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Analog simulator of integro-
differential equations with classical 
memristors
G. Alvarado Barrios   1,2,3, J. C. Retamal1,2, E. Solano   3,4,5 & M. Sanz4

An analog computer makes use of continuously changeable quantities of a system, such as its 
electrical, mechanical, or hydraulic properties, to solve a given problem. While these devices are usually 
computationally more powerful than their digital counterparts, they suffer from analog noise which 
does not allow for error control. We will focus on analog computers based on active electrical networks 
comprised of resistors, capacitors, and operational amplifiers which are capable of simulating any 
linear ordinary differential equation. However, the class of nonlinear dynamics they can solve is limited. 
In this work, by adding memristors to the electrical network, we show that the analog computer can 
simulate a large variety of linear and nonlinear integro-differential equations by carefully choosing 
the conductance and the dynamics of the memristor state variable. We study the performance of 
these analog computers by simulating integro-differential models related to fluid dynamics, nonlinear 
Volterra equations for population growth, and quantum models describing non-Markovian memory 
effects, among others. Finally, we perform stability tests by considering imperfect analog components, 
obtaining robust solutions with up to 13% relative error for relevant timescales.

Analog computers employ continuously tunable quantities of a system, such as its electrical, mechanical, or 
hydraulic properties, to codify and solve a given problem. Usually, the dynamics of an analog computer perfectly 
matches the dynamics of the simulated system. The advantage of analog computers lies on the computational 
power provided by real-time operation and complete parallelism, so that they require less resources than a digital 
counterpart for the simulation. On the other hand, the accuracy of an analog computer is limited by its comput-
ing elements and by the quality of its analog components. Despite the astonishing evolution of digital computers 
during the last decades, the interest in analog computers has re-emerged in recent years1. For example, posible 
applications as math co-processors in VLSI architectures2,3, and wave-based analog computation in metamaterials 
have recently been proposed4–6.

An electrical analog computer is an active network composed of electrical elements, namely, resistors, capac-
itors and operational amplifiers which, connected together, are capable of simulating any set of linear ordinary 
differential equations7. In this case, the solutions of these equations are encoded into the time evolution of the 
voltage waveform produced by the analog computer. Indeed, electrical analog devices can only work with a single 
independent variable when codified in time8,9. Nonetheless, by making use of finite-difference methods, it is also 
possible to solve partial differential equations7,10.

Resistive memory effects, in which the resistance depends on the history of charges crossing through a mate-
rial, can be described by Kubo’s response theory11, and have been observed as resistance switching phenomena in 
thin films12,13. The connection between resistance switching devices and memristive devices14,15 was first made in 
2008 by HP Labs16. Afterwards, various other physical implementations of memristors have been reported17–20. 
The memory and non-volatility properties of the memristor21 have sparked great interest in its applications in the 
fabrication of digital memories22, performance of computational tasks23–27 and recently, in the design of a percep-
tron28, which motivates the possibility of building memristor-based hardware for a physical neural network and 
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proved their universality as approximators. While most of the interest in memristors lies in applications in digital 
computation, there have also been proposals of utilization of memristors in programmable analog components 
of electrical networks29 and in the design of highly efficient operational amplifiers30. Regarding the solution of 
differential equations, memristor arrays have been employed as accelerators for digital solvers31,32 and, recently, a 
digital approach based on memristor crossbar arrays have been employed to solve partial differential equations33 
with high precision. Nonetheless, a natural question is whether the characteristic properties of memristors could 
extend the applications of electrical analog computers.

In this work, by adding classical memristors to the network of an electrical analog computer, we show that 
it can simulate a large variety of linear and nonlinear integro-differential equations with interest in mathemat-
ics and physics. This is possible by appropriately choosing the conductance of the memristors and the dynam-
ics of its state variable. We study the performance of these analog computers by simulating integro-differential 
models of fluid dynamics, nonlinear Volterra equations for population growth, and quantum models describing 
non-Markovian memory effects, among others. Finally, by considering 10% error in the analog components, we 
perform stability tests of the dynamics, showing the robustness of the simulations with up to 13% error for rele-
vant timescales. It is noteworthy to mention that the operation conditions of an off-the-shelf memristor fit those 
of usual circuit toolboxes.

