access point 

had a duration of 0.5 ms and the separation between two consecutive bursts was 

equal to 50 ms, thus the WiFi signal was present approximately the 1% of the 

measurement time.  

The CDFs calculated from the power values measured in idle mode in the 

frequency domain were compared with the CDF of the channel power values 

obtained from the samples recorded for that type of signal in the time domain 

during the phase 1 of the measurement methodology explained in the previous 

section. This last one is the so-called “Reference” curve depicted in black color 

in Figure 3.10(a) and Figure 3.10(b). As mentioned in Section 4.2 of this chapter, 

the maximum power value of that curve (that is, the highest reference power 

value) was -43.07 dBm. As seen in those figures, this curve drops to -65.89 dBm 

for the 99th percentile, and to -69.05 dBm for the 97th percentile, reaching finally 

a minimum level equal to -71.40 dBm. 

CDFs corresponding to the measurements carried out in the frequency 

domain by using a resolution bandwidth of 0.3 MHz, a video bandwidth of 

1 MHz and SWT values of 2.5 ms, 10 ms, 25 ms and 40 ms have been also 

included in Figure 3.10(a), while a set of curves corresponding to frequency 

domain measurements performed with the same SWT values, but RBW and 

VBW values of 1 MHz and 3 MHz respectively, can be observed in Figure 3.10(b). 

In all these cases, data were stored during time periods of 1 hour. Moreover, 

different tests of 1 hour and 6-minute duration were performed, concluding that 

there was no difference in this regard. Thus, as stated in (ICNIRP 1998), an 
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interval of 6 minutes can be considered long enough to determine the exposure 

level, if the environment conditions remain constant. 

 
                                                                   (a) 

 
                                                                   (b) 

Figure 3.10. CDFs of the power levels measured, the “Reference curve” is the one obtained from the time domain 
measurements and the other curves are those obtained in the frequency domain measurements with different 

configurations (a) RBW=0.3 MHz and VBW=1MHz (b) RBW=1 MHz and VBW=3 MHz. 

From the shape of the previous curves, it was determined that data collected 

when using higher SWT values (25 ms, 40 ms) would account for an idle signal 

with lower peaks but longer-lasting ones by far. This would imply an 

overestimation of the exposure levels to WiFi signals, and thus, shorter SWTs 

should be considered when the purpose is to maximize the accuracy of the 

measurements. Specifically, the tests performed with a SWT of 2.5 ms fitted 

better the trend of the reference curve, and thus, the use of this value leads to 

more rigorous and realistic results. The error of the samples taken in the 
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frequency domain with this specific sweep time value was calculated by using 

equation (3.7), considering the 50th percentile of the measurement levels. Values 

that ranged between 3.40% and 9.06% and an average error equal to 5.73% were 

obtained when selecting a RBW of 0.3 MHz. However, the use of the same RBW 

value with a SWT equal to 10 ms led to values of the error between 0.20% and 

12.94%, being the average error 7.80% in this case. This error increased for a 

SWT of 40 ms, reaching a value of 203.94%. 

Apart from the previous curves and errors, statistical results of second order 

were also determined taking into account fifteen measurements performed with 

each spectrum analyzer configuration. The mean, maximum and minimum values 

calculated from the 50th percentiles (P50) of the power levels obtained in the 

frequency domain were compared with the P50 of the reference values measured 

over time. As observed in Figure 3.11, the P50 value calculated from the 

measurements carried out in the frequency domain when selecting a resolution 

bandwidth of 1 MHz, a video bandwidth of 3 MHz and sweep times of 2.5 ms 

or 10 ms, is lower than the median of the values recorded in the time domain 

(“Reference”). Thus, the WiFi exposure would be underestimated if those 

settings are used. For a RBW of 0.3 MHz and a VBW of 1 MHz, the statistical 

values corresponding to the samples taken in the frequency domain were slightly 

higher than the ones calculated from the time domain recordings, in 14 out of the 

15 measurements carried out with a SWT of 10 ms, and for all the measurements 

performed with a SWT of 2.5 ms. As mentioned before, the highest error in these 

two specific cases was 12.94% for a SWT of 10 ms and 9.06% for a SWT of 2.5 

ms, concluding that these were the most suitable configurations for assessing the 

WiFi exposure caused by idle mode signals. 

 

Figure 3.11. P50 values of both, the levels measured using different configurations in the frequency domain 

and the reference values in the time domain. 
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5.2. Results obtained for different WiFi data traffic situations 

Results obtained from recordings of 6 minute duration performed in the 

frequency domain while generating data traffic are given below.  In this case, the 

measurements were carried out using the two configurations of the spectrum 

analyzer that were found to be more suitable for assessing the WiFi exposure 

caused by idle mode signals, because a setup that is capable of determining real 

exposure values derived from very low WiFi activity levels is also adequate for 

measuring WiFi signal bursts that imply higher percentages of reception.  Thus, 

CDFs of the received signal levels when using a resolution bandwidth of 

0.3 MHz, a video bandwidth of 1 MHz and sweep times of 2.5 ms and 10 ms are 

shown in Figure 3.12. 

 
(a) 

 
(b) 

Figure 3.12. CDFs of the power levels measured for different data traffic situations using RBW=0.3 MHz, 
VBW=1 MHz and (a) SWT=2.5 ms, (b) SWT=10 ms. 
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According to the percentages of WiFi activity indicated in Section 4.4 and 

shown again in Table 3.5, the minimum power levels associated with the 

transmission/reception of WiFi data traffic should be those corresponding to the 

97th – 98th percentiles in the case of File 1, the 82th –85th percentiles for File 2 and 

the 32th – 36th percentiles for File 3. This implies that rough transitions from the 

lowest to the highest power values of the corresponding CDF curves should 

happen at those percentiles.  

Table 3.5. Downloading time for the different files and percentages of WiFi activity in each case together with the 

corresponding percentiles. 

File Downloading time 
Percentages of 
WiFi activity 

Percentile of 
rough transitions 

File 1 2 – 6 s 2 – 3% 97th – 98th 

File 2 50 – 60 s 15 – 18% 82th – 85th 

File 3 228 – 240 s 64 – 68% 32th – 36th 

 

Comparing the results of Figure 3.12(a) and Figure 3.12(b), it is concluded 

again that a SWT of 2.5 ms provides more accurate results than a SWT of 10 ms, 

since in this last case, the transitions happen at lower percentiles than expected, 

and consequently, lead to believe that the WiFi exposure is higher than it actually 

is. To confirm that overestimation, different percentiles corresponding to the 

transitions due to the existence of WiFi data traffic were identified. The mean 

power level of those percentiles was finally calculated by using the values of 20 

measurements registered for each type of file and measurement configuration. 

This means a total of 120 frequency domain measurements for obtaining the 

results of Table 3.6 and Table 3.7. In these tables, the mean power level of the 

percentiles of interest are given, as well as the mean of the maximum power 

values. Finally, the range of power levels obtained in the different measurements 

is provided. The results associated recording performed using a SWT of 2.5 ms 

are summarized in Table 3.6 and those acquired with a SWT of 10 ms are 

presented in Table 3.7. 

Very similar maximum power levels were determined with both SWT values, 

and therefore, this parameter has little influence if the measurements are 

performed to characterize the worst-case traffic mode scenario. However, it turns 

to be relevant when WiFi signal samples are taken with the aim of doing a realistic 

analysis of the corresponding exposure. As seen in the previous tables, the time-

periods of the power levels derived from the existence of data traffic between the 

transmitter and receiver match with the durations of the file downloads, when 

setting the SWT to 2.5 ms. Even more, the P90, P80 and P30 values 
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corresponding to downloads of the Files 1, 2 and 3 respectively were higher for 

a SWT of 10 ms than for a SWT of 2.5 ms, concluding also that the lower the 

WiFi activity is, the worse is the overestimation due to the use of a longer sweep 

time. 

Table 3.6. Power levels measured for different WiFi data traffic situations using a SWT of 2.5 ms 

File 
Relevant  

Percentiles 
Mean 
(dBm) 

Range of values 
(dBm) 

File 1 

P90 -65.6  -69.3 / -59.7 

P97 -44.7 -47.7 / -43.3 

Max -39.9 -43.4 / -37.2 

File 2 

P80 -60.3 -69.2 / -51.7 

P85 -44.6 -46.4 / -43.3 

Max -37.2 -38.8 / -36.7 

File 3 

P30 -66.8 -69.1 / -53.5 

P40 -47.7 -50.4 / -42.2 

Max -38.1 -38.4 / -36.9 

 

Table 3.7. Power levels measured for different WiFi data traffic situations using a SWT of 10 ms. 

File 
Relevant  

Percentiles 
Mean 
(dBm) 

Range of values 
(dBm) 

File 1 

P70 -67.4 -69.2 / -61.6 

P90 -50.9 -52.7 / -49.9 

Max -40.2 -44.4 / -37.9 

File 2 

P60 -68.7 -69.5 / -65.9 

P80 -50.0 -52.6 / -48.9 

Max -37.5 -38.1 / -37.2 

File 3 

P30 -64.4 -66.1 / -63.4 

P40 -47.4 -49.3 / -45.5 

Max -38.7 -38.8 / -38.5 

 

The influence of the SWT parameter according to the amount of traffic was 

also assessed by applying the Analysis of Variance (ANOVA) method 

(Pasquino 2017), since ANOVA is useful for analyzing the relevance of one or 

more factors. It is a tool that can determine if there is a statistically significant 

difference among groups. In our study the different groups are the measurements 

taken by means of each SWT (2.5 ms and 10 ms) and the tests were performed 

for the different traffic situations, making it possible to determine the influence 

of the SWT parameter depending on the amount of traffic in a WLAN. 

Specifically, ANOVA was used in order to obtain the value of the Fisher statistics 
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(F-value), which is the ratio of the variances of the different groups of samples. 

When the F-value is below a threshold value, the factor under study does not 

have relevant effect on the output data. The threshold level is obtained from the 

Fisher probability distribution and this threshold depends on the chosen risk α, 

which is selected by the analyst and refers to the probability that the effect of 

linearity or intermodulation errors is considered relevant (Darco 2012). A 

parameter α, also known as significance level, of 0.05 (95% confident that your 

analysis is correct) is commonly used because this value is appropriate for 

providing reliable results when having one tailed tests. 

Table 3.8 summarizes the obtained results. This table provides the F-values 

and the probabilities (p-value) of obtaining F-values lower than the threshold 

level, thus the higher the p-value is, the lower is the influence of the SWT. These 

tests were performed from the power levels received when downloading each 

type of file using the selected SWTs (2.5 ms and 10 ms). The 6-minute 

measurements of each type were selected (for both SWT and the three types of 

files), and a significance level of 0.05 (α parameter) and 359 degrees of freedom 

(dof parameter) were considered.   

Table 3.8. Results obtained from the application of the ANOVA method to different WiFi data traffic 
situations. 

Traffic Situation 
WiFi 

Reception (%) 
F-value p-value 

Download of File 1 2-3 2.1863 0.0000 

Download of File 2 15-18 1.3904 0.0009 

Download of File 3 64-68 1.1643 0.0750 

 

 According to the results of Table 3.8, it is concluded again that the 

overestimations due to the use of longer sweep times will be more critical if the 

WiFi activity levels are very low, as in the case of File 1. Therefore, once 

demonstrated that the use of a short SWT increases the accuracy of the results, it 

can be stated that the optimal spectrum analyzer configuration for obtaining 

realistic values of the WiFi exposure only and exclusively in the frequency domain 

is the one indicated in the following table.  
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Table 3.9. Optimal spectrum analyzer configuration for measuring realistic WiFi exposure values. 

Parameter Value 

fc  Central frequency of the channel 

Span  20 MHz 

RBW  0.3 MHz 

VBW 1 MHz 

SWT  2.5 ms 

SWP 501 points 

Detector RMS 

Trace Mode clear/write 

 

As described in the IEEE Standard 802.11 (IEEE 2016), all the signals 

transmitted in the 2.4 GHz WiFi band use the same time and frequency masks, 

and thus, the settings specified in Table 3.9 can be applied directly to perform 

WiFi exposure measurements in any of the 20 MHz bandwidth channels defined 

in that band. By means of the frequency domain measurements, an exposure 

value per second can be obtained when performing just one measurement and 

this is the main advantage over the time domain recordings, which require several 

measurements. 

5.3. Configuration for measuring in the whole 2.4 GHz WiFi 

band 

Once the setup for recording accurate and actual WiFi signal levels has been 

determined for one channel measurements in the 2.4 GHz band, the conclusions 

drawn from that work can be used to define a configuration for assessing WiFi 

exposure in the whole band, since usually when evaluating exposure to these 

signals, the total level in the WiFi band is of interest. Although the signals 

transmitted by further access points experience a considerable attenuation in their 

power strength because of the larger distance and the obstacles they find in their 

way, such as walls or doors, these signals have to be considered as they also 

contribute to the exposure level. The spectrum of the WiFi signals transmitted in 

a WLAN working in the 2.4 GHz frequency band when the closest access point 

is working in idle mode and traffic mode is illustrated in Figure 3.13 and Figure 

3.14 respectively. As shown, the closest access point was working on channel one 

(fc=2.412 GHz) and several access points were in the surrounding area 

transmitting signals in different WiFi channels. 
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Figure 3.13. Spectrum of WiFi signals in the 2.4 GHz band when the closest access point is working in idle 
mode. 

 

Figure 3.14. Spectrum of WiFi signals in the 2.4 GHz band when the closest access point is working in 

traffic mode. 

As the frequency range is wider than in the case of only one channel 

measurements, the spectrum analyzer parameters need to be adjusted to take 

appropriate measurements from 2.4 GHz to 2.4835 GHz. One key parameter is 

the resolution bandwidth. Narrow RBWs improve the resolution of the signal, 

however the sweep speed and the trace update rate are reduced with narrower 

RBW. As shown before, the resolution bandwidth has to be higher than the Span 

divided by the sweep points, this is 168 kHz, which is the separation between the 

sweep points. In order to consider an adequate number of detected samples for 

calculating the RMS value that will be displayed, a RBW of 1 MHz was selected 

and consequently, the VBW was set to 3 MHz. The center frequency of the WiFi 

band, which is 2441.75 MHz, was selected as the center frequency and the Span 

was set to 83.5 MHz. Table Y shows the spectrum analyzer configuration 

proposed for recording WiFi signal levels in the whole 2.4 GHz frequency band. 
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Table 3.10. Configuration of the spectrum analyzer for performing measurements in the whole 2.4 GHz WiFi 
band. 

Parameter Value 

Centre Frequency 2441.75 MHz 

Span  83.5 MHz 

Detector RMS 

SWT 2.5 ms 

RBW 1 MHz 

VBW 3 MHz 

SWP 501 

Trace Mode clear/ write 

 

Some tests were performed to validate this setup in the mentioned WiFi 

band. An example of the CDFs obtained from different measurements of 6 

minute duration taken in the WiFi band when the closest access point was 

working in idle mode and in traffic mode is presented in Figure 3.15. In the case 

of traffic mode, three different files were downloaded and the download duration 

in this example was 6 s for File 1, 34 s for File 2 and 190 s for File 3. As shown, 

in this case the transition from the lowest levels to the maximum peaks is less 

rough than in the case of one channel measurements. This makes sense since in 

that previous case, the power level of the whole frequency range of the 

measurement increased when data traffic was transmitted. In this case, however, 

only the power strength of one channel (20 MHz of 83.5 MHz) increased when 

downloading a file.  

 

Figure 3.15. CDFs of the measured power levels in the whole 2.4 GHz WiFi band. 
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The results obtained from various measurements taken when there was no 

traffic and while downloading the different files are summarize in Figure 3.16. 

Specifically, 6 measurements of each type (idle mode, File 1, File 2 and File 3) 

were performed and the median value of the 10th, 50th, 90th percentiles and 

maximum power levels are depicted. The error bars refer to the minimum and 

maximum values of the corresponding percentile or max value. The minimum 

power level recorded in these measurements was equal to -64.82 dBm, around 

5 dB higher than when taking samples in one WiFi channel. In addition, the 

highest reached value was -35.64 dBm, recorded while downloading the largest 

file. 

 

Figure 3.16. Results of the power levels measured in the whole WiFi band. 

 

  



Chapter 3 

91 
 

6. PROCEDURE FOR ASSESSING WIFI EXPOSURE 

As stated in the previous sections of this chapter, it is essential to utilize the 

spectrum analyzer optimal settings for acquiring WiFi radiation samples, when 

the purpose of the measurements is to know the actual exposure levels caused by 

this type of signals in a particular environment. Thus, a large proportion of the 

tasks and results above described were focused on identifying such configuration. 

Nevertheless, another key question that should be taken into account is the 

measurement procedure in which that configuration will be adopted. Therefore, 

a set of guidelines to carry out WiFi exposure recordings is given below, based 

not only on the use of the spectrum analyzer setup indicated in Table 3.9, but also 

on the general recommendations of several standards defined in this regard 

(ICNIRP 1998; IEEE 2005; CENELEC 2008), measurement campaigns 

performed by other authors and on the experience gained during this thesis. 

First, the antenna that will be connected to the spectrum analyzer must be 

chosen. When the aim of the measurements is to determine the human exposure 

levels caused by WiFi radiation, an isotropic or a tri-axial antenna system should 

be used. If this is not possible, three exposure samples can be respectively taken 

in the x, y and z spatial directions, in order to register separately three mutually 

orthogonal components of the electric field received at a specific point 

(CENELEC 2008).  

The following step is to select the measurement locations within the area of 

study, taking into account the potential spatial variability of the WiFi signals, and 

ensuring that the receiving antenna is not in the near field region of any WiFi 

source. In case of performing indoor measurements, a good option is to take 

samples in the middle and the corners of the corresponding rooms, as well as on 

all those locations where people spend most of their time (Gallastegi 2016; 

Karipidis 2017). The height of the receiving antenna should be defined in 

accordance with the height and the position of the individuals who are usually 

present in such environment (e.g. head location when they are sitting or standing), 

bearing also in mind that a maximum height of 2 m above the floor is 

recommended by the Institute of Electrical and Electronics Engineers 

(IEEE 2005). Besides, the recordings should be done at enough distance from 

the walls in order to avoid their influence, e.g. a distance equal to 1.4 m, as 

reported in (Gallastegi 2016).  

Apart from the previous recommendations, the use of a software tool 

developed to control the equipment and save the results is suggested in order to 
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avoid the influence of the person who performs the measurements. This tool 

should be programmed to take samples of at least 6-minute duration 

(ICNIRP 1998), or even of 24-hour duration in the specific case of acquiring data 

to analyze the time variability of the exposure to WiFi signals.  An example of 

this type of variability is shown in Figure 3.17.  In this case, recordings were taken 

in one channel of the WiFi band, but the procedure followed is applicable to the 

whole WiFi band. The curves depicted in this figure account for the maximum 

values and the 50th and 90th percentiles of the WiFi signal levels registered inside 

a classroom of the University of the Basque Country, Spain, during a whole 

working day. To do this, an automated measurement system composed of a tri-

axial antenna and a spectrum analyzer configured according to the settings 

indicated in Table 3.9 were used. The central frequency selected to perform the 

measurements was the one corresponding to the operation channel of the access 

point located in that classroom (Channel 5 of the 2.4 GHz band). Also, the 

antenna was placed in the middle of the area under study at a height of 1.2 m 

above the floor, since people usually sit in that specific location. As expected, the 

radiation was significantly higher when the university, and therefore the 

classroom, were open. That is, from 7:00 to 21:00. 

 

Figure 3.17. Time variability of the WiFi emissions of one channel measured in a classroom of the 
University of the Basque Country. 
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7. CONCLUSIONS 

Although human exposure to WiFi signals is nowadays a matter of social 

concern, there is no standardized procedure for measuring this type of emissions. 

Moreover, many of the scientific studies performed in this regard do not take into 

account that the WiFi radiation is not received in a continuous way. In fact, the 

most typical instruments utilized to acquire exposure samples, such as broadband 

probes, exposimeters or spectrum analyzers are usually configured, or even 

developed, to measure the maximum field levels. This can lead to significant 

overestimations that could finally result in a characterization of the exposure not 

matching the real environment conditions. For this reason, some authors weight 

the samples by applying empirical factors that account for the quasi-stochastic 

nature of the WiFi signal. However, in those cases, measurements should be done 

in both, the time and frequency domain. 

