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Resumen

La principal hipótesis de la tesis es que se puede lograr el renderizado de
datos volumétricos de forma ubicua utilizando WebGL. La tesis enumera los
desaf́ıos que se deben enfrentar para lograr dicho objetivo. Los resultados
obtenidos permiten a los desarrolladores de contenido web la integración
de visualizaciónes interactivas de datos volumétricos dentro de páginas web
estándar HTML5.

Los desarrolladores de contenido web solo necesitan declarar los nodos
X3D que proporcionan el renderizado de las caracteŕısticas que desean. A
diferencia de los sistemas que distribuyen programas espećıficos de GPU. La
arquitectura presentada crea automáticamente el código de GPU requerido
para el proceso de renderizado con WebGL. Este código se genera directa-
mente desde los nodos X3D declarados en la escena virtual. Por lo tanto,
los desarrolladores de contenido no necesitan saber sobre la GPU.

La tesis ampĺıa la investigación previa sobre estructuras de datos de volu-
men compatibles con la web, renderizado h́ıbrido de objetos 3D y volúmenes,
renderizado de volúmenes progresivo y algunos problemas espećıficos rela-
cionados con la visualización de conjuntos de datos volumétricos en el ámbito
médico.

Finalmente, la tesis contribuye al estándar ISO/IEC X3D con algunas
propuestas para extender y mejorar el componente de renderizado de vol-
umen. Las propuestas se encuentran en un estado avanzado, previo a su
aceptación por parte del consorcio Web3D.
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Laburpena

WebGL erabiliz bolumenen renderizazio nonahikoa lortu egin daitekela te-
siaren hipotesi nagusia da. Tesi honek helburu hori lortu ahal izateko er-
ronkak zerrendatzen ditu. Lortutako emaitzen bitartez, esfortzu gutxirekin,
web edukien garatzaileek HTML5 web orrialdeetan bolumen renderizazio
interaktiboak txertatu ditzakete.

Eduki garatzaileek soilik X3D nodoak adierazi behar dituzte nahi di-
tuzten renderizazio ezaugarriak lortu ahal izateko. GPU programa finkoak
banatzen dituzten sistemak ez bezala, aurkeztutako arkitektura automatiko-
ki sortzen du WebGL behar duen GPU kodea. Kode hau zuzenean sortzen
da eszena birtualean adierazitako X3D nodoen arabera. Hori dela eta, eduki
garatzaileek ez dute GPU-ari buruzko jakintza izan behar.

Tesi honek, web-arekin bateragarria den bolumen data egitura, bolume-
nen eta 3D objetuen renderizazio hibridoa, bolumenen renderizazio progre-
siboa eta medikuntza arloan, datu bolumetrikoak bistaratzearekin lotutako
arazo zehatz batzuei buruzko aurreko ikerketak zabaltzen ditu.

Bukatzeko, tesiak ISO/IEC X3D estandarraren bolumen renderizazio
atala zabaltezko eta hobetzeko proposamenak aurkezten ditu. Proposame-
nak egoera aurreratuan daude, Web3D partzuergoaren onarpenaren zain.
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Summary

The main thesis hypothesis is that ubiquitous volume rendering can be
achieved using WebGL. The thesis enumerates the challenges that should
be met to achieve that goal. The results allow web content developers the
integration of interactive volume rendering within standard HTML5 web
pages.

Content developers only need to declare the X3D nodes that provide the
rendering characteristics they desire. In contrast to the systems that provide
specific GPU programs, the presented architecture creates automatically the
GPU code required by the WebGL graphics pipeline. This code is generated
directly from the X3D nodes declared in the virtual scene. Therefore content
developers do not need to know about the GPU.

The thesis extends previous research on web compatible volume data
structures for WebGL, ray-casting hybrid surface and volumetric render-
ing, progressive volume rendering and some specific problems related to the
visualization of medical datasets.

Finally, the thesis contributes to the ISO/IEC X3D standard with some
proposals to extend and improve the volume rendering component. The
proposals are in an advance stage towards their acceptance by the Web3D
Consortium.
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Chapter 1

Introduction

This chapter introduces the objectives and challenges of this thesis. Firstly,
Section 1.1 describes the volume data type. Section 1.2 presents the problem
of volumetric visualization, the hypothesis to overcome it and the challenges
addressed in this thesis. Finally, Section 1.3 describes how the rest of the
chapters of this thesis are organized.

1.1 Volume data

Traditional 3D objects are created using surface based representations such
as polygonal meshes and NURBS patches. For these data objects, all prop-
erties of the model are evaluated at certain surface points. Rendering of the
object’s characteristics such as materials, colours and shading are based on
those points. Real-world objects are approximated by a geometric model
that simplifies their content at the surface level. For volumetric visualiza-
tion, this is different. The volume data in the inside is as important as the
volume data that encloses the volume (surface).

Volume data refers to scalar data which has a 3D nature, a discrete 3D
scalar field. Usually, it is obtained by measuring the natural phenomena or
by numerical simulation. Thus, its main applications are oriented towards
scientific visualization. For instance, volume data can be usually found in
one of the following domains:

- Medical imaging. 3D Image acquisitions of the inside of the human
body with Computed Tomography (CT) or Magnetic Resonance Imaging
(MRI) (see Figure 1.1).
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Figure 1.1: Non-photorealistic volume rendering of the brain MRI dataset.

Figure 1.2: Non-photorealistic rendering of simulated 3D volumetric data.

- Engineering simulation. Simulation of natural phenomena, computa-
tional fluid dynamics (CFD), finite element Analysis (FEA), etc.

- Mathematics and physics. Numerical computation of probabilistic 3D
distributions, physics simulation, etc. (see Figure 1.2).

- Industrial manufacturing. Reverse engineering, manufacturing quality
control, etc. (see Figure 1.3).

- Games. 3D fuzzy objects or elements like fog, fire and clouds.

Generally speaking, volume data is a representation of scalar data, mea-
sured from a continuous signal, which has been discretized in a 3D space. It
can be seen as a three dimensional array of cubes evenly spaced, where each
unitary cube is called voxel. Each voxel represents an scalar value. Volume
data can also be considered as the output values from a function of a 3D
signal, where for each input (X,Y, Z) an scalar value output is generated.
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Figure 1.3: Volume rendering of a manufactured plastic part.

Volume data contains useful information on the inside of the object.
Therefore, the traditional rendering algorithms which are based on surface
based representations are not suitable for its visualization. For all the men-
tioned domains, volume rendering algorithms allow to visualise the whole
volume data. They benefit from a true rendering of the represented object
taking into account all the information it is composed of. In this case, inside
data is as important as surface data.

1.2 Thesis objectives and challenges

As previously stated, volumetric visualisation is employed in several scien-
tific fields. Volumetric visualization software is often proprietary, distributed
as part of expensive volumetric data acquisition machines. There are also
some open source solutions, like VTK (Kitware, 2019). In both cases volume
visualisation software is tailored to specific applications and hardware due
to each specific application domain need. The high computing requirements
of volumetric visualization algorithms has encouraged researchers and soft-
ware developers to pursuit the use of High Performance Clusters (HPC) or
take the most of computing capabilities from dedicated graphics computing
hardware (GPU).

These factors have aggravated the problem of sharing volumetric visu-
alization content among users and peers, creating a segmented market of
different volume data formats and the need of expensive equipment to visu-
alise this type of content.

The goal of this thesis is to propose new algorithms and to evaluate
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architectures that work in a ubiquitous cross-platform solution. The main
motivation of this thesis is that volume visualisation should be available in
multiple devices, opening the access to volumetric content to a much wider
audience.

Nowadays, the web platform with the uprising of social media is the
most used environment to share multimedia content among users; it reaches
the widest range of usable devices (PCs, tablets and smartphones). So,
the web is the targeted platform in this thesis. Hardware acceleration is a
requirement to reach real-time frame rates in volume rendering. OpenGL ES
2.0 API is the 3D graphics API available for the Web and better supported
by all vendors. For these reasons the research goal takes WebGL (Khronos,
2016), that is built on top of OpenGL ES 2.0, as a foundation stone. This is
the main design hypothesis: the thesis research challenges are met finding
and testing solutions around this hypothesis.

The following points summarize the challenges met by this thesis in
the context of volume rendering in the ubiquitous web platform.

i) To improve the volume data representation structure (see Chapter 3).

ii) To make easier to content developers the integration of volume visual-
ization (see Section 10.2, Chapters 4 and 9)

iii) To provide a solution for hybrid rendering: volume data and surface
data (see Chapter 5).

iv) To achieve a high-quality rendering with large datasets (see Chapter 6).

v) To solve problems related to the visualization of medical datasets: seg-
mented visualization and patient data privacy, among them (see Chap-
ter 7).

vi) To find and propose new extensions to X3D standard (see Chapter 8).

Section 10.2 describes the contributions of this thesis. Reading that
section provides a deeper insight of the challenges met and solved in this
thesis. The contribution described in Section 10.2, explains an important
addressed challenge in this thesis: The component developed in this thesis
makes it easier to create volumetric content for developers without specific
knowledge on computer graphics rendering. The required GPU shader code
is automatically generated with the proposed component whose architecture
and implementation has been carried out in this thesis.
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1.3 Thesis structure

This thesis is structured as follows. Chapter 2 briefly presents the back-
ground literature including the classic volume rendering techniques. It also
includes the state of the art for volume rendering in the web platform.

The following chapters present research background at the beginning of
each chapter as a matter of introducing the specific research work which is
being extended or to make context for the presented contributions.

Chapter 3 presents improvements to a web compatible volume data struc-
ture: ImageTextureAtlas. Chapter 4 presents an architecture for the auto-
matic generation of the volume rendering visualization programs and the
provided implementation: the X3DOM volume rendering component.

Chapter 5 describes a novel hybrid volume rendering for the mixed vi-
sualization of volume and surface mesh data. Chapter 6 presents a progres-
sive volume rendering ray-casting algorithm for the interactive high quality
rendering of large datasets. Chapter 7 focuses in contributions for the visu-
alization of volumetric data in the web browser for the medical domain.

Chapter 8 proposes extensions to the ISO/IEC X3D standard based in
feedback received by the Web3D community. Chapter 9 validates the con-
tributions of this thesis. Finally, Chapter 10 summarizes the contributions
of this thesis.
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Chapter 2

Literature Review

This chapter reviews some relevant literature about volume rendering and
covers the necessary background concepts to introduce the reader in the
topic. Volume rendering has been researched thoroughly in the past. The
main initial contributions are covered as well as recent research works. For
a more detailed revision of the state of the art in volume rendering several
surveys are referenced.

The work of this thesis is focused in the rendering of volumetric data in
the web platform. In this regard, the main contributions related to the web
based volumetric visualization are presented.

In the following chapters of this thesis, previous research works by other
authors are also presented. In those cases, their research work is described
in more detail, in order to establish the necessary background to present the
contributions of those chapters.

The chapter is structured as follows. Section 2.1 briefly presents the
volume rendering optical model. Section 2.2 presents the most popular
direct volume rendering techniques. Finally, Section 2.3 reviews the volume
rendering literature focused in the area of research of this thesis: the web
platform.

2.1 Volume rendering

Generally speaking, volume rendering algorithms provide a representation of
the physical properties of a participating medium. These physical properties
are used to compute light transport for the image generation. Every scalar
value in the data distribution of the volume data represents a light emitting
particle and these particles are mapped to coloured (RGBA) pixels in a
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projected image. Because the solution of the light transport equation is
too complex, simplified models are used. Max (1995) reviewed the different
optical models used nowadays in volume rendering.

1. Absorption. Particles absorb all the light. They do not emit nor
scatter light.

2. Emission. Particles only emit light. It is assumed that the absorption
is negligible.

3. Absorption and emission. Particles emit light and also occlude
(absorb) light. There is no scattering or indirect illumination.

4. Scattering and shading. Includes scattering of illumination from
an external source from the voxel under consideration. Scattered light
can either illuminates the voxel or it can be shadowed by particles
between the light and the voxel under consideration.

5. Multiple scattering. The complete illumination model is evaluated,
including all of the previous models.

The basic model and most commonly used in volume rendering is the
Absorption and emission model. This model is given by a differential equa-
tion that describes light transport by differential changes in radiance. It can
be solved by integration along the direction of light flow. Given a single ray
that traverses the volume, such that the light enters the volume at s = 0
and exits the volume at s = D, the radiance of the light emitted from the
volume is defined by Equation 2.1 where I0 is the radiance of light as it
enters the volume from the background at the position s = s0. ID is the
radiance of the light as it exits the volume at the position s = sD.

I(D) = I0e
−

∫D
s0
κ(t)dt

+

∫ D

s0

q(s)e−
∫D
s κ(t)dtds (2.1)

The main objective of volume rendering is to compute the volume ren-
dering integral Equation 2.1. Numerical methods are applied to find an
approximation to the solution as shown in Equation 2.2. This equation di-
vides the integral into intervals where T is the transparency (optical depth
of the model) and Ci is the colour contribution.

ID =
n∑
i=0

Ci

n∏
j=i+1

T (j),with C0 = I(s0) (2.2)
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The discretized volume rendering integral can be solved with iterative
computation using front-to-back (from the camera towards the volume) or
back-to-front compositing. Equation 2.3 splits the summations and multi-
plications of Equation 2.2 into separate simpler operations that are executed
sequentially.

Cdst ← Cdst + (1− αdst) ∗ Csrc
αdst ← αdst + (1− αdst) ∗ αsrc (2.3)

In following chapters, the term blending and accumulation of opacity and
colour is used. In those cases, it refers to the compositing Equation 2.3. The
work of this thesis focuses only in the absorption and emission model. For
advanced illumination models with scattering, shading and multi-scattering,
the survey by Jönsson et al. (2014) covers the state of the art in advanced
volumetric interactive illumination techniques.

2.2 Direct volume rendering techniques

In the state of the art, volume rendering techniques can be classified into two
categories: direct or indirect. Indirect methods try to extract the surface
data in a pre-processing step by fitting geometry. Then, the reconstructed
surfaces are rendered. In contrast, Direct Volume Rendering (DVR) meth-
ods map directly into screen space the volumetric content without using
geometric primitives as an intermediate representation.

Several of the DVR methods take advantage of GPU acceleration due to
the fact that they can be parallelized. These method are usually classified in
either object-order methods or image-order methods. Object-order methods
determine for each data sample, iterating over the object in the scene, how
it affects the pixels on the image plane. In contrast, image-order methods
iterate over the pixels in the image to be produced, rather than in the objects
to be rendered.

The shear-warp factorization is an object-order technique presented
by Lacroute and Levoy (1994) and Lacroute (1995). The volume data is
sheared perpendicular to a base plane, aligned with two axes of the data set.
Then the slices are projected and composed (in front-to-back or in back-to-
front order) into the base plane. The final composed image is transformed
with a warp operation. Because of its memory access pattern, it has not
popularized in the GPU hardware. This technique has been improved and



10 Chapter 2. Literature Review

revisited by Sweeney and Mueller (2002); Schulze et al. (2003) and Li et al.
(2010)

Splatting is another object-order technique. Originated by Westover
(1990a), the data is traversed in 3D object space and the volumetric ele-
ments are projected into the image plane. Kernels are used for the projec-
tion 3D reconstruction. Westover (1990a,b) used the term splat to describe
the flattening of the kernel in the image plane. Improvements on this tech-
nique and GPU acceleration were researched by Laur and Hanrahan (1991);
Zwicker et al. (2002); Ren et al. (2002); Botsch et al. (2004); Botsch et al.
(2005) and Neophytou and Mueller (2005)

Cell projection is an object-order technique focused in the rendering
of unstructured volume data. Shirley and Tuchman (1990) presented the
first work with the projected tetrahedra algorithm. The cells of a grid are
traversed and projected into the image plane. Variations of this algorithm
where made to accommodate for graphics hardware (Wylie et al., 2002;
Weiler et al., 2003; Maximo et al., 2010). It is important to sort cells be-
fore traversing them. There are many approaches to cell sorting, but the
most popular is the MPVO algorithm by Williams (1992). Over the years,
researchers have made many improvements to the cell projection algorithm
(Silva et al., 1998; Comba et al., 1999; Callahan et al., 2005). Further ref-
erences can be found in the survey done by Silva et al. (2005).

Texture slicing is another object-order rendering technique, also known
as texture mapping and first employed by Cabral et al. (1994). This tech-
nique is intended to be used with graphics hardware. In the context of 3D
texture mapping, multiple planes parallel to the viewing plane are clipped
against the parametric texture domain. Then the GPU hardware is used
to interpolate 3D texture coordinates in the clipped polygon vertices. Fi-
nally, the interpolated texture coordinates are sampled and pixel values are
blended into the frame buffer. The texture sampling is either trilinear if the
3D texture mapping hardware is available, or bilinear if only 2D texture are
supported. Multi-pass, shading, image quality and performance improve-
ments have been studied by Westermann and Ertl (1998) and Meißner et al.
(1999, 2002).

The most often used volume visualization algorithm for the production
of high-quality images is ray-casting. This image-order technique was pre-
sented by Kajiya and Von Herzen (1984a) and formalized by Levoy (1988).
Rays are cast from the view-point through the view-plane into the volume.
While the ray traverses the volume, data is sampled with interpolation and
blended using Equation 2.1.

To reduce the high computational overhead of integrating viewing rays
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through the volume, Rottger et al. (2000) presented pre-integration. This
technique performs the ray integration through a texture lookup. Pre-
integrated classification assumes a piecewise linear, continuous reconstruc-
tion of the scalar field along a viewing ray. With this assumption, the
contribution of a ray segment can be pre-computed in a pre-processing step.
Therefore, since ray segments can be pre-computed before-hand, fewer sam-
ples along the ray are required to reconstruct the view image. This technique
has been further improved by Engel et al. (2001); Roettger and Ertl (2002);
Kye et al. (2008) and Guetat et al. (2010).

For a more detailed review of the state of the art in volume render-
ing techniques, further detailed descriptions and research references can
be found in books and surveys by Elvins (1992); Kruger and Westermann
(2003a); Hadwiger et al. (2006); Weiskopf (2007) and Zhou et al. (2018).
Among the presented techniques, this thesis is based on the well-known
direct method: volume ray-casting.

2.2.1 Volume Ray-casting

The ray-casting technique was presented as an special case of the generalized
ray-tracing technique (Kajiya and Von Herzen, 1984a). Rays are cast from
the viewer position through the volume data and sampled at regular intervals
along these rays. Each sampled point is blended by accumulating colour
and opacity in front-to-back or back-to-front order. Ray-casting differs from
ray-tracing in that it does not spawn secondary rays like ray tracing does.
Initial approaches and research work was oriented towards CPU ray-casting
(Levoy, 1988; Tuy and Tuy, 1984; Upson and Keeler, 1988; Levoy, 1990).

The utilization of ray-casting became more popular when Kruger and
Westermann (2003b) used the graphics hardware computational power and
presented a GPU-based ray-casting algorithm, achieving real-time frame
rates with nowadays consumer hardware.

Several modifications have been addressed to gain performance with ray-
casting, such as early ray termination (Kruger and Westermann, 2003b),
which finishes the accumulation process when the contribution of the sample
is irrelevant; and empty space skipping (Li et al., 2003), which optimizes the
ray traversal through empty regions. Generally, ray-casting is a technique
that can obtain higher quality renderings than other direct methods. The
flexibility and performance of ray-casting against slice-based algorithms were
introduced by Stegmaier et al. (2005) when they presented a single-pass
volume rendering framework for GPU-based ray-casting.

Other research works have focused in the acceleration of the ray traversal
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and in the space subdivision of the volume data for out-of-core rendering
of large datasets. The survey by Beyer et al. (2014) covers the acceleration
techniques for the rendering of large datasets.

2.2.2 Non-photorealistic rendering

Volume visualization can be enhanced by visual effects or feature extraction
(Yang et al., 2014; Zhou et al., 2015). Originally conceived for traditional
image rendering and artistic effects, illustrative and non-photorealistic ren-
derings can be adapted for volume rendering. They enhance the perception
for features within the volume data. Decaudin (1996) introduced cartoon
style rendering for 3D scenes and Gooch et al. (1998) presented a tone-based
non-photorealistic lighting model for automatic technical illustration. Ap-
plied to volume rendering, a set of non-photorealistic styles were collected
by Ebert and Rheingans (2000). Cluster-based GPU hardware accelerated
non-photorealistic renderings were studied by Lum and Ma (2002).

More recently, in the illustration of volume data by means of transfer
functions, Bruckner et al. (2005) and Bruckner and Gröller (2005, 2007)
presented a novel technique to apply illustrative styles. In this regard, Ljung
et al. (2016) produced a state of the art about transfer functions applied in
direct volume rendering.

The Medical Working Group of X3D (Web3DConsortium, 2014) defined
a volume rendering component specification with support of non-photoreal-
istic renderings for the declarative scene definition of volume rendering con-
tent. Polys and Wood (2012) and Polys et al. (2011a, 2013b) evaluated the
specification in several domains and researched its use in immersive envi-
ronments.

2.3 Volume rendering in the Web platform

Initially, when there was no access to accelerated GPU graphics in browsers,
third-party plug-ins where used for rendering 3D graphics. These plug-ins
were not provided by browser vendors. But after installation and configu-
ration, they could access the same APIs as other desktop approaches and
applications, like OpenGL or DirectX APIs. However, their support were
discarded over time due to browsers third-party software sand-boxing poli-
cies and for security reasons.

With this situation in mind, third-party plug-ins were not a viable so-
lution. Approaches to bring volume rendering to the web ecosystem used
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either i) rendering on the server side or ii) rendering on the client side with
WebGL.

Server side rendering is an effective way of rendering big volumetric
datasets using high-performance servers (Kaspar et al., 2013; Gutenko et al.,
2014)). However, this approach is not always suitable for real-time applica-
tions, due to the connection lag between client and server. Also, it is not a
scalable solution and requires more investment on the server computational
power and network infrastructure.

With the arrival of the WebGL API to web browsers, accelerated GPU
graphics within the browser context was enabled. In recent years, there has
been a development of web-oriented real-time 3D graphics engines motivated
by the objective of making easier the creation and delivering of Web-based
games and interactive content. Several popular frameworks already take
advantage from the latest capabilities of JavaScript, HTML5 and WebGL,
enabling the interactive visualization of traditional polygonal meshes on the
Web e.g. Three.js (Cabello, 2018), Babylon.js (Catuhe et al., 2014) and
OSG.js (Pinson, 2014).

Volume rendering is a computationally expensive rendering technique
that can be implemented with different algorithms. However, the transla-
tion of the volume visualization to an ubiquitous platform such as the Web
is a challenge. Currently, among the 3D graphics frameworks available for
the Web, only goXTK (Hähn et al., 2012), X3DOM (Arbelaiz et al., 2016b),
Three.js (Cabello, 2018) and VTK.JS (Kitware, 2019) support volume ren-
dering for scientific data visualization.

Initial approaches used indirect methods, polygonal surface data were
extracted from the volumetric data, until Congote et al. (2011) presented
a WebGL based real-time volume rendering ray-casting algorithm that en-
abled client-side rendering in the browser. Their WebGL volume ray-casting
algorithm was based on Kruger and Westermann (2003b) multi-pass ap-
proach. They also used this approach for the visualization of air quality
models combined with GIS data (Congote et al., 2012) and weather radar
data visualization (Moreno et al., 2014).

Later, Mobeen and Feng (2012b,a); Movania and Lin (2012); Movania
et al. (2014) improved the multi-pass ray-casting algorithm with a single-
pass version based on the algorithm presented by Stegmaier et al. (2005)
and compared it with a texture slicing method in mobile devices.

Also, with WebGL’s ubiquitous characteristic, Noguera et al. (2012) and
Noguera and Jiménez (2012, 2016) have analysed volume rendering on mo-
bile devices with the OpenGL ES 2.0 API, the same API in which WebGL
1.0 API is based on. They have also compared ray-casting with the texture
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slicing rendering technique for volume rendering with WebGL in mobile de-
vices.

Hybrid approaches of server and client rendering have been studied.
Wangkaoom et al. (2015) and Chandler et al. (2015) have used WebGL as
a light rendering client by using a client and server based hybrid rendering
solution.

Arbelaiz et al. (2016b) presented a volume rendering component for
X3DOM based in the approach presented by Congote et al. (2011) and Con-
gote (2012). This thesis focuses solely in the client side volume rendering
with WebGL based ray-casting. X3DOM is a DOM-based implementation
of X3D (Fraunhofer IGD, 2014) that enables declarative X3D in the Web.
Later, Arbelaiz et al. (2016a) extended the WebGL ray-casting algorithm
for the hybrid rendering of surface and volume data.

Additional works have addressed different challenges related to the vol-
ume rendering component, presenting contributions and advances in the
interaction and exploration of volumetric datasets. Yang et al. (2015) have
contributed to X3DOM for weather data visualisation in conjunction with
terrain data. Tabor et al. (2018) have also used this component to create a
zebrafish brain browser tool that facilitates the design of intersectional ge-
netic experiments and for the study of brain circuit-mapping. Arbelaiz et al.
(2017a,c) have explored the use of DICOM medical data exchange format
in combination with X3DOM for medical volume visualization.

This component implementation provided by Arbelaiz et al. (2016b) of-
fers X3D’s volume visualisation reproducible and declarative features and
it has been the reference to obtain feedback from the community (X3DOM
Community, 2015a, 2016b,a, 2015b, 2017). The feedback received was taken
into account to define new extension proposals for the X3D standard (Ar-
belaiz et al., 2017b).

Recently, the WebGL 2.0 API has been officially released to the pub-
lic. Its support by modern browsers and platforms is not yet ubiquitous as
its predecessor. However it exposes new hardware capabilities that can be
exploited for volume rendering (Mwalongo et al., 2018; Lesar et al., 2018).

Figure 2.1 shows a time-line with the presented contributions related
to WebGL based DVR (above) and some of the community requested en-
hancements (below). The time-line is divided in three periods: i) initial
contributions of DVR algorithms applicable in the Web (orange area); ii)
elapsed time in which initial developments of the X3DOM volume render-
ing component were made (green area) and iii) contributions to web based
DVR, including contributions to the X3DOM volume rendering component
in response to community feedback (blue area).
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Figure 2.1: Time-line of contributions to WebGL-based volume rendering and
community feedback.
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Chapter 3

Web compatible volume data
texture

The Web has become a valuable entry point to access information and inter-
active multimedia content. In particular, applied to 3D real-time rendering,
web browsers postulate as a new opportunity to extend 3D advanced graph-
ics virtues and interactive experiences to all users. These users demand
access to content from a multitude of different devices, and therefore, this
new paradigm must be taken into account.

From an ubiquitous perspective, the Web is the only platform that facil-
itates to reach the highest number of devices and operating systems due to
the utilisation of common standards supported by multiple web browsers.
However, this benefit does not come without a few caveats.

WebGL is a W3C proposed standard that is based in the OpenGL ES
2.0 API by Khronos (Khronos, 2016). Although WebGL is based on an
API originally created for embeded devices (OpenGL ES), WebGL does not
support all OpenGL ES features. This situation was intentionally done by
the W3C consortium in order to ensure major compatibility and vendor
support among graphics architectures and devices.

