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ABBREVIATIONS 

 

Aβ    Amyloid beta                  

Acetyl-CoA   Acetyl coenzyme A 

Acyl-CoA   Acyl coenzyme A 

AD   Alzheimer’s disease 

ADAM17  ADAM metallopeptidase domain 17 

AMPA    α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid                       

ANOVA   Analysis of variance 

ANPs   Amplifying neural progenitors 

ANXA1   Annexin 1 
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ATP   Adenosine triphoshate 

BAI-1   Brain-specific angiogenesis inhibitor 1 

BBB   Blood brain barrier 

Bcl-2   B-cell lymphoma 2 

BDNF    Brain-derived neurotrophic factor 

BLBP      Brain lipid-binding protein            

BrdU       5-bromo-2-deoxyuridine 

BSA   Bovine serum albumine 

CA   Cornu ammonis 

Ca+2                     Calcium 

CAT   Carnitine translocase 

Cd11b    Cluster of differentiation molecule 11b 
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CD68    Macrosialin 

cDNA   complementary DNA 

CHO   Chinese hamster ovary 

CldU   5-Chloro-2’-deoxyuridine 

CMLE   Classic Maximum Likelihood Estimation algorithm 

CNS             Central nervous system 

CPT-1    Carnitine palmitoyltransferase-1 

CRT    Calreticulin 

CSFs    Colony stimulating factors 

CSF1R    Colony stimulating factor 1 receptor 

Ct    Threshold cycle 

CX3CL1   Fractalkine 

CX3CR1   CX3C chemokine receptor 1 

DAP12    DNAX-activation protein of 12 kD 

DAPI   4’,6-diamidino-2-phenylindole 

DCX          Doublecortin 

DG              Dentate gyrus 

2-DG   2-deoxy-glucose 

DMEM   Dulbecco’s Modified Eagle Medium             

DMSO    Dimethyl Sulfoxide 

DNAse    Deoxyribonuclease  

Dnm1l    Dynamin 1-like 

Dock4    Dedicator of cytokinesis 4 

dpi   Day post injection 

Drp1    Dynamin-related protein 1 

DV    Dorsoventral 

E 7.5    Embryonic day 7.5 
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EBV   Epstein-Barr virus 

ECAR    Extracellular acidification rate    

ER    Estrogen receptor 

ETC   Electron transport chain 

F6P   Fructose-6-phosphate 

FA   Formaldehyde 

FACS   Fluorescence-activated cell sorting   

FAD   Flavin adenine dinucleotide   

FADH2   Flavin adenine dinucleotide (hydroquinone form) 

FBPase    Fructose biphosphatase 

FBS   Fetal bovine serum 

FCCP   Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone                                  

FIS1    Mitochondrial fission protein 1 

G2A   G protein-coupled receptor 132 

G3P   Glyceraldehyde-3-phosphate 

G6P    Glucose-6-phosphate 

G6Pase   Glucose-6-phosphatase 

G6PDH    Glucose-6-phosphate dehydrogenase 

GABA   Gamma-Aminobutyric acid 

GAS6    Growth arrest-specific protein 6 

GFAP   Glial fibrillary acidic protein 

GFP    Green fluorescent protein 

GlycoPER  Glycolytic proton efflux rate 

GM-CSF  Granulocyte-macrophage colony stimulating factor 

GPR34    G protein-coupled receptor 34  

Gpr75   Glucose-regulated protein 75 

GPR174  G protein-coupled receptor 174     
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GTP    Guanosine triphosphate 

GTPases   Guanosine triphosphate hydrolases 

HAP1    Huntingtin-associate protein 1 

HBSS    Hank’s Balanced Solution 

H2O   Water                         

HIF-1    Hypoxia induced factor-1 

HIF-1α    Hypoxia induced factor-1 alpha 

HSCs    Hematopoietic stem cells 

Iba1    Calcium-binding adapter molecule 1  

ICAM3    Intercellular adhesion molecule 3 

IDH3G    Isocitrate dehydrogenase 3 gamma 

IdU   5-iodo-2’-deoxyuridine 

IFNs    Interferons 

IFN-γ    Interferon gamma 

IGF-1   Insulin growth factor 1 

ILs   Interleukins 

IL-1β   Interleukin 1 beta 

IL-4   Interleukin 4 

IL-6   Interleukin 6 

IL-10    Interleukin 10 

IMM   Inner mitochondria membrane 

IMS   Intermembrane space 

ISCs    Intestinal stem cells 

KA   Kainate 

KO    Knockout 

LB   Lysogeny Broth 

LBD   Long-binding domain 
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LL   Laterolateral 

LPA   Lysophosphatidic acid 

LPC   Lysophosphatidylcholine 

LPS   Lipopolysaccharide 

LTP    Long term potentiation 

LysoPS   Lysophosphatidylserine   

MAM   Methylazoxymeathanol 

MCP-1   Monocyte chemotactic protein 1 

MEFs   Mouse embryonic fibroblasts 

MerTK     Mer tyrosine kinase 

MFF    Mitochondrial fission factor 

MFG-E8  Milk fat globule-EGF factor 8 

MFN1    Mitofusin 1 

MFN2    Mitofusin 2 

MIC-1    Macrophage inhibitory cytokine 1 

MIP-1A   Macrophage-inflammatory protein 1A 

MitoPER   Mitochondrial proton efflux rate 

MPC1    Mitochondrial pyruvate carrier 1 

MS   Multiple sclerosis 

mtDNA   Mitochondrial DNA 

MTLE   Mesial lobe temporal epilepsy 

NAD+    Nicotinamide adenine dinucleotide (oxidized form) 

NADH   Nicotinamide adenine dinucleotide (reduced form) 

NADH2    Nicotinamide adenine dinucleotide (reduced form) 

NADPH   Nicotinamide adenine dinucleotide phosphate 

NDUFAF4   NADH ubiquinone oxidoreductase complex assembly factor 4 

NGF   Nerve growth factor 
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NO    Nitric oxide 
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NSCs   Neural stem cells 
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O/N   Overnight 
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OXPHOS  Oxidative phosphorylation 
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PPP    Pentose phosphate pathway 

ppu   Parts per unit 

PS    Phosphatidylserine 

PSA-NCAM  Polysialylated neuronal cell adhesion molecule 

Q     Coenzyme Q 

Rack1   Receptor for activated C kinase 1 

RANTES  Chemokine ligand 5 

RFU    Relative fluorescence unit    

RMS   Rostral migratory stream  

rNSCs    Radial neural stem cells    

ROS    Reactive oxygen species  

R5P    Ribose-5-phosphate                       

RT    Room temperature 

RT-qPCR   Real Time-Quantitative Polymerase Chain Reaction   

Ru5P    Ribulose-5-phosphate 

SDHB                    Succinate dehydrogenase beta 

SEM    Standard error of the mean 

SGZ    Subgranular zone 
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S1P    Sphingosine-1-phosphate 
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TGF-β    Transforming growth factor beta 

Th1    T helper 1 
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Tm    Melting temperature 

TNFs      Tumor necrosis factors 

TNF-α     Tumor necrosis factor alpha 

TNFR1    Tumor necrosis factor receptor 1 

TNFR2   Tumor necrosis factor receptor 2 

TREM2    Triggering receptor expressed on myeloid cells-2 

UQCRQ   Ubiquinol-Cytochrome C Reductase Complex III Subunit VII 

UTP    Uridine triphosphate 

UV    Ultraviolet 
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VEGF   Vascular endothelial growth factor 
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2.RESUMEN/SUMMARY 
2.1 RESUMEN 

Las células de microglía constituyen los macrófagos residentes del sistema nervioso central 

(CNS). Estas células vigilan constantemente el parénquima cerebral con sus procesos 

altamente móviles y ayudan a mantener la homeostasis en el tejido cerebral ejerciendo una de 

sus principales funciones, que es la fagocitosis. 

Las células de microglía están consideradas como los fagocitos profesionales del cerebro. Sin 

embargo, el papel de la microglía en la fagocitosis es en gran medida desconocido. La 

fagocitosis es el proceso celular de comer y supone un fenómeno crucial durante el desarrollo 

cerebral y en contextos patológicos. Se ha visto que las células de microglía fagocitan muy 

diferentes cargas tanto en condiciones fisiológicas como en condiciones patológicas, y en esta 

tesis, nos hemos centrado en la fagocitosis de células apoptóticas.  

La apoptosis o “muerte celular programada” es un fenómeno ubicuo que lleva al 

mantenimiento de una población celular, como parte normal del desarrollo, que ayuda a 

preservar la homeostasis tisular y que ha sido visto también en patología. Una limpieza 

eficiente de células apoptóticas resulta fundamental para evitar la liberación de contenidos 

intracelulares tóxicos. Para posibilitar una limpieza eficaz de células apoptóticas, las células de 

microglía presentan una gran variedad de receptores anclados a la membrana que ayudan a 

detectar y reconocer las diferentes moléculas liberadas por las dianas apoptóticas, incluyendo 

señales “encuéntrame” y “cómeme”. Una vez esas señales son reconocidas por la microglía, las 

células apoptóticas son englobadas en un fagosoma que en última instancia se fusiona con 

lisosomas, permitiendo la degradación completa de la carga por el fagocito.  

Durante los últimos años, el papel de la microglía en la fagocitosis ha sido estudiado muy bien 

en la región subgranular (SGZ) del giro dentado (DG) del hipocampo. Aquí, la gran mayoría de 

las células recién nacidas experimentan apoptosis durante sus primeros días de vida y son 

eficientemente retiradas por la microglía en condiciones fisiológicas. Por tanto, en esta tesis 

nos hemos centrado en el uso de la SGZ del hipocampo como modelo para valorar la eficiencia 

de las células de microglía en retirar las células apoptóticas bajo diferentes condiciones así 

como evaluar su capacidad para potenciar la respuesta fagocítica según el contexto. 

Por otra parte, las células de microglía son responsables de orquestar la respuesta 

inflamatoria. Al contrario que en la fagocitosis, el papel de la microglía en la inflamación ha 
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sido bien caracterizado. La inflamación constituye una respuesta desencadenada por el 

sistema inmune contra cualquier estímulo dañino para el organismo. Durante la inflamación, la 

microglía, como componente relevante del sistema inmune, se activa e inicia el reclutamiento 

de otras células inmunes que contribuyen a la protección y reparación del tejido afectado. En 

un contexto inflamatorio, las células de microglía liberan diferentes moléculas, principalmente 

citoquinas y quimioquinas. En esta tesis hemos estudiado dos mediadores inflamatorios 

diferentes: el factor alfa de necrosis tumoral (TNF-α), que es una de las citoquinas pro-

inflamatorias mejor caracterizadas y la quimioquina fractalquina (CX3CL1). 

En las últimas décadas, se ha visto que tanto la inflamación como la fagocitosis están 

relacionadas. Se ha mostrado que las células de microglía mejoran su respuesta fagocítica tras 

la inflamación, aunque la fagocitosis también se ha mostrado capaz de alterar la respuesta 

inflamatoria, evidenciado una comunicación cruzada entre la inflamación y la fagocitosis que 

inevitablemente influencia la respuesta inmune de la microglía y su capacidad de preservar la 

homeostasis cerebral. A pesar de que los papeles tanto de TNF-α como de CX3CL1 en 

inflamación han sido bien definidos, su posible papel en la fagocitosis microglial no ha sido 

evaluado aún. 

Por tanto, nuestro Objetivo 1.1 en esta tesis fue examinar el posible papel de TNF-α en la 

fagocitosis microglial (y también en la neurotoxicidad) de las células apoptóticas en la SGZ del 

hipocampo. Para examinar esto, llevamos a cabo un análisis de la eficiencia fagocítica en 

ratones cuya microglía es deficiente en la expresión de TNF-α comparado con ratones control, 

ambos inyectados con el análogo de glutamato kainato (KA), conocido por causar 

excitotoxicidad en un modelo murino de epilepsia mesial del lóbulo temporal (MTLE). El 

número de células apoptóticas fagocitadas por la microglía (índice fagocítico (Ph index)) era 

similar en ratones con microglía deficiente en la expresión de TNF-α comparado con ratones 

control, sugiriendo que el TNF-α secretado por la microglía no influenciaba la conducta 

fagocítica microglial. Además, el TNF-α microglial tampoco afectaba a la apoptosis, ya que la 

cantidad de células apoptóticas observadas en ambos ratones era similar. 

Con relación a CX3CL1, nuestro Objetivo 1.2 en esta tesis fue estudiar la conducta fagocítica 

microglial a través del estudio de su receptor, el receptor 1 de la quimioquina CX3C (CX3CR1), 

en ratones deficientes en dicho receptor comparado con ratones control en la SGZ del 

hipocampo. Los análisis revelaron que los ratones deficientes en CX3CR1 presentaban un Ph 

index similar comparado con los ratones control, sugiriendo que, al igual que TNF-α, CX3CL1 

no mostraba ninguna evidencia de regular la fagocitosis microglial, ya que la interacción de 
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CX3CL1 con CX3CR1 o la ausencia de ella no suponía una alteración en la eficiencia fagocítica 

para retirar las células apoptóticas por parte de la microglía.  

Entonces nos centramos en receptores fagocíticos alternativos. En concreto, en esta tesis nos 

enfocamos en el receptor 34 acoplado a proteína G (GPR34). Se sabe que GPR34 está muy 

expresado en microglía, aunque también se expresa en otras células inmunes, tales como 

macrófagos, células dendríticas o linfocitos, entre otras. En los últimos años, GPR34 ha sido 

postulado como un potencial regulador de la fagocitosis microglial de células apoptóticas, 

particularmente in vitro.  

