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Abstract This work presents a novel methodology to train open domain neural dia-
logue systems within the framework of Generative Adversarial Networks with gra-
dient based optimization methods. We avoid the non-differentiability related to text-
generating networks approximating the word vector corresponding to each gener-
ated token via a top-k softmax. We show that a weighted average of the word vectors
of the most probable tokens computed from the probabilities resulting of the top-k
softmax leads to a good approximation of the word vector of the generated token.
Finally we demonstrate through a human evaluation process that training a neural
dialogue system via adversarial learning with this method successfully discourages
it from producing generic responses. Instead it tends to produce more informative
and variate ones.

1 Introduction

Open domain dialogue systems or chatbots are systems deployed to interact with
humans offering coherent responses according to the dialogue history. Unlike task-
oriented dialogue systems, there is no specific goal to be achieved during the inter-
action by the system. The only goal is to generate appropriate, relevant, meaningful
and human-like utterances.

This area of research has gained an increasing amount of interest from the com-
munity since the advent of sequence-to-sequence neural network models [22]. These
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neural networks are capable of processing and generating sequences of data of ar-
bitrary length, which makes them very suitable for this research [24, 21]. The task
of open domain dialogue generation can easily be cast as a sequence transduction
problem, where the input is the sequence of words corresponding to the last user’s
utterance, and the output are the words of the system’s response. It is also possible
to condition the output of the network to a broader dialogue context or other knowl-
edge sources in order to increase the coherence of the responses [19, 6], but in this
work we will not research in that direction.

These neural models are usually learnt from corpora composed of input utterance-
response pairs, via supervised learning. Movies subtitles, Twitter or online forums
can be used as the source of these data. In this framework, the neural network is
trained to minimize a distance between the generated response and the desired one.
Even though interesting performances can be obtained with this procedure, it fre-
quently yields models that tend to generate dull and safe responses which appear
frequently in the corpus, such as I don’t know or I'm sorry.

We build upon Generative Adversarial Networks (GANSs) [7] to overcome this
problem and to increase the overall variety in the responses of the neural dialogue
model, as these have shown promising results in many data generation tasks. While
in supervised learning a unique desired output is assigned to each input in the cor-
pus, GANSs allow many correct outputs, which makes much more sense in dialogue,
and models better the one-to-many property of input-output pairs [23]. The learn-
ing methodology for GANs involves training two neural networks, a generator and
a discriminator, in an adversarial fashion. The generator tries to learn a data dis-
tribution while the discriminator learns whether a given sample corresponds to the
training data or has been generated by the generator. In the context of dialogue sys-
tems, the generator would be the sequence-to-sequence model and the discriminator
would act as a Turing Test.

GANSs were first successful in image generation tasks. More recently text-related
problems, such as machine translation [25], text generation [27, 26] or image cap-
tioning [20] have also been tackled within this framework. GANs have also been
applied in the research of dialogue systems, yet only on a few occasions. [5] and
[11] experiment with training discriminators that could measure the quality of the
utterances generated by chatbots. On the other hand [14] and [9] go a step further
and train neural dialogue systems via adversarial learning, but with the drawback
that they make use of reinforcement learning instead of gradient-based optimiza-
tion methods. This is due to text being represented as a sequence of discrete tokens,
which breaks the differentiability of the discriminator’s output with respect to the
generator’s parameters, as explained in Section 3.

In this context, the contributions of our work are twofold. First, we present a
novel methodology to avoid this non-differentiability: the fop-k softmax. Since the
top-k softmax allows to plug-in the output of the generator into the discriminator in
a differentiable manner, our approach is simpler and easier to implement than other
dialogue systems trained in the GAN framework. Second, we demonstrate that train-
ing a neural dialogue system via adversarial learning with this method successfully
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discourages it from producing generic responses, and that it often leads to more
informative responses too.

The rest of the paper is organized as follows. In Section 2 we specify the chosen
architecture for the sequence-to-sequence dialogue model and the baseline training
procedure. In Section 3 we describe the proposed GAN for dialogue generation
based on the top-k softmax and compare it to alternative approaches to deal with the
differentiability problem. In Section 4 we give all the details about our experimental
setup and hyper-parameter choice. Section 5 shows the results of two experiments
to validate our proposal. We conclude with the final remarks in Section 6.