On one hand, it can be assumed that 3D ubiquitous computer graphics
is possible using the WebGL API. On the other hand, there are technical
constraints that must be solved in order to create advanced rendering algo-
rithms. The representation of volumetric datasets using ray-casting methods
is an example of such rendering algorithms.

This chapter describes methodologies behind the web compatible volume
data structures and how this thesis contributes to extend their usage to
complex volume rendering scenarios. The presented methodology proves
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its compatibility with the web platform with new applications, such as 4D
volume rendering and improves its performance from previous approaches.

The chapter is structured as follows. The volumetric data problem in
the web is introduced at Section 3.1. Afterwards, Section 3.2 describes the
contributions to the web compatible volume data structure.

3.1 Volumetric data problem in WebGL

Due to the high computational power required for visualisation of volume
data, volume rendering is mainly applied in the scientific and engineering
domains. Current approaches try to propose computationally efficient algo-
rithms, but one of the core problems of volume rendering is the amount of
memory samples required to render the whole volume. Specially in direct
volume rendering approaches, a high number of the voxels must be sampled
in real-time in order to reconstruct the final 3D render accurately. This
implies that the problem is memory bound.

Furthermore, volume data is usually an approximation of a real phenom-
ena discretized into a finite number of voxels. Essentially, volume data is
a discretization of a continuous signal that can be infinitesimally sampled.
Thus, the amount of voxels or the volume grid size defines the resolution of
the model. For very accurate acquisitions coming from new MRI and CT
scan technologies, they can generate too large volume datasets that would
require a large quantity of memory, in the order of several gigabytes (GB)
or even terabytes (TB) of data.

When the volume is discretized into a grid of scalar values, there is
an step value difference between neighbourhood voxels. This step must be
considered when sampling the volume for visualization, as it can produce a
visual artefact in the rendering outcome similar to aliasing. An interpolation
phase can be used in order to smooth the transition of the value changes,
when sampling between voxels data.

In real-time volume rendering, the memory problem is solved by using
specialized hardware, i.e, graphics processing unit (GPU). Current GPUs
have texture units, a specialized image data memory storage, designed to
obtain better performance with sequential and non-sequential memory ac-
cess thanks to additional specialized cache memory and an efficient schedul-
ing to hide memory latency. In addition to this, they offer hardware based
interpolation when fetching texture data. Modern GPUs have both 2D and
3D texture units, even in mobile devices.

The hardware capabilities of GPUs are exposed by graphics APIs (Di-
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rectX, OpenGL, Metal, etc.) or General-Purpose computing (GPGPU)
APIs like OpenCL and CUDA. With the exception of WebCL at certain
browsers in concrete versions, when the web platform is used as a medium
for ubiquitous volume rendering, WebGL is the only graphics API that al-
lows to access the underlying GPU hardware.

The WebGL API specification is based on the OpenGL ES API, the em-
bedded version of OpenGL, which offers a graphics programmable pipeline
supported in a great number of devices. Unfortunately, to favour the adop-
tion of the standard, WebGL 1.0 does not support all the features of its
reference, OpenGL ES 2.0. For volume data, the WebGL 1.0 API does not
support the 3D texture capabilities present on the underlying GPUs. The
lack of support of 3D textures is a major drawback to allow the visualisa-
tion of volume data in the web platform. A solution for a web compatible
structure was firstly presented by Congote et al. (2011) and later extended
to larger datasets by Noguera and Jiménez (2012).

3.1.1 Congote et al. contribution: tiled volume texture

Congote et al. (2011) proposed a solution to emulate 3D textures. Their ap-
proach is divided into two parts: (a) The first part consists in the generation
of a 2D texture that contains the volume data. This is created by tiling each
slice (8-bit single channel) that composes the volume data in one axis (Z)
direction into a matrix configuration in row-major order. In this manner,
the 3D volume data is transformed into a 2D representation (2D texture)
that can be managed with WebGL. (b) The second part allows to fetch the
volume data in the fragment shader at the rendering stage by sampling the
previously generated 2D texture.

Figure 3.1 shows how each slice that composes the volume data is tiled
into a matrix configuration.

In order to maximize the amount of data that can be stored in a single 2D
texture unit, the generated texture must match the squared size dimensions
supported by GPUs: 4096×4096, 2048×2048, etc. When tiling the slices of
the volume data, the number of slices, their dimensions and the supported
texture resolution size of the targeted GPU must be taken into account.
GPU resources will be optimally used when the width and height of the
generated texture are equal, the smallest possible dimension is used and at
the same time, the required amount of data is stored into the texture.

Once the tiled volume data is loaded into the GPU as a 2D texture,
it is sampled in the fragment shader using Equation 3.1 to get the actual
3D volume data value. This equation uses GLSL 1.10 shader built-in math
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Figure 3.1: Tiling slices into a matrix configuration in row-major order.

methods: the matrix configuration is defined by ns (number of slices), nx
(number of slices over X direction), and ny (number of slices over Y direc-
tion).
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~v1 = texture2D(~t1)

~v2 = texture2D(~t2)

r = mix(~v1x, ~v2x, (z × ns)− s0)

(3.1)

For each volume sample (x, y, z) (3D coordinate), two texture fetches of



3.2. A new proposal: ImageTextureAtlas 21

consecutive slices are performed. Those values are linearly interpolated in
the Z axis to obtain the final volume data value. In this manner, a trilinear
interpolation for each volume sample is emulated since texture sampling
in a 2D texture unit is automatically bilinearly interpolated by hardware.
Multiple samples and a interpolation are required to generate a smooth
visualisation of the discretized volumetric data.

3.1.2 Noguera et al. contribution: large volume data

In order to accommodate bigger datasets, Noguera and Jiménez (2012) ex-
tended the approach by Congote et al. (2011) using multiple colour channels
or as an alternative, multiple atlases in multiple texture units.

On their first method, they rearrange slices into a matrix configuration
in one colour channel using a row-major order until the dimension criteria
for the given texture atlas is met. Then, they continue rearranging slices in
the next colour channel also in row-major order, repeating this process per
colour channel until all colour channels are filled with volume data. This
method allows to store up to 4 times as much data in a single (RGBA)
texture.

As an alternative, on their second method, they use multiple single colour
channel (R) textures of same dimensions and store them into multiple se-
quential texture units. Then, in the fragment shader they sample the re-
quired texture unit accordingly with the method presented by Congote et al.
(2011).

3.2 A new proposal: ImageTextureAtlas

The tilling approach to compose a 2D volume data image allows to imple-
ment ray-casting algorithms in web browsers. However, both contributions
from Congote et al. (2011) and Noguera and Jiménez (2012) can be extended
to accommodate more advanced volume renderings such as illustrative, non-
photorealistic and segmented visualizations.

Different structure variations and algorithms are needed to accommodate
such renderings. The data structure that includes all these variations by
composing a 2D texture of volume data slices is called ImageTextureAtlas.
In this section, the different contributed types of ImageTextureAtlases are
described.
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(a) Without colour classification (b) With colour classification

Figure 3.2: Comparison of the volume rendering with the aorta dataset after
colour classification and without colour classification.

3.2.1 Coloured volume data

Usually volume data represents the measured scalar data acquired from a
scan acquisition or simulation. These data does not describe any additional
property such as colour, just the values of the measured property. In order
to aid the user to discern the value changes and patterns within the data,
colour can be applied to illustrate the volume rendering outcome.

Figure 3.2 shows a direct volume rendering visualisation of the aorta

dataset. In Figure 3.2a no colouring is applied, while in the Figure 3.2b,
colour has been used to illustrate the volume data.

The rendering in Figure 3.2 shows how colouring in function of the dif-
ferent density values at each voxel allows to easily discern between tissue
and bones. The mapping of colour values to data values (classification) can
vary in function of the use case. Additionally, it can also be applied globally
or to localized regions of the data. This functionality will later be shown in
Subsection 3.2.3.

To store coloured volume data, a RGBA data structure is needed. In
the desktop platform with full OpenGL support, a RGBA 3D texture can
be easily declared with the glTexImage3D API function. Listing 3.1 shows
the input arguments required for the declaration of a multi-channel RGBA
3D texture. Each voxel is composed from a triplet of 8-bit unsigned values
that represents a colour value.
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Listing 3.1: 3D texture declaration in OpenGL for RGBA 3D texture.

glTexImage3D (GL TEXTURE 3D, 0 , GL RGBA8, WIDTH, HEIGHT
, DEPTH, 0 , GL RGBA, GL UNSIGNED BYTE, t e x e l s ) ;

However, there is no such equivalent function in the WebGL 1.0 API.
Instead, the approach presented by Congote et al. (2011) can be extended
to be used with multiple channels. In this case, rearranging the coloured
volume data slices (RGBA) in row-major order a RGBA ImageTextureAtlas
is generated. This step is performed before computing the rendering of the
volume. Instead of using a single colour channel ImageTextureAtlas for each
voxel of the volume data, multiple colour channels are used. Figure 3.3
shows a representation of this process.

CLASSIFY	

R	
(single-channel)	

RGB(A)	
(mul0-channel)	 ImageTextureAtlas	

RGB(A)	

Figure 3.3: Pre-classification to compose a coloured RGBA ImageTextureAtlas.

In contrast to Equation 3.1, where only one colour channel is used when
sampling the texture, two samples of a four component vector are obtained
(~v1, ~v2) at the coloured ImageTextureAtlas. These vectors represent pre-
classified volume data values. They are linearly interpolated to compute the
output value ~r (see Equation 3.2).
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s0 = bz · nsc
s1 = s0 + 1

~d1 =

[
fract

(
s1
nx

)
,
b s1nx
c

ny

]

~d2 =

[
fract

(
s2
nx

)
,
b s2nx
c

ny

]

~t1 = ~d1 +

[
x

nx
,
y

ny

]

~t2 = ~d2 +

[
x

nx
,
y

ny

]
~v1 = texture2D(~t1)

~v2 = texture2D(~t2)

~r = mix(~v1, ~v2, (z × ns)− s0)

(3.2)

From a performance point of view, as the colour is already encoded in the
volume data atlas, no additional colour mapping operations are required at
the fragment shading stage. Therefore, there is no additional computation
time penalization. This pre-classified coloured ImageTextureAtlas has the
advantage of being an efficient approach to render of illustrated volume data.
Additionally, it is a good approach in cases where the colour mapping is not
intended to be changed interactively in a real-time rendering. Interactive
colour mapping approaches and more advance renderings will be presented
in the following chapters.

3.2.2 Gradient volume data

Surface normals are used to compute the incidence angle of a light vector
from a light source. This allows computing advanced rendering styles, in
order to enhance features, illuminate or illustrate the volume data.

For the surface representation using polygonal mesh data, a surface nor-
mal at given point is a vector perpendicular to the tangent plane to the
surface in that point. These normals can be computed for each face or for
each vertex of the mesh, whereas for the volume data, multiple iso-surfaces
can be considered and the normal vectors are associated per voxel, i.e, like
in a 3D vector field per point in space. These normals are obtained by com-
puting the derivative of the original volume data signal function. Since the
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volume data is discretized and stored as image data, the derivative of the
data is approximated by the gradient computation using a neighbourhood
operator. As a result, a three component (x, y, z) vector is generated for
each voxel.

To avoid the computation of gradient data in real-time, it can be com-
puted in a pre-processing step (offline). Additionally, using this approach,
different gradient operators such as sobel, gauss, etc. can be used. These
methods are not suitable for real-time rendering as a high number of neigh-
bour voxels are required to be sampled.

At the desktop platform with full OpenGL support, a RGB 3D texture
could be used, as previously shown in Listing 3.1, to store the gradient
data. However, such support is not available in the WebGL 1.0 API. As a
solution, the computed gradient data is encoded into a multi-channel RGB
ImageTextureAtlas.

The computed gradient data is encoded into a multi-channel RGB Im-
ageTextureAtlas. Each gradient vector is mapped to colour channels (R : X,
G : Y , B : Z) using a row-major order to compose the matrix of slices that
represents the ImageTextureAtlas. Figure 3.4 shows a single slice of volume
data and its computed gradient slice.

(a) Volume data slice (b) Gradient data slice

Figure 3.4: Comparison of volume data slice of the aorta dataset and a colour-
enhanced version of a computed gradient data slice (background removed).

The alpha channel can also be used to store the gradient magnitude,
i.e, the length of the gradient vector at each voxel. For this case, a RGBA
ImageTextureAtlas is generated.

On the visualisation process, every time the volume data is sampled
at given 3D texture coordinate, both the volume data and the gradient
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data ImageTextureAtlases are sampled on their respective texture units.
In the first case, at the fragment shader, Equation 3.1 is used to extract
the volume data value. In the later case, for the gradient data the same
equation is used, but with modifications that take into consideration the
vectorial nature of the information, as presented in Equation 3.2 for the
coloured ImageTextureAtlas.

After obtaining the gradient value, since the texture stores the gradient
values as positive values in 8-bit [0-255] range, they must be transformed
back into the [-1,1] range. For that purpose, the GLSL code at Listing 3.2
can be used.

Listing 3.2: Sampling gradient vector from texture.

vec4 getNormalFromTexture(sampler2D sampler , vec3 pos) {

vec4 n = (2.0 * sampleImageTextureAtlas(sampler , pos) -1.0);

return vec4(normalize(n.xyz), length(n.xyz));

}

Therefore, the gradient vector is obtained performing an additional sam-
pling (see Equation 3.1) and transform operation (see Listing 3.2). A limita-
tion of this approach is the extra GPU memory space required, as gradient
data uses three times more space than 8-bit single-channel scalar data.

An alternative to store the gradient volume data into a texture is to
compute this data in real-time at the fragment shader. Equation 3.3 shows
the central-differences neighbourhood operator (5) usually employed in real-
time volume rendering. It shows that for each 3D sample, six additional
neighbour texel fetches are required.

5 f(x, y, z) =


f(x+1,y,z)−f(x−1,y,z)

2 ,
f(x,y+1,z)−f(x,y−1,z)

2 ,
f(x,y,z+1)−f(x,y,z−1)

2

(3.3)

For the ImageTextureAtlas approach, each 3D texture fetch (sampleIm-
ageTextureAtlas) requires two 2D texture fetches. The Listing 3.3 shows a
GLSL implementation of Equation 3.3.

Listing 3.3: 3D gradient computation in the fragment shader.

vec4 gradient(sampler2D sampler , vec3 pos){
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float v0 = sampleImageTextureAtlas(sampler , pos + vec3(←↩
offset.x, 0, 0)).x;

float v1 = sampleImageTextureAtlas(sampler , pos - vec3(←↩
offset.x, 0, 0)).x;

float v2 = sampleImageTextureAtlas(sampler , pos + vec3(0, ←↩
offset.y, 0)).x;

float v3 = sampleImageTextureAtlas(sampler , pos - vec3(0, ←↩
offset.y, 0)).x;

float v4 = sampleImageTextureAtlas(sampler , pos + vec3(0, ←↩
0, offset.z)).x;

float v5 = sampleImageTextureAtlas(sampler , pos - vec3(0, ←↩
0, offset.z)).x;

vec3 grad = vec3(v0-v1, v2-v3, v4-v5)*0.5;

return vec4(normalize(grad), length(grad));

}

The forward-difference method fetches only the next neighbour voxel in
the ray direction, which translates in half amount of texture fetches (see
Equation 3.4).

5 f(x, y, z) =


f(x+1,y,z)−f(x,y,z)

2 ,
f(x,y+1,z)−f(x,y,z)

2 ,
f(x,y,z+1)−f(x,y,z)

2

(3.4)

Figure 3.5 shows the volume rendering visualization of the aorta dataset
illustrated with the gradient vector encoded as RGB colours.

Figure 3.5: Volume rendering of the aorta dataset illustrated with the computed
gradient data as colour.

The use of the gradient texture depends on the targeted hardware. In
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Figure 3.6: Segmented volume rendering of the Head MRI dataset from different
points of view.

some cases, the latency of additional texture fetches will be hidden along
the compute operations by GPU instruction scheduling. In other cases,
the high memory bandwidth and transfer time required for the gradient
ImageTextureAtlas will be a burden for the performance.

3.2.3 Segmented volume data

There are use cases where regions within the volume data are required to be
rendered in a different manner. For instance, in medicine, tissues or bones
can be segmented based in the acquired density values to apply different
colour mappings to each region.

For this purpose, firstly, each voxel in the volume data must be identified
into a given region. Once regions of data are assigned, in the rendering
process this information can be used to enhance the region of interest or
interactively interact with the visualisation in separate regions of the data.
Figure 3.6 shows a segmented visualisation of the ventricles of the brain with
the Head MRI dataset.

At the desktop platform with full OpenGL support an additional 3D
texture can be used to store the segmented data. In function of the number
of regions, different data types (bool, uint8, uint16, etc.) could be used
to minimize the required memory space. Listing 3.4 shows an example
declaration for such data structure in OpenGL.

Listing 3.4: 3D texture declaration in OpenGL for segmented data

glTexImage3D (GL TEXTURE 3D, 0 , GL R8 , WIDTH, HEIGHT,
DEPTH, 0 , GL R, GL UNSIGNED BYTE, t e x e l s ) ;
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(a) Volume data slice (b) Segmented data slice

Figure 3.7: Comparison of a volume data slice and the segmented binary mask
of the same slice from the Head MRI dataset.

Such declaration cannot be made in WebGL 1.0. However, an addi-
tional ImageTextureAtlas of the same dimensions can be used to store the
segmented data in a compatible manner.

The segmented data is a mask that is applied during the rendering. In
the web platform, two type of masks have been applied:

1. Binary mask: For each voxel a binary value (true or false) is assigned
to specify if the given voxel belongs to the region of interest or not.

2. Identifier mask: For each voxel an scalar value is given. This identi-
fier specifies to which region belongs the voxel so that, at the rendering
process it will mapped accordingly.

Identifiers are assigned into [0-255] range 8-bit single-channel images.
Figure 3.7 shows an slice of the Head MRI dataset on the left and the ex-
tracted binary mask on the right, obtained from the Volvis Head MRI dataset
(University of Tübingen WSI/GRIS, 2014).

The extracted segmented slices are composed into a matrix configuration
in row-major order to compose an ImageTextureAtlas (see Figure 3.8).

In the rendering process, once the segmented data is loaded into GPU
memory, the segmented data is sampled along the volume data with the same
3D texture coordinates. In function of the identified region, the rendering
will vary, as it will be described later on, in Chapter 7.

The process of region extraction or segmentation algorithms is out of the
scope of this thesis. In the medical domain, segmentation is an important
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Figure 3.8: Segmented ImageTextureAtlas. Binarized mask of the ventricles of
the brain from the Head MRI dataset

.

research topic, and several tools and applications that can be used to gen-
erate the segmented data. The output of these tools can be converted into
the proposed ImageTextureAtlas. In Chapter 9 a segmentation pipeline is
presented to generate a segmented ImageTextureAtlas.

Figure 3.9 shows the ubiquitous segmented visualization of different vol-
umetric datasets which use the proposed structure.

3.2.4 Time-varying volume data (4D)

In natural phenomena 3D data also changes over time. Therefore, data
should not be considered as static. Data evolves over time is also known
as time-varying data. Thanks to advances in MRI and CT technology, cap-
turing of sequential scans at higher speed is now possible, and therefore,
datasets of volume data that evolves over time (4D) can be considered for
study. Currently, applications in the medical domain target 4D ultrasound
imaging acquisition or, in the geosciences domain, 4D data simulations in a
long period of time of a system are studied (Ho and Jern, 2008).

In the desktop platform there is no 4D texture structure available. In-
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Figure 3.9: Ubiquitous segmented volume visualization of the Head MRI and
aorta datasets in multiple devices.

stead, it is represented as an array of 3D textures. To perform the rendering,
3D textures must be uploaded on demand to the GPU memory and this can
be a complex process to handle. This approach is not applicable in the Web
platform. However, there is a solution that exploits the HTML5 capabilities
of web browsers.

The video container is natively supported by modern web browsers and
video files can be easily distributed from a web server. A new extended
version of ImageTextureAtlas is used to accommodate the time (4D). In this
case, 4D volumetric data is stored as a video instead of an static ImageTex-
tureAtlas

Figure 3.10 illustrates the composition of the ImageTextureAtlas video
container, where the fourth axis (time) hold the frames of the video that
will be reproduced.

The video generation must be performed in the server side or in a pre-
processing step. This approach exploits the native video reproduction and
2D canvas API features of HTML5 in modern browsers. An atlas for each
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t0 t1 tn

t

ImageTextureAtlas

(video)

Figure 3.10: Illustration of the composition of the time-varying ImageTextureAt-
las video. A data structure to represent 4D volume data in the web.

time step of the 4D volume data is created. Then, all the atlases are con-
verted and encoded into a video which will play in a continuous loop.

Listing 3.5 shows the definition of the video declaration in HTML5. This
atlas sequence is being played in the background hidden to the user.

Listing 3.5: HTML5 video declaration for an ImageTextureAtlas.

<video autoplay loop style=‘width :2048px;height :2048

px;display:none ’>

<source src=‘atlas_video.mp4 ’ type=‘video/mp4 ’>

</source >

</video >

The hidden video is linked through JavaScript with a dynamic Image-
TextureAtlas. A 2D canvas of the same resolution of the video is created and
its content is updated with the canvas API using a fixed timer (refresh time).
Since the 2D canvas data can be transferred to the GPU as a texture, its
continuous changes over time are reflected in real-time in the visualization.

There are some considerations to take into account like the potential
loss of accuracy due to the employed video encoding or the refresh time
of the texture data. Nevertheless, this approach demonstrates the current
capabilities of the Web technological stack and the proposed web-centred
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ImageTextureAtlas approach.

3.2.5 Single-channel ImageTextureAtlas resolution discus-
sion

There is one consideration that must be taken into account regarding the pre-
sented approach: downscaling needed to fit the atlas within the texture size
limit of the client device GPU. Typically, for in-core GPU volume rendering,
resolution of datasets vary from 128× 128× 128 to 512× 512× 512. Bigger
datasets will require downscaling or out-of-core algorithms as researched by
Gobbetti et al. (2008) and Crassin et al. (2009).

Using WebGL Stats (Bösch, 2019), it is safe to assume that in 2018
the majority of desktop computers support 8192× 8192 texture size Image-
TextureAtlases, and 75% among them support a 16384 × 16384 size atlas.
Whereas in mobile devices, the established threshold is set on a 4096×4096
texture size.

Table 3.1 shows the texture size required to store the volumetric data
into an ImageTextureAtlas. Common resolution of volumetric datasets are
taken as a reference (columns): 128× 128× 128, 256× 256× 256 and 512×
512×512. Rows indicate the 2D texture sizes supported by GPU hardware.
If the dataset fits the targeted texture resolution without downscaling a
check symbol (X) is used, otherwise a percentage of the overall downscaling
required is given (size reduction).

Dataset

Atlas 128× 128× 128 256× 256× 256 512× 512× 512

1024× 1024 33% 75% 91%
2048× 2048 X 50% 83%
4096× 4096 X X 65%
8192× 8192 X X 30%

16384× 16384 X X X

Table 3.1: Texture size and downscaling required for the single-channel Image-
TextureAtlas.

3.2.6 Multi-channel large volume data atlas

With the technological advances of scanners, the resolution and accuracy are
expected to grow continuously. Therefore, the visualization of large volume
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datasets should be considered.

There is a limitation with this approach in the amount of volume data
that can be packed into an ImageTextureAtlas (see Section 3.2.5). The
maximum number of slices that can be rearranged into a matrix composition
is determined by the resolution of each slice and the maximum dimension
supported by the 2D texture unit of the targeted GPU device. From an
ubiquitous perspective, not all devices share the same memory capabilities.

The new approach uses multiple colour channels like the approach pro-
posed by Noguera and Jiménez (2012) to store up to four times as much
data in a single ImageTextureAtlas. However, the volume data slices are
rearranged in a different order that makes better use of spatial coherence
to optimize the usage of GPU memory. Slices are positioned across colour
channels in depth order first, by stacking sequential slices into groups (eg.
4 for RGBA, 3 for RGB, etc.) and continue rearranging grouped slices in
row-major order until all the texture is filled (see Figure 3.11).

Samples of each ray will fetch texture data from neighbour texels or even
at the same position using the proposed ordering, specially when the camera
is located to visualize the volume from the front and back view angles. This
happens because sequential slices are often spatially closer in the composed
atlas using a depth first order, i.e, in the next colour channel but at the
same 2D texture coordinate. The proposed ordering will improve the use of
GPU texture cache.

Two optimization strategies are proposed depending on the required
colour channels. Figures 3.11 and 3.12 shows the difference orders employed
for the two strategies: RGB and RGB +A ImageTextureAtlases.

i) Storage capacity. When the dataset is large, the storage capacity
may be prioritized. In this case all the colour channels (RGBA) are
used to store the whole volume data. Figure 3.11 shows a diagram of
the order used to compose a 2 × 2 RGBA ImageTextureAtlas with 16
slices of volume data. Please note that at the bottom right corner of
each slice, the index in Z axis direction of the original data slice is given.
For the RGBA case a depth first sequence order is used.

ii) Look-up optimization. When all the colour channels are not needed
to store the whole volume data (the targeted GPU has larger texture
size capacity than required), a look-up optimization can be exploited.
The free (not used) colour channel are used to store repeated data.
The depth order in which sequential slices are stacked together is still
maintained. However, the last slice of a stacked slice group will be the
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Figure 3.11: RGBA multi-channel order composition for a 2 × 2 ImageTexture-
Atlas.

same as the first slice of the next stacked group (following the row-
major order matrix in groups). This composition is referred as RGB+
A ImageTextureAtlas. Figure 3.12 shows the order sequence for the
RGB + A case. Please note how the indices of the last slice in each
multi-channel group A repeats with the first slice R in the next multi-
channel group in row-major order. As data is repeated, in this diagram
a 2 × 2 RGB + A ImageTextureAtlas is composed with 12 slices of
volume data. The last slice at the last group is empty (contains no
data). The motivation to use the redundant data is to avoid multiple
2D texture fetches to the ImageTextureAtlas per 3D volume sample
when the trilinear interpolation is emulated in the fragment shader.

The sampling function that takes a 3D texture coordinate (x, y, z) and
fetches the data from a RGBA ImageTextureAtlas is presented in Equation
3.5. The objective of this function is to return the voxel scalar value of a
given 3D texture coordinate (r).

~k1 = [1, 2, . . . , nc]

~k2 = [0, 1, . . . , nc − 1]
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Figure 3.12: RGB + A multi-channel order composition for a 2 × 2 ImageTex-
tureAtlas.

s0 = bz · nsc
s1 = s0 + 1

~c1 = mod(s0, nc)

~c2 = mod(s1, nc)

s2 = s1 ·
1

nc

s1 = s0 ·
1

nc
dx1 = s1 · nx − (bs1 · nxc)
dy1 = (bs1 · nxc) · ny
dx2 = s2 · nx − (bs2 · nxc)
dy2 = (bs2 · nxc) · ny (3.5)

~t1 = (dx1, dy1) + (x · nx, y · ny)
~t2 = (dx2, dy2) + (x · nx, y · ny)
~d1 = texture2D(~t1)

~d2 = texture2D(~t2)
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~a1 = step(~k1, ~c1)

~a2 = step(~k1, ~c2)

~b1 = step(~k2, ~c1)

~b2 = step(~k2, ~c2)

~f1 = ~b1 − ~a1

~f2 = ~b2 − ~a2

r = mix( ~d1 · ~f1, ~d2 · ~f2, (z × ns)− s0)

Equation 3.5 uses GLSL 1.10 shader built-in math functions mod, tex-
ture2D, step and mix. texture2D fetches 2D texture data given a 2D vector.
step method generates a step function by comparing two inputs and mix per-
forms a linear interpolation between two values. ~k1 and ~k2 are pre-defined
constant vectors which define a sequence delimited by the number of colour
channels: i) when 4 colour channels are used, RGBA −→ ~k1 = [1, 2, 3, 4]. ii)
When 3 colour channels are used RGB −→ ~k1 = [1, 2, 3].