Taking into account this, and after concluding that spectrum analyzers using 

a RMS detector and the clear/write trace mode are the most suitable instruments 

to measure the actual WiFi exposure levels, a methodology to identify the optimal 

measurement setup was defined in order to acquire accurate samples of the WiFi 

radiation only and exclusively in the frequency domain. In fact, the technique 

adopted to do this can be applied to know the most appropriate setup for 

registering any type of radiation, since it is based on utilizing a set of reference 

values from recordings of a well-known signal transmitted by any source radiating 

the type of emissions under study. 

The reference data specifically used in this work were obtained from time 

domain measurements of the idle mode signal transmitted by a WiFi access point 

working in the 2.4 GHz band. From their comparison with the power levels 

recorded for the same type of signal by configuring the spectrum analyzer in the 

frequency domain to operate at the central frequency of the 

transmission/reception channel, with a Span of 20 MHz, the RMS detector, the 

clear/write trace and a SWP value of 501, it was concluded that the optimal SWT, 

RBW and VBW were 2.5 ms, 0.3 MHz and 1 MHz respectively for assessing the 

exposure in one WiFi channel of the mentioned frequency band. Other 

configurations led to higher overestimations, and even in some cases, to 

underestimations that gave as a result unusable power values to determine if the 

WiFi radiations sources fulfill the protection thresholds or not. Then, the results 

and information extracted from these tests were useful to define a spectrum 

analyzer configuration for assessing WiFi exposure considering all the access 
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points in the vicinity, since the signals in other WiFi channels also contribute to 

the exposure and they have to be considered.  

The signal levels registered during a second set of frequency domain tests 

carried out for different traffic situations proved also that the above mentioned 

configurations can be used to measure accurately the exposure derived from low, 

medium and high WiFi activity levels. Even more, the time variability of the WiFi 

radiation that was received during a whole working day in a classroom of the 

University of the Basque Country, Spain, was determined from recordings 

performed by applying a measurement methodology in which the configuration 

proposed for taking one channel WiFi samples was adopted. Therefore, having 

concluded that the solution proposed in this thesis is optimal for obtaining 

realistic values of the WiFi exposure at different environments and under 

different circumstances,  further work will be aimed at employing not only the 

optimal settings here described, but also the methodology defined to determine 

those optimal settings, in order to identify the best measurement solution to 

acquire samples of the human exposure levels caused by WiFi signals transmitted 

in the 5 GHz band, or even by other types of signals, as for example the ones 

corresponding to 5G mobile communication systems. 
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CHAPTER 4: ASSESSMENT OF HUMAN 

EXPOSURE TO WIFI SIGNALS 

This chapter presents an evaluation of WiFi exposure levels measured in 

several locations of the university. WiFi signal samples in the 2.4 GHz frequency 

band were collected using the methodology defined in the previous chapter. A 

discussion of the data analysis and the proper statistics for assessing this type of 

exposure is provided, together with the description of the procedure followed to 

evaluate the spatial and temporal variability of WiFi signals. Also, a comparison 

of WiFi levels measured in other scientific papers is made, giving details on the 

instrumentation and techniques used in each case. 
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1. INTRODUCTION 

In the previous chapter, a methodology for measuring accurate WiFi signal 

samples was proposed for taking measurements in one channel or in the 2.4 GHz 

WiFi band. As shown in that chapter, the methodology was based on a frequency 

domain configuration of the spectrum analyzer, which was tested in controlled 

conditions. Also, an experiment in a real environment was conducted, taking 

samples in one of the channels of the WiFi band. The next step is to apply that 

method in a real environment considering all the channels of the WiFi band. The 

selected location for carrying out the measurement campaigns is the university, 

which is the typical scenario where WiFi exposure concerns have increased in the 

last years, since a WLAN is deployed close to the users and people spend many 

hours in this place. 

During the development of this thesis, a collaboration with some of the 

participants of the INMA (INfaccia y Medio AMbiente- Environment and 

Childhood) Project was established. This project is an ongoing prospective 

population-based birth cohort study concerned with the associations between 

pre- and post-natal environmental exposures and child growth development 

(Guxens 2012). One of the factors studied in this project is the children exposure 

to non-ionizing radiation. For that purpose, measurements of EMFs at 

frequencies up to 6 GHz were performed in schools, houses and playgrounds. 

The instruments used for measuring RF fields in these measurement campaigns 

were broadband probes and personal exposure meters. Our participation in these 

measurements was focused on contributing on the design of the study and 

providing technical advice. 

When developing the measurement procedure for taking samples of the WiFi 

signals, some methods used in the measurement campaigns of the INMA Project 

were applied. For example, within a room, measurements were taken in the 

middle and in the corners, leaving a distance of 1.4 m from the walls to avoid 

their influence. This decision was taken because data samples at these points are 

suitable for assessing exposure variability in a room, not only for WiFi levels 

assessment but also when studying other RF services. 

As shown in Chapter 2, broadband probes and personal exposure meters or 

exposimeters are widely utilized in exposure assessment. The first one is not 

suitable for measuring only one RF service, but the exposimeter can give the 

results for a specific frequency band. In the measurement campaigns carried out 

in this chapter, apart from the spectrum analyzer, an exposimeter is used.  
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2. WIFI EXPOSURE ASSESSMENT 

The access points of the university network were using the IEEE 802.11n 

standard, which allows transmissions in the 2.4 GHz or 5 GHz frequency bands. 

Power measurements were carried out in the 2.4 GHz band where the bandwidth 

of each WiFi channel is equal to 20 MHz. The maximum data rate supported by 

this standard for a 20 MHz channel is 288.9 Mbps (IEEE 2009). As described in 

Chapter 2, in Europe transmission is allowed in 13 different channels in this 

frequency band and the separation between them is 5 MHz, thus some channels 

overlap with each others. As specified in the standard (IEEE 2016), adjacent cells 

using different channels can operate simultaneously without interference if the 

distance between the center frequencies is at least 25 MHz. 

2.1. Measurement scenario and WiFi networks 

Measurement campaigns were performed in a faculty of the University of the 

Basque Country, Spain, which is located in an urban environment surrounded by 

homes, offices and restaurants. This area is characterized by a high level of 

activity, next to the university there is a bus station and a soccer stadium. As 

shown in Figure 4.1, the university includes several buildings, one called B next 

to the bus station, a narrower one (F), which passes over the highway and 

connects the parts B and D. Next to the latter there is another corridor called E 

that connects with the rest of the university: three parts named A, C and G, which 

form an inner courtyard. Measurements were carried out inside the university, in 

two labs, three classrooms and three corridors of different floors. 

 

Figure 4.1. Location of the university where the measurements were carried out. 
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Figure 4.2 shows a map of the 4th floor of the university and the two labs 

where measurements were performed can be distinguished. Also, the WiFi access 

points of the university network are represented as green circumferences and its 

theoretical coverage area is shown using a color scale in which the red indicates 

greater coverage and the blue tones mean lower WiFi signal. 

 

Figure 4.2. Map of the access points of the Eduroam network on the 4th floor. 

The number of access points per floor belonging to the university network is 

summarized in Table 4.1. On the first floor there are not access points on the F 

part because as it is a bridge to the other building, its height starts on the second 

floor. The same happens with the top floor, only parts B, D, E and F have four 

floors. 

Table 4.1. Access points of the university network per floor 

Floor 
Number of 

Access Points 
University 
Buildings 

1st 22 A, B, C, D, E, G 

2nd 24 A, B, C, D, E, F, G 

3rd 22 A, B, C, D, E, F, G 

4th 15 B, D, E, F 

 

Apart from the access points of the university network (Eduroam network), 

signals from other access points were found, some of them inside the university, 

but most of the WiFi emissions coming from other access points were sent from 
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sources located out of the university buildings. For example, in one of the 

laboratories of the building B, signals coming from up to 19 different networks 

in the 2.4 GHz band were found. The existing WiFi networks in the environment 

were detected by means of a laptop using the command ‘netsh’ at the command 

prompt. In that location, signals from 5 different access points belonging to the 

Eduroam network were identified. One of them was inside the laboratory, which 

was working on channel 5 and the signal quality was 78% at that moment from 

the receiving position, and the others were placed in the corridor and in other 

labs or classrooms, two were working on channel 1 (signal qualities were 28% 

and 30%) and the other two were working on channels 9 and 13 respectively, 

both of them with a signal quality of 20%. In this lab, there was another access 

point belonging to a different network (Network 2), working on channel 6. 

Regarding the WiFi signals coming from external access points, signals coming 

from 5 open networks from bus companies were identified and from 12 private 

networks. 

 Table 4.2 summarizes this information regarding the signals identified in this 

lab from access points located inside and outside the university. The type and 

number of networks, and the 802.11 standard are provided, as well as the number 

of access points and the channels in which they were working. Finally, the 

detected signal quality is given and as shown, it has to be highlighted that the 

power levels from sources located in the lab are significantly higher than the 

signals received from other sources. 

Table 4.2. WiFi Networks detected from one lab of the building B 

Network 
Number of 
networks 

Mode 
Nº Access 

Points 
Channel 

Signal 
Quality 

Eduroam 1 802.11n 5 1(2), 5, 9, 13* 20% - 78% 

Network 2 1 802.11n 1 6 65% 

Public/ Open 
3 802.11n 5 1(2),6,11,12* 18% - 23% 

2 802.11g 2 1,6 23% - 26% 

Private 12 802.11n 12 1(7),11,6,10,5,8* 15% - 51% 

* 1(2): two access points working on channel 1. 

   1(7): seven access points working on channel 1. 
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2.2. Types of measurements 

Measurements to assess WiFi exposure were performed with the aim of 

evaluating the temporal and spatial variability of the signals. For this purpose, two 

types of tests were carried out: 

 long-term measurements, in which samples were recorded 

continuously during 24 hours at each point to study the variability of 

the signal throughout the day 

 1-hour measurements at each point, allowing the measurements at 

multiple points in the same WiFi activity conditions in order to 

characterize the spatial variability.  

Long-term tests were performed in two labs on the 4th floor of building B (as 

shown before in Figure 4.2). Measurements of 24-hour duration were recorded 

at 5 different points in each lab: at the center and in the four corners of the room 

at 1.4 m (diagonally) from the corner, following the procedure used in (Gallastegi 

2016; Gallastegi 2017). The receiver instruments were placed at a height of 1.2 m 

above the floor; since in these labs students and researchers are usually sitting so 

this corresponds to the average height of their head. Moreover, WiFi signals were 

evaluated two different days at each point in order to investigate the correlation 

between different days, so long-term recordings were done during a total of 10 

days (240 h) in each lab.  

1-hour measurements were carried out at six positions of each corridor and 

classroom. In the case of the classrooms, the receiver equipment was placed in 

the four corners, at a distance of 1.4 m from them to avoid walls influence and at 

two locations close to the center of the room. The height of the receiving 

antennas was 1.2 m above the floor, as students are usually sitting in these places. 

In the corridors, evaluation points were in the middle of the two walls of the 

corridor at a height of 1.7 m, because people are usually walking or standing in 

these locations. A distance of 3 m between two consecutive measurement points 

was chosen.  

Table 4.3 summarizes the different places where samples were recorded, 

indicating the building and the floor of each measurement location, the 

measurement duration (Meas. Time) and the number of positions selected at each 

location (Nº of Pos.). Finally, the total recording time at each place is given. As 

in Lab 1 and Lab 2 samples were taken two different days at each point, a total 

of 10 measurements were performed in each lab. In the corridors and classrooms, 
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one measurement per position was taken. 1-hour measurements were performed 

during the weekdays and the three classrooms were empty during the 

measurements, but beacon signals were received from the closest access points 

as well as data traffic signals due to people’s devices on the corridor or in other 

classrooms. 24-hour measurements were taken during the 7 days of the week and 

part of the time people were in the labs while samples were recorded. The 

university is open on weekdays from 7:30 to 21:30 and on Saturday morning. 

Table 4.3. Description of the measurements 

Place 
Building 
/Floor 

Meas. 
Time 

Nº of  
Pos. 

Total 
Time 

Lab 1 B / 4 24 h. 5 240 h. 

Lab 2 B / 4 24 h. 5 240 h. 

Corridor 1 B / 3 1 h. 6 6 h. 

Corridor 2 A / 2 1 h. 6 6 h. 

Corridor 3 B / 2 1 h. 6 6 h. 

Classroom 1 C / 3 1 h. 6 6 h. 

Classroom 2 B / 3 1 h. 6 6 h. 

Classroom 3 G / 1 1 h. 6 6 h. 

 

2.3. Equipment 

Two different types of instruments were used to measure human exposure 

to WiFi signals. The differences in the obtained results due to the measurement 

instrumentation were evaluated. As professional equipment, the same spectrum 

analyzer than the one used in Chapter 3 was utilized, the EMI ESPI3 of Rohde 

& Schwarz that works in the frequency range from 9 kHz to 3 GHz (R&SEspi), 

together with a tri-axial antenna system composed of three Yagi antennas suitable 

for the 2.4 GHz WiFi band. The antennas were placed in three mutually 

orthogonal directions and were connected using two combiners and an 

attenuator, so the power received by the three antennas experienced the same 

losses (see Figure 4.3). The total losses due to the combiners and to the cables 

were then added. 
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Figure 4.3. Scheme of the combiners and attenuator used for connecting the antennas. 

Some concerns may arise regarding the distortion of the radiation pattern of 

the antennas when setting up the tri-axial system. So, in order to validate it, the 

electric field strength measured by this system was compared with the electric 

field strength assessed using a second method. The latter consisted in measuring 

three times with one of the Yagi antennas placed in the three orthogonal 

directions each time (𝐸𝑥, 𝐸𝑦, 𝐸𝑧). Then, the field strength values were combined 

using: 

𝐸𝑇𝑜𝑡𝑎𝑙 = √|𝐸𝑥|2 + |𝐸𝑦|2 + |𝐸𝑧|2 (4.1) 

This comparison was made at night to ensure the same situation during the 

four measurements (the one with the tri-axial system and the three measurements 

required when using the second method). So, a total of four nights was required 

to compare these systems. One sample per second was recorded and every hour 

the median value of the power measured was calculated. Figure 4.4 shows the 

difference in the median power strength obtained by means of the both methods. 

The median of the power level measured by means of the tri-axial antenna system 

was always higher. As seen, the greatest difference was 1.14 dB obtained at 

6:00 am. These differences are not only due to the antenna measurement system, 

but also to different activity in the WLAN, since measurements were performed 

in different days. 
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Figure 4.4. Difference in the power levels measured using the two different antenna systems from 1:00 to 9:00 in 

the morning. 

A computer wired connected to the spectrum analyzer was used to configure 

the analyzer and to save the recorded data. The spectrum analyzer settings were 

the ones proposed in Table 3.10 of Chapter 3 to take accurate measurements in 

the whole WiFi band. As explained in that chapter, the center frequency and span 

were set to 2441.75 MHz and 83.5 MHz, respectively, in order to detect the 

signals of the different channels in the 2.4 GHz WiFi band. The RMS detector 

and the clear/write trace were selected to avoid over and underestimations of the 

WiFi emissions. One sample was recorded each second in a text file for further 

processing. 

The other measurement equipment used in the measurement campaigns was 

an exposimeter or personal exposure meter, the EME Spy 200 (EME SPY). It 

was also configured to measure in the 2.4 GHz WiFi band (2400-2483.5 MHz) 

and a value of the electric field strength was recorded every 4 seconds. This device 

has a tri-axial electric field probe valid for the frequency range from 80 MHz to 

6 GHz and the detection limit in the frequency range of interest is 0.005 V/m. 

For values lower than this limit, the EME Spy uses the naïve approach, which 

consists of replacing the measured level by the detection limit (Röösli 2008). 

All the measurements were performed using the spectrum analyzer together 

with the Yagi antenna system and in the case of the 1-hour measurements, also 

the personal exposure meter was employed. For these last measurements, both 

instruments were recording samples at the same time, being the minimum 

distance between them equal to 40 cm in order to ensure that one instrument was 

not in the near field region of the other receiver. As the receiving Yagi antenna is 
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physically larger than half a wavelength, the far field region starts at the distance 

𝑑𝑓, which is dependent of the largest dimension of the antenna D and the 

wavelength 𝜆 (Rappaport, 2010): 

𝑑𝑓 =
2𝐷2

𝜆
 (4.2) 

This distance was calculated using the lowest 𝜆 in the 2.4 GHz WiFi band, 

which is 12.08 cm, and the largest antenna dimension, which is equal to 15 cm 

corresponding to the Yagi antenna. 

2.4. Data analysis and statistical discussion 

The recorded data were saved in a text file for further processing. As above 

mentioned one sample per second was obtained when measuring with the 

spectrum analyzer and a sample every 4 seconds when using the personal 

exposure meter. Regarding the 24-hour measurements, in order to determine 

exposure variations at different moments of the day, three different periods of 

time were distinguished:  

 Morning, from 6:00 to 14:00. 

 Afternoon and evening, from 14:00 to 22:00. 

 Night, from 22:00 to 6:00.  

In addition, the correlation with the days of the week was statistically 

investigated. 

Every hour several percentiles of the electric field strength were calculated as 

well as the minimum, maximum and mean values. Data statistics of each position 

inside a location (lab, classroom or corridor) were evaluated separately. Then, 

statistic results were calculated taking into account all the data acquired at one 

lab, classroom or corridor, without distinguishing the receiving position, so the 

mean WiFi exposure levels at each location were assessed, as well as the standard 

deviation. For example, the average 50th percentile during the morning period in 

a lab was obtained by calculating the average value of all the 50th percentiles 

acquired during the morning. These statistics were calculated in linear units, but 

for illustrating the results in graphs logarithmic units were chosen. 

The 90th percentile was considered an appropriate statistic for representing 

the WiFi exposure variations because of the nature of these signals, which are 

transmitted in the form of bursts. The median value or 50th percentile has fewer 

variations along the day and between the different places. Percentiles higher than 
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the 99th, which can have higher variations, are not representative of 

electromagnetic field exposure since they indicate singular occurrences of the 

signal. However, values such as the median or the maximum reached levels are 

significant statistics to evaluate exposure levels and to compare with regulations 

and standards. As explained in (Joseph 2009), median exposure values are more 

interesting for epidemiological studies, while maximum values are often more 

important for authorities and legislation.  
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3. RESULTS AND DISCUSSION 

In the following subsections the WiFi exposure values obtained in the 

different measurements taken with the spectrum analyzer and with the 

exposimeter are presented and analyzed. These results are separated into two 

groups, those acquired in the long-term measurements and the ones obtained 

from the 1-hour measurements. 

3.1. Long-term measurements 

The results obtained using the spectrum analyzer and the tri-axial antenna 

system in the two laboratories are presented below. Figure 4.5 and Figure 4.6 

show the mean values of the 90th and 99th percentiles (P90, P99) of the electric 

field measured with the spectrum analyzer in Lab 1 and Lab 2, respectively. The 

results obtained in the four corners (Pos 1, Pos 2, Pos 3, Pos 4) and in the middle 

of each room (Pos 5) are represented for the different periods of the day. As 

shown, the recordings were repeated two days at each position.  

 

 

Figure 4.5. 90th and 99th percentiles of the electric field levels measured at the different positions of Lab 1. 
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Figure 4.6. 90th and 99th percentiles of the electric field levels measured at the different positions of Lab 2. 

 Significant differences were observed due to the different positions 

inside the room. In Lab 1, the maximum difference between the P99 of the 

different positions was obtained during the morning periods and it was equal to 

7.7 dB. For the P90, differences of up to 2.7 dB were found when placing the 

receiver at different points. In Lab 2, the P99 of the afternoon tests differed by 

13.7 dB between positions 2 and 5, while the maximum variations of the P90 due 

to different positions were found during the morning and reached a value of 4.5 

dB. The variability at night was lower than during the day. When considering the 

P99, the levels of the night tests were higher than the tests carried out during the 

day in some of the measurements, this is because these percentiles indicate 

singular occurrences of the signal and they are not representative of WiFi 

exposure. 

