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Abstract

This work falls within the scope of computer-aided optimal design, and aims to integrate the topology optimization procedures
and recent additive manufacturing technologies (AM). The elimination of scaffold supports at the topology optimization stage
has been recognized and pursued by many authors recently. The present paper focuses on implementing a novel and specific
overhang constraint that is introduced inside the topology optimization problem formulation along with the regular volume
constraint. The proposed procedure joins the design and manufacturing processes into a integrated workflow where any com-
ponent can directly be manufactured with no requirement of any sacrificial support material right after the topology optimization
process. The overhang constraint presented in this work is defined by the maximum allowable inclination angle, where the
inclination of any member is computed by the Smallest Univalue Segment Assimilating Nucleus (SUSAN), an edge detection
algorithm developed in the field of image analysis and processing. Numerical results on some benchmark examples, along with
the numerical performances of the proposed method, are introduced to demonstrate the capacities of the presented approach.

Keywords Topology - Optimization - Additive manufacturing - 3D Printing - Overhang

1 Introduction

A topology optimization problem consists in the formulation
of a lay-out problem, where the goal is to find the optimal
distribution of material in a specific region, according to the
applied loads, the possible support conditions, the volume of
the structure to be constructed and possibly some additional
design restrictions. The first topology optimization method
(the so called homogenization method) was proposed by
Bendsege and Kikuchi (1988). In this method porous
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microstructures are assumed to relax the optimization problem
since the binary discrete setting for structural compliance de-
signs is known to be ill-posed. However, the determination
and evaluation of optimal microstructures and their orienta-
tions was cumbersome if not irresolvable, and the resulting
structures could not be built as there was not associated length
scale to these microscopic materials. Alternatively, density
based methods were proposed, where the design variables
are the elemental densities representing solid material or void.
In order to approximate the solution to a discrete solution,
material properties are scaled according to the density value
of each element. One can find several approaches as the Solid
Isotropic Material with Penalization approach (Bendsoe
1989), the Rational Approximation of material property ap-
proach (Stolpe and Svanberg 2001) and the SINH method
(Bruns 2005) in the literature.

At present the SIMP method can be stated as the most
popular topology optimization method, but apart from this
approach there is an extensive amount of other alternative
methods. Some are based on more heuristic concepts, such
as the evolutionary methods, which have undergone great de-
velopment over the past decades. Among all its variants, the
Bi-directional Evolutionary Structural Optimization (BESO)
method and the Sequential Element Rejection and Admission
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(SERA) approaches have been extensively investigated
(Huang and Xie 2010; Querin et al. 2017). Some other
methods explore shape and boundary variation and can be
considered relatively new, like Topological Derivative
methods (Sokolowski and Zochowski 1999) and Level
Set methods (Allaire et al. 2004; Wang et al. 2003).
Other recent approaches that recall shape and size optimi-
zation procedures for topology optimum design are the
Moving Morphable Conponent (MMC) and the Moving
Morphable Void (MMV) methods, introduced in Guo et
al. (2014) and Norato et al. (2015), where the topology
optimization problem can be solved based on explicit ge-
ometry description. These methods were further improved
in (Zhang et al. 2016, 2017) and (Gou et al. 2016). A
comprehensive review of these methods can be found in
the monograph by Bendsoe and Sigmund (2003), the gen-
eral survey by Deaton and Grandhi (2014) and the compar-
ative review by Sigmund and Maute (2013).

Even if topology optimization has shown to be a powerful
technique that allows for increasingly efficient designs, be-
cause of the complexity and intricacy of the solutions obtain-
ed, it was often constrained to research and theoretical studies
(Zegard and Paulino 2016). Recently, Additive Manufacturing
is filling the gap between topology optimization theory and its
application. AM is a rapidly evolving field that first emerged
in the 1980s, and by now, because of the important technolog-
ical developments, one can directly manufacture end-used
parts, opening the design process to new challenges (mate-
rials, shape and internal structures) and enhancing the design
freedom (Ponche et al. 2014). Hitherto, along with technolog-
ical development, a large variety of AM processes have been
proposed, for both metallic and plastic materials. However,
and although AM overcomes the limits currently imposed
by the conventional manufacturing technologies, the process-
es based on powder beds and polymer materials still present
construction limitations and there are some technical con-
straints that must be satisfied in order to generate consistent
geometries (Doubrovski et al. 2011). These constraints in-
clude the minimum member size, the overhanging distance
and the member inclination (Chang and Tang 2001; Leary et
al. 2013). Extremely thin members cannot be properly printed
if that thickness is below the minimum allowable thickness of
the tool. The fabrication overhang angle is another example of
a rule which is of great importance to ensure that the part will
not collapse during the layer adding process when additive
manufacturing is used. Generally the inclination of a member
is described as the angle between the base plate and the down
facing contour. This is similar to considering the angle be-
tween the material growing direction and the vector normal
to the contour. In this work, the member inclination referred to
the material growing direction will define the overhang and
whether it is properly supported or not. The theoretical thresh-
old for the overhanging angle from which the member is
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considered non self supported is commonly considered to be
45 degrees (Daniel 2009), though there are some authors that
propose that not only the overhanging angle but the combina-
tion of overhanging angle and overhanging length should be
considered (Vayre et al. 2012). Other authors propose different
values for that angle, ranging from 20 to 45 degrees (Leary et
al. 2014). A structure satisfying such an overhang angle con-
straint is called self-supporting. For a non self-supporting
structure to be manufactured, its geometry has to be modified
or additional support structures need to be generated. Such
support structures are formed during the fabricating process
so that the primary object can be manufactured layer by layer
without collapsing. This is very time-consuming and a waste
of material, rising the issue of further post-processing activi-
ties to remove the unwanted supports.