2 Sequence-to-sequence dialogue model architecture

The chosen architecture for the dialogue model is a standard sequence-to-sequence
network with attention [1]. Given an input sequence of length T of discrete integer
tokens x = x1,x2,...,x7, the corresponding sequence of vectorial word representa-
tions v = vj,Va,..., vy can be obtained via the word vector matrix W, just by taking
the corresponding row v; = W/x;] per each token x;. The size of W is V x D, where
V is the vocabulary size and D the dimension of each word vector. The encoder
takes this sequence of vectors and produces another sequence of vectors of the same
length h = hy,h,,....hy = encoder(v). In our work the encoder is a deep bidirec-
tional Long Short Term Memory (LSTM) Recurrent Neural Network (RNN).

To proceed with the generation of the output sequence y = y1,y2,...,Vz, a global
attention mechanism is applied as in [17]. At the time step ¢ of the generation, the
decoder is fed with the discrete integer token generated at previous time step, y;—i.
Then the corresponding word vector W[y,_1] is input to the decoder’s RNN and this
outputs o;. Of course, due to the architecture of RNNs, o, is conditioned, though
implicitly, not only to y,_; but also to all the previously generated tokens. In our
experiments this neural network is also a deep LSTM. oy is then transformed to o,
via a multilayer perceptron (MLP) that takes as input o, and also ¢, the context-
vector produced by the attention mechanism at time step ¢. ¢, is a weighted average
of the encoder’s output vectors:

T
ct:Zajthj7 (D
j=1

where aj; is the score between h; and oy, i.e., how much attention should be put
on the output of the encoder at the encoding time step j on the time step ¢ of the
decoding phase. aj; is a softmax-normalized scalar output of another MLP, that takes
as input h; and o;, and outputs aj;. With the softmax normalization we ensure that
all the scores at time step ¢ are positive and sum one:

exp (aji)

o 2
Y1 exp(@jy)

ajt:
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Finally, 6, is linearly projected to a vector of dimension V: f; = linear(o;).
This vector represents an unnormalized probability distribution over all the pos-
sible words in the vocabulary. A softmax normalization is then applied to f; to get
p; = softmax(f; ), the normalized version of f;. The output token at time step ¢, y,
can be sampled from p; taking the argument of the maxima:

yr = argmax (py[i]) A3)

Generation stops at time 7, when y; corresponds to the end-of-sequence token.
The architecture of the network is summarized in Figure 1.

Maximum Likelihood Estimation via Supervised Learning

As aforementioned, this neural network can be trained from a corpus composed of
input-output sequence pairs via supervised learning. A maximum likelihood estima-
tion (MLE) of the parameters of the network can be carried out by minimizing the
word level cross entropy loss Ly k:

b
Y Wl Y —log p[si] , (4)

X,5€EC t=1

1
Lyie = —
||

where € is a corpus composed of pairs of inputs x and desired outputs s, s; each of
the words in s, and py[s;] the output of the network in the 7-th time step corresponding
to the token s;,. We omit the output’s dependence on x to keep the notation simple.

During training we employ the teacher forcing strategy, i.e., in the #-th step of the
decoding we feed the ground true token s, to the decoder’s RNN instead of the
prediction y;_;. We experimented with other sampling techniques such as scheduled
sampling [2], but we found no improvement.
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3 Sequence Generative Adversarial Network training

In the context of dialogue systems, the generator network in the GAN is the
sequence-to-sequence dialogue model, which produces a response y to the input
utterance x. The discriminator is another network that acts like a Turing Test: it
takes an input utterance x and a response r as inputs, and outputs a scalar between
0 and 1 representing the network’s confidence level on r being produced by a chat-
bot. Namely, the lower the output of the discriminator is, the more human-like r is
according to the discriminator’s criteria.

The procedure to train the dialogue system in this framework involves iteratively
updating the generator and the discriminator. The generator is trained to fool the
discriminator and make it think that its responses are human-like, and in contrast
the discriminator is trained to distinguish between human and bot responses.

Let us now define the losses to be minimized in this two optimization procedures.
Given a batch of input utterances, responses and labels indicating whether each
response has been generated by a bot or a human, the discriminator’s parameters
will be updated to minimize the next cross-entropy loss:

1

Lp=——
P %]

Y —lloga+(1—1)-log(1—a)], &)
x,rl€Bp
where A)p is a batch composed of tuples of input utterances x, responses r and
boolean labels /, and a the output of the network given x and r.