Electric Analog Computer
To simulate a linear ordinary differential equation, the analog computer only requires the following operations: 
(i) summation, (ii) sign inversion, (iii) integration and (iv) multiplication by a constant.

We will describe briefly the implementation of the aforementioned operations for the analog computer. First, 
let us consider the summation and sign inversion operations, which are performed by an adder circuit whose 
transfer characteristics for n inputs are given by

∑= −V K V ,
(1)i

n

i
i

out in

where Vout is the output voltage and Ki = Rf/Ri. The symbolic representation and equivalent circuit of the adder is 
shown in Fig. 1(a). Sign inversion can be implemented by an adder with a single input with K1 = 1. Next, integra-
tion, is meant to be the most important operation in an analog computer. It can be implemented by an integrator 
circuit, whose transfer characteristics for n inputs are given by

∫ ∑
τ

τ= − +V t
C

V
R

d IC( ) 1 ( ) ,
(2)

t

i

i

i
out

0
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where the constant IC stands for the initial condition. The symbolic representation and equivalent circuit of the 
integrator is shown in Fig. 1(b). For the adder and integrator circuits, we consider ideal operational amplifiers.

The last linear operation, multiplication by a constant, can be implemented with a potentiometer, which is 
described by

α=V V , (3)out in

where α < 1 is a constant that characterizes the device.
In addition, analog computers can also simulate nonlinear dynamics to some extent, by considering signal 

generators and function multipliers, which enable the mathematical multiplication of two signals.
We will consider a simple example to illustrate the configuration of an analog computer for the simulation 

of a linear ordinary differential equation. Let us consider the following second-order linear differential equation

= − + .̈y t y t y t( ) ( ) ( ) (4)

This equation is written in this form to remark that ̈y can be obtained as the sum of − y and y, which are 
obtained from integrating ̈y once and twice, respectively. The computer diagram that implements Eq. (4) is shown 
in Fig. 1(c). Therefore, we see that integrator circuits enable the solution of ordinary differential equations by 
making use of feedback connections, which make the input and output voltage in Eq. (2) to be equal. In addition, 
several integrators connected in series stand for subsequent integrations of the desired variable. In this way, the 
simulation of a linear differential equation of order n would require n integrators.

This method can be extended to a system of m linear ordinary differential equations of order n, which can be 
written as

∑ ∑ = .
= =



a
d y t

dt

( )
0

(5)

m

k

n

k

k

k
1 0

,

( )

The simulation of such a system requires nm integrators, and since the summation can be absorbed into the 
integrators, it requires at most nm

2
 sign inverters.

It is important to note that, in order to solve a differential equation with an analog computer, it is not necessary 
to know the voltage waveform at any point of the electrical network, provided that the circuit was properly con-
structed, the desired solution is obtained by measuring the voltage signal at the output of the circuit. We remark 
that analog computers are best suited for solving systems of ordinary differential equations, and aditionally, it is 
possible to use them to solve partial differential equations by making use of finite differences approximations7. 
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Since analog computers are better suited to solve time-dependent problems, the non-temporal variable is discre-
tized to obtain a system of nonlinear ordinary differential equations for the time variable.

Memristive Analog Computation
A voltage-controlled memristor can be described by the following current-voltage relation14

ω=i g v( ) , (6)

ω =


f v( ), (7)

where i(t) and v(t) are the current and voltage across the device, respectively. The quantity ω is an internal state 
variable specified by the physical implementation of the memristor. For ideal voltage-controlled memristors the 
state variable corresponds to the magnetic flux φ, which means f(v) = v. The quantity g(ω) is the so-called mem-
ductance which has units of conductance and is a function of the state variable. Since the memristor is a passive 
circuit element, the memductance g(ω) must always be positive.