Modifying the geometry manually in order to fulfill the
overhang constraint may ultimately reduce the structure’s
physical performance and lead to structures with a compliance
that is far from the optimum support-needed structure. Since
the idea of coupling topology optimization and AM was for-
mulated, many different considerations have been proposed
but generally we can group them in three main groups, de-
pending on the level of engagement between the two technol-
ogies. In the first group we find the standard topology optimi-
zation process, where once the structure is optimized, the
supporting material is added where it is required during the
manufacturing process. A second level engagement (Leary et
al. 2014; Hu et al. 2015) gathers strategies that consist in
adapting the optimized design to AM processes. Once the
topology optimization is over, the generated geometry may
or not be suitable for AM. In case the use of scaffold structures
is not an option, the designer proceeds to introduce some
manual changes on the geometry adapting it to the fabrication
process. These engagement strategies include a critical step
where designer’s experience plays an important role. This step
is where the designer introduces manually the changes on the
post topology optimization geometry and creates some varia-
tions of that geometry in order to avoid bad supported over-
hanging members. Hence, there is a level of interference and
uncertainty with the new level of optimality and deterioration
of'the structures’ physical performance. Finally, the third level
engagement considers the strategies involving a total integra-
tion of topology optimization and AM processes by introduc-
ing the overhang constraint into the design process, which
enables a final result that can be directly manufactured and
shows and acceptable compliance ratio with respect to the
non-supported reference optimum structure. The main advan-
tage of this approach is a total integration of topology optimi-
zation and design process with the AM procedure.

This paper progresses in this line of work and presents a
new topology optimization approach that helps to design op-
timal self-supporting structures, which are ready to be fabri-
cated via additive manufacturing without the usage of manual
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modifications or additional support structures, so that their
associated optimal compliance is close to that of the reference
structure. A strategy to solve the issue of designing a
completely self-supporting structure via topology optimiza-
tion was presented by Brackett et al. (2011), where the over-
hang angle was included in the optimization problem but did
not produce a complete self-supporting structure. Gaynor and
Guest (2016) introduced a wedge-shaped filter during the op-
timization process to obtain self-supporting structures.
Recently, Langelaar presented a novel self-supporting filter
into the topology optimization process, which is achieved
via building smooth approximations to the minimum and
maximum functions (Langelaar 2016a, b). Also very recently,
Qian (2017) has proposed a density gradient based approach
for undercut and overhang angle control in topology
optimization. Recently, Guo et al. (2017) introduced a novel
formulation for AM—oriented topology optimization where
the corresponding problem can be solved in a geometrically
explicit way and simultaneous optimization of the self-
supporting structural topology and the angle of working plane
is achieved for the first time. Theoretical issues associated
with AM—oriented topology optimization are also discussed
in this work, which are important to examine the effectiveness
of different approaches.

The approach proposed in this paper follows a different
way and develops a novel global inequality constraint for
the overhanging angle which is included explicitly in the to-
pology optimization formulation problem. This constraint can
be easily added to the problem formulation as an additional
inequality constraint along with the regular volume constraint
for compliance minimization problems, and coupled with tra-
ditional mathematical programming optimization algorithms,
like the Method of Moving Asymptotes (Svanberg 1987). The
constraint that is proposed in this paper refers to the ratio
between acceptable and not acceptable material members,
and is based on the evaluation of self-supported “contours”,
instead of the traditional formulation of supported and un-
supported “elements”. The methodology used to identify
and control the inclination of members is based on an
edge detection algorithm developed by Smith and Brady
(1997) in the field of image processing, known as the
Smallest Univalue Segment Assimilating Nucleus
(SUSAN). The implemented procedure allows the designer
to specify not only any critical overhang angle and printing
direction, but also the tightness of the constraint through a
harshness parameter that controls the ratio of self-
supported contours. The capacities of this approach are
demonstrated with extensive numerical examples and ob-
tained results are compared with previous studies.

Finally, making a comparison of the proposed method with
other methods existing in the literature, the following aspects
could be highlighted. Most of previous works need the incor-
poration of filters that must be included in the traditional

density-based topology optimization procedures (Serphos
2014), or they introduce some sort of additional constraints
to control several problems like lateral overhangs and the
grayness level of the density field (Qian 2017). On the con-
trary, the method proposed here needs only a single overhang
constraint, defined as a relative value instead of an absolute
value, which allows controlling the impact of the restriction
casily and makes it straightforward to choose an adequate
value for it. Concerning the SUSAN algorithm adopted for
edge detection, it must be said that the choice of this algorithm
was not casual, since it has been demonstrated that it is ex-
tremely efficient for contour detection. The inclination of the
members is detected precisely and locally along the full con-
tour of the structure, while other methods may require intro-
ducing a series of auxiliary constraints to efficiently detect not
self-supported edges and singular parts (Guo et al. 2014). Its
extension to 3D problems is also straightforward, as it can be
checked in the work by Walter et al. (2009a, 2009b).

2 Edge detection and overhang constraint

In this section the contour detection algorithm and the self-
supporting constraint are formulated, which will be integrated
within the modified SIMP framework in terms of the element
density, also known as RAMP parameterization. First we shall
develop a tool based on edge detection capable of finding
forms and shapes in a grey-scale topology optimization model
that will be used to evaluate the amount of feasible and non-
feasible contours during the topology optimization iterations.
Following on from this, we will present the proposed explicit
overhang constraint and use it for analysis and sensitivity
analysis of the manufacturability of the structure. A brief de-
scription of the well known Heaviside projection technique
for density filtering is also included at the end of the section,
since it will be used later for the sensitivity analysis.