The ImageTextureAtlas configuration is defined by ns (number of slices),
nx (1 / number of slices over X direction), ny (1 / number of slices over Y
direction) and nc (number of colour channels).

The final scalar value r is returned as the data value for a given x, y, z
3D texture coordinate. All the other variables are temporal variables that
are executed sequentially to compute the final value r.

Note that ~c1 is a 4-component vector, whose coordinates are initialized
with the result of the scalar modulus operator. The same applies to ~c2.

The GLSL 1.10 version of WebGL does have some limitations such as
dynamic indexing of a vector. This means that if a component of a vector
is required to be accessed, the index of this component must be stated at
compile-time. To obtain the final scalar value r with the proposed multi-
channel RGBA texture, the function in Equation 3.5 requires to fetch indi-
vidually the colour channels (vector components) based in a computed index
at run-time. To overcome this issue, math operations (dot product) and the
GLSL step function are used to emulate this functionality and unpack the
required vector component which contains the actual scalar value.

When the RGB +A ImageTextureAtlas is used, the function to extract
the final scalar value r given a 3D texture coordinate (x, y, z) is similar
to Equation 3.5. However it has a major difference: only one texture2D
instruction is used instead of two.

Equation 3.6 shows the mapping function required for the RGB + A
ImageTextureAtlas case. It uses the same notation as Equation 3.5. For
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this configuration (RGB +A) nc equals 3.

~k1 = [1, 2, . . . , nc]

~k2 = [0, 1, . . . , nc − 1]

s0 = bz · nsc

s1 = bs0 ·
1

nc
c

~c = mod(s0, nc)

dx = s1 · nx − (bs1 · nxc)
dy = (bs1 · nxc) · ny
~t = (dx, dy) + (x · nx, y · ny)

~drgba = texture2D(~t)

~f = step(~k1,~c)− step(~k2,~c)

~v = mix(~drgb, ~dgba, (z × ns)− s0)

r = ~v · ~f

(3.6)

Since it is ensured that the next colour channel always contains the next
data slice (due to data repetition) with one 2D sample (texture2D) we fetch
the data from both required slices at the same time and after interpolation,
using a dot product operation the final data value r can be extracted from
the correct colour channel (vector component). This has a beneficial impact
in devices like tables and mobile devices where the memory latencies of their
GPUs are not as capable as their desktop counterparts.

The same strategies can be used with small volumetric datasets to com-
pose RGB, RG+B, RG or R+G multi-channel ImageTextureAtlases.

Using this approach more data can be packed in a single graphics texture
unit, making better use of the memory resources of the GPU. Table 3.2 shows
the texture size required to store volumetric datasets up to 512× 512× 512
using the presented multi-channel RGBA approach.



3.2. A new proposal: ImageTextureAtlas 39

Dataset

Atlas 128× 128× 128 256× 256× 256 512× 512× 512

1024× 1024 X 50% 83%
2048× 2048 X X 67%
4096× 4096 X X 33%
8192× 8192 X X X

16384× 16384 X X X

Table 3.2: Texture size and downscaling required for the multi-channel RGBA
ImageTextureAtlas.
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Chapter 4

Automated shader
composition and generation

In several fields, volumetric data and multi-variate data needs to be anal-
ysed, evaluated and interpreted. To achieve these goals, the capability to
visualise volumetric data is mandatory as visualisation is a natural way to
interpret and understand data.

The scientific domain is where volumetric visualisation is more frequently
used. In fields like biology, geology, medicine and physics volumetric data
that needs to be visualised, processed and inspected can be found. None-
theless, in other domains such as engineering, volumetric rendering can be
used in fluid and heat transfer simulations.

As the specialization field changes, the needs and requirements for each
visualisation also change. From a practical point of view, a direct volume
visualisation of the raw data is not enough to interpret the data. Additional
enhancements to the visualization algorithms are required in order to target
the use cases and necessities of each field. For instance, the ability to discern
segmented regions in the volume by the use of colour mapping is frequently
used in the medical field.

Unfortunately, the use and modification of the rendering algorithms re-
quire either great knowledge of computer graphics or the use of specialized
software designed for each specific use case. Volumetric visualisation soft-
ware is designed to fulfil requirements or goals specific to a certain field.
Essentially, each application modifies the rendering process to achieve a
certain visualisation style. The non-standardization of this rendering algo-
rithms has negative consequences in the visualisation of the content: few
devices have the software to render this information. Developing tailored
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software does not impose a problem to specialized software products, but it
is a real problem for general purpose visualisation applications.

In this chapter an architecture for the automated generation of GPU vol-
ume rendering shader code generation is presented. The proposed architec-
ture implements the X3D ISO volume rendering set of nodes and composable
styles. These contributions overcome three main challenges: i) facilitate the
creation of graphics shader code to non-expert users, ii) allow the interop-
erability and visualisation of volume rendering content over the web, and
iii) provide a cross-domain ubiquitous volume rendering solution within the
web platform.

This chapter is organized as follows. Section 4.1 explains the shader
generation process. Using this approach, Section 4.2 presents an implemen-
tation of the ISO/IEC X3D volume rendering nodeset for the web.

4.1 Automatic shader generation

A novel architecture is proposed and implemented for the X3D scene declara-
tion schema and node sets. Based on the nodes of this scene, the necessary
code is created on run-time during the scene tree traversal. The shader
generation and composition uses a template based approach. Section 4.1.1
presents the X3D scene declaration and Section 4.1.2 presents the composi-
tion architecture for the web.

4.1.1 Declarative approach for the scene definition

X3D is a royalty-free and matured ISO standard (Web3DConsortium, 2017b).
Conceived for interchangeable 3D content on the Web, it aims to represent
a 3D real-time scene with a standard XML-based file format. X3D defines
several profiles, each of them is composed of a set of components. Some of
these components are extensions added by collaborating committees. There
are desktop implementations of X3D (non-web). This chapter addresses the
web implementation of the volume rendering nodes of X3D.

The scene graph is the basic entity of the X3D run-time environment. It
contains the objects and relations that define the scene. The X3D standard
defines a set of nodes for volume rendering, along with the definition of its
fields and expected output behaviour (rendering output). Following this
convention different applications can use the same volume rendering scene
definitions.

Figure 4.1 shows an example of a volumetric scene tree for the backpack

(University of Tübingen WSI/GRIS, 2014) dataset, where each node type
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is shown with a distinctive colour.

X3DTexture3DNode

ComposedVolumeStyle

OpacityMapVolumeStyle

SilhouetteEnhancementVolumeStyle

X3DTexture3DNode

VolumeData

EdgeEnhancementVolumeStyle

(a) Non-web

ImageTextureAtlas.

ComposedVolumeStyle.

OpacityMapVolumeStyle.

Silhoue9eEnhancementVolumeStyle.

ImageTextureAtlas.

VolumeData.

EdgeEnhancementVolumeStyle.

(b) Web

Figure 4.1: Partial tree of a composed volume scene. a) scene tree for standard
desktop X3D and b) scene tree for X3DOM in the web.

In this example, a scene is defined with a ComposedVolumeStyle which
includes two rendering styles. Firstly, edges are enhanced with red colour
using the EdgeEnhancementVolumeStyle and then, the SilhouetteEnhance-
mentVolumeStyle highlights the areas where the surface normals are per-
pendicular to the view direction. Figure 4.2 shows the rendering output of
the X3DOM scene tree and Listing 4.1 shows the user declaration of the web
scene. The novel automatic web implementation generates the GPU shader
code that renders the nodes as they are specified by a web content developer
(see Section 4.1.2).

The ImageTextureAtlas is an additional node, currently not defined by
the X3D standard. This node is used by the component to provide the
volume data or the gradient data and it has been defined in Chapter 3.
Depending on the scene, the gradient data can be provided as an additional
ImageTextureAtlas texture and declared as a child node of the X3DVolume-
DataNode; or as a child node of the X3DComposableVolumeRenderStyle-
Node.
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(a) Non-web (b) Web

Figure 4.2: Two rendering outputs of the backpack dataset using the Composed-
VolumeStyle with the SilhouetteEnhancementVolumeStyle and the EdgeEnhan-
cementVolumeStyle. a) Non-web rendering output taken from the X3D standard.
b) Rendering output from the novel web implementation.

In a volume rendering scene, multiple volume data nodes can be de-
clared. A custom shader will be generated for each declared volume data
type derived node (X3DVolumeDataNode). The volume data node contains
the initial shader template code. This template is completed by the render-
ing styles declared as child nodes in the scene. In the case of Listing 4.1 the
EdgeEnhancementStyle and SilhouetteEnhancementVolumeStyle nodes con-
tains functions that are inlined in the ray traversal to modify the rendering
output according the declared parameters.

4.1.2 Web composition novel architecture

The volume rendering component generates on-the-fly the necessary shaders
to be used by the programmable graphics pipeline available through WebGL.
Therefore, the workload of the volume rendering ray-casting method is done
by shader programs running in the GPU. Shader programs are a set of text
strings that are passed to the graphics hardware driver for compilation and
execution. This approach is based on the previous works by Congote et al.
(2011) and Mobeen and Feng (2012b). A single shader program (vertex and
fragment shader) is generated for each volume data declared on the scene.

The declarative nature of X3D allows to nest multiple rendering styles in
a hierarchically constructed node scene graph. Using a given volume data,
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Listing 4.1: Composed scene declaration.

<X3D width="500px" height="500px">

<Scene>

<Background skycolour="1 1 1" transparency="0"></Background>

<Viewpoint zNear="0.0001" description="Default" zFar="100"></

Viewpoint>

<VolumeData id="vol" dimensions="4 4 4">

<ImageTextureAtlas containerField="voxels" url="backpack.png"

numberOfSlices="373" slicesOverX="20" slicesOverY="20">

</ImageTextureAtlas>

<ComposedVolumeStyle>

<OpacityMapVolumeStyle lightFactor="0.7" opacityFactor="20">

</OpacityMapVolumeStyle>

<EdgeEnhancementVolumeStyle gradientThreshold="0.6" edgecolour="1

0 0">

<ImageTextureAtlas containerField="surfaceNormals" url="backpack

-g.png" numberOfSlices="373" slicesOverX="20" slicesOverY="20

">

</ImageTextureAtlas>

</EdgeEnhancementVolumeStyle>

<SilhouetteEnhancementVolumeStyle silhouetteBoundaryOpacity="1.0"

silhouetteRetainedOpacity="0.1" silhouetteSharpness="1.2">

</SilhouetteEnhancementVolumeStyle>

</ComposedVolumeStyle>

</VolumeData>

</Scene>

</X3D>

content developers can define a X3D scene with the desired rendering styles.
As a result, they will get the desired visualisation of such dataset. For
instance, they could use different illustrative styles in two segments within a
volume or they could compose a selection of styles to enhance the contours
of the volume.

Thus, the number of possible scene declarations is unbounded. Each
scene requires its specific shader to implement the volume rendering. In this
regard, to fulfil the dynamic requirements of X3D, the component avoids
storing pre-defined shaders. Instead, shaders are created on-the-fly by com-
posing a set of strings which are collected during the traversal of the X3D
volume rendering nodes. Each node defines its own shader strings, which
are added to a common template defined at the root level (see Figure 4.3).
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This process starts when a new web page with X3D content is loaded.
The ray-casting loop is implemented in a fragment shader. The compo-

nent generates automatically the shader code required for each X3D scene.
It uses a fixed step size and a fixed maximum number of steps in the ray-
casting loop, because the GLSL shading language requires the number of
instructions sent to the GPU to be known at compiling time.

Unlike the fragment shader, the vertex shader is common to all scenes.
When the HTML document is loaded on the browser, a scene traversal is
triggered to load the X3D scene. Once the traversal has parsed the child
nodes of the root volume data node and they are attached to the DOM, the
shader generation begins. This shader generation is performed in two steps:
an initialization phase and a shader code generation phase.

During the initialization phase, shader uniforms and texture variables
are collected from the child nodes, initializing their values so that they can
be handled by X3DOM. The initialization of these variables is needed as
they must be declared on both the JavaScript (CPU) and shader (GPU)
sides. There are several factors that are taken into account for this phase:

i) The uniforms data types must be specified before compilation.

ii) The name of the uniforms and texture variables must not be the same
to avoid name collision problems when the same style is applied more
than once.

iii) The assignment of a free texture unit to each texture sampler must be
managed.

iv) Each variable must be correctly linked to its node parameter at the
DOM tree to generate dynamic changes on the shader variables.

In the shader code generation phase, the complete shader code is com-
posed, compiled and linked in the GPU. The volume data type node (X3D-
VolumeDataNode) defines the base template of the fragment shader (see
Figure 4.3, on the right). The missing parts of this template are filled with
the strings collected from its child nodes in several traversals. In general
terms, a render style node (X3DVolumeRenderStyleNode, X3DComposable-
VolumeRenderStyleNode) defines a set of strings where the uniforms and
textures, the lighting equation, the style functions and the inline code are
stored.

The uniforms and textures, marked as red on Figure 4.3, declare the
input parameters that are used by the style. Therefore, they have to be
located at the top of the template. The code generated by the template to
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<X3D Scene>

   <DataTypeNode>

      <ComposableStyles>

          

           <StyleNode/>

           <StyleNode/>

      </ComposableStyles>

   </DataTypeNode>

</X3D Scene>

UNIFORMS & TEXTURES

LIGHTING EQUATION

STYLE FUNCTIONS

INLINE CODE

GLOBAL UNIFORMS

3D TEXTURE ACCESS FUNCTION

GRADIENT CALCULATION FUNCTION

RAY-CASTING LOOP

FRAGMENT SHADER TEMPLATE

UNIFORMS & TEXTURES

LIGHTING EQUATION

STYLE FUNCTIONS

INLINE CODE

SCENE TRAVERSAL

VERTEX SHADER

GPU

UNIFORMS & TEXTURES

LIGHTING EQUATION

STYLE FUNCTIONS

INLINE CODE

Figure 4.3: Template-based shader code generation.

calculate or access the gradient data is conditioned by whether the gradient
data is provided by a render style node through a texture or not. When no
texture gradient is provided, a function to calculate the gradient is generated
on the template. In the opposite case, a function to access the gradient atlas
is generated.

The lighting equation marked as green is an optional function which if
the user declares a light on the scene id added to the template or if it is
mandatory to the style, e.g. ShadedVolumeStyle (Section 4.2.3) it will also
be added.

The style functions marked as yellow are strings composed of functions
that modify the ray accumulation according to the style logic.

The inline code marked as blue is code to be located within the ray-
casting loop. It consists mainly of function calls to the style functions, but
it can also contain code to serialize or blend results of several styles and code
that can not be separated on style functions, such as temporal variables.

Some render styles are composable, so there can be several rendering
styles applied to one dataset. Each of the styles defines their own strings
following the same described structure. They are collected and appended one
after the other on their corresponding part of the template. An exception is
the lighting equation string, which is not appended. As defined in the X3D
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standard, the lighting equation is only collected from the first style node.
By filling each part of the template with the collected strings, the shader is
completed and ready to be compiled.

4.2 X3DOM volume rendering component

X3DOM is a DOM based model that allows the integration of the X3D nodes
into the HTML5 DOM content (Behr et al., 2009). It adds the capability
of declaring 3D scenes under the X3D format and directly modify the X3D
tree through DOM events. This chapter, proposes the first implementation
for the Web of the volume rendering component defined by the X3D. The
set of volume rendering styles which composes the component, in combina-
tion with X3DOM, provides a suitable framework for real-time volumetric
visualisation under any WebGL compatible device. This approach benefits
from the ubiquity of the Web, as it is deployable even on mobile devices.

The camera defined in a volume rendering scene can be interactively
manipulated by the web page viewer: rotation, zoom, pan are the basic
camera manipulation methods. X3DOM connects the X3D scene with the
DOM. Changes on the scene can be done with the addition of JavaScript
event handlers and listeners that change the attributes of a volume rendering
node tag at the DOM tree.

The <x3d> tag element is the initial statement to embed a 3D canvas.
Each X3D node matches with a corresponding tag under the <x3d> names-
pace. Input parameters of the rendering style nodes are usually shader
uniform variables (see Figure 4.3). Once they have been compiled at run-
time, an update in a style parameter will dynamically modify the uniform
value. As a result, the output rendering will be updated in real-time without
the need of regenerating and compiling the shader again. Textures are also
linked as uniforms on the shaders. Thus, an update on the input textures
(such as the volume data, gradient data or any transfer function) will be
directly reflected on the rendering output.

This approach creates custom shaders when the scene is loaded. When
needed, shader code is generated based on the provided parameters, possibly
affecting the style function, inline code or the base template (see Figure 4.3).
The modification of such parameters will require the regeneration of the
shaders again. For these cases, the scene must be reloaded (complete scene
traversal) to compile and link the new updated shader program.

The scene graph is the basic entity of the X3D run-time environment. It
contains the objects and relations that define the scene. The X3D standard



4.2. X3DOM volume rendering component 49

Abstract nodes Implementation nodes

X3DVolumeDataNode
VolumeData
SegmentedVolumeData
IsoSurfaceVolumeData

X3DVolumeRenderStyleNode ProjectionVolumeStyle

X3DComposableVolume-
RenderStyleNode

ComposedVolumeStyle
OpacityMapVolumeStyle
EdgeEnhancementVolumeStyle
BoundaryEnhancementVolumeStyle
SilhouetteEnhancementVolumeStyle
ToneMappedVolumeStyle
BlendedVolumeStyle
CartoonVolumeStyle
ShadedVolumeStyle

Table 4.1: X3D volume rendering component nodes for v3.3.

defines a set of nodes for volume rendering, along with the definition of
its fields and expected output behaviour. The Medical Working Group of
X3D is the responsible for the definition of the volume rendering component
nodes.

The node hierarchy defined for the volume rendering nodes is com-
posed of three abstract node types. The root node describes the volume
data to be rendered and it is defined as X3DVolumeDataNode. A volume
rendering style node defines how the volume data is rendered, producing
illustrative and non-photorealistic renderings to enhance the visual out-
put. The style nodes derive from a X3DVolumeRenderStyleNode or a X3D-
ComposableVolumeRenderStyleNode, and they are declared as children of the
X3DVolumeDataNode. Style nodes that inherit from the X3DComposable-
VolumeRenderStyleNode can be composed: the output of a style can be the
input of the next applied style.

Table 4.1, lists all the nodes defined in the X3D volume rendering com-
ponent (version 3.3).

There was no prior implementation of these nodes for the Web platform
in the literature. Following subsections describe the implementation of each
of these nodes.
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4.2.1 X3DVolumeDataNode

The X3DVolumeDataNode has three derived nodes: VolumeData, Segmented-
VolumeData and IsoSurfaceVolumeData.

The VolumeData specifies a non-segmented volume. It is the most basic
node. The styles attached to this node will be applied to the whole volume
data. By default an OpacityMapVolumeStyle is used.

(a) SegmentedVolumeData (b) IsoSurfaceVolumeData

Figure 4.4: Two rendering outputs of the aorta dataset using the X3DVolume-
DataNode. a) Two segments tissue and bones, the first rendered using a
BoundaryEnhancementVolumeStyle and the second with an EdgeEnhancement-
VolumeStyle. b) An isosurface (scalar value 0.92) rendered with the Cartoon-
VolumeStyle.

The SegmentedVolumeData takes a segmented volume data as input.
The segment identifier assigned to each voxel is not stored in the volume
data. Therefore, when required in the rendering process, a segment identifier
is assigned using Equation 4.1.

id =
⌊
f(x)×maxSegment− 0.5

⌋
(4.1)

In Equation 4.1, f(x) is the voxel value and maxSegment is the number
of segments considered (by default, 10). Each segment is mapped to a
render style in strict order of declaration (see Figure 4.4a). In addition
to standard attributes, a maxSegment parameter has been added. This
attribute allows to adjust the way the segment identifiers are computed
from the input segmented volume data.

The IsoSurfaceVolumeData allows the visualisation of one or more sur-
faces extracted from the volume data (see Figure 4.4b): “An isosurface is
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defined as the boundary between regions in the volume where the voxel val-
ues are larger than a given value (the isovalue) and smaller on the other
side and the gradient magnitude is larger than a given surface tolerance”
(Web3DConsortium, 2014).



Cg = styleNode(Cv, Ov) ∧Og = 1,

if (f(x) ≥ isov ∨ f(x− 1) < isov) ∧
∥∥5f(x)

∥∥ ≥ st
Cg = styleNode(Cv, Ov) ∧Og = 1,

if (f(x) ≤ isov ∨ f(x− 1) > isov) ∧
∥∥5f(x)

∥∥ ≥ st
Cg = Cv ∧Og = 0, otherwise

(4.2)

Multiple isovalues can be given as parameters to the style. Equation 4.2
shows the conditional statement used to check if a voxel belongs to a given
isosurface. Cv and Ov are the original voxel colour and opacity. Cg and Og
are the generated output colour and opacity. When multiple isovalues are
given, a rendering style is associated to each isovalue, following the rules of
the X3D specification.

4.2.2 X3DVolumeRenderStyleNode

The X3DVolumeRenderStyleNode has only one derived node: the Projection-
VolumeStyle.

The ProjectionVolumeStyle allows three types of rendering methods:
max, min and average. Each method outputs a colour based on the voxels
values traversed by a ray.

Maximum Intensity Projection (MIP) stores the greatest value along the
ray (see Figure 4.5) and it is widely used in the medical field. It was origi-
nally proposed by Wallis et al. (1989) for its use in Nuclear Medicine. It can
be used for lung nodules detection in lung cancer for computed tomogra-
phy data and for magnetic resonance angiography studies (Perandini et al.,
2010).

Minimum Intensity Projection outputs the minimum value along the
ray. Average Intensity Projection outputs the average value along the ray
traversal and the resultant rendering is an approximation of an X-Ray.

4.2.3 X3DComposableVolumeRenderStyleNode

Nodes derived from the X3DComposableVolumeRenderStyleNode can be com-
posed resulting in richer renderings. The X3DComposableVolumeRenderSty-
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Figure 4.5: The rendering output of the aorta dataset using the Projection-
VolumeStyle with the max method (MIP).

leNode has the following derived nodes: ComposedVolumeStyle, Blended-
VolumeStyle, CartoonVolumeStyle, OpacityMapVolumeStyle, BoundaryEn-
hancementVolumeStyle, EdgeEnhancementVolumeStyle, SilhouetteEnhance-
mentVolumeStyle, ToneMappedVolumeStyle and ShadedVolumeStyle.

The ComposedVolumeStyle allows compositing multiple X3DComposa-
bleVolumeRenderStyleNode rendering styles under a single render pass. This
is done by serializing the styles; the output of a style is the input of the next
style. The component applies the styles in the same order as declared. There
is no order restriction for the styles, i.e. the order in which the styles are
declared is decided by the X3D designer. But the order is important, as the
X3D standard defines, the equation for the lighting is always taken from the
first rendering style node.

The BlendedVolumeStyle allows blending two volume datasets with a
weight function (see Figure 4.6). The main dataset is the parent X3D-
VolumeDataNode and the second dataset is passed as a parameter to the
BlendedVolumeStyle using an ImageTextureAtlas node. The X3D standard
defines several options for the weight function: it can be a constant value, a
value dependent on the opacity of one of the datasets or it can be a texture.
When a texture is provided as a weight function, each opacity value from
the dataset is mapped to a weight value from the texture. The use of a
ComposedVolumeStyle is mandatory when the X3D designer wants to apply
a rendering style to each of the datasets.

The CartoonVolumeStyle takes two colours as input parameters. The
final rendering will depend on the local surface normals and the view direc-
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(a) X3D example (b) Our implementation

Figure 4.6: Two rendering outputs using the BlendedVolumeStyle with the body

(Web3DConsortium, 2014) and internals (Web3DConsortium, 2014) datasets.
(a) Rendering output taken from the X3D standard. It uses the OpacityMapVo-
lumeStyle on the body and the ToneMappedVolumeStyle on the internals. (b)
Rendering output from our implementation. Also, it uses the OpacityMapVolu-
meStyle on the body and the ToneMappedVolumeStyle on the internals.

tion. The result is a cartoon-style non-photorealistic rendering (Decaudin,
1996). The alpha channel of the input colours is not taken into accout in
the component. Instead, the opacity values are obtained from the volume
data.

The OpacityMapVolumeStyle maps the opacity and colour values for
each voxel from a function stored as a texture. This texture is called transfer
function (see Section 7.4). The creation of this transfer function is delegated
in the designer and is created in an offline preliminary step. Extensive
work has been done regarding this topic. Kniss et al. (2002) denoted the
use of multi-dimensional transfer functions. Bruckner and Gröller (2007)
implemented illustrative styles through transfer functions. Only the support
of a 1D transfer function texture is mandatory to be compliant with the X3D
standard.

The BoundaryEnhancementVolumeStyle modifies the opacity of the vol-
ume. This approach, based on the gradient magnitude, enhances boundaries.
A volume is usually composed of several densities. The gradient magnitude
is low in areas of constant density, and it is large when density varies.

Og = Ov × (Kgc +Kgs × (
∥∥5f(x)

∥∥Kge)) (4.3)
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The Equation 4.3 is used to enhance the opacity of boundaries. Kgc is the
amount of initial opacity to retain, while Kgs and Kge adjust the darkness
of the boundary.

The EdgeEnhancementVolumeStyle highlights the edges of the volume
with an input colour parameter. Edges are volume data values where the
gradient is perpendicular to the view direction. The input colour is blended
with the volume data colour in function of the angle between both vectors
(see Equation 4.4).

Cg =


Cv ×

∣∣5f(x) · V
∣∣+ edgeColour × (1−

∣∣5f(x) · V
∣∣),

if
∣∣5f(x) · V

∣∣ > cos (gradThreshold)
Cv, otherwise.

(4.4)

Og = Ov (4.5)

The edge enhancement can be more or less noticeable with the threshold
parameter gradThreshold. It is used to adjust the edge detection. The
edgeColour is the input colour and the normalized view direction is denoted
by V .

The SilhouetteEnhancementVolumeStyle is similar to the EdgeEnhance-
mentVolumeStyle: both enhance the voxels where the gradient is perpendic-
ular to the view direction. In this case, only the opacity is enhanced, but
not the colour.

Os = Ov × (Ksc +Kss × (1−
∣∣5f(x) · V

∣∣Kse)) (4.6)

The Equation 4.6 is used to enhance the opacity of the volume. Ksc is the
base opacity factor to retain. It regulates the non-silhouette areas. Kss

represents the silhouette enhancement factor and Kse is an exponent to
control the sharpness of the silhouette. The three factors are the input
parameters of this style.