The objective for the generator is just to minimize the output of the discriminator
when the latter is fed with a batch of input utterances and the responses of the
generator to those same input utterances:

1
Lg = %] Z a, (6)
‘ G| xe@G
where % is a batch composed of input utterances x. a is the output of the discrim-
inator given x and y, where y is the output of the generator given x.

The differentiability problem

We have already described the architecture of the generator in Section 2. On the
other hand, the discriminator is a composed of two deep bidirectional LSTM-RNNSs,
for x and r respectively, followed by some fully-connected layers. Before being
processed by the RNNS, both x and r integer sequences are converted to word vector
sequences via the same word vector matrix W, as explained in Section 2.

Being these the network architectures, it is not possible to differentiate Ls (Equa-
tion 6) with respect to the parameters of the generator. The problem arises with the
argmax operation in the sequence of transformations that converts f; into u;:

softmax argmax Wiy

f; P: Vi u, @)
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Fig. 2 On the left, a graphical example of a softmax normalization of a f; distribution. The rest of
the plots show the top-k softmax normalizations of f; for different values of k.

Probability

Token ID

where f; is the unnormalized probability distribution over all the possible words in
the vocabulary in the step ¢ of the generation, p; the softmax-normalized version of
f;, y; the argument of the maxima of p;, and v, is the word vector corresponding to
the token y;. Green arrows indicate that the operation is differentiable, whereas red
arrows that it is not.

The top-k softmax

We propose a novel alternative computation path that approximates u, in a fully
differentiable manner, allowing the generator to be trained with very convenient
gradient-based methods. The idea behind this path is to generate a word vector i,
hopefully similar to w,, as a weighted average over the word vectors corresponding
to the k most probable words according to f;. k > 2 is an integer parameter of the
transformation. In short, the differentiable computation path is as follows:

top-k softmax k.., X b [1]- Wk [1]] i, (8)
—

ft kl ) ft

Pa—

The first operation in Equation 8 performs a selection of the top-k elements in
f;. It outputs k; and f,. k, are the indices corresponding to the k elements in f; with
the highest values, and f, are those values. In other words, k; represents the most
probable words, and f; their unnormalized probabilities. The second operation is just
a softmax normalization of these k probabilities. It converts f; into p,. See Figure 2
for a graphical example. Finally, the approximated word vector that will be fed to
the discriminator’s RNN is computed as the weighted average of the word vectors
corresponding to tokens k;, where the weights are the probabilities p;:

ﬁt:

™=

p:[i] - Wik [i]] ©)
i=1

Note that in the whole process the differentiability has not been broken. There-
fore, and in contrary to the previous computation path (Equation 7), the partial
derivatives of ii, with respect to f; exist and are non zero. In Section 5 we show
that @, is a good approximation of u, when k is small. In fact, u, is the nearest
neighbor of @i; the 98% of the times with k = 2.
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Related approaches

Before continuing with our proposal for training the GAN, let us briefly compare
the top-k softmax with alternative approaches to deal with the non-differentiable
argmax operation. Apart from the aforementioned reinforcement learning-related
methodologies based on [27], we are only aware of works [13] that in one way
or another tackle this problem with the concrete or Gumbel-softmax distribution
[18, 10]. This is a continuous relaxation of discrete random variables. In short, it
transforms a probability distribution into a relaxed one-hot vector corresponding to
arandomly taken sample from that distribution. That relaxed vector is different from
the result of the top-k softmax in two important aspects. First, it is non-deterministic,
which could be interesting but also unnecessary for our application. Second, all its
elements are non-zero, which means that approximating a word vector as a weighted
average according to those probabilities would imply mixing all the word vectors in
the vocabulary, which seems again inadequate for our application.

A discrete version of this transformation is the Straight-Through Gumbel-softmax
estimator [3, 10], which was used by [16] and [20]. It serves to approximate the gra-
dients of a one hot vector sampled according to a probability distribution. Thus
it avoids the problem of averaging over all the word vectors, but it is still non-
deterministic. Moreover, the operation is still non-differentiable. Even though this
method provides an estimation of the gradients in this scenario, but using it could
be risky because it might cause discrepancies between the forward and backward
passes, as stated in the original work [10].