2.1 Contour evaluation algorithm

In order to obtain a magnitude that describes the overhang
situation of the structure, we will start from an edge detection
algorithm that is typically used in image processing, but here
the pixel intensity is substituted by the element material den-
sity. The adopted algorithm is called Smallest Univalue
Segment Assimilating Nucleus also known as SUSAN. The
performance of this algorithm is based on sweeping images
(domains) with circular masks along them and analyzing the
image intensity gradient created by the pixels covered by the
mask. It counts the value that characterizes the similarities
between each pixel of the image and its neighborhood
(Mokrzycki and Samko 2009). This edge detection algorithm
is adopted here since it has already shown its reliability and
effectiveness in the field of image processing. The information

@ Springer



2006

A. Garaigordobil et al.

about edge location that this method reports is as close as
possible to the correct position, the number of false negatives
and false positives is minimum and it is fast enough to be
usable in an optimization system that uses iterative evaluation
of functions (Fynbo et al. 2001). The masks are located so that
the element in the center of the mask matches the element
being analyzed. In order to adapt the algorithm to the design
space the mask used will be squared with a size of 3 x 3 (see
Fig. 1). Higher size masks could be chosen but it is not rec-
ommended since they generate a blurring of the spatial infor-
mation which may produce inaccurate results. The contour
detection algorithm works calculating the density gradient to
detect geometric boundaries. The inclination of this gradient is
of great importance as the overhanging angle is stated as the
deviation between this gradient and structure’s growing direc-
tion. The density gradient offers some unique properties that
are helpful and that are used to facilitate the process: the den-
sity gradient joints the geometrical center and the gravity cen-
ter of the mask pointing always to the gravity center, the gra-
dient vector is always normal to the boundaries, and the mod-
ule of the vector defines the existence of a possible boundary.
Quick variations of the density are presented by high values of
the density gradient module and represent the closeness to a
border.

To obtain the density gradient the coordinates of vector v,
(Xcq Veg) Which represents the gravity center of the actual 3 x 3
mask are calculated first in the xy reference system. This vec-
tor is calculated using (1) and (2) from mechanics in the fol-
lowing way:

9
I x;p,dA 2 Xip;
A i=1

Xeg = = (1)
dA J
J; pi Zl Pi
9
.[y,p,dA ;1 yipi
ycg = -[ = 79 (2)
dA
Pi Z Pi

Fig. 1 Contour evaluation
procedure based on a 3 x 3 mask

where x; and y; are the local coordinates of the center of the
elements inside the mask and p; represents the density of each
element inside the mask. Coordinates x; and y; are calculated
with respect to a local xy coordinate system whose origin
matches the geometric center of the mask. Here we have con-
sidered a regular quadratic grey map so the surface area A; of
the finite elements in the mesh can be left out of the equation.
The information supplied by this vector is a direction and a
weight, i.e., the length of the vector for each element, where
the weight is a measure of the element’s quality as an edge.
Masks in areas of uniform density will have centers of gravity
close to the geometrical centre, and the weight will therefore
be small. As it will be shown in the next chapter, comparing
the direction given by the gradient with the growing direction
of additive printing, it is possible to compute both the devia-
tion of the contour inclination from the limit value of the
overhanging angle and to quantify a mean value of the allow-
able and non-allowable edges forming the topology of the
structure.

Finally and concerning structure edge detection, it must be
noted that an expanded dummy finite element mesh is intro-
duced in the background, so that we can take into account the
outer boundaries of the rectangular design domain
(Garaigordobil et al. 2017). This dummy mesh consists of
the regular mesh that defines the density distribution and
two additional rows and columns of elements bordering the
boundary of the design domain. The density of these dummy
elements is taken to be zero as they always correspond to the
outside of the design region, except at the lower boundary
where the plate of the printing machine is located and density
is equal to one. Obviously, this auxiliary mesh is for contour
detection purposes only and it is not considered during the
finite element analysis of the structure. Figure 2 shows how
effective the contour extraction based on this technique is
when applied to the geometry obtained from the solution of
a topology optimization problem. Light areas correspond to
elements that are close to the border of the structure, while
dark elements represent material or void areas which are lo-
cated far from the edges of the structure.

material
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Fig. 2 Grayscale plot of gradients after contour detection
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2.2 Overhang constraint

The main objective of this work is to develop an efficient and
versatile constraint for controlling the overhanging angle or
member inclination. Generally the overhanging angle is pre-
sented with respect to the platform or base-plate, however, in
the following pages, seeking for a better understanding of the
calculation, this angle will be calculated respect to the grow-
ing direction. Here, the overhang angle « is the relative angle
between the growing direction and the edge gradient vector
Ve Since the gradient vector is always normal to the edge of
the member, the angle a will represent also the physical incli-
nation of any boundary referred to the base-plate. Hence, any
member is considered self supported if the overhang angle o
overcomes a predefined threshold angle v (see Fig. 3).

In order to build the proposed overhang constraint, the
density gradient v, of each mask will be compared with
the growing direction, a direction that is defined by the
designer with the unitary vector r that is normal to the
plate. The deviation between these two vectors is the angle
previously named as «. This angle is compared with the
limit value of the overhanging angle defined by the design-
er, which stands as ¢. The designer is free to choose the

growing

" . r
direction

material

\ inadmissible /
\ /
member

region /
/

Fig. 3 Allowable inclination of material members for additive
manufacturing

value of 1), that is, the critical value for the member incli-
nation «, among the different values proposed in the bib-
liography which depends on the material and the
manufacturing process used. Hence, the application of the
procedure described here for any value of the overhang
angle is straightforward, as it will be shown later. These
two angles may be compared to calculate the deviation
between the gradient vector v, and the allowable vector
vy, for each mask using the function named ¢(p), which
depends on the density distribution vector pof the mask
and should be non positive:

_ cos(a)

- cos(y)

I.Veg

E «cos(1))

o(p) -1<0 (3)

| Veg

As it can be seen in Fig. 3, when the value of function ¢ is
larger than zero, the contour defined by the material densities
associated to the central element in that mask is said to be not
supported. However, in order to avoid potential indetermina-
tions when |v¢,| =0, (3) will be reformulated here
reconsidering a different equation. Rather than comparing an-
gles, we shall compare the vertical projection of the density
gradient (y.,) and the vertical projection bound (y,;) of vector
vy, building a new function to evaluate the deviation between
admissible and inadmissible gradient vectors for the contours
associated to each mask:

Plp) =150 (4)

