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Integrin beta 1 binding protein 2, melusin 

ITGβ1A β1A integrin  

ITGβ1D β1D integrin  

IκBα 
Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, 
alpha 

JAG1 Jagged 1 

KAL1 Anosmin-1  

kDa  Kilo Dalton 

KO Knockout 

Ky Kyphoscoliosis peptidase 

Leu Leucine 

LF Left front 

LGMD Limb girdle muscular dystrophy  

LGMD2A Limb girdle muscular dystrophy type 2A  

LH Left hind 

Lmna-/- Laminopathies mice model 

LRP5/6 Low density lipoprotein receptor-related proteins 5/6 

Lys Lysine 

M or m Male  

m/s  Meters/seconds  

M-199 Medium 199 

MABs Mesoangioblasts 

MAPK Mitogen-activated protein kinase 

mdx Duchenne muscular dystrophy mice model 

MEF2 Myocyte enhancer factor 2 

Mest Mesoderm specific transcript 

Mg 2+ Magnesium ion  

min Minutes 

miRNA  Micro RNA 
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MIT Microtubule interacting and transport  

ml Millilitres 

mM  Millimolar 

Mrf4 Myogenic factor 6 

MRFs Myogenic regulatory factors 

mRNA  Messenger RNA 

MSCs Mesenchymal stem cells 

mTOR  Mammalian target of rapamycin  

Murf1 or MURF1 Muscle-specific RING finger protein 1 

Myc Myelocytomatosis oncogene 

Myf5 Myogenic factor 5 

Myh1 Myosin, heavy polypeptide 1, skeletal muscle, adult 

Myh2 or MYH2 Myosin, heavy polypeptide 2, skeletal muscle, adult 

MyH3 Myosin heavy chain 3 

Myh4 Myosin, heavy polypeptide 4, skeletal muscle 

MyHC Myosin heavy chain 

Myl6b Myosin, light polypeptide 6B 

MyLC  Myosin light chain 

MyoD Myogenic differentiation 1 

Myog or MYOG Myogenin 

Myom3 Myomesin family, member 3 

Myot Myotilin 

Na+ Sodium ion  

Na3O4V2 Sodium orthovanadate 

NaCl Sodium chloride 

NADH Reduced nicotinamide adenine dinucleotide 

NADH-t β-nicotinamide adenine dinucleotide-tetrazolium reductase transferase 

NaF Sodium fluoride 

NaN3 Sodium azide 

NBT Nitro blue tetrazolium chloride  

N-CAM or CD56 Neural cell adhesion molecule 

NCX Na+/Ca2+ exchanger  

NFAT  Nuclear factor of activated T-cells 

NF-κB Nuclear factor-kappa B 

ng Nano grams 

NG2 Neuro-glial 2 proteoglycan 

nm Nanometres 

nNOS  Nitric oxide synthase 

p. Protein   

P/S Penicillin/streptomycin  

P-AKT Phosphorylated AKT 

Park2 Parkin 

Pax3 Paired box 3 

Pax7 Paired box 7 

PBS Phosphate-buffered saline 

PC1/2 Protease core subdomain 1/2 

PCR Polymerase chain reaction 

PCs Pericytes 
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PDGFRα Platelet derived growth factor receptor alpha 

PDGFRβ Platelet derived growth factor receptor beta 

PE Phycoerythrin 

PECAM-1  Platelet and endothelial cell adhesion molecule 1  

PEF Penta E-F hand  

P-ERK 1/2 Phosphorylated extracellular signal-regulated kinases 1/2 

PFA Paraformaldehyde 

P-GSK3β Phosphorylated glycogen synthase kinase-3 β 

PICs PW1 positive interstitial cells 

PINCH Cysteine-histidine-rich protein 

PKC Protein kinase C 

PLC Phospholipase C 

PLEIAD Platform element for inhibition of autolytic degradation 

PMCA Plasma membrane Ca2+ ATPase 

PMSF Phenylmethane sulfonyl fluoride 

P-p70S6K  Phosphorylated p70S6K  

Pparg Peroxisome proliferator activated receptor gamma 

Pro Proline 

P-RPS6 Phosphorylated ribosomal protein S6 

PSCs Pluripotent stem cells 

PTPRC Protein tyrosine phosphatase, receptor type, C  

Q Glutamine 

R or Arg Arginine 

RF Right front 

RH Right hind 

RNA Ribonucleic acid  

Rora RAR-related orphan receptor alpha 

rpm Revolutions per minute 

RPS6 Ribosomal protein S6 

rRNA  Ribosomal RNA 

RT Room temperature 

RT-PCR  Reverse transcription polymerase chain reaction 

RyR1 Ryanodine receptor 1 

Ryr2 Ryanodine receptor 2 

s Seconds 

S6K1 S6 Kinase 1 

Sca-1 Stem cells antigen-1 

SDS Sodium dodecyl sulphate 

Sema3c Semaphorin 3C 

Ser or S Serine  

SERCA Sarcoplasmic reticulum Ca2+-ATPase 

sFRP  Secreted frizzled-related protein 

SHD Succinate dehydrogenase 

Shh Sonic hedgehog 

siRNA Small interfering RNAs 

Six 1/4 Sineoculis homeobox homolog 1/4 

Slc16a1 Solute carrier family 16 (monocarboxylic acid transporters), member 1 

SOL Small lobes product homology 
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Sorbs1 Sorbin and SH3 domain containing 1 

SR Sarcoplasmic reticulum  

SRF Serum response factor 

T or t Thymine 

TA Tibialis anterior 

Tbp or TBP TATA box binding protein 

TCF/LEF T-cell factor/lymphoid enhancer factor  

TEMED N,N,N',N'-Tetramethyl-ethylenediamine  

TF Transcription factors 

Tfrc Transferrin receptor 

Thr Threonin 

TLDA TaqMan low-density arrays 

Tm Melting temperature 

Tn Troponin 

Tris  Tris (hydroxymethyl) aminomethane 

Trp Tryptophan 

TTN Titin  

UDG Uracil-DNA glycosylase 

VCAM1 Vascular cell adhesion molecule-1 

VGM Walton & Gardner-Medwin 

Vldlr or VLDLR Very low density lipoprotein receptor 

Wnt8a Wingless-related MMTV integration site 8a 

Wnt8b Wingless related MMTV integration site 8b 

WT Wild-type 

Zn Zinc-finger 

αSMA  Alpha-smooth muscle actin 

μl  Microliters 
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Las distrofias musculares son un conjunto heterogéneo de afecciones hereditarias 

caracterizadas por debilidad muscular y pérdida progresiva del tejido muscular. Están causadas por 

mutaciones en genes que codifican para proteínas requeridas para el normal funcionamiento del 

músculo.  

Inicialmente las distrofias musculares fueron clasificadas atendiendo a características clínicas 

sin embargo, debido al avance en técnicas genéticas, hoy en día la clasificación se basa e n los genes 

mutados y sus respectivas proteínas. 

Hay diversos tipos de distrofias musculares, la más abundante es la distrofia miotónica tipo 1 

seguida por la distrofia facioscapulohumeral y las distrofinopatias. Las distrofias musculares de 

cinturas (LGMD, de su nombre en inglés limb-girdle muscular dystrophy) son la cuarta forma más 

común, con una prevalencia estimada de 1,63 casos por 100 000 habitantes.  

Las distrofias musculares de cinturas comprenden un grupo heterogéneo de distrofias 

musculares las cuales comparten características clínicas similares. Se dividen atendiendo a su patrón 

de herencia, siendo de tipo uno (LGMD1) o tipo dos (LGMD2) cuando su herencia es autosómica 

dominante o autosómica recesiva respectivamente. Las diversas enfermedades son  clasificadas 

usando un índice alfabético según el orden cronológico de identificación. Según la última revisión de 

diciembre del año 2017, a día de hoy, hay descritas 8 distrofias musculares con herencia autosómica 

dominante (LGMD1A-1H) y 26 con herencia autosómica recesiva (LGMD2A-2Z). 

Este trabajo se centra en el estudio de la distrofia muscular de cinturas tipo 2A (LGMD2A) 

también conocida como calpainopatia. Está causada por mutaciones en el gen de la calpaina 3 

(CAPN3).  

Dentro del grupo de distrofias de cinturas es la más frecuente siendo de ente un 20% y un 50% 

de los casos. Una de las mayores prevalencias mundiales se encuentra en Guipúzcoa con 69 casos por 

millón de habitantes.  

El debut de la enfermedad se da en la segunda década de vida pudiendo ser anterior o 

posterior en casos aislados. Los primeros síntomas se caracterizan en su mayoría por una debilidad de 

los músculos proximales de las extremidades. Los pacientes también presentan elevados niveles de 

creatina quinasa en sangre (ente 5 y 20 veces) los cuales decrecen hasta alcanzar niveles normales en 

pacientes postrados en silla de ruedas donde la atrofia muscular es muy notoria.  

Como se ha comentado, los músculos proximales de las extremidades son los primeramente 

aparecen afectados, ampliándose el grupo de músculos afectos según la enfermedad avanza. Aun así 

la afección cardiaca y la debilidad muscular de los músculos respiratorios no es una característica que 

se observe en este grupo. La progresión de la enfermedad es muy variable pero norm almente los 
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pacientes acaban confinados en una silla de ruedas después de unos 25 años de evolución de la 

enfermedad. Ha día de hoy no existe ningún tratamiento. 

El espectro de mutaciones en el gen CAPN3 es altamente heterogéneo, lo cual ha impedido 

establecer una clara correlación genotipo-fenotipo. Así mismo, el desarrollo de la enfermedad es muy 

variable, habiéndose observado un similar progreso en pacientes con diferentes mutaciones en el gen 

y una evolución muy discordante en parientes portadores de las mismas mutaciones.   

La calpaina 3 es una cistein-proteasa no lisosomal dependiente de calcio, extracelular, 

específica de músculo esquelético. Está englobada dentro del grupo de calpainas clásicas debido a su 

homología de secuencia con las calpainas 1 y 2. Además de las estructuras características de estas dos 

calpainas, la calpaina 3 posee 3 regiones específicas denominadas región NS, IS1 e IS2 que le confieren 

unas características específicas como por ejemplo su capacidad autolítica, ausentes en las de más 

calpainas.  

Debido a su capacidad autolítica poco se sabe a cerca de su estructura así como de su 

regulación. Dentro de la célula muscular la calapina 3 se une a la zona N2A y C terminal de la titina, 

localizadas en la zona N2 y línea M del sarcoméro (unidad anatómica y funcional del músculo estriado 

limitado entre dos líneas Z y compuesto en su mayoría por las proteínas actina y miosina). Además 

también ha sido vista en la línea Z. La unión a titina protege a la calpaina 3 de ser degradada.  

Desde la identificación de la calpaina 3 como causante de la LGMD2A en 1995 diversos 

estudios se han llevado a cabo con el objetivo de estudiar el mecanismo patofisiológico de la 

enfermedad. Sin embargo, las funciones de la calpaina 3 no han sido completamente eluci dadas.  

Gracias a diversos estudios llevados a cabo en modelos murinos donde diversas mutaciones 

han sido introducidas en el gen de la calpaina 3, se han podido descubrir funciones tanto proteolíticas 

como no proteolíticas de la enzima. Esto llevó a postular que la calpaina 3 además de su función como 

proteasa, también ejerce un papel estructural en la fibra muscular.  

Una de las funciones atribuidas a la calpaina 3 es la remodelación del sarcómero ya que los 

ratones C3KO, en los cuales se ha eliminado el gen de la calpaina 3, presentan una formación anormal 

del mismo. También se ha relacionado la falta de calpaina 3 con un aumento de la apoptosis de los 

mionucleos de la fibra muscular mediada por una alteración de la ruta IκBα/NF-κB. Si bien es cierto 

que estudios posteriores demostraron que la apoptosis no estaba sucediendo en los mionucleos, un 

reciente estudio observó una elevada actividad de la ruta IκBα/NF-κB en músculos de pacientes 

LGMD2A.  

El hecho de que estudios histoquímicos mostrasen mitocondrias alteradas en pacientes y 

posteriores estudios observasen un aumento de mitocondrias funcionalmente deficientes las cuales 
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daban lugar a un aumento del estrés oxidativo pusieron de relieve la relación entre la calpaina 3 y las 

mitocondrias.  

También se ha relacionado la calpaina 3 con la liberación de Ca2+ en el músculo esquelético. Se 

ha observado como la falta de esta enzima da lugar a una reducción de AldoA y RyR lo que produce 

una reducción el en la liberación del calcio desde el retículo sarcoplásmico al citoplasma durante la 

contracción. Así mismo se ha observado una reducción de la recaptación de Ca2+ mediada por SERCA al 

retículo sarcoplásmico. Parece probada también la implicación de la calpaina en la regeneración 

muscular aunque la relación entre calpaina 3 y células satélite (célula madre muscular) han arrojado 

conclusiones contradictorias.  

Este trabajo ha sido enfocado en el estudio a nivel celular y molecular de la distrofia muscular 

de cinturas tipo 2A para un mejor conocimiento del mecanismo fisiopatológico subyacente a esta 

enfermedad.  

Estudios previos realizados en nuestro grupo demostraron una tendencia hacia la 

homogenización de las diferencias entre mioblastos y miotubos de controles y pacientes así como una 

falta de correlación entre la expresión génica de los modelos in vitro y el tejido de origen. Por ello se 

procedió al uso de suero humano tanto de controles come de pacientes para el cultivo in vitro con el 

objetivo de mejorar la correlación entre la expresión previamente observada en el músculo de los 

pacientes. Sin embargo el resultado no solo no mejoro el cultivo de miotubos sino que mostró un 

impacto negativo en la diferenciación de los miotubos.  

El hallazgo de genes diferencialmente expresados en músculos de pacientes junto con la 

observación de que miotubos de pacientes mostraban una morfología anómala con un número 

excesivo de núcleos, lo cual daba lugar a un aumentado índice de fusión, propició el estudio donde se 

silenciaron diferentes genes sobre expresados en pacientes con el objetivo de estudiar la implicación 

de los mismos en la enfermedad. Se escogieron los genes que codifican para las proteínas CD9 y 

melusina por estar en contacto directo con las integrinas (proteínas esenciales en la fusión de 

mioblastos la cual se había visto alterada en pacientes donde el necesario recambio de la isoforma de 

la integrina β1A por la β1D no se producía). También se seleccionó el gen FRZB ya que se trata de uno 

de los más altamente sobre expresados en músculos de pacientes así como en miotubos.  

Se postuló que la modulación de estos genes podría rescatar la fisiología de la enfermedad 

dando lugar al descubrimiento de posibles dianas terapéuticas. Para ello se caracterizó la expresión 

diferencial de genes y proteínas tras el silenciamiento de estos genes así como se estableció la 

implicación de los genes desregulados en la patofisiología de la enfermedad.  
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El estudio confirmo la relación previamente observada de estos tres genes. CD9 y FRZB son 

reguladores positivos que actúan sobre la expression de melusina y el gen de la melusina es un 

regulador negativo de la expression de FRZB. Mientras se observó un efecto nocivo en los miotubos 

tras el silenciamiento tanto de melusina como de CD9, el silenciamiento de FRZB dio lugar a un 

aumento de la isoforma β1D de las integrinas así como  un aumento en la expresión de genes infra 

expresados en los pacientes.  Por este motivo los estudios se centraron en el silenciamiento del gen 

FRZB.  

La observación de que el silenciamiento de FRZB daba lugar a un aumento de β-catenina 

nuclear permitió postular que FRZB podría mediar en la interacción entre la ruta de Wnt/β-catenina y 

las integrinas. Esta idea se apoyó en el hecho de que factores de transcripción como FOS el cual 

aumentaba su expresión tras el silenciamiento podrían regular la expresión de diversos genes  

rescatando el nivel de proteínas implicadas en la formación del costámero. El empleo de un 

mecanismo farmacológico (LiCl) para estimular la ruta de Wnt/β-catenina también mostro resultados 

similares a los observados tras el silenciamiento del gen FRZB.  

Así mismo se procedió al estudio de la miogénesis tras la activación de la ruta Wnt/β-catenina 

en estadios tanto tempranos como tardíos de diferenciación mediante tratamiento farmacológico y 

silenciamiento génico. La necesidad de un correcto control de la ruta Wnt/β-catenina en la 

diferenciación muscular hicieron que la inducción temprana mostrase un efecto negativo.  

Por todo ello gracias a los resultados obtenidos, se propuso la regulación de la expresión de 

FRZB como potencial diana terapéutica para la enfermedad LGMD2A ya que estudios in vitro 

respaldaron la idea de que podría rescatar la expresión hacia niveles apropiados en músculos de 

pacientes.   

Análisis previos llevados a cabo en músculos mostraron que las rutas de señalización de 

AKT/mTOR y de MAPK estaban alteradas en pacientes LGMD2A. Por ello, dado que el mejor 

conocimiento de estas rutas podría llevar a establecer los principales puntos afectados por la falta de 

calpaina 3, se estudiaron los efectores de estas rutas de señalización.  

La elevada fosforilación de AKT previamente observada en los músculos de los pacientes no 

dio lugar a un incremento de la fosforilación en los efectores S6K1 (residuos Thr-421 y Ser-424) y RPS6 

(residuos Ser-235 y Ser-236). Aunque poco se sabe a cerca de la implicación de la fosforilación de RPS6 

la ausencia de esta podría ser la causante de la menor área de fibra y de la menor fuerza muscular 

observada en los pacientes. Este análisis también puso de manifiesto la necesidad de mantener 

fosoforilados estos residuos en estas proteínas para un correcto funcionamiento muscular, ya que 

pacientes asintomáticos donde la degeneración muscular es mínima, poseían niveles que se asemejan 

a los de los controles sanos.  
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Por otro lado también se estudiaron las fosoforilaciones de los factores de transcripción FoxO 

ya que su fosforilación mediada por AKT impide el transporte al núcleo de los mismos donde ejercen 

su función de transcriptores de genes. Se observaron niveles significativamente elevados de FoxO4 

fosforilado así como de FoxO3 en menor medida. Esta falta de translocación al núcleo podría ser la 

causa de la desregulación observada en los genes EGR1, FOS, JUNB, CITED2, MYC, DOK5, COL1A1, 

COL1A2 and ITGB1BP2 ya que modelos animales donde una elevada actividad de FoxO fue observada 

estos genes mostraron una regulación contraria a la observada en los pacientes LGMD2A.  

Por último, debido a que los datos previamente obtenidos mostraron un efecto beneficioso 

tras el silenciamiento del gen FRZB, se procedió al estudio más en profundidad la función de esta 

proteína en el músculo esquelético.  Par ello se utilizó el modelo murino transgénico deficiente para el 

gen Frzb. Se realizaron diversas pruebas funcionales, se caracterizó la expresión muscular a nivel de 

RNA y proteína así como se procedió al análisis de células precursoras miogénicas extraídas del 

musculo, tanto de ratones transgénicos cono no transgénicos.   

El análisis a nivel genético mostró una regulación contraria de los genes Rora, Slc16a, Tfrc y 

Capn3 en ratones Frzb-/- donde el gen Frzb está ausente y en pacientes LGMD2A donde FRZB se 

encuentra incrementado. Por ello se pudo establecer la directa implicación de FRZB en la regulación 

de estos genes.  

Junto con estos hallazgos se confirmó la implicación de Frzb en la miogénesis ya que este 

regula la expresión de MyoD tanto a nivel genético como proteico.  

La miogénesis también fue estudiada mediante la inyección de cardiotoxina en el tibial 

anterior y en el sóleo de los ratones ya que esta toxina provoca una degene ración muscular seguida de 

regeneración, lo cual facilita el estudio. La inyección de cardiotoxina no mostró ninguna alteración en 

la capacidad regenerativa ni un incremento de fibrosis o tejido adiposo en el modelo transgénico.  

Se evaluó la influencia del ejercicio crónico en estos animales ya que diversas distrofias 

musculares muestran una baja tolerancia al mismo. Para ello se utilizó una cinta de correr. El ejercicio 

indujo una bajada en la expresión de los atrogenes tanto en ratones transgénicos como no 

transgénicos. Sin embargo no se observaron diferencias debidas al genotipo.  

Finalmete se selecionaron las células satélite y los mesoangioblastos (células con capacidad 

miogénica residentes en el músculo) para su posterior análisis. Por un lado, no se o bservaron 

diferencias en la capacidad miogénica de las células satélite obtenidas tanto de ratones transgénicos 

como no transgénicos. Por otro lado la selección de los mesoangioblastos llevada a cabo mediante la 

selección de las células positivas para el marcador de membrana fosfatasa alcalina mostraron que los 

ratones Frzb-/- poseían un mayor número de células positivas. Estudios posteriores revelaron que los 
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mesoangioblastos obtenidos de ratones Frzb-/- expresaban una menor cantidad del marcador de 

membrana PDGFRα. Este hecho puede ser el responsable de la observada menor capacidad de 

diferenciación hacia adipocito mostrada por los mesoangioblastos obtenidos en estos ratones.   
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1. MUSCLE 

The muscular system is a set of soft tissues made up of very specialized cells which are 

characterized by their contractility and, to a lesser extent, conductivity. Muscles are essential for body 

movements, circulation and digestion. Muscular tissue could be divided into two main groups  

attending to their cellular characteristics (Figure 1): 

- Striated muscle. 

Striated muscles are characterized by highly ordered ultrastructure unit consisting of 

sarcomeres which in turn results in a transversal striation of muscular cells perpendicular to 

the longitudinal axis of the fibre. Fibres are basic contractile units containing a central myosin-

rich dark anisotropic (A) band and two actin-dominated light isotropic (I) bands (Hanson and 

Huxley, 1953; Huxley, 1953). There are two types of striated muscles: 

Skeletal muscle: it represents the majority of muscle tissue. These muscles are attached to 

bones and they are responsible for skeletal movements. They are composed by fast-twitch 

and slow-twitch fibres and they are under voluntary control.   

Cardiac muscle: It forms the muscular wall (myocardium) of the heart and is under involuntary 

control.  

- Non-striated muscle. 

The cells that compose these muscles lack transversal striation.  

Smooth muscle: they are composed by slow-twitch involuntary fibres. They constitute a large 

part of the musculature of internal organs and the digestive and circulatory system (Paniagua 

et al., 2007). 

 

 

 

 

 

 

 

 

Figure 1. Representative images of skeletal, cardiac and smooth muscle stained with hematoxylin 

and eosin. Source: The big picture: Medical Biochemistry (2012). 

 

 

a. Skeletal muscle  c. Smooth muscle b. Cardiac muscle  



INTRODUCTION 

42 
 

1.1 SKELETAL MUSCLE 

Within the muscular system, it is the most abundant muscle. It is inserted into the  bones 

through tendoms to allow the movement of the body. It is inervated by axons from motoneurons 

coming from central nervous system, which enables it to be under voluntary control. It is composed by 

thousand of fibres, which are the multinucleated individual contractile units of the muscle (Paniagua 

et al., 2007). 

1.1.1 Skeletal muscle structure 

 

Each skeletal muscle is surrounded by three connective tissue layers that enclose  and provide 

structure to the muscle. The outer layer is called epimysium and it is responsible for wrapping each 

muscle. Inside the skeletal muscle, muscle fibres are organized into groups called fascicles, or bundles 

of muscle fibres. Each of them is wrapped by other connective tissue layer named as perimysium. Each 

muscular fibre which is formed when individual muscle cells fuse together, is in turn surrounded by 

endomysium, a thinner layer than perimysium and epimysium, made up of reticular fibres. Each 

individual muscle fibre is a postmitotic multinucleated cylindrical and elongated cell enveloped by a 

basal lamina and cell membrane called sarcolemma. Sarcolemma is similar to a typical plasma 

membrane but it has specialized functions for muscle cells. Nuclei are eccentrically located in the fibre 

direction. Apart from fibre’s nuclei, there are other nuclei located between the sarcolemma and 

basement membrane of terminally-differentiated muscle fibres, they belong to satellite cells, small 

quiescent mononucleated multipotent muscle precursor cells discovered in 1961 by Katz and Mauro 

(Figure 2) (Paniagua et al., 2007).  
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Figure 2. Skeletal muscle structure. Reproduced from The Hierarchical Structure of the Skeletal Muscle 

(2016) creative. 

Muscle fibres cytoplasm is named sarcoplasm. Most of the sarcoplasm is occupied by 

hundreds of myofibrils, the contractile unit of striated muscle. They are oriented with their axes 

parallel to the length of the fibre. The myofibrils are composed of repeating sections of sarcomeres, 

which are considered the functional unit of striated muscle. Sarcomere is made up of thick and thin 

myofilaments mainly composed by myosin and actin proteins respectively, which give the muscle its 

striated appearance.  

Another specialized organelle within sarcoplasm is smooth endoplasmic reticulum, known as 

sarcoplasmic reticulum (SR). It is located attached to the T-tubules that are infolding of the 

sarcolemma that penetrate into the cell sarcoplasm forming a tube. T-tubules together with 

sarcoplasmic reticulum forms sarcotubular system of skeletal muscle (also known as triad), essential 

structures for excitation-contraction coupling (see muscle contraction) (Figure 3).  
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Figure 3. Sarcoplasmic reticulum and T-tubule representation. Reproduced from The Hierarchical Structure 

of the Skeletal Muscle (2016) creative.  

Mitochondrion is the most abundant organelle as a result of metabolic needs of skeletal 

muscle. They are elongated with abundant cristae. They are longitudinally oriented among myofibres 

and they could be ramified. Glycogen is also abundant in sarcoplasm and it is located in I bands.  It is 

used as energy source for skeletal muscle. Finally, to a lesser extent, there are also rough endoplasmic 

reticulum, free ribosomes, slightly developed Golgi complex and some lysosomes (Paniagua et al., 

2007).  

Due to their different optic features under polarized light microscopy, different bands are 

observed in myofibrils. These bands have served to delimit sarcomeres, the highly organized 

contractile functional unit of striated muscle. It extends between two successive Z lines. Z line 

correspond to a transversal dark line which divide into two I band that is formed by actin (also called 

thin filaments). In the middle of sarcomere, within two I bands, A band could be observed, which is 

formed by myosin (also called thick filaments) and has a lighter zone in the middle called H band 

which in turn has a darker central line called M line or M disc. This H band corresponds to the area 

where actins are not present. A lighter zone than H band is observed on both sides of M disc called L 

line. The clarity is due to de lack of myosin heads, that are present in the rest of A band ( Figure 4) 

(Hanson and Huxley, 1953; Bennett, 1955).  
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Figure 4. Skeletal muscle’s sarcomere organization. Upper image belongs to electron microscopy image of a 

longitudinal thin section of muscle fibre (Sweeney and Hammers, 2018) .  

Thin myofilaments are mainly composed by actin and thick myofilaments are formed by 

muscle myosin II, a hexameric protein (Figure 5) (Hanson and Lowy, 1963; Huxley and Brown, 1967). 

 

 

 

 

 

 

Figure 5. (a) Schematic representation of thin filament. Orange circles represent monomeric G-actin 

polymerized into long filaments (F-actin). Tropomyosin is represented as marron filament and troponin 

subunits TnI, TnC and TnT are represented in blue. (b) Schematic representation of thick filament structural 

unit, myosin II.   
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Costamere 

Costamere is the morphological structure that connects sarcomere with sarcolemma of 

skeletal muscle and that was described for the first time in 1983 by Pardo and colleagues. It is oriented 

perpendicularly to the longitudinal axis of the muscle fibre and it is aligned with the myofibril Z  disc. 

Similar structures were found located over the M lines (Porter et al., 1992) and in L domains, oriented 

parallel to the long axis of the muscle fibre (Bloch et al., 2002). It is composed of several proteins and 

protein complexes. The main functions of costamere include the assembly and stabilisation of 

sarcomeres (Pardo et al., 1983; Danowski et al., 1992; Trimarchi et al., 2006), protect the sarcolemma 

against contraction-induced damage and enable muscle adhesion to the extracellular matrix (Ervasti, 

2003) that allows both contractile forces from the sarcomere to the basal lamina and transmits 

externally applied forces to the extracellular matrix inside de cell (Danowski et al., 1992; Mansour, 

2004; Trimarchi et al., 2006).  

Costamere is aligned with Z- and M-lines thanks to filamentous proteins of the cytoskeleton, 

namely intermediate filaments (Pierobon-Bormioli, 1981; Shear and Bloch, 1985; Ku et al., 1999; 

Omary, 2002). Desmin, together with synemin and paranemin form the intermediate filaments of the 

Z-lines (Street, 1983; Li et al., 1997).  

The assembly of costamere proteins is a highly regulated process that is controlled through 

transcription factors as well as by mechanical stimuli. Transcription factors involve myocyte enhancer 

factor-2 (MEF2) required for the terminal differentiation of muscles (Bour et al., 1995; Lilly et al., 1995; 

Ewen et al., 2011), serum response factor (SRF) which has essential role in the differentiation of 

muscle among other mesoderm-derived tissues (Miano, 2010) and histone deacetylase (HDAC) 

(Estrella and Naya, 2014). 

Costamere could be divided into two main complexes; dystrophin-glycoprotein complex and 

the vinculin-talin-integrin system (Figure 6).  

 Dystrophin-glycoprotein complex: 

This structural unit binds the intracellular actin fibres with extracellular laminin through 

dystrophin (Monaco et al., 1986; Matsumura and Campbell, 1994; Suzuki et al., 1994; 

Campbell, 1995). It is composed by sarcoplasmic proteins dystrophin, dystrobervins and 

syntrophin and more peripheral components such as nitric oxide synthase (nNOS) and 

caveolin-3. On the other hand there are two subcomplexes; sarcoglycan subcomplex, 

consisting of six glycosylated transmembrane proteins (α, β, γ, δ, ε and ζ) and dystroglycan 

subcomplex, consinsting of two proteins (α and β). Finally the last member that binds 

extracellular matrix to the rest of members is laminin α-2 (Kunkel et al., 1986; Ibraghimov-
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Beskrovnaya et al., 1992; Wagner et al., 1993; Blake et al., 1995; Ozawa et al., 1998; Watkins 

et al., 2000).  

 Vinculin-talin-integrin system: 

Vinculin and talin are two sarcoplasmic proteins that bind actin filaments though integrins to 

extracellular matrix components (Burridge and Mangeat, 1984; Hynes, 1992; Lu et al., 1992; 

Song et al., 1993). 

There are also other costamere associated proteins. One of this is IPP complex formed by 

integrin-linked kinase (ILK), cysteine-histidine-rich protein (PINCH) and parvin proteins. They interact 

with cytoplasmic region of β1 integrin participating in integrin signaling (Legate et al., 2006). Other 

protein that binds to β1 integrin and acts as biomechanical sensor is melusin (Brancaccio et al., 1999). 

Kindlin also binds to β1 integrin and plays important role in myoblast differentiation (Ussar et al., 

2006; Dowling et al., 2008). Finally focal adhesion kinase (FAK) has been found closely associated with 

integrins. It plays an essential role in signaling pathway necessary for costamere formation (Nadruzjr 

et al., 2005; Quach and Rando, 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Schematic representation of muscle costamere.  
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1.1.2 Muscle innervation and muscle contraction  

Muscles are innervated by motor neurons whose cell bodies are located in the motor cortex, 

brainstem or in the anterior horn of spinal cord. The synapse site with muscular fibre is called motor 

end plate and is formed by several motor neuron axons that branch off into muscle fibre clefts named 

as neuromuscular junction. At this point, sarcolemma forms invaginations and the basal lamina which 

surround muscle fibre exhibit some changes.   

Muscle contractions start when acetylcholine is released from the axon terminal into 

neuromuscular junction.  Acetylcholine binds to its receptors present in muscle fibre sarcolemma 

which provoke an action potential due to a rapid opening in the voltage -gate sodium channels leading 

to an influx of sodium ions into the cell. Sarcolemmal depolarisation reaches the T-tubule causing 

dihydropyridine receptor (voltage-dependent calcium channel) conformational change that activates 

ryanodine receptor 1 (RyR1) located in SR, which in turn cause Ca2+ release from SR trough RyR1. This 

Ca2+ is necessary to begin muscle excitation-contraction coupling (Franzini-Armstrong and Jorgensen, 

1994; Stutzmann and Mattson, 2011; Baylor and Hollingworth, 2012).  

At this point two different theories have been accepted to explain muscle contraction, the 

sliding filament theory and the cross-bridge theory. The sliding filament theory proposes that actin 

filaments slide over myosin filaments causing a shortening of sarcomeres while the cross -bridge 

theory proposes that sliding of actin filaments is caused by the rotation of cross-bridges (Huxley and 

Hanson, 1954; Huxley and Niedergerke, 1954). 

In any case, contraction is Ca2+ and ATP dependent. The Ca2+ present in the cytoplasm 

associates with troponin causing tropomyosin conformational changes that left exposed actin binding 

site for myosin. Myosin heads then, form a cross-bridge with actin molecules of the thin filaments. 

ATPase activity that cleaves ATP into ADP and inorganic phosphate is also needed to allow myosin 

head conformational change that enables the union with actin filaments.  

After binding to actin, phosphate is released from myosin head which causes myosin head 

flexion that pulls the actin filament over myosin towards the M-line of the sarcomere that causes 

sarcomere shortening. Finally a new molecule of ATP attaches to the myosin head, causing the cross -

bridge to detach.  

Excitation-contraction cycle finished with Ca2+ removal from sarcomere. It could be transferred 

back to SR by SR Ca2+ -ATPase (SERCA) which is responsible of pumping Ca2+ back into the SR after Ca2+ 

release (Gunteski-Hamblin et al., 1988). Ca2+ could also be removed to the extracellular space by the 

sarcolemmal Na+/Ca2+ -exchanger (NCX) and the plasma membrane Ca2+ -ATPase (PMCA) (Sacchetto et 

al., 1996). 
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1.1.3 Skeletal muscle fibre type 

Skeletal muscle is composed by different fibre types that lead to specific structural and 

functional properties of muscles (Table 1). Fibre phenotype could change in response to diverse 

factors such as hormone and neural influences, nerve-activity, exercise, aging and pathological 

conditions. Main studies classified muscle fibres attending to their contractile response due to 

myofibrilar proteins (myosin isoforms) and metabolism due to metabolic enzymes (glycolytic or 

oxidative). Biochemical studies based on glycolytic and oxidative enzymes gave rise to nowadays 

classification where slow-twitch oxidative (type I), fast-twitch oxidative-glycolytic (type IIa) and fast-

twitch glycolytic fibres (type IIb) were named (Peter et al., 1972). 

The relative proportions of fibre type vary according to species and anatomical site. Apart 

from these 3 fibre types, muscles with specific embryological origin and which are highly specialized, 

present atypical muscle fibres. These muscles are head and neck muscles including the extraocular 

muscles, jaw muscles, middle ear muscles, laryngeal muscles and muscles in the spindles (Schiaffino 

and Reggiani, 2011). 

 Fibre type diversification within muscles has been attributed to functional reasons, as 

different muscles presented different functions (postural muscles, fast and powerful muscles or long-

lasting movements) as well as to an adaptation for body metabolism, as muscle is the main protein 

reservoir and conducted the plasma glucose disposal (Schiaffino and Reggiani, 2011; Qaisar et al., 

2016). 

One of the most common classifications of fibre types attends to its myosin heavy chain 

isoform (Figure 7). They are composed by two myosin heavy chains (MyHC) and two pairs of myosin 

light chains (MyLC) of which are several isoforms. On the one hand, MyHC is coded by different MYH 

genes, which in mammals 11 have been described so far (Berg et al., 2001). First, those that belong to 

class I myosins (MyHC-α and MyHC-β/Slow, coded by MYH6 and MYH7 respectively). Second, three 

skeletal-specific class II isoforms (MyHC-IIa, MyHC-IId/x and MyHC-IIb coded by MYH2, MYH1 and 

MYH4 respectively). Third, two developmental isoforms (MyHC-embryonic and MyHC-perinatal coded 

by MYH3 and MYH8 respectively). Fourth, one specialized eye muscle isoform (MyHC-extraocular, 

coded by MYH13) and finally, 3 more isoforms coded by MYH7b, MYH15 and MYH16 that are 

expressed only in some head and neck muscles. Although MYH4 gene is expressed in the human and 

mice genome, the protein is not present in humans, which leads to the lack of MyHC-IIb fibres in 

human skeletal muscles. On the other hand, both MyLC essential (MyLC1) and regulatory (MyLC2) 

subunits have several isoforms. There are four MyLC2; MyLC2s, MyLC2f, MyLC2m and MyLC2a coded 

by MYL2, MYLPF, MYL5 and MYL7 respectively and five MyLC1; MyLC1sa, MyLC1sb/sv, MyLC1f and 

MyLC3f and MyLC1a/emb coded by MYL6B, MYL3, MYL1 and MYL4 respectively (Smerdu et al., 1994; 
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Ennion et al., 1995; Pereira Sant’Ana et al., 1997; Wu et al., 2000; Horton et al., 2001; Allen et al., 

2001).  

 

Table 1. Fibre type classification and characteristics. NADH-t = β-nicotinamide adenine dinucleotide-

tetrazolium reductase transferase and SHD= succinate dehydrogenase. 

 

 

 

 

 

 

 

 

 

Figure 7. (a) A image represents mouse muscle’s serial cross-sections where type I (blue), type IIA (green), 

type II (red), type IIX (unstained) and type IIXB (intermediate red) fibres are stained with primary antibody 

cocktail against MHCI (BA-F8), MyHC-IIa (SC-71), and MyHC-IIb (BF-F3). B image confirms the presence of 

type IIA (green) and that the unstained fibres and intermediate red stained fibres in A image are type IIX 

(purple) and type IIXB (purple and red) fibres since a primary antibody cocktail against MyHC-IIa (SC-71) 

and MyHC-IIx (6H1) was used. (b) Human muscle cross-section showing A) type I (blue), B) type IIA (green) 

and C) type I/IIA (blue and green) fibres. Scale bar 50mm. Adapted from (Bloemberg and Quadrilatero, 

2012) . 
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2. MYOGENESIS 

Skeletal muscle is the largest tissue in the body and its development, known as myogenesis, 

could be divided in embryonic and adult myogenesis (Tajbakhsh, 2009).  

Embryonic myogenesis is a highly regulated process that begins in the mesoderm of the 

embryo which undergoes several divisions to give raises the postmitotic skeletal muscle cells, 

myocytes, derived from paired box 3/7 (Pax3/Pax7) or Pax3 positive cells which fuse to form 

myofibres (Chevallier, 1979; Jacob et al., 1979; Fürst et al., 1989; Babai et al., 1990). 

Adult myogenesis occurs when skeletal muscle regeneration is needed. It relies in large part 

upon the activation, proliferation, migration and differentiation of muscle stem cells, termed satellite 

cells. They were initially identified in 1961. They are mitotically quiescent cells located between the 

basal lamina and the sarcolemma of the muscle fibres (Mauro, 1961; Schultz et al., 1978). They can be 

activated by different signals to allow muscle regeneration. The activation could be ensured by an 

intrinsic signal, an extrinsic mechanical stretch to the fibre or could be caused by microenvironment-

secreted growth factors (Jones et al., 2005; Nagata et al., 2006; Pisconti et al., 2006; Perdiguero et al., 

2007; Wozniak and Anderson, 2007). 

Satellite cells can be identified by their Pax7 and at less extent Pax3 protein expression or by 

several cell surface proteins such as M-cadherin, α7/β1-integrins, vascular cell adhesion molecule-1 

(VCAM1) or neural cell adhesion molecule-1 (NCAM1) among others (Montarras et al., 2005; Fukada 

et al., 2007; Sambasivan et al., 2011). Genetically ablation of Pax7+ cells has demonstrated the 

absolute requirement of these cells in myogenesis (Sambasivan et al., 2011). 

In contrast to what was initially believed, satellite cells belong to a heterogenic cell population. 

It was postulated that uncommitted progenitors responsible for the maintenance of the satellite cell s 

population exists (Kuang et al., 2007).They have the ability to undergo symmetric or asymmetric 

divisions to produce either one daughter stem cell and one daughter committed cell or two identical 

cells (Conboy and Rando, 2002).  

Muscle regeneration could be divided into several stages. The first one starts with the 

activation of satellite cells. Pax7 and myogenic factor 5 (Myf5) expressing activated satellite cells 

migrate to damaged site and start proliferating. At this point cells are called myoblasts. They express 

Pax7 and/or Myf5 and/or myogenic differentiation factor 1 (MyoD). Proliferation stage is influenced 

by several factors and signaling pathways that increase cell cycle progression and repress 

differentiation. After proliferation, cells exit the cell cycle and start to differentiate. Myoblast fuse to 

each other or to pre-existing fibres. At this point the expression of Pax7 and Myf5 decreases and 

myogenin and myogenic factor 6 (Mrf4) levels increase. Once myotubes appeared MyoD is also 



INTRODUCTION 

52 
 

decreased and mature myotubes proteins such as myosin heavy chain and other contractile proteins 

appear (Le Grand and Rudnicki, 2007; Buckingham and Rigby, 2014; Zammit, 2017).  

Although satellite cells are the main responsible of adult myogenesis, other cell types have 

been shown to have myogenic potential or to contribute to regenerative potential providing correct 

environmental settings. The first finding of cells with myogenic potential was first described by 

Gussoni and colleagues (1999). They described muscle-resident side population cells which can give 

rise to dystrophin-positive myofibres when injected into mdx mice (Duchenne muscular dystrophy 

mouse model) (Table 2). They comprise a heterogeneous group expressing Sca-1, CD34 and Pax7 

(Uezumi et al., 2006). In addition to this population, another subset of muscle interstitial cells was 

discovered; PICs (PW1 positive interstitial cells). They express PW1 as well as Sca-1 and CD34, like side 

population cells, but in this case they do not express Pax7. However they contribute to muscle 

regeneration and they can generate Pax7-positive satellite cells (Mitchell et al., 2010). More detailed 

studies showed that PICs could be divided into two subpopulations according to their platelet derived 

growth factor receptor-alpha (PDGFRα) expression. Those with PDGFRα expression display adipogenic 

potential while those who do not express PDGFRα are myogenic progenitors (Pannerec et al., 2013). 

In addition to these two populations, skeletal muscle vessel -associated stem cells have also 

been described; pericytes (PCs) and mesoangioblasts (MABs). Microvascular PCs are considered the 

adult counterpart of the embryonic MABs and they are able to differentiate into a variety of 

mesoderm tissues including skeletal muscle, both in vitro and in vivo (De Angelis et al., 1999; Minasi et 

al., 2002; Sampaolesi, 2003). PCs are characterized by the expression of several cell -surface markers 

such as neuro-glial 2 proteoglycan (NG2), PDGFRα, platelet derived growth factor receptor-beta 

(PDGFRβ), alpha-smooth muscle actin (αSMA) and alkaline phosphatase (ALP). However, none of them 

are pericytes specific markers since their expression is dynamic and varies between organs and 

developmental stage (Hellström et al., 1999; Gerhardt and Betsholtz, 2003; Hughes and Chan-Ling, 

2004; Chan-Ling et al., 2004; Dellavalle et al., 2007).  As happened with PICs cells, pericytes also were 

further subdivided into two different populations. They were first subdivided according to the 

expression of nestin, being type I negative and type II positive for nestin expression. Together with this 

finding it was also noted that they have different cell fate potential. Type I pericytes are profibrot ic 

and adipogenic, and type 2 pericytes, have myogenic potential (Birbrair et al., 2013a). Further studies 

from the same group discovered that the adipogenic progenitor marker PDGFRα was only expressed 

by type I pericytes (Birbrair et al., 2013b).  

In addition to these myogenic muscle-resident mesenchymal progenitors, other cells have 

been described. These cells do not display myogenic differentiation potential but they have important 

roles during myogenesis. Two different populations were described at the same time by two different 

groups, both of them located at the muscle interstitium; fibro/adipogenic progenitors (FAPs) and 
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mesenchymal stem cells (MSCs). The first one was isolated based on Sca-1 cell-surface antigen and 

further characterize by negative expression of CD45, CD31 and α7-integrin together with positive 

expression of CD34 markers and the second one based on its PDGFRα expression. Both of them 

display in vivo and in vitro adipogenic differentiation potential (Joe et al., 2010; Uezumi et al., 2010). It 

is important to note whether those cell populations could overlap, since different techniques were 

employed in their discovery. Unlike previously mentioned cells, these cells do n ot contribute to 

regenerate myofibres even so, they promote myotube formation and differentiation of muscle 

progenitors (Joe et al., 2010).  

This feature has also been observed for muscle-resident fibroblast. Apart from their structural 

functions on muscle they are key component of the satellite cells niche and are critical regulators of 

myogenesis. It has been shown that the loss of skeletal muscle fibroblast leads to premature satellite 

cell differentiation and depletion of the early pool of satellite cells, highlighting the importance of 

reciprocal interactions between fibroblasts and satellite cells to proper muscle regeneration (Mathew 

et al., 2011; Murphy et al., 2011). 

Cell type Positive markers Subtypes  Cell fate 

Myogenic potential 

Satellite cells (SC) 
M-cadherin, α7-β1 integrin, VCAM1 
and NCMA1 

    

Muscle-resident side population 
cells 

Sca-1, CD34 and Pax7     

PW1 positive interstitial cells 
(PICs) 

PW1, Sca-1 and CD34 
PDGFRα + Adipogenic potential  

PDGFRα - Myogenic potential  

Mesoangioblasts (MABs) NG2, PDGFRα, PDGFRβ, αSMA and ALP     

Perycytes (PCs) NG2, PDGFRβ, αSMA and ALP 

Nestin -
PDGFRα + 

Type 1: Fibrotic and 
adipogenic potential  

Nestin + 

PDGFRα - 

Type 2: Myogenic 

potential  

Non-myogenic potential 

Fibro/adipogenic progenitors 
(FAPs) 

Sca-1 and CD34 (negative expression of 
CD45, CD31 and α7 integrin)   

Adipogenic potential  

Mesenchymal stem cells (MSCs) PDGFRα    Adipogenic potential  

Muscle-resident fibroblasts     Adipogenic potential  

Table 2. Muscle-resident mesenchymal cells. 
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2.1 SIGNAL REGULATION IN MYOGENESIS 

Myogenesis is a tightly regulated process that has been thoroughly studied. Several myogenic 

regulator factors and different signaling pathways have been described to be involved in its regulation.  