Differences between the weekdays and the weekends were also found. An 

example of this is illustrated in Figure 4.7, where the median (P50), P90, P99 and 

the maximum levels measured in the position 2 of Lab 1 are represented. The 

first 24-hour measurement at this point was taken on Sunday and the variability 

of the WiFi exposure was lower than in the measurement performed the 

following day. On Monday, the signal increased during the working hours at 

university. 
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Figure 4.7. Temporal evolution of the electric field strength measured during two consecutive days in the 

position 2 of Lab 1. 

The average WiFi exposure levels for each lab are summarized in Table 4.4. 

The mean electric field levels obtained in each lab during the different periods of 

the day are presented together with the standard deviation. The mean values of 

the different percentiles were calculated considering all the measurements taken 

during the same period of the day in the different positions of the lab. Finally, the 

minimum and maximum sample levels measured in the morning, afternoon and 

night are given. The mean value of the WiFi exposure was higher in Lab 2, being 

this value 5.25 mV/m in the mornings and afternoons. In both labs the electric 

field strength measured during the day was higher than the levels obtained at 

night. Regarding the average P90, in Lab 1 it took values between 5.02 mV/m (at 

night) and 5.77 mV/m (in the afternoon), while in Lab 2 it ranged between 

5.05 mV/m (at night) and 5.51 mV/m (in the morning), the maximum standard 

deviation associated to these sets of calculations was 0.94. For the average P99, 

the field strength levels increased considerably, reaching a value of 29.21 mV/m 

in Lab 2. The maximum level of WiFi exposure in Lab 2 was equal to 

407.81 mV/m, while in Lab 1 the maximum measured value was 172.26 mV/m, 

both of them recorded in the afternoon. 

 

 



Chapter 4 

112 
 

Table 4.4. Average electric field strength values (mV/m) measured with the spectrum analyzer in each lab 

 Lab 1 Lab 2 

 Morning Afternoon Night Morning Afternoon Night 

Min 4.58 4.49 4.57 4.59 4.61 4.62 

Mean 
(SD) 

5.17 
(0.08) 

5.15 
(0.09) 

5.03 
(0.01) 

5.25 
(0.17) 

5.25 
(0.17) 

5.18 
(0.10) 

P50Av
a 

(SD) 
4.89 

(0.05) 
4.79 

(0.05) 
4.82 

(0.05) 
4.87 

(0.05) 
4.84 

(0.04) 
4.87 

(0.05) 

P90Av
a 

(SD) 
5.41 

(0.11) 
5.77 

(0.47) 
5.02 

(0.12) 
5.51 

(0.94) 
5.29 

(0.22) 
5.05 

(0.08) 

P99Av
a 

(SD) 
15.05 
(5.26) 

16.92 
(4.41) 

14.59 
(5.24) 

29.14 
(16.72) 

29.21 
(17.09) 

29.14 
(15.99) 

MaxAv
a 

(SD) 
104.78 
(36.10) 

117.06 
(40.20) 

91.76 
(40.05) 

185.95 
(129.42) 

178.18 
(124.94) 

177.90 
(119.32) 

Max 154.82 172.26 149.88 388.77 407.81 380.16 

SD: standard deviation.  
a Mean values of the P50, P90, P99 and maximum levels of the electric field (mV/m) measured in 

the different positions of the lab. 

Finally, Pearson correlation coefficient was performed to determine the 

correlation between WiFi exposure variability and the days of the week. The mean 

electric field levels obtained for the different hours of the day were used to 

investigate the linear relationship between the exposure variability in different 

days. Table 4.5 and Table 4.6 show the Pearson correlation coefficient in Lab 1 

and Lab 2, respectively. The measurement position and the weekday is given in 

the tables and the first finding is that WiFi exposure variability in Lab 1 showed 

a more uniform behavior than in Lab 2. This is due to the activity in each lab, 

since the first lab is use for research purposes and people work there during the 

same hours on weekdays. However, the second lab is a teaching lab where 

students go to do laboratory practices and each day the lessons are at different 

hours. For this reason, in Lab 2 exposure of different days was less correlated, 

being the Pearson coefficient a negative value in some cases, since at the same 

hours WiFi levels increased one day and decreased on other day. The best 

correlation coefficient in this second lab was equal to 0.829, while the largest 

correlation coefficient in Lab 1 was 0.927, reached between Position 2 on Monday 

and Position 1 on Thursday. The smallest correlation coefficient in Lab 1 was 

0.008 obtained between Position 2 on Sunday and Position 5 on Monday, which 

makes sense because on Sunday the university is close, so WiFi signal variability 

is expected to be different than on weekdays.  
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Table 4.5. Pearson correlation coefficient for the mean electric field at the different hours of a day in lab 1 

 
Pos 1 
Thu 

Pos 1 
Tue 

Pos 2 
Sun 

Pos 2 
Mon 

Pos 3 
Sun 

Pos 3 
Sat 

Pos 4 
Tue 

Pos 4 Fri 
Pos 5 
Mon 

Pos 5 
Wed 

Pos 1 
Thu 

1 0.855 0.324 0.927 0.656 0.717 0.849 0.768 0.571 0.895 

Pos 1 
Tue 

0.855 1 0.454 0.801 0.669 0.577 0.880 0.850 0.540 0.874 

Pos 2 
Sun 

0.324 0.454 1 0.286 0.546 0.273 0.466 0.471 0.008 0.301 

Pos 2 
Mon 

0.927 0.801 0.286 1 0.643 0.646 0.858 0.769 0.698 0.910 

Pos 3 
Sun 

0.656 0.669 0.546 0.643 1 0.774 0.608 0.771 0.529 0.635 

Pos 3 
Sat 

0.717 0.577 0.273 0.646 0.774 1 0.509 0.508 0.454 0.553 

Pos 4 
Tue 

0.849 0.880 0.466 0.858 0.608 0.509 1 0.811 0.524 0.847 

Pos 4 
Fri 

0.768 0.850 0.471 0.769 0.771 0.508 0.811 1 0.705 0.856 

Pos 5 
Mon 

0.571 0.540 0.008 0.698 0.529 0.454 0.524 0.705 1 0.668 

Pos 5 
Wed 

0.895 0.874 0.301 0.910 0.635 0.553 0.847 0.856 0.668 1 

 

Figure 4.8 shows the mean electric field along a day measured the days with 

the highest Pearson correlation coefficient, on Thursday in Position 1 and on 

Monday in Position 2. 

 

Figure 4.8. Mean electric field levels measured in Position 1on Thursday and in Position 2 on Monday, both in 
Lab 1. 
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Table 4.6. Pearson correlation coefficient for the mean electric field at the different hours of a day in lab 2 

 
Pos 1 
Mon 

Pos 1 
Tue 

Pos 2 
Thu 

Pos 2 
Fri 

Pos 3 
Sun 

Pos 3 
Sat 

Pos 4 
Tue 

Pos 4 
Wed 

Pos 5 Sat 
Pos 5 

Fri 

Pos 1 
Mon 

1 0.590 0.012 0.009* 0.408 0.470* 0.573 0.701 0.436 0.829 

Pos 1 
Tue 

0.590 1 0.057 0.281* 0.213 0.262* 0.580 0.315 0.496 0.672 

Pos 2 
Thu 

0.012 0.057 1 0.185 0.278 0.348 0.030* 0.231* 0.040 0.274 

Pos 2 
Fri 

0.009* 0.281* 0.185 1 0.269 0.055 0.087* 0.236 0.367* 0.006* 

Pos 3 
Sun 

0.408 0.213 0.278 0.269 1 0.182* 0.454 0.174 0.212* 0.474 

Pos 3 
Sat 

0.470* 0.262* 0.348 0.055 0.182* 1 0.396* 0.475* 0.011* 0.314* 

Pos 4 
Tue 

0.573 0.580 0.030* 0.087* 0.454 0.396* 1 0.137 0.119 0.701 

Pos 4 
Wed 

0.701 0.315 0.231* 0.236 0.174 0.475* 0.137 1 0.268 0.448 

Pos 5 
Sat 

0.436 0.496 0.040 0.367* 0.212* 0.011* 0.119 0.268 1 0.390 

Pos 5 
Fri 

0.829 0.672 0.274 0.006* 0.474 0.314* 0.701 0.448 0.390 1 

* Negative values 

 

3.2. 1-hour measurements 

Inside a location (classroom or corridor), considerable variations in the 

measured field levels were detected due to the different placements of the 

measuring equipment. Classroom 1 was the classroom with the highest spatial 

variability of the measured signal, being differences in the maximum measured 

field with the spectrum analyzer up to 190.82 mV/m when placing the receiver 

at different positions. The P50, P90, P99 and maximum of the electric field values 

obtained in the different positions of this location are illustrated in Figure 4.9 in 

logarithmic units so as to represent better the differences between places and 

percentiles due to the high variability in the linear units. Moreover, more details 

of these results are given in Table 4.7 in linear units, where the different 

percentiles, mean, minimum and maximum field levels at each position are 

provided. As shown, the maximum measured samples in the different positions 

took values between 77.85 mV/m and 268.68 mV/m. 
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Figure 4.9. Electric field levels E (dBmV/m) recorded with the spectrum analyzer in Classroom 1. 

Table 4.7. Electric field levels (mV/m) recorded with the spectrum analyzer in Classroom 1. 

 P01 P10 P50 P90 P99 Max Min Mean 

Pos 1 4.90 4.96 5.04 5.54 12.66 268.68 4.84 5.34 

Pos 2 4.88 4.92 4.97 5.44 19.90 84.87 4.82 5.31 

Pos 3 4.84 4.88 4.94 5.68 13.32 120.83 4.81 5.27 

Pos 4 4.96 5.00 5.06 5.73 11.10 98.36 4.91 5.31 

Pos 5 4.94 4.98 5.03 5.28 33.81 225.44 4.87 5.53 

Pos 6 4.94 4.99 5.04 5.37 18.02 77.85 4.91 5.38 

 

Figure 4.10 shows the P50, P90, P99 and the maximum measured levels in 

logarithmic units in the different positions of Classroom 2, and Table 4.8 shows 

also the P01, P10, minimum and mean levels of these recordings in linear units. 

The mean levels measured in the different positions of Classroom 2 were lower 

than in the other classrooms, obtaining mean electric field levels lower than 

5 mV/m in three positions. The maximum levels measured in this classroom 

ranged between 11.49 mV/m and 72.78 mV/m for the different positions. 
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Figure 4.10.Electric field levels E (dBmV/m) recorded with the spectrum analyzer in Classroom 2. 

Table 4.8. Electric field levels (mV/m) recorded with the spectrum analyzer in Classroom 2. 

 P01 P10 P50 P90 P99 Max Min Mean 

Pos 1 4.77 4.81 4.88 5.09 5.95 42.06 4.73 4.94 

Pos 2 4.75 4.79 4.85 4.94 5.35 42.54 4.72 4.87 

Pos 3 4.76 4.80 4.86 5.17 10.79 72.78 4.72 5.09 

Pos 4 4.77 4.81 4.88 5.22 10.88 34.39 4.72 5.08 

Pos 5 4.77 4.81 4.87 4.97 5.64 11.49 4.73 4.91 

Pos 6 4.75 4.79 4.85 5.47 7.97 17.21 4.71 5.00 

 

The results obtained from the measurements taken in the different positions 

of Classroom 3 are given in logarithmic units in Figure 4.11 and in linear units in 

Table 4.9. As shown, the maximum measured sample was acquired in position 4 

and it was equal to 183.98 mV/m. In this classroom, the mean values of the 

different positions ranged from 5.07 mV/m to 5.42 mV/m and the P50 from 

4.87 mV/m to 5.09 mV/m. 
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Figure 4.11.Electric field levels E (dBmV/m) recorded with the spectrum analyzer in Classroom 3. 

 

Table 4.9. Electric field levels (mV/m) recorded with the spectrum analyzer in Classroom 3. 

 P01 P10 P50 P90 P99 Max Min Mean 

Pos 1 4.88 4.94 5.09 6.88 9.12 53.32 4.83 5.42 

Pos 2 4.78 4.83 4.92 5.41 8.32 87.40 4.71 5.10 

Pos 3 4.75 4.80 4.87 5.55 9.59 41.16 4.71 5.07 

Pos 4 4.77 4.81 4.88 6.34 29.28 183.98 4.71 5.30 

Pos 5 4.81 4.86 5.00 5.44 6.38 42.99 4.74 5.10 

Pos 6 4.82 4.88 5.00 5.49 8.11 40.72 4.76 5.15 

 

Regarding the corridors, the highest variability due to the different positions 

was found in Corridor 1, where the maximum signal level varied up to 

99.29 mV/m, the P99 up to 6.69 mV/m and the P90 up to 2.46 mV/m when 

using the spectrum analyzer. Different statistics of the WiFi signal recorded in 

the different positions of this corridor can be seen in Figure 4.12 (in logarithmic 

units), and more detailed results in linear units are given in Table 4.10. As shown 

the maximum sample level was recorded in position 2 and it was equal to 

113.15 mV/m. Position 5 was the placement where the minimum mean electric 

field level was obtained in this corridor. 
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Figure 4.12. Electric field levels E(dBmV/m) recorded with the spectrum analyzer in Corridor 1. 

Table 4.10. Electric field levels (mV/m) recorded with the spectrum analyzer in Corridor 1. 

 

 P01 P10 P50 P90 P99 Max Min Mean 

Pos 1 4.85 4.92 5.10 6.31 9.78 34.82 4.80 5.36 

Pos 2 4.86 4.91 5.07 7.46 14.12 113.15 4.82 5.67 

Pos 3 4.80 4.85 4.99 6.50 12.97 82.05 4.74 5.36 

Pos 4 4.79 4.84 4.95 6.12 10.06 78.28 4.74 5.27 

Pos 5 4.76 4.80 4.86 5.14 7.42 13.86 4.71 4.98 

Pos 6 4.76 4.80 4.87 5.00 11.50 19.26 4.71 5.00 

 

The electric field levels corresponding to Corridor 2 are presented in Figure 

4.13 and in Table 4.11. The exposure levels in this corridor varied less than in the 

previous one, the electric field took maximum levels between 17.51 mV/m and 

46.98 mV/m, this highest level was acquired in Position 6. Focusing on the other 

5 positions, the maximum measured sample was very similar between different 

receiving points, taking values between 17.51 mV/m and 21.94 mV/m. In this 

corridor the mean exposure level ranged between 4.92 mV/m and 5.18 mV/m. 
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Figure 4.13. Electric field levels E (dBmV/m) recorded with the spectrum analyzer in Corridor 2. 

Table 4.11. Electric field levels (mV/m) recorded with the spectrum analyzer in Corridor 2. 

 P01 P10 P50 P90 P99 Max Min Mean 

Pos 1 4.79 4.83 4.88 5.06 7.80 17.51 4.74 4.99 

Pos 2 4.75 4.79 4.84 5.06 9.17 18.76 4.68 4.96 

Pos 3 4.77 4.81 4.87 6.24 9.08 21.27 4.72 5.18 

Pos 4 4.79 4.83 4.90 5.17 5.47 21.94 4.74 4.95 

Pos 5 4.76 4.80 4.85 4.99 6.45 18.48 4.70 4.92 

Pos 6 4.80 4.84 4.89 4.95 7.96 46.98 4.73 4.96 

 

Finally, the results of the measurements performed in Corridor 3 are 

illustrated in Figure 4.14. Electric field levels E(dBmV/m) recorded with the 

spectrum analyzer in Corridor 3.Figure 4.14 in logarithmic units, showing the 

P50, P90, P99 and maximum electric field level in the different positions of this 

place. Moreover, Table 4.12 provides detailed results in linear units. As shown, 

the maximum electric field levels ranged between 24.47 mV/m and 69.29 mV/m, 

reaching this highest level in position 6. 
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Figure 4.14. Electric field levels E(dBmV/m) recorded with the spectrum analyzer in Corridor 3. 

 

Table 4.12. Electric field levels (mV/m) recorded with the spectrum analyzer in Corridor 3. 

 P01 P10 P50 P90 P99 Max Min Mean 

Pos 1 4.91 4.96 5.05 5.47 13.21 39.51 4.85 5.38 

Pos 2 4.90 4.95 5.03 5.62 7.61 43.74 4.85 5.18 

Pos 3 4.87 4.92 4.99 5.39 10.31 38.98 4.82 5.20 

Pos 4 4.84 4.89 5.00 5.61 8.07 24.47 4.80 5.16 

Pos 5 4.81 4.85 4.90 5.09 13.06 30.26 4.75 5.13 

Pos 6 4.85 4.89 4.95 5.36 14.11 69.29 4.81 5.21 

 

Finally, the exposure assessment in each corridor (Cor) and classroom (Cla) 

when using the spectrum analyzer and the personal exposure meter are 

summarized in Table 4.13 and Table 4.14, respectively. Different percentiles and 

the mean electric field value were calculated taking into account the six positions 

inside a classroom or corridor. The maximum and the minimum WiFi sample 

level acquired in each location are also provided in the tables. Differences in the 

obtained results can be seen due to the different instrumentation used. Focusing 

on the data recorded by means of the spectrum analyzer, the minimum field 

strength value obtained in the six locations was below the detection limit of the 

exposure meter (5 mV/m). An overestimation could be produced by the EME 

Spy when there was low WiFi signal, since it cannot detect field levels lower than 
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that limit. Furthermore, the personal exposure meter was recording a sample each 

4 seconds while the spectrum analyzer recorded a sample per second, so more 

information about the signal could be obtained in this second case. This is 

important due to the signal transmission characteristics. WiFi signal is transmitted 

in the form of pulses of short duration, so a high signal variability in a short period 

of time is produced. Furthermore, both instruments were not exactly in the same 

position, they were separated a distance of 40 cm to fulfil the far field region 

requirement. 

Table 4.13. Spectrum analyzer results (mV/m) 

 Cor 1 Cor 2 Cor 3 Cla 1 Cla 2 Cla 3 

Min 4.71 4.68 4.75 4.81 4.71 4.71 

Mean (SD) 5.27 (0.23) 4.99 (0.09) 5.21 (0.08) 5.36 (0.09) 4.98 (0.08) 5.19 (0.13) 

P50Av
a (SD) 4.97 (0.09) 4.87 (0.02) 4.99 (0.05) 5.02 (0.04) 4.86 (0.01) 4.96 (0.08) 

P90Av
a (SD) 6.09 (0.84) 5.25 (0.45) 5.42 (0.18) 5.51 (0.16) 5.14 (0.18) 5.85 (0.56) 

P99Av
a (SD) 10.98 (2.20) 7.66 (1.33) 11.06 (2.56) 18.14 (7.65) 7.76 (2.33) 11.80 (7.88) 

MaxAv
a (SD) 56.90 (36.54) 24.15 (10.32) 41.04 (14.16) 146.01 (73.76) 36.75 (19.94) 74.93 (51.39) 

Max 113.15 46.98 69.29 268.68 72.78 183.98 

SD: standard deviation.  
a Mean values of the P50, P90, P99 and maximum levels of the electric field (mV/m) measured in 

the different positions of each place.  

 

 

Table 4.14. Exposimeter results (mV/m) 

 Cor 1 Cor 2 Cor 3 Cla 1 Cla 2 Cla 3 

Min 5.00 17.00 5.00 13.00 8.00 5.00 

Mean (SD) 15.62 (7.44) 50.16 (12.96) 16.24 (10.35) 70.90 (28.57) 19.35 (3.80) 12.39 (1.62) 

P50Av
a (SD) 15.33 (7.70) 47.83 (15.43) 15.17 (11.13) 67.33 (28.98) 18.17 (3.80) 11.67 (1.70) 

P90Av
a (SD) 22.32 (9.67) 64.83 (11.45) 24.52 (13.07) 84.87 (31.83) 25.33 (3.77) 19.00 (3.45) 

P99Av
a (SD) 37.32 (13.96) 72.84 (9.97) 47.01 (22.95) 115.03 (50.64) 38.00 (2.58) 37.00 (9.97) 

MaxAv
a (SD) 89.33 (64.79) 83.00 (3.83) 84.83 (44.61) 186.54 (31.66) 46.17 (4.52) 53.83 (26.70) 

Max 223.00 87.00 165.00 242.00 54.00 113.00 

SD: standard deviation.  
a Mean values of the P50, P90, P99 and maximum levels of the electric field (mV/m) measured in 

the different positions of each place.  