Effectively, we can use any of these equations for our pur-
poses, as it will be shown immediately. After substituting the
components of vectors r and v, and operating we can get:

xr'xcg +yr'ycg_\/ xgg +y%gCOS(1/J) <0 (5>

|[Veg|cos(v) -

I.Veg

]ch]-cos(w) -

Since (5) is compared to 0 so that bad supported elements
are detected, we can simplify the expression considering only
the numerator in the following way:

XrXeg T VrVeg™/ ng +y§g005(¢)50 (6)

For a growing direction perpendicular to a horizontal base
plate, that is, r= (O,I)T, we get:

Veg™\/¥eg T VE,c08(1) <0 (7)

Rearranging terms and calculating the square of right
and left hand side terms, after some trigonometric sub-
stitutions the following equation is obtained, where the
negative root is not considered because it would result in
an imaginary solution.
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32,= (2, 432, ) eost (1) 22, (1-c0s (1)) a2 cos? ()=
3y5g5in2 () nggcosz (¥) 2V + xcg/tan(w)
(8)
A negative value of the y,, coordinate always corresponds

to an admissible edge, therefore we will always consider the
positive value of the right hand side of (7):

e

It can be seen in Fig. 3 that the right hand side of (9)
represents the maximum allowable vertical projection of the
gradient vector, previously denoted by y,,.. Therefore (3) and
(4) are equivalent and both of them can be used to decide if a
contour is admissible or not. This expression will be of great
importance later for the definition of the global constraint
function proposed in this work, so it will be normalized in
the following way:

B(9) = Vegsint—xeg -cosp<0 (10)

It can be seen in (10) that now there is not any issue with this
alternative expression because the term in the denominator
that could became null has been eliminated. Once again, when
 is positive the central element in that mask is said to be not
supported because the vertical projection of the contour’s gra-
dient is larger than the allowed projected vertical length.
Moreover, it can be demonstrated easily that (10) corresponds
to the cross product of vectors v, and the unitary vector vy,
considering both vectors located in the first quadrant, since we
want the same behavior for vector that are symmetric with
respect to the vertical growing direction.

The (10) will be used to classify the contours associated to
each of the m masks in the design domain. If the angle «
overcomes the angle v, then that mask is said to be properly
supported and it will be verified that ¢,, <0. On the other
hand, if « is smaller than ¢/ a non appropriate contour is
detected and ¢, > 0, so it is possible to divide the masks into
two groups, ¢~ and ¢ *, where the absolute value of the sum
in each of the groups represents an amount of appropriate and
non appropriate contours in the structure, respectively, that is:

M
¢ (p) == X min(0,p,,(p)n,) (11)

m=1

ot (p) =~ 3 max(0, op (o)) (12)

m=1

where M corresponds to the total number of masks in the
design domain and 7, represents a weighting factor defined
as the sum of the elements’ densities in the mask (13). This
factor is a constant for each mask and for each iteration and
when multiplied with ¢, reflects the quality as an edge of the
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grey scaled contour associated to the corresponding mask,
since elements with high densities produce better defined
shapes than elements with low ratios of material.

9
T = 2 A1 (13)
fa

Once the previous classification is done, we can introduce
the new global constraint that is proposed in this work. This
constraint is defined as the ratio between the value of self
supported contours (¢ ) and the total amount of admissible
and inadmissible contours (¢~ + "), which should be gener-
ally as close as possible to one in order to obtain a solution free
of non supported contours. The value of this ratio will be of
great help to control the support-free manufacturability of the
final optimum solution, so it will be considered as a tunable
harshening parameter named @, depicting the “overhang rate”
of the structure. Changes of this parameter have a direct effect
on the final optimum solution, as it is described in the section
that covers the numerical application examples at the end of
the paper. (14) represents this additional global constraint that
will be added to the general topology optimization formula-
tion problem.

= y(p)
20 = e () o (14)

2.3 Density filtering and heaviside projection

A common problem in topology optimization of continuum
structures is the occurrence of checkerboard patterns, or
regions of alternating solid and void elements, in the final
solution. This phenomenon of alternating presence of solid
and void elements ordered in a checkerboard like fashion
makes the interpretation of optimal material distribution
and geometric extraction for manufacturing difficult. Diaz
and Sigmund (1995) and Jog and Haber (1996) showed that
checkerboards are not optimal but rather result from numer-
ical instabilities. A large amount of literature exists on
preventing checkerboards patterns and mesh dependence.
Popular approaches are to restrict the design space placing
a constraint on the total perimeter of the structure so that
solution exists for the original continuum problem (Haber
et al. 1996) or to filter the values of sensitivities (Sigmund
and Peterson 1998), which have been used extensively in a
significant amount of works. In this work we will adopt a
Heaviside projection method (Bourdin 2001), since density
filters have demonstrated to be more robust than sensitivity
filtering schemes. First, an intermediate field of filtered
design variables p, is obtained using a weighted average
function in the following way:
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where w; is the weight factor, S, is the set of i elements in
the domain of influence of element e, that is, the set where
the center-to-center distance to element e is smaller than the
filter radius r,,;,:

(15)

w; = max (0, ryin—|dist(e, i)|) (16)
The smoothing operation above limits the space of possible
designs and solves the mesh dependency problem. However,
the smoothness of the designs also implies gray transition
zones at the interface between material and void phases
(Guest et al. 2004). In order to avoid these gray zones, a
projection step is added to the density filter where intermedi-
ate densities are projected by means of a regularized Heaviside
function. In this work a continuous approximation of the
Heaviside function based on the hyperbolic tangent function
is used (Wang et al. 2011), where the values of p, below T'are
projected to 0 and the values above are projected to 1:

__ tanh(B.T) + tanh(3.(p,~T))
Pe = tanh(B.T) + tanh(B.(1-T))

(17)

where 3 is a scaling parameter which controls the steepness of
the continuous approximation of the Heaviside function and T
is the threshold parameter of the Heaviside function. The
projected densities p, are referred to as the physical densities
and will substitute the regular density design variables; there-
fore we will always present the projected density field p,
rather than the original density field p, as the solution to the
optimization problem. Similarly, the objective and constraint
functions will be computed usign physical densities, provided
that the variable p, is replaced with p,. It must be noted that
the sensitivities in the topology optimization problem become
increasingly ill-conditioned for high values of the parameter /3
and a continuation scheme on the parameter (3 is usually nec-
essary during the optimization process (Andreassen et al.
2011). When working with large values of 3 using the default
MMA approach as we do in this investigation, the sharpness
of that approximation to the step function may generate
aggressive oscillations. Therefore, there are some adjust-
ments that should be considered when a continuation
scheme is applied, since there is an iteration from which
its value is great enough to generate these oscillations. The
required parameter adjustments that should be included in
the code when the MMA algorithm is adopted can be found
in the paper by Guest et al. (2011), which basically consist
in modifying the distance of the asymptotes from the cur-
rent point in terms of the parameter 5. Similarly, we will
also make use of the continuation scheme proposed for the
parameter p in the same paper.

3 Problem formulation and sensitivity
analysis

This paper considers the maximum stiffness topology design
where a new global overhang constraint is included in order to
control and minimize the need of scaffold structures in addi-
tive manufacturing of optimized designs. This problem will be
formulated in the following way:

N
minc(p) = U'KU = ¥ E.(p,)ulkoue Compliance  (18)
|

e=

s.t.: K:-U=F Equilibrium (19)
V(p)<Vy Volume (20)
®(p)>P) Overhang (21)
0<p<1 Bounds (22)

where u is the nodal vector of displacements, K is the global
stiffness matrix that depends on element’s £, Young modulus,
F represents the nodal force vector, and K.

is the element stiffness matrix for a solid element. V(p) and
Vy correspond to the volume fraction of the actual iteration
and the maximum allowable volume fraction, respectively.

Finally, &(p) represents the overhang constraint and corre-
sponds to the ratio between the values of allowable and total
number of contours, which should be larger than a specified
value D,.

The RAMP method that converts intermediate densities
less efficient in the optimization will be used. Each element
is assigned a density and its Young’s modulus is still given by
the well known density-stiffness interpolation scheme, but
replacing the regular density variable p, with the physical

density p,.

Eo(p) = Enin + (Eo—Ewin) P, (p) (23)

where p is the penalization parameter, £, is the Young’s
modulus of the solid isotropic phase and E,,;, represents
the modulus of the void material, which is taken to be 107°
in this work.

In the following, the approach for the sensitivity anal-
ysis of the functions depicted in the topology optimization
problem formulation is described. In order to compute the
derivatives of any function f{p) involved in the problem
with respect to the density of each element, we will apply
the chain rule, so that the filtering and projection opera-
tions are considered. The sensitivities of the compliance
and the volume and overhang constraints will therefore be
calculated using the following rule:

or(p) _ of 3p. o,
ape aﬁe aﬁe ape

(24)

@ Springer



2010

A. Garaigordobil et al.

The second and third terms in the right side of the equation
are obtained for any f{p) function as

B1—tanh’ (5-(p,~T))]

e = tanh((5-T) + tanh(5-(1-T)) .
P _ we
ape B ZiESewi (26)

The derivative of the first term on the right hand side of
(24) will vary depending on the nature of function f{p) con-
sidered in each case. It is well known that the derivative of the
compliance with respect to variable p, can be easily obtained
in the following way:

oc(p _rl
) _ —P(Eo=Emin) P,
0P,

ulkoue (27)

The derivatives of the volume constraint with respect to the
projected densities for substitution in the chain rule of (24) can
be obtained in the following way:
ek, (29)

op.
where v, represents the volume of finite element e.
Finally, let us consider the sensitivity computation of the
overhang constraint function with respect to p,. First we
should normalize the inequality constraint shown in (14)
in the following way:

P (p) + 2" (p)
@ (p)
where a different name has been adopted to avoid confu-

sion. Taking derivatives in (29) and omitting density de-
pendence for simplicity we have:

P(p) = Py=1<0 (29)

op- dpt\ _ op,
(24221 )
oP(p) _ @, e 0P, Pe
- _2
P 4
_opt 0y
o
:gso% (30)

The sensitivities of the allowable and non-allowable con-
tours, ¢ and ¢, can be calculated taking derivatives of ex-
pressions (11) and (12):

g Pm(p)=<0
O (P) M o (p) >0 (31)
e 0P,

oP" (p) _
p

Y
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e "o Pulp) > 0

Finally, it is necessary to compute the derivatives of the
contour values of each mask ¢,, for substitution in (31) and
(32). Recalling the function built in (10) for contour evalua-
tion, the derivatives can be obtained with the following ex-
pression:

e T
%u(p) = sinw-ﬁ—cosw- g% (33)
. op. | o,

where the derivatives of the coordinates of the gravity center
can be easily obtained with the relations given in (1) and (2)
and remembering that we are using the physical density vari-
ables for contour evaluation once the smoothing and projec-
tion filters were applied:

2
H
=
©3
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|
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kg
3
=
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|
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Once the sensitivities of objective and constraint functions
are obtained, the topology optimization problem formulated in
(18)—(22) is solved using the Method of Moving Asymptotes
(MMA) developed by Svanberg (1987). MMA minimizes a
set of sequential convex approximations of the original func-
tions enabling the solution of problems with more than one
constraint and is well known to be very efficient in the field of
structural topology optimization. Figure 4 shows the flowchart
of the proposed procedure that summarizes the different loops
considered and the sequence of their application. Once a suit-
able reference domain is chosen, the basic data for structural
analysis should be defined, including loads, boundary condi-
tions, fixed void and solid regions, finite element mesh, etc.
Then the topology optimization problem is defined for com-
putation of the optimal material distribution over the reference
domain, starting with an initial homogeneous distribution of
material. Volume and overhang constraint bounds should be
specified, as well as the normalized growing direction and the
critical allowable inclination of members for additive
manufacturing. After variables are smoothed and projected
in order to obtain the physical density field, the contour eval-
uation loop starts, where the gradients for all the masks in the
design domain are calculated and the overhang constraint val-
ue is obtained. For this distribution, the volume and compli-
ance are computed by the finite element method. Finally,
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Define design domain,
loads, boundary conditions
and finite element mesh

!