The notion of memristive behavior can be extended to a broader class of system whose characteristics resem-
ble those of the memristor, and are called memristive systems15. These are defined by

ω=i g v t v( , , ) , (8)

ω ω= .


v tf( , , ) (9)

Where in general, ω represents a set of n state variables, and f and g are continuous functions.
Now, to study the inclusion of memristive devices into an analog computer we will consider the case of an 

integrator circuit with a single input, where we substitute the resistor for a memristor, as is shown in Fig. 2. We 

Figure 1.  Symbolic representation and corresponding circuit of the computing elements of an analog computer. 
(a) Adder for n inputs. (b) Integrator for n inputs. After the initial charge of the capacitor, which is used to set 
the initial conditions, that part of the circuit is switched off from the rest. (c) Circuit diagram for the simulation 
of the second-order linear ordinary differential equation of Eq. (4).
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will consider that the memristor has a single state variable ω. In the figure, the current across the memristor, iM, is 
given by Eq. (8). Then, by Kirchhoff ’s law at node A, we have

=i i , (10)M C

ω = − .g v t v Cdv
dt

( , , ) (11)

Integrating Eq. (9) allows to write Eq. (11) as

∫ ω τ τ= −






v t

C
g f v d v t t v t( ) 1 ( , , ) , ( ), ( ),

(12)

t

0

which in general will be a nonlinear integro-differential equation that will be specified by g and f, which describe 
the memductance and the memristor state variable dynamics, respectively. It must be noticed that these functions 
are specified by memristor engineering.

We now show the type of equations that can be solved using this circuit. Let us consider the equation that 
Volterra introduced for single populations in the study of growth of biological populations34,

∫=






− − −






∈ +
N t N t a bN t k t s N s ds t R( ) ( ) ( ) ( ) ( ) , ,

(13)

t

0

in which N(t) is the population size at time t, a and b are positive rate constants, and k(t) is the “hereditary” 
influence.

Now, in order to simulate this equation, we consider a memristive system as described by Eqs (8) and (9). By 
assuming g(ω, v, t) = −a + bv + k1(t)ω and ω =


k t v( )2 , then, substituting into Eq. (12) we have

∫ τ τ τ=


 − −



v t a bv t k t v d v t( ) ( ) ( , ) ( ) ( ),

(14)

t

0

where we have chosen C = 1 and k(t, τ) = k1(t)k2(τ). This is restricted, however, to kernels that can be separated in 
this way, otherwise it is only possible to simulate single-variable kernels. This equation can be implemented with 
a single integrator and memristor as shown in Fig. 2.

By connecting integrator circuits in series, we can generate nonlinear integro-differential equations of 
higher-order. For example, if we consider n integrators in series, where only the first integrator circuit contains a 
memristor, then we can generate the nth-order integro-differential equation

∫ ω τ τ= −






 .

d v
dt C

g f v d v t t v t1 ( , , ) , ( ), ( )
(15)

n

n

t( )

( ) 0

On the other hand, if each of the n integrators contains a memristor, then the nth-order integro-differential 
equation will involve the composition of n memductance functions g1, …, gn corresponding to each memristor. 
The resulting equation can be written as follows

∫ ω τ τ= −









…







…










.−
d v
dt C

g g g f v d v t t v t1 ( , , ) , ( ), ( )
(16)

n

n n n

t( )

( ) 1 1 0

This allows for the simulation of a wide class of nonlinear integro-differential equation.
It is also possible to solve first-order linear integro-differential equations with a suitable change of variables. If 

we consider Eq. (12) and define the memristor by g(ω, v, t) = −ω and ω =


k t v( )ln( ), we obtain

Figure 2.  Integrator circuit in which we have replaced the resistor for a memristor. After the initial charge of 
the capacitor, the part denoted by IC is switched off from the rest of the circuit.
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∫=

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
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
 .v t

C
k s v s ds v t( ) 1 ( )ln( ( )) ( )

(17)

t

0

Then, with u = ln(v), we have

∫=






.u t

C
k s u s ds( ) 1 ( ) ( )

(18)

t

0

Notice that we can avoid the sign inversion of the integrand by normalizing the voltage such that 0 ≤ v ≤ 1. In 
this way, it is possible to simulate several linear integro-differential equations coming from quantum models. An 
example of this is a Volterra equation describing non-Markovian quantum memory effects35, given by

∫ρ ρ∂ = .K t s( , ) (19)t
t

0

Since  is a linear superoperator, the integral kernel will involve linear terms in the elements of ρ. This leads to 
a system of integro-differential equations for the elements of ρ which can be implemented by appropriately choos-
ing the dynamics of the internal state variable of the memristor.