The maximum measured level by means of the spectrum analyzer was equal 

to 268.68 mV/m, while when using the EME Spy it was 242 mV/m, both of 

them obtained in Classroom 1. Despite the differences in the results, both 

instruments are useful and suitable for assessing WiFi exposure variability at 
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2.4 GHz, as well as for comparing with exposure limits. Although the spectrum 

analyzer can provide more accurate results, personal exposure meters are useful 

to obtain information about the exposure distribution. 
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4. COMPARISON WITH WIFI LEVELS OBTAINED IN 

DIFFERENT MEASUREMENT CAMPAIGNS 

Several measurement campaigns carried out by different authors were 

selected in order to compare the WiFi exposure levels obtained in different 

investigations. The instrumentation and the measurement scenarios in the 

different studies are described below. All the values were converted to electric 

field units (V/m) to allow the comparison with the exposure levels obtained in 

this work, as shown in Table 4.15. 

Some studies in which data were recorded by means of personal exposure 

meters were selected. The EME Spy 120 was used in (Röösli 2008) and in 

(Joseph 2010a). In the first work, two different methods were used to calculate 

the statistics of the electric field when the measured level was below the detection 

limit of the instrument: 

  the naïve approach, which was the one used in our work, and as 

explained before consists of replacing the measured level by the 

detection limit 

 and the robust regression on order statistics (ROS) method, which 

consists of calculating statistics by fitting an assumed distribution to the 

observed data when they are below the detection limit. In this way, data 

values below the detection limit could be obtained. 

Participants carried out an exposimeter during one week and the weekly 

statistics from 109 participants are given in Table 4.15. In (Joseph 2010a) the 

electric field levels in various locations of five countries were assessed and the 

average field levels measured in offices are given in Table 4.15, since this is a 

similar environment to the one considered in our work. 

In (Sagar 2018) two different exposure meters were employed, the ExpoM-

RF and the EME Spy 201, with a detection limit of 0.005 V/m at 2.4 GHz in 

order to measure electric fields in 5 different countries. The selected values for 

the comparison, the ones presented in Table 4.15, were the average exposure 

levels obtained in university areas.  

In (Karipidis 2017) measurements in several schools were performed using a 

selective radiation meter and a tri-axial probe at 1.5 m above the ground. They 

performed some stationary measurements and also took samples while walking 

through the classrooms. For this comparison, the stationary measurements taken 

under the access point (average field value 0.114 V/m) and at the furthest student 
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desk to the access point (average field level 0.060 V/m) were selected. The 

average values of the field strengths were recorded, but no information about the 

detector employed is given.  

A spectrum analyzer and a tri-axial probe were used in (Joseph 2010c) to 

receive signal levels in 27 outdoor locations and 3 indoor places and the WiFi 

exposure ranged between 0.006 and 0.1 V/m. Results were obtained measuring 

the maximum field strength and weighting it by means of a weighting factor 

(Verloock 2010). 

In (Tomitsch 2015), measurement campaigns were carried out in several 

bedrooms during nights, repeating the measurements during three different years. 

The instrumentation employed consisted of a spectrum analyzer configured for 

obtaining maximum power levels (max-hold) and two biconical antennas. The 

median values of the electric fields were 0.00 V/m in 2006, 0.006 V/m in 2009 

and 0.013 V/m in 2012, while the average values were 0.077 V/m in 2006, 0.118 

V/m in 2009 and 0.105 V/m in 2012. Significant differences were observed 

between the median and mean values, explained because of the high standard 

deviation in the mean results. 

Table 4.15. Electric field levels (V/m) obtained in different measurement campaigns 

Ref Mean Median Range Description 

(Sagar 2018) 0.01-0.03 - - Eme Spy 201 
ExpoM-RF 

(Joseph 2010a) 0.019-0.082 - - Eme Spy 120/ 121 

(Joseph 2010c) 0.020 - 0.006-0.1 Weighting factor 

(Röösli 2008) ROS 0.05 0.02 NA-0.23 Eme Spy 120 

(Röösli 2008) Naïve 0.06 0.05 0.05-0.22 Eme spy 120 

(Karipidis 2017) 0.060-0.114 - - Radiation Meter 

(Tomitsch 2015) 0.077-0.118 0.000-0.013 - Max-hold 

Our work 0.005 0.005* 0.004-0.408 Analyzer 24 h 

Our work 0.005 0.005* 0.005*-0.269 Analyzer 1 h 

Our work 0.031 0.029 0.005-0.242 Eme Spy 200 1 h 

* The calculated values were between 0.0045 and 0.0049 V/m, but when rounding to the nearest 

third decimal a value of 0.005 V/m is set. 

As shown in Table 4.15, the results obtained with the EME Spy 120/121 are 

higher than those acquired in our work or with the EME Spy 200. One reason is 

that the detection limit of the EME Spy 120/121 is 0.05 V/m, while the EME 
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Spy 200 and 201 can detect field levels higher than 0.005 V/m, so the probability 

of overestimation in the first instrument is higher. When using spectrum 

analyzers, differences due to the equipment configurations can occur. We used 

the clear/write trace and the RMS detector to avoid overestimations of the 

signals, but for example in (Tomitsch 2015) max-hold measurements were taken. 

This is usually done when verifying compliance with the regulations in order to 

check the worst case scenario in terms of exposure levels. However, an increase 

in the average results is produced. 

Finally, a comparison with the exposure limits given in the standards was 

done. The maximum sample level was obtained with the spectrum analyzer in 

Lab 2 and it was equal to 0.408 V/m. The exposure limit established in 

(ICNIRP 1998) for the general public in the 2.4 GHz frequency band is equal to 

61 V/m, so the maximum measured sample is far below the reference limits. 
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5. CONCLUSIONS 

An evaluation of the WiFi signal levels in the 2.4 GHz frequency band inside 

the university has been presented in this chapter. The first objective of this work 

was to perform measurements in real environments using the methodology and 

the configuration of the spectrum analyzer proposed in Chapter 3. As detailed in 

that chapter, the usefulness of this configuration lies in the acquisition of accurate 

and realistic WiFi signal samples, performing only frequency domain 

measurements, since in order to increase the accuracy provided by personal 

exposure meters and max-hold measurements with spectrum analyzers, some 

authors introduced weighting factors, but in these cases additional measurements 

are needed to calculate the weighting factors. 

A measurement campaign based on recordings of 24-hour and 1-hour 

durations was carried out using a spectrum analyzer appropriately configured 

together with a tri-axial antenna system, in order to assess the temporal and spatial 

variability of WiFi exposure levels. A personal exposure meter was also employed 

for the 1-hour measurements and the differences in the results obtained with both 

instruments were explained. 

Finally, exposure levels due to WiFi signals measured in other studies were 

compared, detailing the equipment and environments of these measurement 

campaigns, concluding that despite the differences in the results due to the use 

of different equipment or configurations, all the values presented were far below 

the exposure limits. The methods shown in the different measurement campaigns 

are useful to obtain the field distribution and to check compliance with exposure 

limits. However, if more accurate and robust results are required, professional 

equipment appropriately configured should be use. 

Regarding the statistical analysis, it was observed that as signal levels can vary 

significantly, many times the mean values do not provide enough information 

because of the high standard deviation of the results. Although the mean, median 

and maximum values are suitable for epidemiological studies and for checking 

compliance with exposure limits, when more information about the signal is 

desired, percentiles are more appropriate statistics, since they give information on 

exposure levels for the different percentages of the measurement time. 
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CHAPTER 5: WEARABLE ANTENNA 

DESIGNS 

This chapter presents two wearable antenna models operating in the 2.4 GHz 

frequency band, both of them developed in this thesis not only with the purpose 

of improving previous works and provide solutions to current needs, but also in 

order to analyze the human exposure to the radiation coming from WBANs. The 

first antenna was designed for off-body communications and it was designed to 

minimize the interaction between the body and the antenna. An investigation of 

the body effect on antenna performance, as well as the power absorption in 

human tissues is presented. The second antenna was based on the off-body 

antenna model, but it was developed for inward radiation purposes in order to 

satisfy the demands of this types of devices. 
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1. INTRODUCTION 

Wearable and implantable sensors are increasingly demanded because of its 

applications in many fields, such as healthcare, wellbeing, sports or entertainment. 

Several antenna designs have been proposed in the last years for use in WBANs. 

At first, the communication between sensors placed on the body was mainly done 

through wired connections, but now there is a growing trend towards wireless 

communications due to the advantages of removing cables. In addition, the 

2.4 GHz frequency band, which is one of the spectrum bands allowed for wireless 

transmissions in these types of networks, is usually selected in WBANs, in part 

because of its worldwide availability (Cavallari 2014). Although several antenna 

models had been proposed for its use on and inside the human body, further 

improvements could be made concerning antenna performance and low power 

absorption. In addition, more research regarding the power absorbed in the body 

due to these devices was needed. Two antennas were designed during this thesis 

and the context that led to the development of each of the models is described 

below. 

1.1. Research context of the antenna for off-body 

communications. 

Author of this thesis had the opportunity of doing a research stay at Griffith 

University, Brisbane, Australia. There, small wireless sensor nodes had been 

developed to monitor human movement in sports during both training and match 

play (James 2013). The final design was packed in a box (see Figure 5.1) and had 

contact pins for electrical connections and an inset for buttons, where a keypad 

was put. This device can include a meander-line monopole antenna for 

communicating with other devices at 2.45 GHz. In (Varnoosfaderani 2015a) 

authors investigated the performance of the sensor with the meander-line 

monopole when it was placed on the human body and a huge decrease in the 

radiation efficiency of the antenna was reported, so any improvement in the 

antenna efficiency when wearing the sensor is desirable. 
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Figure 5.1. Assembly of the sensor node developed in (James 2013). 

It is noteworthy that the sensors can also be used during sporting activities 

without real-time requirements. In such case, the sensor needs to be programmed 

to store the measurements. During the research stay at Griffith University, the 

author of this thesis had the opportunity of taking part in a research activity in 

which these types of devices were employed to investigate deteriorations in knee 

and ankle dynamics during running. Changes in these parts of the body due to 

fatigue were analyzed by utilizing a wearable musculo-skeletal monitoring system. 

This system includes a number of sensor modules as the one shown in Figure 

5.2(a), which have a triaxial accelerometer (MMA7260QT) with a sensitivity of 2 

g and a battery (3.6 V, 240 mA) that supports several hours of data logging. The 

sensors can be worn within pockets of Velcro straps or sports garments, as can 

be observed in the example of Figure 5.2(b), where a sensor module previously 

placed inside a box is shown. During the experiments, the sensors were attached 

to the lateral sides of the right knee and right ankle of the participants and were 

programmed to store accelerometer measurements during running. Once the 

activity was finished, data were transferred to an external computer using a 

CP2102 UART interface. 
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(a)      (b) 

Figure 5.2. (a) Sensor module, (b) Velcro strap with a pocket to insert the sensor. 

   This monitoring system allowed to investigate the changes in lower limbs 

accelerations and some conclusions were withdrawn, such as that the onset of 

fatigue appeared to be more distinct for runners having greater body mass. 

Moreover, it was possible to infer a runner’s travelled distance and energy 

expended with an average error of 15%. However, for applications in which real-

time is required, off-body communication is needed between the sensor and other 

device located out of the body. In such case, an appropriate antenna for 

establishing this communication is essential, but radiating as little power as 

possible inside the human body. Consequently, the design of this antenna tuned 

into one of the objectives of this chapter.  

1.2. Research context of the antenna for in-body 

communications 

The second antenna model presented in this chapter has the objective of 

contributing to improving in-body communications in WBANs. 

The invention of wireless capsule endoscopy brought about the greatest 

revolution in the technology used to diagnose gastro-intestinal (GI) problems. 

One of the main issues that must be overcome in order to have wider clinical 

applications of wireless capsule endoscopy is the localization of the capsule 

without the need to employ cables (Basar 2013). 

The “radio pill” extends the range of optical fiber endoscope technology to 

observe the complete length of the GI tract (Colson 1979; Basar 2012). The 

cylindrical pills (diameter 10 mm) equipped with a battery, camera and radio 

transmitter, are swallowed by the patient, and the images are recorded as the pill 

passes through the GI tract. Imperfections in the inside of the tract such as 

bleeding from tears, polyps and swelling can be identified and, if precisely located, 

can be repaired (Quirini 2007). The video signal from the pill is recorded using 

an array of surface electrodes similar to those used in electrocardiogram 
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recording. The electrodes are attached to the skin using conductive gel and 

connected by an array of wires to a central, wearable recording unit. This allows 

the patient freedom of movement during the 24-78 hours required for the pill to 

pass through the complete GI tract. Normal movements aid the movement of 

the pill. 

Algorithms to track the pill using radiofrequency signals have been proposed 

using the signal intensity received at four locations (Adepoju 2015), however, little 

research has been done regarding the receiving antenna. The detection of 

subsurface transmitters and the irradiation of conductive materials using a surface 

antenna have applications in many different fields including ground probing radar 

(Clouch 1976), non-destructive testing of concrete (Kijewski-Correa 2006), 

motion sensors for swimmers (Lecoutere 2016), earth movement radio beacons 

during blasting (Appleby 2015) and ocean buoy transmitters (Loni 2017). The 

surface electric field profile from a subsurface transmitter is quite complex as the 

surface propagating wave (lateral wave) and the direct wave can result in a 

significant interference pattern (Wu 1982; Emelyanenko 2017) which can make 

the location of the transmitter using a sparse array of sensors very difficult. In 

addition, the input impedance of an antenna placed on the body can be 

significantly modified due to the dielectric loading experienced by the antenna 

(Scanlon 2003) which can have a significant effect on the power received values, 

particularly during movement. Another alternative is the use of gelled electrodes 

as the ones employed in ECG and EEG measurements taped to the skin. These 

are uncomfortable to wear, are influenced by movement and muscle activity, 

require a wired network and can be prone to significant external interference.  

The second antenna presented in this chapter consist of a new electric field 

sensor which requires no conductive gel and forms part of a wireless sensor 

network worn on the torso. The elimination of wires and gel reduces external 

noises and greatly increases the comfort of the user. 
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2. ANTENNA MODEL FOR OFF-BODY 

COMMUNICATIONS 

Wearable sensors are used in athlete monitoring and human monitoring in 

normal living. The wireless transmission off the body is usually a line-of-sight 

radio link. A communications transceiver conveys relevant information off the 

body to a coach, a television channel and /or a data logging facility to score, 

analyze and suggest improvements in human activities (Armstrong 2007; Lee 

2009; Pantelopoulos 2010; Yang 2014). The wearable sensors and 

communications transmitters must be physically small, low powered and 

conformal to the human body for wearer comfort. The small size of the antenna 

and the close proximity to the human body greatly reduce the radiation range. 

For example, Varnoosfaderani et al. (2015a) reported a decrease in the off-body 

range at 2.45 GHz from 20 m in free space to 3 m for a +10 dBm transmitter 

located in an arm band positioned on the upper arm to a far field receiver with 

sensitivity of -95 dBm. The location of the sensors on the body is an important 

fact. Clearly, the movement of each limb and above/below each joint is different, 

and so the off-body communications might use a central node with other sensors 

distributed around the body and connected wirelessly to the central node. This is 

exemplified in Figure 5.3 with a central node located on the torso. 

 

Figure 5.3. Wearable sensors in different locations of the body and a central node on the torso to be connected to an 

off-body receiver. 

Antennas placed on or close to lossy materials show a decrease in the 

efficiency and a shift in the resonant frequency, even though the directivity is 

increased. These three effects are undesirable as the human body moves. For 
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example, in the work developed by Khan at al. (2012), the performance of five 

different wearable antennas at 2.45 GHz was investigated when these transmitters 

were located on several positions of the body. Results showed frequency shifts 

from the free space value up to 33%, and the efficiency was reduced between 

20% and 96% for the different types of antennas when they were at 1 mm away 

from the body. 

Any improvement in the antenna efficiency will increase the transmission 

distance and/or the battery life of wireless sensors. On many conductive surfaces, 

the antenna can be isolated from the conducting materials using a ground plane. 

For wearable technology, this is not practical for reasons of human comfort and 

the separation distance required between the active element and the ground plane. 

A flexible patch antenna is one strategy, however, the antenna center frequency 

and efficiency change with movement (Galehdar 2007; Lecoutere 2016). A more 

efficient antenna design uses a rectangular resonant cavity with a slot (Takei 1999; 

Varnoosfaderani 2015b).  

Based on the model developed by Varnoosfaderani et al. (2015b), a new 

cavity slot antenna operating at 2.45 GHz that improves the performance of the 

previous one is presented, together with the relationship between the total radio 

frequency absorption and the antenna efficiency when the antenna is mounted 

on different parts of the body. The main advantage of this redesigned antenna is 

the improvement of the efficiency, which lies between 62% and 75% when it is 

placed on the body. In (Varnoosfaderani 2015), the efficiency was 55% when the 

antenna was on the arm. The S11 parameter is also improved compared to the 

previous design. Moreover, the slot dimensions of the new antenna (47 mm × 

9 mm) are significantly smaller than the previous one (54 mm × 30 mm), and the 

material of the box in which the slot is printed is biodegradable (PLA). Specific 

absorption rate values were evaluated at 2.45 GHz in different simulation 

scenarios. The effect of positioning the antenna assembly on different locations 

on the body was investigated using participants with different body mass index 

(BMI). Practical information about experimental results and simulation accuracy 

compared with measurements is provided. 

2.1. Theory and Modeling  

A wire dipole antenna above a perfectly conducting ground plane of infinite 

extent can be modeled as an image antenna (Balanis 2008), and the radiation 

pattern can be calculated assuming two identical antennas in free space. As the 

distance above the ground plane decreases, the dipole impedance decreases until 
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a zero separation distance, approaching the dipole antenna impedance to zero. If 

the ground plane is not perfectly conducting, it is possible to use complex image 

theory (Smith 1981). Given the complexity of the human anatomy and the many 

body parts with different conductivity and permittivity, numerical modeling was 

implemented to investigate the performance of the antenna on the human body 

using commercially available FDTD software (CST 2016). Antenna efficiency, 

various absorption coefficients and the radiation patterns of the antenna on 

human anatomy were determined. 

The radiation efficiency η in the vicinity of a series resonance of a generic 

antenna is defined by the following equation: 

𝜂 =
𝑅𝑟

𝑅𝑟 + 𝑅𝐿

 (5.1) 

where 𝑅𝑟 is the radiation resistance of the antenna and 𝑅𝐿 is the resistive loss in 

the antenna. 

The total absorbed power in biological tissue 𝑃𝑎 is given by: 

𝑃𝑎 = ∫ 𝜎𝐸2𝑑𝑉
𝑉

 (5.2) 

where 𝜎 is the conductivity of the tissue, 𝐸 is the root mean square of the internal 

electric field generated within the tissue and contained in a volume element 𝑑𝑉. 

Radiation efficiency and the power absorbed in the body are related by: 

𝜂 =
𝑃𝑟

𝑃𝑖𝑛

=
𝑃𝑟

𝑃𝑟 + 𝑃𝑑 + 𝑃𝑎

 (5.3) 

where 𝑃𝑟 is the radiated power, 𝑃𝑖𝑛 is the input power and 𝑃𝑑 is the power 

dissipated in the antenna. 