Paired-homeobox family transcription factors composed by Pax3 and Pax7 which are upstream 

regulators of myogenesis are one of the most important (Seale et al., 2000). Both, Pax3 and Pax7, 

seems to be able to compensate each other during embryonic myogenesis (Relaix et al., 2005) and 

their functional differences in postnatal myogenesis appeared to attend to post-transcriptional 

modifications of proteins and the association with cofactors (Miller et al., 2008). Pax3 is crucial during 

embryonic development since it regulates Myf5 expression. In adulthood, Pax3 is restricted to trunk 

muscles such as diaphragm and some limb muscles satellite cells (Relaix et al., 2006). By contrast, Pax7 

acts activating MyoD and other targets genes in satellite cells including genes involved in cell growth, 

cell adhesion and signaling pathways (Hu et al., 2008; Soleimani et al., 2012).  

Furthermore, myogenic regulatory factors (MRFs) also regulate myogenesis. They are basic 

helix-loop-helix muscle specific transcription factors namely Myf5, MyoD, Mrf4 and myogenin (Davis 

et al., 1987; Braun et al., 1989; Rhodes and Konieczny, 1989; Braun et al., 1990; Edmondson and 

Olson, 1990; Miner and Wold, 1990). Myf5 is the first MRF expressed during embryonic development 

and together with it, Mrf4 and MyoD are responsible of myoblast development while myogenin is 

important in myoblast differentiation (Ott et al., 1991; Hasty et al., 1993; Rudnicki et al., 1993; 

Tajbakhsh et al., 1996; Kassar-Duchossoy et al., 2004). 

Together with Pax transcription factors and MRF, several molecules have been described to be 

involved in myogenesis regulation: MEF2 family members (Black and Olson, 1998; Spitz et al., 1998) 

that act together with MRF to control gene expression (Molkentin et al., 1995; Junion et al., 2005; 

Sandmann et al., 2006), Six1/4 transcription factors and Eva1/2 cofactors, required for correct 

expression of Myf5 and MyoD (Heanue et al., 1999; Tapscott, 2005; Relaix et al., 2013), as well as Pitx2 

and Pitx3 transcription factors present in myogenic progenitors and in differentiating muscles 

respectively (L’Honoré et al., 2007). 

Finally, post-transcriptional regulation trough microRNAs (miRNAs) also have shown an 

important role during myogenesis. miR -1, miR-27, miR-206 and miR-486 downregulate Pax3 and Pax7 

expression as well as miR-31 targets Myf5 (Chen et al., 2010; Hirai et al., 2010; Dey et al., 2011; 

Goljanek-Whysall et al., 2011; Crist et al., 2012). 

Wnt, Notch, Sonic hedgehog (Shh) and bone morphogenetic protein (BMP) signaling pathways 

are the major players that regulate embryonic myogenesis. Since the beginning, spatiotemporal 

somitogenesis involves Notch and Wnt pathways. From early stages, Wnt signaling effectors are 



INTRODUCTION 

55 
 

secreted to promote somite patterning (Parr et al., 1993). Along with Wnt, Shh pathway is also 

involved in early specification of muscle progenitors. It is essential for the maturation of 

dermomyotomal cells into MyoD/Myf5-expressing cells (Johnson et al., 1994; Borycki et al., 1998; 

Feng et al., 2006; Hammond et al., 2007). Finally, in contrast to Wnt and Shh, BMP inhibits expression 

of some myogenic genes with the aim of expand the pool of myogenic progenitors (Pourquié et al., 

1995). 

2.1.1 Wnt signaling during myogenesis 

The etymological origin of Wnt is derived from the mixture of the gene known as Wingless 

found in Drosophila and its homologous gene int1 discovered in mice (Uzvölgyi et al., 1988).  

Wnt signaling pathway is a signal transduction cascade activated by Wnt ligands that binds to 

seven-transmembrane Frizzled (Fzd) receptors which in turn could activate different downstream 

effectors that result in regulation of several gene expressions. 19 Wnt genes in humans and 10 Fzd 

receptors in vertebrates have been described so far. The Wnt signaling pathway could be divided in to 

canonical (β-catenin dependent) or non-canonical (β-catenin independent) pathways.  

Canonical Wnt signaling begins with the binding of the Wnt ligand to its Fzd receptor and its 

co-receptor LDL-receptor-related proteins 5/6 (LRP5/6) (Bhanot et al., 1996; Pinson et al., 2000). In the 

absence of Wnt ligand binding, cytosolic β-catenin is degraded via phosphorylation-dependent 

ubiquitination and proteolysis. This β-catenin is within a complex formed by scaffold protein axin, 

adenomatous polyposis coli (APC), glycogen synthase kinase 3 beta (GSK3β), dishevelled scaffold 

protein (Dvl) and casein kinase I (CKI) that allows its phosphorylation and its subsequent  destruction 

by the proteasomal pathway. Once Wnt binds to its receptor, Dvl is recruited causing β-catenin 

dissociation from the complex and preventing it from being degraded. Thus, β-catenin accumulates in 

the cytoplasm and translocates to the nucleus where it binds members of the T-cell factor/lymphoid 

enhancer factor (TCF/LEF) family of transcription factors which control different genes transcription 

(Figure 8) (Amit, 2002; Niehrs, 2012).  
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Figure 8. Schematic representation of canonical Wnt signaling.  

On the other hand, non-canonical pathways do not act through β-catenin. Two pathways have 

been described so far. The first one is Planar Cell Polarity Pathway. In this case Wnt-Fzd binding 

activates small GTPases proteins which in turn activate c-Jun N-terminal kinase. It is responsible of 

cytoskeletal organization for migration and cell polarization (Tomlinson et al., 1997). The second one is 

Wnt/Ca2+ pathway where Wnt-Fzd binding leads to heterotrimeric G proteins and phospholipase C 

(PLC) activation that evoke intracellular Ca2+ release which in turn activates Ca2+ dependent different 

enzymes such as calcium-calmodulin-dependent kinase II (CamKII) or protein kinase C (PKC) (Slusarski 

et al., 1997). 

Wnt signaling could be inhibited by different ways. First, a family of secreted proteins 

containing homology to the cysteine-rich ligand-binding domain of Fzd receptors called secreted 

frizzled-related proteins (sFRPs) were found (Rattner et al., 1997). Due to their ability to bind to Wnt 

receptors and Wnt molecules they are able to inhibit Wnt signaling (Leyns et al., 1997; Wang et al., 

1997). Along with sFRPs, Dickkopf (DKK) protein also inhibits Wnt signaling.  It probably forms a 

negative feedback of the signaling since it is a TCF target gene that potently inhibits Wnt signaling 

(Glinka et al., 1998; Niida et al., 2004).  
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The increased interest in modulating Wnt pathway for different purposes has given rise to  a 

range of new molecules or drugs that could act modulating this pathway. One example of this is 

lithium chloride (LiCl), which has been shown to inhibit GSK3β and mimic the active effects of the 

canonical Wnt signaling on gene expression and cell proliferation (Klein and Melton, 1996).  

As it has been previously mentioned, Wtn signaling has importance in prenatal myogenesis, 

since together with Shh pathway, Wnt1, Wnt3, Wnt4, Wnt6 and Wnt7 could initiate somite 

myogenesis in chicken embryos (Münsterberg et al., 1995). In addition, different Wnts have been 

shown to induce expression of MRFs in the embryo (Tajbakhsh et al., 1998; Borello, 2006; Brunelli et 

al., 2007). Finally it has also been reported that transplacenta delivery of a Wnt inhibitor molecule, 

frizzled related protein (FRZB), reduced skeletal myogenesis in mouse embryos (Borello et al., 1999).  

Despite the knowledge of Wnt signaling during embryonic myogenesis, the role of Wnt 

pathway during adult myogenesis or muscle regeneration is not completely clear. Evidence suggests 

that Wnt pathway plays an important role in myogenesis but its regulation is not completely well 

defined. The activation of Wnt signaling in satellite cells during proliferation with opposite effects has 

been reported. Wnt1, Wnt3 and Wnt5a induced cell proliferation while Wnt4 and Wnt6 inhibited it 

(Otto et al., 2008). On the other hand, other works suggested that aberrant expression of Wnt 

signaling during aging in satellite cells is the responsible of increased fibrosis, leading to a myogenic-

to-fibrogenic conversion which result in impaired muscle regeneration (Brack et al., 2007).  

The temporal switch from progenitor cell proliferation to differentiation is essential for 

effective adult tissue repair. The role of Notch signaling in the proliferative expansion of myogenic 

progenitors is critical in mammalian postnatal myogenesis. It has been shown that the onset of 

differentiation is due to a transition from Notch signaling to Wnt signaling in myogenic progenitors 

and is associated with an increased expression of Wnt in the tissue. Crosstalk between these two 

pathways occurs via GSK3β, which is maintained in an active form by Notch but is inhibited by Wnt in 

the canonical Wnt signaling cascade. These results demonstrate that the temporal balance between 

Notch and Wnt signaling orchestrates the precise progression of muscle precursor cells along the 

myogenic lineage pathway (Brack et al., 2008).  

Related to the possibility that the activation of the Wnt pathway might be beneficial for 

patients with muscular dystrophy, Vieira and colleagues (2015) showed two exceptional Golden 

Retrievers, since being natural models of Duchenne muscular dystrophy, they escaped gravity derived 

from the absence of dystrophin expression in muscle. After analysing the complete genome of these 

dogs, it was observed that overexpression of the jagged 1 (JAG1) gene, which is an inhibitor of the 

Notch pathway, was responsible for the improvement of the dystrophic phenotype.   
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3. MUSCULAR DYSTROPHY  

The muscular dystrophies are a heterogeneous group of inherited genetic disorders 

characterized by progressive weakness and muscle degeneration. They are caused by mutations in 

genes encoding proteins required for normal muscle function (Emery, 2002). 

Initially, muscular dystrophies were classified attending to their clinical features but through 

the emergence of genetic technics nowadays, classification is based on mutated genes and their 

respective proteins’ function.   

There are many different types of muscular dystrophies, being the most common, myotonic 

dystrophy type 1 followed by facioscapulohumeral dystrophy and distrophinopathies. Limb g irdle 

muscular dystrophies (LGMD) are the fourth most common dystrophies, even if the prevalence of 

each LGMD subtypes vary geographically, it is estimated at 1.63 per 100,000  (Mah et al., 2016).  

3.1 LIMB GIRDLE MUSCULAR DYSTROPHY  

Limb girdle muscular dystrophy term was coined in 1954 by Walton and Nattrass (Walton and 

Nattrass, 1954). They comprise a group of heterogeneous muscular dystrophies that share common 

clinical features. They are characterized by chronic progressive weakness and atrophy of hip and 

shoulder girdles, elevated creatine kinase (CK) levels and dystrophic findings on muscle biopsy. Their 

inheritance is either autosomal dominant (LGMD1) and autosomal recessive (LGMD2). Diseases are 

classified using alphabetic index according to the chronology of identification of their genetic loci 

(Bushby and Beckmann, 1995). According to the latest review, to date there are 8 autosomal 

dominant (LGMD1A-1H) and 26 autosomal recessive types (LGMD2A-2Z) (Bonne et al., 2017).  

The age at onset ranged from the first decade to late adult life. Pattern of muscle 

involvements also have a wide range of symptoms. Proximal limb muscles are the most affected and 

muscle weakness typically starts in the proximal muscles of the lower limbs. Ocular muscles are always 

preserved and facial weakness is only present in later stages of some subtypes as well as cardiac 

involvement is not common in recessive forms. Even if predominantly muscle affection present 

symmetric patter, asymmetry could be present (Vissing, 2016).  
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3.2 LIMB GIRDLE MUSCULAR DYSTROHY TYPE 2A (LGMD2A) 

Limb girdle muscular dystrophy type 2A, also known as calpainopathy, is an autosomal 

recessive disorder caused by mutations in calpain 3 (CAPN3) gene (Richard et al., 1995). 

3.2.1 Epidemiology 

Within LGMD, calpainopathy is the most frequent disorder, it is estimated to account about 

20-50% of total LGMD cases (Bushby and Beckmann, 2003). Epidemiology studies of LGMD2A vary 

depending on the geographic origin. Some founder mutations have been found in different regions 

with high inbreeding rates. The highest prevalence has been found in some small genetically isolated 

communities:  in Reunion Island is 48 per million (Fardeau et al., 1996a), 69 per million in Guipuzcoa, 

Basque Country (Urtasun et al., 1998), 1,990 per million cases in the ’Mòcheni’ people in the Italian 

Alps (Fanin et al., 2012) and 13,000 per million in the Amish population of Indiana, USA (4,000 

inhabitants) (Jakson G., personal communication).  

The particular calpain 3 mutation predominant in Basque chromosomes (p.(Arg788Serfs*14)) 

(Urtasun et al., 1998) is linked to a specific haplotype and it is also shared by Brazilian patients (Cobo 

et al., 2004). 

3.2.2 Clinical features 

The age at onset could be divided into early (< 12 years), typical (between 12 and 30 years) or 

late (> 30 years) (Fanin and Angelini, 2015), but most of the cases presented with weakness in the 

second decade of life (Fardeau et al., 1996a; Urtasun et al., 1998).  The first clinical symptoms are 

mostly characterized by proximal muscle weakness which goes along with muscle atrophy and fatty 

replacement of muscles as the disease progresses (Fardeau et al., 1996a; van der Kooi et al., 1996; 

Urtasun et al., 1998). CK level are markedly raised (5 – 20 fold) in the early stages and decreased to 

reach normal levels in wheelchair-bound patients with marked muscle atrophy (Urtasun et al., 1998). 

Eosinophilic myositis is an early histopathological manifestation of LGMD2A found also in childhood 

with circulating eosinophilia which disappears once muscle weakness appears (Krahn et al., 2006a, 

2011). Together with these symptoms, the onset of the disease could present with a phenotype 

resembling metabolic myopathy with exercise intolerance, myalgia and muscle stiffness (Pénisson-

Besnier et al., 1998; Pollitt et al., 2001; Fanin et al., 2004; Krahn et al., 2006b; Hermanová et al., 2006; 

Lahoria and Milone, 2016). 

Regarding muscle involvement Hip adductors and Gluteus maximus are the earliest clinically 

affected muscles. The upper girdle involvement give rise to scapular winging condition that is often 
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developed in calpainopathy. As the disease progresses, more muscles appeared affected such as 

Quadriceps, Triceps brachii and some distal muscles such as Tibialis anterior and and some forearm 

muscles (Fardeau et al., 1996b). Cardiac involvement  and respiratory muscle weakness are not clinical 

features of LGMD2A although some cases with cardiac dysfunction or respiratory failure were 

reported (Fardeau et al., 1996a, 1996b; Urtasun et al., 1998; Groen et al., 2007; Quick et al., 2015; 

Nemes et al., 2017; Mori-Yoshimura et al., 2017). 

Hypertrophy is not a hallmark of the disease but it has been observed calf hypertrophy in 

Brazilian population (De Paula et al., 2002; Albuquerque et al., 2015). Although symmetric affection of 

limb muscles is considered, asymmetry may also be present in calpainopathy (Mercuri et al., 2005; 

Guglieri et al., 2008). 

The disease progression is also variable but patient became wheelchair-bound after no more 

than 25 years of disease progression. No intellectual disability was noticed in these patients (Fardeau 

et al., 1996a; Urtasun et al., 1998). 

The heterogeneous nature of LGMD2A makes it difficult to establish a prognosis to predict the 

clinical evolution of the disease. There are different functional scales for the evaluation of 

neuromuscular patients. The most widely used is the modified Walton & Gardner-Medwin (WGM) 

scale.   

In computed tomography and magnetic resonance imaging, posterior compartment 

impairment of the thighs, which is a hallmark of LGMD2A patients, is observed (Fardeau et al., 1996a; 

Urtasun et al., 1998; Mercuri et al., 2005; Degardin et al., 2010). 

The histopathological features of LGMD2A patients’ muscle biopsies present differences in 

their dystrophic pattern in early stage or late stages of the disease. In early  stages of the disease, 

active necrosis and regenerating process is observed (Figure 9 a). Esosinophilic myositis, which is 

characterized by eosinophilic infiltration of the skeletal muscle, peripheral blood and/or bone marrow 

hypereosinophilia, associated with inflammatory lesions of the muscle tissue could be also present 

(Guerard et al., 1985; Krahn et al., 2006a; Keira et al., 2007; Rosales et al., 2013) (Figure 9 b). In later 

stages, the muscle pathology is characterized by the presence of lobulated fibres and there is also 

fibre size variation and interstitial fibrosis. On electron microscopy, misaligned myofibrils and 

accumulation of mitochondria could be observed (Figure 9 c) (Guerard et al., 1985; Keira et al., 2007).  
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Figure 9. (a) Immunohistochemical analyses of muscle biopsy of one control and two LGMD2A patients. 

Upper images are stained with hematoxylin and eosin while lower images are stained with β-nicotinamide 

adenine dinucleotide–tetrazolium reductase staining (NADH-t). r = regenerative fibres, n = necrotic fibres 

and * = lobulated fibres.  Scale bar 20 µm. From (Keira et al., 2007). (b) Immunohistochemical analyses of 

muscle biopsy stained with hematoxylin and eosin of two LGMD2A patients. LGMD2A-1 patient has focal 

inflammatory lesions with abundant eosinophilic infiltration involving necrotic fibres. LGMD2A-2 patient 

has irregular fibre size and focal inflammatory infiltration with necrosis of involved fibres. Adapted from 

(Krahn et al., 2006a). (c) Electron microscopic images of subsarcolemmal region in control and LGMD2A 

patients. Mt = mitochondria. Scale bar: 1μm. From (Keira et al., 2007). 
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Protein testing has also been used for diagnostic purposes. However, calpain 3 protein 

detection in muscle biopsies by western blot could give both, false positive and false negative results 

(Fanin et al., 2004; Piluso, 2005; Sáenz et al., 2005). On the one hand, false negative result could be 

obtained when normal levels of calpain 3 protein are detected in muscle but, due to specific mutations 

the protein is not functional (Fanin et al., 2003, 2004). On the other hand, secondarily calpain 3 

protein reduction has been found in other muscular dystrophies such as LGMD2B, LGMD2I, 

titinopathy, sarcoglycanopathies and merosin deficient patients which would lead to a false positive 

result (Anderson et al., 2000; Sáenz et al., 2005; Charton et al., 2015; Magri et al., 2017) . 

LGMD2A diagnosis is established by identification of bialleic pathogenic variants (mutations) in 

CAPN3 gene. To date almost 500 mutations in CAPN3 gene have been identified (Leiden Open 

Variation database, at http://www.dmd.nl/).  

Diagnosis based on routine blood sample could be performed given that the blood cells 

express CAPN3 mRNA (De Tullio et al., 2003; Blázquez et al., 2008). Since in 10-22% of patients 

considered as LGMD2A, only 1 pathogenic mutation in CAPN3 gene has been found (Richard et al., 

1999; De Paula et al., 2002; Chrobáková et al., 2004; Sáenz et al., 2005; Zatz and Starling, 2005; 

Stehlíková et al., 2007), Jaka and colleagues (2014) proposed a strategy as the safest diagnostic 

approach for LGMD2A. 

LGMD2A was considered as a recessive inherited disease so far. However, recent findings have 

suggested a dominant form of calpainopathy (Vissing et al., 2016; Martinez-Thompson et al., 2018). 

Authors reported heterozygous carriers of an inframe 21-bp deletion in CAPN3 gene in European 

origin families. There has, however, been a controversy with the first study and other authors have 

criticised some points, although the original authors rebutted the critique (Sáenz and López de 

Munain, 2017; Vissing and Duno, 2017). 

This scenario is not unique since several myopathies with both dominant and recessive model 

of inheritance have been reported. This dual model of inheritance has been reported in 

desminopathies, in RYR1 gene mutations associated central core myopathy, in myopathies caused by 

mutations in the titin (TTN) gene, in myotonia congenita, in collagen 6-related muscle diseases, in 

carnitine palmitoyltrasferase II deficiency and in glutaryl-CaA dehydrogenase deficiency (Hackman et 

al., 2002; Dunø et al., 2004; Udd et al., 2005; Ørngreen et al., 2005; Foley et al., 2009; Bross et al., 

2012; Nigro and Savarese, 2014; Snoeck et al., 2015). 
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3.2.3 Genotype-phenotype correlation 

The spectrum of mutations in the CAPN3 gene is highly heterogeneous thus, a clear genotype-

phenotype correlation has been difficult to establish. Moreover, the clinical course of the disease is 

also highly heterogeneous. Similar clinical course in patients with different CAPN3 gene mutations or 

discordant phenotype in affected sibs carrying the same mutation could be observed (Zatz et al., 2000; 

Sáenz et al., 2005). 

Some authors have suggested that patients with early onset of the disease are most severely 

affected and usually have two null mutations with a total absence of calpain 3 protein. Conversely, in 

moderately to severe affected patients, calpain 3 protein could be absent or reduced, while patients 

with later onset of the disease, usually have milder phenotype with normal level of calpai n 3 protein 

(Fanin et al., 2004; Sáenz et al., 2005).  

In line with these findings, Sáenz and colleagues (2011) described two patients with benign 

phenotype who had compound heterozygous missense mutations (pG222R and pR748Q). It was 

postulated that autolyzed fragments of mutant proteins co-associate to reconstitute an intact wild-

type (WT) calpain 3 molecule. 

3.2.4 The current status of therapies for LGMD2A 

There is no any treatment for LGMD2A so far, nevertheless, different molecular strategies 

have been conducted to restore CAPN3 expression. The first study used adeno-associated virus (AAV) 

vectors expressing CAPN3 that were injected in calpain 3 - deficient mice (Bartoli et al., 2006; Roudaut 

et al., 2013). The second study, however, was focused on CAPN3 gene mutations correction. Authors 

carried out in vitro correction of a pseudoexon-generating deep intronic mutation by antisense 

oligonucleotides (Blázquez et al., 2013).  

Moreover, today there are two research projects ongoing funded by coalition tu cure calpain 3 

organization. One of these projects is focused on DNA-mediated gene therapy. Without AAV-mediated 

gene delivery, this project proposes CAPN3 gene introduction by employing ‘naked’ plasmid DNA. The 

aim of the second project is to genetically correct mutations in the CAPN3 gene in LGMD2A iPS cells by 

CRISPR-CAS9 technology which further could be transplanted into the muscles of models of muscular 

dystrophy (http://www.curecalpain3.org/research/). 
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3.2.5 Models for muscular dystrophy studies 

 In vitro models  

Several attempts to improve in vitro models have been done since the first successful 

cultivation of normal human skeletal muscle was done by Pogogeff and colleagues in 1946. However, 

it was not until 1957 when first progressive muscular dystrophy derived cells were cultured (Geiger 

and Garvin, 1957). 

In vitro studies limitations due to their finite life-span and slow growth rate (Swim and Parker, 

1957) has been solved with the immortalization of primary cells proposal (Miranda et al., 1983). 

However, it is known that results obtained from in vitro models not always recapitulate result 

obtained from tissues of origin (Smith et al., 1994; Cornelison and Wold, 1997; Hawke and Garry, 

2001; LaFramboise et al., 2003). A uniform myotubes culture was observed from different origin 

muscles when cultured in identical conditions, suggesting a myotube culture homogenization 

(LaFramboise et al., 2003). It is known that in in vitro experiments the extracellular matrix (ECM) is 

absent, which is responsible to  provides support and creates microenvironmental niche that 

influences endogenous cell behaviour and phenotype (Bissell et al., 1982; Bissell and Aggeler, 1987; 

Ingber, 1991; Boudreau et al., 1995). A more recent study found out that more than thousand genes 

displayed differential expression when human cultured myotubes and skeletal muscle tissue were 

compared. Cultures showed reduce metabolic and muscle-system transcriptome adaptations, 

augmented tissue remodelling transcriptome and induction of genes involved in the apoptosis or 

anoikis process. Among others, one interesting finding was that CAPN3 gene was downregulated in 

cultured myotubes (Raymond et al., 2010). 

Analysis carried out by our group also showed evidences of discrepancies between tissue 

(muscle) and cell culture (myoblasts and myotubes). Myoblast/myotubes gene expression did n ot 

show a good correlation with genes expressed in muscle, but myotubes at 16 days of differentiation 

showed the best correlation (Figure 10).  Moreover, within deregulated genes in LGMD2A patients’ 

muscles (Sáenz et al., 2008), only the FRZB gene showed the same deregulation pattern in myotubes 

at 16 days of differentiation (Jaka, 2014). 
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Figure 10. Regression line between muscle and myoblast/myotubes control samples, based on ΔCT. (a) 

Regression line between muscle and myoblast. (b) Regression line between muscle and myotubes at 10 

days of differentiation. (c) Regression line between muscle and myotubes at 16 days of differentiation. (d) 

Regression line between muscle and myotubes at 20 days of differentiation (Jaka, 2014). 

For skeletal muscle cellular models studies, diverse animal origin myoblast cell lines are also 

available. C2C12 and L6 cell lines, derived from mouse and rat respectively, are widely used.  

Nonetheless, to avoid inter-species differences, diverse approaches have been employed to obtain 

myotubes culture. Embryonic stem cells (ESCs) and pluripotent stem cells (PSCs) have been used 

though direct reprogramming as well as directed differentiation to produce skeletal muscle in the dish 

(Barberi et al., 2007). Finally, Yamanaka factors have made possible the production of iPS derived 

myoblast (Darabi et al., 2012).  

With regard to studies in LGMD2A, in order to create a proper cellular mode l, different 

approaches have been used to modulate CAPN3 gene expression such as shRNA-lentivirus (Toral-

Ojeda et al., 2016). The newly found CRISP/Cas9 gene-editing technology provides a solution for 

phenotypic differences found within different mutation carriers patients since the desired mutation 

combinations could be set into the same background cells to study mutations’ phenotype precisely. 

This approach has already been carried out for Duchenne muscular dystrophy (Shimo et al., 2018). 

 In vivo models 

Several in vivo murine models have been developed to study LGMD2A disease. Based on a 

chronological order, the first one was developed by Tagawa and colleagues (2000). They created three 

lines of transgenic mice (S62, S44 and S21) that expressed together with fully active Capn3, an inactive 

mutant of Capn3 gene, in which the active site Cys129 was replaced by Ser (C129S). In these mice, 
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even if fully active calpain 3 was expressed, some disease features were present such as motor 

function alterations and some lobulated fibres with centrally located nuclei. 

In the same year, a murine model where Capn3 gene was absent was developed (Richard et 

al., 2000). This Capn3 gene deficient mice (Capn3-/-) showed LGMD2A typical features in muscle 

analysis. Histology analysis showed necrotic and regenerative areas together with muscle fibres with 

centrally located nuclei. Mononuclear cells infiltrations were also present. The second murine model 

with Capn3 gene absence was a Capn3 knock-out (C3KO) model reported by Kramerova and collegues 

(2004). These mice showed dystrophic phenotype in their muscles as is observed in LGMD2A patients 

where reduced cross-sectional area of muscle fibres, rare and small foci of necrosis and regeneration 

are present (Kramerova et al., 2004; Keira et al., 2007). Further studies showed an unstructured 

sarcomere with accumulation of abnormal shape mitochondria (Kramerova et al., 2006). However, 

when identification of differentially expressed genes was carried out in LGMD2A patients and C3KO 

mice, different results were obtained (Sáenz et al., 2008; Jaka et al., 2012).  The comparison between 

control and LGMD2A patients showed 74 differentially expressed genes (Sáenz et al., 2008). By 

contrast, only 6 genes were differentially regulated between adult WT and C3KO mice, moreover, 

none of these were deregulated in human LGMD2A patients (Jaka et al., 2012).  

Later, through a different approach to knock-out the gene, another Capn3 deficient mouse 

model was created (Laure et al., 2009). In this work other mice model were used together with Capn3 

deficient mouse for the search of muscle wasting targets. 

Ojima et al., (2010) developed a knock-in mouse model (p94KI or Capn3CS/CS) where the 

mutation previously used by Tagawa and colleagues, in the active site of the protein, was 

homozygously expressed. Thus, mice showed more severe phenotype. Their muscles also displayed 

centrally located nuclei but in this case muscle degeneration worsened with age. Moreover, exercise 

induced muscle fibres breakdown was observed. 

Finally, Ermolova and colleagues (2011) reported two different mice models. The first one 

consisted on two transgenic mice which overexpressed mutated Capn3 (C3-R448H or C3-D705G) in 

which the proteolytic activity was not altered and they were further crossbred with C3KO mice. In 

parallel, Capn3 overexpression was induced in WT mice. Calpain 3 was not detected in C3-D705G 

mutation carrier mice, while in C3-R448H mutation carrier mice it was detected. The calpain 3 

overexpression showed muscular force and growth improvement in C3KO mice. By contrast, its 

overexpression in WT mice seemed to be detrimental.   
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4. CALPAINS 

Calpain superfamily members are intracellular Ca2+-dependent non-lysosomal cysteine 

proteases that share a common primary sequence which is the calpain-like protease domain (CysPc) 

(Croall and DeMartino, 1991; Goll et al., 2003; Suzuki et al., 2004; Sorimachi et al., 2011a) . The first 

calpain was identified in 1964 and later 14 more calpain homologs have been identified in humans. 

Some are ubiquitously expressed while others are tissue specific (Guroff, 1964; Macqueen et al., 

2010).  

4.1 CALPAIN SUPERFAMILY CLASSIFICATION 

Calpain 1 (CAPN1 or µCL) and calpain 2 (CAPN2 or mCL) were the first calpains to be 

discovered. Both of them are composed by two subunits: an 80 kDa subunit, where the active site is 

located and a 28 kDa regulatory subunit, small regulatory subunit 1 (CAPNS1) (Hosfield, 1999).  

Based on these calpains’ domain structure, the rest of the superfamily members were further 

classified as classical (if they share the same domain structure as CAPN1 and CAPN2) and non-classical 

calpains. In humans there are 9 classical calpains and 6 non-classical calpains. Non-classical calpains, in 

turn, are further divided attending to structural characteristics. On the other hand, according to their 

expression pattern, 7 calpains are considered ubiquitous while the rest are tissue-specific (Table 3) 

(Sorimachi et al., 2011b).  
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Table 3. Human calpain superfamily members’ summary.  

4.2 CALPAIN STRUCTURE AND FUNCTIONS 

Classical calpains structure is composed of four domains:  

 N-terminal anchor helix region. 

 Calpain-type cysteine protease conserved domain (CysPc) which in turn is divided in two 

protease cores subdomains (PC1 and PC2). Three key amino acids that constitute the 

active site, Cys-105 (in PC1) and His-262 and Asn-286 (in PC2) are within this domain. 

 Calpain-type beta-sandwich domain (CBSW) (previously known as C2L domain).  

 Penta E-F hand (PEF) domain. 

The structure of non-classical calpains, however, could present some of the aforementioned 

domains with or without different specific domains (Figure 11) (Ohno et al., 1984; Maki et al., 1997; 

Sorimachi et al., 2011a, 2011b; Campbell and Davies, 2012).  

 

 

 

Gene Chormoseme Protein names Tissue-specificity Classification References 

CAPN1 11q13 CAPN1, µcl Ubiquitous Classical (Malik et al., 1983) 

CAPN2 1q41-q42 CAPN2, Mcl Ubiquitous Classical (Malik et al., 1983) 

CAPN3 15q15.1-q21.1 CAPN3, p94 Skeletal muscle Classical (Sorimachi et al., 1989) 

CAPN5 11q14 CAPN5, hTRA-3 
Ubiquitous (abundant 

in testis and brain) 
Non-classical 

(Dear and Boehm, 1999; 
Dear et al., 1997) 

CAPN6 Xq23 CAPN6, CAPNX 
Embryonic muscles, 

placenta 
Non-classical 

(Dear et al., 1997; Dear 
and Boehm, 1999) 

CAPN7 3p24 CAPN7, PalBH Ubiquitous Non-classical (Franz et al., 1999) 

CAPN8 1q41 CAPN8, nCL-2 
Gastrointestinal 

tracts 
Classical (Sorimachi et al., 1993a) 

CAPN9 1q42.11-q42.3 CAPN9 nCL-4 
Gastrointestinal 

tracts 
Classical (Sorimachi et al., 1993a) 

CAPN10 2q37.3 CAPN10 Ubiquitous Non-classical (Horikawa et al., 2000) 

CAPN11 6p12 CAPN11 Testis Classical 
(Dear and Boehm, 1999; 

Dear et al., 1999) 

CAPN12 19q13.2 CAPN12 Hair folicle Classical (Dear et al., 2000) 

CAPN13 2p22-p21 CAPN13 Ubiquitous Classical 
(Dear and Boehm, 

2001) 

CAPN14 2p23.1-p21 CAPN14 Esophagus Classical 
(Dear and Boehm, 2001; 

Kottyan et al., 2014) 

CAPN15 16p13.3 CAPN15 Ubiquitous Non-classical (Kamei et al., 1998) 

CAPN16 6q24.3 CAPN16 Testis Non-classical (Hoogewijs et al., 2012) 
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Figure 11. Schematic representation of (a) classical and (b) non-classical calpains structure. C2, protein 

kinase C conserved domain; MIT, microtubule interacting and transport motif; Zn, zinc-finger motif; SOL, 

small lobes product homology domain; IQ, calmoduling-interacting motif. Adapted from (Ono and 

Sorimachi, 2012). 

Calpains are Ca2+ dependent proteases, they required Ca2+ ions for their activation. Calpain 

protease domain has two Ca2+ binding sites (CBS-1 and CBS-2) within PC1 and PC2. Once Ca2+ is bound, 

it provokes a conformational change that approaches PC1 and PC2 domains which in turn induce the 

activation of the protease domain (Hosfield, 1999; Strobl et al., 2000; Moldoveanu et al., 2008; Hanna 

et al., 2008). 

For its activation conventional calpains CAPN1 and CAPN2, required to form a heterodimeric 

protein with CAPNS1 through EF-hand motif (Hosfield, 1999). However, CAPN8 and CAPN9 together 

form a hybrid complex called G-calpain for their activation (Hata et al., 2010). 
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4.3 CALPAIN 3 

Skeletal muscle specific calpain 3 protein, also known as p94, was described in 1989 and later 

it was localized in chromosome 15q15-1-15.3 in human (Sorimachi et al., 1989; Ohno et al., 1990). But 

it was not until 1995 when mutations in this gene were associated with limb-girdle muscular 

dystrophy type 2A (Richard et al., 1995).  

The human calpain 3 gene is composed by 24 exons and 2466 nucleotides. The calpain 3 

protein has 94 kDa and is formed by 821 amino acids (Sorimachi et al., 1993a; Richard et al., 1995). 

Even if calpain 3 was firstly discovered to be skeletal muscle specific protein, its mRNA which produces 

several splicing variants, has been found in diverse human tissues such as heart, eye, peripheral blood 

mononuclear cells and astrocytes (Azuma et al., 2000; Ma et al., 2000; Fougerousse et al., 2000; De 

Tullio et al., 2003; Kawabata et al., 2003; König et al., 2003). However, the functions of these splicing 

variant forms are largely unknown. In skeletal muscle, its expression is higher in type II fibres (Jones et 

al., 1999) and during development appears later than other skeletal muscle proteins (Fougerousse et 

al., 1998). 

4.3.1 Calpain 3 structure 

Calpain 3 is categorized as a classical calpain since it shows significant sequence homology 

with both human CAPN1 (54%) and CAPN2 (51%) large subunits (Sorimachi et al., 1989). However, it 

contains three additional regions: a) NS, located in the N-terminal region, b) Insertion Sequence 1 

(IS1), within PC2 domain which contains the autocatalytic activity of the enzyme (Kinbara et al., 1998) 

and c) Insertion Sequence 2 (IS2) between the CBSW and PEF domains, which contains a nuclear 

localization motif. These additional regions confer to calpain 3 specific features, such as autocatalytic 

capacity (Figure 12).  
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Figure 12. (a) Schematic representation of classical calpains. (b) Schematic representation of calpain 3 

protein and gene representation for human and mouse. Adapted from (Ono et al., 2016). 

Calpain 3 has short half-life due to its autocatalytic capacity (Sorimachi et al., 1993b), thus, its 

3D crystal structure has not been entirely solved. Nevertheless, based on its similarities to calpain 2 

and since its structure without Ca2+ have already been determined by X-ray crystallography, a 3D 

model has been proposed for calpain 3. This model lacks NS, IS1 and IS2 regions (Figure 13) (Strobl et 

al., 2000; Jia et al., 2001).  

 

 

 

 

 

 

 

 

Figure 13. Calpain 3 3D structure proposed by Jia and colleagues (2001). Calpain 3 crystal structure is 

represented in green and calpain 2 in blue.  
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4.3.2 Calpain 3 activation and regulation  

 Knowledge based on truncated calpain 3 mutants and conventional calpains have 

been used to better understand calpain 3 activation. The amino acid sequence have revealed that 

calpain 3  also has residues involved in Ca2+ binding within the proteolytic domain; however whether 

calpain 3 is a Ca2+-dependent protease has remained controversial. It was postulated that calpain 3 

was not activated by Ca2+ but it was activated by Na+ (Sorimachi et al., 1993b). However, further 

studies showed how calpain 3 is activated in the presence of Ca2+  (Rey and Davies, 2002; García Díaz 

et al., 2006). 

Two-step activation mechanism for calpain 3 activity has been suggested. Upon Ca2+ binding to 

PC1 and PC2 domains, the realignment of the catalytic triad leads to its activation which in turn leads 

to an autolytic cleavage that has been proposed as follows. Intermolecularly, a rapid cleavage in the N-

termini of NS domain occurs. The second step involves a second intermolecular cleavage at C-termini 

end of IS1 domain leading to two fragments that remain together forming the active enzyme (García 

Díaz et al., 2006). Calpain 3 could also be cleaved at IS2 leading to its inhibition (Ono et al., 2006). 

Intramolecularly, IS1 is cut rapidly, followed by a relative slow cut in IS2, whereas a cut in NS does not 

happen significantly (Figure 14).  

 

 

 

 

 

 

 

Figure 14. Schematic representation of calpain 3 activation. Arrows indicate the autolytic sites in the NS, 

IS1, and IS2 regions. d.II, d.III, and d.IV, domain are CysPc, CBSW and PWF domains respectively. Figure 

adapted from (Ono et al., 2006). 

Even if little is known about calpain 3 regulation, its interaction with titin protects calpain 3 

from being degraded. Calpain 3 is located in the sarcomere interacting with titin (which spans form 

the M- to Z- lines of sarcomere) (Sorimachi et al., 1995; Kinbara et al., 1997; Kramerova et al., 2004; 

Ojima et al., 2007). Within the sarcomere, calpain 3 has been also found in the Z-line (Sorimachi et al., 
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1995; Ojima et al., 2007). Calpain 3 binds to two different sites of titin, the N2A and C terminus 

regions, which are located in the sarcomeric N2- and M-lines (Sorimachi et al., 1995; Kinbara et al., 

1997). The proximity of the calpain 3 IS2 domain to titin N2A region (Val573 and Leu580 upstream of the 

IS2 region), suppresses IS2-autolysis (Figure 15) (Ono et al., 2006).  

 

 

 

 

 

 

 

 

 

 

 

Figure 15. (a) A model for calpain 3, titin and associated proteins in the sarcomere.  p94= calpain 3 and 

connectin= titin. (b) Calpain 3 autolytic cleavage avoidance mediated by titin. CN48= titin cDNA clone 

encoding N2A region.  (Ojima et al., 2006). 

As it has been previously mentioned, conventional calpains act as heterodimers formed by 

calpains and the small regulatory subunit (Hosfield, 1999). However, calpain 3 does not required the 

small regulatory unit to be active, but even so, some authors have suggested that calpain 3 may 

homodimerize (Ravulapalli et al., 2005, 2009; Partha et al., 2014). 

More recently it has been reported that calpain 3 has two Ser residues in the IS2 region that 

could be phosphorylated. Phospho– calpain 3 is preferentially located in myofibril fraction and it has 

been shown that phosphorylation leads to slighter slower autolysis. All these data suggest a new 

regulation mechanism for calpain 3 location and for its autolysis prevention (Ojima et al., 2014). 

On the other hand the endogenous inhibitor for conventional calpains, calpastatin, does not 

inhibit calpain 3 (Todd et al., 2003; Ono et al., 2004). However, at least two regulators of calpain 3 
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activity have been identified. The first one is PLEIAD (platform element for inhibition of autolytic 

degradation) protein. PLEIAD reduces calpain 3 autolytic activity and regulates its substrate-

proteolyzing activity (Ono et al., 2013). The second one is calmodulin (CaM). In this case CaM acts as a 

positive regulator of calpain 3 activity by promoting its autolytic cleavage (Ermolova et al., 2015). 

4.3.3 Calpain 3 functions 

Since the identification of the implication of calpain 3 in LGMD2A in 1995, several studies have 

been carried out with the aim of clarifying the pathophysiological mechanism of the disease. However, 

calpain 3 functions are not fully elucidated.   

Together with proteolytic functions, non-proteolytic functions have also been attributed to 

calpain 3. These findings arose from studies comparing Capn3-null and Capn3 knocking mice. C129S 

mutation carrier mice, which lead to a proteolytically inactive but structurally intact calpain 3, showed 

less severe dystrophic symtoms, suggesting that calpain 3 also has a non-proteolytic function.  

4.3.3.1 Calpain 3 and sarcomere remodelling 

Calpain 3 is located in the sarcomere interacting with titin (Sorimachi et al., 1995; Kinbara et 

al., 1997; Kramerova et al., 2004; Ojima et al., 2007) and it has aso been found in the Z-line (Sorimachi 

et al., 1995; Ojima et al., 2007). Both proteins are bounded together through IS2 domain of calpain 3 

and N2A zone of titin (Ono et al., 2006). It has been proposed that calpain 3 plays a role in titin-based 

mechanosensory transduction pathway, since the dynamic and distinct localization of calpain 3 has 

been reported depending on sarcomere length (Ojima et al., 2007). Changes in its location from M-line 

to N2A region as sarcomere lengthened is allowed by its protease activity.  A ll these findings 

suggested a possible physical stress sensor that acts in a stretch-dependent manner (Ojima et al., 

2011).  

This was also described with the studies carried out in C3KO mice were abnormal sarcomere 

formation was observed in the absence of calpain 3. Authors suggested that calpain 3 is necessary for 

sarcomere formation since it would be the responsible of replacing non-muscle myosins II during 

myofibrilogenesis. It also could mediate sarcomere remodelling through its protease activity which in 

turn could be facilitated by placing calpain 3 in the correct proximity of its substrates when it is 

bounded to titin (Sanger et al., 2002; Kramerova et al., 2004).  

Concerning the functions mediating sarcomere remodelling, it has been shown that calpain 3 

promotes myofibrilar protein turnover by promoting ubiquitination of muscle proteins. The lack of 
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calpain 3, leads to accumulation of damaged or misfolded proteins that could be the responsible of 

muscle pathology (Kramerova et al., 2007). 

Moreover, together with abnormal sarcomere formation, abnormal myofibrillogenesis was 

observed in C3KO myotubes. A study has revealed that M-cadherin and β-catenin accumulation are 

the responsible of this problem (Kramerova et al., 2004). M-cadherin is involved in myogenic fusion 

and its deregulation cause fusion problems (Zeschnigk et al., 1995; Charrasse et al., 2006). β-catenin 

together with M-cadherin plays a role in later stages of myogenic differentiation within cadherin cell 

adhesion complex (Krauss, 2005). Calpain 3 could cleave both proteins and when it is absent, both 

accumulates, leading to enhanced fusion of myotubes (Kramerova et al., 2006). 

4.3.3.2 Calpain 3 and apoptosis 

LGMD2A patients’ muscles showed myonuclear apoptosis mediated by the disruption of 

IκBα/NF-κB pathway (Baghdiguian et al., 1999). Nuclear factor-kappa B (NF-κB) protein is maintained 

in the cytoplasm due to its inhibitor IκBα, after the complex activation, IκBα is degraded and NF-κB 

translocates to the nucleus to activate the expression of anti-inflammatory and cell survival genes.   

IκBα degradation could be mediated by calpain 3, thus, in the absence of calpain 3, IκBα is not 

degraded what leads to the NF-κB sequestration in the sarcoplasm. This feature was observed in 

LGMD2A patients’ muscles where an accumulation of IκBα together with a sarcoplasmic retention of 

NF-κB was observed. This situation resulted in a failed expression of antiapoptotic genes activation 

mediated by the lack of NF-κB nuclear translocation, increasing cellular apoptosis (Baghdiguian et al., 

1999, 2001). Further studies carried out by Richard and colleagues (2000) in a Capn3-deficient mice 

model, supported these previous findings. Additionaly, an impairment of membrane permeability in 

C3KO mice was suggested together with perturbation of the IκBα/NF-κB pathway to produce 

myonuclear apoptosis. They showed normal pattern of NF-κB in half of the fibres, suggesting that 

alternative mechanisms would be acting to produced myonuclear apoptosis.  

Subsequent studies corroborated IκBα/NF-κB pathway impairment in LGMD2A patients. A NF-

κB-dependent expression of some antiapoptotic factors such as c-FLIP, BclII and Bcl-XL was observed, 

concluding that calpain 3 participates in the regulation of the expression of NF-κB-dependent survival 

genes to prevent apoptosis in skeletal muscle (Benayoun et al., 2008).  

However, contrary to what was postulated, another study carried out in C3KO mice, found out 

that the apoptotic positive nuclei were located outside of the sarcolemmal membrane. It was reported 

that these nuclei corresponded to immune cells since they co-stained with CD11b (Kramerova et al., 

2004).  
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Despite the controversy in the implication of IκBα/NF-κB pathway in LGMD2A disease another 

study reported that oxidative stress and IκBα/NF-κB signaling pathway were increased in muscles from 

LGMD2A patients. They suggested that it could contribute to the increased protein ubiquitinylation 

and muscle protein loss (Rajakumar et al., 2013). 

4.3.3.3 Calpain 3 and mitochondria 

Histochemical analyses of human LGMD2A patients as well as calpain 3 deficient mice models 

have shown abnormalities in mitochondrial structure and distribution in lobulated fibres (Kawai et al., 

1998; Chae et al., 2001; Kramerova et al., 2009). Kramerova and colleagues (2009) reported that C3KO 

mice have more but functionally deficient mitochondria which produce elevated reactive oxygen 

species leading to oxidative stress and energy deficit. Authors suggested that these important 

pathological features could represent a secondary effect of the absence of calpai n 3. Conversely, in a 

study carried out in human LGMD2A samples, even oxidative damage was present, mitochondrial 

enzymes dysfunction was not detected (Nilsson et al., 2014).  Finally, the latest studies carried out in a 

Capn3 null mice has showed attenuated mitochondria biogenesis in muscle regeneration process 

induced by cardiotoxin (CTX) injection (Yalvac et al., 2017). 