The ToneMappedVolumeStyle illustrates the volume based on the orien-
tation towards the light. Gooch et al. (1998) were the first to propose an
illumination model following this approach. This tone shading technique
defines two colours: warm and cool. The warm colour represents surfaces
facing towards the light direction, and the cool colour is used for surfaces
facing away the light. The interpolation between these colours is assigned
using the dot product between the angles of the gradient and the light di-
rection to each sampled voxel.

Currently, the volume rendering component supports local illumination
following the Blinn-Phong illumination model (Blinn, 1977). Additionally,
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the ShadedVolumeStyle node allows to specify the fog and material proper-
ties.

When gradient data is passed as parameter to one of the child nodes
of the ComposedVolumeStyle, it is loaded just once, being available for the
rest of the style nodes. The memory consumption is reduced by avoiding
multiple instantiation of the texture. Any other gradient data defined on the
styles will be ignored, except if it is defined with the BlendedVolumeStyle,
where a second gradient data texture can be provided. Figure 4.7 shows the
rendering output of our implementation for each described X3DComposa-
bleVolumeRenderStyleNode.
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(a) OpacityMapVolumeStyle (b) EdgeEnhancementStyle

(c) BoundaryEnhancementVol-
umeStyle

(d) SilhouetteEnhancementVol-
umeStyle

(e) CartoonVolumeStyle (f) ToneMappedVolumeStyle

(g) ComposedVolumeStyle (h) ShadedVolumeStyle

Figure 4.7: The rendering output of each X3DComposableRenderStyleNode using
the aorta dataset



Chapter 5

Hybrid volume rendering

Volume rendering deals with the visualisation of 3D scalar data. Thus,
rendering volumetric datasets requires a different approach than rendering
surface data. Traditional rendering techniques focus on rendering of surface
data. Polygonal mesh models have many advantages over volumetric models
which make them more appropriate for 3D real-time applications: they are
faster to render with common hardware. Current rendering pipelines opti-
mize triangle-based rendering which target only surface data representation.

In contrast to surface data, volumetric content has relevant information
in the inside of the enclosed volume. However, sometimes the combination
of both volumetric and polygonal meshes is required to achieve the desired
visualization. This is called hybrid volume rendering.

This chapter presents a hybrid volume rendering algorithm that targets
all WebGL compatible devices. Additional WebGL extensions that could
also be used to achieve better performance are also briefly discussed. Web
3D rendering is ubiquitous, which is a great advantage for a great variety
of domains. However, web platforms have also some shortcomings: quite
different rendering power of different devices, not every hardware feature
available, etc. These drawbacks are needed to be considered in order to
create application with hybrid rendering, i.e, with volumetric datasets and
polygonal meshes in the same virtual scene.

The integration of 3D polygonal meshes in volume rendering is a key
function in medical simulations and in other fields like engineering process
simulation. In this chapter the aorta dataset is used to visually validate the
presented hybrid volume rendering algorithm. The chapter is organized as
follows. Section 5.2 presents the two-pass basic volume rendering algorithm.
Section 5.3 describes the multi-pass hybrid volume rendering approach and
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Figure 5.1: Simplified overview of the WebGL programable graphics pipeline.

Section 5.4 discusses available WebGL extensions that could be used to
improve the performance.

5.1 WebGL graphics pipeline

A programmable graphics pipeline allows to apply different type of render-
ing effects because some steps of the graphics pipeline can be customized
or programmed. It allows the definition of the calculations for computing
colour, position, texture coordinates and the lightning model to be applied
in a geometric model. The pipeline is composed of several steps: some are
fixed and some are programmable. For the programmable steps, two main
programs are defined by developers, these are known as shaders. These
vertex and fragment shaders run on the GPU.

Figure 5.1 shows a simplified diagram of the WebGL 1.0 graphics pipe-
line. A summary of the steps to perform in the WebGL 1.0 pipeline is as
follows:

1. Set-up of the geometric data. Vertex data is uploaded as an array that
is placed into a Vertex Buffer Object (VBO). Additional data, such
as normals, texture coordinates and indexing of vertices are provided
with calls to WebGL API methods.
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2. The vertex shader computes the screen position of each vertex and
optionally performs any additional calculation at a per-vertex basis.

3. The output of the vertex shader continues into the primitive assem-
bly step (geometry assembly) so that the GPU computes geometric
primitives (triangles).

4. The rasterization discards primitive parts outside the viewport. Parts
within the viewport are divided into pixels and grouped into fragments.

5. Per-vertex associated values (colour, coordinates, etc.) are interpo-
lated.

6. Fragments with the interpolated values are passed into the fragment
shader program.

7. The fragment shader program is executed to set the colour value for
each pixel and any additional computation, such as lightning effects.

8. Fragments are either discarded or passed as colour values into a frame-
buffer object (FBO).

Any WebGL application requires a pair of vertex shader and fragment
shaders and the WebGL API gives the data required for their computation
to these shaders: vertex data (position, colour, etc.), shader input values
(attribute, uniform) and bitmap data (textures). The vertex shader program
is executed for every vertex to determine the coordinates of triangles in the
rendering canvas. Then, the computed triangles are rasterized by the GPU.
With the rasterization, the pixels to be drawn in the canvas are determined.
The fragmet shader is run for every pixel to compute the colour of the pixel
that will be written to the final framebuffer. The main framebuffer is the
screen buffer. Additional framebuffers can be defined and linked between
shaders as texture inputs to concatenate rendering passes (full cycle of the
graphics pipeline).

5.2 Volume ray-casting with the programable gra-
phics pipeline

Ray-casting is a direct volume rendering technique that generates rays from
the camera position which traverse the volumetric data, mimicking the phys-
ical model of light (see Section 2.1 in Chapter 2). The technique was origi-
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nally presented by Kajiya and Von Herzen (1984b). Then, Kruger and West-
ermann (2003b) improved the volume ray-casting performance by adapting
the technique to be run in GPUs. Their algorithm uses the GPU program-
able graphics pipeline. Later, Congote et al. (2011) extended the algorithm
to be used in WebGL. In this method, the ray-casting is performed in two
rendering passes.

The graphics pipeline is intended to be used with surface data and not
volumetric data: the first input of the pipeline is required to be composed
triangle-based geometry. For ray-casting, in order to position the volume
data in the scene a proxy geometry is defined: a cube. This cube is the
Volume Bounding Box (VBB). Figure 5.2a shows the vertex positions of the
VBB in local space coordinates.

To cast rays from the camera position into the VBB, the ray-direction on
each pixel in the screen must be computed. The method proposed by Kruger
and Westermann (2003b) uses the GPU rasterization step to compute the
ray entry and exit points in the VBB. A colour is assigned to each vertex
of the cube matching the bounds of the 3D texture UV coordinates. Figure
5.2b shows how these colours are assigned to each vertex. Both the position
and colour of the vertices are uploaded to the vertex shader and then, the
colour of each vertex are interpolated for each pixel in the faces of the cube in
the GPU rasterization step (see Section 5.1). The purpose of this process is
to compute the ray entry and exit points (spatial position) and pass them to
the fragment shader in a valid format (encoded as RGB values in a texture).
In this way, with the casted ray data (3D data), the volume rendering can
be computed at the pixel level in the projected 2D image.

The VBB is projected into the 2D canvas. However, from the view
position the back side of the cube will be hidden: the front side will overlap
the back side. For this reason, they performed this method in two rendering
passes:

First pass (Ray exit point determination): The three back-faces of
the VBB (volume bounding box) are rendered into a Frame Buffer Object
(FBO). The FBO output result is a coloured 2D projection as a 2D RGBA
texture. As a result of this rendering pass, the 3D texture coordinates from
the back side of the cube are projected into this 2D texture. The projected
coordinates (FBO output) match the exit location of the rays in the volume
data texture coordinate space (see Figure 5.3).

Second pass (Ray direction determination): The three front-faces of
the volume bounding box are rendered in the screen buffer with the same
vertex shader as in the first render pass. In the fragment shader, using the
interpolated per-vertex colour of the front faces and the back-faces coordi-
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Figure 5.2: Volume bounding box. Proxy cube structure for the ray entry and
exit point computation.

nates obtained in the previous pass, the ray direction and length is computed
by substracting the back and front colour values at per pixel level.

The pipeline of the rendering passes is depicted in Figure 5.3.

The second pass calculates the ray direction and actually performs the
ray traversal. Each ray traverses the cube, sampling the volume data at
equidistant intervals. At each sampling interval, a scalar value is obtained.
This operation is usually done by re-sampling the volume data with trilinear
interpolation. In WebGL, the data is sampled using the ImageTextureAtlas
approach, as presented in Chapter 3. This sampled value is accumulated
along the ray using alpha blending in front-to-back or back-to-front order.
(see composite Equation 2.3 in Chapter 2).

The obtained scalar value at each sample interval can be mapped to a
given colour and opacity by providing a transfer function (TF) or alternative
methods to alter the accumulation composition. In this way, colour is added
or characteristics are enhanced in the volume data (see Chapter 4). When
the ray finishes the bounding box traversal, the accumulated colour and
opacity is set to the pixel from which the ray has been originally generated.

The pseudo-code shown in Listing 5.1 summarizes the ray-casting algo-
rithm.

5.3 Hybrid multi-pass volume ray-casting

In some scenes, volumetric and surface data must be rendered together.
For example, in medicine, flow streamlines are typically visualised combined
with MRI scanned data (Stankovic et al., 2014). Also, medical surgical
training simulations require the interaction between 3D modelled objects
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(a) First pass: Ray exit 3D texture co-
ordinates

(b) Second pass: Ray entry 3D texture
coordinates

(c) Second pass: Ray direction (ray
exit - ray entry) → (c)-(a)

(d) Second pass: Ray traversal

(e) Second pass: Ray traversal with TF

Figure 5.3: WebGL ray-casting multi-pass approach. First pass: a) screen space
projected 3D texture coordinates of the ray exit position in the VBB encoded as
RGB. Second pass: b) screen space projected 3D texture coordinates of the ray
entry position in the VBB as RGB, c) ray direction (back−front) and d, e) ray
traversal result.
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Listing 5.1: Ray-casting pseudo-algorithm

For each pixel in the screen
Initialize number of steps S
Compute the ray position rp, ray direction rd

and maximun distance D
Compute interval step s
For i = 0; i < S; i = i+ 1

Interpolate sample at current rp
Compute colour C and opacity α with TF
Accumulate C and α
If α >= 1.0 or rp > V BB

break;
End If
Increment rp with s

End For
End For

and real volumetric data in order to simulate surgery using haptic devices
(Vlasov et al., 2012; Xu et al., 2016). This section describes additional
procedures that must be performed in the two pass ray-casting algorithm to
solve the integration of 3D geometry and 3D volumetric datasets.

Volumetric models can be considered as semi-transparent objects, and
therefore, there are two cases to take into account when rendering 3D geom-
etry and volume data together. In the first case, the rendering order and the
blending process must deal with 3D geometries in front of the volume (occlu-
sion of the volume) and 3D geometries behind the volume (occlusion of the
3D object). In the second case, changes in the ray-casting algorithm have
to be added to support the rendering of 3D objects inside or intersecting
with the volume data. The following subsections present solutions to solve
these two cases. Section 5.3.1 presents the shared part of the algorithm.
Section 5.3.2 completes the algorithm for the first case and Section 5.3.3 for
the second one.

5.3.1 Multi-pass rendering

To support the rendering of 3D polygonal meshes and volumetric datasets,
the ray-casting method presented at Section 5.2 must be modified with addi-
tional rendering passes. These new passes are required to gather additional
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information that will be used during the ray casting traversal (the second
rendering pass).

For the complete rendering of the scene, when mixing opaque and trans-
parent objects, the rendering order of the objects is important. In traditional
computer graphics techniques, when rendering transparent and opaque po-
lygonal meshes, they are sorted in z-depth order and rendered from back-to-
front. The multi-pass algorithm follows a similar solution when rendering
volumes and 3D opaque meshes.

These are five passes that are necessary to support the rendering of 3D
meshes and volume data (see Figure 5.4):

First pass (Depth pass, Figure 5.4a): In the first pass, the depth of all
the 3D meshes in the scene are rendered into a Frame Buffer Object (FBO).
A simple shader is executed per 3D object in which the fragment shader
outputs the current depth encoded in the colour channels as RGBA.

Second pass (Colour of surface objects, Figure 5.4b): In the second
pass, all the 3D meshes are rendered into a separate FBO to store their
colour information. In this case, the desired shader is used.

Third pass (Back cube depth, Figure 5.4c): With the same shader
used in the first pass, the depth spatial data of the back side of the volume
bounding box is rendered into a FBO encoded in the colour channels as
RGBA.

Fourth pass (Back coordinates of the cube, Figure 5.4d): This pass is
the same as the first pass of the previous algorithm in Section 5.2.

Fifth pass (Ray traversal and 3D surfaces, Figure 5.4e): In this pass,
3D objects are rendered in the screen along volume objects computing the
ray-casting traversal. Next two sections describe the fifth pass for each of
the two cases considered at the beginning of Section 5.3.

As an immediate consideration of the presented passes, the objects must
be rendered in certain order to correctly obtain the final composition. A
downside of this multi-pass approach is that it requires four FBOs to com-
pose the final rendering in contrast to one FBO for the two-pass volume
rendering method, without hybrid rendering. These extra rendering passes
are necessary to render 3D objects and volume data together.

5.3.2 Blending

The rendering order of the objects in the scene must be specific. Volume
objects are semi-transparent and thus, if an opaque 3D mesh is behind the
volume object, it will be partially occluded. As a consequence, the 3D object
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(a) First pass (b) Second pass

(c) Third pass (d) Fourth pass

(e) Fifth pass

Figure 5.4: Multi-pass ray-casting pipeline to render volume and 3D surface
meshes.
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partially contributes to the final rendering output. This step is traditionally
known as alpha blending.

When the ray-casting shaders are executing the final rendering pass (fifth
pass), the colour and alpha output of the computed pixels are going to be
rendered in the screen buffer. This algorithm uses a front-to-back blending
composition. Figure 5.5 shows that the alpha blending is necessary to render
correctly any object behind the volume object. Figure 5.5a shows that
without the blending enabled, the proxy cube is visible as a white area
around the volumetric dataset producing rendering artifacts in the polygonal
meshes. In Figure 5.5b, with the blending enabled, the GPU can mix the
different models correctly.

(a) Blend off (b) Blend on

Figure 5.5: Alpha blending of volumetric objects and 3D surface meshes. a)
Rendering the volume with blending disabled (with rendering artifacts). b) Front-
to-back alpha blending enabled (without rendering artifacts).

This algorithm assumes that there are only opaque 3D objects in the
scene. That is, it assumes there are not transparent 3D polygonal objects.
Minor adjustments of the presented algorithm could be implemented to sup-
port 3D transparent objects.

5.3.3 Intersection with 3D surface mesh data

The ray-casting fragment shader (see Listing 5.1) must be modified to sup-
port blending of the 3D meshes and the volume. In this section, algorithm
changes are presented with GLSL code samples.

The first problem to solve is the use of the depth information coming
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from the 3D objects at the ray-casting final pass. During the ray-casting
traversal, rays advance inside the volume bounding box fetching data from
the volume texture. During this traversal, it is required to determine at
each step if the ray collides with a 3D object or not.

To achieve this goal, the depth data produced by passes 1 and 3 (see
Section 5.3.1) must be accessed at the fifth pass of the ray-casting. The
Frame Buffer Objects (FBO) produced in those passes are created as RGBA
textures, since WebGL has not support for Float textures. A WebGL ex-
tension has been provided later on, in order to support depth textures. As a
fallback solution to all WebGL compatible devices, packing and unpacking
functions can be used. The depth information is packed into multiple 8-bit
colour channels (RGBA) in the passes 1 and 3. This RGBA information is
then unpacked to a float 24-bit value in the fifth pass using the GLSL code
samples at Listings 5.2 and 5.3.

Listing 5.2: Float packing function.

function packFloat(in float value){

const vec4 bitSh = vec4 (256.0*256.0*256.0 ,

256.0*256.0 , 256.0, 1.0);

const vec4 bitMsk = vec4 (0.0, 1.0/256.0 ,

1.0/256.0 , 1.0/256.0);

vec4 res = fract(value * bitSh);

res -= res.xxyz * bitMsk;

return res

}

Listing 5.3: Float unpacking function.

function unpackFloat(in vec4 value){

const vec4 bitSh = vec4 (1.0/(256.0*256.0*256.0) ,

1.0/(256.0*256.0) ,

1.0/256.0 , 1.0);

return(dot(value , bitSh));

}

In the fragment shader, parameters are initialized per pixel to start the
ray-casting process: ray origin, ray direction, ray steps... In addition to
these parameters, depth data from previous passes are also fetched to ini-
tialize the ray depth step in the same coordinate space as the scene objects.
The GLSL code at Listing 5.4 stores the depth information in independent
variables that will be used in the final comparison: backDepth contains the
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value of the distance from the camera position to the exit position of the ray
in the VBB, the frontDepth is the distance value from the camera position
to the ray entry point in the VBB and the surfDepth is the distance value
from the camera position to the surface. The depthStep is the value to
increment on each iteration of the ray traversal loop.

Listing 5.4: Fething depth data before ray-traversal.

float backDepth = 1.0 - unpackFloat(texture2D(uBackDepth , ←↩
texD));

float frontDepth = 1.0 - gl_FragCoord.z*gl_FragCoord.w;

float surfDepth = 1.0 - unpackFloat(texture2D(uDepthSurface , ←↩
texD));

float depthStep = (backDepth - frontDepth)/ray_steps;

During the ray casting traversal, the decoded depth value is compared
with the depth of the ray, while the ray step and the depth step are iteratively
incremented.

The depth test compares the ray distance to the 3D object, including
its thickness, tracking the position of the ray-casting (ray depth). If the 3D
object is hit, the accumulated colour and opacity is updated with the colour
of the object. In addition, it is possible to update the depth value of the
pixel with the surfDepth (surface depth) value using the EXT frag depth

WebGL extension. The GLSL code in Listing 5.5 shows that procedure and
that the ray-casting loop finishes with the break instruction since an opaque
object has been hit:

Listing 5.5: Ray intersection depth test.

if((ray_depth -surfDepth) > -(depthStep))

{

accum.rgb = (accum.a * accum.rgb) + ((1.0 - accum.a) * ←↩
objectcolour.rgb);

accum.a = accum.a * accum.a + (1.0- accum.a);

final_depth = surfDepth;

break;

}

The ray-traversal per pixel can finish in three different cases:

1) The ray traverses the volume completely.
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2) The ray fills the alpha value during the ray traversal (early-ray termina-
tion)

3) The ray hits an opaque object.

The first case uses the traditional ray-casting algorithm, but the possi-
bility of having 3D objects behind the volume has to be taken into account.
The second case falls back to the traditional ray-casting algorithm and the
accumulated colour and depth is returned as the colour of pixel in the final
rendered image. The third case is when the ray hits a 3D object inside the
volume. Each scenario is described in the following sections.

1) Complete ray traversal, accumulated alpha less than 1.0

When a ray traverses the volume dataset, a colour is returned with an alpha
value less than 1.0, which means that it is semi-transparent. Therefore,
the final colour in that pixel has to take into account the possibility of any
3D objects that might be behind the volume. This situation is solved by
WebGL blending directives. As the 3D objects have been rendered before
the volume, the colour buffer has already the 3D object colour information.
Rendering the volume into the colour buffer activates directly the WebGL
blending functions and the expected behaviour is achieved (see Figure 5.5).

2, 3) Early ray termination, accumulated alpha equal 1.0

A common ray-casting acceleration technique is known as early ray termi-
nation (see Kruger and Westermann (2003b)). In this technique the ray
traversal is interrupted when the accumulated opacity reaches an opaque
value (accumulated alpha equal 1.0) before the ray gets out of the bound-
aries of the volume bounding box.

The early ray termination checks for the state of the accumulated opacity
inside the ray traversal loop before the computing next ray step. The GLSL
code at Listing 5.6 shows how to check if the current ray position is inside
the volume bounding box or rather the accumulated alpha requires an early
ray termination.

Listing 5.6: Early ray termination.

if(accum.a >=1.0 || any(greaterThan(rpos.xyz , vec3 (1.0, 1.0, ←↩
1.0)))

break;
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The break statement will abruptly interrupt the loop of the ray traversal.
As previously stated in this section, the essence of this technique is also being
applied with 3D surface data inside the volume. When the ray intersects
the mesh, the accumulated colour and opacity is blended with the 3D mesh
surface colour properties. As a result, the accumulated opacity reaches a
totally opaque value, and thus, the ray is early-terminated.

(a) Ray depth (b) Ray and surface depth

Figure 5.6: Early ray termination and 3D geometries surface intersection with
the aorta dataset. a) The depth of the volume when the accumulated opacity
reaches 1.0. b) The ray termination when a 3D surface is intersected.

Figure 5.6 shows a normalized rendering output of the ray depth using
the aorta dataset. With the early ray termination the shape of the 3D
object can be shown. In the last shader pass, the early ray termination saves
unnecessary computations. This performance improvement is proportional
to the area of the volume intersected by the 3D object and to the proximity
of the 3D object to the camera.

The presented WebGL implementation of the algorithm has been tested
in desktop and mobile devices. Figure 5.7 shows how 3D coloured and
textured boxes can be integrated with volumetric datasets.

Listing 5.7 shows an updated ray-casting pseudo-algorithm accounting
for the ray depth in the global scene and the depth test during the ray-
traversal.

Figure 5.8 shows different situations regarding the relative positions of
the volume, the boxes and the camera. There are pixels that corresponds to
a box placed in front of, behind and in the middle of the volume. All these
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(a) Per vertex colour (b) Texture mapping

Figure 5.7: WebGL volume rendering of volumetric data and 3D geometry. a)
3D box geometries with per vertex colour. b) 3D box geometries with textures.

Listing 5.7: Hybrid ray-casting pseudo-algorithm

For each pixel in the screen
Initialize number of steps S
Compute the ray position rp, ray direction rd, ray depth rz and

maximun distance D
Compute interval step s
Compute depth interval step sz
For i = 0; i < S; i = i+ 1

Interpolate sample at current rp
Compute colour C and opacity α with TF
Compute depth test with rz
Accumulate C and α
If α >= 1.0 or rp > V BB

break;
End If
Increment rp with s
Increment rz with sz

End For
End For
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(a) Top (b) Back

(c) Bottom (d) Front

Figure 5.8: Volume rendering and 3D geometry intersection from different point
of views using the aorta dataset.

situations produce visual renderings that are visually correct.

5.4 WebGL extensions

The implementation of the GLSL code is targeting WebGL 1.0. But WebGL
1.0 provides some official extensions that can be used to produce better
results and to simplify the GLSL code.

The WebGL depth texture extension provides the possibility of declaring
Float textures for the depth component. Using this extension, the pack and
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unpack functions used in the Section 5.3.3 can be replaced by a direct access
to the depth texture.

The WebGL EXT frag depth extension provides the possibility of modi-
fying the depth value in the fragment shader. Using this extension provides
more flexibility in the depth buffer reading, testing and writing. Ultimately,
it could lead to a reduction in the number of passes in the presented method-
ology.

The WebGL draw buffers extension provides multiple colour buffers and
colour render targets that could be use from the fragmet shaders. This
would allow to reduce the number of FBO passes used to increase the overall
performance.
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Chapter 6

Progressive volume
rendering

Due to the evolution in CT and MRI image scanning technologies, the output
resolution of the acquired datasets has increased over time. Additionally,
new use cases which require a higher degree of resolution have emerged,
i.e. quality inspection of 3D printed parts. The medical domain has also
benefitted from the increase of resolution. Finer detail acquisition translates
to easier diagnosis and better data interpretation. However, the increasing
resolution and memory requirements trend implies that the computational
power for the visualisation of such datasets also needs to be increased.

In direct volume rendering approaches for high-resolution volumetric
datasets, a higher degree of sampling is required to accurately visualise the
data. In these datasets, smaller details also contribute to the visualisation
outcome. However, as more sampling is required, higher memory bandwidth
is required as well, leaving out a great number of GPUs as suitable accel-
eration solutions for the real-time volumetric rendering. This situation is
more pronounced in an ubiquitous scenario: the variation of computational
power is as big as it can be: From low power devices such as mobile phones
to high performance desktop PCs.

A different approach is required in order to allow the visualisation of
these datasets. In this regard, a progressive rendering approach postulates
as a viable solution to allow an interactive rendering of high resolution vol-
ume data that can be adjusted to the computational power of any device.
This chapter presents a WebGL-based progressive ray-casting algorithm that
enables the interactive visualisation of any dataset that fits on the targeted
GPU memory. Other desktop-based alternatives will require per device in-
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stallation and maintenance. Therefore, the software may not be accessible
for everyone. In contrast, the proposed approach will be available for any
device with access to a modern web browser.

This chapter is structured as follows. Section 6.1 presents the single-pass
ray-casting algorithm and Section 6.2 describes the proposed progressive
ray-casting algorithm based on the previous algorithm.

6.1 Single-pass ray-casting

The single-pass ray-casting method was presented by Stegmaier et al. (2005).
Later on, Mobeen and Feng (2012b) adopted this method to WebGL using
Congote et al. (2011) texture atlas approach. Both methods use a volume
bounding box (VBB) as a proxy geometry (see Section 5.2 in Chapter 5).
The two-pass approach requires the use of an additional offscreen buffer
(FBO) to perform the ray entry and exit computation. However, the first
pass can be avoided with the method presented by Stegmaier et al. (2005),
and the volume rendering can be performed in a single-pass of the graphics
pipeline.

In the single-pass ray-casting a unitary cube is used as a VBB. The ver-
tices of the VBB are multiplied with the ModelView and Projection matrices
into the clip space. In this process, the vertices are assembled into triangles
and the vertex positions are interpolated by the rasterization process. Since
the VBB is unitary, the interpolated object space positions represent the 3D
texture coordinates of the ray entry points.

In the fragment shader the camera position can be obtained from the
inverse of the ModelView matrix. The ray direction is calculated by sub-
tracting the interpolated object space position of the VBB vertices with the
camera position. In this manner, rays are casted from the camera position
towards the VBB.

The ray origin is positioned at the front side of the cube (from the
camera view perspective). Then, there are two possible methods to perform
the ray-traversal:

1. Mobeen and Feng (2012b) proposed the use of a ray-box intersection
test to compute if a given fragment should be discarded. In this thesis,
the Axis Aligned Bounding Box (AABB) ray-box slabs based intersec-
tion algorithm by (Kay and Kajiya, 1986b,a) has been used. The
intersection test provides the exit point of the ray in the VBB. With
the exit and entry points in the VBB, the ray is discretized into a fixed
number of steps. Then, a ray-VBB traversal is initiated with a loop.
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2. Since the VBB is unitary, the maximum length of the ray is
√

2. The
ray is discretized into equidistant size steps. Then, a loop is started
to sample each step of the ray along the computed direction. On each
iteration (step increment) an out-of-bounds test is performed termi-
nating the ray loop if the step position in object space is outside the
VBB.