The SAR is a measure of the power absorbed per unit of mass and it can be 

averaged over the whole body, or over a smaller part of the mass. In this study, 

SAR was averaged over 10 g of contiguous tissue and the maximum SAR reported 

for the exposure at 2.45 GHz, as specified in (ICNIRP 1998; IEEE 2005; 

McIntosh 2010), is given by: 

𝑆𝐴𝑅 =
𝜎|𝐸|2

𝜌
 (5.4) 

where 𝜌 is the mass density of the biological tissue. 
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A voxel body model (Gustav) included in the CST software was used in the 

simulations. The model represents a 38 years old male with height of 176 cm and 

weight of 69 kg. The dielectric properties of human tissues, which affect the 

performance of wearable antennas and influence the power absorbed by the 

body, have been evaluated at different frequencies in the past years (Gabriel 1996; 

Gabriel 1999). However, the conductivity and permittivity values differ for every 

individual due to different factors such as anatomical aspects and the age 

(Peyman 2001; Vallejo 2013). At 2.45 GHz the conductivity and relative 

permittivity of the different body tissues vary from 0.095 to 3.458 S/m and from 

5.147 to 68.361, respectively (IFAC). The biological material properties of the 

body model incorporated in the simulations were recalculated using the 4-Cole-

Cole formulation in the frequency band of interest, which can be found in 

(IFAC). 

2.2. Antenna design and implementation 

A box made of biodegradable Polylactic Acid (PLA) material was fabricated 

using 3D printing technology (𝜀𝑟 = 4, tanδ = 0.02, where 𝜀𝑟 is the relative 

permittivity and tanδ is the dielectric loss tangent). The internal walls of the box 

were coated with conducting silver paste (σ = 4.3×106 S/m), except for the 

resonant slot, which was not coated. The antenna was designed following the 

procedure described in (Varnoosfaderani 2015b), where the effects of the slot 

dimensions were reported. The internal box dimensions were 56 mm × 33 mm 

× 11 mm, and the wall thickness was 1.5 mm. A rectangular monopole made of 

brass (thickness 0.1 mm and σ = 1.59×107 S/m), was used to excite the slot. A 

PLA support (5 mm × 5 mm × 6.7 mm) was used to position the monopole at a 

fixed height. An SMA connector was soldered to the monopole and attached to 

the box. The 3D model of the antenna is shown Figure 5.4(a) and the final design 

in Figure 5.4(b). Top and side views are shown in Figure 5.4(c) and Figure 5.4(d), 

respectively. Table 5.1 specifies the values of the parameters of the antenna given 

in the figures, this is, the dimensions of each part of the antenna. 
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Figure 5.4. (a) 3D Model of the off-body slot antenna, (b) Final antenna design, (c) Top view, and (d) Side 
view. 

The length of the slot was 𝜆/2 (𝜆 is the wavelength of radiation on the surface 

of the medium) and the monopole 𝜆0/4 (𝜆0 is the free space wavelength) were 

determined by:  

𝜆 =
𝑐

𝑓√𝜀𝑒𝑓𝑓

        𝜀𝑒𝑓𝑓 ≅
𝜀𝑟 + 1

2
 (5.5) 
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where 𝑓 is the frequency, 𝑐 is the speed of light, 𝜀𝑒𝑓𝑓 is the effective 

permittivity and 𝜀𝑟 is the relative permittivity. The length of the 𝜆 /2 slot on the 

surface of the PLA material was initially calculated as 38.5 mm, and after 

optimization, the length was 47 mm long and 9 mm wide. As the length of the 

slot was bigger than the width of the box, it was folded onto the side walls 

perpendicular to the major axis (see Figure 5.4). 

The CST software with the previously described human body model 

(CST 2016) was used to optimize the slot and to simulate antenna performance 

in free space and when placed on the human body. The optimization of the 

antenna was performed in order to improve the radiation efficiency in the 

frequency range of interest. Table 5.1 shows the parameters of the antenna and 

the box after the optimization. 

Table 5.1. Optimized dimensions of the slot antenna for off-body communications 

 

The bottom of the box was placed on different parts of the arm, torso and 

thigh with no air gap between the body and the antenna in order to analyze the 

effect of the body on the antenna performance and the power absorption in the 

human tissues. Figure 5.5 shows an example of the box placed on the arm above 

the elbow of the human model.  

 
Figure 5.5. Antenna placed on the arm above the elbow of the human model. 

 

Parameter Wb Lb Wp Lp WL LL d H1 H2 Hb 

Value (mm) 33 56 27 34 5 5.5 23 4 7 11 
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2.3. Parameters analyzed 

An analysis of the antenna-body effects can be done from power absorption, 

return loss and antenna efficiency. All these parameters were obtained in 

simulations, analyzing the total power absorbed together with the SAR values, 

the antenna efficiency and the return loss. This last parameter was also obtained 

through experimental measurements, evaluating the frequency shift experienced 

when the antenna was placed on different locations. 

As the dielectric properties of body tissues can vary from person to person, 

it is important to evaluate the antenna properties not only on different parts of 

the body but also on different participants. People with different BMI (17 and 

29 kg/m2) and different age (22-59 years old) participated in the experiment. The 

locations on the body where the antenna was placed during simulations and 

measurements are indicated in Figure 5.6. These locations include several 

positions on the outer arm (the wrist, above the elbow and on the upper arm), 

and also locations on the middle of the torso close to the navel (Torso 1), on the 

left side of the torso (Torso 2) and on the thigh. 

 

Figure 5.6. Positions of the body where the antenna was placed in simulations and measurements. 

2.4. Results of the off-body antenna model 

Radiation absorption 

Figure 5.7 shows the relationship between the antenna radiation efficiency 

and the power absorbed in body tissues. The antenna was placed on ten locations 
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of the body to achieve different values of efficiency. As shown, the calculated 

power deposited in human tissues was found to be linearly related to the antenna 

efficiency (Pearson’s correlation coefficient r = 0.99). The input power was 

100 mW at 2.45 GHz. The radiation efficiency was 97% in free space, and 

decreased when the antenna was on body with values between 62% (on the upper 

arm) and 75% (on the side of the torso). On the other parts of the arm, the 

efficiency was between 67% and 72%, on the thigh it was 64% and on the middle 

of the torso 68%. The maximum power absorbed in the body was 33.9 mW 

corresponding to the lowest performance of the antenna. 

 

Figure 5.7. Power absorbed in tissues as function of antenna radiation efficiency. 

The SAR at 2.45 GHz was averaged over 10 g of mass and the results can be 

seen in Figure 5.8. As illustrated, on some locations simulations were performed 

more than once, but moving the antenna some cm. The maximum value was 

0.316 W/kg when the antenna was located on the upper arm. The two simulations 

carried out on this part of the body differ from each other more than in the other 

parts. This can be explained because the antennas were more separated from each 

other than on the other locations. The maximum SAR values for the other parts 

of the body were 0.165 W/kg on the wrist, 0.148 W/kg above the elbow, 

0.196 W/kg on the thigh, and 0.185 and 0.147 W/kg on the middle and side areas 

of the torso.  
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Figure 5.8. SAR values obtained for the different parts on Gustav body model. 

All values are well below the basic restrictions provided by international 

standards; at 2.45 GHz the basic restrictions for general public are 2 W/kg for 

the head and trunk and 4 W/kg for the limbs when SAR is averaged over 10 g of 

tissue, as indicated by IEEE Standards and ICNIRP Guidelines (ICNIRP 1998; 

IEEE 2005). Figure 5.9 shows an example of SAR distribution in 3D and in three 

orthogonal cuts. The cuts are made through the maximum 10 g SAR point. As 

shown, the highest amount of power is absorbed in the first layers of the body. 

 

Figure 5.9. SAR distribution averaged over 10 g when the antenna was placed on the arm above the elbow. 
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To evaluate the behavior of the antenna on the different parts of the body, a 

figure of merit F proposed in (Anguera 2012) was used. This parameter defines 

the ratio of the antenna efficiency over the SAR for a given frequency. The 

antenna efficiency considers the radiation efficiency and the mismatch losses. The 

best performance (highest figure of merit) was found for locations on the left side 

of the torso, as evident in Figure 5.10. This means that in this location the power 

radiated out from the body over the SAR is maximized. The smallest F value 

occurred when the antenna was placed on the upper arm and on the thigh, since 

these positions resulted in the highest SAR values. When the antenna was placed 

on these two parts, the results showed the highest power absorbed by the body 

and therefore, the lowest radiation efficiencies. 

 

Figure 5.10. Figure of merit F (Antenna efficiency over 10 g averaged SAR) at 2.45 GHz calculated at different 
locations of the body. 

Frequency shift 

Experimental measurements were performed on six participants to study the 

frequency shift when the antenna was in free space and placed on different parts 

of the body. The six participants had BMI between 17 and 29 kg/m2 and ages 

between 22 and 59 years old. The antenna was placed on various parts of the 

body (Figure 5.6) corresponding to the simulations. The antenna was attached to 

the participants using plastic film. A portable Vector Network Analyzer (N9923A 

Field Fox Handheld RF VNA @6Hz) with 50  impedance was used to measure 

the frequency shift in each situation. The -10 dB bandwidth of the antenna in free 

space was 12.5% in simulations (2.27 – 2.57 GHz) and measurements, and it did 

not change when the antenna was on the body. The resonant frequency changed 

between 2.26 GHz and 2.32 GHz in simulations on body and between 2.36 GHz 

and 2.45 GHz in measurements. An example of the simulated and measured 

return loss when the antenna was in free space and on the human body is shown 
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in Figure 5.11. In this case, the antenna was above the elbow and the participant 

had a BMI of 23.57 kg/m2. The measured resonant frequency in free space was 

less than the frequency calculated in the simulated result. This is thought to be 

due to small differences between the fabricated antennas and the simulation 

design. This includes variations in material properties, like those due to the ink 

thickness and the curing process of the conductive silver ink. Moreover, a 

procedure based on measurements and simulations was followed to establish the 

relative permittivity of the PLA box, which resulted in εr = 4 for simulations. 

Several monopoles of different lengths were used to feed the PLA box with a 

slot, and comparisons between measurements and simulations with different 

permittivities were performed. Small differences in box dimensions can occur, as 

the 3D printer had a tolerance close to 0.5 mm. When placing the antenna on the 

body some deviations were observed due to different body properties 

(anatomical, different dielectric properties).  

The frequency shift was found to be higher in simulations compared to that 

observed in the experimental measurements. The maximum difference occurred 

when the on body antenna was close to the elbow (6.61%) and on the thigh 

(5.86%). The minimum frequency shift in simulation results was obtained in the 

middle of the torso (4.21%), followed by upper arm (4.75%) and the side of the 

torso (4.95%). In measurements, the resonant frequency varied up to 2.51%. 

 

Figure 5.11. Measured and simulated S11 parameter relative to 50 Ω of antenna in free space and placed 
above elbow. 

Table 5.2 shows the mean and the standard deviation of the resonant 

frequency when the antenna was placed on the different parts of the body for all 
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participants. Although six people participated in the experiment, a total of ten 

measurements on each part of the body were carried out. Four people 

participated on two different days. In this way, uncertainties due to different 

positions of the antenna and skin condition could be taken into account. 

Simulation results are included in the column ‘modeled’ and the probability of 

being statistically identical to measurements is given by the probability mass 

function in the column ‘probability’. The simulation results with a better match 

with measurements correspond to situations in which the antenna was placed on 

the upper arm and on the side of the torso. The BMI of the participants was 

found to be not an influential factor on the measurement results. 

Table 5.2. Mean and Standard Deviation of Measurements, Simulation Results and Their Probability 

 

 

 

 

 

 

 

 

Radiation patterns of the antenna in free space and on-body at 2.45 GHz are 

shown in Figure 5.12. The back radiation of the antenna is reduced when worn 

on the body. No correlation was found between the front-to-back isolation of 

the antenna and the power absorbed in the body. 

Frequency (GHz) 

Position Mean STD Modelled Probability 

Free Space 2.390  2.422  

Wrist 2.386 2.46×10-2 2.282 2.11×10-3 

Above Elbow 2.413 2.45×10-2 2.262 9.43×10-8 

Upper Arm 2.411 3.38×10-2 2.307 1.04×10-1 

Torso 1 2.438 6.67×10-3 2.320 1.01×10-66 

Torso 2 2.384 2.60×10-2 2.302 1.02×10-1 

Thigh 2.425 1.85×10-2 2.280 1.04×10-12 
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Figure 5.12. Simulated radiation patterns at 2.45 GHz in both horizontal (x-y) and vertical (x-z) planes 
(a) in free space, (b) when antenna is on the middle of the torso, and (c) above the elbow. 

2.5. Conclusions of the Off-body antenna design 

One of the main problems of wearable antennas is the interaction between 

the body and the antenna. As part of the power is absorbed in the human tissues, 

the radiation efficiency of the antenna is reduced. In addition the body causes a 

shift in the resonant frequency. A slot antenna in a conductive box was used to 

minimize the interaction between the human body and the antenna. In this way 
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not only the absorption loss is reduced, but also the human effect on the antenna 

performance. 

The antenna design was optimized to work at 2.45 GHz, achieving a radiation 

efficiency of 97% in free space and between 62% and 75% when it is placed on 

the body. In simulations, the resonant frequency reached its maximum shift when 

the antenna was above the elbow (6.61%). Experimental measurements showed 

a maximum frequency shift of 2.51%. Moreover, when using this antenna design 

results did not depend on the body-mass index for each individual. One limitation 

of this wearable antenna is that it has to be fixed and in contact with the skin to 

prevent changes in performance. The probe inside the box needs to be precisely 

positioned for maximum performance. 

The SAR was studied by means of simulations and results proved that this 

antenna is appropriate for on/off body communications since the maximum 10 

g averaged SAR value was 0.316 W/kg for 100 mW input power. This is well 

below the international limits and this value would be reduced if the distance from 

the body was increased (Sabrin 2015). These SAR values are also satisfactory in 

comparison to results at the same frequency reported by other authors (De Santis 

2012; Soh 2015). 

SAR values are useful to verify compliance with health standards and they 

are representative of localized absorption. But this does not allow the evaluation 

of the power absorbed by the different parts of the body, since SAR results give 

information about the maximum absorption averaged over 10 g. The power 

absorbed in tissues was found to be the best parameter for measuring the total 

absorption in parts of the body (Risco 2012). These authors demonstrated that 

two similar values of SAR can be related to very different values of head 

absorption. In our study results showed that when the slot antenna was above 

the elbow, absorption was less correlated with SAR than at other locations. 

Considering all the parameters studied in this work (radiation efficiency, 

frequency shift, power absorbed and SAR), it can be concluded that this antenna 

performs efficiently at most locations of the body and by different people. 
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3. ANTENNA MODEL FOR IN-BODY 

COMMUNICATIONS 

Considering the advantages of the off-body slot antenna previously 

presented, we decided to make an antenna for inward radiation purposes based 

on that previous design in order to satisfy the demands of this types of devices. 

Due to the necessity of an antenna for tracking the gastro-intestinal radio pill, this 

new design was fabricated to be placed on the body skin being appropriate for 

communicating to a capsule inside the body.  

Different systems for capsule endoscopy have been developed to operate at 

different frequency bands, which usually are 433 MHz, 868 MHz, 915 MHz or 

2.4 GHz (Kim 2012). The size of the capsule and receiver is a key aspect in this 

type of applications. The higher the operating frequency, the smaller the size of 

the pill and the receiver can be. However, attenuation at 2.4 GHz is higher than 

at lower frequencies. The algorithms developed for radio localization of 

endoscopic capsules require several receivers around the body (Ye 2011). In 

(Vitas 2014) an algorithm for radio localization of a capsule using several receivers 

worn in a vest around the body was presented (See Figure 5.13). These authors 

state that any application of localization requires at least three receivers and that 

their localization algorithms can benefit from collecting RF signal power from as 

many as possible receiving antennas. Thus, they remark that the high attenuation 

factor obtained at 2.45 GHz will be low if several receivers are placed on the 

body, making this frequency appropriate for the capsule endoscopy. 

 

Figure 5.13. Vest with receiver antenna array proposed in (Vitas 2014). 

As little research has been done regarding the receiving antenna, this part of 

the chapter is focused on redesigning the off-body antenna model for making a 

receiver appropriate for tracking the radio pill. 
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This antenna followed the design of the previous one, but in this case, the 

slot was pressed against the body skin since it was intended for in-body 

communications. In order to have this second design working in the 2.4 GHz 

frequency band, the box and slot dimensions as well as the feed were optimized 

to match the body impedance. 

3.1. Theory and Modeling 

One approach describing the function of an antenna is to match the 

impedance of the transmitter circuit to the surrounding media, in most cases this 

medium is air with an impedance of 377  and the feed transmission line has a 

characteristic impedance of 50 . In the case of matching an antenna to the 

human soft tissue, the characteristics of the antenna must be modified to match 

the complex impedance (conductivity and permittivity).  

As shown in the case of the off-body design, a rectangular slot antenna in air 

is resonant when the length  𝑙 is approximately one half free space wavelength 

 

𝑙 =
𝜆0

2
√

2

1 + 𝜀𝑟

   (5.6) 

Moreover, the width of the slot influences the bandwidth of the antenna. 

When the slot is fabricated on a thin, insulating substrate, the length must be 

reduced slightly to maintain the same resonant frequency due to the relative 

permittivity 𝜀𝑟 of the substrate. The equation (5.5) showed the relation between 

the wavelength and the permittivity of the medium. But in the case of an inward 

directed antenna, the signal travels though several mediums (the different tissues 

of the human body). When there is more than one medium, the equivalent relative 

permittivity 𝜀𝑒𝑞 is given by (Nakamura 2005): 

𝜀𝑒𝑞 = (∑
𝑑𝑛

𝜀𝑛

𝑁

𝑛=1

)

−1

∙ (∑ 𝑑𝑛

𝑁

𝑛=1

) (5.7) 

 

where 𝑑𝑛 is the thickness of each medium (in case of human body is the thickness 

of each tissue), 𝜀𝑛 the permittivity of the 𝑛𝑡ℎ tissue and 𝑁 is the number of tissues. 

Changing the antenna used for off-body communications to an inward radiating 

antenna requires a reduction in the slot length, which depends on the 

electromagnetic characteristics on the skin and subsurface tissues. The basic 
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tissue layers of the human torso from the outside to the inside are: skin, 

subcutaneous fat, muscle, visceral fat and intestine (Arab 2013). Table 5.3 shows 

the dielectric properties at 2.45 GHz of these layers, as well as their thickness in 

a female subject with low visceral fat (Nakamura 2005; Arab 2013; Gabriel 1999). 

All these tissues can be described as lossy dielectric materials as 

 0.14 <  
𝜎

2𝜋𝑓𝜀𝑟𝜀0
<  0.28  where 𝜎 is the conductivity, 𝑓is the frequency and 𝜀0 is 

the permittivity of free space. Selecting the thickness of each tissue as the average 

of the range of values shown in Table 5.3 and using equations (5.6) and (5.7), the 

slot length was estimated to be 𝑙 = 31 mm. The box thickness (1.5 mm) in which 

the slot is printed was also considered. 

Table 5.3. Tissue properties at 2.45 GHz 

Tissue name 
Conductivity 

σ (S/m) 

Relative 

permittivity ε 
Thickness (mm) 

Dry Skin 1.464 38.007 1.1-1.6 

Subcutaneous Fat 0.104 5.280 17-34 

Visceral Fat 0.104 5.280 15-36 

Muscle 1.738 52.729 8-16 

Small intestine wall 3.173 54.425 1-3 

 

Following these calculations, a new slot was designed and optimised using 

the previously employed simulation software (CST Microwave Studio), together 

with the anatomical voxel model also used in the previous work. 

3.2. Antenna Design 

The antenna box was 3D printed in PLA material and lined with conductive 

silver paste apart from the slot on the lid (see Figure 5.14). The relative 

permittivity (εr) and the dielectric loss tangent (tanδ) of the box are εr = 4 and 

tanδ = 0.02. The conductivity of the silver paste is σ = 4.3×106 S/m. A 

rectangular monopole made of brass (thickness 0.1 mm and σ = 1.59×107 S/m) 

was used to excite the slot. The antenna was placed on different locations of the 

torso in a way that the slot was covered completely by the skin. The inward 

antenna placed on the torso works at 2.45 GHz with return loss lower than 

- 10 dB for a slot length higher than 22 mm. After optimizing the impedance 

matching, the slot dimensions were 28 mm long and 7 mm wide. Table 5.4 defines 

the most significant dimensions of the new antenna. 
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Figure 5.14.(a) 3D Model of the in-body slot antenna, (b) Top view, and (c) Side view. 