Por tanto, el Objetivo 2 en esta tesis consistió en valorar el papel de GPR34 en la fagocitosis 

microglial de células apoptóticas in vivo. Con este propósito, nos enfocamos en evaluar la 

respuesta fagocítica de la microglía en ratones jóvenes y adultos deficientes en GPR34 en la 

SGZ del hipocampo. El estudio de la conducta fagocítica en ratones jóvenes deficientes en 

GPR34 mostró que había un gran descenso en el Ph index comparado con ratones control, 

acompañado de una disminución en el porcentaje de microglía fagocítica (capacidad fagocítica 

(Ph capacity)). En consecuencia, existía un desacoplamiento entre los eventos de fagocitosis y  

apoptosis (acoplamiento fagocitosis/apoptosis (Ph/A coupling)), poniendo de manifiesto el 

papel de GPR34 en la regulación de la fagocitosis microglial in vivo, como se mostró 

previamente in vitro. Por el contrario, los ratones adultos deficientes en GPR34 no mostraron 

ninguna diferencia en el Ph index ni en Ph capacity y por tanto el Ph/A coupling se mantuvo 

inalterado. 

El receptor GPR34 fue inicialmente considerado un receptor huérfano. Sin embargo, 

recientemente se demostró que presenta afinidad por un ligando: lisofosfatidilserina (lysoPS). 

LysoPS es una molécula lipídica que deriva de la fosfatidilserina (PS), el marcador clásico de las 

células apoptóticas. LysoPS se ha asociado a varias respuestas celulares. De manera 

interesante, una de esas respuestas consiste en la potenciación de la respuesta fagocítica a 

neutrófilos apoptóticos por parte de macrófagos in vitro. 

Por tanto, con el propósito de profundizar en el estudio de la señalización GPR34-lysoPS sobre 

la fagocitosis microglial, el Objetivo 3 de esta tesis fue dirigido a evaluar el papel de lysoPS en 

la fagocitosis microglial tanto in vitro como in vivo. Con este objetivo, tratamos cultivos de 

microglía con lysoPS en presencia de células apoptóticas. Los datos referidos a la fagocitosis 

microglial reflejaron que lysoPS añadida a los cultivos de microglía producía una caída 

perceptible e importante en la Ph capacity de las células de microglía. Después, tratamos 

cultivos organotípicos de hipocampo con lysoPS, encontrando un Ph index reducido, 
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acompañado de una Ph capacity disminuida, al igual que en los cultivos de microglía, dando fe 

de la influencia de lysoPS en la fagocitosis microglial in vitro.  

Por otra parte, lysoPS se ha demostrado que presenta afinidad por otros tres receptores 

además de por GPR34: P2Y10, el receptor 174 acoplado a proteína G (GPR174) y G2A. Por 

consiguiente, para asegurar que los efectos de lysoPS sobre la fagocitosis microglial in vitro 

fueron solo debidos a su interacción con GPR34, analizamos la expresión de esos receptores en 

microglía. GPR34 era predominante en cultivos de microglia (con escasa expresión de G2A). 

Por el contrario, GPR34 fue el único receptor de lysoPS expresado por microglía in vivo. 

Finalmente, analizamos el impacto de lysoPS en la fagocitosis microglial in vivo mediante la 

inyección de lysoPS en el hipocampo de ratones. Los resultados reflejaron que tanto el Ph 

index como la Ph capacity de la microglía permanecían inalterados de modo que lysoPS 

presumiblemente no tenía efecto regulador alguno in vivo, al contrario de lo registrado in 

vitro.  

Para terminar, nos centramos en las consecuencias funcionales de la fagocitosis. La fagocitosis 

microglial es una tarea compleja cuyas consecuencias pueden extenderse a otros procesos 

celulares como el metabolismo, como fue relatado en macrófagos, en los que varias 

modificaciones en rutas metabólicas se observaron tras el englobamiento de residuos. 

Considerando eso, es posible que un fenómeno similar pudiera ocurrir en células de microglía.  

Por consiguiente, el Objetivo 4 de esta tesis fue el estudio de las posibles consecuencias de la 

fagocitosis de células apoptóticas sobre el metabolismo microglial. Para valorar esto, en primer 

lugar analizamos la expresión de varios tránscritos importantes relativos a la fosforilación 

oxidativa (OXPHOS) y la glicólisis, las dos principales rutas metabólicas en células eucariotas, 

revelando en general una expresión inalterada en microglía fagocítica comparada con 

microglía control. Después, evaluamos directamente las rutas de la OXPHOS y la glicólisis. Los 

análisis metabólicos dieron evidencia de una regulación a la baja de la OXPHOS en la microglía 

fagocítica mientras la glicólisis se mantenía inalterada tras la fagocitosis. Por si esto fuera poco, 

un análisis más profundo de las mitocondrias reveló diferencias morfológicas en la microglía 

fagocítica comparada con la microglía control así como varias alteraciones en genes de fisión 

(división) mitocondrial mientras los genes de fusión (unión) analizados no mostraron 

diferencias  en la microglía fagocítica comparada con la microglía control. 

La fagocitosis microglial puede implicar cambios en otros procesos, como la neurogénesis 

hipocampal adulta, ya que la microglía engloba el exceso de células recién nacidas. El Objetivo 

5 en esta tesis fue evaluar si las alteraciones en la fagocitosis microglial podrían dar lugar a 
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algunos cambios en la neurogénesis. Considerando el potencial de GPR34 en la regulación de 

la fagocitosis microglial,  examinamos si la deficiencia en la fagocitosis microglía observada en 

ratones jóvenes deficientes en GPR34 podría impactar sobre el proceso neurogénico. 

Evaluamos las poblaciones de células madre (NSCs) y de neuroblastos en la SGZ del hipocampo 

de ratones jóvenes y adultos deficientes en GPR34. Los resultados descartaron alteración 

alguna en la población de NSCs en ambos ratones. Sin embargo, se produjo una disminución 

evidente en el número de neuroblastos en los ratones adultos deficientes en GPR34, no 

afectados por la deficiencia fagocítica, comparado con ratones control, que no se reprodujo en 

ratones jóvenes, descartando la posibilidad de que la fagocitosis microglial pudiera influir en la 

neurogénesis durante la etapa adulta.  

En conclusión, todos estos resultados destacan la relevancia de la fagocitosis microglial en la 

homeostasis cerebral, y particularmente el papel de GPR34 y su ligando lysoPS durante este 

proceso. Además, la fagocitosis de células apoptóticas implica efectos en el metabolismo de la 

microglía, especialmente en las mitocondrias, a través de la regulación a la baja de la OXPHOS 

y cambios morfológicos. Sin embargo, los datos obtenidos no apuntan a un nexo entre la 

fagocitosis de células apoptóticas y cambios en neurogénesis en el nicho neurogénico de la 

SGZ. 
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2.2 SUMMARY 

Microglial cells constitute the resident macrophages of the central nervous system (CNS). They 

constantly surveil the brain parenchyma with their highly motile processes and help maintain 

the brain tissue homeostasis by exerting one of their main functions, which is phagocytosis. 

 Microglia are considered the professional phagocytes in brain. However, the role of microglial 

cells in phagocytosis is largely unknown. Phagocytosis is the cellular process of eating and 

supposes a crucial phenomenon during brain development and pathological contexts. 

Microglia have been shown to phagocytose many different cargo in both physiological and 

pathological conditions, and in this PhD Thesis, we have focused in the phagocytosis of 

apoptotic cells. 

Apoptosis or “programmed cell death” is an ubiquitous phenomenon that leads to the 

maintenance of a cell population, as a normal part of development, which helps preserving 

tissue homeostasis and also seen in pathology. An efficient clearance of apoptotic cells results 

fundamental for avoiding the leakage of intracellular toxic contents. In order to enabling a 

rapid clearance of apoptotic cells, microglial cells present a great variety of receptors attached 

to the membrane that help detect and recognize the different molecules released by apoptotic 

targets, including “find-me” and “eat-me” signals. Once these signals are recognized by 

microglia, apoptotic cells are engulfed in a phagosome that in the last term fuses with 

lysosomes, allowing the complete degradation of the cargo by the phagocyte. 

In the last few years, the role of microglia in phagocytosis has been studied very well in the 

subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus. Here, the vast majority 

of the newborn cells undergo apoptosis during their first days of life and they are efficiently 

removed by microglia in physiological conditions. Therefore, this PhD Thesis has been focused 

on the use of the SGZ of hippocampus as a model to assess microglial cells efficiency in 

removing apoptotic cells under different conditions just as evaluate their capacity to enhance 

the phagocytic response depending on the context.  

Furthermore, microglial cells are responsible for orchestrating the inflammatory response. In 

contrast to phagocytosis, the role of microglia in inflammation has been well characterized. 

Inflammation constitutes a response triggered by the immune system against any harmful 

stimulus for the organism. During inflammation, microglia, as relevant components of the 

immune system, become activated and trigger the recruitment of other immune cell types that 

contribute to the protection and reparation of the affected tissue. In an inflammatory context, 
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microglia release different molecules, mainly cytokines and chemokines. In this PhD Thesis we 

have studied two different inflammatory mediators: tumor necrosis factor alpha (TNF-α), 

which is one of the best characterized pro-inflammatory cytokines and the chemokine 

fractalkine (CX3CL1). 

In the last decades, it has been shown that both inflammation and phagocytosis processes are 

related each other. Microglia cells have been shown to improve its phagocytic response upon 

inflammation, but microglial phagocytosis has been also revealed to alter the inflammatory 

response, thus evidencing a crosstalk inflammation-phagocytosis which inevitably influences 

the immune response of microglial cells and their capacity to preserve brain homeostasis. 

Despite that TNF-α and CX3CL1 roles in inflammation have been well defined, their possible 

roles in microglia phagocytosis have not been assessed yet. 

Thereby, our Objective 1.1 in this PhD Thesis was to examine the possible role of TNF-α in 

microglial phagocytosis (and also neurotoxicity) of apoptotic cells in the SGZ of the 

hippocampus. In order to test it, we performed an analysis of the phagocytic efficiency in 

microglial TNF-α deficient mice versus control mice, both injected with the glutamate analog 

kainate (KA), known for causing excitotoxicity in a mouse model of mesial lobe temporal 

epilepsy (MTLE). The number of apoptotic cells phagocytosed by microglia (Ph index) was 

similar in microglial TNF-α-deficient mice compared to control mice, suggesting that TNF-α 

secreted by microglia did not influence microglial phagocytic behavior. Besides, microglial TNF-

α by did not affect apoptosis either, since the amount of apoptotic cells observed in microglial 

TNF-α deficient mice was similar to observed in control mice.  

Regarding CX3CL1, our Objective 1.2 in this PhD Thesis was to study microglial phagocytic 

behavior through the study of its receptor CX3C chemokine receptor 1 (CX3CR1) in CX3CR1-

deficient versus control mice in the SGZ of the hippocampus. Analyses revealed that CX3CR1-

deficient mice presented a similar Ph index than control mice did, suggesting that, similar to 

TNF-α, CX3CL1 did not show any evidence of regulating microglial phagocytosis, since its 

interaction with CX3CR1 or the lack of it did not suppose an alteration in the phagocytic 

efficiency to remove apoptotic cells by microglia. 

We then focused on alternative phagocytosis receptors. Specifically, in this PhD Thesis we 

focused on G protein-coupled receptor 34 (GPR34). GPR34 is known for being highly expressed 

in microglia, although it is also expressed in other immune cells types, such as macrophages, 

dendritic cells or lymphocytes, among others. In the last few years, GPR34 has been postulated 

as a potential regulator of microglial phagocytosis of apoptotic cells, particularly in vitro. 
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Thus, the Objective 2 in this PhD Thesis was to assess the role of GPR34 in microglial 

phagocytosis of apoptotic cells in vivo. For this purpose, we focused on evaluating phagocytic 

response of microglia in GPR34-deficient young and adult mice in the SGZ of the hippocampus. 

The study of microglial behavior in young GPR34-deficient mice showed that there was a great 

drop in the Ph index compared to control mice, accompanied by a decrease in the percentage 

of phagocytic microglia (Ph capacity). Consequently, there was an uncoupling between 

phagocytosis and apoptosis (Ph/A coupling) events, evidencing the role of GPR34 in the 

regulation of microglial phagocytosis in vivo, as previously shown in vitro. In contrast, adult 

GPR34-deficient mice did not show any differences neither in the Ph index or Ph capacity and 

thus Ph/A coupling was unaltered.  

GPR34 receptor was initially considered an orphan receptor. However, it has been recently  

shown that GPR34 presents affinity for one ligand: lysophosphatidylserine (lysoPS). LysoPS is a 

lipidic molecule derived from phosphatidylserine (PS), the classical marker of apoptotic cells. 

LysoPS has been shown to elicit several cellular responses. Interestingly, one of these 

responses is the enhancement of phagocytic response to apoptotic neutrophils by 

macrophages in vitro.  

Thereby, with the purpose to delve into the study of GPR34-lysoPS signaling on microglial 

phagocytosis, the Objective 3 of this PhD Thesis was focused on assessing the role of lysoPS in 

microglial phagocytosis both in vitro and in vivo. For this purpose, we challenged microglia to 

the addition of lysoPS in microglia cultures with apoptotic cells. Data referred to microglial 

phagocytosis reflected that lysoPS added to microglia cultures produced a perceptible and 

important drop in the Ph Capacity of microglial cells. Next, we treated hippocampal 

organotypic cultures with lysoPS, finding a reduced Ph index of microglia, accompanied by a 

decreased Ph capacity, as found in microglial cultures, giving evidence of the influence of 

lysoPS on microglial phagocytosis in vitro. 

Furthermore, lysoPS has been shown to have affinity for other three receptors apart from 

GPR34: P2Y10, G protein-coupled receptor 174 (GPR174) and G2A. Therefore, to ensure that 

lysoPS effects on microglial phagocytosis in vitro were only due to its interaction with GPR34, 

we analyzed the expression of these receptors in microglia. GPR34 was predominant in 

cultured microglia (with a scarce expression of G2A). In contrast, GPR34 was the unique 

lysoPS-receptor expressed in microglia in vivo. Finally, we analyzed lysoPS impact on microglial 

phagocytosis in vivo by injecting mice hippocampi with lysoPS. Results reflected that both Ph 
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index and Ph capacity of microglia remained unaltered so that lysoPS did not presumably have 

any regulatory effect in vivo, contrary to registered in vitro. 