Optimization parameters:
final volume, overhang
ratio and critical angle

[
12

Obtain physical field:
smoothing and projection
of densities

l

Contour evaluation:
compute masks’ gradients
and overhang constraint

]

FEM and
sensitivity analysis

l

Update densities:
MMA algorithm

Optimization loop

Convergence
check

End

Fig. 4 Flowchart of the topology optimization procedure with overhang
constraint

sensitivity analysis is performed and densities are updated
with the help of the method of moving asymptotes. This loop
is repeated until only a marginal improvement of the compli-
ance is achieved over the last design. Once the optimization
problem is over and in order to send the component to the 3D
printing machines, the optimal material distribution should be
interpreted so that the designer can build a CAD representa-
tion of the shape. Depending on the harshness parameter se-
lected for the overhang constraint, there may be a little amount
of elements that are badly supported and violate the overhang
constraint, which could be fixed in this stage. However, this is
not always a required step.

4 Numerical examples

To illustrate the functionality of the developed optimization
procedure and the characteristics of the overhang constraint
parameters, several examples are discussed in this chapter. In
all cases a Young’s modulus £, =1 and a lower bound £,,,;, =
107° are used in the RAMP law. As it was mentioned in the
paper, the common practice of a continuation method will be

applied on the RAMP exponent p and the Heaviside parameter
0. The penalization parameter is initially set to 10 and in-
creased by 2 every continuation step until reaching a maxi-
mum penalization of 18 while the Heaviside parameter is ini-
tially set to 5 and increased by 5 until a maximum magnitude
of 25 (Gaynor and Guest 2016; Guest et al. 2011). Finally, the
filter radius in the density filter is chosen equal to 4 times the
size of the element and the threshold parameter T of the
Heaviside function is set to 0.5 unless expressly indicated.
The values adopted for these parameters have shown to be
effective and lead to a very accurate geometry definition. It
should be noted that the value of the filter radius does not
produce particular effects on the proposed strategy and its
influence is similar to traditional topology optimization.
Although it is actually very important in other strategies in
the literature where large filter values are required to regular-
ize oscillations, no remarkable effect is present in this case.
The printing direction is always considered vertical and up-
wards. It must be noted that although scaffold structures can
be avoided in any 2D example if the structure layout is placed
in the horizontal plane of the printing machine, they are still
valid to demonstrate the proposed approach’s ability in han-
dling overhang constraints if required.

4.1 Two bar structure example

First this benchmark example is introduced as an academic
application to understand the effectiveness of the previously
described procedure for both boundary detection and optimi-
zation of the overhanging angle. The design domain and
boundary conditions for the topology optimization problem
are shown in Fig. 5. The design domain is a rectangular area
with a width W and height H=W/3. A concentrated unitary
load F is applied at the middle point of the top edge while
the bottom edge of the design domain is clamped. The design
domain is discretized with 120 x 40 equally-sized square finite
elements. The maximum volume fraction for the minimum
compliance problem is chosen equal to 0.2, and the ratio of
admissible contours in the overhang constraint is set to 0.97.
In order to check the ability of the proposed algorithm to find
optimum topologies without members that exceed the

. o

Wi3

120 x 40 elements

w
Fig. 5 Design domain for the two bar structure example
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allowable inclinations for subsequent additive manufacturing,
four different angles are considered in the overhang constraint:
45°, 60°, 80° and 90°. The analytic solution for this topology
optimization problem is already known and corresponds to a
truss-like structure with two bars forming 45° with the base of
the reference domain. This means that if the allowable angle
for member inclination is equal or less than 45°, we always
obtain the result shown in Fig. 6a, because the optimum shape
always fulfils the overhang constraint. When higher angles are
introduced for the overhang constraint, this shape becomes
inadmissible for additive manufacturing and the algorithm
redirects the optimization process to find again the stiffest
two bar truss-like structure with admissible inclination of
members. As it can be seen in Fig. 6b, ¢ and d, the slope of
the inner walls grows gradually in order to fulfill the admissi-
ble angle specified in the overhang constraint, while the slope
of'the outer contour is free to adopt any shape since it does not
have any influence in the formation of scaffold structures. In
this sense, the bound of 90° is particularly interesting because
in this case there is not allowed any hole inside the structure,
since it would necessarily lead to a non-allowable contour.
Actually, for a limit angle of 90° every density gradient should
be horizontal or be pointing downwards, hence, y., must be
equal o lower than zero.

4.2 Cantilever beam

The next example solves the problem of optimizing the mate-
rial distribution with an overhang restriction in the cantilever
beam shown in Fig. 7. The design domain has a height H and
length L =2H. The left edge of the domain is clamped and a
unit point load is applied at the center of the right edge. The
maximum volume fraction allowed is 50% of the volume of
the full design domain and it is discretized using 160 x 80 unit
sized finite elements. The ratio of admissible contours in the
overhang constraint is 0.97. In Fig. 8 the overhang boundaries
that would eventually need some sacrificial support material
are highlighted with dotted lines, assuming that the minimum

(a) (b)

() (d)
Fig. 6 Optimum topologies for different critical angles a 45° b 60° ¢ 80°
and d 90°
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Fig. 7 Design domain for the cantilever beam example

allowable inclination of members so that they can be
manufactured by AM processes is 45°. This exercise is very
appropriate to demonstrate the capacities of the algorithm to
deal with overhang constraints due to its complexity. It con-
tains several tricky boundaries with remarkable lengths some
of which are virtually horizontal. Figure 9 show the optimum
topologies for the optimization problem with 45°, 60° and 90°
overhang constraints, respectively. It is also used to evaluate
the impact of the objective volume fraction and the grayness
level of the results.