Table 5.4. Dimensions of the slot antenna for in-body communications 

Parameter Wb Lb Ws Ls WL LL d H1 Hb 

Value (mm) 33 33 7 28 5 21.5 8 6 11 

 

3.3. Simulations and measurements 

Simulations and measurements were performed when the antenna was placed 

on different locations of the torso. In simulations, the torso of the voxel body 

model included in the CST software was used to test the antenna. As previously 

defined, this model is a 38 years old male with weight of 69 kg and height of 

176 cm. The biological dielectric properties were recalculated for the frequency 

range from 1.5 GHz to 3.5 GHz using the 4-Cole-Cole formulation, which 

describes the frequency dependence of the dielectric properties. 
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Experimental measurements were performed in order to evaluate the return 

loss of the antenna. Six participants with Body-Mass Index (BMI) between 17 

and 27 kg/m2 took part in the experiment. For each individual, the antenna was 

tested on several locations around the torso with no gap between the face of the 

box with the slot and the body skin. Three of these locations correspond to the 

front part of the torso: the center, the front left and the front right; the antenna 

was also placed on the left and right sides and on the back below the rib cage. 

Some of the positions in which the antenna was tested in simulations and 

measurements are depicted in Figure 5.15. 

 

Figure 5.15. Human body model with some of the locations where the antenna was placed. 

 

3.4. Results of the in-body antenna design 

Figure 5.16 shows the return loss as a function of frequency when the 

antenna was centered on the front part of the torso (Figure 5.16(a)) and when it 

was placed on the right front (Figure 5.16(b)). These locations are shown in the 

body model of Figure 5.15. Differences between simulations and measurements 

can be due to differences in dielectric properties of body tissues of the body 

model and the participants, as well as different anatomical aspects. 



Chapter 5 

156 
 

 

(a) 

 

(b) 

Figure 5.16. Measured and simulated S11 of the antenna on two locations of the torso (a) on the center 
front, (b) on the right front. 

Table 5.5 and Table 5.6 summarize the center frequency of the antenna when 

it was placed on the six different parts of the torso, together with the -10 dB 

bandwidth achieved in each case. In the measurement results, the range of values 

obtained for all participants is reported. For example, when the antenna was 

placed on the back of the six participants, the center frequency ranged between 

2.27 GHz and 2.72 GHz. The -10 dB bandwidth of the antenna ranged between 

0.51 GHz (21%) and 1.15 GHz (46%) in all the measurements and between 

0.75 GHz (30%) and 0.97 GHz (40%) in all simulations. These results all 

adequately cover 2.45 GHz.  
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Table 5.5. S11 simulation results when the antenna is on different parts of the torso 

Simulations 

Part of Torso fc (GHz) -10 dB BW (GHz) -10 dB BW (%) 

Front left 2.6 0.82 31.5 

Front right 2.48 0.81 32.7 

Centre 2.41 0.86 35.6 

Left side 2.59 0.92 35.5 

Right Side 2.65 0.97 36.5 

Back 2.48 0.75 30.3 

 

Table 5.6. S11 measurement results when the antenna is on different parts of the torso 

Measurements 

Part of Torso fc (GHz) -10 dB BW (GHz) -10 dB BW (%) 

Front left 2.32 - 2.58 0.54 - 0.83 22.4 - 33.8 

Front right 2.32 - 2.58 0.63 - 1.12 24.4 - 46.0 

Centre 2.37 - 2.58 0.51 - 1.15 21.0 - 46.4 

Left side 2.42 - 2.51 0.71 - 1.01 29.3 - 41.3 

Right Side 2.39 - 2.51 0.71 - 1.04 28.3 - 42.9 

Back 2.27 - 2.72 0.61 - 0.87 24.8 - 32.2 

 

Different antenna properties were obtained through simulations. The 

Voltage Standing Wave Ratio (VSWR) varied between 1.13 and 1.54 at 2.45 GHz, 

on the different parts of the torso. The antenna design showed front-to-back 

isolation higher than 15 dB at the specified frequency. 

At 2.45 GHz, the real part of the impedance (R) took values between 

33 and 64 and the reactance (X) between -2.37  and 1.29 , as shown in 

Table 5.7. 

Table 5.7.Resistance and reactance at 2.45 GHz when the antenna is on different parts of the torso. 

Part of the Torso R () X () 

Front left 63.75 -2.37 

Front right 37.22 0.27 

Centre 33.74 -0.04 

Left side 33.76 -1.37 

Right Side 56.33 1.21 

Back 38.98 1.29 
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Figure 5.17(a) shows the SAR distribution for an input signal of 10 mW at 

2.45 GHz, and it shows the direction of the radiation into the body. The SAR 

was averaged over 10 g of mass and the horizontal cut was made through the 

maximum 10 g SAR point. It is evident that a transmitter on the surface 

propagates a significant amount of radiation close to the surface. When the 

transmitter is located beneath the surface, the radiation pattern on the surface is 

significantly different. 

Finally, to characterize the communication link between the transmitter and 

the slot antenna, a half-wavelength dipole was placed in the intestine and the S21 

was evaluated at 2.45GHz by means of simulations. The transmitter was 

repositioned along the horizontal axis (Figure 5.17 (b)), being always in the 

intestine. When moved along the vertical axis, similar results were obtained, e. g. 

S21 was -43.49dB when the distance was 61 mm. 

 
(a)                  (b) 

Figure 5.17. (a) SAR distribution in W/kg (body top view) when the radiating antenna is placed on the front 
part of the torso, (b) Variation of S21 (dB) with respect to the distance between the two antennas. 

 

3.5. Conclusions 

A slot antenna in a conductive box was optimized to match the body 

impedance when placed on the torso at 2.45 GHz. Previously the authors used 

this type of antenna for off-body communications in which the conductive box 

reduced the interaction with the body. The antenna was modified for inward 

radiation (i.e. the slot was covered by the body skin) and retuned. The slot size 

was reduced due to the dielectric properties of body tissues. This antenna is 

suitable for receiving the signal coming from inside the body. This design 

removes the need for wires and the gel used in the past in specific medical 

applications. 
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Experimental measurements were performed to verify the antenna 

properties. The return loss was obtained when the antenna was placed on several 

parts of the torso of 6 participants. Simulations and measurements showed the 

variability in the center frequency and the bandwidth for the different placements 

of the antenna, as well as for the different participants. The antenna was always 

functional within the band at 2.45 GHz (S11 < -10 dB). The body-mass index of 

the participants was found not to influence the measurement results. The S21 was 

evaluated to characterize the communication link. Further work is aimed at 

reducing the size of the box and improving the stability of the feed probe. The 

box must include the receiver electronics and so a very small size is not possible. 

In these modelling investigations a half-wavelength dipole was used as a 

transmitter, but using a smaller radio pill would improve the performance of the 

communication because it is optimized for sending signals from the body. 
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CHAPTER 6: ANALYSIS OF THE EMF 

EXPOSURE IN THE NEAR FIELD 

REGION 

This chapter presents the analysis and evaluation of the power absorption in 

the near field region due to different radiation sources, all of them working in the 

2.4 GHz frequency band. Firstly, computational tools were used to analyze the 

power absorption in human bodies due to the two wearable antennas presented 

in the previous chapter. Secondly, SAR levels caused by WiFi signals measured in 

the far field region were calculated applying three different methodologies 

defined to this end in order to compare the corresponding results.  
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1. INTRODUCTION 

As shown in Chapter 5, wearable antennas and implantable devices are 

increasing in demand because of its utility and application in various fields, such 

as medicine, sports or entertainment. One of the main challenges when designing 

a wearable antenna is to keep the efficiency of the antenna when it is placed on 

the body while maintaining low power absorption in the human tissues. In 

Chapter 5, two antenna models working in the 2.4 GHz band have been proposed 

and as previously shown, these models are suitable for reducing the interaction 

between the antenna and the body, making them appropriate for being part of 

WBANs. In the work presented in that chapter, both antennas were fabricated 

and tested on different bodies for people with different BMI. This ensured that 

the antennas were working properly in a real environment. 

In this chapter a detailed analysis of the power absorption due to these 

antennas is presented. In addition to the extension of exposure evaluation to 

more locations in the body, in this study two body models are included, a male 

and a female, with higher resolution. Moreover, the exposure evaluation is 

performed at three different frequencies (2 GHz, 2.45 GHz and 3 GHz), because 

as shown in Chapter 5, the interaction of the antenna with the human body causes 

a shift in the resonant frequency, so the assessment at close frequencies is of 

interest. The analysis of the difference in power absorption between the off-body 

antenna design and its equivalent for in-body radiation is performed, together 

with the evaluation of the power absorbed in different tissues due to these types 

of antennas.  

Moreover, in Chapter 4 an evaluation of human exposure to WiFi signals in 

the 2.4 GHz band has been presented. In that case, measurements were carried 

out in the far field region and electric field levels were obtained. Measurements 

in the far field region are usually much less complex to perform. In addition, in 

some situations only far field measurements are possible. For this reason, some 

authors have developed methods for converting far field measurement data to 

SARWB values. The second work of this chapter consists of converting WiFi data 

acquired in the far field region to SAR data using methods proposed by different 

authors. 

Finally the SARWB values obtained due to the wearable antennas and WiFi 

signals are compared. 
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2. METHODS FOR EVALUATING EXPOSURE OF 

WEARABLE ANTENNAS 

The body models used in this study are the AustinMan and AustinWoman 

high fidelity anatomical voxel models, both of them are open source models 

constructed from the Visible Human Project (VHP) datasets (Massey 2016). The 

resolution of the voxels is 2×2×2 mm3. The same computational tool than the 

one used for designing the antennas was employed for calculating the power 

absorption in body tissues (CST 2016), using the FDTD method. 

Each antenna was placed at 8 different positions of the human body, shown 

in Figure 6.1. In the case of the antenna designed for off-body communications, 

the bottom of the box was in contact with the skin. A simulation per antenna and 

body location was performed, repeating the process for the two body models. 

The dielectric properties of body tissues were recalculated using the 4-Cole-Cole 

formulation in the frequency band of interest (IFAC). Two different 

computational analyses were performed: the SAR and the total power absorbed 

in the human body. The SAR was averaged over 10 g of contiguous tissue and 

the maximum value was reported in each case. 

 

Figure 6.1. Positions of the body models where the antennas were placed. 
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3. RESULTS OF PERSONAL EXPOSURE TO THE 

RADIATION COMING FROM WEARABLE 

ANTENNAS 

In this section, the simulation results are provided in terms of SAR and total 

power absorbed. Moreover, the percentages of power absorbed by the different 

tissues are investigated. All the results have been obtained with the two different 

antennas (at different times), for each body model and body location. 

3.1. SAR average over 10 g of mass 

The SAR values obtained when placing the antennas on the different parts 

of the body models are presented in Figure 6.2 for the off-body antenna, and in 

Figure 6.3 for the in-body antenna. The maximum SAR values obtained at 2 GHz, 

2.45 GHz and 3 GHz are given for each body model, man (M) or woman (W), 

and for each body location. The input power was 10 mW. As shown in both 

figures, when using the antenna designed for off-body communications, the 

maximum SAR value was equal to 0.0369 W/kg, this was obtained when placing 

the antenna on one side of the torso of the woman model. But, as explained later 

in Section 3.3, this was due to the proximity of the arm to the antenna. The 

minimum SAR level due to this antenna at 2.45 GHz was 0.0113 W/kg, obtained 

when it was placed on the woman’s leg (Thigh 2).  

 

Figure 6.2. SAR values obtained for the woman (W) and man (M) voxel models at 2 GHz, 2.45 GHz and 

3 GHz for the off-body antenna. 
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When using the antenna intended for in-body communications the SAR 

levels increased significantly, taking values between 0.2278 and 0.4479 W/kg at 

2.45 GHz, getting this highest value also on the side of the torso of the woman 

body. The SAR value at 3 GHz was sometimes higher than at 2.45 GHz. In fact, 

the maximum SAR value at 3 GHz was 0.4686 W/kg, acquired when placing the 

antenna on the woman’s leg. This is due to the frequency shift produced because 

of the different biological properties. 

 

Figure 6.3. SAR values obtained for the woman (W) and man (M) voxel models at 2 GHz, 2.45 GHz and 
3 GHz for the in-body antenna. 

In order to illustrate graphically the differences on the SAR distributions due 

to the two antenna models, an example is given below. Figure 6.4 shows the 

antenna designed for off-body applications placed on the lower leg of the woman 

body, together with the 3D SAR distribution caused by this antenna at 2.45 GHz. 

Also, on the illustration of the right, the SAR distribution inside the body is 

shown in a cut plane perpendicular to the antenna, made through the maximum 

10 g SAR point. Figure 6.5 shows the SAR distribution for the in-body antenna 

model when it is placed on the same location of the woman body model. As in 

the previous case, the SAR distribution in 3D and in a cut perpendicular to the 

antenna is given. The cut was also made through the maximum 10 g SAR point. 

As shown, the antenna designed for in-body communications causes maximum 

SAR levels much higher, being the maximum SAR equal to 0.426 W/kg. In both 

cases, the highest values of SAR are found in the first layers of the body models. 
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Figure 6.4. Off-body antenna model placed on the lower leg of the woman and SAR distribution due to this 
antenna at 2.45 GHz. 

 

Figure 6.5. SAR distribution at 2.45 GHz due to the in-body antenna placed on the woman's leg. 

With regard to the exposure limits at these frequencies, the basic restrictions 

for the general public when the SAR is averaged over 10 g of mass are 4 W/kg 

for the limbs and 2 W/kg for the head and trunk, as indicated in (ICNIRP 1998; 

IEEE 2005). Considering that the maximum SAR value was acquired on the 

trunk and it was equal to 0.4479 W/kg for an input power of 10 mW, the 

maximum permitted input power for the in-body antenna should be lower than 

44.65 mW so as not to exceed the 2 W/kg indicated in the guidelines. However, 
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for the off-body antenna, this input power can be much higher and even with 

500 mW the limits are fulfilled (the input power should be lower than 542 mW). 

3.2. Power absorbed in the human bodies 

The power absorbed in the body was also reported for an input power of 

10 mW. Regarding the antenna design made for off-body applications, as can be 

observed from Figure 6.6, the highest power absorbed at 2.45 GHz was found 

on the side of the torso of the woman and man voxel models, being equal to 

5.21 mW and 3.85 mW, respectively. As shown, the power strength absorbed at 

2.45 GHz was higher than at the other two frequencies, this is because despite 

the frequency shift, the center frequency was closer to that frequency than to 2 

or 3 GHz. When placing the antenna at different locations on the leg, the 

maximum power absorbed at the same frequency was 3.84 mW on the Thigh 2 

position of the man model. Regarding the arm positions, the highest value was 

3.41 mW on the Arm 2 location of the woman model. 

 

Figure 6.6. Total power absorbed in the woman (W) and in the man (M) voxel models at 2 GHz, 2.45 
GHz and 3 GHz for the off-body antenna model. 

 Figure 6.7 illustrates the results of the power absorbed by the bodies due to 

the radiation of the in-body antenna model. As shown, the maximum power 

absorbed by the body at 2.45 GHz was found when placing the antenna on the 

Thigh 1 position of the woman body model, reaching a value of 9.78 mW. The 
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highest levels obtained on the torso and arm locations were 9.62 mW (Torso 2 

M) and 9.50 mW (Arm 2 W), respectively. The total power absorbed in the body 

was sometimes higher at 3 GHz than at 2.45 GHz for the in-body antenna model 

because of the frequency shift. The highest power absorbed at 3 GHz was 

9.75 mW and it occurred when the antenna was placed on Thigh 2 of the man 

model. 

 

Figure 6.7. Total power absorbed in the woman (W) and in the man (M) voxel models at 2 GHz, 2.45 GHz 
and 3 GHz for the in-body antenna model. 

In order to highlight the most relevant results of the above shown figures, 

the maximum power levels obtained on the torso, leg and arm at 2.45 GHz, which 

is the frequency where the most significant results were obtained, are summarized 

in Table 6.1, detailing the specific location and the body model where these levels 

were obtained. 

Table 6.1.Maximum power absorbed in the different body parts at 2.45 GHz 

Body 

Part 

Off-body In-body 

Pabs(mW) Location Pabs(mW) Location 

Torso 5.21 Torso 3 Woman 9.62 Torso 2 Man 

Arm 3.41 Arm 2 Woman 9.5 Arm 2 Woman 

Leg 3.84 Thigh 2 Man 9.78 Thigh 1 Woman 
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3.3. Power absorbed in the different tissues 

The power absorbed in the different tissues was analyzed for each body 

position at the three frequencies. The following figures show the percentage of 

power absorbed in each tissue due to the off-body and in-body antennas when 

placing them on the man (Man Off, Man IN) and woman (Woman Off, Woman 

IN) models. For both antennas, the highest amount of power was absorbed in 

the three first layers of the human models (skin, fat and muscle). This is due to 

the low penetration depth at these frequencies.  

The results obtained when placing the antennas on the different positions of 

the torso are provided in Figure 6.8, Figure 6.9 and Figure 6.10.  

 

Figure 6.8. Power absorbed in each tissue for the antennas placed on Torso 1. 

 

Figure 6.9. Power absorbed in each tissue for the antennas placed on Torso 2. 
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Figure 6.10. Power absorbed in each tissue for the antennas placed on Torso 3. 

Overall, when the antenna was on the torso, the skin and fat absorbed more 

power than the muscle, being the energy absorbed by this latter layer lower than 

the 26% of the total power absorbed in the body. As shown in Figure 6.10, when 

placing the antenna on the side of the torso, some radiation was found on the 

bones, especially when using the antenna intended for off-body communications. 

This was due to the proximity of the arm to the antenna, as can be seen from 

Figure 6.11, where the off-body antenna model is placed on Torso 3 position. 

Finally, some power (less than 7%) was deposited in other body tissues, 

represented by ‘Others’ in the graphics, such as in the liver, stomach, nerves or 

blood vessels. 

 
       (a)                    (b)   

Figure 6.11. (a) Top part of the AustinMan model, (b) antenna placed on Torso 3 position and SAR 
distribution at 2.45 GHz. 
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 On the arm and on the lower leg, the percentage of radiation absorbed in 

the fat was lower, since in these parts the fat layer is thinner. Figure 6.12 and 

Figure 6.13 show the percentage of power absorbed per tissue on the Arm 1 and 

Arm 2 positions, respectively. As can be seen, the power deposited in the fat layer 

took values between 3% and 34% on these locations, while the muscle absorbed 

percentages of power varying between 25% and 71%. On the Arm 2 location, the 

power deposited in the tendon was also noticeable, taking values between 14% 

and 16% when placing the in-body antenna on the woman body model. 

 

Figure 6.12. Power absorbed in each tissue for the antennas placed on Arm 1. 

 

Figure 6.13. Power absorbed in each tissue for the antennas placed on Arm 2. 

 

On the lower leg, the percentage of radiation absorbed in the fat layer ranged 

between 4% and 20% and in the muscle between 37% and 72%, as can be 
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observed from Figure 6.14. The power deposited on the tendon was significant 

in some cases, reaching a value of 17.83% for the in-body antenna on the man 

model at 3 GHz.  

 

Figure 6.14. Power absorbed in each tissue for the antennas placed on Lower Leg. 

Finally, Figure 6.15 and Figure 6.16 show the percentages of energy deposited 

in different tissues when the antennas were placed on Thigh 1 and Thigh 2 

positions, respectively. In these cases, the power absorbed in fat took values 

between 8% and 51% and the radiation absorbed in the muscle ranged from 18% 

to 70%. 