Lastly, we focused on the functional consequences of phagocytosis. Microglial phagocytosis is 

a complex task whose consequences can be extended to other cellular processes such as 

metabolism, as clearly reported in macrophages, in which several modifications in metabolic 

pathways have been observed upon engulfment of debris. Regarding that, it is possible that a 

similar phenomenon could occur in microglial cells.  

Thus, the Objective 4 of this PhD Thesis was to study the possible downstream consequences 

of apoptotic cells phagocytosis on microglial metabolism. To assess this, we first analyzed the 

expression of several important transcripts of genes related to oxidative phosphorylation 

(OXPHOS) and glycolytic pathways, the two main metabolic routes in eukaryotic cells, revealing 

an overall unaltered expression in phagocytic microglia compared to naïve microglia. Next, we 

directly evaluated OXPHOS and glycolysis pathways. Metabolic assays gave evidence of a 

downregulation of OXPHOS in phagocytic microglia whereas glycolysis was unaltered upon 

phagocytosis. On top of that, a deeper analysis of mitochondria revealed morphological 

differences in phagocytic microglia compared to naïve microglia just as several alterations in 

mitochondrial fission (division) genes whereas mitochondrial fusion (joint) genes analyzed 

showed no differences in phagocytic microglia compared to naïve microglia. 

Microglial phagocytosis can involve changes in other processes, such as adult hippocampal 

neurogenesis, as microglia engulf the excess of newborn cells. The Objective 5 in this PhD 

Thesis was to evaluate whether alterations in microglial phagocytosis could lead to any 

changes in neurogenesis. Considering the potential role of GPR34 in microglial phagocytosis 

regulation, we tested whether microglial phagocytosis impairment previously observed in 

young GPR34-deficient mice could have some impact on neurogenic process. We evaluated 

the neural stem cells (NSCs) as well as neuroblasts in the SGZ of the hippocampus of young and 

adult GPR34-deficient mice. Results discarded any alteration in the NSCs population in both 

young and adult mice. However, there was an evident decline in neuroblasts numbers in adult 

GPR34-deficient mice, not affected by phagocytic impairment, compared to control mice, that 

was not reproduced in young mice, discarding the possibility that microglial phagocytosis may 

influence neurogenesis in adulthood.  

In conclusion, all these results remark the relevance of microglial phagocytosis in brain 

homeostasis, and particularly the role of GPR34 receptor and its ligand lysoPS during this 

process. Besides, phagocytosis of apoptotic cells involves downstream effects on microglia 
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metabolism, especially on mitochondria, through the downregulation of OXPHOS and changes 

in mitochondrial morphology. Nevertheless, data obtained do not point towards a link 

between phagocytosis of apoptotic cells and changes in neurogenesis in the neurogenic niche 

of the SGZ. 
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3. INTRODUCTION 
3.1. INTRODUCTION TO MICROGLIA  

3.1.1. Definition and origins 

Microglia constitute the resident macrophages of the CNS, acting as professional phagocytes 

and coordinators of the innate immune response [1]. Microglia were first described by Pío Del 

Río-Hortega in 1919 [2] and they comprise around 10-15 % of the glial cells in brain [3]. 

Microglia belong to the monocytic-macrophage lineage [4], having a different origin with 

respect of other glial cells during embryonic development that makes them unique. Whereas 

the other glial cells originate from the ectoderm, microglia originate from the mesoderm. 

More specifically, they originate from the yolk sac at the embryonic day 7.5 (E7.5) in the 

mouse [5]. In that stage, hematopoietic stem cells become primitive macrophages and migrate 

into the developing CNS to finally become microglia [6, 7].  

3.1.2. Microglial functions 

Microglia have been revealed as great sensor cells in the brain tissue. They possess a 

remarkable surveillance capacity, which is supported by the unique motility of their fine 

processes, whose dynamics allow to scan the whole brain parenchyma with high frequency [8, 

9]. Microglia are able to respond to many changes of their surroundings by modifying their 

morphology and gene expression [6, 10]. This particular feature helps maintain the CNS 

homeostasis in health and disease and thus it allows fulfilling a wide range of functions [11, 

12]. Some of the most important renowned functions of microglia are synapse monitoring, 

myelination, vasculogenesis, and neurogenesis during both development and adulthood in 

health and disease, as we will briefly summarize: 

Synapse monitoring: during CNS development, more synapses are produced than are lastly 

required, so a remodeling of neuronal circuit is needed. In order to exert the synapse 

remodeling, microglia eliminate the immature ones while the mature ones are strengthened 

[13-16]. It has been shown that microglia have a role in synapse remodeling by engulfing pre-

synaptic elements in the postnatal brain [17]. Additionally, in the adult CNS, microglia have 

been involved in reshaping neuronal circuit via trogocytosis (partial elimination) of pre-

synaptic elements [18]. Importantly, synapse remodeling has to be under control since an 

excessive removal of synapses may worsen several neurodegenerative diseases like 

Alzheimer’s Disease (AD) [19].  
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Myelination: Microglia have been also related to myelination through the production of 

growth factors that regulate the proliferation and survival of oligodendrocytes [20]. 

Additionally, microglial activity is crucial for remyelination, since their phagocytosis of myelin 

debris when demyelination occurs facilitates the recruitment and differentiation of 

olygodendrocyte precursors [21, 22]. Contrary to this, it has been also reported that microglia 

release pro-inflammatory cytokines in pathological conditions which could be detrimental for 

remyelination [23]. 

Vasculogenesis: Furthermore, some other evidences point towards a role of microglial cells in 

embryonic vasculogenesis. Microglia have been observed in close association with developing 

vessels [24]. Likewise, the lack of microglia is linked to a decrease in the developing 

vasculature [25]. On top of that, some studies suggest that microglia could exert a role in 

alterations of the vasculature in pathologies like AD or Parkinson’s Disease (PD) [26]. 

Neurogenesis: During development, it has been suggested that microglia modulate the 

amount of neuroprogenitors in the subventricular zone (SVZ) of rats [27]. Nevertheless, during 

adulthood, microglia have been shown to regulate neurogenesis through the phagocytosis of 

apoptotic newborn neurons in the hippocampus [28] and in the SVZ as well [29]. Besides, 

microglia can also act as a detrimental factor in neurogenesis. In pathological conditions, aging 

or neurodegenerative diseases, microglia are able to release pro-inflammatory cytokines 

triggering negative consequences for neurogenesis [30]. Consequently, one of the aims of this 

PhD Thesis will be to assess whether microglial release of pro-inflammatory cytokine TNF-α 

may impact on neuronal apoptosis. The role of microglial cells on neurogenesis will be 

described below (Section 3.5.4). 

This variety of microglial functions and others are linked to the two main abilities of microglia, 

which highlight their relevance in the CNS: the control of the inflammatory response and the 

phagocytosis of debris, which are essential for the maintenance of brain tissue homeostasis 

and will be described next. 

3.1.3. Immune response 

Microglial cells constitute the main immune cells in the CNS [31]. Microglia modulate innate 

immunity and also participate in the adaptive immune response. Innate immunity represents 

the immediate response of the organism against any harmful stimulus, such as pathogens or 

apoptosis, by developing an inflammatory response [32]. In contrast to adaptive immunity 

system, which is specific to each pathogen, the innate immunity has been classically shown to 
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recognize pathogens non-specifically and may not provide long-lasting immunity to the 

organism [33].  

In response to CNS injury or in neurodegenerative diseases, microglia undergo activation. 

Concomitantly, the infiltration of other immune cells from the peripheral blood is produced 

[34] to protect and initiate the reparation of the organism by performing an inflammatory 

response. Once the inflammatory response is performed and infection is contained, microglia 

proceed to the removal of infective agents by exerting phagocytosis. Phagocytosis constitutes, 

together with inflammation, the fundamental component of the innate immune response [35]. 

Microglia engulf pathogens/cell debris or present them to T cells that traffic in and out of the 

CNS to develop an adaptive immune response [34]. Microglial phagocytosis is the main goal of 

this PhD Thesis and will be described in detail below (Section 3.3).  

Inflammation and phagocytosis are processes related to each other. It is known that 

inflammatory stimuli, such as lipopolysaccharide (LPS) or amyloid beta (Aβ) give rise to 

morphological alterations in cultured microglia, by inhibiting their cytokinesis, directly 

affecting their potential to phagocytose dead cells [36]. Nevertheless, when challenged with 

inflammation in vivo (via LPS administration or omega 3 fatty acid deficient diets) microglia 

maintained their phagocytic potential unaltered [37]. Furthermore, it has been shown that 

defects in the clearance of apoptotic cells by macrophages are directly linked to the 

development of an inflammatory response, persistent inflammatory disorders and also 

autoimmunity [38-41]. In contrast, the accurate clearance of these corpses by macrophages 

involves the secretion of anti-inflammatory cytokines, preventing inflammation [42]. In 

microglia, in vitro evidences have shown that phagocytosis triggers the secretion of anti-

inflammatory cytokines, such as transforming growth factor beta (TGF-β) and neuroprotective 

factors such as nerve growth factor (NGF) [43, 44]. Consequently, the crosstalk between 

inflammation and phagocytosis guarantees an accurate immune response by the organism.  

Therefore, our Objective 1 in this PhD Thesis was to assess the role of two of the most 

important inflammatory mediators (TNF-α and CX3CL1) in phagocytosis regulation. Both 

inflammatory and phagocytic responses will be described in more detail below.  

 

3.2. INFLAMMATORY RESPONSE  

In the brain, microglia are in charge of developing the inflammatory response. Inflammation is 

a mechanism triggered by the immune system in response to noxious stimuli, such as 
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pathogens or excessive cell death. Inflammatory responses have been also reported in all 

neurodegenerative diseases [45]. In response to damage, the inflammatory response 

generates heat, redness and swelling, which converge into fever with the aim to control the 

proliferation of pathogenic molecules [46]. Upon an inflammatory stimulus, microglia respond 

by releasing pro and anti-inflammatory cytokines, chemokines and complement proteins [12]. 

3.2.1. Cytokines 

Several factors are released during an inflammatory insult but cytokines are the major 

orchestrators of the inflammatory response by microglia. Remarkably, microglia are not the 

only source of these cytokines, since they are also released by astrocytes, oligodendrocytes, 

endothelial cells and neurons [47, 48]. Cytokines are proteins that coordinate the immune 

response by triggering cell proliferation, differentiation, apoptosis or release of other 

cytokines, among others [49]. Several groups of cytokines have been defined, such as 

interleukins (ILs), which help activate several cells of the immune system and facilitate their 

migration to the affected tissue [50]. Other group of cytokines are transforming growth factors 

(TGFs), needed for repairing the injury site [51]. Furthermore, interferons (IFNs) are crucial 

during the innate immune response to viruses [52]. Colony-stimulating factors (CSFs) are 

related to the production of other cytokines and have been also shown to stimulate the 

proliferation and differentiation of stem cells to immune cells [53]. Lastly, tumor necrosis 

factors (TNFs) are relevant cytokines during the initiation of the inflammatory response which 

have been shown to play an important role in cell processes like proliferation and apoptosis 

[54]. 

Since cytokines modulate inflammation towards a pro or an anti-inflammatory response, they 

can be divided into two different categories: pro-inflammatory and anti-inflammatory 

cytokines.  

3.2.1.1. Pro-inflammatory cytokines 

Pro-inflammatory cytokines are essential for the initiation of the inflammatory response. 

Although their main role is to defend the organism, it is important to state that an excessive 

and continuous release of pro-inflammatory cytokines results detrimental in pathological 

conditions, aggravating several neurodegenerative diseases like AD, multiple sclerosis (MS) or 

epilepsy [45, 55]. A continuous production of pro-inflammatory cytokines enhances the 

permeability of the blood brain barrier (BBB), which involves migration of peripheral immune 

cells into the CNS, increasing neuronal damage through the release of neurotoxic factors such 
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as reactive oxygen species (ROS) or nitric oxide (NO) [56, 57]. The most characterized pro-

inflammatory cytokines are interleukin 1 beta (IL-1β), interleukin 6 (IL-6), interferon gamma 

(IFN-γ) and TNF-α [58].  

TNF-α: TNF-α belongs to TNF ligand superfamily. TNF-α is generated from a transmembrane 

precursor which is finally cleaved into a soluble homotrimer [59]. TNF-α is produced by many 

cell types such as endothelial cells, fibroblasts and also by microglia, astrocytes and neurons in 

the CNS [60, 61] (Figure 1). It has been shown that microglial production of TNF-α is increased 

after immunological stimulus both in vivo and in vitro [34, 62]. TNF-α has been shown to 

influence CNS development through its role on neuroprogenitor cells (NPCs) differentiation 

and maturation. TNF-α acts as anti-neurogenic agent during cell lineage fate determination, 

increasing the amount of astrocytes [63]. Nonetheless, TNF-α exhibits pro-neurogenic activity 

in SVZ cultures [64] and has a relevant role in neurons maturation [65]. Furthermore, it has 

been reported the role of TNF-α in synaptic plasticity, since it enhances α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid (AMPA) receptor expression, thus increasing synaptic 

transmission [66] and consequently long term potentiation (LTP). Indeed, synaptic connectivity 

is affected by TNF-α ablation, impacting on plasticity [67]. Remarkably, TNF-α has been 

revealed as a neuroprotective agent. The neuroprotective role of TNF-α [68-70] is attributed to 

its affinity for TNF receptor 2 (TNFR2) [71], whose expression is restricted to hematopoietic 

cells [72]. In contrast, TNF-α has been also shown a neurotoxic function. The neurotoxic effect 

of TNF-α [73-75] has been traditionally linked to its binding to TNF receptor 1 (TNFR1) [76]. 