It is worth to mention that the more severe the constraint is,
that is, the larger the allowable angle for member inclination
is, the greater the number of members and holes the optimum
structure shows. Figure 9 shows that these members branch
from the base to the dome of the structure, satisfying the pre-
scribed overhang constraint while they carry the load and give
support to the elements above. When the definitely restrictive
limit angle of 90° is reached, where the presence of any hole
involves a violation of the constraint, the implemented algo-
rithm works coherently and yields a continuum plate filled
with material. It is also noticeable the way the holes are
shaped. Looking at the up-facing contours of the holes, we
can appreciate that they form curves and are rarely straight
segments, however, the down-facing contours, which are
those subjected to the overhang constraint, posses a more
straight segment nature. This behavior complies with the
overhang limitation, as a curved down-facing contour
could have somewhere along the member a tangent with
an inclination that is inadequate and violates the constraint.
For that situation to be avoided, these contours are virtually

Fig. 8 Contours that need scaffold structures in the original optimum
solution
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()

Fig. 9 Optimum topologies for different critical angles a 45° b 60°
and ¢ 90°

straight segments with an inclination that fulfils the speci-
fied overhang constraint.

Concerning the grayness of the optimum design, it can
be seen that the obtained solutions are virtually black-and-
white except for a very low fraction of elements. The gray-
ness level (GL) can be computed with (36) as suggested by
Sigmund (2007), where 7 is the total number of elements,
and the values obtained for the optimized topologies
shown in Fig. 9 are 0.036, 0.058 and 0.012, respectively.
These values are very close to zero and confirm that the
topologies are almost 0—1 solutions.

él 4p; ( 1 _ﬁi)

n

GL = (36)

In order to analyze the effect of the volume fraction on the
final solution, the cantilever example was solved again with
two different volume ratios, representing relatively low and a
high values. In both cases a critical angle of 45° was consid-
ered. When a low target volume is specified, frequently great
voids are created in the non-constrained problem. As big holes
will generally result in not self supported areas and the avail-
able material to introduce supporting members is low, solu-
tions may differ markedly from topologies obtained for larger
volume fractions. Figure 10a show the optimum topology
when the volume fraction is taken to be 0.35, where it can
be seen that material is more localized at the bottom of the
design domain, while the shape of the holes recall the water-

drop geometry used frequently when designing for additive
manufacturing (Guo et al. 2017). On the contrary, for larger
volumes (0,65) the algorithm is free to place the material on
the top and generate a straight member that provides the struc-
ture with greater stiffness (see Fig. 10b).

A key concept in AM processes is the positioning of the
structure to be manufactured in the printing machine, since
depending on that positioning, the amount of non-supported
members in the structure changes, as well as the mechanical
properties that the final structure will present (Hofland et al.
2017). In case of the cantilever beam shown in this example, a
vertical design domain may be more appropriate than the hor-
izontal layout as the non-penalized optimum topology natu-
rally shows members with inclinations close to 45°, suitable to
be manufactured directly without the need of support material
(see Fig. 11a). Moreover, the optimal topology that is obtained
with the vertical setup preserves the symmetry axis of the non-
constrained regular solution. In the following it will be ana-
lyzed the geometry changes that the optimum solution suffers
when different constraint angles are considered with the ver-
tical positioning of the design domain.

Comparing the geometries generated for 45° and 60° over-
hang constraints, there can be noticed some small but mean-
ingful variations in the geometry, where members sprout and
die in different areas depending on the constraint angle.
Effectively, for the 60° constraint some key points are moved
downwards and more material is placed around the central
members so that larger slopes can be introduced in the
down-facing contours (see Fig. 11b). When the minimum al-
lowable inclination is set to 80°, the topology of the optimum
solution changes dramatically and almost vertical walls are
built in order to fulfill the overhang constraint, as Fig. 11c
shows. As in the previous horizontal layout case, a restriction
of 90° implies again that no holes can be introduced in the
domain because an inadmissible gradient would be created.
Therefore a solid domain is created, as it is shown Fig. 11d. It
is also noticeable that this solution shows a curved outer shape
that matches approximately the shape of a solid cantilever
beam with maximum stiffness.

4.3 MBB beam

Let us consider now the classical MBB topology optimization
problem in Fig. 12. The goal of this example is to show the
effect of the parameter @,, which represents the minimum
ratio of self supported contours in the structure, as it was
mentioned in the theoretical part of the paper. The rectangular
domain is supported in the lower right and left corners and the
load is applied vertically at the middle point of the upper edge.
Taking advantage of the symmetry, only half of the domain is
analyzed, applying a symmetric boundary condition along the
left edge of the structure. The finite element mesh is uniform
with 156 x 52 elements of unit dimension and the volume
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(a) (b)

Fig. 10 Optimum solutions for different volume fractions a 35% and b
65%

restriction is taken to be 50% of the domain. In this example it
is specified an overhang constraint of 45° and three different
values of the parameter @, will be considered: 0.87, 0.97 and
0.99. Figure 13a corresponds to the optimized MMB topology
when no overhang constraint is considered. The value of the
parameter @, for this solution is 0.865, which means that for
the problem without overhang constrains, the ratio of well
supported masks of the MBB example is 86,5%. Increasing
just a bit the value of @, creates some meaningful changes in
the inclinations of some of the members while the rest of the
geometry remains very alike. This evolution can be noticed in
Fig. 13a, b, ¢ and d where overhangs are gradually corrected
as the constraint is tightened with higher values of @.
Comparing Fig. 13a and b it can be noticed how elements
and connection points are moved when @, is increased. The
most meaningful modifications are the relocation of the knots
and the shortening of the horizontal boundaries. For the mid-
dle knot, the algorithm divides and moves it up and down-
wards giving a more appropriate inclination to the boundaries
of the hole beneath and introducing a new member while not
sacrificing other boundaries. Also it can be seen that the non
acceptable overhangs are reduced by making the horizontal
down faced contours shorter. Another noticeable change is the
slight modification of the rest of the knots, so that the amount
of badly inclined members is reduced by modifying their in-
clination. For tighter values of the parameter @, it can be seen
that the number of holes in the structure decreases and their
geometry changes revealing triangular shapes in most cases
(see Fig. 13c and d). This behavior is not surprising since
triangle-shaped holes can manage and reduce effectively the
over-inclination of contours, so they turn out to be a natural