Training procedure

The top-k softmax allows Lp to be differentiable with respect to the parameters
of the generator. Thus gradient-based optimization methods can be applied to train
both the generator and the discriminator. Let us now specify the general training
loop and the pretraining strategies applied in this work.

Prior to the training of the dialogue system, we pretrain the word vector matrix
in the same corpus that will be used later. Following the work of [14] and [9], we
also pretrain the generator using the MLE criteria, and the discriminator with the
responses generated by the pretrained generator and with responses from the corpus.
In order to stabilize the rest of the training process and to avoid the catastrophic
forgetting phenomenon of the discriminator, each time we sample a response of the
generator to a given input, we add it to a corpus of generator’s turns %p.

Now we enter the main training loop, where the generator and the discriminator
will be trained adversarially. This loop will be run for many iterations. We start
it training the generator to minimize the output of the discriminator according to
Equation 6 during a number of iterations. Then we increase the corpus 6p with the
current state of the generator, and train the discriminator during another number of
iterations. More recent input-response pairs are taken with a higher probability than
the older ones from %p when training the discriminator.
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We finally repeat this process of training the generator, adding samples to ¢p and
training the discriminator, but this time training the corpus with the MLE criteria.
This approach is also taken in [14] and [9], and it aims at stabilizing the training
process. In order to further stabilize it, we reduce the learning rate of the training
optimizer throughout the global iterations.

This whole procedure is summarized in the Algorithm 1.

Algorithm 1 An Adversarial Training strategy for Neural Dialogue Models.

Require: Generator G, Discriminator D, Corpus %', training hyper-parameters.
Pretrain word vector matrix W on €.
Pretrain G minimizing Ly r (Equation 4).
Initialize %p with G’s responses y to some inputs x.
Pretrain D minimizing Lp (Equation 5).

for the number of total iterations, and with a decaying learning rate do
Update G minimizing L on inputs x in & (Equation 6).
Add (x, y) pairs to 6p using G.
Update D minimizing Lp.
Update G minimizing Lyzg on €.
Add (x, y) pairs to 6p using G.
Update D minimizing Lp.

4 Experimental Setup

All the experiments in this work were carried out with the OpenSubtitles2018 cor-
pus [15], which is composed of around 400M utterances from movie subtitles. As
proposed in [24], since the turns are not clearly indicated, we treat each utterance as
the desired output for the previous one.

As for the text preprocessing, we removed some symbols and converted all the
names, numbers and places to tags <person>, <number> and <place>, respec-
tively. This was done with the Spacy entity recognizer [8]. Finally we defined the
vocabulary with most 30000 frequent words, and deleted every other token from the
corpus. We pretrained 300 dimensional word vectors of those tokens on the corpus,
with FastText [4]. These are then optimized again throughout the training process.

Let us now give details about the architecture of the sequence-to-sequence gen-
erator. The deep bidirectional RNN encoder is made of two LSTM networks (one
per direction) of 4 layers, 512 cells each. On the other hand, the decoder’s LSTM
has 4 layers of 1028 cells. The MLP that converts o, and ¢; into §, (see Section 2
for more details) has one leaky-ReLU layer. The size of 0, is 500. The MLP that
computes the attention score has two layers. The first one is a 250-sized hyperbolic
tangent layer, and the second is a linear output layer that computes the scalar score.

Regarding the discriminator, its two deep bidirectional encoders share the same
architecture: two LSTM networks of two layers, 128 cells each. This vector is then
fed to a MLP of two layers: a leaky-ReLU layer of size 100 followed by a single
sigmoidal unit. The chosen value for the k parameter of the top-k softmax was 2.
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The most promising hyper-parameters we have found for the training procedure
are summarized next. First of all, we used the Adam optimizer [12] with batch
size of 256 throughout all the optimization processes. We pretrained the generator
during 50000 training iterations with a fixed learning rate of 0.001. We sampled
125000 responses from that generator and then pretrained the discriminator during
1000 iterations, with the same learning rate. All the batches fed to the discriminator
were balanced: there was a human example per each generator’s example. Human
and generator’s example were uncorrelated; they did not share the input.