4.3.3.4 Calpain 3 and calcium mediated signaling 

Several studies have described calpain 3 as key protein in regulating calcium release in 

skeletal muscle. Calpain 3 has been found next to the membrane, in association with triads. Calpain 3 

is necessary for the proper recruitment of aldolase A (AldoA; glycolytic enzyme) and ryanodine 

receptor (RyR; calcium release channel) to the triads. Loss of calpain 3 leads to the reduction of AldoA 

and RyR which in turn leads to reduced calcium release form the SR to cytoplasm during muscle 

activation. Calpain 3 plays a structural role stabilizing RyR associated protein complexes in the SR 

(Kramerova et al., 2008; Ojima et al., 2011; DiFranco et al., 2016). 

During muscle activity, Ca2+ accumulates in the sarcoplasm, leading to the activation of 

Ca2+ -mediated signaling pathways. Given that in the absence of calpain 3 there is a reduced release of 

Ca2+, two Ca2+ -calmodulin dependent pathways have been widely studied; calcineurin/nuclear factor 

of activated T-cells (NFAT) pathway and Ca2+ -calmodulin-dependent protein kinase (CaMK) pathway.  

Studies carried out in C3KO mice showed that only CaMK-mediated signaling is decreased. 

This was proven by reduced total and activated CaMK as well as nuclear accumulation of class II  HDAC 

(Potthoff et al., 2007; Kramerova et al., 2012). The impaired CaMK signaling led C3KO mice to fail in 

muscle adaptation after exercise since exercise training increases slow fibres proportion mediated by 
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CaMK signaling. (Talmadge, 2000; Bassel-Duby and Olson, 2006). Impaired CaMK pathway also leads 

to altered transcriptional response in C3KO mice. Gene expression activation of genes related to lipid 

metabolism, energy production and sarcomere maintenance are deregulated (Kramerova et al., 2016). 

In LGMD2A patients RyR1 downregulation also was observed, however no conclusive data 

regarding CaMK or calcineurin were observed (Kramerova et al., 2012). Another group studied Ca2+ 

mediated signaling in human myotubes where calpain 3 has been silenced. Ca2+ release and SERCA 

mediated Ca2+ uptake into the SR, was reported also to be impaired. This myotubes displayed reduced 

SERCA1/2, RyR1 and small ankyrin 1 (sAnk1) protein levels that led to significant increased of basal 

intracellular Ca2+ levels.  However, in LGMD2A muscles only SERCA2 downregulation was observed in 

LGMD2A patients’ muscles (Toral-Ojeda et al., 2016).  

4.3.3.5 Calpain 3 and regeneration  

A study carried out in C2C12 cell line demonstrated that calpain 3 participates in the 

establishment of the pool of reserve satellite cells by downregulation of MyoD via proteolysis, thus 

promoting renewal of the satellite cell compartment (Stuelsatz et al., 2010). However, when these 

findings were analysed in human LGMD2A skeletal muscles, a significant increase of Pax7 positive 

satellite cells were observed (Rosales et al., 2013). Authors attributed satellite cells increase to 

downregulation of muscle specific microRNAs: miR-1, miR-133a and miR-206. Since it has been proven 

that miR-1 and miR-206 facilitate satellite cells differentiation and their downregulation increase Pax7 

levels (Yuasa et al., 2008; Chen et al., 2010; Dey et al., 2011). A recent study carried out in Capn3 

deficient mice showed that muscle regeneration is impaired after a single CTX injection. Capn3 null 

mice showed a downregulation of muscle-specific microRNAs (miR-206) through TGF-β signaling 

pathway, which is a potent myogenic differentiation inhibitor (Winbanks et al., 2011; Rosales et al., 

2013; Yalvac et al., 2017). 

When muscle regeneration was assessed in LGMD2A patients, based on developmental 

markers such as neonatal myosin heavy chain, vimentin, MyoD and myogenin, negative impact on 

regenerative response was observed. Regeneration was more severely impaired when patients have 

CAPN3 null-alleles (Hauerslev et al., 2012).  

In addition to all of these findings, in vitro studies carried out in both C3KO and human cells 

have reported that myoblast fusion is defective when calpain 3 is absent (Kramerova et al., 2006; Jaka 

et al., 2017). Furthermore, perturbed AKT/mTOR signaling pathway has been observed in Canp3 null 

regenerating muscles (Yalvac et al., 2017). 
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4.3.3.6 Calpain 3 deregulation in tumour tissue 

Different studies have related calpain 3 expression regulation to cell cycle progression, 

however the results were contradictory.  On the one hand, calpain 3 downregulation was observed 

after treatment in melanoma cell lines (Huynh et al., 2009) while also calpain 3 downregulation have 

been related to a highly invasive metastatic phenotype in the same cell line (Moretti et al., 2009; 

Ruffini et al., 2013). Moreover, calpain 3 upregulations has been found in papillomavirus-associated 

urothelial tumours (Roperto et al., 2010).  

All these studies related calpain 3 with cell cycle regualation however no studies indicating 

presence of tumours in LGMD2A patients have been described so far.  Furthermore, whether this 

function is implicated in the pathophysiology of LGMD2A disease has not been studied yet.  
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HYPOTHESES 

 

CHAPTER 1: In vitro analyses of the pathophysiology of LGMD2A 

I. The tendency towards the homogenization between controls and LGMD2A patients’ cell 

cultures, together with a lack of correlation between myoblast/myotubes and their tissue of 

origin are a methodological limitation for cell analysis. Thus the use of sera obtained from 

healthy controls as well as LGMD2A patients to growth cells in vitro, will improve the 

recapitulation of the observed events in muscle. 

II. Although lack of calpain 3 is the responsible of the disease, several genes are deregulated in 

patients’ muscles. Modulation of the deregulated genes could rescue the normal function of 

the muscle and unveil potential therapeutic targets.  

III. The analysis of protein regulation in LGMD2A patients’ muscles could characterize essential 

signaling pathways that are impaired in the muscle fibre of LGMD2A patients. 

CHAPTER 2: Study of Frzb absence effects in the muscle of a murine model (Frzb -/-) in vitro and in vivo 

IV. The characterization of Frzb-/- mice muscle, at functional as well as at molecular/cellular level,  

could contribute to the knowledge of the mechanisms involved in LGMD2A pathophysiology.  
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OBJECTIVES

 

CHAPTER 1: In vitro analyses of the pathophysiology of LGMD2A 

I. To establish use of human serum as an in vitro strategy to obtain a better correlation between 

cultures and muscle tissue. 

II. To establish the implication of the deregulated genes in the pathophysiology of the disease.  

III. To characterize the effect of gene expression control by means of siRNA to rescue the 

deregulated expression observed in LGMD2A muscle. 

IV. To identify perturbations in signaling pathways in the skeletal muscle of LGMD2A patients to 

shed some light on the pathways implicated in the muscle homeostasis.   

CHAPTER 2: Study of Frzb absence effects in the muscle of a murine model (Frzb-/-) in vitro and in vivo 

V. To establish possible muscle dysfunctions (strength or gait pattern alterations) due to Frzb 

gene absence in Frzb-/- mice.  

VI. To analyse muscle regeneration capacity in Frzb-/- mice after induced injury.  

VII.  To characterize cell types with myogenic potential (satellite cells and mesoangioblasts) in 

Frzb-/- mice muscles. 

VIII. To characterize the differential expression of genes and proteins between Frzb-/- and WT mice 

muscle. 
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1. BIOLOGICAL MATERIAL 

1.1 HUMAN ORIGIN SAMPLES 

For this study skeletal muscle biopsy samples were obtained from Donostia University Hospital 

after all subjects gave informed consent, using forms approved by the Ethics Committee on the Use of 

Human Subjects in research.  

Biopsies from LGMD2A patients were collected after disease diagnosis have been confirmed 

genetically by the identification of both mutations in the CAPN3 gene. Control healthy samples were 

chosen from patients that underwent surgery due to bone fractures.  

Proximal limb muscles were most used muscle samples (Fardeau et al., 1996a; Urtasun et al., 

1998) but distal limb muscles were also used.  

Human primary myoblast obtained from proximal muscles biopsies (Tibialis anterior) were 

kindly provided by Dr. Schneiderat from the Muscle Tissue Culture Collection, Munich (Germany).  

Muscle biopsies were used for different purposes, protein extraction as well as muscle cell 

(myoblasts) isolation for cell culture experiments. Depending on the sample availability for each of 

them different sets of muscles were used. All samples details are listed in the next  table (Table 4).   
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Sample Status Age Gender Origin tissue Ambulation CAPN3 mutations 

            Mutation 1 Mutation 2 

        1: Foetal Bovine Serum Vs human heterologous serum  experiment 

09–21  P 19 M  Biceps brachii Ambulant  p.(His690ArgfsX9)  p.(His690ArgfsX9) 

13–05 C 14 M  Quadriceps - - - 

        2: Proximal muscles for myoblast isolation 

09–21  P 19 M  Biceps brachii Ambulant  p.(His690ArgfsX9)  p.(His690ArgfsX9) 

09–25  P 28 M  Deltoid Ambulant p.(Lys254Glu)  p.(Pro637HisfsX25) 

10–39  P 29 M  Deltoid 
Wheelchair 

bound 
p.(Lys254del)  p.(X822Leuext62X) 

10–36  C  23 M  Biceps brachii - - - 

13–05 C  14 M  Quadriceps - - - 

13–07 C  36 F  Biceps brachii - - - 

        3: Distal muscles for myoblast isolation  

2009Cal1 P 27 M 
Tibialis 

anterior 
Ambulant p.(Thr184Argfs*36) p.(Thr184Argfs*36) 

2009Cal3 P 21 F 
Tibialis 

anterior 
Ambulant p.(Thr184Argfs*36) p.(Arg490Trp) 

2009Cal4 P 12 M 
Tibialis 

anterior 
Ambulant c.1992+1G>T p.(Thr679Serfs*20) 

08-08 C 34 M 
Tibialis 

anterior 
- - - 

        4: Muscles for protein analysis 

5 P 13 M  Deltoid Asymptomatic p.(Arg788SerfsX14) p.(Arg788SerfsX14) 

9 P 14 F  Biceps braquii  Asymptomatic p.(Arg490Trp) p.(Gly691TrpfsX7) 

36 P 26 M  Quadriceps Ambulant p.(Lys254Glu) c.1910delC 

114 P 49 M  Deltoid Ambulant p.(Pro637HisfsX25) p.(Asp665LeufsX18) 

168 P * M  * Ambulant  p.(Ser479Gly) p.(Asp665LeufsX18) 

169 P 51 M  Deltoid Ambulant  p.(Ser479Gly) p.(Asp665LeufsX18) 

352 P 19 M  Deltoid Ambulant p.(Arg788SerfsX14) p.(Arg788SerfsX14) 

27 C  50 M  Quadriceps - - - 

31 C  46 M  Quadriceps - - - 

33 C  51 M  Deltoid - - - 

38 C  31 M  Quadriceps - - - 

42 C  52 M  Quadriceps - - - 
 

Table 4. Control and LGMD2A human samples information. Status; P= LGMD2A patient and C= Control. 

Gender; M= male and F= female. *= Not available information.  

Sample processing started at operating room at the hospital were muscle piece is removed 

and conserved in a sterile phosphate-buffered saline (PBS; Gibco- Thermo Fisher Scientific; Whatman, 

MA, USA)  containing wet gauze until procedure room in the laboratory. At this point, muscle pieces 

were cleaned in a Ca2+/Mg2+ containing Hank's balanced salt solution (HBSS; Thermo Fisher Scientific) 

supplemented with 1% of penicillin/streptomycin (P/S) and fungizone (amphotericin B) (Thermo Fisher 

Scientific).  Blood vessels and fat tissue present in muscle biopsy were removed.  
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Once muscle piece was clean, could be processes for different purposes, RNA or protein 

extraction and cells (myoblast) isolation. When muscle biopsy was used for RNA or proteins extraction, 

muscle piece was directly frozen into liquid nitrogen and further stored in -80°C freezer. By 

comparison, for myoblast isolation muscles had to be processe d in a different way (see myoblast 

isolation).  

1.2 MURINE ORIGEN SAMPLES 

The generation of Frzb knockout (Frzb-/-) mice was carried out at Skeletal Biology and 

Engineering Research Centre (Katholieke Universiteit Leuven, Belgium). Cre/loxP strategy was 

employed to inactivated Frzb gen (exon 1 was floxed). Mice were back-crossed into two different 

backgrounds (Swiss/CD1 and C57BL/6) for over 10 generations (Lories et al., 2007). In the experiments 

reported here, C57BL/6 mice were at least in the 19th -20th generation of backcrossing. WT C57Bl/6 

mice were purchased from Janvier (Le Genest St Isle, France). Mice with normal immune status were 

housed in groups of 4-5 mice in Static micro-insulator cage with Macrolon filter with bedding material 

(composed of spruce particles of approximately 2.5 - 3.5 mm, type Lignocel® BK 8/15), under 

conventional laboratory conditions (14 h light – 10 h dark; 23+/-2°C), with standard mouse chow food 

(Sniff, Soest, Germany) and water provided ad libitum. All studies were performed with the approval 

from the Ethics Committee for Animal Research (P034/2016; KU Leuven, Belgium). 

Mice were genotyped by PCR using DNA obtained from ear biopsy tissue. WT and knockout 

(KO) alleles were amplified using forward primer p1 (5’-TGAACTTTGCCCGACCTCTGAG-3’) and reverse 

primer p2 (5’-GATCGCTCGGATCACTTGTTGG-3’) or using forward primer p3 (5’-

CTGATGTCTCTGCCAGAGCGAG-3’) and reverse primer p4 (5’-TGGACGTAAACTCCTCTTCAGACC-3’), 

respectively (Lories et al., 2007).  

Several sets of mice were used with different purposes (Table 5). For more detailed 

information, appendix II, table1.  
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Experimental procedure Genotype Age (weeks) 

    WT Frzb-/-   

Muscle strength analysis       

  
9 13 5 - 6 

Catwalk analysis       

 
8 week-old mice  20 16 8 

 
10 week-old mice 19 17 10 

  
39 33 

 RNA and protein extraction        

  
15 15 10 -11 

Chronic exercise protocol       

 
Not-trained 4 3 

 
 

Trained 5 4 
 

  
9 7 5 

Cardiotoxin injection       

 
CTX + 3 days 4 3 

 
 

CTX + 7 days 4 3 
 

 
CTX + 14 days 4 6 

 
 

CTX + 28 days 7 8 
 

  
19 20 10 

Satellite cells isolation       

  
7 7 4 

ALP+ cells isolation       
    8 8 3 - 4 

Table 5. Information of used mice. 

2. RNA ISOLATION 

2.1 RNA ISOLATION FROM HUMAN OR MURINE SKELETAL MUSCLE 

RNA isolation from skeletal muscle was based on mechanical disruption of the tissue through 

stainless steel beads in plastic RNase free tubes with the TissueLyser (QIAgen, Hilden, Germay).   

For each muscle or muscle piece, one bead was introduced in rounded bottom eppedorf. Five 

hundred microliters of cold trizol (QIAzol®, QIAgen) were added before frozen muscle introduction. 

After that, samples were set into the TissueLyser where a first cycle of 30 s at 30 Hz was performed. 

Next, an incubation step was performed; one minute on ice where more cold trizol, 500 µl were 

added. Following, another cycle of 30 s at 30 Hz was performed. This step could be repeated if big 

undisrupted muscles were observed. 

Finally, samples were centrifuged at 8,000 rpm for 3 min at 4°C. Supernatant was collected in a 

new RNase free tube. At this point samples could be stored at -80°C or continue with RNA extraction.  
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2.2 RNA ISOLATION FROM HUMAN OR MURINE CELLS 

For RNA isolation cell plates were washed twice with cold PBS once medium was removed. 

After that, 700 µl of cold trizol was added. Cells were detached with cell scrapers and collected on an 

RNase free eppendorf. Samples were subjected to a vortex for one minute. At this point samples could 

be stored at -80°C or continue with RNA extraction.  

Total and small RNAs were purified using miRNasy mini kit (QIAgen) following the company’s 

protocol. Trizol samples were placed at room temperature (RT) for 5 min. One hundred  and forty 

microliters of chloroform (Merck KGaA) was added. All samples were shaken vigorously for 15 s 

followed by an incubation of 3 min at RT. Next, tubes were centrifuged at 1,2000 g for 15 min at 4°C. 

When finished, RNA containing supernatant (upper clear aqueous phase) was collected, avoiding 

white interphase (that contains proteins) and lower organic phase (that contains DNA and lipids). 

From here the protocol was carried out in a QIACube (QIAgen) where next steps were carried out, as 

informed in the company’s protocol: 

- 1.5 volumes of 100% ethanol were added followed by mixing thoroughly by pipetting.  

- 700 µl of this mixture were placed into an RNeasy® Mini column placed in a 2 ml collection 

tube.  

- Samples were centrifuged at 8,000 g for 15 s at RT. Flow-though was discarded. This step was 

repeated using the remainder of the samples.  

- 700 µl of buffer RWT buffer was added to the RNeasy® Mini column and samples were 

centrifuged at 8,000 g for 15 s at RT. Flow-though was discarded. 

- 500 µl of buffer RPE was added to the RNeasy® Mini column and samples were centrifuged at 

8,000 g for 2 min at RT.  

- RNeasy® Mini column was placed in a new 1.5 ml collection tube. Thirty microliters of RNase-

free water was pipetted directly onto the column membrane. Next, samples were centrifuged 

at 8,000 g for 1 min to elute RNA.   

The obtained RNA was eluted in 30 µl of RNase-free water. At this point samples could be 

stored at -80°C.  

2.3 RNA QUANTIFICATION 

NanoDrop spectrophotometer ND-1000 was used to measure RNA concentration (ng/µl) and 

purity (absorbance ratio at 260 nm/280 nm and 260 nm/230 nm).  If the absorbance ratio at 260 nm 

and 280 nm were lower than 1.8, samples were discarded due to the presence of protein or phenol 
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contamination. Similarly, if the absorbance ratio at 206 nm and 230 nm were diverse form 2.0, 

samples were discarded due to the presence of contaminants which absorb at 230 nm.  

2.4 cDNA SYNTHESIS: REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION (RT-

PCR)  

 

RNA obtained either from skeletal muscles or cell cultures was reversed transcribed with High-

Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific) following the company’s protocol. 

All species of RNA molecules present, including mRNA and rRNA were transcribed due to random 

primers.  

In a final volume of 50 μl, 25 μl of RNA at 50 ng/µl and 25 μl of reverse transcription master 

mix were mixed. The reverse transcription master mix was performed following manufacturer 

recommendations (Table 6).  

 

 

 

 

 

Table 6. Reverse transcription master mix composition and volumes for a final volume of 25μl. 

Tubes were centrifuged and introduced into a thermal cycler. The used program on the 

thermal cycler is detailed below (Table 7). Obtained cDNA was stored at -20°C.  

 

 

Table 7. Thermal cycler conditions.  

 

 

 

 

Reverse transcription master mix 

  Component Volume per reaction 
10X RT buffer 5 µl 
25X dNTP mix (100 mM)  2 µl 

10X random primers 5 µl 
MultiScribe™ reverse transcriptase 2.5 µl 
RNase inhibitor  2.5 µl 

Nuclease-free H20 8 µl 

Total volume 25 µl 

 
Step 1 Step 2 Step 3 Step 4 

Temperature 25°C 37°C 85°C 4°C 

Time 10 min 120 min 5 min ∞ 
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2.5 REAL-TIME QUANTITATIVE PCR 

Real-time quantitative PCR was used to analyse gene expression levels. Two different 

approaches were used for this purpose: a) SYBR Green-based detection and b) TaqMan™ probes-

based detection.  

2.5.1 SYBR Green-based detection 

A custom-designed SYBR Green panel was used (Bio Rad) to test a series of 38 genes in murine 

samples. Genes were selected base on previous knowledge (Sáenz et al., 2008; De la Torre et al., 2009; 

Lories et al., 2009; Lodewyckx et al., 2012). For a more detailed information; appendix II, table2.  

 Muscle specific genes: Myh1, Myh2, Myh4 and Pax7. 

 Deregulated genes in LGMD2A patients’ muscles: Canp3, Capn6, Col1a1, Dok5, Fhl1, 

Itgb1bp2, Myl6b, Myom3, Myot and Vldlr. 

 Deregulated genes in Frzb-/- mice articular cartilage and LGMD2A patients’ muscles: 

Aspn, Col3a1, Col5a1, Col15a1, Cthrc1, Ctnnb1, E2f8, Fasn, Fn1, Frzb, Igf1, Mest, Myc, 

Rora, Sema3c, Slc16a1, Sorb1 and Tfrc. 

 Genes coding for proteins participating in Wnt signaling pathway: Lrp5, Lrp6, Wnt8a 

and Wnt8b. 

 Endogenous controls: Gapdh and Tbp.  

The primePCR custom plates was designed in a 384-well plate panel to test three different 

samples in each plate. Panels already had lyophilized primers in each well and PCR reaction mix and 

samples were added.  

Each plate contains four different experimental control assays designed to assess the quality 

of samples, the reverse transcription reaction and quantitative PCR reaction. Only samples that fulfil 

the required criteria were analysed.  

- Positive PCR control assay: a synthetic DNA template (not present in human and mouse 

genome) was added to test possible inhibitors.  For that purpose 0.5 µl of PrimePCR  PCR 

control buffer was added. The obtained result from this analysis was accepted when ΔCq>1, 

being ΔCq= PCR Cq control sample – PCR Cq for sample (quantification cycle Cq). 

- Reverse transcription control assay: a synthetic RNA template was introduced into the cDNA 

synthesis reaction to evaluate its performance. In this case lyophilized retrotranscription 

control assay template was diluted in 200 µl of RNase-free water. For each sample 1 µl of this 

control RNA template was added to each 20 µl of cDNA synthesis reaction. The obtained result 
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could compromise gene expression when ΔCq>1, being ΔCq= PCR Cq control sample – PCR Cq 

for sample.  

- DNA contamination assay: was used to assess whether genomic DNA was present in the 

samples. If samples Cq>35; no genomic DNA was present. Otherwise if Cq<35 indicated the 

presence of it. RNA control template was added to this well too.  

- RNA quality: was used to study the possible RNA degradation. The obtained result 

demonstrated minimal degradation when ΔCq>= 3. However values of ΔCq<3 indicated that 

RNA integrity may compromise gene expression.  

PrimePCR custom plates were allow to reach room temperature and  iTaq universal SYBR 

Green supermix (Bio Rad), cDNA samples and positive PCR control DNA template were thawed on ice 

protected them from light.  

PCR reaction mix was made following company’s protocol adding all required components. 

One PCR reaction mix for each cDNA sample was prepared using 8.78 ng of cDNA (Table 8). 

 

 

 

 

 

Table 8. PCR reaction mix components. 

Plates were sealed prior to centrifuge to remove possible bubbles. For gene quantification 

CFX384 Touch Real-Time PCR Detection System (Bio Rad) was used with a specific thermal cycling 

programme (Table 9). Data processing was made using CFX Manager Software. 

Table 9. Thermal cycling programme.  

PCR reaction mix 

   Component Volume per reaction Final concentration 

   PrimePCR assay Dried in well 1x 

iTaqTM Universal SYBR® Green Supermix  5 µl 1x 
cDNA sample 0.5-2 µl 100 ng-100 fg 
Nuclease-free water Variable 

 Total volume 10 µl   

Thermal cycling programme   

    Step Temperature Time Number of cycles 

    Activation 95°C 2 min 1 
Denaturation 95°C 5 seconds 40 
Annealing/extension 60°C 5 seconds 

 Melt curve 65-95°C (0.5°C increments) 5 seconds/step 
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The expression of all transcripts was determined relative to the internal housekeeping gene in 

the plate, GAPDH or TBP, for which no alterations in expression were detected. For relative gene 

expression comparisons between WT mice and Frzb-/- mice muscles, 2-ΔΔCT method was applied.   

2.5.2 TaqMan™-based detection 

Individual TaqMan real-time PCR assays and custom-designed TaqMan Low-Density Arrays 

(TLDA) (Applied Biosystems) were used. 7900HT Fast Real-Time PCR System (Applied Biosystems) was 

used to perform gene expression analysis.    

For the experiments where individual assays were performed, TaqMan™ Gene Expression 

Master Mix (Thermo Fisher Scientific) and cDNA samples diluted in RNase -free water were mixed. 

Twenty-five nanograms of cDNA were added per well together with 1 µl for 94 well-plate or 0.5 µl for 

384 well-plate of TaqMan™ probes in a final reaction volume of 20 μl or 10 μl for 94 well-plates and 

384 well-plates respectively.  All the components were maintained on ice and protected from light. 

Plates were sealed prior to centrifugation to remove possible bubbles. Used TaqMan™ probes are 

listed on appendix II, table 3. 

By comparison, TLDA custom-designed plates were used to test a series of 64 genes based on 

the validation of the 74 genes that were found to be deregulated in the muscle of LGMD2A patients 

(Sáenz et al., 2008).  TLDA custom-plate was provided as 384 well-plate to test 64 genes in triplicate 

for two different samples. TLDA TaqMan™ probes are listed on appendix II, table 4. 

TLDAs were maintained at room temperature prior to their use. All the components were 

maintained on ice. For each sample the PCR reaction mix was prepared as follow ( Table 10). 

 

 

 

 

 

 

Table 10. PCR reaction mix.  

PCR reaction mix 

  Component Volume per reaction 

  PrimePCR assay-probes Dried in well 

TaqMan™ Gene Expression Master Mix  200 µl 

cDNA simple (1000 ng) 200 µl 

Nuclease-free water Variable 

Total volume 400 µl 
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To distribute all the samples homogeneously to the reaction wells, the TLDA plates had to be 

centrifuged following manufacturer recommendations, 1,200 rpm for one minute, twice. Finally, TLDA 

plates were sealed as instructed and were inserted into the real -time PCR machine.  

The following programme was used for single assays as well as for TLDAs.  

 

Table 11. Thermal cycling protocol for gene expression analysis. UDG= Uracil-DNA glycosylase. 

The expression of all transcripts was determined relative to the internal housekeeping gene in 

the same plate (GAPDH or TBP genes). For relative gene expression levels between samples, 2-ΔΔCT 

method was applied. DataAssist v3.01 and RQ Manager form Applied Biosystems programs were used 

for that purpose.  

 

 

 

 

 

 

 

 

Thermal cycling programme 

     

 

UDG incubation 
AmpliTaq Gold, UP 
enzyme activation 

PCR 

 
Hold Hold 

40 cycles 

 

Denature Anneal/Extend 

Time 2 min 10 min 15 seconds 1 min 

Temperature 50°C 95°c 95°C 60°C 
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3. PROTEIN EXTRACTION 

3.1 PROTEIN ISOLATION FROM SKELETAL MUSCLE 

The same procedure was carried out for human or murine origin samples. It was based on 

mechanical disruption of the tissue through stainless steel beads in plastic tubes with the TissueLyser 

(QIAgen).   

For protein extraction two different buffers were used Nicholson (Anderson and Davison, 

1999)  and Paris protein extraction buffers (Table 12).  

 

Table 12. Nicholson and Paris buffers composition. dH20= distilled water.  

For muscle disruption each muscle was introduced in a rounded bottom tube containing 20 µl 

of elected buffer for each milligram of tissue and one stainless steel bead. Samples in Nicholson buffer 

were maintained on ice while those in Paris buffer were maintained at RT because Paris buffer 

solidifies at low temperatures. Next, samples were set into the TissueLyser where a first cycle of 30 s 

at 30 Hz was performed. Following, another cycle of 30 s at 30 Hz was performed. For those samples 

which were in Nicholson buffer, 1 min incubation on ice was performed between two TissueLyser 

cycles. TissueLyser cycles could be repeated if big undisrupted muscles were shown.  

Finally, proteins were denatured at 100°C for 5 min on a thermoblock and centrifuged at 8,000 

rpm for 3 min. Supernatant was collected on a new tube and samples were stored at -80°C. 

Nicholson buffer for protein extraction Paris buffer for protein extraction  

        

Compound  
Final 

concentration  Compound  Final concentration  

        

Tris hydrochloride pH 6.8 1.25 M Tris hydrochloride pH 6.8 4.5 mM  

Urea  4 M SDS 15% 

Sodium dodecyl sulfate (SDS) 4% Glycerol 20% 

2-mercaptoethanol 5% Bromophenol blue 0.5% 

Glycerol 1% 2-mercaptoethanol 5% 

Bromophenol blue 0.001% Protease inhibitor cocktail  1 tablet for 10 ml 

Protease inhibitor cocktail 1 tablet for 10 ml β-glycerophosphate 50 mM 

β-glycerophosphate 50 mM Sodium pyrophosphate 5 mM 

Sodium pyrophosphate 5 mM dH2O   

dH2O     
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3.2 PROTEIN ISOLATION FROM CELLS 

The procedure carried out was the same for human or mice and for myoblasts or myotubes 

samples. 

For protein extraction two different buffers were used, Paris (the same as for muscles) and 

RIPA protein extraction buffers (Table 13). The composition of PARIS did not allow quantifying protein 

amount with any of the available methods while proteins extracted with RIPA buffer could be 

quantified by diverse techniques.   

RIPA buffer for protein extraction  

    

Compound  Final concentration  

    

Tris hydrochloride pH 7.8 50 mM  

Sodium chloride (NaCl)  150 mM 

SDS 0.10% 

Na·Deoxycholate 0.50% 

Triton X-100 1% 

Protease inhibitor cocktail tablets  1 tablet for 10 ml 

Sodium fluoride (NaF1) 5 mM 

Activated sodium orthovanadate (Na3O4V2) 1 mM 

E-643 10 µM 

Phenylmethane sulfonyl fluoride (PMSF4) 1 mM  

dH2O   

 

Table 13. RIPA buffer composition. (1) NaF was used as protein phosphoseryl and phosphothreonyl 

phosphatases inhibitor. (2) Activated Na3O4V was used as protein phosphotyrosyl phosphatases inhibitor. It 

should be activated since depolymerized vanadate has maximal inhibition activity. For that purpose a stock 

solution of Na3O4V (1 mM or higher concentrations) was prepared in dH2O. The pH had to be adjusted at 

10.0. To ensure the presence of vanadate monomers, the solution was boiled until translucent and the pH 

was readjusted to 10.0 again. This procedure had to be repeated until the solution remains colourless 

(orange colour observed before boiling was due to decavanadate) and the pH stabilized at 10.0. To adjust 

the pH solution had to be at room temperature. Activated Na3O4V could be stored at -20°C. (3) E-64 is a 

cysteine protease inhibitor. It was required to be prepared in ethanol. (4) PMSF is a serine protease 

inhibitor. It was required to be prepared in ethanol.  

For protein extraction, cultured cell medium was removed and plates were washed twice with 

cold PBS. Next, 8 µl/cm2 of protein extraction buffer was added. Cells were detached with cell scrapers 

and collected samples were subjected to a vortex for 10 s. At this point proteins extracted with RIPA 

buffer were stored at -80°C while proteins extracted with Paris buffer were denatured at 100°C for 5 

min previous to store them at -80°C.  
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3.3 PROTEIN QUANTIFICATION 

Proteins extracted with RIPA buffer were quantified with Bradford method. This method is 

based on the ability of coomassie brilliant blue G-250 dye to bind to proteins and convert in a stable 

unprotonated form (with blue colour) that absorbs at 595 nm.  

The assay was performed in microplates where 5 µl of sample and 250 μl of Bradford 1X dye 

reagent (Bio Rad) were mixed. Prior to absorbance measure, plates were incubated at RT for 5 min in 

darkness. Absorbance at 595 nm was measured in a microplate reader. The obtained measure results 

were the mean of three different measures. 

3.4 PROTEIN ANALYSES 

3.4.1 Western blot analysis 

Homogenised samples were loaded into homemade SDS-polyacrylamyde gel (Table 14).  

Western blot gel composition for one gel   

   Component Resolving (%8) Stacking (3%) 

   Tris-HCl 1.875 M, pH 8.8 2 ml 
 Tris-HCl 1.25 M, pH 6.8 

 
325 μl 

Acrylamide 29:1 30% 2.65 ml 325 μl 

Glycerol 50% 2 ml 325 μl 

dH2O 3.294 ml 2.095 ml 
SDS 25% 80 µl 25 µl 

TEMED 5 µl 5 µl 
APS (15 mg/ml) 150 µl 150 µl 

 

Table 14. SDS-polyacrylamyde gel composition. Resolving was made at 8% while Stacking was made at 3% 

of acrylamide/bis solution. TEMED= N,N,N',N'-Tetramethyl-ethylenediamine and APS= ammonium 

persulfate. 

When RIPA buffer was used, 15 µg of total proteins were loaded per well. SDS proteins sample 

buffer (Table 15) was added to allow protein solubilisation and samples were further denatured for 5 

minutes at 100°C.  
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4X SDS Protein sample buffer 

  Component Final concentration 

  Glycerol 40% 
SDS 8% 
Bromophenol blue 0.04% 
2-mercaptoethanol 5% 
Tris-HCl pH 6.8 240 mM 

 

Table 15. SDS protein sample buffer composition (4X).  

A mixture of multi coloured recombinant proteins was loaded as protein standard (Bio Rad). 

Proteins were separated by electrophoresis in Running buffer 1X at 50 mÅ for 2 hours and transferred 

to a 0.45 µm nitrocellulose blotting membranes (GE Health care life science) performed in cold 

Transference buffer 1X at 400 mÅ for one hour (Table 16). 

Running buffer 10X   Transfer buffer 5X   

  
  

 Component Grams per one litre Component Grams per one litre 

  
  

 Tris 30.3 Tris 30 
Glycine 144 Glycine 144 
SDS 15 SDS 0.05 

 

Table 16. Running (10X) and Transfer (5X) buffers composition, both were made in dH2O. For 1X 

concentration 100 ml of Running buffer (10X) were added to 900 ml of dH2O and 200 ml of Transfer buffer 

(5X) + 200 ml of methanol were added to 600 ml of dH2O. 

The protein transference was verified by membrane staining with Ponceau solution (Sigma-

Aldrich). After this verification, proteins were blocked for one hour at RT in 5% skim milk (Sigma-

Aldrich) containing TBST solution (Table 17). After that, membranes were washed once in TBST for 10 

min. 

TBS pH 8.0 10X   TBST 1X   

  
  

 Component Grams per one litre Component Millilitres per one litre 

  
  

 Tris  24 TBS pH 8.0 10X 100 

NaCl 180 dH2O 900 

Prepared in dH2O 
 

Tween®20 2 

 

Table 17. TBS (10X) and TBST (1X) buffers composition.  
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Primary antibody hybridisation was performed in 5% BSA (Biowest) containing TBST solution at 

4°C in a roller overnight.  After membranes were washed three times in TBST, secondary antibody 

hybridisation was performed in 5% skim milk containing TBST solution for one hour at RT in a roller. 

Several washings steps also were carried out after secondary antibody hybridisation. Immunoreactive 

bands were visualised with SignalFire™ Plus ECL Reagent (Cell Signaling) and the chemiluminescent 

signal was obtained by both, the iBright FL1000 Imaging System (Thermo Fisher Scientific) and 

manually. Finally, the obtained results were analysed with ImageJ program.   

A complete antibodies list and working dilutions are shown in the appendix II, table 5.  

3.4.2 Immunofluorescence analyses 

Immunofluorescence detection of different proteins was performed in cells cultures as well as 

in skeletal muscles cryosections.  

3.4.2.1 Immunofluorescence analysis of cell cultures 

Cells grown on coverslips or directly on the plate were fixed with 4% paraformaldehyde (PFA) 

(Electron Microscopy Sciences) for 10 min at RT. Then, they were washed in PBS, and permeabilised by 

addition of 0.2% of Triton-X (Sigma-Aldrich) in PBS with 1% bovine serum albumin (BSA) (Biowest) for 

10 min at RT. After that, samples were blocked in a solution containing 1% BSA for 1h at RT. For the 

immunostaining, fixed cells were incubated with the primary antibody diluted in 1% BSA containing 

PBS solution overnight at 4°C. After several washes with PBS, samples were incubated with the 

corresponding secondary antibody diluted in 1% BSA containing PBS solution for 1 h at RT. Cells were 

further washed with DPBS and coverslips mounted on glass slides in a drop of ProLong mounting 

medium with DAPI (Life Technologies). For immunofluorescences carried out in plates, 1 µg/ml 

Hoechst solution (Thermo Fisher Scientific) was used for nuclear staining. Plates were maintained with 

PBS. All samples were maintained at 4°C until  analysis.  

3.4.2.2 Immunofluorescence analysis of skeletal muscle 

 All analyes were made in murine Tibialis anterior and Soleus. Tibialis anterior were directly 

frozen into 2-methylbutane (Thermo Fisher Scientific) cooled by liquid nitrogen. Soleus were frozen 

using tissue-Tek O.C.T Compound (Sakura Finetek USA INC) filled 10 mm x 10 mm x 5 mm cryomolds 

(Sakura Finetek USA INC) also into cooled 2-methylbutane.  Samples were stored at -80°C until 

immunostaining was performed.   
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Seven micrometres width sections of frozen muscles were cut using a 34° cutting angle blade 

in a Leica CM 1950 cryostat. At this point cryosections containing slides could be stored before use at -

80°C. 

Below is detailed the followed protocol for cryosection immunostainings.  

 Slides were tempered at RT for 10 min or until they dried.  

 Fixation: 4% PFA for 10 min at RT. 

 Permeation (not necessary for all antibodies): 0.3% Triton X-100 (Sigma-Aldrich) 

containing PBS solution for 20 min at RT. 

 Washing: 5 min PBS washes for three times. 

 Blocking step: 5% BSA containing PBS solution for 45 min at RT.  

 Primary antibody hybridisation: overnight at 4°C with primary antibody diluted in 

1% BSA containing PBS solution. Washing: 5 min PBS washes for three times. 

 Secondary antibody hybridisation: one hour at RT in a 1% BSA containing PBS 

solution, protected from light.  

 Washing: 5 min PBS washes for three times. 

 Nuclear staining: 1 µg/ml Hoechst solution for 2 min at RT. 

 Washing: several washing steps with PBS, dH2O and milli-Q H2O.  

 Samples were let air-dry and mounted with Fluoro-Gel (Electron Microscopy 

Sciences). Slides were stored at 4° upon analysis. 

All the samples (belonging to cell culture or cryosections) were examined using Nikon 80i 

microscope and ECLIPSE Ti-S/L100 inverted microscope (Nikon) together with NIS-Element software. A 

complete antibodies list and working dilutions are shown in the appendix II, table 5.   

Fusion index quantification: 

Immunofluorescence analysis was used to calculate the fusion index of cultured myotubes. It 

was calculated as the percentage ratio of the number of nuclei inside MyHC positive myotubes to the 

total number of nuclei. The number of nuclei was estimated by calculating the average number of 

nuclei counted in 9-13 independent and randomly chosen microscope fields of view.  
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3.4.3 Immunohistochemistry 

 

3.4.3.1 Hematoxylin and eosin staining 

Hematoxylin and eosin staining was performed to analyse skeletal muscle structure. 

Hematoxylin stains cell nucleus in blue and eosin stains eosinophilic structures in a range of red, pink 

and orange.   

Frozen muscle cryosections were tempered at RT for 10 min or until they dried. Slides were 

introduced in different boxes to perform tissue fixation, hematoxylin eosin staining and dehydration in 

the above order.  

 96% ethanol (made from absolute ethanol from VWR Chemiclas)  

 Tap water 

 Filtered hematoxylin (PanReac AppliChem ITW Reagents) for 1 min. 

 Rinsing with warm tap water until water was clear 

 Eosin (PanReac AppliChem ITW Reagents) 

 96% ethanol (2X) 

 100% ethanol (2X) 

 Xylene (Oppac s.a) (2X) 

Finally samples were mounted and stored at RT. Muscle structure was analysed using Nikon 

80i microscope and the NIS-Element software. 

Hematoxylin and eosin stained muscle sections were used to measure muscle fibres cross -

sectional area (CSA) through ImageJ software. Soleus fibres CSA from two different experiments were 

measured. On one side, 10 week-old 7 mice and 14 week-old 7 mice muscles were studied. Between 

two and three hundred fibres from randomly selected 4 or 5 different fields of view were measured. 

Conversely, for trained and not-trained mice fibres, 100 fibres from 4 different fields of view were 

measured. 

3.4.3.2 β-nicotinamide adenine dinucleotide–tetrazolium reductase transferase 

(NADH-t) staining 

NADH transferase enzymatic activity was used to stain fibres with different intensity purple -

blue pigment. The standard protocol was followed where water-insoluble purple-blue formazan dye 

(NTBH2) is detected due to its reduction from tetrazoium blue (NTB) because of the presence of NADH 

in cells mitochondria. 
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Muscle fibre classification was performed in murine Tibialis anterior. Frozen muscle 

cryosections were firstly re-hydrated in PBS before working solution was added on the top of the 

samples (Tris-HCl 0.1M, 0.4 mg/ml NADH, 0.8 mg/ml NBT) for 10 min at 37°C.  After washing them 

twice in dH2O, nuclear staining was performed with hematoxylin for 1 min at RT followed by  

dehydration performed as follow:  96% ethanol (4 times), 96% ethanol (4 times), 100% ethanol (4 

times), 100% ethanol (4 times), xylene (4 times) and xylene (4 times). To conclude, muscles were 

mounted and stored at RT. Muscle pictures were taken using Nikon 80i microscope and analysed byt 

the NIS-Element software. 

For fibre type analysis ImageJ software was used. The fibres were assigned to four different 

groups depending on the intensity (in pixels)  value obtained with the ImageJ program (strongly 

coloured < 100 pixels, medium-strongly coloured 100-150 pixels, medium-weakly coloured 150-200 

pixels and weakly coloured > 200 pixels) (Figure 16). All fibres of one section of Tibialis anterior were 

measured.  

 

 

 

 

 

 

Figure 16. NADH-t staining in Tibialis anterior where different fibre types are visualized, glycolytic (pale > 

200 pixels), oxidative (dark < 100 pixels) and intermediate (100-200 pixels). Scale bar 100 μm 
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4.  CELL CULTURE 

4.1 HUMAN PRIMARY CELLS 

Human origin primary myoblasts were obtained from skeletal muscle biopsy samples ( Figure 

17). Muscle pieces were cut maintaining fibre orientation in smaller pieces and were placed on a dish 

containing conditioned medium composed of medium 199 (M-199; Lonza, Basel, Switzerland) 

supplemented with 37.5% of foetal bovine serum (FBS; Thermo Fisher Scientific) and 1.25% of P/S and 

fungizone (9:1) and incubated overnight at 37°C and 5% CO2.  

At this point muscle pieces could be freeze for long term storage or continue with myoblast 

isolation. For long term storage muscle pieces (5-8) were introduced into cryo vials with freezing 

medium composed of Dulbecco’s modified eagle medium (D-MEM; Lonza) supplemented with 10% 

FBS, 1% P/S + fungizone (9:1) and 8% dimethyl sulfoxide (DMSO; Thermo Fisher Scientific). Cryo vials 

were placed into a freezing container filled with isopropyl alcohol which was in turn introduced in a -

80°C freezer for at least 6 h. For storage, cryo vials were stored in liquid nitrogen.  

For myoblast isolation frozen muscles were thawed and cleaned in Ca2+/Mg2+ containing HBSS 

supplemented with antibiotics. Muscles were further cut until 1-2 cm size in a conditioned medium 

containing plate. After that muscle pieces were placed in a 58.95 cm2 surface plate containing filtered 

(0.22 μm pore size) conditioned medium supplemented with 20% human plasma. Plates were 

incubated for 30 min at RT and then in a cell culture incubator for 6-7 days at 37°C and 5% CO2. 

After incubation, muscles pieces were chopped again (1mm3) in a plate with Ca2+/Mg2+ 

containing HBSS supplemented with antibiotics. The small muscle pieces were plated in plasma 

treated dishes (11.78 cm2) coated with filtered 1.5% gelatine supplemented with human plasma 2:1 

solution. Plates were incubated for 30 min at 37°C and 5% CO2 to allow muscles to attach and after 

that, proliferation medium was added (DMEM and M-199 supplemented with 10% FBS, 1% insulin 1 

mg/ml, 1% glutamine 200 mM, 0.5% fibroblast grow factor (FGF) 5 µg/ml, 0.1% epidermal grow factor 

(EGF) 10 µg/ml and 1% P/S + fungizone (9:1)). Medium was replaced twice a week. The required time 

to grow could range between 7 and 12 days.  
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When proliferating cells where observed procedure was repeated. Muscle pieces were plated 

again and cells were collected. Myoblast were isolated from all the different cell types using MACS® 

Column technology based on the use of magnetically labelled MACS Microbeads with LS columns 

(Miltenyi Biotec; Bergisch Gladbach, Germany). Microbeads for neural cell adhesion molecule (N -CAM 

or C56) (Illa et al., 1992) were used.   

For the isolation, cells were collected though trypsinization and resuspended in the protocol 

recommended buffer (AutoMACS Running Buffer–MACS Separation Buffer, Milteny Biotec). LS 

columns were rinsed with this buffer before separation. Samples were incubated with MACS 

Microbeads before cells suspensions were loaded onto the LS columns. Columns were washed three 

times with buffer to remove unlabelled material. Finally columns were removed from the magnetic 

field and cells were eluted in proliferation medium. Later they were plated in an appropriate 0.5% 

gelatine coated plate (25 cm2).   

Myoblasts were maintained there until 70-75% confluence was achieved. Then, they were 

plated in two 75 cm2 area flask to amplify them. Once 70-75% confluence was achieved, cells were 

frozen.  For long term storage myoblast were stored at a concentration of 5x105 cell/cryo vial in a 

freezing medium into liquid nitrogen. 

Human primary myoblast obtained from proximal muscles biopsies (Tibialis anterior) were 

grown as myoblast obtained from distal muscles.  

 Human plasma 

Human plasma was collected from healthy donors after they gave informed consent using forms 

approved by the Ethics Committee of the Use of Human Subjects in research. Blood was collected in 

Vacutainer® K2E (EDTA) 18.0 mg plus blood collection tubes (BD Bioscience, San Jose, California, USA) 

and centrifuged at 2,000 rpm for 10 min. Supernatant, plasma, was collected and stored at -20°C. 