Aditionally, linear integro-differential equations that appear in the model of turbulent diffusion36, have the 
form

∫+ + − = .u t p t u t K t s u t s u s ds( ) ( ) ( ) ( , ) ( ) ( ) 0 (20)
t

0

Equations of this type can be implemented with a memristor defined by g(ω, v, t) = α(t)k1(t)ω and 
ω =

α


vln( )k t

t

( )

( )
22

2 , such that K(t, s) = k1(t)k2(s), and where ∫α = ( )t p s ds( ) exp ( )t

0
. By using z(t) = α(t)u(t), we can 

configure Eq. (20) into the analog computer as the following equation,

∫= −


 ′



z t k s z s ds( ) ( ) ( ) ,

(21)

t

0

2

with ′ =
α

k s( ) k s
s

( )
( )2 . Next, connecting the output z(t) to a signal multiplier with the signal 

α t
1
( )

, we recover the solu-
tion u(t) of Eq. (20).

Equivalent Memristors for Enhancing Simulations
We have seen that the integro-differential equation that can be implemented with the integrator circuit of Fig. 2 
depends on the memductance, g, and internal variable dynamics, f, in Eqs (8) and (9), respectively. However, the 
choice of the memductance function g is restricted by currently available memristors. A possible way for broad-
ening the class of available memductance functions is to consider a composite memristor circuit, connected in 
series or in parallel37,38.

The behavior of composite memristor circuits is nontrivial, it involves transient phenomena which depend on 
the initial states of each memristor and is also affected by their polarities. Nonetheless, it has been shown that, for 
ideal voltage-dependent memristors, a composite memristor circuit involving either in parallel or in series con-
nection can obey the same rules as with standard resistors37,38. This behavior depends on the memristor internal 
relaxation time and on the state variable dynamics. Assuming that the timescale of memristor relaxation is much 
shorter than the timescale associated with the state variable dynamics, then we can neglect the former and ignore 
transient phenomena.

We can expect that, under the aforementioned assumptions on timescales, a composite memristor circuit 
involving memristive systems will obey a dynamical model similar to Eqs (8) and (9). Then, we look to describe 
the composite memristor circuit as an equivalent memristor with an equivalent memductance. For a composite 
memristor circuit connected in series, as shown in Fig. 3(a), the equivalent memductance is given by

ω ω ω
= +

g v t g v t g v t
1

( , , )
1

( , , )
1

( , , )
,

(22)equiv 1 1 1 2 2 2

whereas for memristors connected in parallel, it holds

ω ω ω= +g v t g v t g v t( , , ) ( , , ) ( , , ), (23)equiv 1 1 1 2 2 2

with v = v1 + v2, and ω = ω1 + ω2. Then, it is possible to approximate a memductance function, g(ω, v, t), by con-
sidering its Taylor expansion, ω = + + + ...g v t c c v c v( , , ) 1 2

1
2 ! 3

2 , and construct a composite memristor circuit 
connected in parallel such that each memristor in the circuit provides one of the terms of the desired Taylor 
series. Then, the equivalent memductance, given by

ω ω ω ω= + + + ...g v t g v t g v t g v t( , , ) ( , , ) ( , , ) ( , , ) (24)equiv 1 1 2 2 3 3

is an approximation of the desired memductance function, g(ω, v, t), provided that g(ω1, v1, t) = c1, g(ω2, v2, 
t) = c2v, ω =g v t c v( , , )3 3

1
2 ! 3

2 and so on. In this way, the desired memductance function, g(ω, v, t), can be approx-
imated with a controllable accuracy which depends on the amount of terms of the Taylor series implemented.
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In addition, when memristors are set in proximity, they may mutually interact39,40, affecting the dynamics of 
their internal variables, and consequently, their memductances. This leads to a different class of integro-differental 
equations that can be implemented in the analog computer by including coupled memristors into the network. 
Let us consider an ideal voltage-controlled memristor system described by