 

Figure 6.15. Power absorbed in each tissue for the antennas placed on Thigh 1. 
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Figure 6.16. Power absorbed in each tissue for the antennas placed on Thigh 2. 
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4. PERSONAL EXPOSURE FROM ENVIRONMENTAL 

DATA 

As reported by Joseph et al. (2010b), the use of EMF levels together with its 

equivalent SAR values can be useful in epidemiological studies. In addition, 

obtaining EMF values in the far field region is much simpler than performing 

SAR measurements. For this reason, some authors studied different ways of 

calculating SARWB levels from electric field measurements. The SARWB levels are 

averaged over the mass of the human body.  

In this Section, methods developed in different studies were considered for 

the calculation of the SARWB values from EMF measurements. Specifically, WiFi 

signals in the 2.4 GHz frequency band transmitted from access points and user 

devices were measured using the exposimeter (EME Spy) previously utilized. 

Three sets of measurements were used. Two new sets of measurements were 

taken in the two labs described in Chapter 4 (in these labs only the spectrum 

analyzer was used in that chapter), and the third measurement was selected from 

the campaigns performed in Chapter 4, choosing the recordings with the highest 

mean value of electric field. Then, several methods proposed by different authors 

were used to convert measured electric field data to SARWB values. A comparison 

between the results obtained by the different methods was performed. 

4.1. EMF Measurements at 2.4 GHz 

The detailed description of the three sets of measurements is given below: 

 In Lab 1, which is the research lab, measurements were performed in 5 

different positions, one in the middle of the room (position 1) and the others 

close to the corners, leaving a distance of 1.4 m from the walls, as in the 

previously described measurement campaigns (Chapter 4). The duration of 

each measurement was equal to 6 hours and data samples in the different 

positions were recorded during different days in the afternoon and evening. 

 The second location was the Lab 2, which is the teaching lab. A 

measurement of 24-hour duration was performed in the middle of the room 

to assess the variability of the WiFi signal along the day and night. In this 

lab, as well as in the previous one, a sample was recorded every 10 seconds. 
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 The third set of measurements was selected from the campaigns carried out 

in Chapter 4, and the recordings performed in the position 5 of Classroom 1 

were selected, since in that position the highest mean electric field was 

obtained. As explained in that chapter, these samples were obtained close to 

the middle of the classroom and a sample per 4 seconds was recorded. 

In all the locations, the exposure meter was placed at a height of 1.2 m from 

the floor, since people usually sit at this level. In the new sets of measurements, 

a sample every 10 seconds was recorded in order to enable longer battery life, so 

measurements of 24 hours can be taken without the need of replacing them. 

Table 6.2 and Table 6.3 summarize the mean, standard deviation (SD) and 

maximum values of the measured electric field averaged over 6 minutes. 

Moreover, the maximum recorded level considering all the samples before 

average is given. In Lab 1, results per measurement position are given and in 

Classroom 1 the results obtained in position 5 are provided, both shown in Table 

6.2. In Lab 2, the results are calculated for the different periods of the day: 

morning (from 6:00 to 14:00), afternoon and evening (from 14:00 to 22:00) and 

night (from 22:00 to 6:00), as shown in Table 6.3. The highest level of the 

acquired samples was 242 mV/m, from the set of measurements of Chapter 4. 

In Lab 1, the maximum sample recorded was equal to 127 mV/m, acquired in 

position 3, and the maximum field level averaged over 6 min was equal to 

31.75 mV/m. Regarding the 24-hour measurement, highest levels of the WiFi 

signal were detected during the day. In general, the WiFi signal levels in Lab 2 

were lower than those measured in the research lab (Lab 1). The maximum mean 

electric field level obtained in the measurements of Chapter 4, is higher than the 

mean levels of the new sets of recordings. 

Table 6.2. Electric field levels (mV/m) measured at the different positions of Lab 1 and in position 5 of 
Classroom 1 

 

Position 

6 min averaged 

Max sample Location Mean (SD) Max 

Lab 1 

1 26.99 (1.24) 27.96 85.15 

2 30.40 (1.09) 31.75 95.00 

3 13.44 (13.45) 28.16 127.00 

4 26.33 (1.38) 28.06 70.00 

5 23.71 (0.77) 24.85 66.00 

Classroom 1 5 109.54 (5.34) 117.16 242.00 
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Table 6.3. Electric field levels (mV/m) measured during 24 hours in the middle of Lab 2 

Period 

6 min averaged 

Max sample Mean (SD) Max 

Morning 12.65 (2.54) 15.67 42.00 

Afternoon & Evening 10.15 (0.63) 11.33 77.00 

Night 7.87 (0.35) 8.49 35.00 

 

4.2. Assessing SAR values from Electric Field Measurements  

In order to convert measured data to SARWB values, three methods proposed 

by different authors were used. The description of each method is presented 

below, together with the explanation of the conversion developed in this work to 

get SARWB values from the WiFi measurements. 

 Method 1  

In (Joseph 2010b) some functions are provided to undertake the conversion 

for different wireless services and several scenarios. They used different 

homogeneous spheroid human phantoms at 950 MHz and the results showed 

that the highest SAR value was obtained for the phantom of lowest weight. For 

the other services and frequencies, they employed this phantom, the 1- year-old 

child, whose mass was equal to 10 kg. The dielectric properties for the 

homogeneous phantoms were selected from (IEC 2005). 

In the present work, the function provided for the 1-year-old child at 

2.45 GHz is used as the first method to calculate the whole-body SAR. The 

function provides the 95th percentile of the SARWB (W/kg) and is given as follows: 

𝑃95(𝑆𝐴𝑅𝑊𝐵) = 𝑎(𝐸)𝑏     (6.1) 

The electric field 𝐸 (V/m) has to be averaged over 6 min and 𝑎 and 𝑏 are the 

parameters to fit the equation to the different phantoms, frequencies and 

environments. In the selected environment, the urban-indoor new office-

standstill, and for the frequency band of 2.4 GHz, the values of 𝑎 and 𝑏 are equal 

to 4.029·10-5 and 2, respectively. 
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These authors obtained a SARWB value of 1.19 µW/kg for a measured field 

level of 170 mV/m in the 2.4 GHz WiFi band, for the same environment and for 

the same phantom (the 1-year-old child). 

 Method 2  

In (Bamba 2014) a formula is proposed to determine the SARWB, provided 

that the incident power densities and the body mass 𝑚 (kg) are known. This 

formula is based on the body surface area 𝐵𝑆𝐴, since the human body absorption 

in the GHz region is mainly influenced by it. The 𝐵𝑆𝐴 estimation formula is given 

by: 

𝐵𝑆𝐴 = 0.097 · 𝑚0.6466 (6.2) 

In a realistic environment, a person is assumed to be exposed to both line of 

sight (LOS) plane wave and to diffuse multipath components (DMC) according 

to the room electromagnetics theory (Andersen 2007). But the DMC cannot be 

characterized by the specular components due to hardware and software 

resolution limitations (Poutanen 2011). For this reason, when performing the 

conversion to SAR levels, usually the DMC is not considered. Bamba et al. (2014) 

accounted for the DMC using a method that is based on the room EM theory 

(Andersen 2007), which states that the total power consists of the first specular 

path (i.e. LOS component) and the DMC. Numerical simulations using the 

FDTD method were performed to compute the SARWB and to determine the 

parameters of the formula. Moreover, they validated the formula on 

heterogeneous phantoms. 

The SARWB (W/kg) proposed formula due to LOS component considering 

the BSA above described is provided below: 

𝑆𝐴𝑅𝑊𝐵𝐿𝑂𝑆 = 0.21 · 𝑚−0.3534 · 𝜂 · 𝑘 · 𝑆𝐿𝑂𝑆          𝑚 ≥ 10 (6.3) 

Where 𝜂 is the absorption coefficient and at 2.45 it takes a value of 0.54, at 

that frequency the parameter 𝑘 is equal to 0.2. 𝑆𝐿𝑂𝑆 is the incident power density 

of the LOS component (W/m2) and 𝑚 is the person’s mass (kg). 

The SARWB due to diffuse fields is given by: 

𝑆𝐴𝑅𝑊𝐵𝐷𝑀𝐶 = 0.21 · 𝑚−0.3534 · 𝜂 · 𝑆𝐷𝑀𝐶           𝑚 ≥ 10 (6.4) 
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In the present work, SARWB values using this method were calculated in two 

ways, ignoring the DMC and considering it. In the second case, the distance 

between the receiver and the access point of the lab, which was the main source 

of WiFi exposure, was considered in order to assess the contribution of the DMC. 

Based on the work developed in (Poutanen 2011), the DMC contribution should 

be less than 45%. Moreover, in order to establish the DMC contribution 

according to the distance between the transmitter and receiver, the work 

developed by (Bamba 2013) was followed. Considering the maximum values of 

the 6-min averaged electric fields, and the distance from the closest access point, 

the DMC contributions were calculated and are shown in Table 6.4. The positions 

from 1 to 5 are the placements of the personal exposure meter in Lab 1 and 

Classroom 1 refers to the location where the highest mean electric field was found 

in the measurement campaign of Chapter 4 (Table 6.2). The periods of the day 

correspond to the measurements recorded in Lab 2 (Table 6.3). The power 

density (S) obtained from the maximum averaged electric field levels of these 

tables are also given in Table 6.4, together with the power densities of the LOS 

and the DMC components required when considering DMC contributions.  

Table 6.4. DMC contribution at each measurement position 

Position/ 

Period 
Distance DMC 

Max (6 min averaged) 

Total S (μW/m2) SLOS (μW/m2) SDMC (μW/m2) 

1 2 m 13% 2.07 1.80 0.27 

2 5 m 35% 2.67 1.74 0.94 

3 1 m 5% 2.10 2.00 0.11 

4 3 m 25% 2.09 1.57 0.52 

5 3.5 m 29% 1.64 1.16 0.48 

Classroom 1 2 m 13% 36.41 31.68 4.73 

Morning 2 m 13% 0.65 0.57 0.08 

Afternoon 2 m 13% 0.34 0.30 0.04 

Night 2 m 13% 0.19 0.17 0.02 

 

The equations (6.3) and (6.4) were applied for calculating the SARWB to two 

people, the first one with a mass of 10 kg, as the 1-year-old child considered in 

the previous method, and the second one with a mass of 70 kg, since this was the 

average mass considered in (Bamba 2014) for the man phantom. 
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 Method 3  

Another work that converted electric field strength measurements to 

exposure in terms of SARWB values was developed by Ibrani et al. (2014). In this 

case an empirical formula developed by Piuzzi et al. (2011) was used, which 

considers the human surface-to-mass ratio  
𝐴

𝑚
 , the incident power density 𝑆 and 

the frequency 𝑓, in gigahertz and restricted to 900 MHz-3 GHz frequency range: 

𝑆𝐴𝑅𝑊𝐵 = (0.31 − 0.039 · 𝑓) (
𝐴

𝑚
) 𝑆 (6.5) 

The surface area 𝐴 (m2) is calculated from the height (cm) and mass (kg) of 

the person using the following equation: 

𝐴 = 0.024265 · ℎ𝑒𝑖𝑔ℎ𝑡0.3964 · 𝑚0.5378 (6.6) 

In the present work, two human bodies were also considered for these 

calculations, the one-year-old child of 10 kg of mass and the man with a weight 

of 70 kg. To apply this method, the heights of the human models are required. 

The height of the child was chosen as the 50th percentile of the height for a 10 kg 

boy provided by the WHO (2018), resulting in a value equal to 77.5 cm. Regarding 

the man, a height of 1.75 m was considered, since it was the height established in 

(Bamba 2014) for the average man of 70 kg of mass. 

Table 6.4 summarizes the three methods used to convert measured electric 

field levels to SARWB values. One of the differences between the method 2 and 

method 3 lies in the way of determining the BSA. In the second methodology, 

the authors considered an equation that only requires the body mass (Livingston 

2001) and then they investigated its correctness by means of numerical 

simulations. However, a formula that requires the weight and height in order to 

calculate the BSA was employed in method 3 (Haycock 1978). 
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Table 6.5. Description of the methods used to convert measurement data to SARWB values 

Method Description 
Input 

parameters 
Ref 

Method 1 Function to convert E field to SARWB E field (Joseph 2010b) 

Method 2 

No DMC 
Formula to convert power density (S) to 

SARWB 
S 

Body mass 
(Bamba 2014) 

Method 2 

DMC 

Calculate DMC contribution 
Apply formulas to convert: 

SLOS to SARWBLOS 

SDMC to SARWBDMC 

SARWB=SARWBLOSS+SARWBDMC 

S 
Body mass 

(Bamba 2014) 
(Poutanen 2011) 
(Bamba 2013) 

Method 3 Formula to convert S to SARWB 

S 
Body mass 

Height 
(Ibrani 2014) 

 

5. SARWB RESULTS DUE TO WIFI SIGNALS AND 

WEARABLE ANTENNAS 

Table 6.6 shows the results of the SARWB values obtained for the maximum 

levels of the electric field levels averaged over 6 minutes included in the third 

column of Table 6.2 and Table 6.3. As shown in the table, higher values are 

obtained for the 10 kg child due to the lower mass and, considering method 2, 

the DMC contributions produce higher results, which makes sense since a more 

realistic situations is considered adding the emission levels coming from these 

multipath components.  

 Moreover, methods 1 and 2 give similar results when the DMC contribution 

is equal to 13%, this could be explained as follows. When using the method 1 for 

calculating SARWB, the parameter 𝑎 of the equation (6.1) depends, among others, 

on the scenario. In this work, the parameter value of the urban-indoor new office-

standstill scenario was selected and it is probably that the measurements carried 

out in that scenario for determining the 𝑎 value were performed in an 

environment with a DMC contribution close to 13%. 

Focusing on the recordings from the measurement campaign of Chapter 4, 

gives SARWB results much higher than the other sets of measurements. These 

samples were selected because gave the highest mean exposure level (position 5 

of Classroom 1), so it can be concluded that the SARWB values calculated for this 

position give the maximum exposure level at university taking into account the 
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conditions of the measurement campaigns of this thesis, such as height of 

measurement. 

Regarding the simulations of the wearable antennas, the maximum power 

absorbed at 2.45 GHz was 5.21 mW for the off-body antenna design and 

9.78 mW in the case of the in-body antenna, both obtained on the woman body 

model. The total masses of the human models are 84.82 kg for the woman and 

106.17 kg for the man (Massey 2016). Calculating the SARWB as the power 

absorbed divided by the total mass, in these cases considering the woman’s mass, 

gives maximum SARWB values of 61.42 μW/kg for the off-body antenna and 

115.30 μW/kg for the in-body design, as presented in Table 6.6. These levels are 

two orders of magnitude higher than the levels calculated from the maximum 

measured electric field (Classroom 1), and around three orders of magnitude 

higher than the other WiFi measurements. 

Table 6.6. SARWB values (nW/kg) calculated using the three different methods from the electric field 
measurements obtained in the two labs and in a classroom of the university and those obtained due to the wearable 

antennas 

SARWB (nW/kg) 

 Converted data from EMF measurements 

  
Method 

1 
Method 2 Method 3 

 Position 10 kg 
10 
kg 

70 
kg 

DMC 10 
kg 

DMC 70 
kg 

10 
kg 

70 
kg 

Lab 1 

1 31.49 20.84 9.59 31.68 14.57 21.07 11.84 

2 40.61 26.87 12.36 64.50 29.67 27.17 15.26 

3 31.96 21.15 9.73 25.38 11.67 21.38 12.01 

4 31.72 20.99 9.66 41.98 19.31 21.22 11.92 

5 24.88 16.47 7.57 35.57 16.36 16.65 9.35 

Classroom1 5 553 366 184 556 280 370 208 

Lab 2 

Morning 9.89 6.54 3.01 9.95 4.58 6.62 3.72 

Afternoon 5.18 3.42 1.58 5.21 2.39 3.46 1.95 

Night 2.91 1.92 0.88 2.92 1.34 1.94 1.09 

                           Wearable antennas 

Off-Body Max Level 61.42·103      

In-Body Max Level 115.30·103   
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The basic restriction for the SARWB at these frequencies is 0.08 W/kg 

(ICNIRP 1998), so all the values obtained in this analysis are below the limits. 
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6. CONCLUSIONS 

The evaluation of near field exposure in the 2.4 GHz frequency band was 

performed using 3 different types of radiation sources. The first two sources were 

the two wearable slot antennas designed for off-body and in-body 

communications. As shown in this chapter, it is important to perform the 

evaluation at different frequencies because of the frequency shift produced from 

one location to another. The power absorbed at 3 GHz was sometimes higher 

than at 2.45 GHz. Moreover, when analyzing the power absorbed in different 

tissues it was concluded that in some cases the results depend on the body 

posture. For example, when placing the off-body antenna on the side of the torso 

of the woman body model, part of the power was absorbed in the arm due to its 

proximity to the antenna and this gave a higher level of exposure. 

Regarding the third radiation source, the SARWB was calculated using the field 

strength data measured from the WiFi networks. Two new sets of measurements 

were carried out with the exposimeter. Moreover, the measurements of the 

highest mean exposure level acquired in the campaign detailed in Chapter 4 were 

used to calculate the SARWB levels in that location. These samples were taken in 

the middle of a classroom with the exposimeter. Although the maximum sample 

level in such measurement campaign was acquired with the spectrum analyzer in 

another location, in order to convert measured data to SAR values, the sample 

levels have to be averaged over 6 min, so taking the recordings with the highest 

average value is more critical. After averaging the field levels, the maximum values 

were selected for doing the conversion, obtaining in this way the maximum 

SARWB values. 

Finally, the exposure levels produced by wearing the antennas were 

compared with the exposure values calculated from the WiFi signal 

measurements. The antennas placed on the body gave exposure levels between 

two and three orders of magnitude higher than the levels calculated from the WiFi 

signals. 
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CHAPTER 7: CONTRIBUTIONS & 

FUTURE WORK 

In this chapter, the main contributions of this work are gathered, the obtained 

results dissemination is presented, and finally, several research lines for future 

work are described. 
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1. CONTRIBUTIONS 

The driving force for this research work is the willing to contribute to the 

methods to measure, analyze and assess human exposure to EMFs, as well as 

provide significant values useful to reinforce the knowledge of exposure levels in 

both the near and far field regions. 

More precisely, the contributions of this work can be described according to 

the objectives defined in Chapter 1. 

1.1. Establish a measurement methodology appropriate for 

recording accurate and actual WiFi signal levels 

The third chapter of this thesis includes the existing difficulties for accurately 

measuring signals transmitted in the form of pulses or bursts and the need of 

providing specific methods for recording these signals. In some cases, such as 

when measuring radio impulsive noise, a procedure for taking samples in the time 

domain is adequate. Nevertheless, this is not the case of WiFi signals since the 

power level in a wide range of frequencies has to be measured simultaneously. 

Therefore, the methodology for acquiring accurate WiFi signal levels is based on 

a spectrum analyzer configuration in the frequency domain. 

As a first step, a procedure for selecting the proper equipment configuration 

was developed, since as detailed in Chapter 3, the spectrum analyzer settings can 

have huge influence on the results, especially when working with signals 

transmitted in the form of pulses. The proposed procedure for finding the 

optimal setup was described in detail and it consists of three phases: 

 Acquisition of reference signal levels. 

 Study of the influence of the measurement parameters. 

 Identification of the spectrum analyzer optimal configuration. 

One of the benefits of this procedure is that it can be applied to identify the 

optimal equipment configuration to acquire samples of the human exposure 

levels caused by other signals, such as the WiFi signals transmitted in the 5 GHz 

frequency band, or even in the case of signals from other RF services, as for 

example the ones corresponding to 5G mobile communication systems. 

The reference levels defined in the first phase of the above mentioned 

procedure were obtained from time domain measurements. The proposed 
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configuration for taking signal samples in the time domain was given in Table 3.3 

and it is also presented in the following Table. 

Table 7.1. Spectrum analyzer configuration in the time domain. 

Parameter Time Domain 

fc (MHz) 2412 ± 0.3125·N 

N= 0, 1, 2, … 32 

Span (MHz) Zero Span 

RBW (MHz) 0.3 

VBW (MHz) 1 

SWT (s) 1 

SWP 8001 points 

Detector RMS 

Trace Mode clear/write 

 

The second contribution of this part of the work is the proper measurement 

configuration for taking WiFi signal samples in one channel and in the whole 

2.4 GHz WiFi band. The setups of the spectrum analyzer for these two cases 

were provided in Table 3.9 and Table 3.10 of this thesis, and both configurations 

are given in the following Table. 