All mediums compositions are detailed in the appendix II, table 6.  
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Figure 17. Schematic representation of human primary cells (myoblast) isolation.  
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4.2 MURINE ORIGIN CELLS 

4.2.1 C2C12 cell line 

C2C12 cell line is a subclone produced by H. Blau and collaborators (1985) from Mus musculus 

myoblast cell line established by D. Yaffe and O. Saxel (1977).  It is widely used as skeletal muscle cell 

line model. It was purchased from ATCC (ATCC-CRL®-1772™).  

For proliferation C2C12 myoblasts were grown in a proliferating medium composed of DMEM 

supplemented with 10% FBS and 1% P/S + fungizone (9:1). For myotubes, once myoblast achieve 80-

90% confluence proliferating medium was switched to medium containing DMEM supplemented with 

2% of horse serum (Thermo Fisher Scientific) and 1% P/S + fungizone ( 9:1). 

4.2.2 Murine primary cells 

4.2.2.1 Satellite cells 

Murine skeletal muscle satellite cells were extracted form 4 week-old WT and Frzb-/- mice 

(Biressi et al., 2013). Mice were euthanized by cervical dislocation and Gastrocnemius, Tibialis 

anterior, Quadriceps and Biceps from both legs were extracted. Muscles were introduced in a petri 

dish containing warm PBS + 25% antibiotics (P/S + gentamicin 9:1) to be cleaned.   

Muscles were digested in 0.002% D collagenase (Hoffmann-La Roche, Basel, Switzerland) and 

0.006% pancreatin (Sigma-Aldrich) containing solution placed at water bath at 37°C, shaking, for one 

hour. After sample sedimentation, supernatants were filtered through 70 µm filters. A second 

digestion was made in the same conditions for 30 min. Supernatant was filtered as before and 

samples were centrifuged at 1,200 rpm for 5 min. Supernatants were discarded and samples were 

further washed with PBS and filtered again through 40 µm filters followed by a centrifugation at 1,200 

rpm for 5 min. Finally, supernatants were discarded and cells were resuspended in PBS and counted.  

Cells were grown in DMEM-high glucose (FBS; Gibco-Thermo Fisher Scientific) supplemented 

with 20% FBS, 1% chicken embryo extract (Bio-connect BV, Huissen, The Netherlands), 1 mM  sodium 

pyruvate, 100 U/ml  penicillin and streptomycin, 2 mM L-glutamine (Thermofisher Scientific) and 0.1% 

gentamicin (Sigma-Aldrich). Once high confluence was achieved, the differentiation was induced by 

switching medium to DMEM high glucose supplemented with 2% horse serum (Gibco-Thermo Fisher 

Scientific) and 1 mM (100 mg/ml) sodium pyruvate, 100 U/ml penicillin and streptomycin and 2 mM L-

glutamine. Cells were incubated at 37°C, 5% CO2, 5% O2. 
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4.2.2.2 Mesoangioblasts (MABs) 

MABs were isolated form 4-5 week-old mice. Muscles were extracted as previously described 

for satellite cells.   

Muscles were chopped in small pieces around 1 mm2 and attached to a collagen coated P12 

dish with MABs medium (DMEM-high glucose GlutaMAX™ supplemented medium supplemented with 

20% FBS, 1 mM (100 mg/ml) sodium pyruvate, 100 U/ml penicillin and streptomycin + gentamicin 

1:20, 2 mM L-glutamine, 1% non-essential amino acids (Thermo Fisher Scientific) and 1% 2-

mercaptoethanol 1:100 (Thermo Fisher Scientific)). Cells were incubated at 37°C, 5% CO2, 5% O2. 

Cells grown from muscle pieces were sorted using fluorescence-activated cell sorting (FACS)-

antibody technic targeting alkaline phosphatase (ALP) (Quattrocelli et al., 2012). For that purpose cells 

were tripsinized and collected in a PBS containing tube. At this point, cell amount was counted using 

trypan blue in an automated cell counter. 

For cell sorting different round bottom polystyrene test tubes (Corning) were prepared:  

a) Blank sample: 100,000 cells diluted in 200 µl of PBS. 

b) Isotype control:  100,000 cells supplemented with 0.2 µg of the appropriate 

isotype (monoclonal mouse IgG1, κ (Affymetrix eBioscience, Thermo Fisher 

Scientific) diluted in 200 µl of PBS.  

c) Samples: mixed with 2 µl per 100,000 cells of ALP-phycoerythrin-conjugated 

antibody (R&D Systems a Biotechne brand) diluted in 200 µl of PBS.  

All of them were incubate for 30 min at RT protected from light.  After incubation samples 

were washed with PBS and centrifuged at 1,200 rpm for 5 min at RT. Supernatants were discarded and 

more PBS was added to cells. Next, samples were filtered through round bottom polystyrene test tube 

with cell strainer snap cap (Corning) and centrifuged at 1,200 rpm for 5 min at RT and washed again 

once with PBS. Finally, samples were resuspended in 200 µl of PBS and sorted.  

Positive and negative fractions were collected in a round bottom high clarity polyproplylene 

test tubes containing 500 µl of MABs medium + antibiotics. Both fractions were seeded in a collagen 

coated plate at a density of 50 000 cell/cm2 with MABs medium supplemented with antibiotics. Plates 

were incubated at 37°C in a 5% CO2, 5% O2 and medium was changed every two days.  

Cells were amplified and stored in liquid nitrogen at passages between 4 and 7.   
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Cells characterization through flow cytometry analysis 

MABs characterization was carried out through the analysis of different cell surface markers. 

Protein tyrosine phosphatase receptor type C (PTPRC or CD45), platelet and endothelial cell adhesion 

molecule 1 (PECAM-1 or CD31) and platelet derived growth factor receptor alpha (PDGFRα or CD140α) 

cell surface markers amount was studied in 3 WT and 7 Frzb-/- samples.  

500,000 cells were fixed in 4% PFA for 10 min at RT. After fixation cells were centrifuged at 

1,200 rpm for 5 min at RT and pellets were stored in PBS at 4°C until  the analysis was carried out.  

Each sample was divided to obtain 100,000 cells/ tube. They were centrifuged at 1,200 rpm for 

5 min at RT and pellets were resuspended in 1 ml of staining medium (HBSS with Ca2+/Mg+ 

supplemented with 2% FBS, 10 mM Hepes pH 7.2 and 10 mM NaN3). Then, another centrifugation was 

carried out and pellets were resuspended in 100 µl of staining medium. FACS analysis  samples were 

stained as follow:   

a) Blank: 100,000 cells/150 μl PBS. Only one blank tube was used for all analyses.  

b) Sample 1: 100,000 cells/100µl staining medium supplemented with 0.1 µg of APC 

labelled CD140α monoclonal antibody (Thermo Fisher Scientific) and 0.1 µg of PE 

labelled CD140β monoclonal antibody (Thermo Fisher Scientific).  

c) Isotype control 1: 100,000 cells/100 µl staining medium supplemented with 0.1 µg 

of PE Rat IgG2a, κ isotype control (BD Bioescience) and 0.1 µg APC rat IgGa, κ 

isotype control (BD Bioscience). 

d) Sample 2: 100,000 cells/ 100 µl staining medium supplemented with 0.1 µg of APC 

labelled CD31 monoclonal antibody (Thermo Fisher Scientific) and 0.1 µg of FITC 

labelled CD45 monoclonal antibody (Thermo Fisher Scientific).  

e) Isotype control 2: 100,000 cells/100 µl of staining medium supplemented with 0.1 

µg APC rat IgGa, κ isotype control and 0.1 µg of FITC mouse IgG2a, κ isotype 

control (BD Bioescience). 

Samples were incubated protected from light for 25 min. Next, PBS was added to each tube 

and after centrifugation at 1,200 rpm for 5 min, another one washing step was carried out. Finally cells 

were mixed in 150 µl PBS, analysed and quantified by flow cytometry (BD FACS Canto I or II with HTS; 

BD Biosciences) and FlowJo Software (FlowJo LLC). 

Adipogenic induction of ALP+ cells  

For the adipogenic induction of ALP+ cells 3 WT and 3 Frzb-/- samples were used. Each sample 

was seeded in triplicate on a collagen coated dish at 66,000 cell/cm2 density in MABs medium until 

100% confluence was achieved. Then MABs medium was switched to StemPro® adipogenesis 
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differentiation basal medium supplemented with StemPro®Adipogenesis supplement (Thermofisher 

Scientific), for adipogenic induction. Medium was change every day and after 10 days cells were fixed 

in 4% PFA for 10 min. Next, cells were stored in PBS at 4°C.   

Non-induced cells were used as a negative control of adipogenic differentiation.  

 Oil red O stain for in vitro adipogenesis analysis 

Oil red O fat-soluble dye was used for the visualization of fat cells. Working solution was 0.5% 

Oil Red O (Sigma-Aldrich) in 65% propan-2-ol solvent (Fisher chemicals) in milli-Q water.   

Samples were stained for 30 min with the solution and after that several PBS washes were 

performed. Cells were examined using the Eclipse Ti inverted microscope (Nikon) and the NIS-Element 

software. 

After immunofluorescence analysis Oil red O was quantified in our samples. For that purpose 

lipid vacuoles were lysed with a solution made of petroleum ether and propan-2-ol (Fisher chemicals) 

in a 3:2 proportion. The different colour intensities were measured in a spectrophotometer at 490 nm. 

Different samples’ Oil red O quantity was measured as triplicates and was compared to values 

obtained from a known Oil Red O quantity standard curve.  

 Immunofluorescence for in vitro adipogenesis analysis 

In vitro adipogenesis was also measured with the presence of perilipin, a protein which is 

present in the surface of lipid droplets, by immunofluorescence. For immnunofluorescence oil red O 

stained cells were blocked in a donkey serum solution 1:10 for 30 min before the incubation with 

polyclonal rabbit anti-perilipin A/B 1:300 (Sigma-Aldrich) overnight at 4°C. Samples were washed 

several times with PBS and incubated with anti-rabbit antibody conjugated to Alexa-Fluor 488, 1:500 

for 1 h at RT. After more PBS washes nuclear staining was performed with a Hoechst solution 1:10,000 

in PBS for 2 min. Finally after several washes with PBS, cells were maintained in PBS upon microspope 

analysis. Cells were examined using an Eclipse Ti inverted microscope (Nikon) and the NIS-Element 

software.  
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5.  RNA INTERFERENCE KNOKDOWN EXPERIMENTS 

5.1 GENE SILENCING IN HUMAN/MURIN MYOTUBES 

 The siRNA for human CD9 (s2598), ITGB1BP2 (s25536) and for human and mice FRZB 

(s5369) knockdown (in this work identified as siCD9, siITG1BP2 and siFRZB) were purchased form Life 

Technologies. A scramble siRNA was used as negative control (AM4611; has no significant sequence 

similarity to mouse, rat, or human gene sequences).  

Myoblast (primary human and C2C12 myoblasts) were plated at 24,000 cells/cm2 and 

maintained in proliferation medium until 80% confluence was achieved. At this time, medium was 

switched toward differentiation medium. CD9, ITGB1BP2 and FRZB genes silencing were carried out at 

day 8 and day 3 of differentiation in human and murine origin myotubes respectively. Myotubes were 

transfected with the siRNA at a concentration of 5 nM using RiboCelling transfection reagent (Buldog 

Bio; Portsmouth, NH, USA) following the manufacturer’s instructions. For RNA analysis, its extraction 

was performed 48 h post-silencing. Likewise, for protein analysis, its extraction was performed 72 h 

post-silencing.  

5.2  GENE SILENCING IN HUMAN/MURIN MYOTUBES AT EARLY AND LATE STAGE OF 

DIFFERENTIATION 

siFRZB transfection was carried out as a previously described, however silencing was 

performed at day 1 and at day 8 of differentiation and the effect was maintained until day 11 of 

differentiation in human origin samples. Finally, silencing was analysed at day 11 of differentiation 

through immunofluorescence.   

In murine origin myotubes silencing was performed at day 1 and day 3 of differentiation and 

maintained until day 7 and day 9 of differentiation respectively for immunofluorescence analysis. For 

RNA analysis, its extraction was performed 4 days post-silencing. Likewise, for protein analysis, its 

extraction was performed 5 days post-silencing. 

 To keep the silencing effects during several days, avoiding transitory loose of it, silencing was 

performed every time the medium was changed. 
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6. LiCl ADMINISTRATION EXPERIMENTS 

LiCl (Sigma-Aldrich) was administered at a 10 mM concentration to the myotubes at day 8 of 

differentiation. LiCl was prepared in dH2O diluted from an 8 M stock solution. At 48 h after 

administration of the drug, RNA and proteins were extracted for further analyses.  

LiCl administration also was analysed in early and late stage of myotube differentiation.  Drug 

was added at day 1 and at day 8 of differentiation and the effect was maintained until day 11 of 

differentiation. To keep the silencing effects during several days, avoiding transitory loose of it, drug 

was added every time the medium was changed. Finally, the effect was analysed at day 11 of 

differentiation through immunofluorescence.   

7. FOETAL BOVINE SERUM (FBS) AND HUMAN HETEROLOGOUS SERUM (HHS) 

INFLUENCE ANALYIS IN HUMAN PRIMARY MYOTUBES 

7.1 SERUM OBTAINING 

 

FBS was externally purchased from Gibco. Before use it was heat-treated at 56°C for 20 min. 

Human serum was obtained from healthy control and LGMD2A patients’ blood after they gave 

informed consent using forms approved by the Ethics Committee of the Use of Human Subje cts in 

research (Table 18). Blood was collected in coagulation activator and gel separator containing 

Vacutainer® SST II Advance plus blood collection tubes (BD Bioscience).  For serum collection blood 

was centrifuged at 3,000 rpm for 10 min. Supernatant was collected and stored at -20°C. Sera were 

heat-treated at 56°C for 20 min before use.   

 

Table 18. Blood donors’ information. HG19, chr15: 42,630,844-42,704,125= break points of the deletion. 

Comprises part of the GANC gene (starting point in intron 16) and the entire CAPN3 gene locus (endpoint in 

the 3’UTR region) 

 

Sample Status Age Gender Ambulation CAPN3 mutations 

          Mutation 1 Mutation 2 

1 LGMD2A 19 Female Ambulant p.(*822Leuext62*) HG19, chr15: 42,630,844-42,704,125 

2 LGMD2A 21 Female Ambulant p.(*822Leuext62*) HG19, chr15: 42,630,844-42,704,125 

3 Control 43 Female - - - 
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7.2 MYOUTUBES CULTURE 

Control or LGMD2A patients’ myoblast were seeded on 0.5% gelatine coated dish at 20,000 

cell/cm2 density on proliferating medium supplemented with 10% FBS or HHS. Once 80% confluence 

was achieved medium was switched toward differentiation medium supplement with 2% FBS or HHS. 

For RNA and protein analysis, their extraction was performed at 16 days of differentiation.  

8. Frzb-/- MICE FUNCTIONAL ANALYSES 

8.1 MUSCLE STRENGTH ANALYSIS 

To monitor muscle strength and condition over time four limb hanging test was used 

(Standard operating procedure: DMD_M.2.1.005 (Carlson et al., 2010). Five to 6 week-old mice were 

placed in a crosslinked wire grid (every 12 mm). The grid was inverted over a cylinder with a diameter 

of 314 cm2 at a height of 20 cm and the ‘time to fall’ was monitored. Each mouse weight was also 

measured. 

 

 

 

Figure 18. Mouse performing muscle strength analysis.  

8.2 MUSCLE REGENERATION ANALYSIS 

Ten week-old mice were anesthetized by intraperitoneal (IP) injection of ketamine (10 mg/ml; 

Nimatek, Eurovet animal healthcare)/xylazyne (0.1%; MVD) in a dosage of 10 µl/g. Muscle 

degeneration was induced by 3 µl of 50 µM cardiotoxin (CTX; Latoxan, Portes-lès-Valence, France) into 

Tibialis anterior and 3 µl of 16.7 µM of cardiotoxin into Soleus injection (Duchen et al., 1973). After 

sewing the wound, 50 µl of burphrenorphine (0.03mg/ml; Vetergesic, Ecuphar) was injecte d 

subcutaneously for analgesia. 

8.3 CHRONIC EXERCISE PROTOCOL ON A TREADMILL 

Five to 7 week-old mice were caged together and housed in the same facility and acclimated 

at standard cage conditions for at least 72h before exercise treatment. Mice were subjected to a 5 
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weeks chronic exercise treadmill on a 4 lane modular treadmill (Columbus Instruments). The WT and 

Frzb-/- mice belonging to the exercised groups ran 30 min on a horizontal treadmill at 12 m/min twice a 

week (Granchelli et al., 2000; De Luca, 2003) before a warm-up exercise consisting in 2 min at 4.2 m/s 

followed by 8 min at 7.8 m/s. All mice weight was monitored every training day. Mice were euthanized 

by cervical dislocation.  

Mice Tibialis anterior, Quadriceps, Gastrocnemius and Soleus from both legs were extracted 

and weighed. Tibialis anterior were directly frozen in 2-methylbutane and one Soleus of each mouse 

was frozen into cryomolds in 2-methylbutane as previously described. Remaining muscles were frozen 

through immersion into liquid nitrogen. All of them were stored at -80°C. 

8.4 MICE GAIT ANALYSIS 

CatWalk™ XT (Noldus, CatWalk 7.1, The Netherlands) was used to assess gait and locomotion 

(Vandeputte et al., 2010) of WT and Frzb-/- mice. The analysis was carried out in two study groups; 8 

week-old and 10 week-old mice. Mice were placed into the walkaway for three consecutive runs. Runs 

were analysed separately and an average of this three runs was used as an individual value. All given 

parameters are explained below.  

CatWalk™ XT walkway was fixed as 730 mm far and 72 mm wide with the camera set 40 cm far 

from the walkway. The following parameters were evaluated: 

 Paw statistics (Figure 19): 

- Stand or stance phase: paw contact time with the glass plate during the step cycle in seconds.  

- Swing phase: paw time in the air during the step cycle in seconds. 

- Step cycle: the sum of stand and swing phase in seconds. 

- Stride length: the distance covered by a paw in mm. 

- Swing speed: measure of the speed of the moving limb during the swing phase of the step 

cycle in m/s. Is calculated as follow,  

Swing speed (m/s) = 
Stride length 

Stand + Swing 
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Figure 19. Schematic representation of mouse step cycle. 

Step cycle (s), stride length (mm), stand (s) and swing 

phase(s) are represented on a step cycle. 

 

 Step sequence analysis: it analysed the order in which mice paws were placed.  

- Step pattern: counts the number of patterns that can be assigned to one given step sequence 

which in turn measure the order in which paws were place during the gait. A specific code is 

given by de program to each step pattern (Table 19).  

 

 

 

 

 

 

Table 19. Step pattern code and its corresponding step sequence. RF= right front paw, RH= right hind paw, 

LF= left front paw and LH= left hind paw.  

- Step regularity index: the amount of normal step patterns within the total number of paw 

placements. 

- Paw support: the relative duration of all combinations of number of paw in contact with the 

glass plate was assessed. Possible combinations are one, two, three or four paws in contact 

with the glass at the same time; when two paws are in contact with the glass, 3 the pattern 

can be used; diagonal support (when front right and hind left or front left and hind right paws 

are used), girdle support (when front paws or hind paws are used) and lateral support (w hen 

left paws or right paws are used).  

- Base of support (BOS): the average width between both the front and hid paws in mm (Figure 

20). 

           

Step pattern 
abbreviation  

Step 
sequence 

  AA RF-RH-LF-LH 

AB LF-RH-RF-LH 

CA RF-LF-RH-LH 

CB LF-RF-LH-RH 

RA RF-LF-LF-RH 

RB LF-RF-RH-LH 

Mice step cycle 

Step cycle (s)  

Stride length (mm)  

Stand(s)        Swing phase (s) 
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Figure 20. Schematic representation of mouse base of support (mm). LF=  left front, RF= right front, LH= left 

hind and RH= right hind paws. 

9. BIOINFORMATICS TOOLS 

Online available AliBaba v2.1 program (http://gene-regulation.com/pub/programs/alibaba2/) 

was used to predict transcription factor binding sites by contrasting matrices on the fly form 

TRANSFAC 4.0 sites.  Min mat. conservation was set in 80% (high).  

10. STATISTICAL ANALYSIS 

 All statistical analyses along the study were made with Student’s t-test for two means 

comparison and two-way ANOVA study for multiple means comparisons. Further post hoc analyses 

were made based on Tukey’s and Sidak’s criterion for significance. Significance was set when p value 

was lower than 0.005. 
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CHAPTER 1: RESULTS 

1. APPROACH TO THE OPTIMIZATION OF CELL CULTURE FOR THE INVESTIGATION OF 

MECHANISM UNDERLYING MUSCULAR DYSTROPHIES 

Previous studies carried out by our group, showed a tendency towards the homogenization of 

the differences between controls and LGMD2A patients’ myoblasts and myotubes cell cultures. These 

previous studies showed also a lack of correlation between in vitro skeletal muscle model (myoblast 

and myotubes) and their tissue of origin (muscle). When gene expression pattern of the in vitro 

cellular model and the skeletal muscle were compared, only one gene, FRZB, showed the same 

deregulation pattern in muscle and in myotubes at 16 days of differentiation of LGMD2A patients 

(Jaka, 2014) 

To try to overcome this issue, the following analyses were carried out in two controls ’ and one 

LGMD2A patient’s samples.  

1.1  Effect of FBS and human heterologous serum in myoblast proliferation 

The use of different origin sera showed that growing media conditions affected myoblast 

shape under optical microscope. Myoblast grown with HHS showed a more elongated shape and a 

higher rate of multiplication than myoblasts grown with FBS (Figure 21). Myoblasts cultivated in HHS 

containing proliferation medium required 7, 8 (2 controls) and 12 (LGMD2A) days to achieve 90% of 

confluence while 12 and 21 days (controls and patient respectively) were required for myoblast grown 

with FBS (p= 0.0591 paired t test). 
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Figure 21 . Morphology of human (a and b) control and (c) LGMD2A myoblasts after 5 days in culture with 

FBS or HHS. Scale bar 250µm. 
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1.2  Effect of FBS and human heterologous serum in myoblast differentiation  

The influence of different origin serum in myoblast differentiation was also analysed. 

Myotubes at 16 days of differentiation were analysed (under optical microscope) and a decline of the 

efficiency of myotubes formation was shown when HHS was used. The presence of uninucleated and 

rounded cells, which did not form myotubes, was more evident in control samples. By contrast, 

LGMD2A myotubes formation appeared to be similar in both conditions (Figure 22).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 Morphology of human (a and b) control and (c) LGMD2A myotubes at 16 days of differentiation 

grown with FBS or HHS. White arrows highlight myotubes. Scale bar 250µm. 
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1.3  Myotube maturity analyses 

To evaluate differentiation and maturity level of myotubes, myosin heavy chain 2 (MYH2) gene 

expression was evaluated and it was downregulated in HHS cultured myotubes in both, control and 

LGMD2A samples (Figure 23 a). At protein level, myosin heavy chain (all isoforms) also was 

significantly downregulated (Figure 23 b). 

 

 

 

 

 

 

 

 

 

Figure 23. (a) Gene expression analysis of MYH2 in 2 controls and one LGMD2A patient myotubes grown 

with FBS and HHS. GAPDH was used as endogenous control. Data are represented as mean fold change ± 

standard deviation. (b) Western blot and densitometry analyses of MyHC protein expression (all isoforms) 

in 2 controls and one LGMD2A patient myotubes grown with FBS and HHS. Data are represented as mean 

band density normalized relative to GAPDH ± standard deviation. **= p < 0.001. 
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1.4  Skeletal muscle specific genes and proteins expression analyses 

Structural proteins which are required for costamere formation, namely melusin and β1 

integrin were significantly downregulated at protein level and also at RNA level in the case of melusin 

(ITGB1BP2) (Figure 24 a and b). Similarly, the analysis of myogenic marker myogenin, showed a 

significant downregulation at protein level (Figure 24 b). Finally, desmin (DES), which is essential for 

sarcomere maintenance, was downregulated at RNA level (Figure 24 a). 

 

Figure 24. (a) Gene expression analysis of ITGB1BP2 and DES in 2 controls and one LGMD2A patient 

myotubes at 16 days of differentiation grown with FBS and HHS. GAPDH was used as endogenous control. 

Data are represented as mean fold change ± standard deviation. (b) Western blot and densitometry 

analyses of myogenin, melusin and ITGβ1 protein expression in 2 controls and one LGMD2A patient 

myotubes at 16 days of differentiation grown with FBS and HHS. Data are represented as mean band 

density normalized relative to GAPDH ± standard deviation. ***= p < 0.0001. 
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2.  RNA SILENCING TO REGULATE OVEREXPRESSED GENES IN LGMD2A 

Given the results obtained in the present thesis are part of a previous published work (Jaka et 

al., 2017), bellow is detailed a brief introduction of the section from which this work is part of.  

Studies carried out in cells obtained from proximal muscles showed that myotubes of LGMD2A 

patients presented different morphology. Patients’ myotubes showed clustered nuclei with altered 

distribution. Oversized myotubes containing more than 50 nuclei were found in LGMD2A cultures, 

while such myotubes were absent in control cultures. The fusion index was significantly higher in 

myotubes form LGMD2A patients and an abnormal process of fusion of myoblast was detected (Jaka 

et al., 2017). 

As integrins are transmembrane glycoproteins receptors that are essential for myoblast fusion 

(Schwander et al., 2003), we focused our studies on their analysis. Under normal physiological 

conditions, the β1A isoform is replaced by the β1D isoform in muscle fibre maturation (Belkin et al., 

1996) and this replacement has been shown to be altered in myotubes of calpain 3 knockout (C3KO) 

mice, which show a similar anomalous distribution of myonuclei as LGMD2A myotubes (Kramerova et 

al., 2006).  

Moreover, in order to direct the study to the analysis of genes/proteins that may have 

relevance in the pathophysiology of LGMD2A, overexpressed proteins in LGMD2A patients’ muscles 

(Sáenz et al., 2008) that interact with integrins, such as melusin and CD9 (Schwander et al., 2003; 

Przewoźniak et al., 2013), were studied. In addition to these two proteins, FRZB also was studied 

because it was the only gene that showed common pattern of deregulation in muscle and in myotubes 

and presented one of the highest Fold-change value in expression profiling analysis in LGMD2A 

muscles (Sáenz et al., 2008). 

Silencing experiments were carried out in patients’ myotubes and it was found that CD9 and 

FRZB are positive regulators of ITGB1BP2 gene expression and ITGB1PB2 is a negative regulator of 

FRZB gene expression (Jaka et al., 2017).  

2.1  Confirmation of gene silencing effect in distal skeletal muscle 

As previous silencing experiments were carried out in proximal muscles, to confirm this 

common regulation mechanism, additionally, CD9, FRZB and ITGB1BP2 silencing experiments were 

carried out in myotubes obtained from non-affected distal muscles (Tibialis anterior). This common 

regulation was ascertained in distal origin myotubes. After 48h of treatment with CD9, FRZB or 

ITGB1BP2 siRNA, all cultures showed less expression of these genes, being ITGB1BP2 the most silenced 
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followed by CD9 and FRZB respectively. ITB1BP2 gene silencing produced an upregulation in FRZB 

expression. In the case of FRZB gene silencing, a reduction in ITGB1BP2 gene expression was observed. 

Lastly, CD9 gene silencing induced a parallel reduction of ITGB1BP2 gene expression. In addition, an 

upregulation of FRZB was observed in three out of four samples, not observed in proximal muscle 

silencing (Figure 25). 

 

 

 

 

 

 

 

Figure 25. CD9, ITGB1BP2 and FRZB genes expression analysis after gene silencing (siCD9, siFRZB and 

siITGB1BP2) in one control and three patients’  myotubes obtained from distal muscle (Tibialis anterior). 

siC-: control siRNA, scramble RNA. GAPDH was used as the endogenous control. Data are represented as 

relative mean expression ± standard deviation. 

2.2  Integrin β1A and β1D isomoform replacement analysis in LGMD2A patients’ 

myotubes 

The presence of integrins in myoblasts and myotubes at different stages (days) of 

differentiation was analysed. Regarding expression of the β1A isoform (ITGβ1A), no differences were 

observed in the differentiation process between patients and controls. Moreover, in the case of β1D 

isoform (ITGβ1D), less amount of protein was observed in myotubes of patients, and the level of this 

isoform progressively increased in controls as the differentiation process advanced (Figure 26). 

Figure 26. Western blot analysis of integrin 

β1A and β1D  isoforms in myoblasts and 

myotubes at days 10, 16 and 20 of 

differentiation (1 control and one patient).  

Data are represented as mean band density 

normalized relative to GAPDH ± standard 

deviation.  
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Since β1A- β1D isoform replacement is defective in LGMD2A myotubes and melusin 

(overexpressed in LGMD2A patients) binds directly to β1 integrins, melusin gene silencing effect on β1 

integrin expression level in myotubes was studied. Melusin gene silencing produced an increase in the 

β1A isoform, while a trend toward a decrease in the β1D isoform in the myotubes of both patients and 

controls was observed (Figure 27 a).  

As silencing of the melusin gene affected FRZB gene expression and vice versa, the effect of 

FRZB gene silencing on β1 integrins also was analysed. This silencing led to a decrease in levels of the 

β1A isoform only in LGMD2A patients, while this decrease was less clear in controls. In the case of β1D 

isoform, FRZB gene silencing induced an increase in its protein amount in the myotubes of both, 

controls and patients. In LGMD2A patients, after FRZB gene silencing, the level of  integrin β1D was 

similar to that in controls without any treatmetn (Figure 27 b). 

 

 

 

 

 

 

Figure 27. (a) Western blot and 

densitometry analyses of β1A and 

β1D integrin isoforms after 

silencing ITGB1BP2 gene 

(siITBG1BP2). (b) Western blot and 

densitometry analyses of β1A and 

β1D integrin isoforms after 

silencing FRZB gene (siFRZB). Data 

are represented as mean band 

density normalized relative to 

GAPDH ± standard deviation. siC-: 

control siRNA, scramble RNA. Three 

controls and 3 patients. ITGβ1D 

after siFRZB in LGMD2A patients 

statistical significance p= 0.019 

(paired t test).    
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According to the obtained results, decrease in β1D integrin levels due to melusin gene 

silencing and parallel increase of FRZB gene after CD9  gene silencing in distal muscles, further studies 

were focused on FRZB gene silencing experiments.   

2.3  Analysis of FRZB involvement in the canonical Wnt/β-catenin pathway 

Since FRZB is an antagonist of some Wnt proteins involved in Wnt/β-catenin pathway, such as 

Wnt-1, Wnt-8, Wnt-5a and Wnt-9 (Leyns et al., 1997; Wang et al., 1997; Person et al., 2005; Qian et 

al., 2007), how FRZB silencing was affecting canonical Wnt/β-catenin pathway was evaluated in 

myotubes. A nuclear translocation of β-catenin in human myotubes was observed after FRZB gene 

silencing (Figure 28).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. (a) Immunofluorescence analysis of myosin heavy chain (all isoforms), MyHC (red) after FRZB 

gene silencing (siFRZB) in control and LGMD2A patients’ myotubes. Scale bar 100 µm. (b) 

Immunofluorescence analysis of β-catenin nuclear translocation after siFRZB. Control and patients’ 

myotubes are stained for active β-catenin (green). Scale bar 50 µm. In both cases nuclei are visualized with 

DAPI (blue).  
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2.4  Gene expression analysis after activation of Wnt/β-catenin pathway 

The expression of some genes deregulated in the muscles of LGMD2A patients (Sáenz et al., 

2008) were analysed to establish whether FRZB expression was involved in their regulation. Firstly, 

some of the extracellular matrix (ECM) coding genes, involved in fibrosis, such as COL1A1, COL5A1 and 

FN1 showed a trend to upregulation after FRZB gene silencing, although great variability was observed 

between the samples. Additionally, genes coding for a transcriptional factor (FOS) and for genes 

coding for proteins interacting with integrin or Wnt signaling pathway ( KAL1, which codes for 

anosmin-1 and VLDLR, very low density lipoprotein receptor respectively) (Choy et al., 2013; García-

González et al., 2016) all deregulated in LGMD2A patients (Sáenz et al., 2008), showed a trend to 

upregulation once FRZB gene was silenced (Figure 29). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Gene expression analysis of COL1A1, COL5A1, FN1, FOS, KAL1 and VLDLR genes in in human 

myotubes after FRZB silencing (siFRZB). Three controls and two patients. Data are represented as relative 

mean expression ± standard deviation. GAPDH was used as the endogenous control. siC-: control siRNA, 

scramble RNA. 
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If paired comparison was performed to analyse the effect of silencing considering all the 

samples together (control and patients), genes upregulation were statistically significant in all cases 

except for FOS gene expression (Figure 30).  

 

Figure 30. Gene expression analysis of COL1A1, COL5A1, FN1, VLDLR, KAL1 and FOS genes where silencing 

effect is shown. Data are represented as relative mean expression ± standard deviation. N= 5 for each 

condition. Statistical value for siC- versus siFRZB for COL1A1; p= 0.0066, COL5A1; p= 0.0142, FN1; p= 0.043, 

VLDLR; p= 0.072 and KAL1; p= 0.0213 (paired t test). GAPDH was used as the endogenous control. siC-: 

control siRNA, scramble RNA. 

In silico analysis (AliBaba v2.1) of the promoter of these genes indicated the presence of 

various binding sequences for transcription factors such as c-Fos (upregulated after FRZB silencing), c-

Jun  and AP-1  (a heterodimer of the oncogenes Fos and Jun, members of  the bZIP family of 

transcription factors) which are regulated by β-catenin (He et al., 1998; Mann et al., 1999) (Table 20). 
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Table 20. A summary of c-Fos, c-Jun and AP-1 transcription factors (TF) binding site prediction for COL1A1, 

COL5A1, FN1, VLDLR and KAL1 genes. Being k= G/T, m= A/C, n =T/C/A, s= C/G, w= T/A and y= C/T.  

2.5  Analyses of the phosphorylation of several signaling pathways after FRZB gene 

silencing 

P-AKT/AKT are proteins that act downstream of the integrin signaling pathway (King et al., 

1997; Ivaska et al., 2002; Pankov et al., 2003) thus, the potential effect of the reduction in β1D integrin 

in LGMD2A patients, as well as its upregulation after FRZB gene silencing was studied. Moreover, the 

phosphorylation status of other kinases such ERK1/2 and GSK3β was studies since melusin could 

phosphorylate ERK1/2 and AKT kinase (Brancaccio et al., 1999) (which in turn phosphorylates the 

GSK3β (Cross et al., 1995).  

The total amount of AKT did not differ after FRZB gene silencing, but the signal corresponding 

to phosphorylated AKT was lower. In addition, the P-AKT/AKT ratio was significantly lower after siFRZB 

treatment, indicating a reduction in AKT activity. In the case of GSK3β, a lower level of 

phosphorylation and a lower P-GSK3β/GSK3β ratio was observed, which suggested an increase in the 

Gene Promotor sequence  TF 
Nucleotide 

position 
TF nucleotide sequence 

COL1A1 c t g c c t c a g c 
  

      
            

  

                            AP-1 211 -220      s T G m s T C A G C     

COL5A1 t g a c t c t g g g 
  

      
            

  

    

           

  AP-1 1900-1909 

 

T G A C T m w k k G 

 

  

  g c t t g c t g a c t 
 

      
            

  

    
           

  c-Jun 3171-3180 
 

G s T k k s T G A C 
 

  

    

           

  AP-1 3172-3181  

  

s T k n C T G A C T   

  t g t g t c a g c a 
  

      
            

  

                            AP-1 3291-3300   T G y G T C A G y w     

FN1 g a a t g a a t c a 
  

      
            

  

    

           

  c-Jun 1555-1564 

 

r n A T G A r T C A 

 

  

  c c g t g a c g t c 
  

      
            

  

                            c-Jun 4814-4823   C y n T G A y G T C     

VLDLR t c t g a c t a a t 
  

      
            

  

    

           

  c-Jun 947 -956  

  

n y T G A C T m A T   

    
           

  c-Fos 947- 956  

  
k C T G A m T m A y   

    
           

  AP-1 947-956 

  
n m T G A C T m A T   

                            AP-1 947 -956     k m T G A C T m A y   

KAL1 g c c t g a g t c a a g a 

 

  

            

  

    
           

  AP-1 4198-4207 s y n T G A G T C A 
  

  

    
           

  AP-1 4200-4209 

  
n T G A s T C A w r   

    

           

  c-Jun 4198-4207 s s m T G A G T C A 

  

  

    
           

  c-Jun 4201-4210  

   
T G A s T C A w G m 

    
           

  c-Fos 4198-4207 s s m T G A G T C A 
  

  

    

           

  c-Fos 4201-4210      

  

T G A s T C A w G m 

                            AP-1 4200-4209      m T G A G T C A n G   
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activity of this kinase. Finally, the ERK1/2 phosphorylation levels also decreased after si FRZB 

treatment, showing a significantly lower P-ERK1/2/ERK1/2 ratio than in non-silenced myotubes and 

therefore a reduction in the activity of the protein (Figure 31). 
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Figure 31. Western blot and densitometry analyses of (a) P-AKT (Ser473)/AKT, (b) P-GSK3β (Ser9)/GSK3β 

and (c) P-ERK1/2 (Thr202/Tyr204)/ERK1/2 after FRZB gene silencing (siFRZB) in control and LGMD2A 

myotubes. Data are represented as mean band density normalized relative to GAPDH ± standard deviation 

(3 controls and 3 patients). Statistical significance values; P-AKT/AKT in controls, p= 0.0018; GSK3β in 

controls, p= 0.0466; P-GSK3β/GSK3β in controls, p= 0.0414; P-ERK1/2 in LGMD2A, p= 0.0058; PERK1/2 

/ERK1/2 in controls, p= 0.0359 and in LGMD2A, p= 0.0021. siC-: control siRNA, scramble RNA. 

To corroborate if all the observed effects were due to Wnt/β-catenin pathway activation, 

lithium chloride (LiCl) was used as a positive control. LiCl is a well-known Wnt/β-catenin pathway 

activator as it inhibits GSK3β mediated β-catenin phosphorylation, preventing its subsequent 

degradation by ubiquitin proteasome system (Klein and Melton, 1996) and also increases Wnt1 

expression (Hiyama et al., 2011).  

The treatment with LiCl produced similar results to those obtained in the treatment with 

siFRZB. On the one hand, higher level of expression of the FOS, KAL1 and VLDLR genes were observed, 

although variability between different samples was observed. On the other hand, melusin gene 

expression did not show conclusive result after LiCl treatment even if most of the samples did not 

show any variation in its expression. Finally, a downregulation of FRZB and an upregulation of MYH2 

genes expressions were observed (Figure 32 a). Furthermore, β1D integrin protein expression was 

evaluated and LiCl treatment also increased it (Figure 32 b). 
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Figure 32. (a) Gene expression analysis of FOS, KAL1, VLDLR, ITGB1BP2, FRZB and MYH2 genes in human 

myoblasts after LiCl 10 mM administration. Data are represented as relative mean expression ± standard 

deviation. GAPDH was used as endogenous control. (b) Western blot and densitometry analyses of ITGβ1D 

after LiCl 10 mM administration. Data are represented as mean band density normalized relative to GAPDH 

± standard deviation (3 controls and 2 patients). C-: not-treated control samples. 

Given that the administration of LiCl also increases the expression of β1D integrin, 

downstream phosphorylations were also studied. LiCl administration slightly decreased AKT 

phosphorylation without affecting AKT protein expression, but great variability between samples was 

observed. An increased P-GSK3β which caused a significant upregulation of P-GS3β/GSK3β ratio was 

observed, and in turn, an inhibitory effect on GSK3β. Finally, less ERK1/2 phosphorylation was 

achieved upon LiCl treatment that led to significantly reduced of P-ERK1/2/ERK1/2 ratio in control 

samples (Figure 33).  
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Figure 33. Western blot and densitometry analyses of (a) P-AKT (Ser473)/AKT, (b) P-GSK3β (Ser9)/GSK3β 

and (c) P-ERK1/2 (Thr202/Tyr204)/ERK1/2 after LiCl 10mM treatment in control and LGMD2A myotubes. 

Data are represented as mean band density normalized relative to GAPDH ± standard deviation (3 controls 

and 3 patients). Statistical significance values; GSK3β, control versus LGMD2A without treatment, p= 

0.00377; P-GSK3β in controls, p= 0.0093; P-GSK3β/GSK3β in controls, p= 0.0173; P-ERK1/2/ERK1/2 in 

controls, p= 0.0432. C-: not-treated control samples. 
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2.6  Treatment effect in early and late stage treated human myotubes 

Given the known influence of Wnt signaling pathway on myogenesis, the effect of LiCl and 

siFRZB administration in myotubes at early (at first day of differentiation) and later (at day 8 of 

differentiation) stages were studied. Moreover, to avoid transitory effect of the treatments, every 3 

days siFRZB and LiCl were administered and myotubes were finally analysed at 11 days of 

differentiation. On the one hand, when treatments were administered early, at day 1 of 

differentiation, myotube formation decreased in both treatments. Both, nuclei number and myotubes 

fusion index were significantly lower than in non-treated samples. On the other hand, no statistical 

differences were observed in total nuclei number or fusion index when myotubes were treated at 8 

day post-differentiation (Figure 34).  
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Figure 34. (a) Immunofluorescence analysis of myotubes at day 11 of differentiation after LiCl 

administration and FRZB gene silencing (siFRZB) at one day or 8 days of differentiation. Two controls (A and 

B) and 3 LGMD2A patients (C-E). Myotubes are visualized with myosin heavy chain (all isoforms), MyHC 

(red) and nuclei are visualized with DAPI (blue). Scale bar 100µm. (b) Total nuclei and fusion index (%) 

analyses of myotubes after two different treatments. Data are represented as mean ± standard deviation. 

N= 5 (2 controls and 3 LGMD2A patients). Statistical value for total nuclei control versus LiCl MT1 sample; 

p= 0.0154, control versus siFRZB MT1 sample; p= 0.0354, fusion index control versus LiCl MT1 and siFRZB 

MT samples; p < 0.0001.  C-: non-treated control samples and siFRZB: FRZB gene silencing. MT1= myotubes 

treated at 1 day of differentiation and MT8= myotubes treated at 8 days of differentiation.  
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2.7 Frzb gene silencing on C2C12 myotubes 

In order to confirm some obtained data in human myotubes, murine C2C12 myoblast cell line 

was used. Frzb gene silencing was studied in myotubes at early (at day 1 of differentiation) and later 

(at day 3 of differentiation) stages. In early treated myotubes, treatment was maintained until day 7 of 

differentiation while in late treated myotubes, treatment was maintained until day 9 of 

differentiation. At both stages nuclear translocation of β-catenin was observed (Figure 35 a and Figure 

36 a). 

Early treated myotubes had increased fusion index without myonuclei amount variation 

(Figure 35 b). Conversely, in late treated myotubes no fusion index or nuclei amount variation was 

observed (Figure 36 b).   
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Figure 35. (a) Immunofluorescence analysis of myotubes formation and β-catenin nuclear translocation 

after Frzb gene silencing (siFrzb) in myotubes at 1 day of differentiation and fixed at day 7 post 

differentiation. Upper images are stained for myosin heavy chain, MyHC all isoforms (red) and lower 

images for active β-catenin (green). In all cases nuclei are visualized with DAPI (blue). Scale bar 100 µm. (b) 

Fusion index (%) and total nuclei analyses after Frzb gene silencing. Data are represented as mean ± 

standard deviation. Statistical value for fusion index is p= 0.003.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. (a) Immunofluorescence analysis of myotubes formation and β-catenin nuclear translocation 

after Frzb gene silencing (siFrzb) in myotubes at 3 day of differentiation and fixed at day 9 post 

differentiation. Upper images are stained for myosin heavy chain, MyHC all isoforms (red) and lower 

images for active β-catenin (green). In all cases nuclei are visualized with DAPI (blue). Scale bar 100 µm. (b) 

Fusion index (%) and total nuclei analyses after Frzb gene silencing. Data are represented as mean ± 

standard deviation.  
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For expression analysis three different approaches were used to study Frzb gene silencing in 

C2C12 myotubes. a) Myotubes treated at early stage (at day 1) of differentiation, b) myotubes treated 

at late stage (at day 3) of differentiation (both treatments were maintained for 4 and 5 days, for gene 

and protein expression analysis respectively) and c) Myotubes treated at day 3 of differentiation which 

were analysed after 2 days for gene expression and 3 days for protein.  

a) Gene expression analysis  

First, Frzb downregulation was corroborated at every analysed time points. The three different 

approaches used for Frzb gene silencing gave rise to the same regulation pattern in all the analysed 

genes: Pax7, Myog, Myh2, Murf1 and Fbx32. The most noticeable change was the downregulation of 

MyH2 gene. Pax7 gene expression was more affected in later stage silencing and myogenin gene 

expression was almost unchanged. In the case of both atrogenes, it was observed that they showed an 

opposite trend, while Murf1 was downregulated, Fbx32 gene expression was slightly upregulated 

(Figure 37 a and b). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37. Gene expression analysis of C2C12 myotubes after Frzb gene silencing (siFrzb). (a) Frzb, 

Pax7,Myog, Myh2, Murf1 and Fbx32 genes analysis after Frzb silencing at early and late stages. (b) Frzb, 

Myog, Myh2, Murf1 and Fbx32 genes analysis after Frzb gene silencing (non-maintained). Data are 

represented as mean ± standard deviation. siC-; control siRNA, scramble RNA. MT1= myotubes treated at 1 

day of differentiation and MT3= myotubes treated at 3 days of differentiation.  
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b) β1A and β1D integrin isomoform analysis  

β1A to β1D integrin isoforms were studied at protein level. Long term Frzb silencing in both, 

early and late stage, showed an increased ITGβ1D protein after silencing. ITGβ1A downregulation was 

only observed in myotubes silenced the first day of differentiation. On the other hand, when Frzb 

silencing was performed in mature myotubes, ITGβ1A and ITGβ1D proteins amount were diminished 

after treatment (Figure 38).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Western blot and densitometry analyses of intergrin isoforms β1D and β1A in C2C12 myotubes 

after Frzb gene silencing (siFrzb). (a) ITGβ1D and ITGβ1A protein analyses after Frzb silencing that was 

performed at 1 day as well as 3 days post-differentiation maintained for 5 days more. (b) ITGβ1D and 

ITGβ1A protein analyses after Frzb silencing at 3 days of differentiation until 6 days of differentiation.  Data 

are represented as mean band density normalized relative to GAPDH.  siC-; control siRNA, scramble RNA.  
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3.  PERTURBATIONS IN SIGNALING PATHWAYS IN LGMD2A 

AKT/mTOR and mitogen-activated protein kinase (MAPK) signaling pathways are altered in 

LGMD2A patients, P-AKT/AKT and P-GSK3β/GSK3β ratios were increased and a reduction in the ratio 

of P-ERK1/2/ERK1/2 was observed in the patients (Jaka, 2014). Consequently, downstream effectors 

and modulating cell response were studied.  