Fig. 11 Optimum topologies for
different critical angles a 45° b
60° ¢ 80° and d 90° for vertical
positioning of the design domain

@ Springer

choice for minimizing the number of badly supported ele-
ments. In fact, the top corner of the triangular hole is the only
area where problematic contours can exist, since the top ele-
ment could lead to a false-positive of the overhang constraint
due to a single up pointing density gradient. The role of the
parameter ¢, becomes very significant in this case because
setting a value lower than unity helps the algorithm to skip
false-positive contours and converge correctly. Concerning
the value of the objective function, despite the deviation of
the solutions with respect to the non-constrained optimum
topology, the final geometries show compliance values that
are close to the original solution of the MBB problem; obvi-
ously, the non-constrained optimization results always in a
better structural efficiency.

Theoretically speaking, the ratio of the value objective func-
tion associated with the optimized design considering self-
support property and that associated with the optimized design
without considering self-support property should approach one
(Guo et al. 2017). Actually, this measure can be used to evaluate
the performances of optimized designs obtained by numerical
approaches, so we will use the well known MBB problem in this
section to make some comparisons with use of this measure.
Assuming the load is 1 N and the sides of elements are equal
to 1 mm, the values of compliance for the solutions shown in Fig.
13 are: a) 203.81 N.mm b) 208.33 N.mm ¢) 227.05 N.mm and d)
230.95 N.mm. The value of the compliance increases as the
overhang restriction is tightened, as it was expected. The ratios
with respect to the compliance that corresponds to the optimized
design without considering self-support design are: a) 1.00 b)
1.02 ¢) 1.11 and d) 1.13. These values are close to one so we
can consider that the performance of the optimized designs is
acceptable and the proposed approach is an effective alternative
for self-supported design.

4.4 Bridge structure

Finally we will consider the example shown in Fig. 14. This
structure is another major challenge for the proposed algo-
rithm as the non-constrained optimum topology shows several
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Fig. 12 Design domain for the
MBB example

!

boundaries where the inclination exceeds 45°. The rectangular
design domain is discretized using 160 x 80 finite elements
and it is supported in the lower right and left corners. A load
is applied vertically at the middle point of the lower edge. The
volume restriction is 30% of the domain and overhang con-
straints of 45° and 60° are introduced.

This example is used also to evaluate the effect of the
parameter 7, the threshold of the Heaviside Projection that
defines the value of the design variable where the jump of
the approximated step function takes place. Two different
values of T are used, representing low and high values of the
parameter, 7=0.01 and 7=0.8, respectively. Theoretically,
low values would guide the design through initially denser
domain, opposite to high values. Figure 15 is a source of
information for discussing these effects on final designs. It
can be appreciated in Fig. 15c, where a very low value of
0.01 is taken for 7, that a vertical solid member is introduced
in substitution of the central hole giving support to the hori-
zontal boundary at the top of the structure. The rest of the
members sprout from this central member with an inclination

(a) (b)
() (d)

Fig. 13 Optimum topologies for different threshold values of the
overhang constraint a no restriction b 0.87 ¢ 0.97 and d 0.99

(a) Z

156 x 52 elements
W/3

(b)

according to the constraint introduced. It is also worth to men-
tion that the height of the structure is reduced so that more
material can be placed in the inner zone and also to generate
the vertical center member. This generates shorter and thicker
members that make the topology ready to be fabricated via
additive manufacturing but increases the value of the compli-
ance losing part of the original structural efficiency.

On the other hand, Fig. 15b shows a bifurcation of the
previously mentioned vertical member forming one vertical
and two “v” shaped thinner members. This solution is closer
to the unconstrained classical optimum design and provides
the structure with greater stiffness than the previous solution.
The choice for a value of 7' seems to be unimportant from a
manufacturing point of view and for every value designers can
reach perfectly printable topologies. However, considering the
mechanical behavior, a different value can provide the struc-
ture with greater stiffness.

160 x 80 elements

Wi2

I |
w

Fig. 14 Design domain for the bridge structure example
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A\
A\

(b)

(©)

T

(d)
Fig. 15 Optimum topologies for different critical angles a no restriction b
45°and T=0.8 ¢ 45° and T=0.01 and d 60°

5 Conclusions

The method presented in this paper offers direct control over
the inclination of structural members in topology optimization
problems, so that self supporting, print-ready designs can be
generated for additive manufacturing. The proposed approach
presents some new features compared with previous works in
this area. The inclination of members is calculated by an effi-
cient edge detection algorithm developed in the field of image
processing and applied here to evaluate the overhang angle of
contours. This paper proposes also a new constraint function to
control the amount of self-supporting contours, defined as the
ratio between the admissible and the total amount of contours.
That constraint can be easily added to the conventional volume
requirement of density-based topology optimization proce-
dures and combined with any general purpose optimizer like
the popular MMA method. This technique has been combined
with the commonly applied Heaviside projection to enhance
black and white designs. Results obtained from the numerical
examples suggest that the methodology developed allows the

@ Springer

designer to efficiently control the amount of self-supporting
members so that unprintable designs with infeasible overhang-
ing sections can be banned from the design space, producing
self-supporting topologies that are ready for additive printing.
Moreover, the examples included in the paper demonstrate that
the proposed strategy is effective at generating designs that can
be printed without additional supports for any critical overhang
angle defined by the user. Even if important aspects such as
deformation of members due to overheating and residual stress-
es have not been included, authors expect that the approach
suggested in this work could be of considerable practical value
as a first approximation in early design stages. Future works
include an implementation of the method for 3D structures
optimization, where it would be especially valuable.
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