At each step of the ray traversal the position of the ray in object space
represents the 3D texture coordinate required to fetch the volume data. In
WebGL 1.0 the volume data is sampled using the ImageTextureAtlas (see
Chapter 3). During the ray traversal the opacity and colour is accumulated
and blended in front-to-back order approximating the volume rendering in-
tegral presented in Chapter 2.

6.2 Progressive ray-casting

To visualise detailed sections of the volume obtained from high resolution
scans, the volume data is required to be sampled at a high resolution, that
should be high enough to clearly render isosurfaces without skipping voxels
during the ray traversal. Dı́az-Garćıa et al. (2018) proposed a solution for
the visualisation of large datasets in mobile devices with the use of progres-
sive GPU ray-casting. Their approach targeted the OpenGL ES 3.0 API
(desktop and mobile).

The progressive approach prevents the application from stalling, that is,
it preserves user interaction. This is achieved by distributing the rendering
task over subsequent rendering frames after every user interaction. The
control is returned to the application’s main event loop frequently, drawing
into the screen framebuffer in short periods of time. In this way, the user
can interrupt the progressive rendering at any time. This approach does not
provide real-time high-quality rendering, but it allows user to interact with
the visualization at any time without stalling the browser.

Based on the FSlab approach by Dı́az-Garćıa et al. (2018), the single-pass
real-time ray-casting method presented in Section 6.1 has been modified in
order to create a WebGL compliant progressive volume rendering algorithm.

The progressive rendering behaves like a refinement algorithm where
the whole volume is already visualised from the start, and details are pro-
gressively rendered until completion. Two rendering cases are taken into
account:

1. When the user interacts with the visualization (rotation, pan, zoom, etc.)
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a real-time volume rendering algorithm is used to generate a low-quality,
but fast rendering.

2. When the image remains still (no user interaction, static scene), a high
quality image begins to appear in the screen by progressively rendering
the volume. Every frame till the next user interaction, the rendering
receives more and more details.

The following subsections describe the proposed WebGL progressive vol-
ume rendering algorithm.

6.2.1 User interaction

When the user is interacting with the visualization, the image needs to be
reconstructed in real-time to allow the user to navigate through the volume
data. Fine details are not visible during the interaction. However, the user
can locate the volume data in the scene and interact with it accordingly. The
number of steps (number of 3D samples on each casted ray) must be kept
low in order to allow real-time performance. In this case, the single-pass
ray-casting algorithm presented in Section 6.1 is used.

6.2.2 No user interaction

When there is no user interaction, a high-quality rendering process is started.
For this purpose the volume data is rendered in a progressive manner, i.e,
the details of the volume data are refined over time in the view direction in
the following frames.

To achieve a high-quality render, the casted rays are discretized into a
large number of points along the ray (steps) to be sampled. This quantity
of steps can not be computed in one frame for large datasets, otherwise the
visualization would be stalled and the interaction would not be possible. In
the presented progressive approach, the casted rays are split into segments
of fixed length in the view direction (slabs). Thus, each slab is composed
of ray segments of same length that can be computed in a short period of
time.

The slab is further discretized into sampling points (steps) along the ray
segment. The sampling points will be used during the ray-casting loop to
fetch the volume data and perform the rendering integral for the current
slab. Figure 6.1 illustrates the slab and steps concepts in a single ray.

The high-quality rendering is completed when all the slabs are rendered.
Both the number of slabs and the number of steps can be adjusted to ade-
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Figure 6.1: Illustration of the slabs and sample points in a single ray

quate the quality and rendering time to the computing power of the targeted
device.

The progressive rendering is a cycle that renders one slab after another,
serially in front-to-back order. Therefore, the number of slabs determines
the number of iterations of the refinement loop.

The first step, after the user stops to interact with the visualization is
to clear a high-resolution texture (Thigh). This texture is used to accumu-
late the output result of each slab until completion. Then, the refinement
loop is initiated in order to render each slab in front-to-back order. For
each iteration, three steps are performed: two rendering passes and a copy
operation:

i) First pass (slab rendering): This render pass takes as input the
accumulated result in Thigh as the initial value of accumulated colour
and opacity in every pixel. Then, the ray segment (slab) of the current
iteration is rendered using the single-pass volume ray-casting algorithm
with a fixed number of steps (i.e 40). Because the length of the slab
is a fraction of the whole ray, that small number of steps samples the
slab in fine detail (high resolution). The output of the projected slab
rendering blended with all the previous slabs (Thigh) is written to an
offscreen buffer (FBO). Listing 6.1 shows the pseudo-code for the slab
rendering.

ii) Slabs buffering: The output rendering of the previous pass is copied
to Thigh texture with the WebGL copyTexSubImage2D API function.
The content of the texture is overwritten in this step.

iii) Second pass (remaining slabs rendering): This render pass also
takes as input the accumulated result in Thigh (in ii) as the initial value
of accumulated colour and opacity in every pixel. Then it renders the
remaining ray segment in the view direction with a low count fixed
number of steps (i.e. 100). The single-pass ray-casting algorithm is
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also used for this purpose. The low step count rendering computed in
this pass is blended with the accumulated high-quality Thigh rendering.
Listing 6.2 shows the pseudo-code to render the rest of the ray, taking
as input the current slab iteration. It shares the same structure as
the high-quality render pass (first pass), the only difference is the ray
segment computation (ComputeRemainSlabSegment function).

Listing 6.1: Slab rendering algorithm with a fixed number of steps

Function Initialize()
number of steps → Nstep

number of slabs → Nslab

colour value → C
alpha value → α

End Function

Function ComputeSlabSegment(slabi, ~rpos, ~camerapos)
~rdir ← ‖~rpos − ~camerapos‖
tentry, texit with AABB Ray−Box intersection
~rentry = ~rpos + (~rdir ∗ tentry)
~rexit = ~rpos + (~rdir ∗ texit)
slablen = (|~rexit − ~rentry|)/Nslab

~rstart = ~rpos + (~rdir ∗ (slabi ∗ slablen))
~rend = ~rstart + (~rdir ∗ slablen)
~Sincr = (~rend − ~rstart)/Nstep

return← ~rstart, ~rend, ~Sincr
End Function

Function RenderSlabHigh(slabi)
For each pixel in the screen

Fetch C,α← Thigh
~rpos ← varying VBB position
If α >= 1.0

break
End If

~rstart, ~rend, ~Sincr ← ComputeSlabSegment(slabi, ~rpos, ~camerapos)
For i = 0; i < Nstep; i = i+ 1
d← Sample volume at current rp
C, α ← TransferFunction(d)
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Blend and accumulate C and α
If α >= 1.0 or rp > V BB

break
End If
Increment rp with Sincr

End For
FBO ← (C,α)

End For
End Function

Listing 6.2: Ray-casting pseudo-algorithm

Function ComputeRemainSlabSegment(slabi, ~rpos, ~camerapos)
~rdir ← ‖~rpos − ~camerapos‖
tentry, texit with AABB Ray−Box intersection
~rentry = ~rpos + (~rdir ∗ tentry)
~rexit = ~rpos + (~rdir ∗ texit)
~Sincr = (~rend − ~rstart)/Nstep

slablen = (|~rexit − ~rentry|)/Nslab

~rstart = ~rpos + (~rdir ∗ ((slabi + 1.0) ∗ slablen))

return← ~rstart, ~rend, ~Sincr
End Function

Function RenderSlabLow(slabi)
For each pixel in the screen

Fetch C,α← Thigh
~rpos ← varying VBB position
If α >= 1.0

break
End If

~rstart, ~rend, ~Sincr ← ComputeRemainSlabSegment(slabi, ~rpos, ~camerapos
)

For i = 0; i < Nstep; i = i+ 1
d← Sample volume at current rp
C, α ← TransferFunction(d)
Blend and accumulate C and α
If α >= 1.0 or rp > V BB

break
End If
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Increment rp with Sincr
End For
FBO ← (C,α)

End For
End Function

Figure 6.2 illustrates the steps of the progressive slab rendering. In one
hand, a segment of the ray traversal (slab) is rendered incrementally into
a high-resolution texture that accumulates the result across frames. In the
other hand, at each incremental iteration, the non-traversed ray segments
are rendered with a low number of steps taking the high-resolution slab
position at the current iteration as the starting point. Both results are
combined with front-to-back alpha blending as the final outcome in every
frame. Over time, as the high resolution render pass advances incrementally
over the ray (accumulating the high resolution result), the low step count
render pass will render an smaller length of the ray each time. When all
iterations have been completed, the accumulated result in the high resolution
texture (Thigh) will converge to the final high-quality rendering.

The progressive approach implies that the visual outcome improves over
time. In the presented algorithm both a high resolution and low resolution
rendering passes are combined to show a rendering of the whole volume in
every frame. The low resolution pass is necessary to create a more pleas-
ant transition between the low-quality rendering (real-time rendering during
interaction) and high-quality rendering (during lack of interaction).

Figure 6.3 shows how the accumulated rendering advances over subse-
quent frames until completion. It shows how the volume details appear
progressively along the view direction.

6.2.3 WebGL constraints

WebGL and JavaScript have added some technical constraints to create a
functional web compatible progressive volume rendering algorithm. The
incremental slab rendering into subsequent frames was not possible to im-
plement in WebGL using for-while loop statements. On one hand, the dif-
ferent draw calls inside the loop where being batched under the hood and
with the lack of synchronization primitives the accumulation results were
inconsistent. On the other hand, the loop context was stalled until draw
completion, blocking the application and breaking any possible interaction
with the visualization.

This problem is solved using an event driven approach (see Listing 6.3).
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Figure 6.2: Rendering evolution after the user stops the interaction with the
volume. The initialization phase clears the information from previous progressive
renders. Then, the first slab is rendered (SLAB 0) as a composition of a set of
high quality ray-casting steps and a low quality ray-casting from the last point
to the end of the volume. As time progresses, the rest of slabs (i-th SLAB) are
rendered using the already calculated high quality ray-casting information.

A recursive function is used that calls itself with a setTimeout method. Each
recursive call creates a new event every time, simulating a loop. Using this
recursive strategy, a conditional statement for the loop exit condition (user
interaction) is evaluated after each slab rendering. This allows to interrupt
the recursive progressive rendering whenever the user interacts with the 3D
scene.

The recursive method has a direct consequence in the WebGL pipeline,
as the concatenation of the output of a pass and the output of the previous
pass has to be done via global textures. The use of an intermediate texture
Thigh and one additional copy operation (see Section 6.2.2) were required to
correctly accumulate slab render outputs over subsequent frames.

Since the number of incremental iterations can be easily changed through
JavaScript, it is easy to allow the user to dynamically change the render-
ing quality. The number of steps can be fixed to a value in the range of
[25-40] steps to target an ubiquitous deployment: a progressive high-quality
rendering visualization that will work in any device. Since the low step
rendering can be handled by any device, this approach makes suitable vol-
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(a) Slab 25 (b) Slab 50

(c) Slab 75 (d) Slab 100

(e) Slab 125 (f) Slab 150

Figure 6.3: Progressive rendering of the tooth dataset with 150 slabs of 40 steps.
Different outputs are shown every 25 slabs until completion.
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Listing 6.3: Progressive refinament loop

slabi = 0
Nslab = 150
Clear texture Thigh
Function Progressive()

If slabi < Nslab and onInteraction == False
buffertmp = RenderSlabHigh(slabi, Thigh)
copyTexSubImage2D(buffertmp, Thigh)
bufferscreen = RenderSlabLow(slabi, Thigh)
slabi = slabi + 1
setT imeout(Progressive, 1)

End if
End Function

ume rendering to devices with low compute power. However, to obtain the
best performance in GPUs of high computation power, the number of steps
should be higher.

Figure 6.4 shows the resolution difference between a real-time ray-casting
approach and the presented progressive approach using the aorta and the
plastic injected mould part datasets. Rendering the volume with the
progressive approach leads to a clearer and smoother reconstruction in Fig-
ures 6.4b and 6.4d. As it can be seen in Figures 6.4a and 6.4b, a higher
rendering quality is obtained when isosurfaces are being displayed.

In contrast to the approach proposed by Dı́az-Garćıa et al. (2018) based
in the two-pass volume ray-casting approach, the single-pass ray-casting
method (see Section 6.1) computes the ray entry-exit points with a ray-box
intersection test in the fragment shader. Therefore, there is no need of a
separate step for this computation.

Additionally, the new presented algorithm in this chapter simplifies the
low resolution render pass by only using a low step count render pass for the
non-traversed ray segments and directly rendering the combined result in the
screen buffer. This step could also be computed into a low resolution off-
screen framebuffer, as Dı́az-Garćıa et al. (2018) presented, but then it would
require an additional copy and blending step, due to WebGL limitations.

The presented progressive volume rendering algorithm is validated in
Chapter 9 with a quality inspection use case of the plastic injected

mould part dataset (see Figure 6.4a and 6.4b).
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(a) 80 steps (real-time) (b) 6000 steps (progressive)

(c) 80 steps (real-time) (d) 12000 (progressive)

Figure 6.4: Comparison between real-time ray-casting and progressive ray-casting
of the aorta dataset 512 × 512 × 97 and the plastic injected mould part 720 ×
720× 1770 dataset.



Chapter 7

Medical volume data
visualization

The medical field has undergone a great evolution thanks to the improve-
ments in medical imaging acquisition technologies like Computer Tomog-
raphy (CT) and Magnetic Resonance Imaging (MRI). Both techniques in
combination with computer based image processing algorithms have greatly
contributed to improve medical diagnosis. For this reason, the medical field
makes direct use of volume rendering visualization.

Unlike other scientific fields, the medical field imposes more restrictions
and has more regulations in regard to the use and privacy of patient data.
Thus, this restrictions also apply to the use and storage of medical imaging.
The medical healthcare system is always looking for new information systems
and better forms of storing patient data. It can be difficult to distribute
and share data between peers, hospitals or countries, due to current law
regulations and incompatible proprietary data formats. This situation has
reinforced the need to use an standardized format to store medical imaging
data, which addresses the patient related medical annotations and privacy
measures. As a possible solution, the DICOM data format has become the
de-facto standard for the storage and exchange of medical image data.

Volumetric data is often used in a large variety of situations: from re-
search and diagnosis to educational purposes. In terms of visualization,
interactivity and usability, mobile platforms should provide the same tools
as their desktop counterpart. This chapter explores the use of DICOM files
for ubiquitous volume rendering, that is, for direct visualisation of volumet-
ric data in browsers. The implementation approaches that are presented in
this chapter showcase the potential of the work of this thesis. The contribu-
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tions presented in previous chapters are taken as a base to construct viable
solutions for ubiquitous medical volume visualization scenarios.

In pursuit of a ubiquitous medical volumetric visualization, this work
considers four main features that volume visualisation must provide: i) the
support of DICOM volume data, ii) the visualisation of segmented data,
ii) camera navigation inside the 3D volume and iv) colourizing the output
rendering with a transfer function. These four features are practical real-
world requirements that the medical domain needs to visualise volumetric
data.

This chapter demonstrates how these features can be solved providing
the building blocks that developers can take as reference to provide ubiq-
uitous web based applications. All computing steps: data processing, data
visualization and user interaction run in the web browser (client device).
Further validation for the approaches of this chapter is presented in Chapter
9, where an ubiquitous web based DICOM volume visualization application
is presented: Mirror4all.

Section 7.1 presents the fetching and processing of volume data to be
visualised in the Web. Section 7.2 shows how segmented volume data can
be displayed. Section 7.3 explains extensions to the ray-casting algorithm to
visualise the volume from the inside. Finally, Section 7.4 presents a transfer
function editor for colourizing the output rendering by means of a dynamic
look-up table.

7.1 DICOM dataset visualization

In pursuit of an ubiquitous medical volumetric visualization, the support
of DICOM file format is necessary: DICOM is the de-facto standard that
the software applications of the medical imaging devices use to store their
scans. This section presents how volumetric DICOM datasets composed of
2D slices can be processed for interactive visualisation in modern desktop
browsers using exclusively open web technologies.

Medical imaging devices do not only produce the actual set of 2D slices.
They are linked with a large amount of metadata related to the patient
health information and other medical procedures. DICOM is the medi-
cal image standard that stores and transfers all the information from and
between imaging devices (CT, MRI) and medical image storage reposito-
ries (Fernandez-Bayó et al., 2000). The wide utilization of DICOM by all
manufacturers had a major impact on usability of the file format. The stan-
dard gathers a large set of tags to be read, interpreted and combined in



7.1. DICOM dataset visualization 89

order to achieve coherent transmission of the images for the final viewer.

Section 7.1.1 introduces the technological approach to load DICOM
datasets into data structures ready to be used with WebGL and X3DOM
(see Chapter 4). Section 7.1.2 presents interactive controls that filter DI-
COM data for its visualization.

7.1.1 ImageTextureAtlas generation in the browser

The generation of the texture atlas is a technical constraint of the WebGL
API (see Chapter 3). A solution to this problem is to create this data struc-
ture in the background in the client device (transparent to the user). For
this purpose, an integration of the native Drag and Drop HTML5 API into
any web volume visualisation application provides an easy and transparent
interface for the composition process.

The whole volume dataset can be contained in a single DICOM file or
split across multiple DICOM files into data slices. In the later case, all
files must be loaded and merged in order (split direction) to load the whole
volumetric data.

As stated before, the rendering 3D canvas can be equipped with drag
and drop functionality. The user drags a DICOM dataset and drops them
into the rendering context element. These DICOM file(s) must be stored in
the file-system of the device where the browser is running.

Cornerstone (2016) JavaScript library provides a set of functions to read
and interact with the imaging data stored in DICOM files and it relies on
the software library to load DICOM tags, including pixel data. Using this
library the DICOM data is loaded into a data buffer within the browser
context. Then, the content of this buffer is drawn into a sub-area of a 2D
canvas. The 2D canvas is the container for the ImageTextureAtlas structure
(see Figure 7.1) and it is drawn hidden to the user.

There is a distinction between a volume dataset in a single file or in
multiple DICOM files. In the first case, the whole data must be parsed
first before rendering any result. On the second case, as each file is loaded
separately, the browser displays the slices stored within that file. As more
files (slices) are loaded, the image is populated till all the slices of the volume
are processed and transferred to the atlas.

The generation of the ImageTextureAtlas in the browser is specially in-
teresting because it does not enforce the users to adapt the volume data
files to a certain file format. The processing is made automatically in the
background. The same approach is used with other image file formats such
as NRRD, JPG, PNG, etc.
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Figure 7.1: Loading process from DICOM images to ImageTextureAtlas. The
diagram shows an intermediate state where the dataset is not fully loaded and
hence, some subtiles are not filled into the final HTML5 canvas.

The combination of client side atlas generation with the volume render-
ing component presented in Chapter 4 provides a general and ubiquitous
solution. The 2D canvas contains the volume data structured as a Image-
TextureAtlas. Therefore, this canvas is a valid input for an X3D scene.

There are two possible ways to link the composed atlas with the X3DOM
volume rendering component (see Chapter 4).

i) Defining the <canvas> element as a child node of the ImageTextureAtlas
node in the X3D scene declaration. Then, the canvas element is filled
with the actual DICOM data (see Listing 7.1).

ii) Using the <canvas> element as an auxiliary data structure defined out-
side the X3D scene declaration. The VolumeData node uses an empty
ImageTextureAtlas (no real URL is given). The JavaScript loader draws
the atlas texture in this canvas as before, and then, the correct URL is
provided as a DataURL, which means that the whole volumetric infor-
mation is encoded and passed in the URL (see Listing 7.2).

Listing 7.1: Canvas as child of the ImageTextureAtlas node.

<ImageTextureAtlas id="atlas" hiddenChildren="true">

<canvas id="voxelCanvas"></canvas>

</ImageTextureAtlas>
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Listing 7.2: Canvas outside the X3D scene definition.

<ImageTextureAtlas id="atlas" url="data:"></ImageTextureAtlas>

<script>

document.getElementById("atlas").setAttribute(

"url",

document.getElementById("voxelCanvas").toDataURL()

);

</script>

Both the visualisation and the data processing (ImageTextureAtlas gen-
eration) are done in the client side (the users device). In Chapter 3 the
ImageTextureAtlas generation is considered to be done in a pre-processing
step. Therefore it can be done manually or in a server process. This section
demonstrates that this step can also transparently be done in the browser.
Consequently, it showcases the potential of the proposed web compatible
volume data structure.

Solutions from other authors perform the volume rendering in the server
side. By contrast, the presented approach performs all the computation
in the client side. This facilitates the deployment of volume visualisation
applications, reduces communication complexity (securization) and allows
to easily scale resources as the main computation (rendering) is distributed
across client devices.

7.1.2 Dynamic window level selection

DICOM files contain rich information that can be used in the UI presentation
and during the rendering stage. Some metadata attributes can be added to
the UI (capture date, acquisition machine, software version, etc.) and give
information about the imaging data itself, i.e. the number of slices and their
resolution.

Usually, DICOM datasets have 16-bit depth and they contain high-
dynamic-range data. Consumer displays can only display 8-bit colour depth
pixel data. Therefore, a conversion is required to transform the stored data
into data that can be rendered and visualised.

A solution is to define a sub-range within the stored data range. In
this manner, the contrast in the defined range is improved, while the data
outside the defined sub-range is lost. However, by allowing the dynamic
configuration of this sub-range, the user can explore the data without losing
acquisition detail.
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The defined sub-range is called window in the DICOM vocabulary. The
window specifies a linear conversion from stored pixel values in the DICOM
file to values to be displayed on the screen. The window is adjustable by the
user using two levels: window width and window center. The window width
selects the length of the data range to be converted and the window center
locates the selected range (window) within the original data range.

Listing 7.3 shows the default linear conversion applied in the DICOM
specification. x represents the input value, y is the output value within the
range [ymin, ymax]. wc is the window center and ww is the window width.

Listing 7.3: Default linear conversion from stored pixel data to display data in
DICOM.

if (x <= wc − 0.5− (ww − 1)/2), then y = ymin
else if (x > wc − 0.5 + (ww − 1)/2), then y = ymax,
else y = ((x− (wc − 0.5))/(ww − 1) + 0.5) ∗ (ymax − ymin) + ymin

To change the window, dynamic sliders are provided as UI elements to
the users. The user can manually discard or extend the desired window by
modifying the window width and window center.

Figure 7.2 shows the INCISIX dataset from OsiriX library (OsiriX,
2018) rendered in the browser using the proposed approach with different
window levels.

In Figure 7.2a the window width is larger than Figure 7.2b: more data
values are being interpolated into the [0-255] (8-bit) range. The window
center is positioned on the lower bound of the original data range. With
that configuration, this window allows to visualise the skull and teeth data,
while in Figure 7.2b the window center has been moved to the upper bound
of the data range. As a result, only the teeth are visible because of their
higher density value. The majority of the skull data is outside the window
in Figure 7.2b.

7.2 Segmented medical data

Trained specialists in medical imaging need to visualise segmented volume
datasets. The segmentation of the volume is important to focus the at-
tention or to limit further work at the region of interest. When volume
data is segmented, the voxels are labelled so that they can be processed
independently.
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(a) window center = 395 and window width = 2068.

(b) window center = 1056 and window width = 1489.

Figure 7.2: INCISIX dataset from the OsiriX repository OsiriX (2018) with
different window levels.
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Figure 7.3: Flowchart describing the segmentation algorithm in the ray traversal

Any medical visualisation tool must be capable of helping the user to
discern the region of interest from the whole volume. Volume visualisation
must be extended to provide the tools that the medical use cases require.

The ray-casting algorithms presented in Chapter 5 and Chapter 6 can
be extend to support the rendering of segmented data. In the ray-casting
loop, the ray traverses the volume accumulating colour and opacity. The
segmented data acts as an identifier on each voxel to allow the selection of an
alternative accumulation algorithm (render style) at the region of interest. A
distinctive colour and opacity in sections of the ray traversal can be applied
selectively. This allows to stand out a region by visually enhancing the
segmented area from the whole volume.

The segment data fetching is translated into a switch or selection state-
ment that is performed in the ray-casting loop at per ray-step basis. Figure
7.3 illustrates this process. On each step of the ray, the voxel data is sam-
pled. Then, the voxel identifier is sampled from the segmented data. A
given rendering style will be applied in function of the obtained identifier.

From a performance point of view, this must be carefully considered, as
branching is not well performed in GPU hardware. The type of variation
in the accumulation process (render style) will change depending of the use
case, e.g., mapping colours with a transfer function (TF), modifying the
opacity given the camera view and discarding the data.

Figure 7.4 shows two renders of datasets with segmented regions. Each
one has been generated with different accumulation processes to make them
distinguishable from the volume.
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(a) EdgeEnhacementVolumeStyle (b) CartoonVolumeStyle

Figure 7.4: Segmented data renderings of the aorta (512 × 512 × 97) and the
Head MRI (256× 256× 124) datasets. a) the edges of the segmented bones have
been enhanced with colour. b) the segmented ventricles of the brain had been
coloured with blue tones.

It is advisable to specify a parameter to explicitly know the maximum
number of segments beforehand. The maximum number of segments limits
the branching statements that will be added to the shader. These statements
can be dynamically added at the creation time of the fragment shader. Oth-
erwise, the number of branching statements will be unbounded and a big
amount of unnecessary comparison operations will be performed with a po-
tential impact on the performance.

The segmented data is tiled into a matrix configuration with the same
procedure performed with the volume data (see Section 3.2.3 in Chapter 3).
To improve performance the segmented data could be stored in the alpha
channel of the original volume data texture atlas. However, it is better to
create a separate texture, due to the following reasons:

i) The segmentation can be processed automatically or manually in an off-
line tool and then be loaded on demand when required. Communication
between server and client should be considered.

ii) Due to memory restrictions in mobile device GPUs compared to desktop
GPUs, the segmented texture atlas can be stored with a smaller texture
size than the original texture atlas. The same position coordinates
would be valid to fetch the data from both textures. The texture atlas
resolution should be considered. In some cases it is too big for real-
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(a) Linear interpolation (b) Nearest interpolation

Figure 7.5: Difference between interpolated and nearest sampling in segmented
texture data (zoomed area on the segmented blobs).

time rendering. The only downside of this method is a precision loss to
discern the segmented regions due to downscaling.

An important consideration is the hardware base texture interpolation
when sampling the texture containing the segmented ImageTextureAtlas.
When the linear hardware interpolation is enabled and discrete values are
used to label voxels, label identifiers are interpolated when sampling between
voxels. This can lead to transition artifacts in between segmented regions.
Figure 7.5 shows the difference between linear interpolation and nearest-
interpolation when sampling for segmented identifiers. In this figure several
segmented blobs with different colours are displayed. With nearest interpo-
lation (see Figure 7.5b) voxels are clearly identified into a given segment,
whereas with linear interpolation (see Figure 7.5a), voxels are not correctly
identified leading to transition artefacts in the borders of the segmented
blobs.

7.3 Inside exploration of volume data

Another visualisation requirement in the medical environment is related to
the immersive experience that volumetric data visualisation can offer. This
can be conceptualized as the ability to explore the data from within the
volume. An inside exploration allows the user to easily discern the internal
composition of the volume rather than looking at the cross-sectional 2D
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images. The exploration of the inside of the volume can be enabled by
dynamically changing the initial position of the ray origin in the ray-casting
algorithm presented in Chapter 6 at Section 6.1.