3.1 AKT/mTOR signaling pathway analysis 

As a downstream effector of AKT/mTOR pathway, S6 kinase 1 was studied (S6K1). S6K1 exists 

in two distinct isoforms, cytosolic 70-kDa isoform (p70S6 kinase) and 85-kDa nuclear isoform (p85S6 

kinase). Different phosphorylations of p70S6 kinase were studie d. Due to the first obtained results 

(great differences between patients’ samples, strong signal and complete absence of band) and in 

order to confirm there was no any problem with the antibody,  western blot analysis was repeated 

including new LGMD2A samples and keeping the most divergent LGMD2A cases. It was confirmed 

that, Thr-421 and Ser-424 residues phosphorylation levels of  05 and 09 cases (asymptomatic patients) 

were similar to those of controls, however, 36, 114, 168 and 169 cases (severely affected  patients) 

showed a great decrease in the phosphorylations (Figure 39 a). Nevertheless, the phosphorylation on 

Thr-389 residue showed high variability to obtain any conclusion (Figure 39 b).  
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 Figure 39. (a) Western blot and densitometry analyses of P-p70S6K (Thr-421/Ser-424) in control 

and LGMD2A patients’ skeletal muscles. (b)  Western blot and densitometry analyses of P-p70S6K (Thr-389) 

in skeletal muscle of control and LGMD2A patients. Control samples: 27, 31, 33, 38 and 42. LGMD2A 

samples: 05, 09, 36, 114, 168 and 169 (05 and 09 asymptomatic patients). Data are represented as mean 

band density normalized relative to GAPDH.  

Ribosomal protein S6 (RPS6) phosphorylations were studied as a downstream effector of S6K1 

(Gressner and Wool, 1974). LGMD2A patients showed significantly less phosphorylation in Ser-235 and 

Ser-236 residues of RPS6. While most severely affected LGMD2A patients showed almost no 

phosphorylation, the 09 case, the asymptomatic patient, showed similar levels to control samples 

(Figure 40). 
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Figure 40. Western blot and densitometry analyses of P-RPS6 (Ser-235/Ser-236) in control and LGMD2A 

patients’ skeletal muscles. Statistical significance of control versus LGMD2A patients is p= 0.0075. Control 

samples: 27, 31, 33, 38 and 42. LGMD2A samples: 09, 39, 114, 168 and 169 (09 asymptomatic patient). 

Data are represented as mean band density normalized relative to GAPDH ± standard deviation.  

3.2  FoxO signaling pathway analysis 

Forkhead box class O family member proteins (FoxOs) are transcription factors involved in 

several functions which could be phosphorylated and inhibited by P-AKT, among others (Brunet et al., 

1999; Kops et al., 1999; Takaishi et al., 1999; Stitt et al., 2004). In human skeletal muscle four 

members of FoxO transcription factors are expressed namely FoxO1, FoxO3 (or FoxO3a), FoxO4 and 

FoxO6. Total FoxO1, FoxO3 and FoxO4 and their phosphorylations were analysed since they are the 

most widely studied in skeletal muscle (Furuyama et al., 2000; Chung et al., 2013; Sanchez et al., 

2014).  

Despite the variability observed in FoxO1 as well as phosphorylated FoxO1, no differences 

were observed between control and LGMD2A patients samples, thus P-FoxO1/FoxO1 rate did not 

show either differences (Figure 41).  
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Figure 41. Western blot and densitometry analyses of total FoxO1 and phosphorylated FoxO1 (Ser-256) 

proteins in control and LGMD2A patients’ skeletal muscles. Control samples: 27, 31, 33, 38 and 42. 

LGMD2A samples: 09, 36, 114, 168 and 169. Data are represented as mean band density normalized 

relative to GAPDH ± standard deviation. 

The analysis of FoxO3 phosphorylation in skeletal muscles showed a trend to increase in LGMD2A 

patients. However, due to the great variability no statistical significance was achieved (Figure 42).  

 

 

 

 

 

 

 

 

 

 

Figure 42. Western blot and densitometry analyses of total FoxO3a and phosphorylated FoxO3 (Ser-253) 

proteins in control and LGMD2A patients’ skeletal muscles. Control samples: 27, 31, 33, 38 and 42. 

LGMD2A samples: 09, 36, 114, 168 and 169. Data are represented as mean band density normalized 

relative to GAPDH ± standard deviation. 

 

P -F o x O 1

P
-F

o
x

O
1

/G
A

P
D

H

C o n tr o l  L G M D 2 A   

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

 P -F o x O 1 /F o x O 1

P
-F

o
x

O
1

/F
o

x
O

1

C o n tr o l  L G M D 2 A   

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

F o x O 1

F
o

x
O

1
/G

A
P

D
H

C o n tr o l L G M D 2 A 

0

5 0

1 0 0

1 5 0

2 0 0

F o x O 3 a

F
o

x
O

3
a

/G
A

P
D

H

C o n tr o l L G M D 2 A   

0 .0

0 .5

1 .0

1 .5

2 .0

 P -F o x O 3 /F o x O 3 a

P
-F

o
x

O
3

/F
o

x
O

3
a

C o n tr o l  L G M D 2 A   

0

1 0 0

2 0 0

3 0 0

P -F o x O 3

P
-F

o
x

O
3

/G
A

P
D

H

C o n tr o l  L G M D 2 A   

0

1 0 0

2 0 0

3 0 0



  CHAPTER 1: Results 

145 
 

Finally, phosphorylated FoxO4 was evaluated in these muscles and a statistically significant 

increase was shown in LGMD2A patients (Figure 43).  

 

 

 

 

 

 

Figure 43. Western blot and densitometry analyses of phosphorylated FoxO4 (Thr-28) proteins in control 

and LGMD2A patients’ skeletal muscles. Control samples: 27, 31, 33 and 42. LGMD2A samples: 09, 36, 114, 

168, 169 and 352. Data are represented as mean band density normalized relative to GAPDH ± standard 

deviation. Statistical significance is p= 0.00337.   

FoxO transcription factors regulates atrogin-1 (coded by FBX32 gene) and MuRF1 (coded by 

MURF1 gene) muscle-specific E3 ubiquitin ligases, which are responsible of the protein breakdown in 

the skeletal muscle (Kamei et al., 2004; Sandri et al., 2004; Nakashima and Yakabe, 2007). Thus, in 

order to test whether observed FoxO transcription factors deregulations were affecting these 

downstream effectors, MuRF1 and atrogin-1 protein levels were measured in controls and LGMD2A 

patients’ skeletal muscles. MuRF1 showed a statistically significant increase in LGMD2A patients 

(Figure 44 a) while atrogin-1 did not vary (Figure44 b). 

 

 

 

 

 

 

 

Figure 44. (a) Western blot and densitometry analyses of MuRF1 protein in control and LGMD2A patients’ 

skeletal muscles. Statistical significance is p= 0.00256. (b) Western blot and densitometry analyses of 

atrogin-1 protein in control and LGMD2A patients’ skeletal muscles. Control samples: 27, 31, 33, 38 and 42. 

LGMD2A samples: 05, 09, 36, 114, 168 and 169. Data are represented as mean band density normalized 

relative to GAPDH ± standard deviation. 
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Besides atrogenes, FoxO3 regulates the expression of several proteins related to autophagy-

lysosomal pathway (Yamazaki et al., 2010). Hence, Bcl2 interacting protein 3 (BNIP3) and beclin-1 protein 

were analysed in both, control and LGMD2A patient’s muscles, but no differences were observed (Figure 

45).  

 

 

 

 

 

 

 

 

Figure 45. (a) Western blot and densitometry analyses of BNIP3 protein in control and LGMD2A patients’ 

skeletal muscles. (b) Western blot and densitometry analyses of beclin-1 protein in control and LGMD2A 

patients’ skeletal muscles. Control samples: 27, 31, 33 and 38. LGMD2A samples: 05, 09, 36 and 169.  Data 

are represented as mean band density normalized relative to GAPDH ± standard deviation.  
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CHAPTER 1: DISCUSSION  

1. APPROACH TO THE OPTIMIZATION OF CELL CULTURE FOR THE INVESTIGATION OF 

MECHANISM UNDERLYING MUSCULAR DYSTROPHIES 

The lack of correlation between cells and their tissue of origin has already been described 

(Smith et al., 1994; Cornelison and Wold, 1997; Hawke and Garry, 2001; LaFramboise et al., 2003) . 

Previous data from our group are in line with these findings since skeletal muscle cel lular model 

(myotubes) did not recapitulate observed muscle gene expression profile (Jaka, 2014). In a study 

where expression profiling was compared in human cultured myotubes and skeletal muscle tissue, 

downregulation of the CAPN3 gene was detected (Raymond et al., 2010). This relevant finding might 

be one of the factors influencing the cellular models, resembling the control profile to the patient 

behaviour. For our studies neural cell adhesion molecule (N-CAM or C56), a widely used cell surface 

marker for satellite and myoblast (Illa et al., 1992), was used for myoblast isolation from human 

biopsies. It is known that is not cell-specific marker, since it is also expressed in different cel l types 

such as natural killers, neural and hematopoietic cells (Abo and Balch, 1981; Lanier et al., 1983; 

Edelman, 1986; Cashman et al., 1987; Lanier et al., 1989; Figarella-Branger et al., 1990). 

On the other hand, FBS is a widely used supplement for cell culture growth that contains a 

huge variety of growth factors, hormones, vitamins, amino acids, fatty acids and trace elements. Even 

if it is extensively used worldwide, there is, however, a fundamental problem underlying its use; batch 

to batch variations. This could provoke a great variability in cell cultures. In fact, depending on the FBS 

origin, alterations in engineered C2C12 mice skeletal muscle cell line as well as in molecular and 

biochemical markers associated with myoblast fate and myotube protein synthesis have been 

reported (Khodabukus and Baar, 2014; Saini et al., 2018).  

Due to all these reasons, the present study has been conducted with the aim to recapitulate 

the events observed in muscle. For that purpose, sera obtained from healthy as well as LGMD2A 

patients has been used to growth, control and LGMD2A myoblasts respectively in vitro.  

As an alternative to animal serum, the use of human serum has been widely studied and its 

use was first described by Chang and colleagues (1954). Most of these studies were focused on clinical 

transplantation. However, the use of human serum, as well as different origin serum effectiveness for 

cell growth has been a subject of debate for many years, resulting in contradictory results. While 

Kuznetsov and colleagues (2000) reported that for ex vivo expansion of human bone marrow stromal 

cells (BMSCs), medium with FBS was the most effective, Yamamoto and colleagues (2003) concluded 

that human serum is more efficient to expand the same cell type. Nevertheless the observed 
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discrepancy could be attributed to the used different human serum, given that one was a commercial 

allogus serum while the other was an autologous serum. 

In this study heterologous human serum has been used because serum from the patients of 

the available biopsy specimens it was not possible to obtain. Even if the age of serum donors was not 

perfectly matched, it is noteworthy that the age of the serum donors has no effect on proliferation 

and differentiation nor in the expression of proliferation and myogenic markers on myotubes (George 

et al., 2010).  

The first observation in this study was the highest proliferation rate in myoblast grown with 

human serum. This result is in agreement with studies carried out in diff erent cell types such as 

monocyte-derived hepatocyte-like cells, fibroblast or chondrocytes (Tallheden et al., 2005; Chua et al., 

2007; Munirah et al., 2008; Isaac et al., 2011; Ehnert et al., 2011). However, contradictory results have 

been observed regarding this issue. Some studies showed no differences in proliferation rates in 

human BMSCs, conjunctival epithelial cells or chondrocytes (Yamamoto et al., 2003; Ang, 2005; Chua 

et al., 2007). But, other study showed greater effectiveness with FBS stimulating BMSC proliferation 

(Kuznetsov et al., 2000). These differences could be due to experimental procedure variability, cell 

type as well as human origin serum diversity (heterologous, autologous, pulled or externally 

purchased). 

The second observation was the downregulation of several skeletal  muscle specific genes, 

such as MYH2, ITGB1BP2 and DES and proteins; myosin heavy chain, melusin, β1 integrin and 

myogenin (Figure 23 and 24) which confirms the reduced myotubes formation and the deleterious 

effect of the use of HHS.  

Several studies have been carried out to determine serum influence in myogenesis. On the 

one hand, there are studies that compare the effects of different non-human serum in human 

myoblasts. The influence of different origin sera such as foetal calf serum (FCS), hormone and growth 

factors depleted FCS and horse serum (HS) on primary myogenic cells was studied. It was concluded 

that the variable composition of mitogenic and anabolic factors of the sera was the responsible of the 

observed alterations in myoblasts proliferation and myotube protein synthesis as well as of the 

myogenic markers variation (Saini et al., 2018). Moreover, a study focused on extracellular vesicles of 

FBS, suggested that extracellular vesicles’ content could reduce myoblast proliferation correlated with 

upregulation of differentiation genes in an in vitro model of skeletal muscle cells (Aswad et al., 2016). 

 On the other hand, human serum influence in human myoblasts culture has also been studied  

in different works. One study analysed human burnt victims’ serum. In myoblasts grown with this 

serum, reduced anabolic signaling and impaired protein synthesis which led to loss of total protein 

content and reduced cell size was observed (Corrick et al., 2015). Another study reported the used of 
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serum from differently exercised subjects in myogenesis. The serum from exercise subjects increased 

myogenic differentiation and these differences were attributed to IGF-1 content (Vitucci et al., 2018) 

since it plays a crucial role in this process (Frost et al., 1997; Jacquemin et al., 2004; Cen et al., 2008).  

Although apparently unexpected, serum from the same cell species does not always show the 

optimal conditions for culture, primary equine bronchial fibroblasts grew better with FBS than with 

horse serum  (Franke et al., 2014). 

Based on previously described works, the observed altered proliferation and differentiation of 

skeletal muscle cells in vitro could be attributed to the different composition of both sera. The variable 

composition of human serum and FBS could affect differentially the gene expression pattern of 

myotubes leading to diverse responses. It could be suggested that cells cultured in HHS may show a 

gene expression imbalance that maintains cells in a non-differentiated stage blocking differentiation. 

This idea would be in line with the fact that a higher multiplication rate was observed in HHS grown 

myotubes and with previous findings reported by Aswad and colleagues (2016).  

In conclusion, although initially it was proposed that human serum could i mprove the growth 

and differentiation conditions of myoblast and myotubes in vitro, allowing a greater resemblance 

between tissue and cell culture, this aim was not achieved. The results showed that the use of human 

serum has a negative impact on myotube differentiation. In view of these findings, it was concluded 

that FBS, the widely used serum, despite mentioned limitations, is the most appropriate for myoblasts 

and myotubes culture. Hence, FBS was used in all  the in vitro posterior studies carried out for the 

pathophysiology study of LGMD2A disease.  
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2. RNA SILENCING TO REGULATE OVEREXPRESSED GENES IN LGMD2A 

Myotubes obtained from biopsies of LGMD2A patients have more clustered nuclei that lead to 

a higher fusion index compared with control myotubes (Jaka et al., 2017). The same feature was also 

observed in C3KO mice myotubes (Kramerova et al., 2006). Due to the observed incorrect myotube 

fusion, integrins were studied since they are transmembrane glycoproteins receptors that are 

essential for myoblast fusion (Schwander et al., 2003) which under normal physiological conditions, 

the β1A isoform is replaced by the β1D isoform in muscle fibre maturation (Belkin et al., 1996). This 

substitution was altered in C3KO mice myotubes (Kramerova et al., 2006) and in our study, absence of 

replacement was also reported in LGMD2A myotubes (Figure 26). Integrins play an important role in 

myoblast fusion for a correct muscle regeneration that is impaired in LGMD2A patients.  

Even if β1D integrin protein expression was studied in LGMD2A muscles, no conclusive results, 

due to a great variability, were obtained (data not shown). This could be due to the different origin of 

the analysed muscle samples. The localization of different integrin isoforms at neuromuscular and 

myotendinous junctions and non-junctional sites vary and their expression is also influenced by 

exercise since it has been shown they have a protective effect against mechanical damage (Boppart et 

al., 2006). These features made it difficult to compare integrins in muscles samples of different cases 

as the available muscles were very limited.  

Regarding integrins involvement in muscular dystrophies, in Duchenne patients as well as in 

mdx mice, elevated levels of α7β1 integrin have been detected (whit altered ratio of β1A/β1D  

isoforms that suggests a reversion to a less differentiated state where β1A chain predominates) while 

by contrast, reduced levels were found in laminin α2 chain congenital dystrophy muscular dystrophy 

and in dy/dy mice (Hodges et al., 1997). The analysis of the effect of integrins demonstrated that their 

enhanced expression could alleviate muscular dystrophy in transgenic mice lacking dystrophin and 

utrophin (Burkin et al., 2001, 2005). Moreover, studies carried out by Liu and colleagues (2001) have 

proven that the specific increase of β1D isoform enhances transcription of α7 a α2 laminin genes and 

protects against sarcolemmal damage in mdx mice. 

Due to the altered expression of integrins in muscular dystrophies and the impaired integrin 

isoforms replacement in LGMD2A disease, proteins that interact with integrins were also studi ed. 

Thus, the analysis were focused on melusin and CD9 specifically, since both proteins interact with 

integrins (specifically melusin with β1A, β1B and β1D) (Brancaccio et al., 1999; Armulik, 2002; 

Schwander et al., 2003; Przewoźniak et al., 2013) and both were overexpressed in patients’ muscle 

(Sáenz et al., 2008). In addition to these two proteins FRZB protein was analysed because its 

expression was the only one that was concordantly upregulated in muscle and in culture (Jaka, 2014).  
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Previous studies showed that these three genes coding for melusin, CD9 and FRZB are 

upregulated in the muscles of LGMD2A patients (Sáenz et al., 2008). Further research made possible 

to verify this upregulation at protein level (Jaka et al., 2017).  

Given that normal muscle regeneration requires a tight control of myoblast fusion by 

tetraspanins CD9 and CD81 (Charrin et al., 2013) the surface CD9 protein upregulation could explain 

the morphology of the LGMD2A patients’ myotubes. 

 Additionally, although a direct interaction of melusin, CD9 and FRZB has not previously been 

described, at least in vitro, their relationship at gene expression level was reported (Jaka et al., 2017). 

Related to the silencing experiments, as CD9 and FRZB genes silencing produced a parallel 

downregulation of melusin, it has been suggested that CD9 and FRZB act upstream on the regulation 

of the ITGB1BP2 gene. Similarly, the fact that ITGB1BP2 gene silencing upregulates FRZB expression 

suggests that these proteins are involved in a common regulatory pathway that is impaired in 

LGMD2A dystrophy (Figure 46). Further studies are required to determine the mechanism that 

controls this apparent contradictory regulation, but it could be suggested that there is a negative 

feedback mechanism for the activation or control both pathways. The fact that this regulation control 

has been confirmed in distal muscles reinforces the idea that these genes are closely related at 

expression level.  

 

 

 

 

 

Figure 46. Schematic representation of a potential model of the regulation of FRZB, CD9 and melusin in the 

skeletal muscle. Green arrows indicate positive expression signal while red stripe indicates a negative 

expression signal.  

Since on the one hand, integrins replacement seemed to be defective in LGMD2A myotubes 

and melusin binds directly to β1 isoforms, whether silencing of melusin could affect β1 integrin levels 

in myoutubes was studied. On the other hand, as silencing of the melusin gene affected FRZB 

expression and vice versa, the effect of FRZB silencing on β1 integrins was also studied. Studies carried 

out in FRZB and melusin gene silencing have provided evidence of the importance of their expression 

regulation for a proper muscle fibre growth and/or maturation.  
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FRZB overexpression apparently showed a negative impact on the cell as silencing this gene 

caused the β1D integrin isoform to return to normal levels in myotubes from LGMD2A patients. 

Nevertheless, melusin upregulation and its silencing are both associated with a decrease in the 

integrin β1D isoform. Based on these results, it could be proposed that this decrease occurs both 

when too much melusin is present (potentially because of steric problems) but also when there is too 

little melusin (because of lack of an anchoring protein). These data therefore would indicate that the 

quantity of melusin needs to be finely tuned for proper formation of the protein complex. There are 

similar biological systems responsible for reverse effects in the cell, such as the one reported by 

Bernick and colleagues (2010), in which loss or overexpression of unc-45b leads to defective myofibril 

organisation; that is, unc-45b expression must be precisely regulated to ensure normal myofibril 

organisation. There are also other examples, for instance, abnormally high or low levels of IQGAP1 and 

SRPK1 expression reduce activation of MEK and ERK or promote cancer respectively (Roy et al., 2005; 

Wang et al., 2014). This is the reason why further studies were focused on FRZB gene silencing 

experiments since melusin gene silencing would be negatively affecting myotubes differentiation. 

Moreover, since CD9 gene silencing upregulates melusin gene expression in distal muscles, this 

approach also was discarded for further analysis.  

Hence, when the connection between integrins and FRZB was sought, it was found that Frzb-/- 

mice cartilage showed an overrepresentation of upregulated genes related to this pathway 

(Lodewyckx et al., 2012). Further studies confirmed that Wnt/β-catenin pathway and integrins were 

also related (Renner et al., 2016; Sorcini et al., 2017). FRZB gene silencing increased β-catenin nuclear 

translocation in primary human myotubes (Figure 28 b) as observed in a gastric cancer cell line model 

(Qin et al., 2014). This observation suggests that FRZB may play a role in the crosstalk between 

integrin and Wnt signaling pathways. The link between these pathways may involve the nuclear 

translocation of β-catenin that would activate transcription factors such as FOS (target gene of Wnt/β-

catenin signaling pathway) which in turn could bind to the promoter of KAL1 gene, which codes for 

anosmin-1, a protein that also interacts with β1D integrins (Choy et al., 2013) (Figure 29). KAL1 gene 

was underexpressed in the muscle of LGMD2A patients with eosinophilic infiltrates (significantly 

lower) and the level of expression was also notably lower in other LGMD2A patients (two-fold lower, 

though the difference did not reach statistical significance (Sáenz et al., 2008) and unpublished data 

respectively). Expression of this protein is elevated after siFRZB, and this could facilitate an increase in 

the β1D isoform of the integrin. These findings suggest that there is a relationship between the 

regulation of the two pathways and that anosmin-1 may be involved in the organisation of the integrin 

complex, to ensure its correct replacement in the maturation process of muscle fibres.  

The nuclear translocation of β-catenin may also act as a regulator of the Wnt/β-catenin 

pathway itself, given that the observed elevated expression of the VLDLR after siFRZB treatment. 
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Moreover, since in silico analysis indicated the presence of various binding sequences for transcription 

factors such as c-Fos (upregulated after FRZB silencing). VLDLR is a negative regulator of the Wnt 

signaling pathway through heterodimerization with lipoprotein receptor-related protein (LRP6; a 

transmembrane protein that binds to Frizzled and that is involved in the canonical Wnt pathway) that 

accelerate the turnover of LRP6 (Lee et al., 2014). This represents a potential new mechanism for the 

regulation of the Wnt/β-catenin pathway which could limit the duration or intensity of a Wnt-initiated 

signal (Figure 47).  

 

Figure 47. Schematic representation of a potential model of the regulation of the genes of interest. 

Upregulated genes and increased proteins are shown in red while downregulated genes and decreased 

proteins are shown in green.  

On the other hand, several studies have related Wnt/β-catenin signaling pathway to fibrosis in 

different tissues (Brack et al., 2007; Guo et al., 2012). Accordingly, experiments carried out in Frzb-/- 

cartilage showed upregulation of fibrosis markers such as Col1a1 as well as Col5a1 (Lodewyckx et al., 

2012).  

In parallel, an enhancer of the Wnt signaling pathway, LiCl was administered to myotubes as a 

positive control of the Wnt signaling pathway activation. It has long been known that LiCl inhibits 

GSK3β (Klein and Melton, 1996) activating Wnt pathway and thereby stabilizing free cytosolic β‐

catenin effectively (Hedgepeth et al., 1997).  

Gene expression analysis showed FOS, KAL1 and VLDLR genes upregulation after LiCl 

administration, as observed after siFRZB. Even if LiCl reduced FRZB gene expression, no alterations in 
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melusin gene expression was observed. Since the specific effects of LiCl have not been fully elucidated 

and they are not very specific for just activating the Wnt pathway (Cohen and Goedert, 2004), the lack 

of melusin gene expression downregulation could be attributed to additional unknown effects of the 

LiCl.  

The observed upregulation of MYH2 gene after LiCl treatment could be expected since it has 

been demonstrated that Wnt and LiCl play an important role in regulating myotube hypertrophy and 

myogenic differentiation (Rochat et al., 2004).  

Both approaches produced an increase in β1D integrin level probably due to an activation of 

the Wnt/β-catenin pathway. To better understand how these treatments were affecting myotubes, 

several signaling pathways were analysed.  

It would be expected that by increasing levels of β1D integrin, P-AKT would increase (Pfister et 

al., 2007). However, FRZB gene silencing seemed to be more closely associated with a reduction in the 

phosphorylation of all the kinases analysed, and this may be mainly because of a reduction in the 

expression of melusin, given that melusin is known to phosphorylate ERK1/2 and AKT (Brancaccio et 

al., 2006).  

Given that GSK3β regulation in Wnt and AKT signaling is not regulated by the same 

mechanisms (Ding et al., 2000), the reduction of phosphorylated GSK3β in silenced myotubes could be 

due to the reduction of phosphorylated-AKT (Cross et al., 1995) which in turn could be due to the 

parallel downregulation of melusin  (Brancaccio et al., 2006). Even some cross talk between Wnt and 

insulin pathways have been reported (Fukumoto et al., 2001) other authors suggest that Wnt signaling 

does not affect insulin signaling pathway (Yuan et al., 1999; Taelman et al., 2010).  

In the case of LiCl, despite no reduction in melusin, a trend to decrease in the phosphorylation 

of kinases AKT and ERK was observed, suggesting that the phosphorylation of these kinases is not 

regulated by melusin in these circumstances. Even though LiCl is widely used experimentally, the 

molecular mechanisms by which LiCl treatment regulates ERK phosphorylation have not yet been 

elucidated. Various different responses have been obtained depending on the type of cell studied 

(Zassadowski et al., 2015). Finally, the well-documented increase of GSK3β phosphorylation of Ser9 

after LiCl treatment was also observed in LiCl myotubes (Klein and Melton, 1996; Du et al., 2009). 

Summarizing, it can be concluded that both approaches, even if with different mechanism of 

action, activates Wnt/β-catenin pathway that lead to the upregulation of target genes that could 

modulate integrin expression. In addition, the obtained results proved the importance of an 

appropriate coordination in the expression of proteins that interact with, or are components of the 

costamere. So far, mechanisms underlying common expression of different genes are not well known. 



CHAPTER 1: Discussion  

155 
 

However, it is likely that genes whose products function together are under a common regulatory 

system such that they are expressed in a coordinated manner (Farina et al., 2007; Ewen et al., 2011). 

Although LGDM2A patients show reduced β1D integrin, there is no evidence of a direct 

interaction between calpain 3 and integrin. It could be suggested that there is an intermolecular 

interaction, as reported for titin, but at present there is no evidence of that. In addition, the possibility 

of integrin being a direct calpain 3 substrate has already been ruled out by Kramerova and colleagues 

(2006), who showed that neither β1A nor β1D integrin are digested by calpain 3, suggesting that the 

changes in integrin isoform levels are because of an indirect effect.  

With regard to a potential direct interaction between calpain 3 and integrin regulating 

transcription factors, it could be supposed that a decrease in FOS (as observed in LGMD2A patients) 

(Sáenz et al., 2008) would control the expression of integrin because integrin has c-Fos and AP-1 

binding sequences in its promoter. However, we did not observe a reduction in integrin RNA levels in 

patients muscle biopsies (Sáenz et al., 2008). Since the ITGB1 gene encodes both integrin isoforms, 

β1D and β1A, it could be suspected that the alteration in the amount of integrin β1D is because of 

post-translational events and the substitution of the isoform might be mediated by the increase in 

anosmin-1. In LGMD2A patients, myogenesis is impaired, because of the lack of replacement of the 

integrin isoforms required for appropriate costamere assembly, as well as for the fusion of myotubes.  

Treatment effect in early and late stage treated myotubes 

Related to Wnt signaling, its involvement in embryonic and postnatal myogenesis has already 

been proven (Borello et al., 1999; Brack et al., 2008; Otto et al., 2008). Specifically, in cell culture, 

Suzuki and colleagues (2015) established that Wnt/β-catenin signaling can regulate myogenesis at 

different steps including, cell proliferation, myoblast fusion and homeostasis of muscle cells by 

targeting step-specific molecules. Brack and colleagues (2008) inhibited Wnt signaling with 

intramuscular Frzb injection after injury during proliferative (early) and differentiating (late) stages. 

Less differentiated phenotype was observed in late treated mice with no effects in early treated mice. 

Moreover premature induction of progenitor cell differentiation was observed when Wnt3a was 

added after injury at early stage. Thus, authors suggested that Wnt signaling acts directly on myogenic 

progenitors to promote the progression from early proliferating progenitors to more differentiated 

progenitors. Based on these results, it could be suggested that FRZB is one of the possible responsible 

of the impaired myotube formation observed in LGMD2A patients (Jaka et al., 2017). Thus, due to Wnt 

signaling knowledge together with previous findings where the genetic or pharmacological inhibition 

of GSK3β was reported to promote myogenic differentiation and reverse muscle atrophy (Evenson et 
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al., 2005; van der Velden et al., 2008; Pansters et al., 2011) myogenic differentiation was studied in 

control and LGMD2A patients’ myotubes after Wnt signaling activation.  

Wnt signaling activation was carried out by FRZB gene silencing and LiCl administration at 

early (at day 1 of differentiation) and late stage (at day 8 of differentiation) maintained until day 11 of 

differentiation. Both treatments displayed similar results, in late treated myotubes fusion index did 

not show major changes even if a higher fusion index could be observed i n some samples possibly 

because the myotubes were already formed. Conversely when treated at early stage, a deleterious 

effect was shown, reported by statistical significant decreased fusion index and with a parallel 

significant reduction on total nuclei (Figure 34). Since the treatment was maintained until the day 11 

of differentiation, it was not possible to observe if a premature differentiation occurs, as happened 

when Wnt3a was added in early (Brack et al., 2008).   

Nuclei number decrease at early stage treated myotubes could suggest that treatments had a 

negative impact in cell survival. Wnt signaling pathway is known to promote cell growth and survival 

since its activation enhanced gene expression of several proteins that support cell survival (Polakis, 

1999). Even if it has been reported that suppression of GSK3β protects against mitochon dria-

associated apoptosis during myogenic differentiation (Wang et al., 2011) many studies showed that 

GSK3 promotes intrinsic apoptotic signaling cascade (Beurel and Jope, 2006). Furthermore, LiCl has 

been found to increase TNF-mediated cytotoxicity in several cell types (Beyaert et al., 1989). Thus, 

further studies would be necessary to clarify if apoptosis pathway activation was the responsible of 

the decline in nuclei amount.  

In conclusion, it could be suggested that excessive Wnt signaling activation from early stages 

was deleterious for myogenesis. It is noteworthy that excessive Wnt signaling activation has been 

linked with altered stem cell fate and increased fibrosis in mice (Brack et al., 2007).Thus, continuous 

Wnt signaling activation, could be the reason why myotubes formation was impaired in our study.  

Moreover, murine C2C12 cell line was analysed to confirm the previous findings. Frzb gene 

was silenced at early and late stages of differentiation. Regarding nuclei amount, in none of the cases 

alterations were observed. This result suggested that, contrary to what was observed in human 

myotubes treated in early stages, C2C12 viability is not influenced by Wnt signaling.  The increase in 

fusion index was observed when Frzb gene was silenced at early stages. This is in agreement with 

previously findings where premature induction of progenitor cell differentiation was observed when 

Wnt3a was injected after injury (Brack et al., 2008). However, fusion index was not altered when 

silencing was carried out at later stages, as happened with human samples.  

Pax7 downregulation was previously observed after canonical Wnt signaling activation (Jones 

et al., 2015) as happened in the present study. Together with Pax7 downregulation a parallel 
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upregulation of Myog could be expected as was the case in Wnt3a treated mice myoblasts (Jones et 

al., 2015). However, no major differences in Myog levels were shown. This difference could be due to 

the different Wnt effectors, since FRZB is a specific antagonist of Wnt1, Wnt5, Wnt8 and Wnt9. 

On the other hand, Myh2 gene downregulation was also reported in dilated cardiomyopathy 

mice model where increased Wnt signaling activation was observed. This enhanced Wnt/β-catenin 

signaling also contributes to the fibre type shift toward fatigable fibre  (type IIb), mediated by FoxO 

transcription factors (Okada et al., 2015). However, β-catenin has also been described to promote 

fibre type shift toward type I fatigue-resistant fibres (Kuroda et al., 2013).  Since it has been proposed 

that TCF/LEF sequence and FoxO transcription factors compete for the pool of active β -catenin 

(Almeida et al., 2007) it seems that the effect of activated Wnt signaling may depend on other factors 

such as FoxO transcription factors accessibility. 

Furthermore, since atrophy is a common hallmark of LGMD2A disease (Urtasun et al., 1998; 

Fanin and Angelini, 2015), the effect of Frzb gene silencing was evaluated in atrogenes expression. A 

different trend was observed in both atrogenes, while Murf1 gene was downregulated, Fbx32 gene 

was upregulated. Little is known about direct interaction between Wnt signaling pathway and 

atrogenes so far. β-catenin could bind to FoxO transcription factors to activate its effectors genes 

(Okada et al., 2015) and since FoxO transcription factors are necessary for atrogin-1 and MuRF1 

expression (Kamei et al., 2004; Sandri et al., 2004; Nakashima and Yakabe, 2007), it could be expected 

an atrogin-1 and MuRF1 increase after Wnt signaling activation. However the downregulation of 

Murf1 gene expression could be explained since it has been reported that FOXO3a activates these two 

genes through different mechanisms (McLoughlin et al., 2009; Senf et al., 2010). 

Since MURF1 gene is the only atrogene upregulated in LGMD2A patient’s muscles (Fanin and 

Angelini, 2015) a downregulation after FRZB gene silencing to avoid the excessive protein breakdown, 

could be beneficial for patients. By contrast, the upregulation of atrogin-1 gene deserves special 

attention since atrogin-1 seems to act as protein synthesis inhibitor and it has been described as 

MyoD protein degrader (Tintignac et al., 2005; Attaix and Baracos, 2010).  

Finally, after siFrzb treatment, β1D integrin expression differences were observed depending 

on the used procedure (Figure 38). In human samples an upregulation of β1D integrin was observed 

while in C2C12 myotubes, only when Frzb gene silencing was maintained for a longer period, an 

upregulation of integrin protein level was observed. It is known that differences regarding gene and 

protein expression are present in human and mouse models (Kho et al., 2006). Even if the same 

procedure was carried out, different results could be obtained, suggesting a methodological issue. 

Several factors could regulate differently the same pathway and a specific siRNA could present 

different performance in human and mice. Thus, the required conditions, such as the dose, its 
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transitory effect, etc. should be finely tuned in each species given that the obtained results might 

mask the real consequences of the experiment. This underlines the requirement of a thorough 

analysis when result obtained from mouse and human are compared.  

Further studies are required to assess whether FRZB expression is altered in other types of 

muscular dystrophy, to establish whether it is also involved in their pathophysiology. Similarly, further 

research should investigate the mechanisms of action of FRZB, since controlling an inhibitor of the 

Wnt signaling pathway may be useful for the treatment of other conditions, as already described for 

osteoarthritis (Lories et al., 2007, 2009) and it might also be applicable to ischemic cardiopathy, in 

which low levels of β1D integrin are observed (Pfister et al., 2007).  

Collectively, with the obtained results, the regulation of FRZB expression could be proposed as 

a potential therapeutic target for LGMD2A disease,  given that in vitro studies support the idea that it 

may be possible to bring expression back towards appropriate levels in LGMD2A patients .  
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3. PERTURBATIONS IN SIGNALING PATHWAYS IN LGMD2A 

The impairment of different signaling pathways in the implication and progression of several 

muscular dystrophies have already been described. In mdx mice disease progression correlated with 

activation of p70S6K activity and decreased phosphorylation of p38 was observed (Lang et al., 2004). 

Moreover, perturbed AKT/mTORC1 signaling pathway was reported in regenerating muscles of 

LGMD2A mice model (Yalvac et al., 2017).  

AKT/mTOR signaling pathway stimulates fibre growth through activating protein synthesis and 

inhibiting protein degradation (Kubica et al., 2005; Léger et al., 2006; Mammucari et al., 2007). 

Moreover, mTOR kinase dependency for myotubes/myofibres maturation has also been reported 

(Park and Chen, 2005). 

A downstream effector of AKT/mTOR pathway is S6K1 and for its activation, this protein is 

sequentially phosphorylated, first in residues located on the pseudosubstrate domain; Ser-411, Ser-

418, Thr-421 and Ser-424, followed by residues implicated in the catalytic activity; Thr-229 in the 

catalytic domain and Thr-389 and Ser-404 in the linker region (Price et al., 1991; Han et al., 1995; 

Mahalingam and Templeton, 1996; Pullen and Thomas, 1997). 

In LGMD2A muscles, phosphorylation levels of Thr-421 and Ser-424 residues were decreased, 

while two asymptomatic patients showed normal phosphorylation levels. Howeve r, Thr-389 

phosphorylation levels remained unchanged. Thr-421 and Ser-424 residues could be phosphorylated 

by MAPKs (Mukhopadhyay et al., 1992) thus, the reduced ERK1/2 phosphorylation reported in 

LGMD2A patients could be responsible of these phosphorylations decreases.  The phosphorylation at 

Thr-389 did not show alterations even if P-AKT/AKT ratio was increased in LGMD2A patients (Jaka, 

2014) however, it is worthy to mention that not only mTOR kinase can phosphorylate this residue in 

vivo, but also NimA-related kinase (NEK6/7) can (Belham et al., 2001; Templeton, 2001). 

The fact that other kinases as well as other residues participate in the activation of S6K1 

(Pearson et al., 1995; Pullen et al., 1998) made difficult to obtain clear conclusions.  

To date several S6K1 substrates have been described (Ruvinsky, 2005), however RPS6 was the 

first identified member of the family of S6K substrates (Gressner and Wool, 1974). It is part of the 40S 

(small) subunit of ribosome and it could be phosphorylated in several sites (Martin-Pérez and Thomas, 

1983; Wettenhall et al., 1992).  Related to the phosphorylation patterns, different groups reported 

contrary results, although Ser-235 and Ser-236 are directly phosphorylated by S6K1 (Ruvinsky and 

Meyuhas, 2006), later studies suggested that Ser-240 and Ser-244, but not Ser-235 and Ser-236 

phosphorylations are mediated by S6K1 (Roux et al., 2007). It was reported that Ser-235 and Ser-236 
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are phosphorylated in an mTOR independent way through the MERK/ERK and RSK (p90 ribosomal S6K 

kinases) pathways (Pende et al., 2004; Roux et al., 2007).   

The effects of RPS6 phosphorylation have remained obscure.  EF2 kinase, e IF4B and RPS6 are 

S6K1 dependent downstream effectors of protein synthesis, however while the phosphorylation of 

EF2 kinase and eIF4B increase protein synthesis, the phosphorylation of RPS6, also mediated by S6K1, 

reduce it (Wang, 2001; Raught et al., 2004; Ruvinsky, 2005). In addition, studies carried out in a 

knockin mouse in which all five phosphorylatable serine residues of RPS6 were substituted by alanines 

(RPS6P-/-) have demonstrated that cell proliferation and cell size determination are influenced by RPS6 

phosphorylation. These mice have decreased total muscle mass due to smaller size of fibre s which 

leads to compromised muscle strength (Ruvinsky, 2005; Ruvinsky et al., 2009).  

In this study a significant reduction in Ser-235 and Ser-236 residues phosphorylation was 

observed in LGMD2A patients. In this case again, the asymptomatic patient showed normal 

phosphorylation levels. The correlation between the reduced phosphorylations on the Thr-421 and 

Ser-424 residues in S6K1 and Ser-235 and Ser-236 residues in RPS6, could suggest pseudosubstrate 

phosphorilations in S6K1, have influence in its enzymatic activity. Even so, the lack of phosphorylation 

at Ser-235 and Ser-236 could also be the result of the lower levels of P-ERK1/2 previously observed in 

the LGMD2A muscles.  

The fact that asymptomatic patient, which have nearly non affected muscles, maintain these 

phosphorylations, has led to the idea that the maintenance of these phosphorylations are necessary 

for the normal homeostasis of the muscle.  

These findings together with studies carried out in RPS6P-/- mice where reduced fibre CSA was 

reported (Ruvinsky et al., 2009), could suggest that the observed downregulation of RPS6 

phosphorylation, could be the reason why smaller and medium size lobulated fibres are present in 

LGMD2A patients’ muscles (Fardeau et al., 1996a; Rosales et al., 2013; Fanin and Angelini, 2015) . 

Moreover, a recent study where disrupted AKT/mTORC1 pathway was described in the Capn3-

deficient mice (Yalvac et al., 2017), could also explain the observed reduced skeletal muscle mass with 

smaller fibre CSA in C3KO mice (Kramerova et al., 2004).  

Although several different pathways could be responsible of this perturbed AKT/mTOR 

signaling pathway, the implication of 5' AMP-activated protein kinase (AMPK) would require further 

analysis since an increase of its activity which in turn inhibits mTORC1 activity has been reported in 

Capn3-deficint mice (Yalvac et al., 2017). 

Since AKT could affect different signaling pathways, AKT-dependent FoxO transcription factors 

were analysed. IGF-1/AKT pathway phosphorylates FoxOs preventing its nuclear translocation, thus its 
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activation (Stitt et al., 2004). FoxOs are transcription factors involved in the regulation of genes related 

with cell cycle, DNA damage repair, oxidative stress resistance, energy metabolism, atrophy, 

autophagy and apoptosis (Ogg et al., 1997; Dijkers et al., 2000; Medema et al., 2000; Kops et al., 2002; 

Nemoto and Finkel, 2002; Tran, 2002; Furukawa-Hibi et al., 2002).  

Among their functions it has been postulated that FoxO1 and FoxO3 are central regulators of 

protein breakdown since their activation regulates the expression of atrogin-1 and MuRF1, muscle-

specific E3 ubiquitin ligases, whose expression leads to myofibrillar proteolysis (Kamei et al., 2004; 

Sandri et al., 2004; Nakashima and Yakabe, 2007). Together with ubiquitin-proteasome system, FoxO 

also regulates autophagy-lysosomal pathway. More precisely, FoxO3 has been linked to the regulation 

of several autophagy related proteins (Atgs), including LC3B, BNIP3, beclin 1, GABARAPL1, PI3KIII, 

Atg4B, Atg12 l and Ulk2 (Mammucari et al., 2007; Zhao et al., 2007) while FoxO1 to cathepsin L 

expression (Yamazaki et al., 2010).  

LGMD2A patients’ muscles showed increased phosphorylation of FoxO4 and to a less extent of 

FoxO3 (Figures 42 and 43). These increased phosphorylations could be due to the increased P-

AKT/AKT ratio in these muscles. Conversely, the fact that an increased phosphorylation of FoxO1 was 

not clearly observed, suggests that this phosphorylation is not AKT dependent as previouly observed 

in hibernating squirrels. In disuse atrophy AKT/mTOR pathway activity reduction together with FoxO1 

phosphorylation increase was observed (Dang et al., 2016). On the other hand, ERK1/2 could also 

phosphorylate FoxO transcription factors (Yamaguchi et al., 2012; Sun et al., 2018) however, this 

interaction cold be discarded due to the observed P-ERK1/2 reduction in LGMD2A patients. 

Ubiquitin-proteasome system together with autophagy-lysosomal degradation system are the 

two main effectors of muscle atrophy, thus, several studies have been carried out to establish how 

they are regulated in LGMD2A patients. Even if some studies reported no upregulation of MURF1 or 

FBX32 gene expression (Keira et al., 2007; Sáenz et al., 2008),  at protein level upregulation of MuRF1 

without atrogin-1 deregulation was observed in our LGMD2A patients, also reported by Fanin and 

colleagues (2015).  

Overall, the obtained results suggested that FoxO3 and FoxO4 transcription factors are not the 

responsible of MuRF1 increase in LGMD2A patients. Thus, other mechanisms would be responsible of 

this, for instance, MuRF1 upregulation could be mediated by IKKβ/NF-κB activation which in turn 

causes muscle wasting that resembles clinical cachexia (Cai et al., 2004).  

In addition to the atrogenes, FoxO transcription factors also regulate other genes expression. 

The increased FoxO activation found in Lmna-/- mice (laminopathies mice model) and in LLC and C26 

tumour-bearing cachectic mice, allowed to identify specific FoxO target genes (Reed et al., 2012; Judge 

et al., 2014; Auguste et al., 2018). As in LGMD2A patients FoxOs are mainly phosphorylated, the 
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regulation of some of these genes in Lmna-/- mice as well as in C26 tumour-bearing cachectic mice, 

showed an opposite trend to the observed deregulation in LGMD2A patients (Sáenz et al., 2008) 

(Table 21). Unlike what was observed in LGMD2A muscle genes, some genes were upregulated; Egr1, 

Fos and Junb (in both mice models), Cited2 and Myc (only in Lmna-/-) while Col1a1, Col1a2 and Itg1bp2 

genes (in C26 tumor-bearing cachectic mice) and Dok5 gene (in Lmna-/-) were downregulated (Sáenz et 

al., 2008; Judge et al., 2014; Auguste et al., 2018).  These findings, together with our results, confirm 

the implication of FoxOs in the regulation of these genes in LGMD2A (Table 21).  