TNFR1 is expressed in almost every cell type (except for erythrocytes) [72]. TNF-α has been 

also related to some neurodegenerative diseases, such as MS, where its expression levels 

correlate with the progression of the disease [77]. Likewise, together with IL-6 and IL-1β, TNF-α 

has been found to be overexpressed in models of seizures, specially by glia [78]. Lastly, it is 

known that TNF-α constitutes one of the most important cytokines released during 

inflammation [78]. This fact, together with the evidences pointing towards a link between 

inflammation and microglial phagocytosis mentioned before [36, 37, 43, 44] raises the 

possibility that microglial TNF-α exerts some regulation in the phagocytosis of apoptotic cells. 

For instance, in vitro data have reported that TNF-α addition to neuron-glial cultures triggers 

microglial activation and phagocytosis of viable neurons (phagoptosis, which will be explained 

in more detail in Section 3.3). In order to evaluate whether microglial release of TNF-α could 

play a role in phagocytosis of apoptotic neurons, we first aimed (Objective 1.1) at assessing 

both apoptosis and phagocytic behavior in microglial-specific TNF-α knockout (KO) mice. 
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Figure 1. Different roles of cytokine TNF-α in the CNS. Microglia, in conjunction with other cell 
types in the CNS, such as astrocytes and neurons, are able to release several cytokines. Among 
them, one of the most important ones is tumor necrosis factor alpha (TNF-α), which plays a 
relevant role in both physiological and pathological conditions. TNF-α can determine 
neuroprogenitor cells (NPCs) destination, giving rise to astrocytes [63] or newborn neurons 
[65]. Additionally, it influences synaptic plasticity, increasing synaptic transmission [66] and 
also impacting on long term potentiation (LTP). On top of that, TNF-α can act as a 
neuroprotective factor through its binding to tumor necrosis factor receptor 2 (TNFR2) [71], 
whereas it exerts a neurotoxic effect through its binding to tumor necrosis factor receptor 1 
(TNFR1) [76]. Furthermore, TNF-α is also implicated in the progression of neurodegenerative 
diseases [77]. Besides, it is known that TNF-α is one of the most important cytokines released 
upon inflammation occurs [78].  
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3.2.1.2. Anti-inflammatory cytokines 

Anti-inflammatory cytokines act as a mechanism to control the duration of the inflammatory 

response since they regulate the pro-inflammatory cytokines response [79] and determine the 

resolution of inflammatory processes, avoiding complications linked to chronic inflammation 

[80]. The most defined cytokines in this category are TGF-β, interleukin 4 (IL-4) and interleukin 

10 (IL-10) [58]. However, sometimes the role of anti-inflammatory cytokines as facilitators of 

tissue repair and “brake” for the pro-inflammatory cytokines production [81] does not prevent 

them to also exert detrimental effects. For example, TGF-β has been related to epileptogenesis 

[80]. Additionally, another less known anti-inflammatory cytokine, macrophage inhibitory 

cytokine 1 (MIC-1), is associated with microglial phagocytosis impairment in brain tumors [82].  

3.2.2. Chemokines 

Chemokines constitute one of the different types of molecules secreted during the 

inflammatory response. They present an amino acid sequence and several cysteine residues 

[83]. These residues form disulfide bonds to maintain a complex structure composed of a three 

stranded β-sheet, a C-terminal helix and an N terminus, fundamental for chemokine receptor 

activation [84]. Depending on the position of the cysteine residues closest to the N terminus, 

chemokines are divided in four families: CC, CXC, CX3C and XC. Contrary to cytokines, 

responsible for initiating inflammation [46], chemokines are in charge of mediating the motility 

of immune cells, most notably leukocytes, towards the infection site in a process called 

chemotaxis [83]. 

It is known that during an inflammatory challenge, microglial cells secrete several chemokines, 

such as macrophage-inflammatory protein 1A (MIP-1A), monocyte chemotactic protein 1 

(MCP-1) and chemokine ligand 5 (RANTES) [85]. Furthermore, chemokines are involved in 

other immune processes, such as phagocytosis. One of the best characterized chemokines is 

CX3CL1, detailed next:  

CX3CL1: It is the only reported member of CX3C family [86]. CX3CL1 is highly expressed in 

neurons. CX3CL1 can be anchored to the cell membrane or being cleaved into a soluble form 

(via ADAM metallopeptidase domain 17 (ADAM17) protease) when apoptosis occurs (Figure 

2). Its receptor, called CX3CR1, is specifically expressed in microglia in the healthy brain [87, 

88]. 

CX3CL1-CX3CR1 signaling has implications in physiological conditions. It has been suggested 

that it plays a role in coordinating microglial processes motility, since CX3CR1-deficient mice 

33 
 



have shown lower processes velocity in retinal explants [89]. Besides, CX3CL1/CX3CR1 

signaling is involved in synaptic transmission. It has been established that application of 

CX3CL1 diminishes the amplitude of the AMPA receptor-mediated excitatory postsynaptic 

currents in Cornu ammonis (CA) pyramidal neurons of the hippocampus in vitro [90] whereas it 

potentiates the amplitude of the N-methyl-D-aspartate (NMDA) receptor-mediated 

component of these currents [91]. On top of that, CX3CL1 is upregulated in the hippocampus 

during synaptic plasticity [92]. Lastly, CX3CR1 has been linked to LTP, although some authors 

establish that the lack of the receptor inhibits LTP [93] whereas other authors state the 

opposite [94]. 

Furthermore, CX3CL1-CX3CR1 signaling is known to regulate microglial activation [95]. Indeed, 

it is known that CX3CL1-CX3CR1 signaling maintains microglia in a resting state [96], thus 

inhibiting the release of pro-inflammatory cytokines [95, 97]. Nevertheless, in several mice 

models of neurodegenerative diseases, the absence of CX3CL1 or its receptor has been shown 

to increase the release of these cytokines [98]. Remarkably, in some of these diseases, like AD, 

CX3CL1-CX3CR1 signaling can involve neurotoxic effects, which are abolished by inactivating 

this signaling pathway through CX3CR1 abolishment [99]. Nonetheless, CX3CR1 is protective in 

other pathologies, such as ischemia [100]. These evidences show that implications of CX3CL1-

CX3CR1 interaction depend on the microglial activation stimuli as well as the pathological 

context. 

Formerly mentioned evidences show the impact of CX3CL1-CX3CR1 signaling during 

inflammation [95, 97]. Nevertheless, its role on phagocytosis regulation has only started to be 

elucidated. Several authors have shown that apoptotic cells release CX3CL1, which binds to 

microglial CX3CR1 and a chemotaxic response is triggered, acting as a “find-me” signal (see 

Section 3.3.2) [101, 102]. Besides, other studies have established that CX3CL1-CX3CR1 

signaling modulates microglial phagocytosis and activation in a mouse model of retinitis 

pigmentosa [103]. Therefore, our next aim (Objective 1.2) will be focused on assessing the role 

of CX3CL1 on microglial phagocytosis in a mouse model of genetic CX3CR1 deficiency.  
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Figure 2. The role of CX3CL1-CX3CR1 signaling in the CNS. The chemokine fractalkine (CX3CL1) 
is highly expressed by neurons. CX3CL1 is recognized by CX3C chemokine receptor 1 (CX3CR1) 
(Y-shaped), expressed by surveillant microglia. Signaling between neurons and microglia has 
been related to many cell processes, such as microglial processes motility [89], synaptic 
integration and plasticity [92] and even long term potentiation [93, 94]. In addition to this, 
CX3CL1-CX3CR1 signaling is involved in the microglia activation state [95]. It can maintain 
microglia in a resting state by inhibiting the production of pro-inflammatory cytokines, and 
thus inflammation. CX3CL1-CX3CR1 signaling also determines the secretion of neurotoxic or 
neuroprotective factors, seen in some neurodegenerative diseases models [98]. On top of that, 
it exerts a relevant role in the inflammatory response [95, 97]. Remarkably, when neurons 
become apoptotic, CX3CL1 is cleaved from their membrane (diamond-shaped). Then microglia 
suffer chemotaxis, being attracted to soluble CX3CL1 (sphere-shaped), behaving as a “find-me” 
signal emitted by apoptotic neurons [101, 102], suggesting a possible role in phagocytosis. 

 

3.3. PHAGOCYTOSIS 

Phagocytosis is referred to the process of recognition, engulfment and degradation of a 

particle or solid structure (>0.5 µm) by a cell [104]. It constitutes the first line of defense 

against pathogens and clearance mechanism for cell debris triggered during normal brain 

development and injuries [105, 106]. In the brain, phagocytosis is mostly performed by 

microglia, the professional phagocytes. Other cell types are able to exert phagocytosis, such as 
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dendritic cells, neutrophils and also astrocytes [107] or neuroblasts [28, 108] but these are not 

as efficient as microglia in removing apoptotic bodies, and are therefore referred to as non-

professional phagocytes [107, 109]. Microglia have been shown to phagocytose a wide variety 

of cargo during physiological and pathological conditions. These phagocytosed targets can 

include synapses (see Section 3.1.2), microbes, axonal and myelin debris, pathogenesis-related 

proteins such as Aβ, living cells (phagoptosis) and also apoptotic cells [1], which is the focus of 

this PhD Thesis. 

Microbes: several evidences highlight the role of microglial cells in the clearance of microbial 

targets such as bacteria or fungi. Both microglia and astrocytes activation is immediately 

following the entry of bacteria into the CNS [110]. Specifically, it has been shown that microglia 

can phagocytose and kill Staphylococcus aureus [111], although in a minor proportion than 

neutrophils and macrophages. Furthermore, other studies have shown that microglia can also 

phagocytose fungal targets. In vitro experiments have revealed that the addition of IFN-γ 

enhances microglial phagocytosis of Cryptococcus neoformans [112]. The effect of microglial 

activation in response to microbes enables the recruitment of infiltrating immune cells, thus 

microglia impact on both innate and adaptative immune response during an infection.  

Axonal and myelin debris: microglial cells have been shown to remove other neuronal 

components, such as axonal debris, in order to permit the axonal outgrowth during brain 

injury. Microglia have been shown to phagocytose axonal debris in rat cortical explants in 

which neurites were sectioned [113]. Additionally, microglia have been able to eliminate the 

axonal debris in a co-culture model with induced axonal degeneration [114]. Besides, microglia 

have been shown to exert a role in the removal of myelin debris [115]. In physiological 

conditions, microglia phagocytose myelin residues released from aging myelin sheaths [116]. 

Moreover, the elimination of myelin debris is crucial in some demyelinating diseases like MS 

and nerve or spinal cord injuries. Therefore, the efficient removal of myelin remains essential 

for the remyelination process of demyelinating sites. 

Aβ plaques: several studies suggest that microglia also phagocytose Aβ residues. Aβ is a 

peptide generated by the cleavage of the amyloid precursor protein (APP) by β and γ-

secretases [117]. Aβ peptide can give rise to aggregates in amyloid plaques, as observed in AD 

[118]. Microglia have been shown to surround amyloid plaques in AD brains [119]. This leads 

to propose microglia as phagocytes of Aβ debris [120] but this is still not clear yet. Several 

reports support the phagocytosis of Aβ in vitro [121, 122]. Furthermore, Aβ internalization by 

microglia has been shown both in organotypic hippocampal slices [123] and in vivo [124]. 
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However, several studies report incomplete processing of Aβ residues [120]. Thus, there are no 

strong evidences of microglial processing of Aβ in vivo yet.  

Living cells (phagoptosis): Phagoptosis is a type of cell death in which a living cell dies as a 

result of being phagocytosed for another cell. Phagoptosis is initiated when PS and other 

considered “eat-me” signals are reversibly exposed on the surface of viable cells (for more 

details on “eat-me” signals see Section 3.3.2) , triggering its engulfment [125]. Therefore, cell 

death by phagoptosis can be prevented by inhibiting phagocytosis [126].  

Several studies have reported that living neurons are phagocytosed by microglia activated via 

LPS or Aβ [127, 128]. In vitro experiments with microglia defective for annexin 1 (ANXA1) 

protein have shown that microglial activation via inflammation impedes them to distinguish 

between apoptotic and viable neurons, giving rise to phagoptosis. These results highlighted 

the role of microglial ANXA1 protein in identifying apoptotic cells, since they serve as a bridge 

molecule between PS exposed by apoptotic cell and the phagocyte [129]. An inflammatory 

context increases the phagocytic capacity of microglia through the release of the adaptor 

protein milk fat globule-EGF factor 8 (MFG-E8), inducing the reversible exposure of PS on 

neurons to be phagocytosed via phagoptosis [127, 128]. Microglial phagocytosis of viable 

neurons by phagoptosis has been shown in a model of retinitis pigmentosa, in which retinal 

rod cells are removed by microglial phagocytosis, prevented by removing microglial cells or 

blocking vitronectin receptors (VNRs) [103]. In addition, phagoptosis has been demonstrated in 

other pathological contexts, such as ischemia [130] and epilepsy [37]. Other studies have 

revealed that, apart from removing viable neurons, microglia can remove neuronal processes 

in vitro [131]. 

In this PhD Thesis, we have focused on microglial phagocytosis of apoptotic cells. 

3.3.1. Phagocytosis of apoptotic cells 

Apoptosis or programmed cell death is a frequent phenomenon that occurs throughout life in 

almost every tissue, including brain, as a normal part of development, in homeostasis and in 

pathogenic processes [132]. 

Apoptosis can be initiated by two different mechanisms, the extrinsic and intrinsic pathways 

[133, 134]. The extrinsic pathway is activated by death signals mediated by death receptor 

ligands [135], whereas the intrinsic pathway is activated by cell stress, leading to the release of 

cytochrome C from mitochondria via B-cell lymphoma 2 (Bcl-2) proteins [135]. Both pathways 

are different in the involved initiator caspases but both share the executioner caspases (3, 6 
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and 7), which are responsible for the morphological and biochemical cell changes derived from 

apoptosis [134]. The most evident changes are the condensation of the cytoplasm as a 

consequence of the cell shrinkage, followed by nuclei condensation (pyknosis) and subsequent 

fragmentation (karyorrhexis), as well as the formation of membrane-encapsulated apoptotic 

bodies with portions of cytoplasm and nuclei [132, 136, 137]. The most relevant feature of 

apoptosis, contrary to necrosis, another mechanism of cell death [137], is that it leads to the 

recognition and engulfment of apoptotic bodies by phagocytes [42].  