A unitary cube is used in the ray-casting as a proxy geometry. This
cube is the volume data bounding box. The camera position is used as
the ray origin when the camera is translated inside the cube, otherwise the
front faces of the cube are used as the ray origin. Figure 7.6 describes the
algorithm used to enable the inside exploration.

Figure 7.6: Flowchart describing the ray origin computation in the single-pass
ray-casting algorithm.

In the rasterization process, the vertex coordinates are interpolated per
fragment (varying vertex position). At each pixel in the front faces of the
cube, the 3D texture coordinates of the ray-entry points are computed.

The camera position can be obtained in world space coordinates from
the inverse ModelView matrix. The unitary cube is modelled so that it is
located in the center of the scene in world coordinates.

Using the maximum and minimum boundaries of the cube, it can be
determined whether or not the camera is inside the volume. If the cam-
era is outside the cube, the ray origin is assigned to the interpolated ver-
tex position at the front faces of the cube (computed output of the vertex
shader, varying vertex position). If not, the ray origin is the camera posi-
tion. Figure 7.7 shows an external and internal rendering of the Head MRI
dataset (University of Tübingen WSI/GRIS, 2014).

Back face culling must be disabled when internal exploration is required.
When the camera is moved inside the cube, the ray direction for each ray is
obtained by subtracting the interpolated back face vertex position (ray-exit)
from the camera position (ray-origin). With back-face culling enabled, the
3D texture coordinates in the back-face will not be rendered, since the cube
will be clipped before rasterization.
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(a) Camera outside the volume (b) Camera inside the volume

Figure 7.7: Rendering of the Head MRI dataset (256 × 256 × 124) enhancing a
segmented area.

7.4 Interactive transfer function

In volume rendering, applying a transfer function (TF) is one of the most
common techniques to illustrate a volumetric dataset. A TF is a lookup
function that maps each scalar value of the dataset [0-255] with a given
colour and opacity. Typically, a set of predefined and general TFs can be
used (from red to green to blue, rainbow schema, etc.). It is very common
to find domain-specific TF’s (like in the weather radar information) that are
widely accepted by the experts of that domain.

The web platform provides the tools to create interactive UI elements.
Using the scalable vector graphics (SVG) technology, a transfer function
editor can be built. With a TF editor, the user can interact with the volume
rendering visualization, exploring and colourizing the desired data.

Figure 7.8 shows the first developed transfer function editor prototype
under the 3D rendering context. The TF editor acts as an interactive chart.
It has two axis: X represents the volume data values in the [0-255] range
(8-bit), while Y axis represents the opacity from [0-1]. In this chart, an
histogram of the volume data values is plotted in order to help the user
infer in which value ranges the data is located. The user can add control
points by clicking inside the plotting area. A colour is assigned to each
control point. Defined colours will be interpolated between control points
linearly (X axis). The opacity is also interpolated between control points
in function of the point height (Y axis). As a result of the user interaction
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(modification of the control points) a Look-Up Table (LUT) is defined as
a 255 pixel width 1D RGBA image. This image is directly passed as a
texture input to the GPU and therefore, any changes in the TF editor have
an immediate effect in the volume rendering visual output.

It is common to offer a predefined TF and give to the user the possibility
to customize it interactively.

Web components are a set of web platform APIs that allow to create
reusable encapsulated HTML tags to be used in web pages and applications.
These web components use existing web standards. They are a good solution
to integrate with the declarative approach of the X3DOM volume rendering
component (see Chapter 4). Using the Polymer framework (Google, 2018)
a reusable transfer editor web component has been developed and publicly
shared (Arbelaiz, 2018).

The TF editor component can be inserted in any HTML5 web page using
the <tf-editor> tag. This element can be configured defining attributes
or properties on the DOM element. The number of bins in the histogram,
the initial control points and editor size are customizable in a declarative
manner. At any point the defined control points can be exported as JSON
formatted string.

Listing 7.4 shows a X3DOM volume scene declaration of the aorta

dataset along with the TF editor component declaration. It shows how to
link the editor with the X3D scene using a CSS selector in the x3domSelector
attribute of the <tf-editor> DOM element.

Figure 7.9 shows both the re-usable TF editor web component and the
resultant 3D rendering of the aorta dataset. In this example, the user has
set the a series of control points to illustrate the volume. The required code
to built this visualisation is shown in Listing 7.4.

The work presented in this chapter builds a bridge between the real prac-
tical requirements of medical visualisation applications and the presented
contributions on this thesis towards ubiquitous volume data visualization.
The presented implementation approaches offer a solution that developers
can use to build applications and web based visualizations in an easy way
(see Listing 7.4).
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Figure 7.8: Volume rendering transfer function editor web application interface
prototype.
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Listing 7.4: X3DOM scene declaration with reusable TF editor linked by dynamic
HTML5 canvas

<x3d>

<scene>

<background skycolor="1.0 1.0 1.0"></background>

<viewpoint description="Default" znear="0.0001" zfar="100">

</viewpoint>

<transform>

<volumedata id="volume2" dimensions="4.0 4.0 4.0">

<imagetextureatlas containerfield="voxels" url="aorta.

png" numberofslices="96" slicesoverx="10"

slicesovery="10"></imagetextureatlas>

<opacitymapvolumestyle lightfactor="1.2"

opacityfactor="15.0">

<imagetexture containerfield="transferFunction">

<canvas width="255px" height="1px"></canvas>

</imagetexture>

</opacitymapvolumestyle>

</volumedata>

</transform>

</scene>

</x3d>

<br>

<tf-editor name="TF" x3dom-selector="#volume2"></tf-editor>
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Figure 7.9: Web UI of the transfer function editor component. Control points
have been positioned to colourize the volume data.



Chapter 8

Extensions for the ISO-IEC
X3D standard

This chapter describes two new nodes and extensions that have been pro-
posed to the X3D working group members and the Web3D community.
These definitions are a consequence of the knowledge gathered in the re-
search described in previous chapters. The proposal is leaded by the author
of this thesis, but it required the cooperation of other researchers and feed-
back from the Web3D community. The chapter provides both the context
and the proposal definition. It also shows the potential provided by the
proposal.

With the adoption of WebGL in modern browsers, research and develop-
ment in Web-based hardware-accelerated graphics have flourished. Agree-
ments and conventions have been developed in order to sustain the exchange
of 3D graphics. This includes volumetric content. However, new challenges
create new needs that require new developments in existing standards or
the creation of new ones. The interoperability between Web and non-Web
applications, and to maintain a cross-device support are a must in the Web
platform. Therefore this thesis has focused in the ISO-IEC Standard of X3D
Web3DConsortium (2017b), which is a internationally ratified specification.
This standard defines for web applications the interchange and delivery of
declarative 3D graphics over the net.

The Web has become a medium to expose rich multimedia content to
the general public. Using the Web as unified access point, volume rendering
could become another tool for professionals and casual users alike. In order
to reduce the gap between the expected capabilities of web-based tools and
their desktop counterparts, requests and priorities have been analysed with
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the user community. The outcome of this research optimizes functionalities
within the current limitations of the Web platform.

The evolution of 3D graphics in the Web is slow in comparison to tradi-
tional desktop solutions. This is mainly due to two factors: i) security: ap-
plications developed by third-party must be sand-boxed within the browser
context and ii) wider cross-device support: they tend to reach to a wider
range of devices and GPUs. Despite of this, the web ecosystem has bene-
fitted from a great surge in 3D graphics content since the introduction of
the WebGL API. This has provided an opportunity to create communities of
both users and developers alike. They help with both the adoption and with
the improvement of this technology into the future. One of the communities
that has been supporting the exchange of 3D content over the net is the one
behind the X3D (Extensible 3D) ISO (Web3DConsortium, 2017b).

This chapter is structured as follows: Section 8.1 introduces the X3D
standard with some of its contributions in the scientific community along
the X3D volume rendering component. Section 8.2 describes the proposal
of new nodes not contemplated in the current volume rendering component.
Section 8.3 proposes community-driven extensions to be included in the stan-
dard. Finally, Section 8.4 concludes with the state of the proposed changes
towards the next iteration of the X3D volume rendering component.

8.1 X3D and X3D volume rendering component

The Extensible 3D (X3D) (Web3DConsortium, 2017b) is an ISO-IEC rat-
ified standard to represent and communicate 3D computer graphics. It is
maintained and developed by the Web3D consortium. X3D is composed by
a rich set of extensible components targeting different computer graphics
areas (e.g CAD, Geospatial, Humanoid-animation, NURBS, etc.).

X3D is actively being used in the scientific community. In order to extend
its features, researchers publish modification proposals and enhancements to
concrete components. For example, for the Geospatial Component (McCann
et al., 2009) proposed enhancements to correct deficiencies with the visual-
ization of data in a globally set context, to improve browser rendering for
terrain data and to spread the adoption of the component.

X3D has been evolving with each iteration since its initial definition.
Due to its component-based and profile-based architecture, new nodes can
be added independently easily and in collaboration with its corresponding
working group. The Web3D Consortium’s Medical Working Group (MWG)
(Web3DConsortium, 2017a) specifies and implements open standards to sup-
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port cross-platform representation of medical visualisation from a wide va-
riety of image modalities and medical data exchange capabilities.

Focused in the visualisation of volume data, the Medical Working Group
(MWG) has created the X3D Volume Rendering Component (Web3DCon-
sortium, 2017a) and the Medical X3D profile John et al. (2007). During the
standardization process of the Volume Rendering Component, (Jung et al.,
2008) presented a specialized endoscopic training simulation system based
on an extended X3D. It showed one of the multiple use case cases of ap-
plication for volume rendering. Polys et al. (2011b) evaluated the proposed
X3D Volume Rendering Component for its suitability in the visualisation
of several volume image data types from different scientific fields. Further-
more, Polys and Wood (2012) evaluated the volume component specification
under several criteria: representation, implementation, interaction and in-
teroperability/integration to validate X3D as a reproducible volume scene
declaration interchangeable format.

Applications of X3D based volume rendering are widespread in the me-
dicine field, from surgical planing to educational purposes. With the cost
reduction and availability of modern stereo head mounted displays (HMD),
a new frontier of application has been opened for X3D. Towards immersive
VR environments, Behr et al. (2007) presented extensions to support dif-
ferent interactions and navigation tasks and Polys et al. (2013a) described
the challenges and capabilities of X3D in an immersive volume rendering
implementation.

Actually, X3D volume rendering component defines three abstract nodes,
three data nodes and nine style nodes. Chapter 4 presents the web imple-
mentation of these definitions performed within this thesis. Currently, the
X3DOM volume rendering component is the unique web-based existing im-
plementation.

8.2 New node proposals

This section proposes new nodes that extend the functionality of the current
medical profile of ISO/IEC X3D. First, a web-centered ImageTextureAtlas is
proposed in Section 8.2.1. This node enables the interactive visualisation of
volumetric data in Web based GPU accelerated volume rendering ray-casting
algorithms. Finally, Section 8.2.2 presents the multi-planar reconstruction
rendering style node.
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8.2.1 ImageTextureAtlas — X3DTexture2DNode

In GPU-based volume rendering, 3D textures are used to store volume data.
Thus, it is defined in the X3D ISO that volume data shall be declared using
X3D’s Texturing3D component. Unfortunately, the WebGL 1.0 API does
not support this type of texture.

This limitation of WebGL 1.0 API has been overcomed with the method
proposed by Congote et al. (2011). Using a 2D texture a 3D texture can be
emulated by resampling the 2D texture and performing trilinear interpola-
tion in the fragment shader at a pixel level.

Listing 8.1 shows the X3D definition of the proposed node: ImageTex-
tureAtlas.

Listing 8.1: X3D definition for the ImageTextureAtlas node.

ImageTextureAtlas : X3DTexture2DNode

SFNode [in,out] metadata NULL [X3DMetadataObject]

SFBool [in,out] repeatS TRUE

SFBool [in,out] repeatT TRUE

SFNode [in,out] textureProperties NULL [TextureProperties]

MFString [in,out] url [] [URI]

SFInt32 [in,out] numberOfSlices 0 [0,∞)

SFInt32 [in,out] slicesOverX 0 [0,∞)

SFInt32 [in,out] slicesOverY 0 [0,∞)

SFBool [in,out] hideChildren TRUE

SFString [in,out] channels "R"

SFString [in,out] sortOrder "ROW" ["ROW", "COLUMN",
"CHANNEL", "NONE"]

}

Volumetric data, specially those obtained from a MRI or a CT scan, can
be seen as a set of 2D image slices in an array. The proposed ImageTex-
tureAtlas node at Listing 8.1 allows the represent of the 3D volume data by
composing all the 2D slices into a single 2D texture (Congote et al., 2011).
Instead of adding a Z dimension to the texture, all 2D slices are arranged
into one image with a matrix configuration. Figure 8.1 shows an atlas of
slices for the proposed ImageTextureAtlas node.

The following attributes in Listing 8.1 are inherited by X3DTexture2D-
Node: metadata, repeatS, repeatT, textureProperties and url.

The numberOfSlices attribute indicates the number of slices or the di-
mension size in the Z axis direction. SlicesOverX attribute indicates the
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Figure 8.1: A 2D image representing an ImageTextureAtlas of the Head MRI

dataset (colour inverted and contrast enhanced) as a set of 2D slices tiled into a
matrix configuration.

number of slices along X axis or the number of columns in the matrix con-
figuration, while the SlicesOverY indicates the number of slices along Y axis
or the number of rows in the matrix configuration. These values must be
provided by the user, since they cannot be deduced from the input image.

The amount of volume data that can be stored in a 2D ImageTexture-
Atlas is limited by the GPU’s 2D texture size limit. However, some strate-
gies can be followed to allow the visualisation of bigger datasets. Noguera
and Jiménez (2012) used colour channels (Green, Blue and Alpha colour
channels) of a volume data atlas to store larger datasets. For this purpose,
Listing 8.1 shows the channels and sortOrder fields.

The channels attribute defines in which colour channel of the texture,
volume data is being stored. The default behavior is to store the volume
data in the Red colour channel by specifying the “R” value. When, a larger
volume is required to be converted into an ImageTextureAtlas additional
channels can be specified with “R”, “G”, “B”, “A” characters. For instance,
to store up to three times more data. A “RGBA” value in the channel
attribute will indicate that all colour channels of the texture are being used
to store the data. Once multiple colour channels are defined, the order in
which 2D slices are tiled into the atlas must be set in the sortOrder attribute.
The default behavior is to tile the 2D slices that represent the Z axis of the
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volume data in “ROW” order. For each slice of the ImageTextureAtlas the
next slice in the Z axis is the contiguous slice in the row of the matrix of
slices. When the sortOrder is set to “CHANNEL” the next slice of the atlas
in the Z axis direction is stored in the contiguous colour channel.

Listing 8.2 definition represents how X3DVolumeData derived nodes,
such as the VolumeData, should allow a 2D texture input to accept the new
ImageTextureAtlas proposed node as a valid parameter.

Listing 8.2: ImageTextureAtlas as an input to X3DVolumeData nodes. Example
for the VolumeData node.

VolumeData : X3DVolumeDataNode {

SFVec3f [in,out] dimensions 1 1 1 (0,∞)

SFNode [in,out] metadata NULL [X3DMetadataObject]

SFNode [in,out] renderStyle NULL [X3DVolumeRenderStyleNode]

SFNode [in,out] voxels NULL [X3DTexture2DNode,

X3DTexture3DNode]

SFVec3f [in,out] bboxCenter 0 0 0 (-∞,∞)

SFVec3f [in,out] bboxSize -1 -1 -1 [0,∞) or -1 -1 -1

}

Arbelaiz et al. (2016b) have extended the ImageTextureAtlas approach
to adapt its use to the other nodes described in the current X3D v3.3 ISO
specification (Web3DConsortium, 2017a). The previous paragraphs explain
how this node can store 3D texture data. The ImageTextureAtlas node can
also be used to store gradient volume data, segmented volume data and to
directly upload new data into the visualization.

The surface normals of the volume data are required to apply the vol-
ume rendering styles defined in the X3D ISO Volume Rendering Component
(Web3DConsortium, 2017a). Voxel surface normals are stored as 3D texture.
In this manner, illustrative and non-photorealistic styles can be applied to
the volume visualization.

The surface normals are approximated with the gradient computation of
the volume data. The gradient computation generates a three component
vector for each voxel in the volume. Each component matches with the
derivative of the volume data on each axis direction. Using the same ap-
proach as before, an ImageTextureAtlas is created using the colour channels
of the 2D texture to store the vector information. The gradient vector is
encoded for each pixel in the atlas in the RGB colour channels R: X, G: Y,
B: Z.
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(a) Volume data (b) Segmented data (c) Gradient data

Figure 8.2: Slice types of the Head MRI dataset (Volvis, 2017) to be composed
into an ImageTextureAtlas: a) voxel data slice, b) segmented data slice and c)
gradient data slice.

The proposed node in Listing 8.1 is valid for the surface normals in-
put. For this use case, the sortOrder attribute should be “NONE” and the
channels attribute “RGB”. Listing 8.3 shows an example declaration of the
gradient data.

Listing 8.3: An ImageTextureAtlas declaration for the surface normals data

<ImageTextureAtlas containerField="surfaceNormals" url="

gradient.png" slicesOverX="8" slicesOverY="8">

</ImageTextureAtlas>

The containerField and URL attributes at Listing 8.3 are the modifi-
cations required for the ImageTextureAtlas declaration. The containerField
attribute is used to target the volume data voxels field in a X3DVolumeData-
Node or gradient data surfaceNormals attribute in a X3DVolumeStyleNode.
This also requires, for the X3DVolumeStyleNode type nodes with a sur-
faceNormals attribute, the acceptance of a X3DTexture2DNode as an input
argument like it is shown in Listing 8.2 for the VolumeData node.

The SegmentedVolumeData node allows the user to discern regions of
the volume and apply different rendering styles to each one. The segmented
regions must be labelled per voxel. The use of an ImageTextureAtlas is
mandatory in order to make the SegmentedVolumeData compatible with
WebGL 1.0.

Figure 8.2 shows the difference between a volume data slice (R colour
channel), a segmented data slice (R colour channel) and the surface normals
slice (RGB colour channels).

Textures provide a mechanism to upload data to the GPU and conse-
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quently, send directly to the screen. Listing 8.4 shows an ImageTextureAtlas
node declaration with a canvas. Please note that the hideChildren attribute
hides the atlas from the user, but makes it available to be modified with
JavaScript.

Listing 8.4: ImageTextureAtlas declaration linked with the 2D HTML5 canvas
API

<ImageTextureAtlas containerField="voxels" url="" slicesOverX=

"8" slicesOverY="8" hideChildren="true">

<canvas id="v" style="width:2048px; height:2048px;">
</canvas>

</ImageTextureAtlas>

The 2D canvas API can be used in the web platform to create or mod-
ify images that can be copied to the GPU. This web feature provides a
mechanism to render dynamic changes and, for instance, to perform the
construction of the atlas in the browser. This approach has been used in
Chapter 3 for 4D volume data and in Chapter 7 for DICOM volume data
visualization.

With the WebGL 2.0 API, 3D textures are supported in modern brow-
sers, allowing to make better use of current GPU memory capabilities. Nev-
ertheless, this method is valid for both WebGL APIs (1.0 and 2.0) and it
can also be combined with 3D textures to make use of less memory space.
Still a lot of devices only support the 1.0 API and the new API adoption is
slow (Bösch, 2019). The proposed ImageTextureAltas will still be necessary
for an ubiquitous volume rendering deployment.

8.2.2 Multi-planar reconstruction (MPR)

The Multi-Planar Reconstruction (MPR) is a wide spread rendering tech-
nique for real-time slicing of the volume data. Essentially, it enables the
user to define arbitrary planes through the data. The rendering algorithm
resamples the volume data to reconstruct the volume into the desired plane.
Usually, the following planes will be defined: Axial, Sagital, Coronal and
Oblique.

Listing 8.5 shows the proposed X3D MPR rendering style node definition.
The MPRVolumeStyle node defines a transferFunction attribute with the

same functionality as the one already defined in the OpacityMapVolumeStyle.
It can be used to illustrate or filter regions in the reconstructed planes. In
fact, this is necessary in many domains, for example, in physics simulation
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Listing 8.5: X3D definition proposal for the MPRVolumeStyle node.

MPRVolumeStyle : X3DVolumeRenderStyleNode {

SFBool [in,out] enabled TRUE

SFNode [in,out] metadata NULL [X3DMetadataObject]

SFNode [in,out] transferFunction NULL [X3DTexture2DNode,

X3DTexture3DNode]

MFNode [in,out] planes NULL [MPRPlane]

}

Figure 8.3: Plane reconstruction with MPRVolumeStyle on the aorta dataset.

it is used to correlate the visual output with the obtained results. Figure 8.3
shows an example prototype of the MPR style using the X3DOM framework.

This node also defines a planes attribute to allow the user to declare not
only one, but multiple arbitrary planes. Listing 8.6 presents an arbitrary
plane definition for the MPRVolumeStyle node.

Listing 8.6: X3D definition proposal for an arbitrary MPR volume plane

MPRPlane : X3DNode {

SFBool [in,out] enabled TRUE

SFNode [in,out] metadata NULL [X3DMetadataObject]

SFVec3 [in,out] normal 0 0 1

SFFloat [in,out] pos 0.0 [0,1]

}
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Figure 8.4: Multi-plane reconstruction with MPRVolumeStyle on the aorta

dataset.

The normal attribute defines the normal vector of the plane, while the
pos attribute establishes the position of the plane from the origin of the
volume in the normal direction. Figure 8.4 shows a MPR prototype of the
proposed node in X3DOM with multiple planes defined.

This technique is less memory expensive than a full volume rendering
visualization: only the volume data in the neighbourhood of the defined
plane is used in the computation. Less powerful GPU devices, like mobile
devices, will handle easier this type of rendering.

8.3 Extension proposal to existing nodes

The X3D volume rendering component has been unchanged since the release
of version v3.3 in 2013 (Web3DConsortium, 2017a). This section presents
additions and enhancements which are focused in issues and problems re-
ceived from web users in the X3D and X3DOM communities (X3DOM Co-
mmunity, 2017, 2015a, 2016b,a, 2015b). Proposals of how these enhance-
ments could be added to the current X3D volume rendering component
specification are presented in this section.

8.3.1 Transfer function edition

A transfer function (TF) is the most used method to add colour to the
volume visualization. It allows to filter and enhance intensity ranges in
the volume data by mapping each volume scalar value to a given colour
and opacity. This enables the visualisation through some layers of specific
densities and the increment of the opacity in other layers. For this purpose,
usually a texture is used as a look-up table. However, a connection to the
2D texture that directly influences the TF is required in order to allow the
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creation of tools such as a native HTML5 transfer function editor presented
in Chapter 7.

As stated in previous Section 8.2.1, Listing 8.4 shows the use of hideChil-
dren attribute to attach a 2D canvas in order to update the volume data
in the ImageTextureAltas node. The same approach can be used with the
transfer function attribute of the OpacityMapVolumeStyle node. But, this
time, to modify dynamically the TF within a 2D canvas (see Listing 8.7).

Listing 8.7: ImageTexture declaration linked with the 2D HTML5 canvas API

...

<OpacityMapVolumeStyle lightFactor="1.2" opacityFactor="15.0">

<ImageTexture containerField="transferFunction" hideChildren

="true">

<canvas id="tf" style="width:255px; height:1px;">
</canvas>
</ImageTexture>

</OpacityMapVolumeStyle>

...

Current X3D specification contemplates both 3D and 2D textures as
valid input fields for the OpacityMapVolumeStyle node. The default be-
haviour is the use of 2D TFs (linear look-up tables). With the proposed
addition the Web platform can support natively 2D textures that can be
changed dynamically.

8.3.2 quality attribute

The X3D ISO specification is an abstract declaration unaware of the underly-
ing implementations. A Web-based ubiquitous volume rendering implemen-
tation allows a volumetric scene to be deployed in a wide range of devices. A
scene with multiple rendering styles may be plausible for a desktop PC with
a dedicated GPU, but it could be too computationally expensive for a mo-
bile device; not all devices have the same GPU features and computational
power. Implementation-aware requisites should be considered in order to
deploy X3D scenes in as many devices as possible. Otherwise, this situation
can make volume rendering unavailable to some devices.

In order to allow one X3D volume rendering scene to be deployed into
multiple devices, a quality control mechanism is proposed. This mechanism
should focus on the target devices and it should control the amount of com-
putation to be performed by the device via the underlaying implementation.
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A quality attribute could be defined with a qualitative value (provided as
a profile) or with a quantitative value (provided as ranged numerical scalar
value). Thus, two proposals are presented.

Listing 8.8 shows an additional qualitative field for the X3DVolumeData-
Node, where the quality attribute accepts three levels of quality “LOW”,
“MEDIUM”, “HIGH”.

Listing 8.8: X3DVolumeDataNode definition with output quality control

X3DVolumeDataNode : X3DChildNode, X3DBoundedObject

SFVec3f [in,out] dimensions 1 1 1 (0,∞)

SFNode [in,out] metadata NULL [X3DMetadataObject]

SFVec3f [in,out] bboxCenter 0 0 0 (-∞,∞)

SFVec3f [in,out] bboxSize -1 -1 -1 [0,∞) or -1 -1 -1

SFString [in,out] quality "HIGH" ["LOW", "MEDIUM", "HIGH"]

}

The alternative is shown at Listing 8.9, where the quality field shows
a quantitative value. For implementations where the quality of the output
cannot be controlled, always a “HIGH” value or a “1.0” factor shall be
expected.

Listing 8.9: X3DVolumeDataNode definition with output quality control

X3DVolumeDataNode : X3DChildNode, X3DBoundedObject

SFVec3f [in,out] dimensions 1 1 1 (0,∞)

SFNode [in,out] metadata NULL [X3DMetadataObject]

SFVec3f [in,out] bboxCenter 0 0 0 (-∞,∞)

SFVec3f [in,out] bboxSize -1 -1 -1 [0,∞) or -1 -1 -1

SFFloat [in,out] quality 1.0 [0,1]

}

In this manner, each possible implementation of the X3D standard could
adequate the amount of computation to be performed at different levels. As
an example, Figure 8.5 shows the same scene from the same perspective,
under different rendering quality values. For real-time rendering the qual-
ity should be able to be changed to accommodate to the targeted GPU
capabilities.
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(a) LOW (b) MEDIUM (c) HIGH

Figure 8.5: Rendering of the silicium, tooth and backpack datasets at differ-
ent rendering qualities.

8.3.3 allowViewPointInside attribute

Some regions of the volume data can be occluded even after filtering the
data with a transfer function (TF). In those cases, the ability to explore
the inside of the volume becomes necessary (X3DOM Community, 2015a).
This feature has been already integrated in X3DOM (Arbelaiz et al., 2017a),
but not in the standard itself. The current X3D ISO does not define the
behaviour of the volume rendering algorithms in relation to the location of
the camera inside the volume.

Allowing to place the viewer’s virtual camera inside the volume provides
a new perspective to analyse the data (see Figure 8.6).



116 Chapter 8. Extensions for the ISO-IEC X3D standard

Figure 8.6: The visualisation from the inside of the dataset requires that the
user moves the virtual camera location into the cube that holds the volumetric
dataset. Zoom functionality can be triggered with the wheel mouse or equivalent
mechanism in devices with touch screen.