 

 

 

 

 

 

Table 21. Gene expression representation in LGMD2A patients (increased FoxO phosphorylation) and in 

FoxO activated models (Lmna-/- and C26 tumour-bearing cachectic mice) (Sáenz et al., 2008; Judge et al., 

2014; Auguste et al., 2018). Downregulated genes= green and upregulated genes= red. 

On the other hand, type I fibre predominance as disease progress has been reported in 

LGMD2A disease (Fardeau et al., 1996a; Rosales et al., 2013). Since FoxOs regulate skeletal muscle 

fibre type specification and fibre type shift form type I to type II fibre (Sandri et al., 2004; Keira et al., 

2007; Yuan et al., 2011) the lack of FoxO activation could be suggested as responsible of the increased 

type I fibres that are present in more affected LGMD2A patients.  

Altogether it could be concluded that although FoxO activity could be also regulated by 

different mechanisms (Eijkelenboom and Burgering, 2013) the increased phosphorylated AKT present 

in LGMD2A patients could be the responsible of the increased phosphorylation of FoxO3 and FoxO4 

which lead to the lack of FoxO nuclear translocation. This lack, could lead to the increase of type I 

fibres observed in LGMD2A patients, as well as the deregulation of several genes in LGMD2A patients. 

Furthermore, it could be suggested that the increased FRZB protein expression shown  in LGMD2A 

patients (Jaka et al., 2017) would be inhibiting Wnt signaling thus, β-catenin nuclear translocation 

would be avoided due to its degradation.  Since β-catenin binds to FoxO transcription factors to induce 

the expression of FoxO target genes (Essers et al., 2005) it could be suggested that an increased 

blockage of FoxO transcription factors may be occurring.  

LGMD2A  Lmna-/- 
C26 tumour-bearing 

cachectic mice 

EGR1 Egr1 Egr1 
FOS Fos Fos 

JUNB Junb Junb 

CITED2 Cited2   
MYC Myc   

DOK5 Dok5   
COL1A1 

 
Col1a1 

COL1A2 
 

Col1a2 

ITGB1BP2   Itgb1bp2 



CHAPTER 1: Discussion  

163 
 

The obtained results, together with previously results of our group, allowed establishing the 

possible scenario of the pathophysiology of the LGMD2A muscle.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48. Schematic representation of LGMD2A patients’ pathophysiological scenario in the skeletal 

muscle. Black arrows indicate activation signal of the protein while striped arrows indicate inhibition signal 

of the protein. Increased proteins and upregulated genes are shown in red and decreased proteins and 

downregulated genes are shown in green.  
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CHAPTER 2: RESULTS 

In this study in order to establish Frzb relevance in mice muscles, Frzb-/- mice was used to 

characterize at different levels what happens when Frzb is absent.  

4. MUSCLE STRENGTH ANALYSIS 

Five to six week-old mice muscle strength was measured with four limb hanging test. First of 

all, body weigh was measured and was observed that Frzb-/- mice were significantly smaller than WT 

mice (Figure 49 a). Great variability was observed in hanging time, and was greater in WT group. None 

of the Frzb-/- mice resisted beyond 14 minutes, one mouse did not reached 1 minute and 8 mice 

remained hanging around 1 minute while 4 mice reached 5-13 minutes. Within WT group, 4 mice 

spent similar time than Frzb-/- mice while 5 mice remained hanging more than 20 minutes (Figure 49 

b).  

 

 

 

 

 

 

Figure 49. (a) WT and Frzb-/- mice body weight (g) represented as mean ± standard deviation where each 

dot represents one mouse. WT (N= 9; 18.36 ± 0.1599 g), Frzb-/- (N= 13; 13.91 ± 0.7186 g), significance of the 

differences is represented as p < 0.0001. (b) Correlation graph of the hanging time (s) according to mice 

weight (g). Each dot represents a mouse. WT= black and Frzb-/-= grey.  

5. MICE GAIT ANALYSIS 

Prior to gait analysis, mice body weight was measured. Even though mice gait analysis was 

performed in thirty-six 8 and 10 week-old mice, not all the weights were available. The body weight of 

thirty-one 8 week-old and twenty-seven 10 week-old mice are shown in Table 22. Significant 

difference between WT and Frzb-/- body weight was observed in 10 week-old mice. 
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          8 week-old 10 week-old 

  Weight (g) N Weight (g) N 

WT 20.20 ± 0.2865 20 21.91 ± 0.3834 19 

Frzb-/- 20.27 ± 0.6618 11 19.99 ± 0.8450 8 

  Total  31   27 
 

Table 22. WT and Frzb-/- mice body weight (g) in 8 and 10 week-old mice, represented as mean ± standard 

deviation. Significance of the differences between WT and Frzb-/- mice in 10 week-old is p < 0.05. 

5.1  Paw statistics 

The influence of genotype in paw statistics was studied by two-way ANOVA comparison (Table 

23). Frzb -/- mice paws spent significantly more time in contact with the glass plate and in the air as 

showed by stand and swing phase. In consequence step cycle was longer in Frzb-/- mice. Swing speed 

was significantly lower in Frzb-/-. Moreover, although Frzb-/- mice moved more slowly (increased stand 

and swing phase), the distance covered by their paws, stride length, did not differ between WT and 

Frzb -/- mice (in both study groups) (Figure 50).  
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Figure 50. Paw statistics in (a, c, e, g and i) 8 week-old and (b, d, f, h and j) 10 week-old mice. (a-b) Stand, 

(c-d) swing time, (e-f) step cycle, (g-h) swing speed and (i-j) stride length. Each dot represents the mean of 

three consecutive runs of one mouse. Data are represented as mean ± standard deviation. Significance of 

the differences are represented as the result of Tukey's multiple comparisons test being *= p < 0.05, **= p 

< 0.01 and ***= p < 0.001.  

  8 week-old 10 week-old 

Stand F (1, 68), p< 0.0001 F (1, 68), p< 0.0001 
Swing phase F (1, 68), p< 0.0001 F (1, 68), p= 0.0031 
Step cycle F (1, 68), p< 0.0001 F (1, 68), p< 0.0001 
Swing speed F (1, 68), p< 0.0001 F (1, 68), p= 0.0130 
Stride lenght F (1, 68), p= ns F (1, 68), p= ns 

 

Table 23. Genotype influence in stand, swing phase, step cycle, swing speed and stride length calculated by 

two-way ANOVA analysis. ns= not significant.  

5.2  Step sequence 

The base of support is smaller in Frzb-/- mice F (1, 68), p< 0.01 in 8 and 10 week-old mice, as 

reported by two-way ANOVA comparison. Post hoc analyses using the Sidak’s criterion for significance 

indicated that Frzb-/- mice HP BOS is significantly smaller in 10 week-old mice (p< 0.01) (Figure 51 a 

and b). It was also observed that Frzb-/- mice used significantly more step patterns than WT mice at 10 

weeks (Figure 51 c) while at 8 weeks no differences were seen (Figure 51 f). Step regularity index 

value was similar within groups over time (Figure 51 d and g).  Step sequence at 8 weeks was the same 

in both genotypes (Figure 51 h) however, older Frzb-/- mice used less AA step sequence whereas AB 

step sequence was more frequently used (Figure 51 e). Frzb-/- mice used more different step patterns 

over time (Figure 51j) whereas, WT mice step patterns did not change (Figure 51 i). WT mice step 

S w in g  s p e e d

m
/s

W T F rzb
- /-

W T F rzb
- /-

0

5

1 0

1 5

F P                           H P

*

S w in g  s p e e d

m
/s

W T F rzb
- /-

W T F rzb
- /-

0

5

1 0

1 5

F P                           H P

*

***

S tr id e  le n g th

m
m

W T F rzb
- /-

W T F rzb
- /-

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

1 0 0 0

1 1 0 0

F P                           H P

g h 

S tr id e  le n g th

m
m

W T F rzb
- /-

W T F rzb
- /-

7 0 0

8 0 0

9 0 0

1 0 0 0

1 1 0 0

F P                           H P

i j 



CHAPTER 2: Results 

170 
 

sequence change over time; older mice used more AA step sequence and less AB sequence ( Figure 51 

k) while Frzb-/- mice step sequence remains unaltered (Figure 51 l). 
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Figure 51. (a-b) Base of support in (a) 8 week-old and (b) 10 week-old mice. (c) Step pattern, (d) step 

regularity index and (e) step sequence in 10 week-old mice. (f) Step pattern, (g) step regularity index and 

(h) step sequence in 8 week-old mice. (i and j) WT and Frzb
-/-

 mice step patterns over time respectively. (k 

and l) WT and Frzb-/- mice step sequence over time respectively. Each dot represents the mean of three 

consecutive runs of one mouse. Data are represented as mean ± standard deviation. FP= front paw, HP= 

hind paw; 8= 8 week-old mice and 10= 10 week-old mice. Significance of the differences are represented as 

*= p < 0.05, **= p < 0.01, **= p < 0.001 and ****= p < 0.0001. 

Related to the paw support, the overall preference is the two paw support, more specifically, 

the diagonal one, in all the genotypes, followed by three paws support in 10 week-old mice. Focusing 

on genotype, Frzb-/- mice spent significantly less time on one paw and girdle support and more time in 

three and four paw support (Figure 52 a and b). WT mice paw support was shifted over time, they 

decreased the use of three paw support and they increased the use of two paw support. However 

Frzb-/- genotype mice paw support remains unaltered (data not shown) (Figure 52 c and d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52. (a) Different paw support and (b) two paw support in 10 week-old mice. (c) Different paw 

supports and (d) two paw support in 8 and 10 week-old WT mice.  Each dot represents the mean of three 

consecutive runs of one mouse. Data are represented as mean ± standard deviation. 8= 8 week-old mice 

and 10= 10 week-old mice. Significance of the differences are represented as *= p < 0.05 and ***= p < 

0.001.  
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6. SKELETAL MUSCLE ANALYSIS 

A two-way analysis of variance of muscles weight yielded a significant effect for the genotype 

in muscle weight, F (1, 108), p<0.0001, being Frzb-/- muscles significantly smaller. The difference of 

muscle type was significant F (3, 108), p<0.0001. The interaction effect also was significant F (3, 108), 

p<0.05, indicating that the genotype effect was different in all analysed muscles.    

Post hoc analyses using the Sidak’s criterion for significance indicated that Gastrocnemius and 

Quadriceps weights were significantly smaller in Frzb-/- mice, p< 0.0001 (Figure 53). 

 

 

 

 

 

 

 

Figure 53. (a) 4 week-old WT (N= 15) and Frzb-/- (N= 14) mice body weight (g). (b) WT and Frzb-/- mice 

muscles weight (mg). Data are represented as mean ± standard deviation. Gastroc.= Gastrocnemius, TA= 

Tibialis anterior and Quadr.= Quadriceps. Significance of the differences are represented as ****= p < 

0.0001. 

6.1 Muscle cross-sectional area and fibre composition analyses 

Ten and 14 week-old mice Soleus fibre CSA was measured in WT and Frzb-/- mice. Frzb-/- mice 

were smaller at both ages but this difference was not statistically significant.  

Ten week-old and 14 week-old mice Soleus fibre CSA was measured and compared by two-

way ANOVA. It was found that genotype was significantly influencing fibres CSA, F (1, 10), p< 0.0054. It 

was shown that Frzb-/- muscles fibres were smaller. However, no influence of mice age or of the 

interaction between both factors was observed. A posterior Sidak's multiple comparison analysis 

showed that only CSA in 10 week-old mice was significantly smaller in Frzb-/- mice, p<0.05 (Figure 54).  
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Figure 54. (a) WT and Frzb-/- mice body weight (g). (b) Hematoxylin and eosin stained Soleus in 10 and 14 

week-old WT and Frzb
-/-

 mice. Scale bar 250 µm. (c) Ten and 14 week-old mice Soleus fibre cross-sectional 

area in mm2. Data are represented as mean ± standard deviation. Ten week-old mice; WT N= 4 and Frzb-/- 

N= 3, and 14 week-old mice; WT N= 5 and Frzb-/- N= 2. Significance of the differences is represented as *= p 

< 0.05. 

Fibre composition is based on different myosin heavy chain isoforms (Myh1, Myh2 and Myh4), 

their expression were analysed in 10 week-old mice. Tibialis anterior expressed predominantly Myh4 

(myosin present in 2B fibre type) followed by Myh1 (myosin present in 2X fibre type) while Myh2 

showed a minimum expression (myosin present in 2A fibre type). Soleus showed similar expression of 

Myh1 and Myh2 while Myh4 was minimally expressed. Different genotypes did not show significant 

differences in myosin’s expression although myosin composition in Soleus is more variable (Figure 55).  
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Figure 55. Myosin heavy chains isoforms (Myh1, Myh2 and Myh4) gene expression in Tibialis anterior (3 WT 

and 3 Frzb-/-) and Soleus (2 WT and 5 Frzb-/-). GAPDH was used as endogenous control. Data are 

represented as mean fold-change ± standard deviation.  

NADH transferase staining was used to visualize different fibre types in 11 week-old Soleus of 

WT and Frzb-/- mice. No differences were observed in any of the fibre types. The most abundant were 

barely stained fibres, around 41%, followed by strongly stained fibres, around 22%. Fibres stained in-

between colour were around 36%, more precisely, medium-strong fibres were a bit more abundant 

than medium-weak fibres in WT and in Frzb-/- muscles (Figure 56).  
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Figure 56. (a) NADH transferase staining of transverse sections of WT (N= 3) and Frzb-/- (N= 3) Tibialis 

anterior. Scale bar 500 µm. (b) NADH transferase staining based fibre-type composition of Tibialis anterior 

(3 WT and 3 Frzb-/- mice) where fibre-type intensity was measured. Data are represented as mean ± 

standard deviation. Colour intensity was divided as weak (39.11 ± 4.3 % in WT and 44.38 ± 6.22 % in Frzb
-/-

 

mice), medium-weak (17.99 ± 1.57 in WT and 18.12 ± 2.27 in Frzb-/- mice), medium-strong (18.39 ± 4.05 in 

WT and 17.55 ± 4.79 in Frzb-/- mice) and strong (24.51 ± 4.55 % in WT and 19.94 ± 3.52 % in Frzb-/- mice) .  

 

 

7. CHRONIC EXERCISE INDUCED MUSCLE ALTERATIONS 

To analyse the effect of the chronic exercise the treadmill was used. All the trained animals 

were able to perform selected chronic exercise protocol. No abnormal behaviour or sings of 

exhaustion were observed.  

First, mice body weights were measured and no differences between trained and not-trained 

groups were seen. The differences between WT and Frzb-/- mice body weight were gradually 

diminishing over the weeks (Figure 57). 

 

 

 
Figure 57. WT and Frzb

-/-
 mice body weight (g) while training 

period. Data are represented as mean ± standard deviation 

where each dot represents the mean weight of each group. 

Black; not-trained WT group (N= 4). Blue; trained WT group 

(N= 5). Red; not-trained Frzb-/- group (N= 2). Green; trained 

Frzb
-/- 

group (N= 4). Significance of the differences are 

represented as ^= p < 0.0001, #= p < 0.001, **= p < 0.01 and 

*= p < 0.005.  
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 Later, muscle weights were studied and no effect of exercise was found after two-way ANOVA 

analysis. However genotype effect in Tibialis anterior was observed, being Frzb-/- muscles smaller, F (1, 

11), p<0.0023. Post hoc analysis using the Sidak’s criterion for significance indicated that trained Frzb-/- 

mice Tibialis anterior were significantly smaller than trained WT mice Tibialis anterior (Figure 58). 

 

 

 

 

 

Figure 58. (a) Tibialis anterior, (b) Gastrocnemius and (c) Quadriceps weight (mg). Data are represented as 

mean ± standard deviation where each dot represents the mean weight of left and right muscles of one 

mouse. Significance of the differences is represented as p < 0.05 for not-trained WT (N= 4) versus Frzb-/- 

(N= 3) and trained WT (N= 5) versus Frzb-/- (N= 4). 

Fibre CSA area of Soleus was measured and a two-way ANOVA analysis of variance showed no 

influence of exercise. However Frzb-/- muscle fibres were smaller, as was reported by the influence of 

genotype in CSA F (1, 11), p< 0.0066. Further Sidak's multiple comparisons test showed that the 

difference between WT and Frzb-/- fibres CSA in not-trained mice was statistically significant, p< 0.05 

(Figure 59). No exercise induced damage was observed in any of transverse sections of Soleus or 

Tibialis anterior. 
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Figure 59. (a) Hematoxylin and eosin stained Soleus from (A and B) WT and (C and D) Frzb-/- mice. Left 

images correspond to not-trained samples while right images correspond to trained samples. Scale bar 250 

µm. (b) Soleus fibres cross-sectional area (mm2) represented as mean ± standard deviation. Not-trained WT 

group N= 4, trained WT group N= 5, not-trained Frzb-/- group N= 3 and trained Frzb-/- group N= 3. 

Significance of the difference is represented as p > 0.05. 
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Muscle fibre type composition was analysed in both study groups in Tibialis anterior (Figure 

60). 
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Figure 60. (a) NADH transferase staining distribution of transverse sections of WT and Frzb
-/-

 Soleus of not-

trained and trained mice. Scale bar 500 µm. (b) NADH transferase staining based fibre-type composition of 

Soleus (3 WT and 3 Frzb-/- mice for not-trained and trained groups) where fibre-type intensity was 

measured. Data are represented as mean ± standard deviation. Colour intensity was assigned as weak, 

medium-weak, medium-strong and strong.  

In order to analyse the effect of exercise in gene and protein expression, myogenic genes as 

well as genes implicated in atrophy were studied. In myogenic genes (Pax7, Myod, Myog and Myh3) 

no differences were observed after exercise as reported by two-way ANOVA analysis (Figure 61). 

However, genotype influence was observed in Myod gene expression. Frzb-/- mice have upregulated 

Myod gene expression F (1, 8), p< 0.0144. Further post hoc analysis did not report any specific means 

differences (Figure 61 b).   

 

 

 

 

 

 

 

Figure 61. (a) Pax7, (b) Myod, (c) Myog and (d) Myh3 gene expression in Gastrocnemius in trained and not-

trained WT and Frzb-/- mice. GAPDH was used as endogenous control. Data are represented as mean fold-

change ± standard deviation. Significance of the differences is represented as *= p < 0.05. 

Atrophy related Fbx32 and Murf1 genes expression were analysed by two-way ANOVA. Fbx32 

gene expression showed exercise influence F (1, 8), p< 0.0013 being its expression lower in trained 

mice. Further Sidak's multiple comparisons test showed that the trained muscles expression was 

significantly lower, p< 0.05 and p< 0.01 for WT and for Frzb-/- mice respectively. However, although a 

trend to downregulation of Murf1 gene expression was observed in trained mice, no differences were 

observed after two-way ANOVA analysis (Figure 62 a).  The proteins coded by these genes also were 

analysed. Neither of them showed any exercise or genotype induced alterations (Figure 62 b). 
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Figure 62. (a) Gene expression analysis of Fbx32 and Murf1 in Gastrocnemius. GAPDH was used as 

endogenous control. Data are represented as mean fold-change ± standard deviation. N= 3 in all groups (b) 

Western blot and densitometry analyses of MuRF1 and Atrogin-1 in Gastrocnemius. Data are represented 

as mean band density normalized relative to GAPDH ± standard deviation. Not-trained; N= 3 and trained; 

N= 4. Significance of the differences are represented as *= p < 0.05 and **= p < 0.01. 

As activation of different signaling pathways after exercise have been described, 

PI3K/AKT/mTOR, MAPK/ERK signaling pathway and GSK3β kinase activity were analysed. First of all, 

the effect of genotype was analysed. Two-way ANOVA study showed statistically significant reduced 

expression in total AKT, ERK1/2 and GSK3β F (1, 10), p= 0.001, p= 0.0007 and p= 0.002 respectively in 

Frzb-/- mice.  Further, Tukey's multiple comparisons test showed that AKT was significantly reduced in 

not-trained Frzb-/- mice in comparison with not-trained WT mice (p< 0.001) and trained Frzb-/- mice 

have less ERK1/2 than trained WT mice (p< 0.001). Moreover Sidak's multiple comparisons test 

showed reduced GSK3β in not-trained Frzb-/- mice in comparison with not-trained WT mice.  

On the other hand, phosphorylation was only shown influenced by genotype in GSK3β protein 

F (1, 10), p= 0.0109, Frzb-/- mice had higher phosphosphorylation ratios.  
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 After that, exercise influence was studied. It was found a negative effect of exercise in AKT 

and ERK1/2 total proteins. Exercise induced a decrease of these proteins F (1, 10), p= 0.0245 and p= 

0.0177 respectively. Next, Tukey's multiple comparisons test showed significant lower levels of total 

AKT after training in WT mice (p< 0.05).  

Finally, only genotype influence was found between phosphorylated and non-phosphorylated 

AKT and GSK3β proteins. Frzb-/- mice had higher phosphorylated proteins ratio of AKT and GSK3β F (1, 

10), p= 0.0034 and p= 0.0063 respectively (Figure 63).   
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Figure 63. Western blot and densitometry analyses of (a) AKT and P-AKT (Ser473), (b) ERK1/2 and P-ERK1/2 

(Thr202/Tyr204) and (c) GSK3β and P-GSK3β (Ser9). Data are represented as mean band density normalized 

relative to GAPDH ± standard deviation. Not-trained; N= 3 and trained; N= 4. Significance of the differences 

are represented as *= p < 0.5, **= p < 0.01. 

8. MUSCLE REGENERATION CAPACITY AFTER INTRAMUSCULAR CARDIOTOXIN-

INDUCED MUSCLE INJURY 

Induction of acute skeletal muscle regeneration by Cardiotoxin Injection in WT and Frzb-/- 

Soleus and Tibialis anterior was analysed in hematoxylin and eosin stained muscles sections.  

Non-injured skeletal muscle showed polygonal myofibres with peripheral nuclei (Figure 64 a-d 

and Figure 65 a-b). At day 3 post injection, muscles showed degenerative myofibres and inflammatory 

cellular infiltration. In the Soleus, most of the fibres were damaged, while in the case of Tibialis 

anterior, just the area where the cardiotoxin had been injected appeared affected (Figure 64 e-h and 

Figure 65 c-d). One week after injury, small regenerating myotubes with centrally located nuclei were 

observed (Figure 64 i-l and Figure 65 e-f). Some inflammatory cellular infiltrations were still present 

(more evident in Soleus). Regenerating fibress with centrally located nuclei increased their diameter 

by two weeks (Figure 64 m-n and Figure 65 g-h). At 4 weeks, centrally located nuclei were still present 

but fibre diameters were more homogeneous. In the  Soleus (Figure 65 i-j), newly formed fibre size 

were more variable than in the Tibialis anterior fibres (Figure 64 o-p). Neither adipocytes nor collagen 

infiltrations in WT or Frzb-/- muscles were observed.  
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Figure 64. Hematoxylin and eosin stained Tibialis anterior sections of (a, b, e, f, i, j, m and o) WT and (c, d, 

g, h, k, l, n and p) Frzb-/- mice. (a-d) Control, not-damaged muscles, (e-h) 3 days after CTX injection, (i-l) 7 

days after CTX injection, (m and n) 14 days after CTX injection and (o and p) 28 days after CTX injection. 

Scale bar 250 µm. 
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Figure 65.  Hematoxylin and eosin stained Soleus sections of (a, c, e, g and i) WT and (b, d, f, h and j) Frzb-/-

mice. (a and b) Control not-damaged muscles, (c and d) 3 days after CTX injection, (e and f) 7 days after CTX 

injection, (g and h) 14 days after CTX injection and (i and j) 28 days after CTX injection. Scale bar 50 µm. 
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9. MICE CELL MODEL 

9.1 Satellite cells 

Satellite cells were extracted from 4 week-old WT and Frzb-/- mice Biceps, Gastrocnemius, 

Tibialis anterior and Quadriceps. 

As previously mentioned Frzb-/- mice were significantly smaller and had less total muscles 

mass, nevertheless the obtained cell amount after enzymatic muscle disruption did not show 

differences (Table 24). 

 

Table 24. WT and Frzb-/- mice body weight (g), total muscle weight (mg) and obtained cell amount after 

muscle digestion, data are represented as mean ± standard deviation. Statistic value column represents 

pairwise comparison (t test) between different genotypes. Not sig.= not significant.  

The immunofluorescence analysis showed first more MyoD positive cells in Frzb-/- mice 

muscles after enzymatic digestion and second, more abundant proliferation marker protein; Ki67 

(Figure 66 a and b). At myotube stage comparable fusion index with similar myogenin and MyoD 

positive nuclei were observed (Figure 65 c-e). 

 

 

 

 

 

 

 

 

 

 

 

  
N 

Body weight 
(g) 

Statistic 
value 

Total muscle 
weight (mg) 

Statistic 
value 

Cell amount 
Statistic 

value 

WT 7 14.71 ± 0.570 

p< 0.01 

441.28 ± 48.517 

p< 0.01 

209264.286 ± 
80206.913 

p= 0,632 
Frzb-/- 6 11.48 ± 0.502 332.73 ± 45.423 

189500.000 ± 
61173.426 
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Figure 66. (a) Immunofluorescence analysis of WT and Frzb-/- satellite cells. Left were stained for MyoD 

(green) and right images for Ki67 (red). (b) Percentage of Ki67 and MyoD positive nuclei are represented as 

mean ± standard deviation. (c) Immunofluorescence analysis of WT and Frzb-/- myotubes at day 3 of 

differentiation. Left showed nuclear staining for myogenin (red) and cytoplasmic staining for sarcomeric α-

actinin (green). Right showed nuclear staining for MyoD (green) and cytoplasmic MyHC staining (red). In all 

cases nuclei were visualized with Hoechst (blue). (d) Percentage of MyoD and myogenin positive nuclei are 

represented as mean ± standard deviation. (e) Myotubes fusion index, calculated as the percentage of 

nuclei inside myotubes represented as mean ± standard deviation. Scale bar 250 µm. For each mouse 5-6 

fields were counted. WT N= 7 and Frzb
-/-

 N= 6. Significance of the differences are represented as **= p < 

0.01 and ****= p < 0.0001. 

9.2 Mesoangioblasts 

Five week-old Biceps, Gastrocnemius, Tibialis anterior and Quadriceps form WT and Frzb-/- 

mice were used for mesaoangioblasts collection. Cells were sorted for alkaline phosphatase cell 

surface marker.  

The obtained ALP+ cell distribution was different in WT and Frzb-/- mice since significant effect 

of genotype as well as ALP cell surface marker was observed in the amount of obtained cells after 

sorting as reported by two-way ANOVA analysis, F (1, 22), p= 0.004 and F (1, 22), p= 0.005 

respectively.  The interaction effect also was significant F (1, 22), p< 0.0001, indicating that the ALP cell 

surface marker presence is influenced by genotype.  Further, Tukey's multiple comparisons test 

showed that ALP+ cells amount was higher in Frzb-/- mice than in WT mice and Frzb-/- mice have 

significantly higher amount of positive cells than negative (Figure 67). 
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Figure 67. Percentage of alkaline phosphatase positive and negative cells in WT (N= 7) and Frzb-/- (N= 6) 

mice. In WT mice ALP+ cells were 10.54 ± 3.63% and negative were 21.47 ± 2.166%. In Frzb
-/-

 mice ALP+ 

cells were 50.13 ± 6.732% and negative were 7.183 ± 1.803%. Data are represented as mean ± standard 

deviation where each dot represents one mouse. Significance of the differences are represented as ***= p 

< 0.001 and ****= p < 0.0001. 

ALP+ cells were negative for endothelial cell marker CD31 and hematopoietic cell marker 

CD45. Nevertheless, while WT ALP+ cells were around 81% positive for platelet derived growth factor 

receptor alpha (CD140A or PDGFRα), Frzb-/- ALP+ cells were only around 43% positive for this marker 

(Figure 68). 

 

Figure 68. FACS data showing CD31, CD45 and CD140A expression in WT N= 3 and Frzb-/- N= 7 samples. 

Mean ± standard deviation of each protein value is also present.  
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In order to establish whether PDGFRα levels were also differentially expressed in skeletal 

muscles, Cd140a (Pdgfra) and Cd140b (Pdgfrb) genes expression were measured. No differences in 

gene expression were observed in Tibialis anterior or in Soleus regarding mice genotype, as reported 

by two-way ANOVA study. While it is true that significant lower Pdgfra gene expression was observed 

in Soleus than in Tibialis anterior, F (1, 14), p= 0.0149 (Figure 69). 

 

 

 

 

 

 

Figure 69. (a) Cd140a (Pdgfra) and (b) Cd140b (Pdgfrb) gene expression in Tibialis anterior and Soleus of 10 

week-old WT and Frzb
-/-

 mice. GAPDH was used as endogenous control. Data are represented as mean fold-

change ± standard deviation. WT; N= 4 and Frzb-/-; N= 5 for both muscles.  

ALP expressing mesenchymal cells are a heterogeneous cell group. In other to establish 

different population distribution, several mesenchymal cells markers were analysed in skeletal 

muscles with two different approaches. 

First, immunofluorescence studies were carried out in Tibialis anterior sections. No differences 

between Frzb-/- and WT were noticed in immunofluorescence analysis (Figure 70). 

 

 

 

 

 

 

 

 

 

 

 

a b 
C d 1 4 0 b (P d g fr b )

F
o

ld
 c

h
a

n
g

e

W T F rzb  
- /-

W T F rzb
- /-

0

5 0

1 0 0

1 5 0

T ib ia l is  a n te r io r               S o le u s

C d 1 4 0 a (P d g fr a )

F
o

ld
 c

h
a

n
g

e

W T F rzb
- /-

W T F rzb  
- /-

0

5 0

1 0 0

1 5 0

T ib ia l is  a n te r io r               S o le u s



CHAPTER 2: Results 

189 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 70. Immunofluorescence staining of Tibialis anterior WT and Frzb-/- muscle sections using (a-d) 

PDGFRβ (red), alkaline phosphatase (green), (e and f) NG2 (green) and (g and h) α SMA (green) antibodies. 

Nuclei were visualized with Hoechst (blue). Scale bar 250 µm. 
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b. Protein expression in Soleus. 
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Second, several western blot analyses in Tibialis anterior and Soleus were made. No major 

differences were observed (Figure 71). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 71. Western blot and 

densitometry analyses in (a) 

Tibialis anterior and (b) Soleus 

of WT and Frzb-/- mice where α 

SMA, NG2, PDGFRβ and ALP 

proteins were analysed. Data 

are represented as mean band 

density normalized relative to 

GAPDH ± standard deviation. 
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Due to the capacity of WT and Frzb-/- ALP+ cells to differentiate towards adypogenic linage, 

adypogenic differentiation capacity was studied. Adipocytes were visualized with Oil red O dye and 

lipid droplet-associated protein perilipin A/B which mark lipid droplets that are inside the cells (Figure 

72).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 72. Representative images of ALP+ cells differentiated into adipocytes, WT (N= 3) and Frzb-/- (N= 3). 

(a-d) Immunofluorescence images where lipid droplets are visible with Oil red O (red) and perilipin A/B 

staining (green). Nuclei are stained with Hoechst (blue). (e-h) Bright field images were lipid droplets are 

visible with Oil red O (red). Scale bars 250 µm (a and c), 200 µm (e and g) and 50 µm (b, c, f and h).  
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Oil red O quantification showed that the 66% of WT 

samples produced more adipocytes than the 66% of Frzb-/- 

samples (Figure 73). 

 

 

Figure 73. Oil red O quantification in three WT and 3 Frzb-/- mice samples. Each sample was assayed as 

triplicate.  

10. MUSCLE EXPRESSION ANALYSIS 

The successful genetic deletion of Frzb gene in muscles was confirmed by the absence of Frzb 

messenger RNA (data not shown) as previously confirmed in mouse articular cartilage (Lories et al., 

2007). Among all the analysed genes, Cthrc1, Mest, Wnt8a and Wnt8b genes expression was not 

detectable in these samples.  

The analysis of the genes was subjected to a two-way ANOVA analysis of variance in order to 

test the relationship between genotype and gene expression. They are listed as previously mentioned:  

a) Muscle specific genes: Myod gene expression showed statistically significant influence of 

genotype F (1, 17), p< 0.0051 being Frzb-/- mice muscles expression higher. Post hoc analysis using the 

Sidak’s criterion for significance indicated that Myod gene expression in Tibialis anterior was the only 

one statistically significantly upregulated, p< 0.05. Regarding myogenin gene expression, genotype 

influence was also observed F (1, 17), p< 0.0397 without any statistically significant differences when 

post hoc analysis was carried out. Finally, Pax7 and Ryr1 genes expression were not influenced by 

genotype (Figure 74 a). 

b)  Skeletal muscle atrophy markers: Atrophy-related ubiquitin ligases Fbx32 and Murf1 did 

not show differences between WT and Frzb-/- mice (Figure 74 b). 

 c)  Deregulated genes in C3KO mice: Park2 gene expression was influenced by genotype, Frzb-

/- mice have higher expression F (1, 17), p= 0.0386. Further post hoc analysis did not report any specific 

means differences. Ky gene was significantly downregulated in Frzb-/- mice F (1, 17) p= 0.0009. This 

difference was only significantly downregulated in Tibialis anterior (p < 0.001) as reported by Tukeys’ 

multiple comparison test (Figure 74 c). 

d) Adipose tissue markers: none of the analysed genes Pparg, Adipo and Fasn showed 

expression differences (Figure 74 d).  
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e) Deregulated genes in LGMD2A patients: The only two genes that showed genotype 

influence were Capn3 and Fn1. On the one hand, Capn3 gene was significantly upregulated in Frzb-/- 

mice F (1, 12), p= 0.0019. The difference in Soleus was significant (p< 0.01) as reported by Tueys’ 

multiple comparison test.  On the other, Fn1 gene was significantly downregulated in Frzb-/- mice F (1, 

8), p= 0.0472 (Figure 74 e). 

f) Deregulated genes in Frzb-/- mice articular cartilage and LGMD2A patients’ muscles: The 

influence of the genotype was found significant in  Rora (F (1, 8) p= 0.0315), Slc16a1 (F, (1, 8), p= 

0.0008) and Tfrc (F (1, 8), p= 0.0102) genes expression. Further Tukey's multiple comparisons test 

showed that Slc16a gene expression was statically downregulated in Frzb-/- Soleus (p< 0.01) and Tfrc 

gene expression was statistically downregulated in Soleus (p< 0.05). However Rora gene expression 

upregulation in Frzb-/- mice did not show specific pairwise differences. Igf1 gene expression was 

downregulated in Frzb-/- Soleus while the trend in Tibialis anterior was contrary. The rest of the genes 

did not show genotype influence in their expression (Figure 74 f). 

 g) Collagens: no alterations were reported regarding genotype in any of the analysed 

collagens coding genes (Figure 74 g).  

h) Genes coding for proteins participating in Wnt signaling pathway: Wnt signaling co-

receptors Lrp5 and Lrp6 as well as β-catenin coding gene (Ctnnb1) did not show different expression in 

Frzb-/- mice (Figure 74 h).  
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Figure 74. Gene expression analysis of (a) muscle specific genes, (b) skeletal muscle atrophy markers, (c) 

deregulated genes in C3KO mice, (d) adipose tissue markers, (e) deregulated genes in LGMD2A patients, (f) 

deregulated genes in Frzb-/- mice articular cartilage as well as LGMD2A patients’ muscles, (g) collagens and 

(h) genes coding for proteins participating in Wnt signaling pathway in Soleus, Tibialis anterior and 

Gastrocnemius (Gastrocn.). GAPDH was used as endogenous control. Data are represented as mean fold-

change ± standard deviation. Significance of the differences are represented as *= p < 0.05 and **= p < 

0.01. 

 

 

 

 

 

 

 

 

C o l1 a 1

F
o

ld
 c

h
a

n
g

e

W T F rzb
- /-

W T F rzb
- /-

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

S o le u s        T ib ia l is

                   a n te r io r

C o l3 a 1

F
o

ld
 c

h
a

n
g

e

W T F rzb
- /-

W T F rzb
- /-

0

5 0

1 0 0

1 5 0

2 0 0

S o le u s        T ib ia l is

                   a n te r io r

C o l5 a 1

F
o

ld
 c

h
a

n
g

e

W T F rzb
- /-

W T F rzb
- /-

0

5 0

1 0 0

1 5 0

2 0 0

S o le u s        T ib ia l is

                   a n te r io r

C o l1 5 a 1

F
o

ld
 c

h
a

n
g

e

W T F rzb
- /-

W T F rzb
- /-

0

1 0 0

2 0 0

3 0 0

S o le u s        T ib ia l is

                   a n te r io r

g. Collagens 

h. Genes coding for proteins participating in Wnt signaling pathway 

L r p 5

F
o

ld
 c

h
a

n
g

e

W T F rzb
- /-

W T F rzb
- /-

0

5 0

1 0 0

1 5 0

S o le u s        T ib ia l is

                   a n te r io r

L r p 6

F
o

ld
 c

h
a

n
g

e

W T F rzb
- /-

W T F rzb
- /-

0

5 0

1 0 0

1 5 0

S o le u s        T ib ia l is

                   a n te r io r

C tn n b 1

F
o

ld
 c

h
a

n
g

e

W T F rzb
- /-

W T F rzb
- /-

0

5 0

1 0 0

1 5 0

S o le u s        T ib ia l is

                   a n te r io r



CHAPTER 2: Results 

196 
 

C A P N 3

F
o

ld
 c

h
a

n
g

e

C - L iC l  C - L iC l  

0

5 0

1 0 0

1 5 0

2 0 0

*

C o n tro l L G M D 2 A

10.1 FRZB gene expression silencing in human 

Some of the deregulated genes in Frzb-/- mice were validated in human myotubes by FRZB 

gene silencing (siFRZB).  

FRZB gene was silenced in both control and LGMD2A patient myotubes. Myogenic markers 

MYOD and MYOG were analysed and while no change in MYOG was observed MYOD gene showed 

upregulation trend after FRZB silencing even this differences were not significant. CAPN3 gene was 

significantly upregulated in control samples when paired t test was applied. However, although in 

patients this upregulation did not reach significance a trend to upregulation was observed (Figure 75). 

 

 

 

 

 

 

Figure 75. Gene expression analysis of FRZB (6 controls and 6 LGMD2A), CAPN3 (6 controls and 4 LGMD2A), 

MYOD (3 controls and 2 LGMD2A) and MYOG (3 controls and 3 LGMD2A) genes in FRZB silencing 

experiments (siFRZB) in human control and LGMD2A patients myotubes at day 10 of differentiation.  Data 

are represented as relative mean expression ± standard deviation. Significance of the differences are 

represented as *= p < 0.05, **= p < 0.01. For CAPN3 siC- versus siFRZB in control, paired t test was used. 

As on previous studies, LiCl was used for mimic FRZB gene silencing in human myotubes. LiCl 

treatment downregulated CAPN3 gene expression in both, control and LGMD2A patients’ myotubes.   

This difference reached significance in control samples when paired t test was applied (Figure 76).  

 

 

 

Figure 76. Gene expression analysis of CAPN3 in 3 controls and two 

LGMD2A patients’ myotubes treated with LiCl 10 mM. GAPDH was used 

as endogenous control. Data are represented as mean fold-change ± 

standard deviation. 
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In silico analysis (AliBaba v.2.1) of the promotor of CAPN3 gene indicated the presence of 

various binding sequences for transcription factors such as c-Fos, c-Jun and AP-1, which are regulated 

by β-Catenin (Figure 25).  

Promotor sequence  
Transcription 

factor 
Nucleotide 

position 
Transcription factor nucleotide 

sequence 

g t g a c t c c c c   499-508                     

                    AP-1   r T G A C T s m s C 

t g c t g a g t a a   1657-1666   
        

  

  
         

c-Jun   y G C T G A s T m A 

                    AP-1   y G C T G A s k m A 

c t t a g t c a c a   1758-1767   
        

  

                    AP-1   s T k A G T C A m w 

a a t t a a t c a g   2456-2465   
        

  

  
         

c-Jun   A A T k A r T C A k 

g c t g a c t a a t   2587-2596                     

  
         

c-Jun 
 

k C T G A s T m A y 

  
         

AP-1   n m T G A C T m A T 

                    AP-1   n m T G A C T A A y 

c t a c t a a t g 
 

  2588-2597   
        

  

  
         

c-Fos   C T G A C k m A K K 

                    AP-1   m T G A s T m w T G 

a g g a g t c a t g   3259-3268   
        

  

                    AP-1   n k G A G T C A k G 

t g a g a c a a g c   3988-3997   
        

  

                    AP-1   T G A s w C r A r C 

t c t t g a g t c a   4247-4256   
        

  

  
         

c-Jun 
 

k s w T G A G T C A 

  
         

c-Fos   k s w T G A G T C A 

                    AP-1   k s w k G A G T C A 

a g t c a t c t g t   4522-4531   
        

  

                    AP-1   r G T C A T C w s A 

c t g a a t c a t t   5243-5252   
        

  

                    AP-1   C T G A r T C A y n 

c t g c c t c a g c   7560-7569   
        

  

                    AP-1   n T G m s T C A G C 

g t g t c t c a g c   7879-7888   
        

  

                    AP-1   r T G w C T s w G C 

 

Table 25. A summary of c-Fos, c-Jun and AP-1 transcription factors binding site prediction for CAPN3 gene. 

Being k= G/T, m= A/C, n= T/C/A, s= C/G, w= T/A and y= C/T. 
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10.2 Protein expression analysis 

No differences in MyoD or calpain 3 protein levels were observed in Tibialis anterior neither in 

Soleus (Figure 77).  

 

 

 

 

 

 

 

 

 

 

 

Figure 77. (a) Western blot and densitometry analyses of MyoD and calpain 3 in Tibialis anterior of WT and 

Frzb-/- mice. (b) Western blot and densitometry analyses of MyoD, calpain 3 and Ky in Soleus of WT and 

Frzb-/- mice. Data are shown as mean band density normalized relative to GAPDH ± standard deviation. WT; 

N= 6 and Frzb-/-; N= 6. 
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CHAPTER 2: DISCUSSION 

LGMD2A patients have high levels of FRZB expression. In myotubes of LGMD2A patients, correct 

costamere assembly appears to be disturbed and has been linked with the absence of the required 

integrin isoform replacement from β1A to β1D. Remarkably FRZB silencing in myotubes leads to a 

costamere proteins rescue. We therefore suggested that FRZB may be a potential therapeutic target 

for LGMD2A patients. To better understand the function of FRZB in muscles, different aspects of 

muscle biology in the Frzb-/- murine model were studied at the functional, cellular and molecular level.    

1. MUSCLE STRENGTH ANALYSIS 

Given that muscular dystrophies show muscle weakness as the main hallmark, mice’s strength 

analysis was analysed. It is known that high standardization is needed to reduce variability in muscle 

strength analysis. To standardized analysis, requirements regarding room conditions (type of room, 

room temperature, room occupancy, time of the day, etc.) as well as gender, age and body weight of 

control and test animals should be similar (Carlson et al., 2010). Even though in this study room 

conditions were homogenous, used mice characteristic were different. Frzb-/- were grown in the 

animal facility of the university while WT mice were externally purchased. Thus, given the difference 

body weight between WT and Frzb-/- mice, it might be concluded that the different hanging time could 

be more due to mice body weight than to muscle strength differences.  

2. MICE GAIT ANALYSIS 

LGMD2A patients show gait alterations that are accentuated as the disease progresses due to 

muscle weakness (Fardeau et al., 1996a). We therefore performed gait analysis of Frzb-/- mice to gain 

insights into the effect of Frzb deficiency on muscle function. In animal models, gait pattern analyses 

are commonly used to study the impact of nerve lesions or brain injuries (Maricelli et al., 2016). 

However, a well-established gait pattern in animal models could provide a tool to assess disease 

progression as well as a recovery pattern after treatment. In this study, Frzb-/- mice showed a longer 

step cycle, spending more time with the paw in contact with the walkway (stand time) as well as 

airborne (swing time). Thus, their limb movement was slower, however, with no effect on the covered 

distance. In a previous research of our group, we showed that Frzb-/- mice ran daily significantly lower 

distance in a voluntary running wheel setup (Lories et al., 2009). This reduced voluntary running 

exercise performance could be attributed to the lower speed rather than to the fact that they spend 
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less time running. Thus, Frzb-/- mice appear to have some detectable issues in their gait and mobility 

compared to wild-type controls.  

Since Jackson and collaborators (2015) showed that depletion of Pax7 expressing satellite cells 

in muscles resulted in reduced voluntary wheel running performance, Pax7 expression was also 

analysed in the study. No reduction of its expression in all the tested muscles was reported thus, 

reduced speed is likely not caused by the lack of satellite cells in the muscles of Frzb-/- mice. 

To better understand the reasons why this reduced speed was observed, several other factors 

were analysed. Previously, physical activity has been related to maternal diet or body composition 

(Hiramatsu et al., 2017; Liu et al., 2018). It is also known that increased adipose tissue infiltration of 

muscles is a common hallmark in neuromuscular disorders (Lamminen et al., 1990; McDaniel et al., 

1999; Marden et al., 2005). Frzb-/- mice have lower body and muscle mass. Nevertheless Frzb-/- mice 

did not show fatty infiltration in the analysed muscle sections. The regulators of adipocyte 

differentiation, peroxisome proliferator activated receptor gamma or adiponectin coded by Pparg and 

Adipoq respectively, that are expressed exclusively in adipose tissue were not altered. In addition to 

fat infiltration, atrophy can also cause muscle weakness, by upregulation of atrogenes 

(MAFbx/Atrogin-1 and MuRF1) that lead to loss of muscle mass and atrophy (Fleckenstein et al., 1993; 

Bodine et al., 2001; Sandri et al., 2004). None of the atrogenes were upregulated in Frzb-/- muscles at 

RNA or protein level. Therefore, we have no evidence that fat or atrophy could be the reason why 

mice spent more time to complete a step cycle.   

Related to the paw support, the extended paws in contact with the floor seemed to be the 

consequence of the increased stand and swing phase. The switch in the support pattern observed in 

WT group by 10 weeks did not occur in Frzb-/- group. A wider base of support might be considered a 

way to compensate a weakness or balance impairment (Hamers et al., 2001; Kloos et al., 2005), but 

results observed in this study showed the contrary as narrower BOS was observed.  

Gait might not only be altered by impairment in muscles; but also by changes in the nervous 

system or bones. So far, there is no evidence of nervous system alterations in Frzb-/- mice. 