3.3.2. Stages of phagocytosis  

Phagocytosis process is composed of three different stages (“find-me”, “eat-me” and “digest-

me”) (Figure 3), which allow the internalization and degradation of the cell corpses, 

maintaining the tissue homeostasis. Microglia need to receive some stimuli called “find-me”, 

“eat-me” and “digest-me” signals to perform phagocytosis [42]. First of all, apoptotic cells emit 

“find-me” signals that act as chemoattractors for microglial cells [138]. Second, microglia 

engulf apoptotic cells via “eat-me” signals detected by engulfing receptors, which imply 

cytoskeletal modifications in the microglial membrane [139]. Finally, engulfed particles are 

degraded with the aid of “digest-me” signals, which enable the formation of the phagosome, 

once the phagocytic pouch is sealed, and the posterior degradation of the cargo in the 

lysosome [1, 140, 141]. 

 

Figure 3. Phagocytosis of apoptotic cells by microglial cells. Microglial phagocytosis is 
initiated with the “find-me” stage, in which microglia find its target cell. Chemoattraction is 
mediated by several molecules such as lysophosphatidylcholine (LPC), sphingosine-1-
phosphate (S1P), fractalkine (CX3CL1), adenosine triphosphate (ATP) or uridine triphosphate 
(UTP). Next, in the “eat-me” stage, microglia and the target cell interact through microglial 
engulfment receptors allowing the recognition and engulfment of the cargo. Engulfment is 
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mainly mediated by phosphatidylserine (PS). Other molecules involved are annexin 1 (ANXA1), 
intercellular adhesion molecule 3 (ICAM3) and calreticulin (CRT). Finally, in the “digest-me” 
stage, the engulfed target cell will be degraded by microglial phagolysosome. Adapted from 
[1].  

 “Find-me” stage 

Microglial cells are able to find apoptotic bodies to phagocytose due to their highly motile 

processes [8, 9]. Motility allows microglia to scan the whole brain parenchyma in search for 

targets which emit signals to be phagocytosed. These signals are known as “find-me” signals, 

recruiting microglia to the apoptotic cells. There are many “find-me” signals such as CX3CL1, 

lysophosphatidylcholine (LPC), sphingosine-1-phosphate (S1P), and extracellular nucleotides 

that include adenosine triphosphate (ATP) and uridine triphosphate (UTP) [1, 38, 142-145]. 

- CX3CL1 was shown to act as a chemotactic factor for microglia, as mentioned before (See 

Section 3.2.2) [101, 102]. Moreover, CX3CL1 released from apoptotic cells was shown to 

induce the migration of macrophages in vivo and in vitro [144]. 

- LPC is known to be secreted by apoptotic cells through a mechanism dependent on caspase-

3-induced activation of phospholipase A2 (PLA2) [146], enabling phagocyte recruitment via 

interaction with G protein-coupled receptor 132, also known as G2A receptor [147]. 

Additionally, LPC promotes microglial colonization in the developing zebrafish midbrain [148].  

- S1P is another molecule released by apoptotic cells [145]. However, it has never been directly 

shown that S1P acts as a chemotactic factor. There are well characterized receptors for S1P 

and it has been demonstrated the presence of a S1P receptor in microglia [149]. However, the 

role of S1P interaction with this receptor and its possible influence in phagocytes recruitment 

has not been elucidated yet.  

- ATP and UTP have been shown to be released from apoptotic cells to attract phagocytes 

[143]. In the last few years, pannexin 1 channels have been revealed as one of the mechanisms 

in charge of releasing these nucleotides from apoptotic cells [150]. Once “find-me” signals 

manage to generate the contact between phagocytes and apoptotic targets, the next step in 

phagocytosis is the “eat-me” stage [1]. 

“Eat-me” stage  

The “eat-me” stage comprises the accurate recognition and posterior engulfment of the 

apoptotic cell by microglia [1]. 
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When the apoptotic cell or target is committed to be phagocytosed, “eat-me” signals are 

produced. A plethora of molecules have been described as mediators of “eat-me” stage. One 

of them and maybe the best characterized one is PS [151]. PS translocation from the inner to 

the outer leaflet of the cell membrane is commonly determined as an initiator of apoptotic 

process [137, 152]. Once the exposure is produced, PS manages to interact with several 

receptors (See Section 3.3.3) attached to the phagocyte membrane facilitating the 

internalization of the cargo [42, 153, 154].  

Several molecules are capable of eliciting “eat-me” signaling process other than PS, such as 

ANXA1, intercellular adhesion molecule 3 (ICAM3) or calreticulin (CRT) [155-157]. Once “eat-

me” signals and their respective receptors contact each other, the activation of the guanosine 

triphosphate (GTP)ase Rac is initiated within the phagocytes, which implies the reorganization 

of the phagocyte cytoskeleton giving rise to the formation of the phagocytic cup, a 

modification of the membrane in charge of internalizing the corpse [158, 159]. 

“Digest-me” stage 

After engulfment of the apoptotic cargo by the phagocytic pouch, the phagosome begins to 

take shape surrounding the ingested particle. From that moment on, degradation can occur. 

For that purpose, the phagosome suffers several maturation steps through fusion of 

endosomes and lysosomes [160]. In these new formed structures, called phagolysosomes, 

several ATPases maintain an acid pH for ensuring the degradation of the cargo through 

hydrolases [161]. Studies performed in Caenorhabditis elegans served to identify a 

convergence in respect to the intracellular signaling in phagocytes for the degradation of 

apoptotic bodies. Both nematodes and mammals share the involvement of the Rho GTPase 

CED10/Rac1 giving rise to the actin nucleation and cytoskeleton rearrangement needed for 

corpse removal [162]. Other studies have proposed that the signaling triggered after 

internalizing the cargo might regulate the phagocytic capacity of microglia to engulf additional 

corpses [163, 164]. Nevertheless, the process of phagosome formation and cargo degradation 

has been barely addressed in microglia. Live imaging experiments have shown that microglial 

vacuolar (v)ATPases are needed for these mentioned processes in C. elegans [165]. On top of 

that, the location where the cargo is degraded remains unknown. Microglial phagocytosis is 

usually carried out by terminal or en passant branches of ramified surveillant microglia [28, 

165]. Interestingly, it has been shown that phagocytic pouches are retrogradely transported to 

the cell soma in the mouse neocortex [9] and in C. elegans [165], suggesting a role of 
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cytoskeleton in phagosome transportation to finally degrade the cargo. Further research is 

needed to completely unravel the mechanisms of degradation of apoptotic cells by microglia. 

3.3.3. Phagocytosis receptors 

Phagocytes present diverse receptors attached to their membranes in order to initiate the 

engulfment of the cargo (Figure 4). Some of these engulfment receptors are T-cell 

immunoglobulin domain-containing 4 (TIM-4) [166] and MER proteins, both implicated in the 

clearance of apoptotic bodies by peritoneal macrophages via interaction with PS [167]. 

Receptor Mer tyrosine kinase (MerTK) was described as a mediator of clearance of apoptotic 

cells both in vivo and in vitro [168]. MerTK is able to bind to growth arrest-specific protein 6 

(GAS6) or protein S, mediating its interaction with PS on apoptotic cells in vitro [169]. 

Moreover, VNR can mediate phagocytosis via MFG-E8 protein in vivo and in vitro [170]. 

Curiously, a crossktalk between MerTK and VNR signaling pathways have been shown in cell 

lines, involving an enhancement of phagocytosis in vitro [169]. Another well-known 

engulfment receptor is Brain-specific Angiogenesis Inhibitor 1 (BAI-1), involved in the removal 

of dying neurons by microglia [171]. Another relevant receptor is Triggering Receptor 

Expressed on Myeloid cells-2 (TREM2), preferentially expressed in brain microglia [172] and 

also involved in phagocytosis, since it mediates apoptotic cell engulfment by microglia in vitro 

by forming a complex with the adapter protein DNAX-activation protein of 12 kD (DAP12) 

[173]. Recently, it has been proposed that apolipoprotein E (apoE) is the ligand for TREM2 

[174]. In this PhD Thesis we will focus on a novel phagocytosis receptor, GPR34. 
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Figure 4. Receptors related to phagocytosis of apoptotic cells. Schematic representation of 
transmembrane phagocytic receptors and their respective ligands exposed by apoptotic cells. 
Several receptors, such as Mer tyrosine kinase (MerTK), vitronectin receptor (VNR), T-cell 
immunoglobulin domain-containing 4 (TIM-4) or Brain-specific Angiogenesis Inhibitor 1 (BAI-1) 
recognize phosphatidylserine (PS), the most characterized signal of apoptosis [151], prior to 
phagocytose the corpse. In the case of MerTK, it needs the aid of several mediators such as 
growth arrest-specific protein 6 (GAS6) or protein S [169].Regarding VNR, it also needs an 
intermediate, such as milk fat globule-EGF factor 8 protein (MFG-E8), to engulf the cargo [170]. 
Another phagocytic receptor, such as G protein-coupled receptor 34 (GPR34), presents affinity 
for lysophosphatidylserine (lysoPS), derived from PS via phospholipase enzyme (PLA) [175], 
serving as signal for phagocytosing the apoptotic cell. Furthermore, Triggering Receptor 
Expressed on Myeloid cells-2 (TREM2), which creates a complex with DNAX-activation protein 
of 12 kD (DAP12) [173], exerts its phagocytic function by binding to apolipoprotein E (apoE) 
[174]. 

 

GPR34: It belongs to the P2Y12-line receptor family [176]. GPR34 is highly expressed in 

microglia [177, 178], constituting a key marker for this population [177]. In addition, it is 

expressed in macrophages, monocytes, dendritic cells, natural killer cells, megacaryocites, 

thymocytes and B cells [179, 180]. GPR34 has a role in the cellular response to immunological 

challenges [181] and it has been shown to mediate microglial phagocytosis, since GPR34-

deficient microglia present a decreased capacity for clearance in vitro [182]. This raises the 

possibility that GPR34 also mediates microglial phagocytosis in vivo. Therefore, the Objective 2 

of this PhD Thesis will be to assess whether GPR34 mediates microglial phagocytosis in vivo by 

the use of GPR34-deficient mice. 

3.3.3.1. GPR34 ligands 

GPR34 is activated by binding to its specific ligand lysoPS [183], the deacylated form of PS, via 

enzymes called phospholipases (PLAs) [175]. LysoPS has a complex structure. It consists of a 

single fatty acid bind to glycerol by an ester linkage, and L-serine residue connected to glycerol 

by a phosphodiester linkage [180]. LysoPS has been shown to elicit several cellular responses: 

to stimulate degranulation of mast cells [184]; to induce neurite outgrowth in PC12 cells [185]; 

to suppress the proliferation of T lymphocytes [186]; and to facilitate the migration of 

fibroblasts [187]. More interestingly, lysoPS has been implicated in the enhancement of 

macrophage-mediated phagocytosis of aged neutrophils in vitro [188]. Considering the 

involvement of lysoPS in phagocytosis in vitro, the Objective 3 in this PhD Thesis will be to 

assess its possible role on microglial phagocytosis both in vitro and in vivo. 
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3.3.3.2. GPR34-related receptors 

LysoPS recognition is not restricted to GPR34. It is shared with other three known receptors: 

P2Y10, GPR174 [189], and G2A [190] (Figure 5). Among these three receptors, only G2A has 

been linked to phagocytosis [190, 191], similar to GPR34 [182]. 

 -P2Y10: P2Y10 expression has been demonstrated to be restricted to the spleen and thymus  

[192]. Recent qPCR analyses have shown no expression in cultured microglial cells [193]. 

Additionally, recent studies have shown that P2Y10 is highly enriched in eosinophils compared 

to other leucocytes, being the only lysoPS receptor expressed by eosinophils as well [194]. It is 

known that P2Y10 interaction with lysoPS determines eosinophils degranulation [195]. 

Furthermore, in vitro studies with chinese hamster ovary (CHO) cells allowed to demonstrate 

that P2Y10 recognizes two ligands other than lysoPS, S1P and lysophosphatidic acid (LPA), both 

related to intracellular calcium (Ca+2) increases [196]. 

- GPR174: GPR174 receptor expression is also restricted to spleen and thymus, and no 

expression is detected in microglial cells at all [193]. This receptor has been involved in the 

suppression of T lymphocytes activation via lysoPS [197]. 

 - G2A: is highly expressed in B and T cells, although is predominant in macrophages [198, 199]. 

Its expression in microglia remains unknown. Studies in T lymphocytes allowed to identify 

sphingosylphosphorylcholine (SPC) as G2A receptor ligand [200]. SPC has been shown to 

induce intracellular signaling such as intracellular Ca+2 levels increase [200]. In spite of being 

initially defined as a proton sensor very sensitive to pH variations [201], G2A has been revealed 

as an enhancer of phagocytosis in macrophages as well. In the last few years, G2A has been 

shown to have affinity for a second ligand, lysoPS. Consequently, lysoPS-G2A interaction has 

been stated to influence the phagocytosis of apoptotic neutrophils by peritoneal macrophages 

[190, 191]. 
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Figure 5. GPR34-related (lysoPS) receptors and their ligands. Together with G protein-coupled 
receptor 34 (GPR34), three other receptors with affinity for lysophosphatidylserine (lysoPS) 
have been described: P2Y10, G protein-coupled receptor 174 (GPR174) and G2A. P2Y10 
receptor interaction with lysoPS molecule leads to eosinophils degranulation [195]. However, 
P2Y10 interaction with their two other known ligands, sphingosine-1-phosphate (S1P) and 
lysophosphatidic acid (LPA), are linked to increases in intracellular calcium (Ca+2) levels, 
observed in chinese hamster ovary (CHO) cells [196]. GPR174 receptor binding to lysoPS 
impedes the activation of T lymphocytes [197]. Lastly, G2A interaction with 
sphingosylphosphorylcholine (SPC) leads to increases in intracellular Ca+2 levels in lymphocytes 
[200]. On top of that, G2A receptor binding to lysoPS is related to the enhancement of 
phagocytosis of apoptotic neutrophils by macrophages [190, 191] . Apart from their role in 
microglia, GPR34 receptor, whose unique known ligand is lysoPS, is also known for being 
expressed in macrophages and lymphocytes, although their role in these cell types remains 
unknown. In the left, schematic representation of the different ligands (sphere-shaped) and 
receptors (Y-shaped). 
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3.3.4. Methods to quantify phagocytosis of apoptotic cells.  