The main iteration loop was run 200 times. The initial learning rate was 0.001
with a decaying factor of 0.995 when training the discriminator and the generator
with the MLE criteria. It was ten times smaller when training the generator to mini-
mize the output of the discriminator. Every MLE step was run during 50 iterations,
and every step of minimizing the discriminator’s output was run during 35 itera-
tions. After each of these steps, 5000 input-response pairs were sampled from the
generator, and the discriminator was trained during 40 iterations.

It is worth mentioning that we did not vary the architectural hyper-parameters
much during our experiments. They are similar to many other sequence-to-sequence
networks in the literature. On the other hand, selecting good and stable training
hyper-parameters is challenging. This requires a deeper and more specific research
that we leave for future work.

5 Experiments

We now present an experimental validation of the proposed differentiable sequence
generative adversarial network for dialogue generation in two series of experiments.
First we validate our differentiable GAN architecture measuring the quality of the
word vectors obtained with after the top-k softmax computation path presented in
Equation 8. Additionally, we compare a neural dialogue trained with this computa-
tion path and with the adversarial learning procedure summarized in the Algorithm
1 with a standard MLE model.

Approximated word vectors

We fed 1000 random inputs from the corpus to the dialogue system, and computed
which was the closest word vector to each approximated one according to the eu-
clidean distance, for different values of k. With k = 2, the closest word vector was
the correct one the 98% of the times if we consider all the produced tokens, and the
97% if we do not consider repetitions. This two percentages decrease to 83%/69%
respectively with k = 3, and to 74%/60% with k = 4. Figure 3 shows this statistic
for more values of k. We therefore conclude that the proposed method to make the
output of the discriminator differentiable with respect to the generator’s parameters
is appropriate, at least with k = 2.
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Fig. 3 Number of times that the actual word vector is the nearest neighbor of an approximated
word vector produced by the top-k softmax, for different values of k.

Comparison between the MLE baseline and the GAN

Let us show a preliminary comparison between the pretrained MLE dialogue model
with the final system after the adversarial learning. We asked 10 human evaluators
to interact freely with the two systems during some few minutes, which resulted in
dialogues of 25 turns on average. Then they were asked to decide which of them
was better in terms of 1) the variety of the responses, 2) coherence and 3) informa-
tiveness. 7 out of the 10 evaluators opined that the final system was more variate
and informative, and there was a draw in terms of coherence.

This can also be seen in Table 1. It shows responses to the same inputs in dif-
ferent stages of the training procedure. Not only are the baseline and final models
compared in the table, but it also lets us gain an insight into the short-term effect of
each of generator’s minimizing the output of the discriminator. It tends to complex
and enrich the model’s responses, sometimes at the cost of losing some coherence.

6 Conclusion

We have presented a novel methodology to allow text generating models be trained
in the GAN framework with gradient based optimization methods, the top-k soft-
max, and we have validated it in the open domain dialogue generation task. We
have shown that good approximations of the word vector corresponding to each of
the tokens generated by the dialogue system can be obtained with the top-k soft-
max. Moreover, we have demonstrated through a human evaluation process that a
dialogue model trained in these conditions produces more variate and informative
responses than the baseline MLE model, while being as coherent as it. Ultimately,
the intersection between dialogue systems and GANs is a very promising area of
research. We expect many more ideas from the two fields will be combined, and
that many more applications of the GANS in the dialogue research will arise.
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Table 1 Some responses to the same inputs in four different stages of the training procedure. A
is the response of the pretrained MLE model. B is a response of an intermediate model just after
a MLE step. C is the response of the same model than B, but just after a step of minimizing the
output of the discriminator. D is the output of the final model.

Input utterance Response

hi! A: I’'m <person> <person>.
hi.

: hi, <person>.

: hello, <person>.

I love you. I love you, too.
I'love you
I love you too, <person>

you know, I think maybe we could talk...

I don’ know.

she’s my friend

you’ll never regret again.

she’s my girlfriend, <person>, and...

who is she?

what’s the color of the sky? it’s a blue light.
: the blue blue.
1 it’s the red of the moon.

it’s a beautiful blue sky

see you <person> <person>
I’'m sorry, I'm sorry
: I’'m sorry, I didn’t mean to interrupt you

: see you later, <person>

COAFE | SQFE» | TQFE | TQF> | TQF
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