Table 7.2. Configurations of the spectrum analyzer for performing measurements in one channel and in the whole 
2.4 GHz WiFi band. 

Parameter 
Value 

One channel 

Value 

2.4 GHz WiFi band 

fc  Central frequency of the channel 2441.75 MHz 

Span  20 MHz 83.5 MHz 

RBW  0.3 MHz 1 MHz 

VBW 1 MHz 3 MHz 

SWT  2.5 ms 2.5 ms 

SWP 501 points 501 points 

Detector RMS RMS 

Trace Mode clear/write clear/write 

 

1.2. Assess human exposure to WiFi signals in public indoor 

environments 

This phase of the work contributes to the study of characteristic RF 

emissions and its corresponding exposure levels in the evaluated scenarios. These 
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results are relevant in order to enhance the knowledge in dosimetry and exposure 

assessment, as reported in the WHO research agenda (WHO 2010). One of the 

novelties of the measured WiFi signal samples lies in the methodology followed 

for acquiring them, the one mentioned in the previous subsection, since that is 

the first measurement configuration for WiFi signal exposure based on accurately 

defined signal reference levels. 

Before presenting the obtained WiFi exposure levels, a discussion of the data 

analysis and the proper statistics for evaluating this type of exposure was reported 

in Chapter 4, which can be very useful for future measurement campaigns aimed 

at reporting spatial or temporal variability of emissions in WLANs. One of the 

conclusions drawn from this discussion was that the 90th percentile was found to 

be the most appropriate one for representing WiFi exposure variations based on 

the nature of these signals. The median value or 50th percentile had fewer 

variations along the day and between the different studied places. Also, 

percentiles higher than the 99th, which can have higher variations, were not 

representative of EMF exposure since they indicated singular occurrences of the 

signal. However, the mean and median values are important statistics for 

epidemiological studies and the maximum levels are of interest when checking 

compliance with regulations. 

The statistical discussion and the presentation of the WiFi exposure levels 

for long-term and 1-hour measurements also contribute to the analysis of EMF 

exposure data. Regarding the 24-hours measurements, first the signal variability 

due to the different placements of the receiver within the same location was 

reported. Then, exposure variability along 24 hours in the same point was shown 

and finally, average WiFi exposure levels for each place and period of the day 

were calculated. In the case of the 1-hour measurements, the WiFi signal 

variability due to the different measurement points within a place was determined 

and the exposure assessment in each place was also conducted.  

Finally, the WiFi exposure levels in the 2.4 GHz frequency band reported in 

various scientific papers and measured by means of different instrumentation or 

methodologies were compared. The detailed comparison of the instrumentation 

and procedures were provided in Chapter 4 and the results from the different 

measurement campaigns are summarized in Table 4.15 of such chapter, as shown 

below. 
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Table 4.15. Electric field levels (V/m) obtained in different measurement campaigns 

Ref Mean Median Range Description 

(Sagar 2018) 0.01-0.03 - - Eme Spy 201 
ExpoM-RF 

(Joseph 2010a) 0.019-0.082 - - Eme Spy 120/ 121 

(Joseph 2010c) 0.020 - 0.006-0.1 Weighting factor 

(Röösli 2008) ROS 0.05 0.02 NA-0.23 Eme Spy 120 

(Röösli 2008) Naïve 0.06 0.05 0.05-0.22 Eme spy 120 

(Karipidis 2017) 0.060-0.114 - - Radiation Meter 

(Tomitsch 2015) 0.077-0.118 0.000-0.013 - Max-hold 

Our work 0.005 0.005* 0.004-0.408 Analyzer 24 h 

Our work 0.005 0.005* 0.005*-0.269 Analyzer 1 h 

Our work 0.031 0.029 0.005-0.242 Eme Spy 200 1 h 

* The calculated values were between 0.0045 and 0.0049 V/m, but when rounding to the nearest 

third decimal a value of 0.005 V/m was set. 

1.3. Design and implementation of wearable devices 

In Chapter 5 the design and fabrication of two different wearable antennas 

was presented. These devices, which are increasingly being demanded, give 

solution to different applications as explained in the beginning of that chapter. 

One of the advantages of these antenna models is that the human exposure to 

RF emissions was considered in the designing process, analyzing in this way 

several parameters related to the power absorbed in the body. 

Some of the remarkable results regarding the absorption in human bodies are 

described below. One of them was the linear relationship between the antenna 

radiation efficiency and the power absorbed in body tissues, presented in Figure 

5.7. Considering this and that the efficiency of the antenna model proposed for 

off-body communications was improved with respect to the previous models, the 

power absorbed in tissues was reduced. 
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Figure 5.7. Power absorbed in tissues as function of antenna radiation efficiency. 

Then, it was checked that SAR and power absorbed in the body are not 

always correlated. This can be explained because SAR results give information 

about the maximum absorption averaged over 10 g of body tissue, but this does 

not allow the evaluation of the power absorbed by the different parts of the body. 

Risco et al. (2012) demonstrated that two similar values of SAR can be related to 

very different values of head absorption and in this work, the same effect in other 

parts of the body was demonstrated. 

Finally, the body mass index was found to be not an influential factor on the 

performance of the antennas. 

1.4. Conduct an analysis of the exposure in the near field region  

The evaluation of the power absorption in the near field region was described 

in Chapter 6. First, a comprehensive investigation into exposure due to wearable 

antennas was presented, contributing to the understanding of dosimetry and 

exposure assessment in the near field region. SAR and power absorption in 

human bodies were assessed for two body models, a male and a female, when 

placing the two different antennas in different locations of the body models. In 

addition, the percentage of power absorbed by different types of tissues was also 

reported. These evaluations were performed at three different frequencies in the 

2.4 GHz band to consider the frequency shift produced when placing the 

antennas at different locations. 

Another contribution was the review and application of the methods 

proposed in the literature to convert data measured in the far field region to 
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SARWB values. Three different methods proposed by different authors were 

selected to convert WiFi signal levels measured in the far field region to SARWB 

levels. The SARWB levels calculated from the WiFi measurements and from the 

wearable antennas were shown in Table 6.6 of that chapter and these results are 

also included below. 

Table 6.6. SARWB values (nW/kg) calculated using the three different methods from the electric field 
measurements obtained in the two labs and in a classroom of the university and those obtained due to the wearable 

antennas 

SARWB (nW/kg) 

 Converted data from EMF measurements 

 
 Method 

1 
Method 2 Method 3 

 
Position 10 kg 10 

kg 
70 
kg 

DMC 10 
kg 

DMC 70 
kg 

10 
kg 

70 
kg 

Lab 1 

1 31.49 20.84 9.59 31.68 14.57 21.07 11.84 

2 40.61 26.87 12.36 64.50 29.67 27.17 15.26 

3 31.96 21.15 9.73 25.38 11.67 21.38 12.01 

4 31.72 20.99 9.66 41.98 19.31 21.22 11.92 

5 24.88 16.47 7.57 35.57 16.36 16.65 9.35 

Classroom 
1 

5 553 366 184 556 280 370 208 

Lab 2 

Morning 9.89 6.54 3.01 9.95 4.58 6.62 3.72 

Afternoon 5.18 3.42 1.58 5.21 2.39 3.46 1.95 

Night 2.91 1.92 0.88 2.92 1.34 1.94 1.09 

                           Wearable antennas 

Off-Body Max Level 61.42·103      

In-Body Max Level 115.30·103   
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2. DISSEMINATION 

2.1. International Journals 

Title: Wearable slot antenna at 2.45 GHz for off-body radiation: Analysis of efficiency, 

frequency shift, and body absorption 

Authors: Marta Fernandez, Hugo G. Espinosa, David V. Thiel, Amaia Arrinda 

Publication: Bioelectromagnetics, vol. 39, n. 1, pp. 25-34 

Year: 2017 

Contributions: This paper presents the interaction between the human body and an 

antenna designed for off-body communications. The effect between the body and the 

antenna is studied by means of simulations and measurements and some conclusions 

regarding the power absorption are drawn. 

 

Title: An inward directed antenna for gastro-intestinal radio pill tracking at 2.45 GHz 

Authors: Marta Fernandez, David V. Thiel, Amaia Arrinda, Hugo G. Espinosa 

Publication: Microwave and Optical Technology Letters. Doi:10.1002/mop.31217 

Year: 2018 (Accepted in March 2018, it will be published in May 2018) 

Contributions: In this paper the procedure for designing, fabricating and validating the 

in-body antenna model is presented. The antenna performance is tested on different 

people and simulations are carried out to check its usefulness as a receiver for gastro-

intestinal pill.  

 

Title: Measurement methodology for determining the optimal frequency domain 

configuration to accurately record WiFi exposure levels 

Authors: Marta Fernandez, David Guerra, Unai Gil, Ivan Peña, Amaia Arrinda 

Publication: IEEE Transactions on instrumentation and measurement 

Year: Accepted in May 2018 

Contributions: This paper shows the measurement methodology proposed in order to 

accurately assess WiFi signal levels. The procedure followed in order to define this 

methodology is explained in detail. The drawbacks of other methods are also presented. 
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Title: Harmonization of noise measurement methods: Measurements of radio impulsive 

noise from a specific source 

Authors: Marta Fernandez, Iratxe Landa, Amaia Arrinda, Rubén Torre, Manuel M. Vélez 

Publication: IEEE Antennas and Propagation magazine, vol. 57, pp. 64-72 

Year: 2015 

Contributions: This paper describes a procedure for measuring and evaluating radio 

impulsive noise, which consists of emissions transmitted in the form of short pulses. A 

methodology for combining the measured impulsive samples to bursts is presented. Once 

the bursts are defined, the impulsive noise can be characterized. 

 

Title: Measurements of impulsive noise from specific sources in medium wave band 

Authors: Marta Fernandez, Iratxe Landa, Amaia Arrinda, Rubén Torre, Manuel M. Vélez 

Publication: IEEE Antennas and wireless propagation letters, vol. 13, pp. 1263-1266 

Year: 2014 

Contributions: This letter presents the results obtained in measurements of impulsive 

noise in an indoor environment, when there is a main source of noise producing impulses. 

These results are useful for characterizing noise sources. 

 

Title: Maximum-Entropy-Rate Selection of Features for Classifying Changes in Knee 

and Ankle Dynamics During running 

Authors: Garry A. Einicke, Haider A. Sabti, David Thiel, Marta Fernández 

Publication: IEEE Journal of Biomedical and Health Informatics, Early Access 

Year: 2017 

Contributions: A wearable musculo-skeletal monitoring system, which consists of two 

wearable sensors, is used to investigate deteriorations in knee and ankle dynamics during 

running. 
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Title: Characterisation of exposure to non-ionising electromagnetic fields in the Spanish 

INMA birth cohort 

Authors: Mara Gallastegi, Mònica Guxens, Ana Jiménez-Zabala, Irene Calvente, Marta 
Fernández, Laura Birks, Benjamin Struchen, Martine Vrijheid, Marisa Estarlich, Mariana 
F. Fernández, Maties Torrent, Ferrán Ballester, Juan J Aurrekoetxea, Jesús Ibarluzea, 
David Guerra, Julián González, Martin Röösli, Loreto Santa-Marina 

Publication: BMC Public Health, 16:167 

Year: 2016 

Contributions: This study describes the methodologies used for characterizing exposure 

of children to EMFs in the INMA (INfancia y Medio Ambiente- Environment and 

Childhood) Project. Indirect and direct methods are conducted to assess exposure levels, 

the first ones consist of filling questionnaires, gathering information about the proximity 

to emission sources and using geospatial propagation models. The direct methods are 

related to measurements. 

 

Title: Power Absorption in Human Bodies due to Wearable Antennas and RF Signals in 

the 2.4 GHz Frequency Band 

Authors: Marta Fernandez, Hugo G. Espinosa, David Guerra, Ivan Peña, David V. Thiel, 

Amaia Arrinda 

Publication: Bioelectromagnetics 

Year: To submit in May 2018 

Contributions: This paper presents the evaluation of human exposure to wearable 

antennas and WiFi signals in the near field region. A comprehensive study of the power 

absorption in the human tissues due to two different wearable antennas is provided. 

Furthermore, methods for converting measured WiFi levels to exposure in the near field 

are studied and applied. 

 

Title: Measurements and analysis of temporal and spatial variability of WiFi exposure 

levels in the 2.4 GHz frequency band 

Authors: Marta Fernandez, David Guerra, Unai Gil, Iván Peña, Amaia Arrinda 

Publication: Measurement (Elsevier) 

Year: To submit in May 2018 
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Contributions: This paper presents the evaluation of human exposure to WiFi signals in 

the 2.4 GHz frequency band. The temporal and spatial variability of these signals is 

analyzed. Techniques and statistics for analyzing and presenting the obtained values are 

discussed. Finally, the results obtained in various measurement campaigns are compared 

and analyzed. 

 

2.2. International Conferences 

Title: Slot antenna for wearable applications and SAR evaluation 

Authors: Marta Fernandez, Hugo Espinosa, David Thiel 

Conference: Australian symposium on Antennas (ASA) 

Date: February 2017 

Place: Sydney, Australia 

Contributions: The design and fabrication of a slot wearable antenna is described, 

detailing the advantages of the use of these antenna models for wearable applications. 

Simulations and measurements of the antenna performance in free space and on body are 

presented. 

 

Title: Analysis of human exposure due to WiFi signals based on a novel measurement 

methodology 

Authors: Marta Fernández, Iván Peña, David Guerra, Amaia Arrinda 

Conference: IEEE International conference on electromagnetics in advanced 
applications (ICEAA) 

Date: September 2016 

Place: Cairns, Australia 

Contributions: In this paper the contribution to the closest access point to the total WiFi 

exposure in the 2.4 GHz band is assessed. Moreover, some preliminary measurements of 

the day and night exposure in WLANs are presented, considering only the closest access 

point in some of the measurements and all the channels in the specified frequency band 

in the rest of cases. 
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Title: Characterisation of exposure to non-ionising electromagnetic fields in primary 

schools belonging to the study area of INMA-Gipuzkoa birth cohort 

Authors: Mara Gallastegi, Ana Jiménez-Zabala, Loreto Santa-Marina, Mikel Ayerdi, Juan 

José Aurrekoetxea, Marta Fernández, Anke Huss, Jesús Ibarluzea 

Conference: Annual Conference of the International Society for Environmental 
Epidemiology (ISEE) 

Date: September 2016 

Place: Rome, Italy 

Contributions: This study assesses the exposure to EMF-NIR (non-ionizing radiation) 

in 26 primary schools of the INMA-Gipuzkoa study area by direct methods (spot and 

long-term measurements). 

 

Title: Impulsive noise characterization and its effect on digital audio quality 

Authors: Iratxe Landa, Manuel M. Velez, Amaia Arrinda, Rubén Torre y Marta 

Fernandez 

Conference: IEEE International Symposium on Broadband Multimedia Systems and 
Broadcasting (BMSB) 

Date: June 2015 

Place: Gent, Belgium 

Contributions: This study is focused on the analysis of the effects that the impulsive and 

Gaussian radio noise have in digital audio broadcasting. The analysis is based on radio 

noise measurements, which are latter combined with different transmission modes of 

DRM and the effects in the reception are studied. 

2.3. National Conferences 

Title: Análisis de equipos de medida de exposición electromagnética en redes WiFi 

Title in English: Analysis of measurement instrumentation for measuring exposure to 

WiFi signals 

Authors: Marta Fernández, Iván Peña, David Guerra, Teresa Echevarría , Amaia Arrinda 

Conference: Simposium Nacional de la Unión Científica Internacional de Radio (URSI) 

Date: September 2015 
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Place: Pamplona, Spain 

Contributions: Results of WiFi signal levels measured by means of a personal exposure 

meter and a spectrum analyzer are compared in this study. 

 

2.4. More activities related to scientific dissemination 

 

Speaker at the seminar ‘Antenas de telefonia movil y redes de comunicación inalámbrica 

y salud’ (in English, ‘Mobile phone antennas and wireless communication networks, and 

health’) 

Title: Campos electromagnéticos de RF. Redes de telefonía móvil, (in English, 

‘Radiofrequency electromagnetic fields. Mobile communication networks’) 

Date: November 2015  Place: Vitoria, Spain 

Organized by: Basque Government 

Contribution: A seminar was given on basic concepts about electromagnetic fields in the 

radiofrequency range and the operation of mobile phone communication networks. Most 

of the attendees were technicians working in the Basque Government and local councils 

with competence in health and environmental programs. 

 

Speaker at the talk ‘Las ondas electromagnéticas’ (in English, ‘electromagnetic waves’) 

Date: June 2016  Place: Durango, Spain 

Organized by: Bizidun (an association of senior citizens) 

Contribution: A talk was given on basic concepts about wireless networks and antennas. 

The attendees were senior citizens belonging to ‘Bizidun’ association. 

 

Doctoral Workshops 

Title: Contribución a la metodología de medida de exposición electromagnética debida a 

redes WiFi (in English, ‘Contribution to the methodology for measuring human exposure 

to WiFi networks’) 

Authors: Marta Fernández, David Guerra, Amaia Arrinda 

Date: 2015  Place: Murcia, Spain 
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Contributions: a talk was given about WiFi signal characteristics and the methods used 

to measure exposure to these signals. 

 

Title: ‘Exposición electromagnética a señales WiFi: definición de metodología de medida 

y obtención de niveles’ (in English, ‘Human exposure to WiFi signals: description of the 

measurement methodology and acquisition of exposure levels’) 

Authors: Marta Fernández, Iñigo Trigo, Iván Peña, David Guerra, Amaia Arrinda 

Date: 2016  Place: Bilbao, Spain 

Contributions: a poster was presented showing some concepts about WiFi signals and 

the exposure levels obtained in some measurements.  
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3. FUTURE WORK 

The tasks and results of this thesis contribute significantly to improve the 

assessment and analysis of human exposure to RF fields in the near and far field 

regions. The following steps should be focused on applying the described 

techniques to other situations in order to deep in the knowledge of EMF 

radiation. 

More precisely, this research work could be continued as follows: 

 Apply the procedure followed to identify the optimal configuration of the 

spectrum analyzer to measure EMF exposure due to other signals. For 

example, it could be applied in order to establish the proper setup for 

measuring WiFi signals in the 5 GHz frequency band or even for measuring 

signals from other services, such as the ones corresponding to 5G mobile 

communication systems. 

 Conduct the research of WiFi exposure levels in other scenarios, such as 

outdoor environments. 

 Regarding the evaluation of exposure to wearable antennas, the analysis 

could be replicated for different postures of the body models, since changes 

in postures can modify the antenna performance and thus, the power 

absorption. 

 Although computational tools are perfectly valid to assess power absorption 

in the human body, a future line can be focus on performing measurements 

using phantom models in order to investigate differences due to the two 

different systems of evaluation. 
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Glossary 

 

BMI  Body Mass Index 

BSA  Body Surface Area 

CDF  Cumulative Distribution Function 

CENELEC European Committee for Electrotechnical 

Standardization  

DMC  Diffuse Multipath Components 

EMF  Electromagnetic Field 

fc    Center Frequency  

FDTD  Finite-Difference Time-Domain 

IARC  International Agency for Research on Cancer 

ICNIRP International Commission on Non-Ionizing Radiation 

Protection 

IEC  International Electrotechnical Commission 

IEEE  Institute of Electrical and Electronic Engineers 

ITU  International Telecommunication Union 

LOS  Line of Sight 

NLOS  No Line of Sight 

RF   Radiofrequency  

RMS  Root Mean Square 

RWB  Resolution Bandwidth 

S   Power Density 

SAR  Specific Absorption Rate 
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SARWB Whole Body Specific Absorption Rate 

SD  Standard Deviation 

SWP Sweep Points  

SWT Sweep Time 

VBW Video Bandwidth 

WBAN Wireless Body Area Networks 

WGN Gaussian noise 

WHO World Health Organization 

WLAN Wireless Local Area Network 
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