Nevertheless, it is known they have thicker cortical bone, with increased stiffness and higher cortical 

appositional bone formation after loading of the long bones (Lories et al., 2007). These differences 

with WT animals cannot be excluded as factors contributing to the slight changes observed in Frzb-/- 

mice gait. 

In summary, altogether Frzb-/- mice do not appear to show major functional impairment as the 

observed gait difference would not be considered as pathological.  
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3. EXERCISE INDUCED MUSCLE ALTERATIONS 

Exercise has direct effects, triggering changes in cross-sectional area of the fibres, fibre type 

distribution, weight change and potentially muscle injury (Wernig et al., 1990). Although physical 

training induces beneficial adaptive changes in skeletal muscle of healthy individuals, its effects in 

patients with muscular dystrophy remain controversial. While some studies attributed a beneficial 

effect without reporting muscle injury, other studies reported training-induced muscle damage and 

creatine kinase elevations in high-intensity training programs in patients, or even an earlier onset of 

symptoms associated with exercise in LGMD2B patients (Vignos and Watkins, 1966; McCartney et al., 

1988; Ansved, 2003; Sveen et al., 2013; Sczesny-Kaiser et al., 2017; Moore et al., 2018). Since distinct 

muscular dystrophies show different progression of muscle degeneration and strength loss, leading to 

diverse exercise tolerance, endurance treadmill training tolerance and muscle changes were studied in 

Frzb-/- mice model.   

Exercise-induced muscle adaptations were examined at different levels, from a structural point 

of view and at molecular level.  

Endurance training leads to fibre-type switching, mostly a transition  towards slow- twitch 

muscle fibres,  but without consensus of its effects on fibres CSA (Andersen and Henriksson, 1977; 

Green et al., 1979; Kraemer et al., 1995; McCarthy et al., 1995; Sipilä et al., 1997; Carter et al., 2001). 

Even that, two studies reported that exercise effects were only apparent in genetically modified mice 

or in cisplatin treated mice while their WT or control mice did not display any apparent changes 

(Sakakima et al., 2004; Sakai et al., 2017). Thus, the lack of structural changes in Frzb-/- mice after 

exercise, suggests the absence of a severe phenotype.  Another important aspect was reported by 

Warhol and colleagues (1985) where exercise induced ultrastructural changes followed by a 

regenerative response characterized by centrally located nuclei in newly formed fibres were shown.  

None of these features were detected in trained animals, suggesting that exercise does not have a 

harmful nor clear beneficial effect in Frzb-/- mice.  

With regards to the influence of exercise on myogenic markers, there is controversy, since 

upregulation as well as unchanged MyoD and myogenin expression have been reported after the 

same experimental trials (Liu et al., 2008; Drummond et al., 2010). Therefore the lack of myogenic 

markers alteration after exercise is something that could be expected, suggesting that other type of 

exercise or higher intensity is needed to provoke these modifications.  

Finally, in agreement with our findings, Fbx32 and Murf1 downregulation after exercise, at low 

or moderate intensity, with no changes in body or Tibialis anterior weight nor in CSA have been 

already described (Durigan et al., 2009). 
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We considered the activation of different signaling cascades. AKT activation has been 

described as responsible of protein synthesis and muscle fibre hypertrophy (Pallafacchina et al., 2002; 

Yang et al., 2008; Rasmussen and Richter, 2009), MAPK also promotes biochemical  responses  and  

gene  expression  after exercise (Goodyear et al., 1996; Aronson et al., 1997, 1998) and GSK3β activity 

also appears to be regulated by exercise (mediated by AKT) (Lawrence et al., 1997; Markuns et al., 

1999). Nevertheless, no major alterations in the phosphorylation of these kinases were observed after 

exercise. Thus, the result obtained from the ratio between phosphorylated and total -protein did not 

give conclusive results. 

However, it has been observed that after exercise, the levels of total ERK1/2, AKT and GSK3β 

decreased. The same trend was observed in non-exercised Frzb-/- mice, which suggested that the lack 

of Frzb and exercise may have some similar effects in muscles.  

The downregulation of these proteins in Frzb-/- mice suggests that they are regulated at gene 

expression level. However, little is known about AKT, ERK1/2 and GSK3β genes transcriptional 

regulation in skeletal muscle since most of the studies are performed in cancer (Goto et al., 2002; Park 

and Chen, 2005; Zhang et al., 2013; Agarwal et al., 2013). Nevertheless, Wnt signaling pathway may 

regulate the expression of these kinases. In support of this idea Dihlmann and colleagues (2005) found 

out TCF/LEF-binding elements upstream of the AKT1 gene, suggesting its expression might be 

regulated by Wnt/β-catenin signaling. However, gene expression analysis of these proteins would be 

necessary to confirm this regulation.  

To sum up, since no exercise induced differences and no altered expression of different 

kinases were observed, altogether, it could be concluded that exercise does not appear to be 

deleterious for Frzb-/- mice.   

4. MUSCLE REGENERATION ANALYSIS 

The CSA of muscle fibres in Frzb-/- mice was smaller. Consequently, fibre type composition was 

studied. Tibialis anterior and Soleus fibre type distribution were within normal range values as has 

been described for C57BL/6 mice (Augusto et al., 2004; Kammoun et al., 2014). Previous studies in 

Soleus and Extensor digitorum longus analysed by immunofluorescence, showed similar fibre 

composition in WT and Frzb-/- mice (Lories et al., 2009). Additionally, myosin gene expression as well 

as NADH-t staining were analysed obtaining the same result, fibre composition in Soleus and Tibialis 

anterior mice did not vary.  

Although several muscular dystrophy models, such as syntophin α1 null mice and murine 

models for LGMD2L and LGMD2A, showed aberrant muscle regeneration with longstanding necrosis 
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and impaired exercise and contractile properties with aberrant neuromuscular junctions (Hosaka et 

al., 2002; Griffin et al., 2016; Yalvac et al., 2017) in Frzb-/- mice, after cardiotoxin injection, no aberrant 

or impaired regeneration capacity or fibrosis was noticed. 

In summary, Frzb-/- mice muscles showed normal fibre composition and they do not display 

altered regeneration capacity.  

5. SKELETAL MUSCLE RESIDENT PROGENITOR CELLS 

5.1 Satellite cells 

Murine primary cell cultures have been widely used for myogenesis and muscular dystrophies 

studies such as LGMD2A, LGMD2I or DMD (Robert et al., 2001; Kramerova et al., 2004; Grefte et al., 

2012; White et al., 2014; Smolina et al., 2015; Manabe et al., 2016; Jaka et al., 2017; Vannoy et al., 

2017). In this work when satellite cells were isolated, a smaller amount of cells was expected after 

muscle digestion because smaller Frzb-/- muscles were observed. Nevertheless, the same amount of 

cells was obtained. Furthermore, Frzb-/- mice cells showed enrichment for MyoD and Ki67 nuclear 

proteins.   

Frzb inhibits MyoD expression at RNA and protein level  (Wang et al., 1997, 1997; Borello et al., 

1999). We here show that, in the absence of Frzb, MyoD was upregulated in our cells. As myotube 

formation was not altered, myogenesis may not be strongly impaired, but further studies will be 

required to identify the consequences of MyoD increase could cause in myogenesis in the absence of 

FRZB.  

On the other hand, the increased Ki67 expression, which is a proliferation marker, suggested an 

increased proliferation capacity in Frzb-/- muscles. However, there is controversy about the way in 

which the presence or absence of Frzb could affect proliferation. Some studies described that Frzb 

inhibits the growth of mesoangioblasts and suppressed cell proliferation in gastric cancer (Tagliafico, 

2004; Qu et al., 2008). However, other authors suggested that Frzb suppression reduce proliferation in 

alveolar rhabdomyosarcoma (Kephart et al., 2015). Moreover, tissue dependent differences have been 

observed in the same model, since Frzb-/- mice chondrocytes proliferated less than those obtained 

from WT mice, contrary to the observation in satellite cells in the same mice. This would suggest that 

result must be thoroughly analysed since different tissues express different gene expression. 
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5.2 Mesoangioblasts 

Considering that some muscle resident cell population are able to generate muscle, both in vitro 

and in vivo (De Angelis et al., 1999; Minasi et al., 2002; Sampaolesi, 2003)  pericyte-derived adult 

mesoangioblasts were studied. Pericyte –derived adult mesoangioblasts originate from embryonic 

MABs and they maintain the same characteristics (Morosetti et al., 2006; Dellavalle et al., 2007; Crisan 

et al., 2008; Pierantozzi et al., 2016). 

 Since more APL+ cells were obtained form Frzb-/- muscle explants, Frzb-/- muscles may have 

more resident MSCs. However, no differences were observed between WT and Frzb-/- mice regarding 

MSCs markers. As described before, Frzb inhibits the growth of MABs (Tagliafico, 2004) and therefore 

lack of Frzb may be acting in MABs proliferation rather than in proliferation of the rest of the cells. In 

addition to these findings, Kuroda and colleagues (2013) have reported that canonical Wnt signaling 

induces ALP expression in C2C12 cells, suggesting the same could be happening to these cells obtained 

from muscle explants.  

A more detailed analysis of the ALP+ cells showed significantly less PDGFRα expression. So far, 

two types of pericytes have been described type-1 and type-2. Both of them differ in their cell surface 

markers as well as in their differentiation capacity. Type-1 are Nestin-/PDGFRα+ and are characterized 

by their ability to differentiate into adipocytes while type-2 are Nestin+/PDGFRα- and do not 

differentiate into adipocytes but form myotubes in culture (Birbrair et al., 2013a, 2013b). Given that, 

the lower PDGFRα expression could lead us to suppose that Frzb-/- mice have more type-2 pericytes.  

However, this could not been fully confirmed since at RNA level no alteration in PDGFRA gene 

expression was observed in Frzb-/- mice muscles. Even if PDGFRα should be analysed at protein level in 

muscle, its lower expression suggests Frzb is implicated in its control although no direct regulation has 

been described so far.  

On the other hand, since PDGFRα expressing cells are the responsible of fat formation in 

skeletal muscle  (Olson and Soriano, 2009; Joe et al., 2010; Uezumi et al., 2010; Birbrair et al., 2013a), 

whether ALP+ cells could differentiate into adipocyte lineage was studied. The reduced amount of 

PDGFRα cells suggested that adipogenic differentiation was attenuated in Frzb-/- samples. This idea is 

also supported by the fact that overexpression of Wnt-1 inhibits adipogenesis (Ross et al., 2000). Since 

Frzb is Wnt-1 antagonist, it would be tempting to speculate that FRZB (upregulated in LGMD2A 

patients) would be the reason why muscle replacement with adipose tissue is occurring in these 

patients, due to an increase in pre-adipocyte differentiation.  
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6. GENE EXPRESSION ANALYSIS 

In previous studies, differentially expressed genes have been analysed in articular cartilage -

subchondral bone biomechanical unit of Frzb-/- mice (Lories et al., 2007; Lodewyckx et al., 2012). 

However, gene expression analysis in muscle has not been carried out. Thus, one aim of this study was 

to establish whether Frzb deficiency impairs muscle gene expression in Frzb-/- mice. The analysis was 

focused mainly in Soleus, as Soleus showed the greatest molecular similarities to human skeletal 

muscles (Kho et al., 2006) and since together with diaphragm these are the most affected muscles in 

C3KO mice (Kramerova et al., 2004). 

Myogenesis, a process that takes place during growth and regeneration in adult, depends on 

satellite cell activation by Pax7 and it is regulated by muscle-specific transcription factors such as 

MyoD and Myogenin (Buckingham and Rigby, 2014; Comai and Tajbakhsh, 2014). In the studied 

samples Pax7 was not upregulated, but MyoD and myogenin were upregulated in Frzb-/- mice. 

However, in the FRZB silenced human samples; MYOD expression was upregulated but not MYOG 

expression. This showed a direct relation between Frzb and MyoD. Moreover, in Xenopus, Frzb inhibits 

axis duplication induced by Xwnt8 and also muscle development by blocking MyoD induction (Hoppler 

et al., 1996; Leyns et al., 1997; Wang et al., 1997). In mammals, myogenesis inhibition by Frzb 

accompanied by reduction in Myf5 and MyoD expression was reported, suggesting a direct effect on 

gene activation (Borello et al., 1999). So far, a direct mechanism between Frzb and MyoD has not been 

established. Although most of the works were carried out in embryonic stage, the possibility that Frzb 

has a role in adult myogenesis or muscle maintenance, regulating MyoD levels, should be considered. 

Although Myod gene expression was upregulated in Frzb-/- mice muscles, increased myogenesis was 

not observed (centrally located nuclei were absent and different size fibres were not observed). Given 

that myogenesis is a tightly regulated process that keeps the muscle in a post-mitotic stage in the 

absence of any external stimuli such as injury or disease  (Andrés and Walsh, 1996; Chargé and 

Rudnicki, 2004) could be the reason why detectable upregulation of the MyoD protein did not happen. 

However, MYOD gene expression upregulation after siFRZB in LGMD2A patients could be considered 

as a beneficial consequence given that muscle degeneration stimuli is occurring and consequently new 

myofibres formation would be necessary. Nevertheless, further studies will be required to analyse if 

this increase improves cell physiology.  

Between the selected genes deregulated in C3KO mice (Jaka et al., 2012) the Ky gene showed 

expression changes in Frzb-/- mice. Its protease activity targets different proteins and its absence could 

disrupt muscle cytoskeleton homeostasis (Beatham et al., 2004). Natural ky mutant mice have smaller 

muscles with slower contraction time and are weaker than  controls (Marechal et al., 1995; Blanco et 
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al., 2001). In Frzb-/- mice, unlike in C3KO mice, there is no measured downregulation of Ky protein 

which maintains the knowledge of it effects elusive. 

 β-catenin is the main effector of canonical Wnt signaling and its gene expression ( Ctnnb1) 

downregulation has been previously reported (Lories et al., 2007). The same trend was observed in 

the Soleus of Frzb-/- mice, however no statistical significance was achieved. The lack of Frzb would 

result in Wnt signaling pathway activation accompanied with cytosolic β-catenin accumulation. The 

observed downregulation could be a compensatory mechanism to avoid the continuous activation of 

this pathway. However, given that β-catenin is not only involved in Wnt/β-catenin pathway, makes it 

difficult to elucidate a consequence. 

 When focusing on common deregulated genes in Frzb-/- mice and LGMD2A patients (Sáenz et 

al., 2008; Lodewyckx et al., 2012) Aspn, E2F8, Sema3c and Sorbs1 genes were not deregulated in Frzb-/- 

mice muscles as showed in mice cartilage (Lodewyckx et al., 2012). Thus since LGMD2A patients have 

upregulated these genes (Sáenz et al., 2008) could be suggested that these genes are not under the 

control of FRZB as its absence did not change their expression in muscles.  

However, it is noteworthy to mention that Rora, Slc16a and Tfrc genes showed the same 

regulation pattern in cartilage and muscle of Frzb-/- mice. Their regulations are opposite to what was 

observed in LGMD2A patients (FRZB upregulated), reinforcing the involvement downstream of the 

Wnt pathway in their regulation.  

Tfrc it has been reported that it is implicated in several muscular functions; consequently its 

strict control is needed to maintain muscle homeostasis. On one hand, it participates in iron 

acquisition in skeletal muscle (Hofer et al., 2008). On the other hand, Tfrc has been already described 

as a Wnt target gene where Wnt-1 treated C57MG cells downregulated its expression (Prieve and 

Moon, 2003), in agreement with our findings. Moreover, it has been shown that Wnt/Frizzled 

receptors colocalizes in vesicles containing transferrin (Blitzer and Nusse, 2006; Chen et al., 2009). 

Finally, regarding Tfrc implication in muscular dystrophies, it has been described that Tfrc is elevated 

in regenerating fibres in patients with Duchenne muscular dystrophy as well as in facioscapulohumeral 

muscular dystrophy (FSHD) (Feero et al., 1997; Winokur, 2003). In line with these observations, 

Demonbreaun and collaborator (2011) described dysferlin null myoblasts accumulate transferrin 

containing vesicles suggesting that they have a defect in endocytic recycling of the transferrin 

receptor. However, the effects of TFRC upregulation in LGMD2A patients have so far no been studied. 

But, as TFRC upregulation has been observed in different dystrophies, this could have deleterious 

effect in muscle fibre. Thus, the reduction of its expression by Wnt pathway activation cou ld be a 

beneficial mechanism. 
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In skeletal muscle, retinoic acid receptor-related orphan receptor α (RORα) has been described 

as positive regulator of myogenesis by its interaction with MyoD and p300 cofactor which lead to 

activate muscle-specific genes transcription (Lau et al., 1999). Furthermore Rorα is involved in the 

regulation of glucose and lipid metabolism in skeletal muscle (Lau et al., 2004, 2011). On the other 

hand, its implication in Wnt signaling has been described since Wnt5a/PKCα-dependent as well as 

PGE2/PKCα-dependent Rorα phosphorylation exerts inhibitory function of the expression of Wnt/β-

catenin target genes (Lee et al., 2010; Shin et al., 2014). Altogether, the rescue of Rora expression by 

Wnt signaling pathway, could be beneficial for LGMD2A patients due to its importance in muscle 

homeostasis.  

 Slc16a1 a proton-linked monocarboxylate transporter, is highly expressed in oxidative fibres 

(type I fibres) consistent with the role of Slc16a1 in mediating lactate uptake for oxidative metabolism 

(Hashimoto et al., 2005). Due to this, its deregulation may be responsible of the metabolic impairment 

in LGMD2A patients. No previous relation between Slc16a1 and Wnt pathway was reported so far, but 

its downregulation in mice Soleus and in cartilages as well as its upregulation in LGMD2A patients, 

where FRZB is overexpressed, suggests a direct interaction in its regulation.  

Igf1 downregulation in Frzb-/- muscles is opposite to previously described regulation in cartilage 

(Lodewyckx et al., 2012). This difference suggested tissue dependent regulation. This downregulation 

in muscles could be beneficial as IGF1 is upregulated in LGMD2A.  

The fact that these genes (Tfrc, Rora, Slc16a1 and Igf1) showed an inverse expression regulation 

in presence or absence of Frzb, confirms that the regulation of them depends on Wnt signaling 

pathway. The expression regulations of these genes have not been thoroughly analysed so far. 

However, these findings, highlights their considerable potential in the correct muscle fibre 

homeostasis maintenance. Further studies would be necessary to shed some light on LGMD2A 

physiopathology.  

The extracellular matrix components, collagens (Col3a1, Col5a1, and Col15a1) even if they 

were upregulate in Frzb-/- cartilage and in LGMD2A patients, they were not deregulated in Frzb-/- 

muscles. This is not in agreement with what was observed when FRZB was silenced. In human 

myotubes FRZB silencing led to upregulation of COL1A1 and COL5A1 genes. Along with collagens, 

another extra-cellular matrix component, fibronectin, did not show the same expression deregulation 

as observed after FRZB gene silencing in human myotubes(Jaka et al., 2017). Moreover, FN1 was 

downregulated in Frzb-/- Soleus. Given that extra-cellular components regulation is crucial in the 

fibrosis process in muscular dystrophies (Kanagawa and Toda, 2006) fibronectin and collagens 

expression regulation by Frzb, in skeletal muscle would need special attention.  
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Finally, focusing on genes altered not only in LGMD2A (Sáenz et al., 2008), also altered by FRZB 

gene silencing, it is interesting how Vldlr and Itgb1bp2 did not recapitulate their trend in human 

myotubes after FRZB gene silencing (Jaka et al., 2017). This phenomenon has been already described 

in several studies where phenotypic differences between knockouts (i.e., mutants) and knockdowns 

(e.g., antisense-treated animals) have been observed in mice or human origin cell lines (De Souza et 

al., 2006; Karakas et al., 2007; McJunkin et al., 2011; Daude et al., 2012; Morgens et al., 2016) . These 

differences have been attributed to reasons including off -target effects of the antisense reagents 

(Robu et al., 2007; Olejniczak et al., 2010; Baek et al., 2014; Olejniczak et al., 2016) . Other alternative 

explanation has been genetic compensation (upregulation of related genes) in mutant that does not 

happened in knockdown animals (Rossi et al., 2015). Functional redundancy of genes where the loss of 

one could be compensated by another with overlapping functions has been reported for several 

mutants (Wang et al., 1996). Therefore siFRZB and Frzb knockout should be thoroughly compared.  For 

example, Vldlr suppressed Wnt signaling by internalization and degradation of Wnt signaling receptors 

(Lee et al., 2014). The differences observed between the Frzb-/- mice and the silenced cell model, cold 

be explained because in the silencing model, VLDLR is upregulated as a feedback control mechanism 

to regulate excessive Wnt activity. On the contrary in Frzb-/- mice, this excessive Wnt activity could not 

be occurring, consequently Vldlr gene upregulation would not be required.  

No alterations in Capn6, Dok5, Myl6b, Myom3 (upregulated in LGMD2A muscles (Sáenz et al., 

2008)), Myot and Fhl1 genes (upregulated at protein level in LGMD2A muscles (De la Torre et al., 

2009)) were observed, suggesting that their upregulation is not due to Wnt pathway alterations in 

LGMD2A patients. 

One of the most important finding was Capn3 gene upregulation in Frzb-/- mice Soleus and its 

upregulation after FRZB gene silencing in human myotubes since no genetic regulatory mechanism of 

Capn3 expression have been described so far. The fact that Capn3 gene downregulation was observed 

after LiCl treatment in human myotubes showed that two different mechanisms are regulating its 

expression. Even if LiCl activates Wnt/β-catenin pathway, it has different and unknown molecular 

targets which could be the responsible of Capn3 gene downregulation.  

FRZB gene upregulation in CAPN3 deficient LGMD2A patients was already described (Sáenz et 

al., 2008), however the reciprocal regulation has never been reported. It should be noted that Frzb 

increase has been discarded as a beneficial compensatory mechanism since its silencing rescued 

several proteins level reaching normal levels in patients (Jaka et al., 2017).  Calpain 3 functions are 

poorly understood and few proteins degraded by its protease activity have been described. Frzb could 

be considered as a target of calpain 3 because in calpain 3 absence in LGMD2A patients, FRZB is 

upregulated. But, the regulation is more likely occurring at RNA level, since the lack of Frzb, 

upregulated Capn3 expression.  Regulatory mechanisms that control calpain 3 expression are also 
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unknown. In silico analysis has shown c-Fos, c-Jun and AP-1 binding sequences in its promoter. This 

finding suggested that calpain 3 expression could be modulated by these transcription factors. Since 

no protein upregulation was observed in Frzb-/- mice, it could be suggested that there is a tight 

regulatory mechanism for this protease. The fact that a common mechanism has been observed in 

two different species reinforces a possible regulatory mechanism underlying CAPN3-FRZB.  

In summary, the result presented here confirm the direct involvement of Frzb in the regulation 

of Rora, Slc16a1, Tfrc, and Capn3 genes, making further studies necessary to clarify their implication in 

muscle homeostasis and/or in LGMD2A disease. Furthermore, Frzb involvement in myogenesis was 

confirmed, since it regulates MyoD gene expression, however, the lack of Frzb did not alter skeletal 

muscle regeneration capacity and neither induced modifications after exercise. In addition it has been 

suggested that, Frzb modulation could modify muscle resident pericytes cell fate to a myogenic 

lineage more than to an adipose linage. Further studies are required to analyse the fact that Frzb 

modulation, might avoid the muscle replacement with adipose tissue observed in LGMD2A patients. 

Consequently FRZB could be proposed as a pharmacological target in order to improve muscle 

function in LGMD2A patients.  
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I. The use of human serum, not only does not improve the growth and differentiation of human 

myotubes but it also has a negative impact on myotube differentiation.  

II. It has been confirmed the common gene expression regulation between CD9, FRZB and 

ITGB1BP2 in distal muscles.  CD9 and FRZB are positive regulators acting upstream of the 

ITGB1BP2 gene and, ITGB1BP2 gene is a negative regulator of FRZB gene expression. 

III. It has been demonstrated that ITGB1BP2 and CD9 genes silencing have detrimental effect in 

myotubes, since ITGB1BP2 gene silencing produced a parallel downregulation of β1D integrin 

(already reduced in LGMD2A patients) and on the other hand, CD9 gene silencing produced a 

parallel increase of FRZB (already increased in LGMD2A patients). 

IV. FRZB plays a role in the crosstalk between Wnt signaling and integrin pathways. The link 

between these pathways may involve the activation of transcription factors, such as FOS (by 

means of Wnt/β-catenin pathway) which in turn could regulate the expression of several 

genes implicated in integrin pathway.  

V. Two different ways of activation of Wnt/β-catenin signaling pathway, a pharmacological 

treatment (LiCl administration) and a gene expression regulation (si FRZB) showed similar 

effects, in cultured skeletal muscle cells. Both lead to the regulation of target genes that 

rescue protein expression implicated in costamere formation such as 1D integrin and 

anosmin-1.   

VI. Early induction of the Wnt signaling pathway is detrimental for myotubes differentiation, its 

expression is required to be tightly controlled at this stage in order to obtain an appropriate 

differentiation. However, it was confirmed that its later increase is also required for a 

functional muscle fibre formation. 

VII. AKT/mTOR signaling pathway is perturbed in LGMD2A patients’ muscles. AKT shows an 

increased phosphorylation, however it is not responsible of the downstream effector’s 

phosphorylation given that S6K1 and RPS6 show reduced phosphorylation in their Thr-

421/Ser-424 and Ser-235/Ser-236 residues respectively.  

VIII. The elevated phosphorylated levels of AKT give rise to the phosphorylation of FoxO 

transcription factors, FoxO3 (showing an increasing tendency) and FoxO4 (significantly 

increased), preventing their nuclear translocation, thus their activation.  

IX. The obtained result together with previous knowledge of FoxO regulation have confirmed the 

implication of FoxO transcription factors in the regulation of  EGR1, FOS, JUNB, CITED2, MYC, 

DOK5, COL1A1, COL1A2 and ITGB1BP2 genes in LGMD2A disease.  

X. Lack of Frzb gene in Frzb-/- mice and its increased expression in LGMD2A patients, showed 

opposite regulation of Rora, Slc16a1, Tfrc and Capn3 genes. Therefore, the direct involvement 

of Frzb in the regulation of these genes was established.  

XI. Frzb plays a role in myogenesis since it regulates MyoD gene and protein expression.   
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XII. Lack of Frzb gene does not alter skeletal muscle regeneration capaci ty after CTX-induced 

muscle injury.  

XIII. Exercise induces downregulation of atrogenes in WT and Frzb-/- mice, with no differences 

between the two genetic backgrounds.  

XIV. Frzb-/- mice muscles show more ALP+ cells albeit lower PDGFRα expression that might lead to 

a lower adipocyte differentiation capacity.  
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APPENDIX I. Product references.  

PRODUCT MANUFACTURER REFERENCE 

2.5% Trypsin (10X), no phenol red  Life technologies 15090-046 

2-Mercaptoethanol Thermo Fisher Scientific 31350-010 

2-Mercaptoethanol Sigma Aldrich M3148 

2-Methylbutane for HPLC, chromasolv,= 99.5%  Thermo Fisher Scientific 270342-1L 

Absolute ethanol  VWR Chemicals 20821.296 

Acrylamide/Bis solution 30% , 29:1  Bio Rad 1610156 

Alkaline phosphatase/ALPL antibody (B4-78) 
[Phycoerythrin] 

R&D Systems a biotechne 
brand 

FAB1448P 

Amersham hyperfilm ECL (18 × 24 cm) GE Healthcare 28906836 

Amersham™Protran™ 0,45 µm nitrocellulose blotting 
membranes  

GE Health Care Life Science 10600002 

Ammonium persulfate, (NH4)2S2O8 Sigma-Aldrich A3678 

APC Rat IgG2a, κ Isotype control   clone  R35-95 BD Bioscience 551139 

AutoMACS Running Buffer – MACS separation buffer MACS Milteny Biotec 130-091-221 

bisBenzimide H33258 (Hoechst)  Sigma-Aldrich B2883 

Bovine serum albumin lyophilised pH ~7 Biowest P6154 

Bromophenol blue 
Panreac Applichem ITW 

Reagents 
131165.1606 

C2C12 cell line ATCC 
ATCC® CRL-

1772™ 

Cardiotoxin  Latoxan L8102 

CD140a (PDGFRA) monoclonal antibody (APA5), APC, 
eBioscience™ 

Thermo Fisher Scientific 17-1401-81 

CD140b (PDGFRB) monoclonal antibody (APB5), PE, 
eBioscience™ 

Thermo Fisher Scientific 12-1402-81 

CD31 (PECAM-1) monoclonal antibody (390), APC, 
eBioscience™ 

Thermo Fisher Scientific 17-0311-82 

CD31 (PECAM-1) monoclonal antibody (390), APC, 
eBioscience™ 

Thermo Fisher Scientific 17-0311-82 

CD45 monoclonal antibody (30-F11), FITC, eBioscience™ Thermo Fisher Scientific 11-0451-82 

CD45 monoclonal antibody (30-F11), FITC, eBioscience™ Thermo Fisher Scientific 11-0451-82 

CD56 MicroBeads, human MACS Milteny Biotec 130-050-401 

Chicken embryo extract Bio-connect BV CE-650-JL 

Chloroform Merck KGaA 102445 

Collagenase D from Clostridium histolyticum Roche 11088858001 

cOmplete mini, EDTA free protease inhibitor cocktail 
tablets 

Roche 11836170001 

Dimethyl sulfoxide, Fisher BioReagents™ Fisher Scientific 10103483 

DMEM, high glucose, GlutaMAX™ supplement Thermo Fisher Scientific 61965-026 

Donkey serum  VWR 
BWSTS2170-

100 

Dulbecco`s phosphate buffered saline (1X) Gibco 14190-094 

Dulbecco’s modified Eagle’s medium with 4.5 g/l glucose 
with L-Glutamine 

Lonza BE12-604F 

Dulbecco's phosphate buffered saline Thermo Fisher Scientific 14190-004 
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E-64 Sigma Aldrich E3132 

Eosin yellowish hydroalcoholic solution 1% for clinical 
diagnosis 

PanReac AppliChem 
ITW Reagents 

251301.1611 

Ethanol absolute VWR Chemicals 20821.296 

Falcon® 5 ml round bottom high clarity PP test tube, with 
snap cap, sterile 

Corning #352063 

Falcon® 5 ml round bottom polystyrene test tube, with cell 
strainer snap cap 

Corning #352235 

Falcon® 5 ml round bottom polystyrene test tube, with snap 
cap, sterile 

Corning #352054 

Foetal Bovine Serum, qualified, E.U.-approved, South 
America origin 

Thermo Fisher Scientific 10270-106 

Filter-tips, 1000 µl (1024) QUIAGEN 990352 

FITC Mouse IgG2a, κ Isotype Control antibody clone  G155-
178   

BD Bioscience 553456 

Fluoro-gel (with tris buffer) 
Electron Microscopy 

Sciences 
17985-10 

Fungizone® antimycotic 20ml Life technologies 15290-018 

Gelatine from porcine skin Sigma Aldrich G1890 

Gentamicin solution Sigma Aldrich G1272 

Gerhard menzel cover glasses round pure white 12 mm Thermo Fisher Scientific CB00120ra1 

Glycerol technical grade 
Panreac Applichem ITW 

Reagents 
211339.1211 

Glycine Sigma Aldrich G8898-1KG 

Glycine  Bio Rad 161-0718 

Hank's Balanced Salt Solution with Ca2+ and Mg2+ Thermo Fisher Scientific 24020-083 

Hank's Balanced Salt Solution without Ca2+ and Mg2+ Thermo Fisher Scientific 14170-088 

Harrison hematoxylin solution for clinical diagnosis 
PanReac AppliChem 

ITW Reagents 
253949.1610 

Hepes Sigma Aldrich H3375 

High-capacity cDNA reverse transcription kit Thermo Fisher Scientific 4368814 

Hoechst 33342 solution (20 mM) Thermo Fisher Scientific 62249 

Horse Serum, heat inactivated, New Zealand origin Thermo Fisher Scientific 26050-070 

Human EGF  Peprotech AF-100-15 

Human FGF Peprotech 100-18-B 

Hydrochloric acid 37% foranalysis, ACS, ISO  
Panreac Applichem ITW 

Reagents 
1.310.201.211 

IgG1, K Mouse, PE, Clone: P3.6.2.8.1, isotype control, 
eBioscience™ 

Affymetrix eBioscience, 
Thermo Fisher Scientific 

12-4714-81 

Insulin Human 25 mg Sigma Aldrich I2643 

iTaq™ Universal SYBR® Green Supermix, 500 x 20 µl rxns  Bio Rad 1725121 

 

 

 

 

http://www.bio-rad.com/es-es/sku/1725121-itaq-universal-sybr-green-supermix-500-x-20-ul-rxns-5-ml-5-x-1-ml


APPENDIX I 

219 
 

L-Glutamine  100X 20ml (200mM)  Life technologies 25030032 

Macs LS Columns Milteny Biotec 130-042-401 

MEDIUM 199 with Earle’s balanced salt solution with L-
Glutamine and Hepes 

Lonza BE12-117F 

MEM Non-essential amino acids solution (100X) Thermo Fisher Scientific 11140-035 

Methanol (Reag. Ph. Eur.) for UHPLC supergradient, ACS  
Panreac Applichem ITW 

Reagents 
221091.1612 

miRNeasy Mini Kit  QUIAGEN 217004 

MX35 ultra microtome blade 34˚/80 mm Thermo Fisher Scientific 3053835 

N,N,N′,N′-Tetramethylethylenediamine, BioReagent, for 
molecular biology, ≥ 99% 

Sigma Aldrich T7024 

Na·Deoxycholate Sigma Aldrich D6750 

NADH Grade I, disodium salt  Sigma Aldrich 10107735001 

Nimatek 100 mg/ml Eurovet animal health 804132 

Nitrotetrazolium Blue chloride Sigma Aldrich N6876-100MG 

Nunc* cell scrapers handle length 23 cm Thermo Fisher Scientific 179693 

Oil red O  Sigma Aldrich O0625 

Pancreatin from porcine pancreas Sigma Aldrich P3292 

Paraformaldehyde 4% aqueous solution, em grade 
Electron Mircroscopy 

Sciences 
157-4-100 

PE Rat IgG2a, κ Isotype control   clone  R35-95  (RUO) BD Bioscience 553930 

Penicillin-Streptomycin (10,000 U/mL) Thermo Fisher Scientific 15140-122 

Petroleum ether 30-40 pure 
Panreac Applichem ITW 

Reagents 
A0760 

Phenylmethanesulfonyl fluoride (PMSF)  Sigma Aldrich P7626 

Ponceau S Solution  Sigma Aldrich P7170 

Precision plus protein™ kaleidoscope™ prestained 
protein standars 

Bio Rad 1610375 

Propan-2-ol, isopropyl alcohol  
PanReac AppliChem ITW 

Reagents 
131090.1611 

QIAzol® lysis reagent  QIAgen 79306 

Quick start™ bovine serum albumin standard  Bio Rad 500-0206 

Quick start™ bradford 1x dye reagent Bio Rad 500-0205 

Quick Start™ bradford protein assay Kit 1  Bio Rad #500-0201 

RiboCellin siRNA delivery reagent, 1.0 ml Buldog Bio RC1000 

RNase Inhibitor Life technologies N8080119 

Rotor adapters (10 x 24) QUIAGEN 990394 

SDS for molecular biology 
Panreac Applichem ITW 

Reagents 
A2263.0100 

Shandon™ Consul-Mount™ Thermo Fisher Scientific 9990441 

siCD9  Thermo Fisher Scientific s2598 

siFRZB  Thermo Fisher Scientific s5369 

SignalFire™ Plus ECL Reagent Cell Signaling Technologies 12630S 

siITGB1BP2 Thermo Fisher Scientific s25536 

Silencer® Negative Control No. 1 siRNA (50 μM) Life technologies AM4611 

 

 

http://www.lifetechnologies.com/order/catalog/product/N8080119?ICID=search-product
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Skim milk powder Sigma Aldrich 70166 

Sodium azide, NaN3 Sigma Aldrich 769320 

Sodium chloride for analysis ACS, ISO, NaCl 
Panreac Applichem ITW 

Reagents 
131659.122 

Sodium fluoride, NaF  Sigma Aldrich S6776 

Sodium orthovanadate, Na3O4V   Sigma Aldrich S6508 

Sodium pyrophosphate tetra basic decahydrate Sigma Aldrich S6422 

Sodium pyruvate (100 mM) Thermo Fisher Scientific 11360-039 

StemPro® adipogenesis differentiation kit Thermo Fisher Scientific A10070-01 

Superfrost™ Plus microscope slides Thermo Fisher Scientific J1800AMNZ 

TaqMan™ Gene expression master mix Thermo Fisher Scientific 4369514 

Tissue-Tek Cryomold biopsy 10 mm x 10 mm x 5 mm Sakura Finetek USA INC 4565 

Tissue-Tek® O.C.T. Compound, Sakura® Finetek Sakura Finetek USA INC 4583 

Tris (USP,BP,Ph,Eur) pure pharma grade  
Panreac Applichem ITW 

Reagents 
141940.1211 

TrIton™ X-100 Sigma Aldrich T8787 

Trypan Blue Solution 0.4%, liquid, sterile-filtered, suitable 
for cell culture  

Sigma Aldrich T8154 

Trypsin (10X) 2.5%, no phenol red  Thermo Fisher Scientific 15090-046 

Tween®20 Merck Millipore 8.22184.0500 

UltraPureTM distilled water DNase/RNase free Invitrogen 10977-035 

Urea 
Panreac Applichem ITW 

Reagents 
141754 

Vacutainer® K2E (EDTA) 18.0 mg plus blood collection 
Tubes 

BD Bioscience 367525 

Vacutainer® SST II  advance plus Blood collection tubes BD Bioscience 367953 

Vetergesic multidosis 0,3mg/ml Ecuphar 
 

Whatman™ 3mm CHR GE Health Care Life Science 3030-917 

Xylene Oppac s.a 1330-20-7 

XYL-M 2% (Xylazine hydrochloride) VMD 
 

β-Glycerophosphate disodium salt hydrate                                                                                                                   Sigma Aldrich G9422 
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APPENDIX II: Material and methods supplementary material.  

Table 1. Mice information.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Number Mother Father Code Sex Mice strain Backcross Birth day Use Used on Age Genotype 
47440 F-KO-3/2166 F-KO-3/2195 F-KO-3/2200 f C57BL/6 19b 03/08/2016 Muscle isolation 20/10/2016 11 weeks + 1 day KO 

47443 F-KO-3/2166 F-KO-3/2195 F-KO-3/2202 f 
C57 
BL/6 

19b 03/08/2016 Muscle isolation 20/10/2016 11 weeks + 1 day KO 

47444 F-KO-3/2166 F-KO-3/2195 F-KO-3/2204 f C57BL/6 19b 03/08/2016 Muscle isolation 20/10/2016 11 weeks + 1 day KO 
47448 F-KO-3/2166 F-KO-3/2195 F-KO-3/2206 f C57BL/6 19b 03/08/2016 Muscle isolation 20/10/2016 11 weeks + 1 day KO 
47439 F-KO-3/2166 F-KO-3/2195 F-KO-3/2237 m C57BL/6 19b 03/08/2016 Muscle isolation 20/10/2016 11 weeks + 1 day KO 
47441 F-KO-3/2166 F-KO-3/2195 F-KO-3/2239 m C57BL/6 19b 03/08/2016 Muscle isolation 20/10/2016 11 weeks + 1 day KO 
47442 F-KO-3/2166 F-KO-3/2195 F-KO-3/2241 m C57BL/6 19b 03/08/2016 Muscle isolation 20/10/2016 11 weeks + 1 day KO 
47445 F-KO-3/2166 F-KO-3/2195 F-KO-3/2243 m C57BL/6 19b 03/08/2016 Muscle isolation 20/10/2016 11 weeks + 1 day KO 
47446 F-KO-3/2166 F-KO-3/2195 F-KO-3/2245 m C57BL/6 19b 03/08/2016 Muscle isolation 20/10/2016 11 weeks + 1 day KO 
47447 F-KO-3/2166 F-KO-3/2195 F-KO-3/2247 m C57BL/6 19b 03/08/2016 Muscle isolation 20/10/2016 11 weeks + 1 day KO 

47449 F-KO-3/2166 F-KO-3/2195 F-KO-3/2249 m C57BL/6 19b 03/08/2016 Muscle isolation 20/10/2016 11 weeks + 1 day KO 
48868 F-KO-3/2178 F-KO-3/2225 F-KO-3/2361 m C57BL/6 20b 12/12/2016 Muscle isolation 24/02/2017 10 weeks + 4 days KO 
48872 F-KO-3/2178 F-KO-3/2225 F-KO-3/2365 m C57BL/6 20b 12/12/2016 Muscle isolation 24/02/2017 10 weeks + 4 days KO 

49245 F-KO-3/2210 F-KO-3/2231 F-KO-3/2328 f C57BL/6 19b 06/01/2016 
Muscle isolation 17/03/2017 10 weeks 

KO 
Wire test 17/02/2017 6 weeks 

49317 F-KO-3/2180 F-KO-3/2225 F-KO-3/2413 m C57BL/6 20b 13/01/2017 
Muscle isolation 24/03/2017 10 weeks 

KO 
Wire test 17/02/2017 5 weeks 

48545       f C57BL/6 100% 22/09/2016 Muscle isolation 02/12/2016 10 weeks WT 

48546       f C57BL/6 100% 22/09/2016 Muscle isolation 02/12/2016 10 weeks WT 
48547       f C57BL/6 100% 22/09/2016 Muscle isolation 02/12/2016 10 weeks WT 
48548       f C57BL/6 100% 22/09/2016 Muscle isolation 02/12/2016 10 weeks WT 
48549       f C57BL/6 100% 22/09/2016 Muscle isolation 02/12/2016 10 weeks WT 
48550       m C57BL/6 100% 22/09/2016 Muscle isolation 02/12/2016 10 weeks WT 
48551       m C57BL/6 100% 22/09/2016 Muscle isolation 02/12/2016 10 weeks WT 
48552       m C57BL/6 100% 22/09/2016 Muscle isolation 02/12/2016 10 weeks WT 

48553       m C57BL/6 100% 22/09/2016 Muscle isolation 02/12/2016 10 weeks WT 
48554       m C57BL/6 100% 22/09/2016 Muscle isolation 02/12/2016 10 weeks WT 
48555       m C57BL/6 100% 22/09/2016 Muscle isolation 02/12/2016 10 weeks WT 
48556       m C57BL/6 100% 22/09/2016 Muscle isolation 02/12/2016 10 weeks WT 
48557       m C57BL/6 100% 22/09/2016 Muscle isolation 02/12/2016 10 weeks WT 
48558       m C57BL/6 100% 22/09/2016 Muscle isolation 02/12/2016 10 weeks WT 
48559       m C57BL/6 100% 22/09/2016 Muscle isolation 02/12/2016 10 weeks WT 
48133 F-KO-3/2170 F-KO-3/2195 F-KO-3/2262 f C57BL/6 19b 07/10/2016 Muscle cell  extraction 08/11/2016 4 weeks + 4 days KO 

48134 F-KO-3/2170 F-KO-3/2195 F-KO-3/2291 m C57BL/6 19b 07/10/2016 Muscle cell  extraction 08/11/2016 4 weeks + 4 days KO 



 

 
 

48135 F-KO-3/2170 F-KO-3/2195 F-KO-3/2293 m C57BL/6 19b 07/10/2016 Muscle cell  extraction 08/11/2016 4 weeks + 4 days KO 
48136 F-KO-3/2170 F-KO-3/2195 F-KO-3/2264 f C57BL/6 19b 07/10/2016 Muscle cell  extraction 08/11/2016 4 weeks + 4 days KO 
48137 F-KO-3/2170 F-KO-3/2195 F-KO-3/2295 m C57BL/6 19b 07/10/2016 Muscle cell  extraction 08/11/2016 4 weeks + 4 days KO 
48138 F-KO-3/2170 F-KO-3/2195 F-KO-3/2266 f C57BL/6 19b 07/10/2016 Muscle cell  extraction 08/11/2016 4 weeks + 4 days KO 
48139 F-KO-3/2170 F-KO-3/2195 F-KO-3/2297 m C57BL/6 19b 07/10/2016 Muscle cell  extraction 08/11/2016 4 weeks + 4 days KO 
48140 F-KO-3/2170 F-KO-3/2195 F-KO-3/2299 m C57BL/6 19b 07/10/2016 Muscle cell  extraction 08/11/2016 4 weeks + 4 days KO 
48216       f C57BL/6 100% 13/10/2016 Muscle cell  extraction 08/11/2016 3 weeks + 3 days WT 

48217       f C57BL/6 100% 13/10/2016 Muscle cell  extraction 08/11/2016 3 weeks + 3 days WT 
48218       f C57BL/6 100% 13/10/2016 Muscle cell  extraction 08/11/2016 3 weeks + 3 days WT 
48219       f C57BL/6 100% 13/10/2016 Muscle cell  extraction 08/11/2016 3 weeks + 3 days WT 
48220       m C57BL/6 100% 13/10/2016 Muscle cell  extraction 08/11/2016 3 weeks + 3 days WT 
48221       m C57BL/6 100% 13/10/2016 Muscle cell  extraction 08/11/2016 3 weeks + 3 days WT 
48222       m C57BL/6 100% 13/10/2016 Muscle cell  extraction 08/11/2016 3 weeks + 3 days WT 
48223       m C57BL/6 100% 13/10/2016 Muscle cell  extraction 08/11/2016 3 weeks + 3 days WT 
48370 F-KO-3/2160 F-KO-3/2231 F-KO-3/2268 f C57BL/6 19b 31/10/2016 Muscle cell  extraction 01/12/2016 4 weeks + 3 days KO 