φ φ=i t g v t( ) ( , ) ( ), (25)1 1 1 2 1

φ φ=i t g v t( ) ( , ) ( ), (26)2 2 1 2 2

φ φ
= =

d
dt

v t d
dt

v t( ), ( ), (27)
1

1
2

2

where we consider g1(φ) = αφ + β, and α, β are constants. Then, we have

φ φ α φ β κ φ= + +g ( , ) , (28)1 1 2 1 1 1 2 2

φ φ α φ β κ φ= + + .g ( , ) (29)2 1 2 2 2 2 1 1

We can consider again two coupling cases, memristors connected in series and in parallel. For two memris-
tors connected in series, as shown in Fig. 4(a), we define v12 = v1 + v2, and φ12 = φ1 + φ2. By applying Kirchhoff ’s 
voltage law, together with the constitutive relations of the memristors, one obtains a set of coupled differential 
equations for the internal variables of the memristors39. In the special case of α1 = α2 = α, β1 = β2 = β, κ1 = κ2 = κ, 
the equivalent memductance, defined by i(t) = g12(φ12)v12, is consequently given by (see ref.39).

φ
α φ αβφ

β αφ
β=

+
+

+ .g ( ) 1
2

2
4 2 (30)12 12

2
12
2

12

12

This result may allow us to implement an additional kind of integro-differential equation, related to 
non-Markovian dynamics, given by the following expression:

∫ ∫

∫

α τ τ αβ τ τ

β α τ τ
β=







+

+
+







.

( ) ( )
( )

Cv
v d v d

v d
v1

2

( ) 2 ( )

4 2 ( )
(31)

t t

t12

2
0 12

2

0 12

0 12
12

On the other hand, for coupled memristors connected in parallel, as shown in Fig. 4(b), we have i = i1 + i2, and 
φ12 = φ1 + φ2. In this case the total memducante of the dual coupled memristors in parallel connection is given by 
the expression (see ref.39).

φ α α κ κ φ β β= + + + + + .g ( ) ( ) (32)12 12 1 2 1 2 12 1 2

Figure 3.  Composite memristor circuit (a) connected in series and (b) connected in parallel with same 
polarities. Here, v1 and v2 are the magnetic voltage of the first and second memristor, respectively.
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This is, the memristors coupled in parallel operate as a new memristor, and the equivalent memductance 
is obtained as the sum of the individual memductances. We see that, in this case, coupled memristors con-
nected in parallel behave very similar to the uncoupled case. The main difference is the appearance of additional 
parameters.

We want to mention that to consider a large memristor array in our case could benefit the proposal, specially 
in obtaining a good approximation of any desired memductance function by constructing its Taylor expansion 
with an equivalent memristor array connected in parallel. The main limitation of using a large number of mem-
ristors lies in the error accumulation due to imperfections in the devices, as will be seen later. In this sense, the 
flexibility with large arrays increases as the device fabrication improves.

Adaptability with other Classes of Memdevices
Another possibility for broadening the class of integro-differential equations that can be implemented by the 
analog simulator is to consider other classes of memdevices, such as memcapacitive and meminductive devices41. 
Here we will consider the substitution of the capacitor in the integrator circuit of Fig. 2 for a voltage-controlled 
memcapacitive device which can be specified as follows:

=q C x v t v( , , ) , (33)

φ=x x v t( , , ), (34)

where q, v, x and C, are the charge, voltage, internal variable and memcapacitance in the memcapacitive system, 
respectively. Then, performing the same calculation in node A of Fig. 2 with Kirchhoff ’s law, as in Eq. (11), we 
obtain

=i i , (35)M C

ω = −




+


.g v t v dC

dt
v t C x v t dv

dt
( , , ) ( ) ( , , )

(36)

This leads to the following integro-differential equation

∫ ω τ τ= −






 −v t

C x v t
g f v d v t t v t

C x v t
dC
dt

v t( ) 1
( , , )

( , , ) , ( ), ( ) 1
( , , )

( ),
(37)

t

0

This naturally adds a new parameter, the memcapacitance C(x, v, t), that increases the flexibility in the class of 
integro-differential equations that can be implemented with the analog simulator. For instance, we can see that 
by considering C(x, v, t) = x41 we can include a linear term in the voltage that will depend on the dynamics of the 
internal variable of the memcapacitive system. This can ease the requirements on the memductance which for 
some applications can become a very intricate function of the internal variable, voltage and time.