Listing 8.10 shows the definition of the X3DVolumeDataNode with the
proposed allowViewPointInside attribute.

Listing 8.10: X3DVolumeDataNode definition with the proposed allowView-
PointInside attribute.

X3DVolumeDataNode : X3DChildNode, X3DBoundedObject

SFVec3f [in,out] dimensions 1 1 1 (0,∞)

SFNode [in,out] metadata NULL [X3DMetadataObject]

SFVec3f [in,out] bboxCenter 0 0 0 (-∞,∞)

SFVec3f [in,out] bboxSize -1 -1 -1 [0,∞) or -1 -1 -1

SFBool [in,out] allowViewPointInside TRUE

}

In this proposal a new boolean attribute allowViewPointInside is added
to all nodes inherited by the X3DVolumeDataNode. In one hand, all X3D
conformance implementations will follow the same behaviour. In the other
hand, to explicitly enable or disable this functionality will allow to avoid the
extra computation required.

Figure 8.7 shows an external and internal rendering of the aorta dataset.

For the VolumeData node the default definition will be the following:
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(a) Camera outside (b) Camera in BB (c) Camera inside

Figure 8.7: Moving the camera forward (in the view direction) inside the aorta
dataset (512× 512× 97).

<VolumeData allowViewpointInside="true"></VolumeData>

By default it should be enabled the inspection of the volume data and if
the user does not require to do so, it can be explicitly disabled.

8.3.4 sceneDepth attribute

A hybrid rendering of 3D polygonal meshes in conjunction with a volume
object can be of great interest. It opens new use cases for several scientific
fields. As a reference, Yang et al. (2015) has already presented a GIS use
case for the visualisation of volumetric weather radar data and a polygonal
terrain with X3DOM. The current X3D volume rendering component does
not specify nor describe any polygonal and volume data intersection behav-
ior. From a technical point of view, as presented in Chapter 5, it is already
feasible to perform such hybrid rendering in a Web context (Arbelaiz et al.,
2016a).

To add the scene depth information, nodes which inherit from X3D-
VolumeDataNode (VolumeData, SegmentedVolumeData, IsoSurfaceVolume-
Data) should allow to access the depth information of the rendered scene.
Listing 8.11 shows the proposed sceneDepth attribute for the basic Volume-
Data node.

With the depth information of the previously rendered meshes in the
scene. The coexistence of surface data and volume data together is possible.
In this way, before rendering the volumetric data, the volume rendering
algorithms can compute any intersection with polygonal surfaces and avoid
any occluded computation while also performing the colour blending with
the polygonal surface (see Section 5.3.3 in Chapter 5).
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Listing 8.11: VolumeData definition with access to the scene depth information.

VolumeData : X3DVolumeDataNode {

SFVec3f [in,out] dimensions 1 1 1 (0,∞)

SFNode [in,out] metadata NULL [X3DMetadataObject]

SFNode [in,out] renderStyle NULL [X3DVolumeRenderStyleNode]

SFNode [in,out] voxels NULL [X3DTexture3DNode]

SFNode [in,out] sceneDepth NULL [X3DTexture2DNode]

SFVec3f [in,out] bboxCenter 0 0 0 (-∞,∞)

SFVec3f [in,out] bboxSize -1 -1 -1 [0,∞) or -1 -1 -1

}

8.3.5 cap attribute

In the X3D specification the behaviour of clipping is directed towards surface
data. This concept was introduced in X3D since the release of v3.2 (Web-
3DConsortium, 2017b). It is defined as a plane that divides an space in
two sub-spaces. The affected geometry in the outer-space, defined as being
outside the plane, is removed from the rendered image as a result of applying
the operation. Listing 8.12 shows the current node definition for the clipping
plane.

Listing 8.12: Actual ClipPlane definition in X3D v3.3

ClipPlane : X3DChildNode {

SFBool [in,out] enabled TRUE

SFNode [in,out] metadata NULL [X3DMetadataObject]

SFVec4f [in,out] plane 0 1 0 0 [0,1]

}

The X3DVolumeData derived nodes emulate a Shape node that handle
volumetric data instead of geometry data. The clipping planes can be de-
fined at any level of the transform hierarchy. This implies that the current
specification of clipping planes should also be applicable to volume nodes.

In a complex scenario, where both geometry and volume data are clipped
a different behaviour is expected. Clipped volume data by definition will al-
ways contain data inside the clipped region (see Figure 8.8c). However, a
clipped polygonal object could be empty. Figure 8.8a shows the experimen-
tal support of clipping planes in X3DOM, while Figure 8.8b show a capped
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(a) Non-capped (surface) (b) Capped (surface)

(c) Capped (volume)

Figure 8.8: Examples of the clipping behaviour in surface and volume data: a)
clipping of a surface mesh, b) capped clipping of a surface mesh and c) clipping
in volume data.

example from Mischek (2018).

Listing 8.13 proposes a cap attribute to mix volume clipped data and
surface data together in the same scene.

A medical application using clipping planes will probably expect inter-
sected 3D geometry to be capped (X3DOM Community, 2017). The spec-
ification should consider the possibility to cap clipped polygonal surfaces.
Otherwise, this behaviour would remain undefined and therefore, any X3D
implementation would provide a custom and non-standard implementation.
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Listing 8.13: ClipPlane definition with cap attribute

ClipPlane : X3DChildNode {

SFBool [in,out] enabled TRUE

SFNode [in,out] metadata NULL [X3DMetadataObject]

SFVec4f [in,out] plane 0 1 0 0 [0,1]

SFBool [in,out] cap FALSE

}

For instance, the experimental clipping planes implementation in X3DOM
has already defined additional attributes for the capping colour and strength.
These are not included in the standard neither. An addition of a cap at-
tribute to the ClipPlane should be enough to solve the hybrid rendering
scenario.

8.4 Standardization

The ISO-IEC Standard Extensible 3D (X3D) version v3.3 specifies the inte-
gration and visual styling of volumetric data for real-time interaction. The
specification is an important milestone describing a framework for expres-
sive volume rendering scene presentation. However, it was written before
the emergence of WebGL and the HTML5 platform. This chapter has de-
scribed several extensions to adapt the X3D Volume rendering nodes to the
Web platform and to enhance its functionality based on feedback provided
by the X3D and X3DOM open source communities.

Two new nodes have been presented: ImageTextureAtlas and MPRVol-
umeStyle. The ImageTextureAtlas node can be used in the Web platform
for real-time volume visualization. The Multi Planar Reconstruction (MPR)
style rendering offers a lacking functionality in the current X3D medical pro-
file. New extensions have been proposed: i) the edition of transfer functions,
ii) intersection of the volume with 3D objects, iii) clipping planes with vol-
ume data and iv) control in the quality of the generated volume visualiza-
tion. These proposals benefit X3D users by providing more advanced use
cases. These extensions have been presented in the X3D Medical Working
Group and they are being considered for future revisions of the ISO/IEC
X3D volume rendering component.



Chapter 9

Results and discussion

This chapter presents the validation of the contributions of this thesis by
showing applications and results in different domains under a variety of
use cases. Developed applications and prototypes demonstrate how web
based ubiquitous volume visualisation applications can be built upon the
contributions presented in previous chapters.

This chapter shows how the nodes proposed in Chapters 4 and 8, and
the algorithms implemented within them, provide a powerful tool for con-
tent developers. The visualizations described in this chapter are examples
built with low coding effort and the performance of a selection of them are
presented.

Furthermore, the potential of the contributions of this thesis are not lim-
ited to these examples. Based in the work developed on this thesis, other
authors have further validated the presented contributions. Any content
developer or researcher may tailor the components to solve other interactive
volume visualisation problems. Examples by other authors of web applica-
tions and research work built with the volume render component presented
in this thesis are also presented in this chapter.

The scene tree declaration to compose some of the generated renderings
are shown in Section 9.1. Section 4.1.1 in Chapter 4 already presents a
scene tree and its corresponding X3D declaration. Since in that chapter it is
shown how little work is required by content developers to create a volume
rendering scene, only a few lines of X3D/HTML of code are required. In
Section 9.1 only the scene trees will be presented.

The chapter is structured as follows: Section 9.1 demonstrates the flex-
ibility of the volume rendering component to create visualizations that can
be applied in multiple domains. Section 9.2 shows an application for the
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quality inspection of plastic mould injected parts. Section 9.3 presents a 4D
volumetric air-flow simulation as an engineering use case. Section 9.4 shows
an application for the volumetric visualisation of DICOM data. Section 9.5
describes the prototyping of a web based virtual reality application. Finally,
Section 9.6 presents applications and research work from other authors in
the Web3d community, supported by these contributions.

9.1 Declarative multi-domain use cases

This section shows the advantages, flexibility and utility of the declarative
approach for volume rendering. It demonstrates the powerful and easy-to-
use methodology that offers the X3DOM volume rendering component for
web content developers (see Chapter 4).

Four volumetric datasets from different thematic areas are presented:
medical, engineering, physics and life sciences. For each use-case, some
interaction examples are introduced and some possible solutions are devised
by providing some X3D scenes that experienced users of the domain might
use to explore the volumetric datasets.

Each use case is structured as follows: first, the objective and motivation
for the visualisation is introduced, then a basic render of the volume is
shown. Afterwards, a partial X3D scene for each use case is presented.
Subsection 9.1.5 shows a table that resumes the performance achieved on
each of the presented use cases.

9.1.1 Medical use case

Undoubtedly, a useful tool in the medical field is the segmentation, i.e. the
partitioning of the volume data into different segments. The requirements
and solution to this use case have been described in Chapter 7.

Sometimes, for a variety of reasons, a region of interest inside the volume
needs to be enhanced or highlighted. The goal of this use case is to visualise
segments which correspond to different organs, pathologies, tissue types and
other biological structures. The user will differentiate better the segments
from the rest of the data. This section uses the Head MRI (University of
Tübingen WSI/GRIS, 2014) dataset. It consists of a Magnetic Resonance
Imaging (MRI) scan of the head and a segmentation of the ventricles of the
brain. With the use of the SegmentedVolumeData node, the ventricles shape
are enhanced from the rest of the volume data. Figure 9.1 shows a basic
visualisation of the Head MRI dataset, without the use of the segmentation
data.
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Figure 9.1: Direct volume rendering visualisation of the Head MRI dataset (2048×
2048 atlas), using the OpacityMapVolumeStyle without a transfer function.

Using the segments information, a different rendering style can be ap-
plied to each segment. Figure 9.3 shows two rendering outputs that highlight
the ventricles of the brain. Both use the SegmentedVolumeData node with
two different rendering styles. Figure 9.2 is a partial X3D scene tree of Fig-
ure 9.3a. First, the volume is declared as a SegmentedVolumeData. In this
case, two atlases must be provided to the component: the volume data atlas
(ImageTextureAtlas) and the atlas containing the segmented information.
Then, the rendering styles are declared. The first rendering style is applied
to the first segment and the second rendering style on the second segment.

ImageTextureAtlas.

ComposedVolumeStyle.
OpacityMapVolumeStyle.

EdgeEnhancementVolumeStyle.

OpacityMapVolumeStyle.

SegmentedVolumeData.

Figure 9.2: Partial X3D scene tree of the Head MRI dataset, using the Segment-
edVolumeData node.

In the scene tree shown in Figure 9.2, the first segment has been rendered
using the OpacityMapVolumeStyle with a low opacityFactor resulting more
visible the insides of the head. The second segment, the ventricles of the
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(a) EdgeEnhancementVolumeStyle (b) CartoonVolumeStyle

Figure 9.3: Direct volume rendering visualisation of the Head MRI dataset (2048×
2048 atlas), using the SegmentedVolumeData to enhance the ventricles of the
brain

brain, has been rendered with a composition of two rendering styles: the
OpacityMapVolumeStyle and the EdgeEnhancementVolumeStyle. Making
the segmented region more noticeable and, at the same time, highlighting
the shape of the ventricles. The difference between Figure 9.3a and Figure
9.3b is the render style used on the second segment. In Figure 9.3b the
CartoonVolumeStyle is used instead of the EdgeEnhacementVolumeStyle.

9.1.2 Engineering use case

For the engineering field the engine (University of Tübingen WSI/GRIS,
2014) dataset has been selected. This dataset consists of a Computed To-
mography (CT) scan of an engine block. The objective of this use case is
to visually enhance a region of interest: the two cylinders inside the engine.
This objective is achieved using two approaches with different rendering
styles: firstly, with the aid of a transfer function, and secondly, with the
visualisation of an isosurface. Figure 9.4a shows the engine dataset with
the default rendering style: the OpacityMapVolumeStyle.

Using a 1D transfer function on the OpacityMapVolumeStyle, each value
from the volume data can be mapped to a colour and opacity, enhancing
and illustrating the volume (see Figure 9.4b and Figure 9.5).

The creation of the transfer function is out of the scope of the volume
rendering component at the X3D level. However, a possible web based trans-
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(a) Engine dataset (b) Engine with TF

Figure 9.4: Direct volume rendering visualisation of the engine dataset with a
2048 × 2048 atlas. a) Basic visualization (by default OpacityMapVolumeStyle).
b) Engine dataset with a 1D transfer function

fer function editor has been presented in Chapter 7. The use of a transfer
function offers a lot of control on how the volume is illustrated, allowing to
enhance the desired information. Usually, it is a manual and time-consuming
process. In this example, an alternative is to use the IsoSurfaceVolumeData
and automatically extract the region of interest by selecting a correct set of
surfaceValues (see Figure 9.6 and Figure 9.7).

ImageTextureAtlas

OpacityMapVolumeStyle ImageTexture (TF)

VolumeData

Figure 9.5: Partial X3D scene tree declaration of the engine dataset, using the
OpacityMapVolumeStyle with a transfer function.

In Figure 9.6 the CartoonVolumeStyle has been used to illustrate the
extracted isosurfaces, showing a comparison between different coloursteps.
A more cartoonish effect can be achieved when the number of coloursteps
is low (Figure 9.6a and 9.6b), whereas a higher value of coloursteps can be
used to get a more solid appearance (see Figure 9.6e). Please note that in
this case, the whole volume can not be seen as before (Figure 9.4b). Both
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(a) 2 coloursteps (b) 4 coloursteps (c) 8 coloursteps

(d) 16 coloursteps (e) 32 coloursteps

Figure 9.6: Rendering of the engine dataset with a 2048 × 2048 atlas. Dataset
declared as an IsoSurfaceVolumeData with a set of surfaceValues of [0.7, 0.75,
0.8] and illustrated with the CartoonVolumeStyle at different coloursteps.

ImageTextureAtlas

CartoonVolumeStyle ImageTextureAtlas (Gradient)

IsoSurfaceVolumeData

Figure 9.7: Partial X3D scene tree of the engine dataset, declaring the volume
as a IsoSurfaceVolumeData and using a CartoonVolumeStyle.

presented solutions are able to visualise the cylinders, which denotes the
flexibility of the proposed component and the X3D specification.

9.1.3 Physics use case

Volume rendering is useful for scientific volume data visualization. The
neghip and hydrogen-atom (University of Tübingen WSI/GRIS, 2014) da-
tasets have been selected to showcase the utility of the volume rendering
component in the nuclear physics field. The neghip dataset (64 × 64 ×
64) is a simulation of the spatial probability distribution of electrons in a
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high potential protein molecule. Knowing the distribution of the electron
in such molecules has important benefits for chemistry-based areas, such as
pharmacology, to better understand the relation between molecules and the
organism (Linsen et al., 2012).

The hydrogen atom dataset (128×128×128) is a simulation of the spa-
tial probability distribution of the electron in a hydrogen atom residing in a
strong magnetic field. Both cases show the shape of the density distributions
with the visualization of a selection of iso-values from the datasets. A basic
visualisation of both datasets (Figure 9.8) gives a general idea of the shape,
but does not help to accurately pinpoint the location of the electrons, nor
the evolution of the distribution fields.

(a) Neghip dataset (b) Hydrogen atom dataset

Figure 9.8: Direct volume rendering visualisation of the neghip (512×512 atlas)
and hydrogen atom (1024× 1024 atlas) datasets with no styles applied.

To explore the distribution, an example of the visualisation of a set of
isovalues and its illustration is presented (see Figure 9.10). The use of the
IsoSurfaceVolumeData allows to apply a rendering style on each specified
surfaceValue. The illustration of the volume is necessary to enhance the
perception of depth in the generated output.

Figure 9.9 and Figure 9.12 are defined with the same tree. In both cases,
an isosurface of the volume is being visualised with the IsoSurfaceVolume-
Data node and then, illustrated with the ToneMappedVolumeStyle. The
desired isosurface value can be selected by specifying a surfaceValue, and
it limits the surface detection with the surfaceTolerance parameter (Figure
9.11). The PointLight node is declared in both scenes, because it is necessary
for the ToneMappedVolumeStyle to know the light location or direction.
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Scene.

IsoSurfaceVolumeData.
ImageTextureAtlas.(Gradient).

ToneMappedVolumeStyle.

PointLight.

Viewpoint.
ImageTextureAtlas.

Figure 9.9: Partial X3D scene tree for the neghip dataset illustrated with the
ToneMappedVolumeStyle.

(a) surfaceValue 0.2 (b) surfaceValue 0.4 (c) surfaceValue 0.9

Figure 9.10: Volume rendering visualisation of the neghip dataset (512 × 512
atlas). Using the IsoSurfaceVolumeData node with a single isovalue on the sur-
faceValues parameter and illustrated with the ToneMappedVolumeStyle.

9.1.4 Life science use case

Educational articles are usually illustrated with hand-made figures or illus-
trative images making easier to understand their material. Volume render-
ing is adequate for the exploration of real data. By allowing to explore the
data, a better understanding of its composition and morphology is obtained.
Thus, the presented volume rendering component can be used to comple-
ment web articles and teaching material. As an example, to visualise its
inner structure, the orange 1 dataset (256 × 256 × 64) has been selected.
Figure 9.13a shows a basic rendering of the orange dataset. This can be
easily declared in a few lines of HTML and X3D.

Figure 9.13b shows a cartoon rendering of the orange illustrated with
orange and yellow colours to make it closer in appearance to the real fruit.
As an alternative, a transfer function could be used to achieve a similar

1Available at http://www9.informatik.uni-erlangen.de/External/vollib/
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(a) surfaceValue 0.20 (b) surfaceValue 0.05

(c) surfaceValue 0.05 and surfaceTolerance 0.035

Figure 9.11: Volume rendering visualisation of the hydrogen atom dataset
(1024 × 1024 atlas) illustrated with the ToneMappedVolumeStyle. a,b) Using
the IsoSurfaceVolumeData node with a single isovalue on the surfaceValues pa-
rameter and a surfaceTolerance value of 0. c) Using the IsoSurfaceVolumeData
node with a single isovalue on the surfaceValues parameter and a surfaceToler-
ance value of 0.035

Scene.

IsoSurfaceVolumeData.
ImageTextureAtlas.(Gradient).

ToneMappedVolumeStyle.

PointLight.

Viewpoint.
ImageTextureAtlas.

Figure 9.12: Partial X3D scene tree of the hydrogen-atom dataset illustrated
with the ToneMappedVolumeStyle.
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(a) Orange dataset
(b) Composed with OpacityMap and
Cartoon styles

Figure 9.13: Volume rendering of the orange dataset with a 1024 × 1024 atlas.
a) Basic volume visualisation (by default OpacityMapVolumeStyle). b) Orange

dataset rendered with the OpacityMapVolumeStyle and CartoonVolumeStyle

result, but it would be a more time consuming approach if the transfer
function has to be edited manually. Figure 9.14 shows the scene tree used
to illustrate the volume with the CartoonVolumeStyle.

ImageTextureAtlas.

ComposedVolumeStyle.
OpacityMapVolumeStyle.

CartoonVolumeStyle.

VolumeData.

Figure 9.14: Partial X3D scene tree of the orange dataset to illustrate the volume.

In this use case, the objective is to highlight the composition of the
orange. A quick and effective way to achieve this objective is to enhance the
boundaries and silhouette considerably. Figure 9.15 shows the composition
of several rendering style nodes, which allows the visualization of the orange
sections and seeds.

The final rendering (see Figure 9.15) is produced using the scene de-
scribed at Figure 9.16. The ComposedVolumeStyle provides a way to com-
bine different style nodes. The first stage of this case is to use an Opac-
ityMapVolumeStyle to adjust the amount of opacity accumulated on each
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Figure 9.15: Volume rendering of the orange dataset with a 1024 × 1024 atlas
from two point of views. Applying several composable styles to highlight the
sections and seeds of the orange.

sample. Then, applying the BoundaryEnhancementVolumeStyle to make it
more noticeable to changes between regions inside the orange. Afterwards,
the SilhouetteEnhancementVolumeStyle has been applied to make slightly
more visible the contours of the volume and retains less opacity in uniform
areas of the volume. Finally, the EdgeEnhancementStyle has been used to
fill with colour the previous filtered contour.

ImageTextureAtlas. BoundaryEnhancementVolumeStyle.

Silhoue9eEnhancementVolumeStyle.

VolumeData.
OpacityMapVolumeStyle.

EdgeEnhancementVolumeStyle.

ComposedVolumeStyle.

Figure 9.16: Partial X3D scene tree, enhancing and highlighting the insides of
the orange dataset.

9.1.5 Performance

The previous examples were carried out on a PC with an Intel Quad Core
Q8200 processor, 4GB RAM and a NVIDIA GeForce GTX 295 GPU under
Windows 7. Tests were performed with Chrome and Firefox. Both browsers
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use Google’s Angle Library to gain major hardware compatibility by trans-
lating OpenGL ES 2.0 API calls to DirectX 9 or DirectX 11 API calls. All
the datasets were transferred from an Internet server. Table 9.1 summarizes
the performance obtained on each of the cases described before. For the

Use case Figure Dataset Resolution Gradient FPS

9.1.1 9.1 Head MRI 2048× 2048 no 50-55
9.1.1 9.3a Head MRI 2048× 2048 no 25-35
9.1.1 9.3b Head MRI 2048× 2048 no 40-50

9.1.2 9.4a engine 2048× 2048 no 50-60
9.1.2 9.4b engine 2048× 2048 no 50-55
9.1.2 9.6 engine 2048× 2048 no 30-39

9.1.3 9.10a neghip 512× 512 yes 40-45
9.1.3 9.10b neghip 512× 512 yes 40-45
9.1.3 9.10c neghip 512× 512 yes 38-45
9.1.3 9.11a hydrogen-atom 1024× 1024 yes 38-45
9.1.3 9.11b hydrogen-atom 1024× 1024 yes 40-45
9.1.3 9.11c hydrogen-atom 1024× 1024 yes 38-45

9.1.4 9.13a orange 2048× 2048 no 50-60
9.1.4 9.13b orange 2048× 2048 no 40-45
9.1.4 9.15 orange 2048× 2048 no 25-35

Table 9.1: Performance, frames per second (FPS) on each use case example
at different resolutions. As a help to the reader, the section and figures are
referenced. Resolution indicates the ImageTextureAtlas size and Gradient if a
pre-computed surface normals ImageTextureAtlas has been used.

creation of the figures and performance tests, 120 steps have been set: each
ray is sampled 120 times at maximum in the ray-casting method. If the
ray comes out of the volume, or the ray sampling is early-terminated. By
default, the publicly released version of the volume rendering component
currently shipped in X3DOM is configured with 60 steps. The download
time of the datasets does not impact in the performance tests and they are
not included in the table.

9.2 Industrial use case: quality control inspection

This section showcases several rendering outcomes in an industrial use case:
the quality control of a plastic component acquired with an industrial X-ray
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microCT scanner. Results validate the benefits provided by the progressive
ray-casting approach described in Chapter 6. Performance measures with
the Firefox browser are also presented.

This section is structured as follows. Firstly, Section 9.2.1 presents the
component to be inspected and the initial exploration of the dataset. Sec-
tion 9.2.3 shows a segmented visualisation for the rendering of the air void
analysis. Finally, performance measures are detailed in Section 9.2.4.

9.2.1 Injection moulded plastic part dataset

The selected plastic part is a component used in the medical sector. In
particular, the scanned part was produced in a pre-production stage at the
initial quality control process for the calibration of the injection mould ma-
chine.

To assess the internal state of the manufactured component an industrial
Nikon X-ray microCT was used for the volume dataset generation. The
original dataset is composed of 1875 slices of 836 × 939 in 16-bit, with a
total size of 2.9 GB. To make this dataset suitable for visualization, firstly,
it was downscaled to 8bit (unsigned int) reducing its size to 1,6 GB. Then
a region of interest (ROI) was selected (no resolution reduction) obtaining
a 720 × 720 × 1770 dataset with a total size of 918 MB. Finally, to make
it compatible for the web, it was processed to compose both multi-channel
RGBA and RGB +A ImageTextureAtlases (see chapter 3). The generated
ImageTextureAtlases have a resolution size of 15840×15840 and downscaled
versions were also created for performance testing.

Figure 9.17 shows the initial rendering of the plastic component from
various camera positions.

Progressive rendering allows to effectively explore an navigate through
the data with sufficient detail within the web browser. The interaction
through the rendering process is never blocked or stalled, so the user can
interrupt the current render at any time to change the camera to the desired
direction or position.

Using the transfer function editor (see Section 7.4 in Chapter 7) the
user can modify the accumulation process of the ray-casting allowing the
exploration of the volumetric data. For instance, by changing the control
points to select a narrow range of values, the iso-values matching the surface
of the plastic component can be identified. This behaviour allows a semi-
transparent view of the surfaces. In this way, air void bubbles inside the
component can be visualised (see Figure 9.18).
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Figure 9.17: Progressive ray-casting of the selected plastic part 720× 720× 1770
using 6000 steps.

9.2.2 Air void segmentation

In some industry quality control systems, air voids detection is a critical
procedure to determine the quality of the inspected part since they are
considered defects. Air void segmentation is the only procedure that is
performed at the server side, because it requires a large amount of memory
capacity and compute time to process the high-resolution CT scans.

Air void defects are differentiated from the rest of the data by a seg-
mentation. Afterwards, the volume area of each labelled void is quantified.
Finally, a multi-channel ImageTextureAtlas is composed (see Chapter 3)
from the computed results.
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Figure 9.18: Progressive ray-casting of the selected plastic part 720× 720× 1770
using 6000 steps. In this case, the transfer function enhances the surface data.

In order to perform the segmentation for the plastic injection moulded
part, the Insight Segmentation and Registration Toolkit (ITK) (Johnson
et al., 2013) library has been used. First, for each volume slice of the dataset
the Otsu’s binary thresholding (itkOtsuThresholdingImageFilter) is applied
to segment the background from the plastic material. To achieve a better
background extraction, this thresholding operator is applied locally on each
slice, instead of globally to the whole volume. Then, all the binary segmented
slices are stacked to create a binarized 3D volume. To the final volume, a
binary fill holes filter (itkBinaryFillHolesImageFilter) is applied in order to
create a 3D mask of the plastic part.
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In order to label the multiple air voids in the dataset, the connected
components filter (itkConnectedComponentsImageFilter) is applied to the
segmented binary volume. From this last labelled volume, the background
region is discarded by applying the previously computed 3D mask of the
plastic part. Later, the spatial volume in voxels is computed for each air
void bubble (label) to measure the scale range and a value is assigned to
each label in function of its estimated volume size. Finally, the generated
3D labelled volume is sliced in Z axis direction and transformed into a multi-
channel ImageTextureAtlas (see Chapter 3) that will be transferred back to
the client device.