48371 F-KO-3/2160 F-KO-3/2231 F-KO-3/2305 m C57BL/6 19b 31/10/2016 Muscle cell  extraction 01/12/2016 4 weeks + 3 days KO 
48372 F-KO-3/2160 F-KO-3/2231 F-KO-3/2307 m C57BL/6 19b 31/10/2016 Muscle cell  extraction 01/12/2016 4 weeks + 3 days KO 
48373 F-KO-3/2160 F-KO-3/2231 F-KO-3/2270 f C57BL/6 19b 31/10/2016 Muscle cell  extraction 01/12/2016 4 weeks + 3 days KO 
48374 F-KO-3/2160 F-KO-3/2231 F-KO-3/2272 f C57BL/6 19b 31/10/2016 Muscle cell  extraction 01/12/2016 4 weeks + 3 days KO 
48375 F-KO-3/2160 F-KO-3/2231 dead f C57BL/6 19b 31/10/2016 Muscle cell  extraction 01/12/2016 4 weeks + 3 days KO 
48376 F-KO-3/2160 F-KO-3/2231 F-KO-3/2309 m C57BL/6 19b 31/10/2016 Muscle cell  extraction 01/12/2016 4 weeks + 3 days KO 
48479       f C57BL/6 100% 03/11/2016 Muscle cell  extraction 01/12/2016 4 weeks WT 

48480       f C57BL/6 100% 03/11/2016 Muscle cell  extraction 01/12/2016 4 weeks WT 
48481       f C57BL/6 100% 03/11/2016 Muscle cell  extraction 01/12/2016 4 weeks WT 
48482       f C57BL/6 100% 03/11/2016 Muscle cell  extraction 01/12/2016 4 weeks WT 
48483       m C57BL/6 100% 03/11/2016 Muscle cell  extraction 01/12/2016 4 weeks WT 
48484       m C57BL/6 100% 03/11/2016 Muscle cell  extraction 01/12/2016 4 weeks WT 
48485       m C57BL/6 100% 03/11/2016 Muscle cell  extraction 01/12/2016 4 weeks WT 

47659 F-KO-3/2170 F-KO-3/2195 F-KO-3/2224 f C57BL/6 19b 29/08/2016 

Catwalk 8weeks 24/10/2016 8 weeks 

KO 
Catwalk 10weeks 07/11/2016 10weeks 

CTX injection  09/11/2016 10 weeks + 2 days 
Muscles freezing 07/12/2016 CTX + 4 weeks 

47660     F-KO-3/2226 f C57BL/6 19b 29/08/2016 

Catwalk 8weeks 24/10/2016 8 weeks 

KO 
Catwalk 10weeks 07/11/2016 10 weeks 

CTX injection  09/11/2016 10 weeks + 2 days 
Muscles freezing 07/12/2016 CTX + 4 weeks 



 

 
 

 

47661     F-KO-3/2228 f C57BL/6 19b 29/08/2016 

Catwalk 8weeks 24/10/2016 8 weeks 

KO 
Catwalk 10weeks 07/11/2016 10 weeks 

CTX injection  09/11/2016 10 weeks + 2 days 
Muscles freezing 07/12/2016 CTX + 4 weeks 

47662     F-KO-3/2253 m C57BL/6 19b 29/08/2016 

Catwalk 8weeks 24/10/2016 8 weeks 

KO 
Catwalk 10weeks 07/11/2016 10 weeks 

CTX injection  09/11/2016 10 weeks + 2 days 
Muscles freezing 07/12/2016 CTX + 4 weeks 

47663     F-KO-3/2230 f C57BL/6 19b 29/08/2016 

Catwalk 8weeks 24/10/2016 8 weeks 

KO 
Catwalk 10weeks 07/11/2016 10 weeks 

CTX injection  09/11/2016 10 weeks + 2 days 
Muscles freezing 23/11/2016 CTX + 2 weeks 

47664     F-KO-3/2232 f C57BL/6 19b 29/08/2016 

Catwalk 8weeks 24/10/2016 8 weeks 

KO 
Catwalk 10weeks 07/11/2016 10 weeks 

CTX injection  09/11/2016 10 weeks + 2 days 
Muscles freezing 23/11/2016 CTX + 2 weeks 

47665     F-KO-3/2255 m C57BL/6 19b 29/08/2016 

Catwalk 8weeks 24/10/2016 8  weeks 

KO 
Catwalk 10weeks 07/11/2016 10 weeks 

CTX injection  09/11/2016 10weeks+ 2 days 

Muscles freezing 23/11/2016 CTX + 2 weeks 

48570 F-KO-3/2170 F-KO-3/2195 F-KO-3/2300 f C57BL/6 19b 14/11/2016 

Catwalk 8weeks 09/01/2017 8 weeks 

KO 
Catwalk 10weeks 23/01/2017 10 weeks 

CTX injection  24/01/2017 10 weeks + 1day 

Muscles freezing 27/01/2017 CTX+ 3 days 

48571 F-KO-3/2170 F-KO-3/2195 F-KO-3/2302 f C57BL/6 19b 14/11/2016 

Catwalk 8weeks 09/01/2017 8 weeks 

KO 
Catwalk 10weeks 23/01/2017 10 weeks 

CTX injection  24/01/2017 10 weeks + 1day 

Muscles freezing 31/01/201 CTX + 1 week 
48572 F-KO-3/2170 F-KO-3/2195 F-KO-3/2304 f 3 19b 14/11/2016 DEAD KO 

48573 F-KO-3/2170 F-KO-3/2195 F-KO-3/2306 f C57BL/6 19b 14/11/2016 

Catwalk 8weeks 09/01/2017 8 weeks 

KO 
Catwalk 10weeks 23/01/2017 10 weeks 

CTX injection  24/01/2017 10 weeks + 1 day 
Muscles freezing 07/02/2017 CTX + 2weeks 



 

 
 

48576 F-KO-3/2170 F-KO-3/2195 F-KO-3/2308 f C57BL/6 19b 14/11/2016 

Catwalk 8weeks 09/01/2017 8 weeks 

KO 
Catwalk 10weeks 23/01/2017 10 weeks 

CTX injection  24/01/2017 10 weeks + 1day 

Muscles freezing 27/01/2017 CTX+ 3 days 

48569 F-KO-3/2170 F-KO-3/2195 F-KO-3/2337 m C57BL/6 19b 14/11/2016 

Catwalk 8weeks 09/01/2017 8 weeks 

KO 
Catwalk 10weeks 23/01/2017 10 weeks 

CTX injection  24/01/2017 10 weeks+ 1day 

Muscles freezing 27/01/2017 CTX+ 3 days 

48574 F-KO-3/2170 F-KO-3/2195 F-KO-3/2339 m C57BL/6 19b 14/11/2016 

Catwalk 8weeks 09/01/2017 8 weeks 

KO 
Catwalk 10weeks 23/01/2017 10 weeks 

CTX injection  24/01/2017 10 weeks+ 1day 

Muscles freezing 31/01/2017 CTX + 1 week 

48575 F-KO-3/2170 F-KO-3/2195 F-KO-3/2341 m C57BL/6 19b 14/11/2016 

Catwalk 8weeks 09/01/2017 8 weeks 

KO 
Catwalk 10weeks 23/01/2017 10 weeks 

CTX injection  24/01/2017 10 weeks+ 1 day 

Muscles freezing 31/01/2017 CTX + 1 week 

48577 F-KO-3/2170 F-KO-3/2195 F-KO-3/2343 m C57BL/6 19b 14/11/2016 

Catwalk 8weeks 09/01/2017 8 weeks 

KO 
Catwalk 10weeks 23/01/2017 10 weeks 

CTX injection  24/01/2017 10 weeks+ 1day 

Muscles freezing 21/02/2017 CTX + 4 weeks 

48720 F-KO-3/2160 F-KO-3/2219 F-KO-3/2347 m C57BL/6 19b 30/11/2016 

Catwalk 8 weeks 23/01/2017 7 weeks + 5 days 

KO CTX injection 09/02/2017 10 weeks + 1 day 

Muscle freezin 24/02/2017 CTX + 2 weeks 

48721 F-KO-3/2160 F-KO-3/2219 F-KO-3/2349 m C57BL/6 19b 30/11/2016 

Catwalk 8 weeks 23/01/2017 7 weeks + 5 days 

KO CTX injection 09/02/2017 10 weeks + 1 day 

Muscle freezin 09/03/2017 CTX + 4 weeks 

48722 F-KO-3/2160 F-KO-3/2219 F-KO-3/2351 m C57BL/6 19b 30/11/2016 

Catwalk 8 weeks 23/01/2017 7 weeks + 5 days 

KO CTX injection 09/02/2017 10 weeks + 1 day 

Muscle freezin 09/03/2017 CTX +  4 weeks 

49475 F-KO-3/2254 F-KO-3/2273   f C57BL/6 20b 23/01/2017 
Catwalk 8 weeks 20/03/2017 8 weeks 

KO 
Wire test 01/03/2017 5 weeks + 2 days 

49476 F-KO-3/2254 F-KO-3/2273   f C57BL/6 20b 23/01/2017 
Catwalk 8 weeks 20/03/2017 8 weeks 

KO 
Wire test 01/03/2017 5 weeks + 2 days 



 

 
 

 

49477 F-KO-3/2254 F-KO-3/2273   m C57BL/6 20b 23/01/2017 
Catwalk 8 weeks 20/03/2017 8 weeks 

KO 
Wire test 01/03/2017 5 weeks + 2 days 

49478 F-KO-3/2254 F-KO-3/2273   f C57BL/6 20b 23/01/2017 
Catwalk 8 weeks 20/03/2017 8 weeks 

KO 
Wire test 01/03/2017 5 weeks + 2 days 

49479 F-KO-3/2254 F-KO-3/2273   f C57BL/6 20b 23/01/2017 
Catwalk 8 weeks 20/03/2017 8 weeks 

KO 
Wire test 01/03/2017 5 weeks + 2 days 

49576 F-KO-3/2288 F-KO-3/2219 F-KO-3/2364 f C57BL/6 20b 06/02/2017 catwalk 10 weeks 18/04/2017 10 weeks + 1 day KO 
49577 F-KO-3/2288 F-KO-3/2219 F-KO-3/2435 m C57BL/6 20b 06/02/2017 catwalk 10 weeks 18/04/2017 10 weeks + 1 day KO 
49578 F-KO-3/2288 F-KO-3/2219 dead m C57BL/6 20b 06/02/2017 catwalk 10 weeks 18/04/2017 10 weeks + 1 day KO 

49579 F-KO-3/2288 F-KO-3/2219 F-KO-3/2439 m C57BL/6 20b 06/02/2017 catwalk 10 weeks 18/04/2017 10 weeks + 1 day KO 
49580 F-KO-3/2288 F-KO-3/2219 F-KO-3/2366 f C57BL/6 20b 06/02/2017 catwalk 10 weeks 18/04/2017 10 weeks + 1 day KO 
49581 F-KO-3/2166 F-KO-3/2195 F-KO-3/2368 f C57BL/6 19b 06/02/2017 catwalk 10 weeks 18/04/2017 10 weeks + 1 day KO 
49582 F-KO-3/2166 F-KO-3/2195 F-KO-3/2441 m C57BL/6 19b 06/02/2017 catwalk 10 weeks 18/04/2017 10 weeks + 1 day KO 
49583 F-KO-3/2166 F-KO-3/2195 F-KO-3/2370 f C57BL/6 19b 06/02/2017 catwalk 10 weeks 18/04/2017 10 weeks + 1 day KO 
49584 F-KO-3/2166 F-KO-3/2195 F-KO-3/2443 m C57BL/6 19b 06/02/2017 catwalk 10 weeks 18/04/2017 10 weeks + 1 day KO 
49585 F-KO-3/2166 F-KO-3/2195 F-KO-3/2372 f C57BL/6 19b 06/02/2017 catwalk 10 weeks 18/04/2017 10 weeks + 1 day KO 

48951       f C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 

Catwalk 10weeks 26/01/2017 10 weeks WT 
CTX injection  27/01/2017 10 weeks + 1day WT 

Muscles freezing 03/02/2017 CTX + 1 week WT 

48952       f C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 
Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks + 1 day WT 
Muscles freezing 03/02/2017 CTX + 1 week WT 

48953       f C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 

Catwalk 10weeks 26/01/2017 10 weeks WT 
CTX injection  27/01/2017 10 weeks + 1 day WT 

Muscles freezing 10/02/2017 CTX + 2 weeks WT 

48954       f C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 
Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks + 1 day WT 
Muscles freezing 30/01/2017 CTX+ 3 days WT 

 



 

 
 

 

48955       f C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 

Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks + 1 day WT 

Muscles freezing 30/01/2017 CTX + 3 days WT 

48956       f C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 

Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks + 1 day WT 

Muscles freezing 24/02/2017 CTX + 4 weeks WT 

48957       f C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 

Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks + 1 day WT 

Muscles freezing 24/02/2017 CTX + 4 weeks WT 

48958       f C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 

Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks + 1 day WT 

Muscles freezing 24/02/2017 CTX+ 4 weeks WT 

48959       f C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 

Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks + 1 day WT 

Muscles freezing 10/02/2017 CTX+ 2 weeks WT 

48960       f C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 

Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks+ 1day WT 

Muscles freezing 24/02/2017 CTX + 4 weeks WT 

48961       m C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 

Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks+ 1 day WT 

Muscles freezing 30/01/2017 CTX + 3 days WT 

48962       m C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 

Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks + 1day WT 

Muscles freezing 30/01/2017 CTX+ 3 days WT 



 

 
 

48963       m C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 
Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks + 1day WT 
Muscles freezing 10/02/2017 CTX + 2 weeks WT 

48964       m C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 
Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks+ 1 day WT 
Muscles freezing 03/02/2017 CTX + 1 week WT 

48965       m C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 
Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks+ 1 day WT 
Muscles freezing 03/02/2017 CTX + 1 week WT 

48966       m C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 
Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks+ 1 day WT 
DEAD WT 

48967       m C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 
Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks + 1 day WT 
Muscles freezing 24/02/2017 CTX+ 4 weeks WT 

48968       m C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 
Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks+ 1 day WT 
Muscles freezing 24/02/2017 CTX+ 4 weeks WT 

48969       m C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 
Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks + 1 day WT 
Muscles freezing 10/02/2017 CTX + 2 weeks WT 

48970       m C57BL/6 100% 17/11/2016 

Catwalk 8weeks 12/01/2017 8 weeks  WT 
Catwalk 10weeks 26/01/2017 10 weeks WT 

CTX injection  27/01/2017 10 weeks + 1 day WT 

Muscles freezing 24/02/2017 CTX + 4 weeks WT 
48940 F-KO-3/2184 F-KO-3/2223 F-KO-3/2367 m C57BL/6 20b 16/12/2017 Treadmill  no run 06/02/2017 7 weeks + 3 days KO 
48947 F-KO-3/2184 F-KO-3/2223 F-KO-3/2375 m C57BL/7 20b 16/12/2017 Treadmill  no run 06/02/2017 7 weeks + 3 days KO 
48949 F-KO-3/2184 F-KO-3/2223 F-KO-3/2320 f C57BL/8 20b 16/12/2017 Treadmill  no run 06/02/2017 7 weeks + 3 days KO 



 

 
 

48950 

F-KO-

3/2184 

F-KO-

3/2223 

F-KO-

3/2377 m C57BL/9 20b 16/12/2017 Treadmill  run  
06/02/2017 

7 weeks + 3 days KO 

49121 
F-KO-

3/2166 
F-KO-

3/2195 
F-KO-

3/2326 
f C57BL/6 19b 26/12/2016 

Treadmill  no run 06/02/2017 6 weeks 
KO 

Wire test 03/02/2017 5 weeks + 4 days 

49122 
F-KO-

3/2166 
F-KO-

3/2195 
F-KO-

3/2401 
m C57BL/6 19b 26/12/2016 

Treadmill  no run 06/02/2017 6 weeks 
KO 

Wire test 03/02/2017 5 weeks + 4 days 

49123 
F-KO-

3/2166 
F-KO-

3/2195 
F-KO-

3/2403 
m C57BL/6 19b 26/12/2016 

Treadmill  run  06/02/2017 6 weeks 
KO 

Wire test 03/02/2017 5 weeks + 4 days 

49124 
F-KO-

3/2166 
F-KO-

3/2195 
F-KO-

3/2405 
m C57BL/6 19b 26/12/2016 

Treadmill  run  06/02/2017 6 weeks 
KO 

Wire test 03/02/2017 5 weeks + 4 days 

49125 
F-KO-

3/2166 
F-KO-

3/2195 
F-KO-

3/2407 
m C57BL/6 19b 26/12/2016 

Treadmill  run  06/02/2017 6 weeks 
KO 

Wire test 03/02/2017 5 weeks + 4 days 

49126 
F-KO-

3/2166 
F-KO-

3/2195 
F-KO-

3/2409 
m C57BL/6 19b 26/12/2016 

Treadmill  run  06/02/2017 6 weeks 
KO 

Wire test 03/02/2017 5 weeks + 4 days 

49326 
      

m C57BL/6 100% 28/12/2016 
Treadmill  no run 06/02/2017 5 weeks + 5 days 

WT 
Wire test 03/02/2017 5 weeks + 2 days 

49327 
      

m C57BL/6 100% 28/12/2016 
Treadmill  no run 06/02/2017 5 weeks + 5 days 

WT 
Wire test 03/02/2017 5 weeks + 2 days 

49328 
      

m C57BL/6 100% 28/12/2016 
Treadmill  no run 06/02/2017 5 weeks + 5 days 

WT 
Wire test 03/02/2017 5 weeks + 2 days 

49329 
      

m C57BL/6 100% 28/12/2016 
Treadmill  no run 06/02/2017 5 weeks + 5 days 

WT 
Wire test 03/02/2017 5 weeks + 2 days 

49330 
      

m C57BL/6 100% 28/12/2016 
Treadmill  no run 06/02/2017 5 weeks + 5 days 

WT 
Wire test 03/02/2017 5 weeks + 2 days 

49331 
      

m C57BL/6 100% 28/12/2016 
Treadmill  no run 06/02/2017 5 weeks + 5 days 

WT 
Wire test 03/02/2017 5 weeks + 2 days 

49332 
      

m C57BL/6 100% 28/12/2016 
Treadmill  no run 06/02/2017 5 weeks + 5 days 

WT 
Wire test 03/02/2017 5 weeks + 2 days 

49333 
      

m C57BL/6 100% 28/12/2016 
Treadmill  no run 06/02/2017 5 weeks + 5 days 

WT 
Wire test 03/02/2017 5 weeks + 2 days 

49334 
      

m C57BL/6 100% 28/12/2016 
Treadmill  no run 06/02/2017 5 weeks + 5 days 

WT 
Wire test 03/02/2017 5 weeks + 2 days 
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Table 2. Custom-designed SYBR Green panel gene list.  

Gene name  
Gene 

symbol 
Amplicon  sequence 

Amplicon 
lenght (bp) 

Muscle specific genes 

Myosin, heavy polypeptide 1, 
skeletal muscle, adult 

Myh1 

CAAGTGAGTGAGCTGAAGACCAAGGAGGAGGAACA
GCAGCGGCTGATCAATGAGCTGACTGCGCAGAGGG
GGCGTCTGCAGACGGAGTCAGGTGAATACTCACGCC

AGCTAGA 

113 

Myosin, heavy polypeptide 2, 
skeletal muscle, adult 

Myh2 

AACACGAGAGACGAGTGAAGGAGCTTACTTACCAGA
CAGAAGAAGACCGAAAAAATATTCTCAGGCTTCAGG
ATTTGGTGGATAAACTCCAGGCAAAAGTGAAATCTTA
CAAGAGACAAGCTGAGGAGGCTGAGGAACAATCCA

ACACAAATCTATCCAAGTTCCG 

166 

Myosin, heavy polypeptide 4, 
skeletal muscle 

Myh4 

CAGAAATCCGGGTTGAAGACTCTGGCTTTCCTATTTT
CTGGGGGACAAGCTGCGGAAGCAGAGGGCGGCGGT
GGAAAGAAAGGTGGCAAGAAGAAGGGTTCTTCTTTC
CAGACCGTGTCAGCTCTCTTCAGGGAGAATTTAAATA
AGCTGATGACCAACTTGAAGAGCACCCACCCCCACTT

TGTCAGATGCCTCATTCC 

200 

Paired box gene 7 Pax7 
ACTCGGGTTGCTAAGGATGCTCATGACCTGAGGAGA

CAGGCCATTGCTGACAGGGTTCAT 
60 

Deregulated genes in LGMD2A patients' muscles (Sáenz et al., 2008; De la Torre et al., 2009) 

Calpain 3 Capn3 
ATTCATCCTCCGAGTCTTCTCCGAAAAGAGGAATCTC
TCTGAGGAAGCTGAAAATACAATCTCTGTGGATCGG 

73 

Calpain 6 Capn6 

GTCCTTCTGTTGCAGTGACATGATGACTTTATGGCCA
TCCTCGGGCACAGTGAAAATGTACTGAGGATTCTGCA
AGAAGGTATCACGGTTGTTATAGCAACCTCCTGATCG

GTTCAT 

117 

Collagen, type I, alpha 1 Col1a1 
GCATGGCCAAGAAGACATCCCTGAAGTCAGCTGCAT
ACACAATGGCCTAAGGGTCCCCAATGGTGAGACGTG

GAAACCCGAGGTATGCTTGATCTGTATCTGCC 
104 

Docking protein 5 Dok5 

AACTTTCACTCCCTCAGTCTCTGTCCTGACCCTCCTCC
CCACATCCCTCCTCGAAGCCACTCAGGGTGCCGAGCG
CACGCTGGGGGCAGCAGGGTCACTGTCTGTCTGGGA
TGGCTTCCAATTTTAATGACATAGTGAAGCAGGGGTA

CGTGAGGATCCGGAGCAGACGCCTAGGGATTTATCA
ACGATGCTGGTTAGTG 

200 

Four and a half LIM domains 
1 

Fhl1 

GTGCTTTGACAAGTTCTGCGCCAACACCTGCGTGGAC
TGCCGCAAGCCCATAAGCGCTGATGCCAAGGAGGTG

CATTATAAGAATCGCTACTGGCACGACAACTGCTTCC
GCTGTGCCAAGTGCCTTCACCCCTTGGCCAGTGAGAC
CTTTGTGTCCAAGGATGGCAAGATCCTGTGCAACAAG

TG 

186 

Integrin beta 1 binding 
protein 2 

Itgb1bp
2 

AAGTTCACTTCAGGAGCAAAAACCTCTAAATACAATT
CCAAAGTCAGCAGAGACCTTGTTCCGAGAAAGGCCT
AAGTCTGAGATGCCTCCCAAACTGCTACCACTTCTT 

109 

Myosin, light polypeptide 6B Myl6b 

TCTACACGTCGGGACTTCAGCTCCTCGTTTTTGGGGT
TCCCCAGGACCTTGAGCACCTCGGCGTTGGTAGGGTT
CTGGCCCAGGGCCCTCATCAGGTCCCCACACTGGCTG

TACAGGATCTTGCCATCACCTACTCGGTCAAAC 

144 
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Myomesin family, member 3 Myom3 

GGTGTCTGAATGTGCATAGAGACTGCCTGACCCTGAC
CTGGGTCCCGCCCAGCGACACCCGGGGCAGCACCAT

CACTGGCTATTCCATTGAGATGTGCCAGGGTGATTCG
GAGGAGTGGA 

120 

Myotilin Myot 
CTCAGTTCTATATTACCGTCTCAACCCGATTACTGTAA
CAGTAAAATCCCATCCACTGTGGACTCCAACTATCAA

CAATCCTCAGTTAACCAACCTG 
97 

Very low density lipoprotein 
receptor 

Vldlr 
GCTTCTGTAGGACACACATACCCAGCAATATCAGTTG
TAAGCACAGATGATGATCTGGCTTGAGTTCTGAAC 

72 

Deregulated genes in Frzb-/- mice articular cartilage and in LGMD2A patients' muscles (Sáenz et al., 2008; 
Lories et al., 2009; Lodewyckx et al., 2012)  

Asporin Aspn 
GTTGTTCACTGCTCTGATCTAGGTCTGACATCGGTTCC
AAACAACATTCCATTTGATACTCGAATGGTTGACCTTC 

76 

Collagen, type III, alpha 1 Col3a1 

GTGGAACCTGGTTTCTTCTCACCCTTCTTCATCCCACT
CTTATTTTGGCACAGCAGTCCAACGTAGATGAATTGG
GATGCAGCCACCTTGGTCAGTCCTATGAGTCTAGAGA
TGTCTGGAAGCCAGAACCATGTCAAATATGTGTCTGT

GACTCAGGA 

158 

Collagen, type V, alpha 1 Col5a1 
GTTGCCTACCGAGTCTCTAAAGATGCACAGCTCAGCA
TGCCCACCAAGCAGCTGTACCCTGAGTCTGGTTTTCC

CGAGGACTTCTCCATCCTGACAAC 
98 

Collagen, type XV, alpha 1 Col15a1 
GTCCCTCTGGAAATGATGAAGGGGAGAAAGGGTGA
ACCTGGAATCCATGGTGCACCGGGACCCATGGGACC
CAAAGGACCACCAGGACACAAAGGAGAGTTTGGC 

105 

Collagen triple helix repeat 
containing 1 

Cthrc1 

CCATCGAAGCCATCATCTATCTGGACCAAGGAAGCCC
TGAGTTAAATTCAACTATTAATATTCATCGTACTTCCT
CTGTGGAAGGACTCTGTGAAGGGATTGGTGCTGGAT

TGGTAG 

117 

Catenin (cadherin associated 
protein), beta 1 

Ctnnb1 

ACAGCTCCCCTGACAGAGTTACTCCACTCCAGGAATG
AAGGCGTGGCAACATAC 

GCAGCTGCTGTCCTATTCCGAATGTCTGAGGACAAGC
CACAGGATTACAAGAAG 

CGGCTTTCAGTCGAGCTGACCAGTTCCCTCTTCAGGA
CAGAGCCAATGGCTTGG 

AATGAGACTGCAGATCTTGGACTGGACATTGGTGCC
CAGGGAGAAGCC 

180 

E2F transcription factor 8 E2f8 

CAATGTCATACAGCCTCCTAATTTTTGTTTTATACTTG
CTTTTATCCAGATCTTCCACGTGGTCTTCCCCAATTAA
AATCTTGGCAGCAATTTCCAGGCTCACTATCTGAGGC

GTCGAC 

119 

Fatty acid synthase Fasn 
AGACGCCAGTGTTCGTTCCTCGGAGTGAGGCTGGGT
TGATACCTCCATCCACAATTGCTTCATAGCTGACTTCC

AACAG 
79 

Fibronectin 1 Fn1 
CAGAGTCGCACTGGTAGAAGTTCCAGGAACTTGGAA
CTGTAAGGGCTCTTCGTCGGTGCCAACTGGTTGGCAT

GAAATGATGTACTCAGAACTCTCCTGGAACG 
104 

Frizzled-related protein Frzb 
GCGGTCACATCATGACATTTCATCTTTACCTCTTTAAC
TTTAGCCCGGATGACATAGTTGTAATTGTTCCGGAAA

TAGGTCTTCTGTGTAGCTCTGACA 
99 

Insulin-like growth factor 1 Igf1 

GGTGGATGCTCTTCAGTTCGTGTGTGGACCGAGGGG
CTTTTACTTCAACAAGCCCACAGGCTATGGCTCCAGC
ATTCGGAGGGCACCTCAGACAGGCATTGTGGATGAG

TGTTGCTT 

117 
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Mesoderm specific transcript Mest 

CTCTGCACTCATGGAAGACTTCTGGCAAGTTTTTCACC
TACAAAGGCCTACGCATCTTCTACCAAGTTAGATTTT

GGTGTCGTCAAGGCTGCCTTGCATGCAGTTTGCCTCA
TTTCTCATTTTCCTCCTAGATTCTGTCGG 

141 

Myelocytomatosis oncogene Myc 
CTAGTGCTGCATGAGGAGACACCGCCCACCACCAGC
AGCGACTCTGAAGAAGAGCAAGAAGATGAGGAAGA

AATTGATGTGGTGTCTGT 

89 

RAR-related orphan receptor 
alpha 

Rora 
TACAGAAGAACCACCGAGAAGATGGAATTCTAACCA

AGCTAATATGCAAGGTGTCTACGTTAAGAGC 
67 

Sema domain, 
immunoglobulin domain (Ig), 
short basic domain, secreted, 
(semaphorin) 3C 

Sema3c 

CTCCACAGGCATCTATCAAGTGGTTGCTGCAGAAAGA
CAAAGACAGGAGGAAGGAGGTTAAACTGAACGAGC
GCATTATAGCTACTTCCCAAGGACTACTGATTCGCTCT

GTTCAAGA 

118 

Solute carrier family 16 
(monocarboxylic acid 

transporters), member 1 

Slc16a1 
CTGTAACACAGTACAGGAACTTTACTTGTGCATTGGT
GTTATTGGAGGTCTTGGGCTTGCTTTCAACTTGAACC

CAGCTCTGACTATGATTGGCAAGTAT 

100 

Sorbin and SH3 domain 
containing 1 

Sorbs1 

AATGTCTTGGTGACTCTGAATCTTTAGTGGAAGCTGA
GCTGGAAGGTCGCTTGAGCCCACTGAGGCCCTGAAG
AGGGATGTCGCCACCTTCCAAGACACTCTTATAGATC

TGCCTCT 

117 

Transferrin receptor Tfrc 
AGCCAGATCAGCATTCTCTAACTTGTTTGGTGGGGAA
CCATTGTCATACACCCGGTTTAGCCTTGCTCGGCAAG

TAGATGGAGATAACAGTCATGTGGAGATGA 
104 

Genes coding for proteins participating in Wnt signaling pathway 

Low density lipoprotein 

receptor-related protein 5 
Lrp5 

TAGTCACTGTCACACACATCTGTGCTGCACGGTGTTG
TTGGGGGTGCCATACCTCGAATGACGTAGGGCCTGT

ATGGTCTAGCGGTGG 
88 

Low density lipoprotein 
receptor-related protein 6 

Lrp6 

TAGGAGCATAGTCACTGTCACAGACATCAGTGCTGCA
GGGTGTGGTGGGCGGTGCAAAGTGCCGGTAGCTGT
ACGGCCTATAGCTGTAGGACCTATGTGTGGAAGGAC

TGTTG 

113 

Wingless-related MMTV 
integration site 8A 

Wnt8a 

CGAAGAGTGTAAGTTCCAGTTTGCCTGGGAACGGTG
GAATTGTCCTGAGCATGCTTTTCAGTTTTCAACCCACA
ACAGGCTGCGAGCTGCCACGAGAGAGACATCCTTCA

TTCATGCC 

118 

Wingless related MMTV 

integration site 8b 
Wnt8b 

GTGCGTTCTTCTAGTCACTTGTGTCCTTCACCGCAGCC
ACGCCTGGTCAGTGAACAATTTTCTGATGACCGGTCC

AA 
77 

Endogenous controls 

Glyceraldehyde-3-phosphate 
dehydrogenase 

Gapdh 
AACCTGGTCCTCAGTGTAGCCCAAGATGCCCTTCAGT
GGGCCCTCAGATGCCTGCTTCACCACCTTCTTGATGT

C 
75 

TATA box binding protein Tbp 
GGAGAATCATGGACCAGAACAACAGCCTTCCACCTTA
TGCTCAGGGCTTGGCCTCCCCACAGGGCGCCATGACT

CCTGGAATTCCCATCTTTAGTCCAATGA 
102 
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Table 3. Human and murine origin TaqMan™ probes. 

Gene name 
Gene 

symbol 
Assay ID 

Amplicon 
length 

(bp)  

Human  

CD9 CD9 Hs00233521_m1 72 

Calpain 3 CAPN3 Hs00181057_m1 77 

Collagen, Type I, Alpha 1 COL1A1 Hs00164004_m1 66 

Desmin DES Hs00157258_m1 83 

Fibronectin 1 FN1 Hs00365052_m1 82 

C-FOS, Fos Proto-Oncogene, AP-1 Transcription 
Factor Subunit 

FOS Hs99999140_m1 77 

 Frizzled-related protein  FRZB Hs00173503_m1 108 

Glyceraldehyde-3-Phosphate Dehydrogenase GAPDH Hs99999905_m1 122 

Melusin,   Integrin Subunit Beta 1 Binding Protein 2 ITGB1BP2 Hs00183746_m1 72 

Anosmin 1  KAL1 Hs01085107_m1 61 

Myosin Heavy Chain 2 MYH2 Hs00430042_m1 76 

Myogenic Differentiation 1 MYOD Hs00159528_m1 67 

Myogenin  MYOG Hs01072232_m1 76 

TATA box binding protein TBP Hs00427620_m1 91 

Very Low Density Lipoprotein Receptor VLDLR Hs01045922_m1 98 

Murine  

Adiponectin Adipoq Mm00456425_m1 75 

Calpain 3 Capn3 Mm00482985_m1 53 

Dystrophin Dmd Mm01216954_m1 92 

Atrogin 1 Fbx32 Mm00499523_m1 73 

Glyceraldehyde-3-Phosphate Dehydrogenase Gapdh Mm99999915_g1 109 

Kyphoscoliosis peptidase Ky Mm01224823_m1   

Muscle-specific RING finger protein 1 Murf1 Mm01185221_m1 57 

Myosin heavy chain 2 MyH2 Mm01332564_m1 105 

Myosin heavy chain 3 MyH3 Mm01332463_m1 96 

Myogenic Differentiation 1 Myod1 Mm00440387_m1 86 

Myogenin Myog Mm00446194_m1 68 

Parkin Park2 Mm00450186_m1 115 

Paired box 7 Pax7 Mm01354484_m1 68 

Peroxisome Proliferator Activated Receptor Gamma Pparg Mm01184322_m1 101 

Ryanodine receptor 1 Ryr1 Mm01175211_m1 93 

Ryanodine receptor 2 Ryr2 Mm00465877_m1 63 

TATA-box binding protein Tbp Mm00446973_m1 73 
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Table 4. Table X. TLDA custom-designed human TaqMan™ probes.  

Gene name 
Gene 

symbol 
Assay ID 

Amplicon 

length (bp) 

RNA, 18S Ribosomal 5 18S5 Hs99999901_s1 187 

Acetyl-CoA Carboxylase Beta ACACB Hs00153715_m1 88 

Actin Beta ACTB Hs99999903_m1 171 

Actin, Alpha, Cardiac Muscle 1 ACTC1 Hs01109515_m1 70 

Actinin Alpha 2 ACTN2 Hs00153809_m1 94 

Aldehyde Dehydrogenase 2 Family (Mitochondrial) ALDH2 Hs00355914_m1 78 

Anaphase Promoting Complex Subunit 1 ANAPC1 Hs00224096_m1 69 

Carbonic Anhydrase 2 CA2 Hs00163869_m1 85 

Calpain 6 CAPN6 Hs00560073_m1 69 

CD44 antigen, Chondroitin Sulfate Proteoglycan 8 CD44 Hs00153310_m1 82 

CD9 CD9 Hs00233521_m1 72 

CCAAT/Enhancer Binding Protein Delta CEBPD Hs00270931_s1 107 

Cbp/P300 Interacting Transactivator With Glu/Asp Rich 
Carboxy-Terminal Domain 2 

CITED2 Hs00366696_m1 80 

Collagen, Type I, Alpha 1 COL1A1 Hs00164004_m1 66 

Collagen Type III Alpha 1 Chain COL3A1 Hs00164103_m1 66 

Collagen Type V Alpha 1 Chain COL5A1 Hs00609088_m1 87 

Desmin DES Hs00157258_m1 83 

DnaJ (Hsp40) homolog, subfamily A, member 4  DNAJA4 Hs00388055_m1 99 

Docking Protein 5 DOK5 Hs00218324_m1 80 

E2F Transcription Factor 8 E2F8 Hs00226635_m1 68 

Early Growth Response 1 EGR1 Hs00152928_m1 72 

EYA Transcriptional Coactivator And Phosphatase 1 EYA1 Hs00166804_m1 64 

Fatty Acid Binding Protein 3 FABP3 Hs00269758_m1 92 

Fatty Acid Binding Protein 7 FABP7 Hs00361426_m1 96 

Family With Sequence Similarity 129 Member A FAM129A Hs00223000_m1 94 

Four And A Half LIM Domains 1 FHL1 Hs00740811_m1 139 

Fibronectin 1 FN1 Hs00365052_m1 82 

C-FOS, Fos Proto-Oncogene, AP-1 Transcription Factor 
Subunit 

FOS Hs99999140_m1 77 

 Frizzled-related protein  FRZB Hs00173503_m1 108 

Glyceraldehyde-3-Phosphate Dehydrogenase GAPDH Hs99999905_m1 122 

HECT And RLD Domain Containing E3 Ubiquitin Protein 
Ligase Family Member 1 

HERC1 Hs00187497_m1 83 

Histone Cluster 1 H1 Family Member C HIST1H1C Hs00271185_s1 97 

Insulin Like Growth Factor 1 IGF1 Hs00153126_m1 70 

Immunoglobulin Heavy Constant Gamma 1  IGHG1 Hs00378340_m1 98 

Interleukin 32 IL32 Hs00170403_m1 54 

Melusin,   Integrin Subunit Beta 1 Binding Protein 2 ITGB1BP2 Hs00183746_m1 72 

Jun Proto-Oncogene, AP-1 Transcription Factor Subunit JUN Hs99999141_s1 64 

Anosmin 1 KAL1 Hs00608006_m1 90 

Kruppel Like Factor 10 KLF10 Hs00194622_m1 71 

Large Tumor Suppressor Kinase 2 LATS2 Hs00324396_m1 65 

Leucine Rich Repeat Containing G Protein-Coupled 
Receptor 5 

LGR5 Hs00173664_m1 112 

Lysyl Oxidase Like 2 LOXL2 Hs00158757_m1 62 
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Myoglobin MB Hs00193520_m1 105 

MYC Proto-Oncogene, BHLH Transcription Factor MYC Hs00153408_m1 107 

Myosin Heavy Chain 3 MYH3 Hs00159463_m1 65 

Myosin Light Chain 5 MYL5 Hs00267323_m1 59 

Myosin Light Chain 6B MYL6B Hs00365997_g1 90 

Myomesin 3 MYOM3 Hs00537054_m1 65 

Myotilin MYOT Hs00199016_m1 57 

Pyruvate Dehyrogenase Phosphatase Catalytic Subunit 1 PDP1 Hs00372607_m1 70 

6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 
3 

PFKFB3 Hs00190079_m1 77 

3-Hydroxyacyl-CoA Dehydratase 1 PTPLA Hs00171965_m1 74 

S100 Calcium Binding Protein A6 S100A6 Hs00170953_m1 94 

S100 Calcium Binding Protein A8 S100A8 Hs00374263_m1 70 

Sodium Voltage-Gated Channel Alpha Subunit 7 SCN7A Hs00161546_m1 109 

Semaphorin 3C SEMA3C Hs00170762_m1 78 

Solute Carrier Family 2 Member 5 SLC2A5 Hs00161720_m1 57 

SMG1, Nonsense Mediated MRNA Decay Associated 
PI3K Related Kinase 

SMG1 Hs00247891_m1 77 

Secreted Protein Acidic And Cysteine Rich SPARC Hs00234160_m1 76 

TATA box binding protein TBP Hs00427620_m1 91 

Transferrin Receptor TFRC Hs00174609_m1 79 

Troponin I1, Slow Skeletal Type TNNI1 Hs00268531_m1 71 

Thioredoxin Interacting Protein TXNIP Hs00197750_m1 81 

Very Low Density Lipoprotein Receptor VLDLR Hs01045922_m1 98 

 

bp= base pair. 
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Table 5. Antibodies.  

Western blot analysis             

       
Protein  Reference Brand 

Polyclonal/
monoclonal 

Specie 
1st Ab 

dilution 
2nd Ab 

dilution  

       Primary antibodies 

       AKT #9272 CST Polyclonal Rabbit 1:1000 1:5000 

Active β-catenin  #05-665 Millipore Monoclonal Mouse 1:1000 1:5000 

Alkaline phosphatase, ALP AF2910 R&D Systems Polyclonal Goat 1:200 1:3000 

Alpha smooth muscle 
actin, αSMA  

ab5694 Abcam Polyclonal Rabbit 1:400 1:3000 

Atrogin-1/Fbx32 ab92281 Abcam Polyclonal Goat 1:1666 1:5000 

Calpain 3 COP-080049 Cosmobio Polyclonal Goat 1:1000 1:3000 

Beclin 1 #4122 CST Monoclonal Mouse 1:1000 1:5000 

BNIP3 ab10433 Abcam Monoclonal Mouse 1:1000 1:5000 

ERK sc-93 Sant cruz Polyclonal Rabbit 1:1000 1:5000 

FoxO1 #2880 CST Monoclonal Rabbit 1:1000 1:5000 

FoxO3a #12829 CST Monoclonal Rabbit 1:1000 1:5000 

GAPDH (14C10) #2118 CST Monoclonal Rabbit 1:1000 1:5000 

GSK3Bβ #9315 CST Monoclonal Rabbit 1:1000 1:5000 

ITGβ1 MAB2251 Millipore Monoclonal Mouse 1:1000 1:5000 

ITGβ1A AB1952 Millipore Polyclonal Rabbit 1:1000 1:5000 

ITGβ1D MAB1900 Millipore Monoclonal Mouse 1:300 1:3000 

Ky ab108011 Abcam Polyclonal Rabbit 1:500 1:5000 

Melusin ab62300 Abcam Polyclonal Rabbit 1:400 1:5000 

MuRF1  MP3401 
ECM 

Bioscience 
Polyclonal Rabbit 1:1000 1:5000 

MyHC A4-1025 DSHB Monoclonal Mouse 1:10000 1:20000 

MyoD  M351201 DAKO Monoclonal Mouse 1:1000 1:5000 

Myogenin ab124800 Abcam Monoclonal Rabbit 1:1000 1:5000 

NG2 AB5320 Millipore Polyclonal Rabbit 1:1000 1:3000 

P-AKT (Ser473) #4060 CST Polyclonal Rabbit 1:1000 1:3000 

PDGFRβ #3169 CST Monoclonal Rabbit 1:1000 1:3000 

P-ERK1/2 (Thr202/Tyr204) #9101 CST Polyclonal Rabbit 1:1000 1:5000 

P-FoxO1 (Ser256) #9461 CST Polyclonal Rabbit 1:1000 1:5000 

P-FoxO1 (Thr24)/P-
FoxO3a (Thr32)/P-FoxO4 
(Thr28) 

#2599 CST Monoclonal Rabbit 1:1000 1:5000 

P-FoxO3 (Ser253) #13129 CST Monoclonal Rabbit 1:1000 1:5000 

P-GSK3β (Ser9) #9323 CST Monoclonal Rabbit 1:1000 1:5000 

P-p70 S6 kinase (Thr389) #9205 CST Polyclonal Rabbit 1:1000 1:5000 

P-p70 S6 kinase 
(Thr421/Ser424) 

#9204 CST Polyclonal Rabbit 1:1000 1:5000 
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Ab= antibody, CST= Cell Signaling Technology and DSHB= Developmental Studies Hybridoma Bank. *= 

Antibodies produced at host lab.  

Secondary antibodies 

  

Anti-rabbit IgG, HRP-linked antibody #7074 CST 
    Donkey α Goat, HRP-linked antibody SC-2020 Santa cruz 
    Goat α Rabbit, HRP-linked antibody SC-2004 Santa cruz 
    Rabbit α Goat, HRP-linked antibody P0449 DAKO 
    Rabbit α Mouse, HRP-linked antibody P0260 DAKO 
    

       Immunofluorescence analysis             

 
Protein  Reference Brand 

 Polyclonal/
monoclonal 

Specie 
1st Ab 

dilution 
2nd Ab 

dilution  

  

Primary antibodies 

  

Alkaline phosphatase, ALP AF2910 R&D Systems Polyclonal Goat 1:20 1:500 

Alpha smooth muscle actin, 
αSMA  

ab5694 Abcam Polyclonal Rabbit 1:500 1:500 

Ki67 556003 BD Bioscience Monoclonal Mouse 1:300 1:500 

MyHC A4-1025 DSHB Monoclonal Mouse 1:50 1:500 

MyHC* 
 

DSHB 
 

Mouse 1:20 1:500 

MyoD SC-760 Sant cruz Polyclonal Rabbit 1:50 1:500 

Myogenin* 
 

DSHB 
 

Mouse 1:10 1:500 

NG2 AB5320 Millipore Polyclonal Rabbit 1:500 1:500 

PDGFRβ #3169 CST Monoclonal Rabbit 1:50 1:500 

Perilipin A/B P1873 Sigma Polyclonal Rabbit 1:300 1:500 

Sarcomeric alpha actinin ab72592 Abcam Polyclonal Rabbit 1:500 1:500 

       Secondary antibodies 

       Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary 
Antibody, Alexa Fluor 594 

A-21203 Thermo Scientific 

    Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary 
Antibody, Alexa Fluor 488 

A-21206 Thermo Scientific 

    Donkey anti-Goat IgG (H+L) Highly Cross-Adsorbed Secondary 
Antibody, Alexa Fluor 488 

A-11055 Thermo Scientific 
    

Goat anti-Mouse IgG (H+L),  Highly Cross-Adsorbed Secondary 
Antibody, Alexa Fluor® 555 conjugate 

A-21422 Thermo Scientific 

    Goat anti-Mouse IgG (H+L), Highly Cross-Adsorbed Secondary 
Antibody, Alexa Fluor® 488 conjugate 

A-11001 Thermo Scientific 

    Goat anti-Rabbit IgG (H+L),  Highly Cross-Adsorbed Secondary 
Antibody,  Alexa Fluor® 555 conjugate 

A-21428 Thermo Scientific 

    Goat anti-Rabbit IgG (H+L),  Highly Cross-Adsorbed Secondary 
Antibody,Alexa Fluor® 488 conjugate 

A-11034 Thermo Scientific 
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Table 6. Mediums compositions for human primary cells cultures.  

Conditioned medium  Freezing medium  

Component 
Final 

concentration Component 
Final 

concentration 

M-199   DMEM   
FBS 37.5% FBS 10% 
penicillin/streptomycin + 
Fungizone  1.25% 

Penicillin/streptomycin + 
Fungizone  1% 

    DMSO 8% 
 

 

Proliferation medium  Differentiation medium 

Component 

Volume 
(ml) 

  

Volume 
(ml) 

D-MEM  64.8 D-MEM  71.25 

M-199  21.6 M-199  23.75 

FBS  10.0 FBS  2 

Insulin 1 mg/ml 1 Insulin 1 mg/ml 1 

Glutamine 200 mM 1 Glutamine 200 mM 1 

Fibroblast growth factor 5 μg/ml 0.5 Penicillin/streptomycin + fungizone  1 

Epidermal gowth factor 10 μg/ml 0.1     

Penicillin/streptomycin + fungizone 1     
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APPENDIX III: Publications.  
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