The choice of reliable and consistent methods is fundamental in order to quantify phagocytosis 

properly. The assessment of microglial phagocytosis has been performed by both indirect and 

direct methods. 

Indirect methods (in vivo and in vitro) may not reliably represent phagocytic efficiency. Some 

of them are based on the use of classical phagocytosis markers such as macrosialin (CD68); or 

microglial ameboid morphology [141]. The use of CD68 to quantify phagocytosis [17] seems 

misleading since it has been shown that microglia with impaired phagocytosis overexpress this 

protein, together with the fact that CD68-defective mice do not exhibit any alteration in 

phagocytosis [37]. Concerning microglial morphology, it is important to remark that 

phagocytosis can be performed by either ramified or hypertrophic microglia, thus it is not 

advisable to associate microglial morphology to their ability to execute the phagocytic 

response [28]. 

Fortunately, several methods have been developed to directly quantify microglial phagocytosis 

in vivo [141]. One of these methods is based on the quantification of engulfed artificial targets, 

such as latex beads. While widely used, latex beads have several limitations, since they do not 

manage to emit any signal to be recognized as a target by phagocytes. Thus, they do not 

activate the different phagocytic response mechanisms in microglia [163]. Another method 

relies on 3D electron microscopy reconstruction. This technique has been used for quantifying 

synaptic elements [202]. Other method involves the use of light microscopy and 

immunostaining [203]. This method allows the identification of phagocytic cups but does not 

ensure that cups contain apoptotic cells. Two other techniques can be mentioned: 2-photon 

microscopy and confocal microscopy. These are considered the best methods to directly assess 

microglial phagocytosis in vivo. 2-photon microscopy has been employed for quantifying 

phagocytosis of apoptotic cells in zebra fish [204]. In this PhD Thesis we have used confocal 

microscopy combined with immunofluorescence. Confocal microscope allows the definition of 

three dimensional phagocytic pouches and also to visualize whether these are empty or 

encapsulating an apoptotic cell [28]. Considering that we have focused on studying 

phagocytosis of apoptotic cells, the use of confocal microscopy results fundamental for 

distinguishing with precision any corpse engulfed by microglia in our samples.  
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3.3.5. Downstream consequences of phagocytosis of apoptotic cells  

The removal of apoptotic cells via phagocytosis is essential to maintain tissue homeostasis. 

Whenever apoptotic cells are not phagocytosed properly, they give rise to secondary necrotic 

cells, involving the spillover of their intracellular contents, and triggering an inflammatory 

response [205] or autoimmune diseases [206]. Phagocytosis involves several benefits for the 

organism, apart from the removal of dead corpses or noxious agents [207]. It prevents the 

previously mentioned release of toxic cell components and importantly, exerts an anti-

inflammatory function [208], thus maintaining tissue homeostasis. Several studies show that 

phagocytosis of apoptotic cells is anti-inflammatory in vitro [209, 210]. In microglial cells, it has 

been shown that upon phagocytosis, TNF-α secretion by microglia drops and TGF-β increased 

when compared to LPS-stimulated microglia [43]. Phagocytosis of apoptotic cells is a complex 

process which may impact on several cell processes. In this PhD Thesis we have focused on the 

consequences of phagocytosis on the microglial metabolism and their possible implications in 

neurogenesis.  

The phagocyte metabolism is altered upon engulfment. The ingestion of apoptotic bodies by 

phagocytes is a tremendous metabolic load, involving the internalization of lipids, 

carbohydrates, proteins, nucleic acids or any other component belonging to target cells [211]. 

Nonetheless, the digestion of these materials remains the most unknown step of phagocytosis 

and the ultimate consequences for phagocytes have just begun to be unraveled. Related to 

this question, the novel concept of “trained immunity” has emerged in macrophages [212]. 

Upon engulfment of microbes, “trained” macrophages execute a metabolic shift from OXPHOS 

to aerobic glycolysis, the two main metabolic cell pathways for ATP production (described in 

detail in Sections 3.4.1.1 and 3.4.1.2). This process is supported by epigenetic modifications in 

key genes of the glycolytic pathway, such as hexokinase and pyruvate kinase, via the master 

glycolysis transcription factor hypoxia induced factor-1 alpha (HIF-1α) [212]. Since most of 

metabolic studies have been performed in macrophages, very little is known about the 

possible metabolic adaptations in microglial cells upon phagocytosis. Interestingly, previous 

functional analysis of the microglial transcriptome in our laboratory evidence changes in 

glycolysis and OXPHOS pathways upon 24h of phagocytosis, suggesting a metabolic adaptation 

process (Figure 6) (Data from Irune Díaz-Aparicio PhD Thesis, 2018). Therefore, the Objective 

4 of this PhD Thesis will be to study the possible metabolic adaptations in glycolysis and 

OXPHOS occurring in microglia upon phagocytosis. 
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Figure 6. Metabolic adaptations of microglial cells upon phagocytosis. Scheme reflecting the 
metabolic rearrangement in microglia upon 24h of phagocytosis via transcriptome analysis. 
Up-regulated genes are represented in green whereas down-regulated genes are represented 
in blue. Adapted from Irune Díaz-Aparicio PhD Thesis (2018).  

 

In addition to metabolic adaptations, phagocytosis may also serve to feed back into the 

surrounding cells and in this PhD Thesis we will study the adult neurogenic cascade. 

Specifically, we will focus on the SGZ of the hippocampus. In this region, the vast majority of 

newborns cells produced during neurogenesis become apoptotic and then are efficiently 

removed from the neurogenic niche by microglial cells via phagocytosis [28]. In addition, it has 

been shown that phagocytosis of apoptotic cells can trigger the secretion of trophic factors by 

microglia, such as TGF-β or NGF [43]. Moreover, vascular endothelial growth factor (VEGF) has 

been shown to be produced by hepatic macrophages upon phagocytosis. All these factors are 

identified as regulators of hippocampal neurogenesis in vivo [213, 214]. Thereby, the removal 

of dead corpses by microglia in the SGZ could be accompanied by the secretion of trophic 

factors which could help driving homeostasis in the neurogenic cascade, directly impacting on 

neurogenesis (Figure 7). With the aim to test whether microglial phagocytosis of apoptotic 

cells may involve any changes in neurogenesis, our Objective 5 is to assess whether 

phagocytosis impairment alters the hippocampal neurogenic cascade.  
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Figure 7. Microglial phagocytosis may involve benefits for the neurogenic cascade. The 
removal of apoptotic cells by microglia in the SGZ of the hippocampus may give rise to the 
secretion of several trophic factors that could impact positively on neurogenesis (represented 
by green arrows). Adapted from [28]. 
 

3.4. METABOLISM 

Metabolism constitutes an essential set of chemical transformations within the cells which 

provides the energy required to elicit several functions such as mitosis or ATP synthesis [215]. 

The brain presents high metabolic demands and consumes nearby 20% of the available oxygen 

in the organism [216]. Whereas adult brain utilizes glucose as the absolute energy substrate, 

the developing brain can employ other molecules such as glycerol, lactate or amino acids 

[217]. When alternate molecules are used to produce energy, the brain still has an absolute 

requirement for glucose [217]. 

Glucose taken up by the brain serves as the fuel in a coordinated network of metabolic 

pathways including glycolysis, performed in the cytosol, followed by the tricarboxylic acid 

(TCA) cycle, the electron transport chain (ETC) and OXPHOS fundamentally, performed within 

Subgranular
Zone

Granule Cell 
Layer

Quiescent 
NPCs

Amplifying 
NPCs

Early 
Neuroblasts

Immature 
Neurons

Granule 
Neurons

Late 
Neuroblasts

APOPTOTIC NEWBORN NEURONS

TROPHIC
FACTORS

PHAGOCYTOSIS OF 
APOPTOTIC CELLS

48 
 



mitochondria [216]. In the next sections, we will delve into the description of these metabolic 

pathways just like the function and properties of mitochondria, known to exert a fundamental 

role in the metabolism of eukaryotic cells.  

3.4.1. Metabolic pathways in eukaryotic cells 

Two main metabolic pathways are responsible for the ATP production in eukaryotic cells: 

glycolysis and OXPHOS. 

A complex network of metabolic reactions is triggered from the glucose uptake by cells to its 

conversion into pyruvate in the cytosol. After glycolysis, pyruvate is incorporated into the 

mitochondria and transformed to acetyl-coenzyme A (acetyl-CoA). Then, acetyl-CoA is 

converted into citrate in the TCA cycle, in which intermediate molecules such as nicotine 

adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) are produced and 

employed as electron donors in the ETC of the inner mitochondrial membrane to initiate redox 

reactions which lead to the ATP production in the mitochondrial matrix in a process called 

OXPHOS. These metabolic pathways will be detailed below.  

3.4.1.1. Cytosolic metabolic pathways 

The cytosol is the liquid part of the cell cytoplasm. This cell site is responsible for signal 

transduction processes from the cell membrane to the nucleus [218] or organelles [219]. 

Additionally, the cytosol is the site of most prokaryote metabolism [220] and an important part 

of eukaryotic metabolism. Many important biochemical processes within eukaryotic cells take 

place in the cytosol, such as protein biosynthesis, glycolysis, the pentose phosphate pathway 

and gluconeogenesis, which will be introduced next.  

Aerobic and anaerobic glycolysis  

The glycolytic pathway is often referred to as Embden-Meyerhof pathway in honor of these 

two biochemists who made a major contribution to its knowledge in the 1930s. The glycolytic 

pathway was completely elucidated in 1940 [221]. Glycolysis is a major pathway for ATP 

production and very essential for brain, which is dependent on glucose as source of energy. 

Many glycolytic intermediates are taking part in other pathways since they are employed for 

amino acids or lipid synthesis [222]. Glycolysis can occur in presence or absence of oxygen 

(aerobic and anaerobic glycolysis, respectively). In aerobic conditions, pyruvate is carried into 

the mitochondria through a pyruvate carrier in a process called oxidative decarboxylation. 

Afterwards, pyruvate is converted into acetyl-CoA through the pyruvate dehydrogenase (PDH) 
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enzyme, and then metabolized in the TCA cycle [216] (Figure 8). In anaerobic conditions, 

pyruvate is reduced by NADH to lactate via lactate dehydrogenase [223]. NADH2 used in this 

step is obtained from that obtained in the reaction catalyzed by glyceraldehyde-3-phosphate 

dehydrogenase enzyme during aerobic glycolysis. The conversion to lactate allows 

regenerating NAD+, which can be reused by glyceraldehyde-3-phosphate dehydrogenase, so 

glycolysis and thus ATP production can continue even without oxygen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Aerobic and anaerobic glycolysis. Scheme representing the biochemical reactions 
triggered in both routes. In aerobic glycolysis, pyruvate generated in the cytosol (from glucose) 
enters the mitochondrion and it is converted into acetyl-Coenzyme A (acetyl-CoA). 
Subsequently, the TCA cycle is initiated. In anaerobic glycolysis, pyruvate is extruded from the 
cell and converted to lactate. The number of molecules produced in each step is shown in 
brackets. 
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Pentose phosphate pathway, gluconeogenesis and other cytosolic pathways 

The pentose phosphate pathway (PPP) is an alternative route in which glucose-6-phosphate 

(G6P) is not driven to ATP synthesis, contrary to glycolytic pathway. The PPP comprises two 

phases: the oxidative phase and the non-oxidative phase. 

During the oxidative phase, nicotine adenine dinucleotide phosphate (NADPH) and 

ribonucleotides are produced through three different biochemical reactions. First, G6P is 

dehydrogenated by glucose-6-phosphate dehydrogenase (G6PDH) to yield NADH and other 

product called 6-phosphogluconolactone. Second, 6-phosphogluconolactone is hydrolyzed into 

6-phosphogluconate via 6-phosphogluconolactonase (6PGL). Third, 6-phosphogluconate is 

decarboxylated via 6-phosphogluconate dehydrogenase (6PGDH) to yield a second NADH and 

ribulose-5-phosphate (Ru5P), which is converted to ribose-5-phosphate (R5P). The non-

oxidative phase involves a series of reversible reactions that recruit additional glycolytic 

intermediates, such as fructose-6-phosphate (F6P) and glyceraldehyde-3-phosphate (G3P), 

which can give rise to pentose phosphates and vice versa [224, 225]. 

Other metabolic pathways occur in cytosol, such as gluconeogenesis. Gluconeogenesis is a 

complex metabolic process in which glucose is synthesized from non-carbohydrate precursors, 

such as glycerol, lactate, pyruvate and glucogenic amino acids [226]. Contrary to glycolysis, it is 

an anabolic pathway, which comprises a series of reactions, some of them related to glycolytic 

pathway (reverse steps) and others exclusive of gluconeogenesis. These exclusive biochemical 

reactions involve: the conversion of pyruvate to phosphoenolpyruvate via pyruvate 

carboxylase (PC) and phosphoenolpyruvate carboxykinase (PEPCK); the conversion of fructose-

1,6 biphosphate to fructose-6-phosphate through fructose biphosphatase (FBPase) activity; 

and the conversion of G6P to glucose via glucose-6-phosphatase (G6Pase). Other metabolic 

pathways present in the cytosol include serine biosynthesis, glyceroneogenesis, glutaminolysis, 

cataplerosis or anaplerosis [226] in which the enzymes PEPCK, FBPase or G6Pase participate as 

well. 