Figure 4.  Coupled memristors with flux interaction, (a) connected in series and (b) connected in parallel 
with same polarities. Here, φ1 (φ2), v1(v2) are the magnetic flux and voltage of the first (second) memristor, 
respectively. When the timescale of the state variable dynamics is dominant over other timescales of each 
memristor it is possible to describe the composite memristor circuit as an equivalent memristor.

https://doi.org/10.1038/s41598-019-49204-y


8Scientific Reports |         (2019) 9:12928  | https://doi.org/10.1038/s41598-019-49204-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

Numerical Robustness
In order to provide an example of the previous procedures and to test the stability of the solutions, let us consider 
the following integro-differential equation

∫
= − .

−
+

.− −

N t N t N t

N t s
s

e N s ds

( ) 2 ( ) 0 001 ( )

( )
1

( )
(38)

t t s

2

0

( )

This equation can be implemented by taking C = 1 and chosing g(ω, v, t) = −2 + 0.001v + e−tω and 
ω =

+


e vs s
s1

 in Eq. (12). In Fig. 5(a), we show the exact solution of this equation compared against the case with 
up to 10% error in the coefficients of Eq. (38), which stands for imperfections in the analog components of the 
computer. We can see that the average relative error stabilizes at ~10% indicating that the solution is robust 
against imperfections in the analog components. As a second example we consider the following 
integro-differential equation

∫= −


 +



.− − +

u t e u t e u s ds( ) 1
8

( ) 1
2

( )
(39)

t t t s2
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Figure 5.  Stability test of the solution of (a) Eq. (38) and (b) Eq. (39). (Left) Shows the exact solution (black 
solid line) and the solution considering imperfect analog components (red dashed line) with up to 10% error in 
their corresponding coefficients. (Right) Shows the average relative error over 100 iterations of the simulation 
with imperfect analog components.
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This equation can be taken into the form of Eq. (21) by considering α(t) = exp(−1/16(e−2t−1)), k1(t) = 1/2e−t, 
k2(s) = e−s and ω =


k s v( )ln( )2

2. In Fig. 5(b), we show the solution of this equation compared against the case with 
up to 10% error in the coefficients of Eq. (39), as well. We observe that, in this case, the error increases continu-
ously, as it is usually the case in analog computers, reaching up to 13% within the timescale considered.

Discussion
We have studied the inclusion of memristors into the network of electric analog computers. We have found 
that this addition enables analog computers to simulate linear and nonlinear integro-differential equations 
by appropriately choosing the memductance and the dynamics of the memristor state variable. This broad-
ens the applicability of analog computers which, otherwise, could only solve systems of ordinary differential 
equations. Additionally, we have numerically studied the performance of these analog computers by simulating 
integro-differential models related to fluid dynamics, nonlinear Volterra equations for population growth, and 
quantum models describing non-Markovian memory effects. Moreover, we have tested and evaluated the stability 
of the solutions provided against imperfections of analog components by introducing up to 10% error in their 
corresponding coefficients, finding that the relative error reaches up to 13% for relevant timescales. From these 
results, we have concluded the robustness and resilience of the results of the simulation provided by the methods 
introduced in this work. Moreover, it is noteworthy to mention that our results have been obtained with minimal 
architecture variations, leaving the possibility of more intrincated arrangements, whose complexity grows in 
complexity extremely fast, open for future studies.

The analog simulator can benefit from a large array of memristors, coupled in series or parallel, specially 
if we consider the Taylor expansion for any memductance function, which is directly related to the class of 
integro-differential equations that can be implemented by the circuit. The main limitation in using a large number 
of memristors is the error accumulation due to imperfect fabrication of the devices. In this sense, the flexibility 
of the analog simulator with the number of memristors increases as the device fabrication and design improves.

As a further scope, it would be interesting to consider the proposed scenarios in the context of quantum 
memristors42–45. These devices are the quantized version of the memristors employed in this work, i.e. open 
non-Markovian controllable open quantum systems which are able to process quantum information and can 
be used for simulations and for implementation of quantum neural networks46,47. The intuition is that quantum 
entanglement could be useful in the search of quantum speed-ups for analog computers, in a similar manner as it 
already happens with quantum simulations.
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