9.2.3 Air void analysis

The plastic component dataset has been processed through a segmentation
algorithm (see Section 9.2.2) to identify air voids inside the component. The
volume size of each air void is estimated counting the number of voxels and
in function of its size, a fixed value in the [0-255] range is assigned to each of
them. At the rendering stage, using another TF, this value is used to map
each air void to a colour value.

Figure 9.19 shows both volume and segmented data rendered together
in one visualisation from different camera view positions.

The segmented volume data also must be composed into a multi-channel
ImageTextureAtlas, similarly to the volume data. To assist in the assessment
of the air void distribution, in the ray-casting algorithm both the volume
data and the segmented data are sampled and mixed together. Figure 9.19
shows some air voids, located in the top side of the component. Conse-
quently, it demonstrates that the mould injection machine requires adjust-
ments.

9.2.4 Performance

The performance results for the proposed progressive ray-casting volume
rendering algorithm have been measured using a desktop PC with the fol-
lowing specifications: Intel i5-6500 CPU, 8GB RAM and a NVIDIA GTX
960 graphics card. This graphics card supports up to 16384 × 16384 2D
texture size. The selected web browser: Mozilla Firefox 61 was used un-
der Windows 10 OS. Table 9.2 summarizes the performed measurements,
with the total time (T. time) for the completion of the progressive rendering
after each user interaction under different ImageTextureAtlas sizes. These
times are the average of 5 random camera movements and match to the
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Figure 9.19: Progressive segmented ray-casting visualisation of the selected plas-
tic part 720× 720× 1770 using 6000 steps.
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visualizations of the presented figures in this section.

Figure Atlas size Seg. atlas Atlas type T. steps T. time (s)

9.17 4096× 4096 no RGBA 6000 1,14
9.17 4096× 4096 no RGB+A 6000 1,05

9.17 8192× 8192 no RGBA 6000 1,28
9.17 8192× 8192 no RGB+A 6000 1,20

9.17 15840× 15840 no RGBA 6000 7,51
9.17 15840× 15840 no RGB+A 6000 8,21

9.18 4096× 4096 no RGBA 6000 1,25
9.18 4096× 4096 no RGB+A 6000 1,16

9.18 8192× 8192 no RGBA 6000 1,47
9.18 8192× 8192 no RGB+A 6000 1,39

9.18 15840× 15840 no RGBA 6000 12,76
9.18 15840× 15840 no RGB+A 6000 12,25

9.19 4096× 4096 yes RGBA 6000 3,27
9.19 8192× 8192 yes RGBA 6000 8,87
9.19 15840× 15840 yes RGBA 6000 9,9

Table 9.2: Total rendering completion times for the progressive approach under
the presented figure cases and different atlas sizes.

ImageTextureAtlases of 8192× 8192 resolution fit in dedicated memory,
so the rendered is completed in less than 2 seconds. For ImageTextureAtlases
of 15840 × 15840 the NVIDIA GTX 960 graphics card uses a combination
of shared and dedicated memory, so the rendering times are considerably
larger. In the desktop computer described in the performance tests, results
indicate that total completion time for the progressive rendering withRGBA
or RGB + A ImageTextureAtlases are roughly the same, with non-clear
distinction from one over the other.

Additional tests where performed on two mobile devices: Xiaomi Mi5s
(smartphone) and a Xiaomi MiPad (tablet). On both devices the total
completion times where between 3-5 seconds for a 4096× 4096 texture size
and 6000 steps. However, for these devices, the RGB + A texture type is
always slightly faster than the RGBA atlas. On these devices the memory
access is more critical and the additional texture sampling required in the
last colour channel (alpha) penalizes the performance to some degree.
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9.3 Time-varying data use case: 4D volume visu-
alization

This section showcases the potential of the web compatible ImageTextureAt-
las data structure presented in Chapter 3. In combination with the X3DOM
volume rendering component in Chapter 4, it can be used to create a 4D
volume rendering visualization.

There are a number of use cases where the volume data evolves over
time. For example, in the medical field: 4D CT scanning (Pan et al., 2004)
and 4D MRI capture are already possible (Stankovic et al., 2014). In the
geosciences field, data which evolves over a large period of time is also of
interest of study (Ho and Jern, 2008). With 4D volume rendering (Dani Tost,
2006). is possible to recreate the 3D data movement (variation) over time
and visualise it in real-time.

Using the proposed ImageTextureAtlas and the HTML5 capabilities of
current modern browsers, 4D visualizations can be rendered in the web
browser (see Section 3.2.4 in Chapter 3). To validate this approach, two
time-varying use cases have been selected. Section 9.3.1 presents the volume
rendering of a heart in motion.

9.3.1 AGECANONIX dataset: heart beat visualization

OsiriX is a DICOM viewer software with volume rendering support for the
MacOS platform and it has a public repository with datasets for research
purposes. The AGECANONIX dataset (OsiriX, 2018) is available from this
repository. This dataset is originated from a cardiac and coronary study
and it includes a 4D CT acquisition from a series of 3D dynamic scans in 10
phases. Figure 9.20 shows data slices of the same spatial location evolving
over time.

This approach exploits the native video reproduction and 2D canvas
API features of HTML5 modern browsers. Figure 9.21 summarizes the ar-
chitecture. To create a web compatible 4D volumetric data structure, the
AGECANONIX dataset is converted into an ImageTextureAtlas video. First, a
window level has been selected for the DICOM data and converted into a
series of 8-bit images. For each time frame, the set of slices of a 3D scan are
converted into an ImageTextureAtlas. As a result, a series of ImageTexture-
Atlases are generated, one for each acquired time step. All the ImageTex-
tureAtlases are added sequentially as frames of a video. This process has
been performed offline with open source tools and it can be automatized in
the server side.
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(a) Frame 10% (b) Frame 30% (c) Frame 50%

Figure 9.20: AGECANONIX dataset (512× 512× 35). Different frames of the same
position (slice) in Z axis: 17.

Figure 9.21: Scheme of the proposed architecture for a 4D volumetric visualiza-
tion with the AGECANONIX dataset.

When all the atlases are converted and encoded into a video, this resource
is sent to the client device and played in a loop within the browser context.
However, it is important to remark that the video will be hidden to the user
and playing in the background.

While the ImageTextureAtlas video is being reproduced in the back-
ground, the content of each frame is uploaded to the GPU periodically.
Figure 9.22 shows a series of sequential renders at different time steps with
the same camera position to show the evolution of the visualization over
time. This approach allows the web based real-time 4D volume rendering
visualisation of the heart beat motion (AGECANONIX ).
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(a) Time 0.0s (b) Time 0.2s

(c) Time 0.4s (d) Time 0.6s

(e) Time 0.8s (f) Time 1.0s

Figure 9.22: Evolution of the AGECANONIX dataset (heart motion) at different
frames during a period of one second.
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9.4 Medical use case: Mirror4all

This section presents a web-based application designed for the medical do-
main. The Mirror4all (Kabongo and Arbelaiz, 2018a) web application is
intended to be used by the general public (non-experts on the field). This
web application is an ubiquitous web-based DICOM volumetric data visu-
alisation viewer.

The target user of this application already has in his possession (on
his device) a series of DICOM files to be visualised. With Mirror4all the
user only requires to navigate to the application URL using a browser and
drag and drop the DICOM files into the application. All the components
of the application run on the client side (the user device). Therefore, no
patient data is transferred to any web server. This approach allows to ensure
data privacy and reduce the effort required to create secure communication
channels between a client device and the application server.

Mirror4all showcases the combination of previously presented compo-
nents into a single application. It is built based on contributions presented
in Chapter 4 and Chapter 7. This application is publicly available in GitHub,
as an open source project (Kabongo and Arbelaiz, 2018b). Content devel-
opers can take this application as an example to build their own custom
solution.

Once the user enters in the application landing page, the first step is
to drag the DICOM files and drop them into the designated area. The
application also offers an alternative UI element: a button that opens a file
explorer window to select the DICOM files. Figure 9.23 shows the landing
page for the drag and drop step.

Once the DICOM files have been loaded the dataset information is dis-
played. The Cornerstone (Cornerstone, 2016) library is used to parse DI-
COM data to generate the ImageTextureAtlas required by the volume ren-
dering component (see Section 7.1.1 at Chapter 7). Figure 9.24 shows an
example of parsed DICOM metadata from the INCISIX dataset (OsiriX,
2018). If it has been parsed correctly the user can proceed to the volume
visualization.

The rendering of the volumetric data is performed using the X3DOM
volume rendering component (see Chapter 4) where the OpacityMapVol-
umeStyle is used to illustrate the volume with a transfer function. Some UI
elements and visual clues have been added to help the users to interact with
the volumetric rendering: Window Level modification and an interactive
transfer function editor.

Several DICOM files have been tested successfully. They were acquired
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Figure 9.23: Drag and Drop user interface to upload the DICOM files in the
Mirror4all application.

Figure 9.24: User interface of the parsed DICOM datasets in Mirror4all.

with different technologies (CT, MRI) of different manufacturers (vendors).
DICOM parsing is implemented with the Cornerstone library (Cornerstone,
2016) and it and it should be considered a work in progress as it does not
support all the features. However, DICOM parsing is out of the scope of
this thesis.

This application has been used as an example of X3D capabilities pro-
moted by the X3D medical working group and it has been showcased in the
Web3D forums by members of the Web3D Consortium.
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Figure 9.25: Volumetric visualisation of the uploaded DICOM data with the
MAGIX dataset in the Mirror4all application.

9.5 Virtual Reality use case: WebVR application

The creation of new VR oriented content with the WebVR (WebVR, 2016)
framework is simplified to the extent that only the knowledge of HTML,
JavaScript, CSS and related web technologies are required to develop VR
experiences. But even with this simplicity, teachers, researchers and other
non-technological-aware target groups are not prepared for such a task.

To address this issue, the volume rendering component presented in
Chapter 4 can be used. The declarative nature of X3D scene suits bet-
ter for most of the people who want to deploy VR experiences but lack
the technological capabilities of doing everything by themselves. This sec-
tion showcase a WebVR application prototype that combines the medical
oriented features implemented in Chapter 7 and the volume rendering com-
ponent released under the X3DOM framework in Chapter 4.

The preliminary prototypes have been tested with the Oculus Rift DK2,
under Windows 10, with the 1.5 and 1.6 runtimes. A developer build of
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the Chrome browser with WebVR support (Chrome, 2016) has been used
to test the VR developments.

Once the setup is running and a X3D volume rendering scene is declared,
loading a VR experience is as easy as loading a URL. Then, the VR experi-
ence is started by clicking in a Enter VR button or the white goggles icon,
(see Figure 9.26).

One of the key elements in the success of the VR is to control how the
VR experiences are perceived by the users. In this regard, the transitions
from non-VR to VR and backwards should be controlled. In addition to
this, any sudden change in the scene should be carefully treated to avoid
intrusive pop-up effect in the user field of view.

In the developed prototypes, DICOM files (through Cornerstone Java-
Script library) are loaded asynchronously, i.e, each slice of the volumetric
dataset is retrieved as soon as it is loaded by the library. Therefore, initially
the 3D scene could be empty, which is something to avoid in order to reduce
stress to the users: being floating in empty space is against the most basic
ergonomic rules regarding VR (Rebenitsch, 2015).

To solve this potential situation, the empty 3D cube where the volume
will be loaded is surrounded with a 3D wireframe with coloured solid spheres
in the corners of the cube (see Figure 9.26). This solution offers two benefits:
i) the scene is not empty while the dataset is being loaded and ii) the
coloured spheres give visual clues of the orientation of the scene that can be
used in case the users got lost. This 3D visual clue has been proved very
helpful in VR environment, but also in non-VR setups.

The HMD’s like Oculus Rift are more focused in immersive environments
where the user is transported to a virtual world that can be navigated and
explored in first person. In this volume visualisation use case, the typical
navigation and exploration of the volumetric dataset is more compatible
with the orbit navigation style, which conflicts somehow with the nature of
the VR. The reader is referred to this collection of publications (Christie
and Olivier, 2009) to get an insight of the different camera styles in virtual
environments.

To cope with this situation, the VR interaction capabilities were mapped
to the actions that should be carried out when the volumetric datasets are
being displayed:

• Mouse: Typically in VR, the mouse rotates the user in the world.
In this case, the mouse rotates the 3D volumetric dataset around its
center, like in the orbit navigation style.
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(a) Firefox browser

(b) Chrome browser

Figure 9.26: Web based volume rendering in a VR scene with WebVR. Using
the INCISIX dataset from the OsiriX repository (OsiriX, 2018), left and right
eye images. a) inspection from a far point of view. b) visualisation from a closer
point of view. The wireframe cube and the solid coloured spheres help the users
to know their location at any time.
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• Arrow Keys: Typically in VR, the keys allow to move freely in the
virtual scene (in walking or flying mode). In this case, the keys have
been disabled. In order to get closer to the volume or to inspect it
from the inside, the wheel mouse is used to zoom into the scene.

• Head tracking: The modern HMD’s provide information about where
the user is looking at. This functionality was kept as it would be very
intrusive to remove it.

• Information display: In VR mode all UI elements were removed (TF
editor, window level management...) in order to provide a clean VR
experience. Only the Exit VR button is present. In preliminary tests
another button was added to reset the viewpoint in case the user got
lost, but ultimately, it was discarded. It was easier for the user to get
out VR mode in that extreme case.

The resulting VR experience allows viewers to inspect the volumetric
dataset from any point in an easy and straightforward manner. The devel-
oped prototypes has introduced preliminary efforts to bring VR visualisation
on the Web browser by using a combination of open web technologies (We-
bGL and WebVR) and the contributions presented in previous chapters.
DICOM datasets are supported through the Cornerstone JavaScript library
(see Chapter 7) in combination with the X3DOM volume rendering nodes
presented in Chapter 4 to render the volumetric data.

Preliminary research activities have dealt with situations regarding the
VR environments in the web platform and the transitions among them. The
carried out tests show that there is room to improve the Human-Computer
Interaction within the web environment and the current and recently models
added to the collection of HMD devices: Oculus Rift, HTC Vive, Microsoft
Hololens, Samsung GearVR, PlayStation VR, Google Cardboard and Day-
dream, etc.

The presented mixture of web technologies provide a real ecosystem that
can facilitate the deployment of VR experiences of volumetric datasets for
experts in their corresponding fields. They do not need to know about the
visualization techniques that create the virtual experience.

9.6 Web3D community applications

This sections presents works from other authors that have taken the publicly
available X3DOM volume rendering component (see Chapter 4) as a base
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Figure 9.27: Zebrafish Brain Browser (Hurt et al., 2018) after selecting some Cre
lines.

to create new web based application that require volumetric visualization.
The following research works and applications demonstrate the utility and
impact of the contribution of this thesis towards an ubiquitous approach to
volume rendering. Some of the following research projects have extended
the volume rendering component to cope with visualisation and interaction
requirements on their targeted field.

9.6.1 Zebrafish brain browser

To explain and deduce the functional circuitry of the brain, visualisation of
neuronal cells and record activity from identified neurons is a key process.
Tabor et al. (2018) have created a zebra fish brain browser visualization
interface. The online brain browser includes features for 3D spatial search,
prediction of the area of intersectional expression between selected lines,
MIP projection and information about the neuroanatomical identity to any
selected voxel. It facilitates the reproducible targeting of neuronal subsets
for circuit-mapping studies. Figure 9.27 shows their web browser application
(Hurt et al., 2018) publicly available for general use.
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Figure 9.28: X3DOM example of weather radar volume visualisation with the
RadarVolumeStyle (Yang et al., 2018).

9.6.2 Weather radar data visualization

Yang et al. (2015) presented a texture data compression technique for ef-
ficient transmission of volumetric weather radar data. They combine the
S3TC compression method encoding the volume data in the RGBA chan-
nels of an image followed by DEFLATE compression. They also extended
the X3DOM volume rendering component with a new rendering style to
specifically visualise the volumetric weather data. Figure 9.28 shows their
public example where a volumetric weather radar dataset can be inspected.

9.6.3 Virtual Natural History Museum

The Virtual Natural History Museum (VNHM) (Hofmann, 2018) is an online
virtual museum created by Michael Hofmann. It is a work in progress that
contains a large catalogue of CT scans of vertebrates, primarily composed of
fishes. These are freely available for the scientific community. Currently the
catalogue is composed of 5902 CT-scans. The website allows the volumetric
visualization, maximum intensity projection and iso-surface visualisation of
the CT scans. Figure 9.29 shows an example of maximum intensity projec-
tion rendering of the Pristiapogon fraenatus.
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Figure 9.29: MIP volume visualisation of the Pristiapogon fraenatus in the
VNHM website (Hofmann, 2018).
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Conclusions

This thesis concludes summarizing the contributions presented in the pre-
vious chapters. Section 10.1 enumerates the contributions and Section 10.2
describes them in more detail. Finally, the future work is discussed in Sec-
tion 10.3.

10.1 Summary of contributions

Previous chapters have contributed to the state of art in WebGL-based
volume rendering. This results make possible an ubiquitous volume data
rendering. The following items outline these contributions:

i) The extensions to the ImageTextureAtlas web compatible structure (see
Chapter 3) have improved previous approaches in various aspects.

ii) The X3D volume rendering component (see Chapter 4) allows content
developers to easily declare and generate volume visualizations within
web pages.

iii) The hybrid volume rendering algorithm (see Chapter 5) solves the prob-
lems raised by the simultaneous visualization of volumetric and surface
data.

iv) The progressive volume rendering algorithm (see Chapter 6) enables
the interactive high-quality rendering of large volume datasets.

v) Reusable components have been designed and variations of the ren-
dering algorithms have been proposed to solve some problems in the
visualization of medical datasets (see Chapter 7).
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vi) New extensions have been drafted to improve the current features of
X3D standard (see Chapter 8).

These contributions have been validated in Chapter 9 under different
domains. Showcased applications and use cases demonstrate the potential
of these contributions to create new web based applications that can make
use of volume visualization. Furthermore, the work of this thesis has already
been used by other authors to contribute to the state of the art (Yang et al.,
2015; Tabor et al., 2018).

10.2 Description of contributions

This section describes in more detail the scope of the contributions enumer-
ated in Section 10.1.

10.2.1 ImageTextureAtlas – Web compatible volumetric tex-
ture

As stated in Chapter 1, WebGL is the graphics API to target for ubiquitous
volume rendering. Unfortunately, the WebGL 1.0 API does not support the
basic input data structure required for volume rendering: 3D textures. The
ImageTextureAtlas enables to store the volume data to be used with volume
ray-casting in all compatible WebGL devices (see Chapter 3).

The contributions to the ImageTextureAtlas are the following ones:

i) This work validates the ImageTextureAtlas as a mean to provide pre-
computed gradient data to compute non-photorealistic renderings and
local-illumination (see Chapter 3).

ii) It has been proved the compatibility of the ImageTextureAtlas structure
with web standards that allow the dynamic composition of the structure
based in DICOM data (see Chapter 7). This process is performed in
the client device (web browser). Thus, the privacy of the patients data
is maintained.

iii) It has been proven the use of this data structure to create 4D interactive
volume rendering visualizations in the Web browser (see Section 9.3.1
and Chapter 3).

iv) A novel multi-channel order composition has been proposed to accom-
modate larger datasets and to improve the sampling performance of the
ImageTextureAtlas (see Chapter 3).
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10.2.2 Automatic shader composition and generation

Each field requires modifications in the algorithms to enhance the charac-
teristics of the volume data in the visualisation step in a different manner.
Hardware acceleration (GPU) is required to achieve an interactive expe-
rience. Consequently, not only substantial expertise in volume rendering
algorithms is required, but also skills in GPU programming are required.

This obstacle should be removed: content developers work must be freed
from these difficult challenges. They do not need to have advanced skills
or expertise in the computer graphics domain. The declarative solution
solves this problem by providing a set of composable X3D nodes that can
be applied in multiple fields (see Chapter 4).

The nodes in the volume rendering component automatically compose
the required GPU shader programs required by the compound of render-
ing styles requested by the content developer, transparently to the user.
The declarative approach makes easier to learn how to define a volumetric
scene and the provided framework solves the technical constraints needed to
achieve a real-time rendering.

The approach of the presented component is well suited for the Web in
terms of scalability, because the rendering computation is made on the client
device. Other solutions that use servers for the rendering computation could
have a potential scalability problem when the number of simultaneous users
increases.

From the point of view of web content developers, this contribution em-
powers them providing the following simple tasks to make use of the wide
range of solutions that Chapter 9 shows. Firstly, web content develop-
ers must store the volume data on a web repository. Afterwards, a web
document is created which references to the X3DOM framework and the
presented volume rendering component in Chapter 4. The document only
includes the declared X3D scene using HTML markup language. Web con-
tent developers that are familiar with the X3D standard specification can
integrate a volume rendering canvas within a web page.

In a nutshell, the component developed in this thesis makes it easier
to create volumetric content for developers without specific knowledge on
computer graphics rendering. The required GPU shaders are generated
under the hood.

Overall, it can be asserted that the results achieved in this research work
are valid to be used in consumer oriented desktop computers with domestic
PC graphics cards. Chapter 9 validates the use of the presented compo-
nent under several domains and Table 10.1 summarizes the advantages and



154 Chapter 10. Conclusions

disadvantages of this web based methodology.

X3D scenes can be easily exchanged between applications and users. Ad-
ditionally, the X3DOM framework and the volume rendering component are
publicly available for all compatible WebGL devices, providing an ubiqui-
tous solution to share volume rendering content. The interactivity rate of
the visualisation is only limited by the GPU computational power of the
targeted device.

Web based approach Desktop based approaches

Datasets up to 512× 512× 512 at
interactive rates

Larger volume datasets

GPU restrictions through WebGL No GPU API restrictions
Seamless integration with the Web Desktop oriented applications
No need for software installation Software installation required

One deployment for multiple platforms
Applications targeted only to the
desktop platform

Declarative scene and style composition
Programming skills required to deploy
an application

Easy sharing of scenes and volume
data across devices (URL’s)

Sharing is complex: requires transferring
local volume data and the
installation of an application

Table 10.1: Summary of the key advantages and disadvantages of the proposed
web based approach against desktop based approaches.

10.2.3 Hybrid volume rendering

There are cases in which polygonal meshes are needed to be rendered with
volumetric data at the same time and in the same virtual scene, for example
in a surgical simulation or cases like in engineering simulation where the ad-
dition of polygonal meshes provide semantic information to the scene. Chap-
ter 5 presents and validates how the proposed algorithm solves the problem
of hybrid volume rendering: scenes that mix volume data and polygonal
models.

10.2.4 Progressive volume rendering

The quality of the rendered image is dependant on the discretization level of
the rendering integral (see Equation 2.1 in Chapter 2) and the properties of
the volume dataset. The volume rendering integral assumes that the volume
data is a continuous signal. Therefore the resolution accuracy when sampling



10.2. Description of contributions 155

values in the volume data determines the output resolution. Additionally,
the step size used for the discretization of the integral (numerical approxi-
mation) will determine the correctness of the computed radiance solution:
larger datasets imply that the distance traversed by the ray is larger and
consequently, the number of steps (number of samples along the ray) must
be increased to correctly approximate the radiance value. The presented
progressive volume rendering algorithm solves the challenge of computing
such large number of steps, while maintaining interaction with the visual-
ization. It allows to compute a very high number of steps by dividing the
computation load into subsequent frames.

10.2.5 Medical volume data visualization

The medical domain requires more advanced functionalities that comple-
ment volume rendering to create useful visualization tools for practitioners.
Among them, this thesis has contributed in the following (see Chapters 7
and 9).

1. The visualization of DICOM volume data (medical de-facto file for-
mat) within the web browser context has been demonstrated using
the proposed volume rendering component.

2. An approach for the volume rendering of segmented data has been
presented and validated.

3. The single-pass ray-casting algorithm has been extended to support
the inside exploration of the volume data.

4. A reusable component has been created to facilitate the transfer func-
tion creation and edition in combination with the presented volume
rendering component. The component allows the user to illustrate
and explore the volume data in real-time within the web page.

5. The experience to create an immersive virtual reality volume visual-
ization with WebVR has been presented.

The components and approaches presented in Chapter 7 show a possi-
ble solution that developers can use to build applications and web based
visualizations in an easy way (declarative HTML5) taking as base the other
contributions presented in this thesis, such as the X3DOM volume rendering
component and the ImageTextureAtlas.
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10.2.6 Extension proposals for the X3D standard

In the first phase of this thesis work, the X3D standard was taken as a foun-
dation stone. The thesis contributes with a web based volume rendering
component in the X3DOM framework. This component has been publicly
available for the Web3D community. Being X3DOM an open source project,
the volume rendering component has received feedback from content devel-
opers.

Taking into account the community feedback and the research work per-
formed during this thesis, an X3D extension proposal has been applied. This
proposal contributes to the X3D specification with new features to better
cope with the Web platform ecosystem and to enable ubiquitous access for
volume rendering.

This thesis wants to contribute to the X3D standard. In order to achieve
this milestone several steps were identified.

1. Define the extensions specification as required by X3D submission guide-
lines.

2. Demonstrate that the proposed approach can be used in several platforms
using the presented extensions.

3. Demonstrate that any 3D volume rendering application can be easily
constructed using the proposed solutions.

4. Obtain approval from the X3D and scientific community and the Web3D
Consortium.

5. Perform an official final proposal for the inclusion of the extensions to
the X3D standard.

In Chapters 3, 4, 8 and 9, the steps 1 to 3 have been completed and
validated. Step 4 has been already started through a research publication
(Arbelaiz et al., 2017b), as well as with the presentation of the proposed
extensions (see Chapter 8) in the X3D Medical Working Group of the Web3D
Consortium. Future work will be focused on completing step 5.

10.3 Future work

The presented contributions have demonstrated the viability of the web
platform for the visualization of volumetric data. However, there is still,
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a gap to reach the photorealistic renderings that are achievable in other
platforms.

There are still improvements that could be applied to the proposed al-
gorithms with techniques such a pre-integration that have not been applied
in WebGL yet and could potentially have a positive impact in performance
and in the rendering quality.

The web platform is evolving in a fast pace and new technologies will
make possible a better use of the underlying hardware. The WebGL 2.0
API, although is not ready as an ubiquitous enabler technology, is a good
candidate to study the out-of-core rendering of volumetric content. Further
research could be dedicated to improve the streaming of volume datasets
and rendering of volume data over the Web.

In the long run, the WebGPU API postulates as a disruptive standard
that could be the key enabler technology which allows to make use of the
same hardware capabilities as desktop APIs, but in the browser. This could
lead to the research of new rendering techniques that are not possible now
with the current technologies.

In the short run, future work will be directed towards pushing the stan-
dardization of X3D extension proposals presented in this thesis.
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volume rendering component for web content developers. Multime-
dia Tools and Applications, pages 1–30, 2016b. ISSN 1573-7721.
doi: 10.1007/s11042-016-3743-1. URL http://dx.doi.org/10.1007/

s11042-016-3743-1.

A. Arbelaiz, A. Moreno, L. Kabongo, and A. Garćıa-Alonso. Volume Vi-
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