3.4.1.2. Mitochondrial metabolic pathways 

As the main organelle responsible for ATP production in eukaryotic cells, the mitochondrion 

houses a plethora of metabolic processes involving sugars, fats and proteins. The most 

relevant metabolic pathways produced in mitochondria are two: the TCA cycle, performed in 

mitochondrial matrix and OXPHOS, performed in the inner mitochondrial membrane (IMM) 

(Figure 9). Furthermore, mitochondria are also able of exerting other remarkable processes 
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like the β-oxidation of fatty acids or Ca+2 handling [227]. Most of these biochemical reactions 

will be summarized below. 

TCA cycle 

The TCA cycle is the most important central pathway, since it connects almost all the metabolic 

pathways. It constitutes the final common pathway for the oxidation of carbohydrates, 

proteins and lipids. The reactions and components of the TCA cycle were established in 1930 

[228] and it was firstly proposed by Hans Krebs in 1937. 

The TCA consists of eight different phases. In the first phase or condensation phase, acetyl-CoA 

and oxalacetate are converted to citrate in a reaction catalyzed by citrate synthetase [216]. 

The second phase implies the isomerization of citrate molecule. Aconitase enzyme allows the 

conversion of citrate into cis-aconitate [229]. Later, cis-aconitate is converted to isocitrate. The 

third phase involves the conversion of isocitrate into alpha-ketoglutarate by isocitrate 

dehydrogenase, producing the cofactor NADH2. In the fourth phase, a complex of enzymes 

leads to the formation of succinyl-coenzyme A (succinyl-CoA) from alpha-ketoglutarate via 

alpha-ketoglutarate dehydrogenase [230]. Afterwards, in the fifth phase, succinyl-CoA gives 

rise to succinate by succinic thiokinase. In the sixth phase, succinate will be converted to 

fumaric acid via succinate dehydrogenase [231]. This reaction is accompanied by the 

conversion of FAD into FADH2. The seventh reaction consists of the hydration of the fumaric 

acid via fumarase enzyme [232] to form malate. Finally, in the eighth phase, malate is 

converted to oxalacetate by the malate hydrogenase enzyme. During the reaction, NAD is 

converted to NADH2. This oxalacetate will be part of a new round of the TCA cycle when helps 

acetyl-CoA form a new molecule of citrate [233]. 

As a result of the TCA cycle, two molecules are used as electron donors in the ETC of the IMM 

to produce ATP via OXPHOS: these are the coenzymes NADH and FADH2 [216]. These 

coenzymes are able to regenerate NAD+ and FAD for the TCA cycle as well [216]. 

Oxidative phosphorylation (OXPHOS) 

OXPHOS constitutes the biochemical process through which the energy released by the 

oxidation of substrates is used to drive ATP synthesis, a fundamental molecule for many 

biological processes in the organism.  

OXPHOS process was unraveled by Peter Mitchell several decades ago. His chemiosmotic 

theory, still in force, established that the mitochondrial ETC is coupled to ATP synthesis 

through an electrochemical proton gradient [234, 235]. 
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The ETC is composed of several carrier proteins in charge of the passage of the electrons given 

by NADH and FADH2. The carriers of the ETC are organized into four protein complexes. The 

electrons, through several redox reactions across these complexes, are directed to oxygen and 

the energy released by these reactions drives the synthesis of ATP from ADP in a process called 

OXPHOS. This phenomenon occurs in a fifth complex, called ATP synthase, which couples the 

energy of redox reactions generated in the previous four to synthesize ATP. 

Eventually, the breakdown of glucose via glycolysis allows the production of acetyl-CoA within 

mitochondria. Inside this organelle, acetyl-CoA enters the TCA cycle and gives rise to the 

production of NADH and FADH2 in the mitochondrial matrix. Both molecules act as electron 

donors for the ETC, located in the IMM. 

NADH donates electrons to complex I of the ETC. These electrons are then passed through the 

coenzyme Q (Q) to complex III. In complex III, electrons are transferred from cytochrome b to 

cytochrome c. Cytochrome c, located in the outer face of the IMM, carries the electrons to 

complex IV, where they are finally transferred to oxygen. Remarkably, a different complex, 

called complex II, receives electrons from succinate, produced in the TCA cycle. The electrons 

are then directed to FADH2 instead of NADH. Afterwards, electrons reach Q, then pass to the 

complex III and finally to complex IV, as mentioned above. This complex constitutes an 

alternative route to the transfer of electrons from NADH to Q at complex I. The passage of 

electrons from FADH2 to Q through complex II does not involve a drop in free energy. 

Therefore, it is not coupled to ATP synthesis.  

The energy derived from the electron transport through complexes I, III and IV is coupled to 

the generation of a proton gradient which passes from the mitochondrial matrix to the 

intermembrane space (IMS). The electrochemical proton gradient created allows complex V 

(ATP synthase) to couple the flow of protons back across the membrane to the synthesis of 

ATP. 

Other mitochondrial metabolic pathways 

Together with TCA cycle and OXPHOS, other pathways are developed within these organelles 

such as Ca+2 handling or β-oxidation of fatty acids. 

Ca+2 handling is produced in the mitochondrial matrix in order to balance the energy demands 

of the cell and the energy produced by OXPHOS. When the cytosolic Ca+2 concentration 

increases, mitochondria execute Ca+2 uptake through an uniporter channel located in the IMM 

[236]. The subsequent rise of Ca+2 levels in mitochondrial matrix then activates some enzymes 
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of TCA cycle: pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and NAD-isocitrate 

dehydrogenase. As a consequence, the amount of NADH available to the start of the ETC 

increases, finally triggering a rise in the ATP synthesis via OXPHOS [237].  

β-oxidation of fatty acids is initiated when cytosolic fatty acids are esterified to long chain acyl-

coenzyme A (acyl-CoA). Then, the acyl group of the long chain acyl-CoA is transferred to 

carnitine by carnitine palmitoyltransferase-1 (CPT-1) in the outer membrane. The new 

molecule formed, acylcarnitine, is transported across the inner membrane via carnitine 

translocase (CAT) until reaching the matrix. When acylcarnitine reaches the mitochondrial 

matrix, it will be reconverted to long chain acyl-CoA and carnitine via CPT-2. Then, long chain 

acyl-CoA enters the β-oxidation pathway, leading to the production of acetyl-CoA, which will 

be driven to TCA cycle to produce NADH and FADH2 [238]. 
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Figure 9. Main mitochondrial pathways in mammalian cells. Glucose is converted to pyruvate 
in the cytoplasm via glycolysis. Then, pyruvate (in aerobic conditions) is carried to 
mitochondrion where it will be converted to acetyl-coenzyme A (acetyl-CoA). Acetyl-CoA allows 
the initiation of the tricarboxylic acid (TCA) cycle in the mitochondrial matrix, where several 
biochemical reactions are produced to finally obtain two electron donor molecules, such as  
nicotinamide adenine dinucleotide (NADH) and flavin adenine dinulceotide (FADH2). These 
molecules give electrons to the electron transport chain (ETC) complexes, which generate an 
electron flow across the inner mitochondrial membrane (IMM). NADH give some electrons to 
complex I, which pass through the coenzyme Q (Q) to complex III. In complex III, electrons go 
through cytochrome c (Cyt C) to finally reach complex IV. The energy derived from the electron 
flow will be coupled to the generation of a proton gradient directed from the mitochondrial 
matrix to the intermembrane space (IMS). The electrochemical proton gradient created allows 
complex V (ATP synthase) to couple the flow of protons back across the membrane to the 
synthesis of ATP in a process called OXPHOS. Furthermore, there is an alternative route for the 
electron flow: complex II receives electrons from succinate. Electrons are directed to FADH2 and 
reach Q, from where they will be directed to the complex III and thus to complex IV. 
Remarkably, this route is not coupled to ATP synthesis. White-dotted arrows indicate the 
electron flow and black-dotted arrows indicate the proton gradient.  

3.4.2. Mitochondria: definition, origin and functions 

Mitochondria are double-membrane bound cell organelles, which act as powerhouses within 

eukaryotic cells to meet with any cellular demand. Many studies performed during the 20th 

century demonstrated that mitochondria evolved from endosymbiotic bacteria, thus having a 

prokaryotic origin [239-241]. As a consequence of this origin, they possess a residual genome 

known as mitochondrial DNA (mtDNA) encoding a total of 13 proteins, essential for the 

respiratory chain [242]. Defects in mtDNA have been associated to several diseases, such as 

Leigh syndrome, Leber’s hereditary optic neuropathy or myoclonus epilepsy with ragged red 

fibers [243, 244]. Mitochondria are in charge of energy production via ATP, phospholipids 

synthesis and heme generation, a prosthetic group that is an essential component of 

hemoglobin but also found in other proteins and enzymes such as cytochromes, catalases or 

nitric oxide synthase [245, 246]. Mitochondria are also responsible for regulating Ca+2 

homeostasis, apoptotic activation and cell death [247, 248]. Moreover, they constitute the 

location where very relevant processes such as OXPHOS, the TCA cycle and β-oxidation of fatty 

acids take place [227], detailed above (Section 3.4.1.2).  

3.4.2.1. Mitochondrial dynamics  

Mitochondria are characterized for being very dynamic organelles. This dynamism is translated 

into several behaviors that include: fusion (the joining of two mitochondria into one) and 
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fission (the opposite process), whose balance determines the mitochondrial network 

morphology; transport (directed movement); and mitophagy (self-destruction via autophagy) 

[227] (Figure 10). Interestingly, in the last several years many studies have focused on the 

possible link between mitochondrial metabolism and these dynamics, which will be described 

next.  

Fusion 

Mitochondrial fusion is a two-step process that requires fusion of the outer membrane 

followed by the inner-membrane. In mammals, this process is mediated by three GTP 

hydrolases (GTPases) that belong to the dynamin superfamily [249]. These GTPases are 

mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2), involved in outer membrane fusion; and optic 

atrophy 1 (Opa1), involved in inner membrane fusion. Mitofusins loss of function gives rise to 

the fragmentation of mitochondrial network [250]. Fusion is very important for OXPHOS 

activity, especially because it can regulate the mtDNA levels. Furthermore, some studies stated 

that the addition of substrates which promote OXPHOS activity led to the stimulation of 

mitochondrial fusion [251].  

Fission 

Mitochondrial fission (division) is a complementary function to fusion. Mitochondrial division is 

crucial for cellular physiology [252], since it permits the removal of damaged mitochondria via 

a specialized form of autophagy, called mitophagy [253], which facilitates its degradation and 

recycling. 

Mitochondrial fission is mediated by Dynamin-related protein 1 (Drp1). Drp1 exerts its function 

in a GTP-dependent manner in the outer mitochondrial membrane via aid of other proteins 

such as Mff, Fis1, MiD49 and MiD50 [227]. Several metabolic mechanisms have been proposed 

to regulate mitochondrial fission, being the phosphorylation of Drp1 one of the most 

characterized ones [254-256]. 

Transport  

The location of mitochondria within cells results crucial. In neurons, mitochondria can move to 

the axon terminals in order to supply energy-demanding processes since they are the main 

source of ATP in cells. In many mammals, mitochondrial transport is possible due to the action 

of several motor proteins which work along the microtubule network of cells fundamentally 

[257]. These proteins, called kinesins, allow mitochondrial transport both towards the axon 
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terminals in the case of neurons (anterograde) whereas the transport towards cell soma 

(retrograde) is mediated by dyneins [258]. In order to direct the anterograde transport of 

mitochondria along the cell microtubules, kinesins need to be connected to mitochondria 

through GTPases Miro1 and Miro2. These GTPases interact with kinesin motor proteins via 

Milton proteins (Track1 and Track2), then constituting the Miro-Milton-kinesin complexes. In 

contrast, the retrograde transport of mitochondria requires a complex formed by dynein and 

the adaptor protein dynactin. Dynactin binds directly to cytoplasmic dynein and microtubules, 

and together with huntingtin-associate protein 1 (HAP1), is essential to the mitochondrial 

transport in the negative direction [259].  

Mitophagy 

The amount of mitochondria in a cell depends of a balance between biogenesis and 

degradation. When mitochondria are excessive or become defective, they suffer clearance via 

an autophagy process called mitophagy. The best studied model to understand mitophagy 

pathway involves Pink1 and Parkin, relevant genes in some cases of familial PD. Pink1 is often 

imported and degraded inside mitochondria. Cell stress induces mitochondria depolarization, 

triggering the accumulation of Pink1 on the outer mitochondrial membrane [260]. This is 

followed by Parkin recruitment and ubiquitination of outer membrane proteins and 

consequently, autophagy is initiated [261]. Interestingly, under glucose deprivation conditions, 

OXPHOS is increased, thus leading to the enhancement of mitophagy [262]. 
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Figure 10. Mitochondria are very dynamic organelles. Schematic representation of the four 
different dynamics performed by mitochondria. From the top to the bottom, mitochondrial 
joining (fusion), division (fission), transport along microtubules (anterograde and retrograde) 
and degradation via mitophagy. Mitochondrial fusion is mediated by three proteins: optic 
atrophy 1 (Opa1), mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2). Fission is principally mediated by 
dynamin-related protein 1 (Drp1). Anterograde transport (towards axon terminal in the case of 
neurons) of mitochondria is possible thanks to the complex Miro-Milton-Kinesin-1. Retrograde 
transport (towards cell nucleus) involves the complex dynein/dynactin and huntingtin-
associated protein 1 (HAP1) protein. Lastly, defective or excessive mitochondria undergo 
mitophagy through Pink1 and Parkin proteins. 

 

3.4.3. Cellular metabolism analysis methods  

Traditionally, methods used to assess cell metabolism rely on extracellular flux analysis. Some 

of the classical extracellular flux analysis methods are: the Clark-type oxygen electrode 

(Hansatech Instruments), the Oroboros oxygraph-2k (Oroboros Instruments) or fiber optic 

oxygen sensors (Ocean Optic Sensors). 

The Clark-type electrode measures oxygen dissolved in liquid or gas phase in the sample 

chamber by polarography [263], a process used to determine the oxygen content of electrolyte 

solutions (and of several tissues) by using solid microelectrodes. It is employed for intact and 

permeabilized cells as well as on isolated mitochondria. It has the advantage that many 

inhibitors and substrates can be added. However, large sample sizes are required and the 

chamber is stirred so cells cannot be adherent. 

The Oroboros oxygraph is similar to the former method, although it uses a Clark-type electrode 

with high-resolution respirometry [264], based on the measurement of changes in oxygen 

concentration. In this case, small sample sizes are sufficient and it presents increased 

detection sensitivity. Nevertheless, the oxygraph is very expensive.  

Finally, the fiber optic oxygen sensors measure the partial pressure of dissolved or gaseous 

oxygen in a sample by fluorescence [265]. In spite of existing more sophisticated methods 

(described next), the sensors have a prolonged lifetime and do not consume oxygen, so they 

permit extended measurements of samples. 

These classical techniques have been gradually replaced by the use of modern methods, such 

as the XF Extracellular Flux Analyzer (Seahorse Bioscience), the most accurate method to 

assess cell metabolism at the moment. This is the first instrument which simultaneously 
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measures both cellular respiration (oxygen consumption rate (OCR)) and glycolysis 

(extracellular acidification rate (ECAR)). Remarkably, XF Extracellular Flux Analyzer presents an 

alternative method to assess glycolysis which relies on the proton efflux rate (PER) 

measurement. XF Extracellular Flux Analyzer method can be briefly explained: cells (or 

mitochondria) are plated in a 24 or 96 wells-microplate. Then, a small volume of cell medium is 

isolated above a monolayer of cells within the microplate, creating a “transient 

microchamber”. Both respiration and glycolysis cause rapid and measurable changes to the 

concentrations of dissolved oxygen and free protons in this “microchamber”, which are 

measured every few seconds by sensor probes above the cell monolayer. Once a 

measurement is completed, the probes lift, allowing the larger cell medium above to mix with 

the medium in the “microchamber”, restoring cell values to baseline. Additionally, the analyzer 

presents an integrated drug delivery system which allows the injection of up to three 

compounds per well. Several combinations can be employed, depending on the kit chosen. The 

two main Seahorse kits employed are: XF Cell Mito Stress Test Kit and XF Glycolysis Stress Test 

Kit. 

-XF Cell Mito Stress Test Kit, specific for assessing mitochondrial function, allows the sequential 

injection of oligomycin (ETC complex V inhibitor), which aids to estimate ATP production; 

carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), which disrupts the 

mitochondrial membrane potential and permits to estimate the maximal mitochondrial 

respiration; and a mix of rotenone/antimycin A (inhibitor of ETC complexes I and III), which 

blocks mitochondrial respiration, giving information about the respiration produced by 

processes outside mitochondria.  

-XF Glycolysis Stress Test Kit, used for measuring glycolytic function, first injects glucose to 

generate pyruvate and estimate basal glycolysis; next, oligomycin is injected to inhibit the ETC 

complex V, revealing the maximum glycolytic capacity of cells; and finally an injection of 2-

deoxy-glucose (2-DG), a glucose analog, inhibits the glycolytic pathway, determining the 

acidification of extracellular medium not attributed to glycolysis.  

Furthermore, the XF Extracellular Flux Analyzer technology also employs indirect methods to 

study cell metabolism. For instance, we can mention the measurement of mitochondrial fuels 

oxidation. This method uses some inhibitors to evaluate the dependency and the capacity of 

cells to oxidize glucose, glutamine or fatty acids oxidation. Therefore, it provides some 

information about the contribution of these molecules to basal respiration. Other indirect 

methods, such as L-lactate assays (Abcam), are based on the lactate oxidation by the enzyme 
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lactate dehydrogenase, generating a product which interacts with a probe. Therefore, the 

amount of lactate in a sample is efficiently detected.  

3.4.4. Metabolism regulation in macrophages and microglia 

Energy demands exerted by cells are responsible for both their energetic production and the 

substrates influx inside them. In physiological conditions, immune cells, such as macrophages 

and microglia present a metabolic profile that depends on the energy substrate received. 

However, this metabolic profile can be altered upon cell activation state. 

Metabolism regulation in macrophages 

Several reports have shown that changes in the activation state of macrophages are linked to 

metabolic alterations. For instance, anti-inflammatory cytokine IL-4-stimulated macrophages 

exhibit increased OXPHOS [266, 267]. In contrast, studies performed in peripheral 

macrophages have stated that their activation via pro-inflammatory stimuli triggers a 

metabolic switch from OXPHOS to anaerobic glycolysis in order to increase ATP production 

[268]. Accordingly, LPS/IFN-γ-activated macrophages have shown increased glycolytic 

metabolism at the expense of OXPHOS, which is impaired [266, 269]. Besides, pro-

inflammatory macrophages present a disrupted TCA cycle, allowing acetyl-CoA to generate 

fatty acids, lipids or even cytokines [270, 271].  

Furthermore, the enhancement of glycolysis upon inflammation allows macrophages to 

generate sufficient ATP to perform important tasks such as inflammatory cytokines 

production, formerly mentioned, but also phagocytosis [272, 273]. Interestingly, it is known 

that upon engulfment of microbes, macrophages rely on aerobic glycolysis at the expense of 

OXPHOS [212] in a process called “trained immunity” (see Section 3.3.5). The same 

phenomenon has been observed in macrophages upon phagocytosis of β-glucan [212]. 

Therefore, in both inflammatory and phagocytic contexts, macrophages increase glycolysis, 

suggesting a link between these processes.  

Metabolism regulation in microglia 

Initial works were performed in microglia cell lines. Several studies with BV2 microglia cell line 

have established that microglial activation via LPS or IFN-γ induction gives rise to a drop in 

mitochondrial function [274, 275]. Furthermore, it has been also shown that LPA-induced 

activation of C13NJ microglia cell line leads to alterations in glycolysis but also in motility and 
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morphology [276]. Additionally, LPS-stimulated BV2 microglia exhibit increased glycolysis via 

the suppression of mitochondrial function by glucose-regulated protein 75 (Gpr75) [277]. On 

top of that, LPS stimulation leads to an increase in the PPP pathway, leading to enhanced 

nucleic acid production for gene transcription [278]. 

Although these evidences reveal metabolic changes in microglial cells depending on their 

activation state, very little is known about the possible metabolic adaptations produced in 

microglia upon performance of one of their most important features, such as phagocytosis. 

Unfortunately, most of metabolic studies have been performed in macrophages. Therefore, 

our Objective 4 will be to evaluate whether microglial phagocytosis of apoptotic cells give rise 

to any metabolic changes, particularly in glycolytic and OXPHOS pathways. 

 

3.5. ADULT HIPPOCAMPAL NEUROGENESIS 

Neurogenesis refers to the formation of newborn neurons in the brain. The first evidences of 

neurogenesis in the adult mammalian brain were detected many decades ago, thanks to the 

use of [3H]-thymidine autoradiography, which allowed the visualization of newborn neurons in 

adult rat and cat brains [279, 280].  

Neurogenesis has been described in several brain regions of many species. It has been 

identified in songbirds [281] and also in reptiles and fish [282]. In mammals, there are two 

brain regions in which the production of newborn neurons is maintained throughout 

adulthood: the SVZ, in which olfactory bulb neurons are produced and the SGZ of the 

hippocampus, which generates granule cells [283]. In this PhD Thesis, we focused on the DG of 

the SGZ, since it serves us as a good tool to assess microglial phagocytosis via the engulfment 

of apoptotic newborn neurons constantly produced in this neurogenic niche.  

In humans, several studies have confirmed adult neurogenesis in the DG [284-286] whereas it 

remains controversial in the SVZ [287, 288]. In addition, controversy exists about the 

persistence of neurogenesis in adult humans. It has been recently published that the amount 

of proliferating progenitors and newborn neurons is greatly reduced in the DG of the SGZ after 

the first year and it is undetectable in adults [289, 290]. In contrast, other studies state that 

adult human neurogenesis continues in the DG until the eighth decade of life [291]. Therefore, 

more investigation is needed to elucidate the length of human adult neurogenesis. 
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3.5.1. Neurogenic cascade in the SGZ of the hippocampus 

Adult hippocampal neurogenesis is complex and comprises several phases. The neurogenic 

cascade is maintained by the proliferation of NSCs located in the SGZ [292, 293]. These NSCs 

were first described as radial astrocytes [294]. They are characterized by the presence of an 

apical process extended towards the molecular layer, giving them one more name: radial 

neural stem cells (rNSCs). In addition, NSCs present expression of several proteins shown to be 

expressed by astrocytes as well, such as glial fibrillary acidic protein (GFAP), vimentin and brain 

lipid-binding protein (BLBP) [295]. They also express nestin and Sox2 [292, 296]. NSCs are 

usually maintained in mitotic quiescence, with a low rate of division [297]. NSCs divide 

asymmetrically, generating astrocytes [293] and a new cell population of called amplifying 

neural progenitors (ANPs), which divide several times before they differentiate into neuronal 

precursors [298]. 

ANPs are characterized for presenting low levels of GFAP, vimentin and nestin, even though 

they maintain similar levels of Sox2 and BLBP as NSCs [292]. In this differentiation step, up to 

60% of ANPs undergo apoptosis and are efficiently removed by unchallenged microglia in 

physiological conditions [28]. The remaining viable ANPs give rise to neurons and maturate 

into granule cells [295]. ANPs stop dividing at 1 week-old giving rise to the next cell population, 

neuroblasts [297]. 

Neuroblasts express markers of immature neurons such as doublecortin (DCX) and 

polysialylated neuronal cell adhesion molecule (PSA-NCAM) and start extending neurites. 

Concomitantly, they start expressing several neurotransmitter receptors, first gamma-

Aminobutyric acid (GABA) (inhibitory) and later glutamate (excitatory) [299, 300]. After a 

period of 3 weeks approximately, neuroblasts acquire a new morphology. Relying on these 

morphological characteristics, neuroblasts were divided in a total of six categories [301]. First, 

A-B cells, which are devoid or present short processes parallel to the granular cell layer. 

Second, C-D cells with medium processes, some of them able to reach the molecular layer of 

the hippocampus. Third and finally, E-F cells, which have one strong dendrite branching in the 

molecular layer or a dendritic tree branching in the granular cell layer of the hippocampus 

[301].  

These cells start having very short processes and eventually evolve becoming cells clearly 

polarized. For this purpose, the axon extends towards the hilus. Once reached this region, the 

axon joins the mossy fibers that innervate CA region of the hippocampus and the main 

dendrite progresses across the granule cell layer until reaching the molecular layer. 
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Furthermore, dendritic spines start receiving synaptic input [299]. Then, newborn neurons 

with NMDA receptors expression are selected to integrate into the hippocampal circuitry [302] 

(Figure 11). After several weeks, both morphology and electrophysiological properties of 

surviving newborn neurons are equivalent to those of granule cells [299]. 

 

Figure 11. Adult hippocampal neurogenic cascade. In the subgranular zone (SGZ) of the 
dentate gyrus (DG) of the hippocampus, we find quiescent neural progenitors (NPCs), also 
named radial neural stem cells (rNSCs). rNSCs, positive for nestin and Sox2 protein expression, 
divide asymmetrically giving rise to astrocytes, which express glial fibrillary acidic protein 
(GFAP), vimentin and brain lipid binding protein (BLBP) (rNSCs do express these three markers 
as well), and amplifying neural progenitors (ANPs). The majority of these ANPs will undergo 
apoptosis and be phagocytosed by surveillant microglia in their first 1-4 days of life. The rest of 
them will differentiate into neuroblasts, which express doublecortin (DCX) and polysialylated 
neuronal cell adhesion molecule (PSA-NCAM) as main markers. Neuroblasts are categorized in 
three groups: A-B, devoid or with short processes; C-D, with medium processes; and E-F, with at 
least one process branching in the molecular layer. Neuroblasts will extend their processes until 
becoming granule cells integrated in the hippocampal circuitry as mature neurons. Adapted 
from [295].  

 

3.5.2. Function of adult hippocampal neurogenesis 

Adult newborn neurons integrated into the hippocampal network are susceptible of 

undergoing synaptic remodeling and activity-dependent plasticity [303]. These features 

suggest a possible role of adult hippocampal neurogenesis in processes related to cognition. 

Increasing evidences have postulated the role of adult hippocampal neurogenesis in learning 

[304] and memory [305], since these are functions dependent on neuroplasticity. Besides, it 
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has been stated that adult hippocampal neurogenesis can extent its influence to other brain 

tasks, such as pattern separation [306]. 

Learning and memory:  several studies have postulated that adult hippocampal neurogenesis is 

crucial for learning and memory [307, 308]. In order to confirm this postulate, three very 

useful approaches relying on the ablation of neural progenitor cells have been employed: the 

use of anti-mitotic reagents, X-ray irraditation and genetic alterations.  

First, it has been revealed that the ablation of adult neurogenesis by using temozolomide, an 

anti-mitotic reagent, was able to decrease the speed of learning and the flexibility of mice in 

the Morris water maze test [309]. Besides, the inhibition of neurogenesis via 

methylazoxymethanol (MAM) gives rise to defects in trace memory acquisition [304]. Second, 

it has been shown that the use of X-ray irradiation in adult mammals leads to the disruption of 

work memory in the Morris water maze test [310]. Other studies have revealed that irradiation 

also impairs learning in this test [311]. Third, experiments performed with transgenic mice 

treated with ganciclovir, which ablates neurogenesis, increases working memory in the radial 

maze task [312]. 

Furthermore, other procedures have been employed to study the implication of adult 

hippocampal neurogenesis in learning and memory tasks. It has been observed that surgical 

lesions in the cholinergic septohippocampal pathway decrease neurogenesis, thus affecting 

spatial learning [313]. In contrast, the administration of several drugs like ginseng, peptide 21 

or neurotrophic factor VEGF induce an increase in neurogenesis, thus improving learning and 

memory [214, 314, 315]. 

Pattern separation: this concept refers the capacity of the DG to transform overlapping 

patterns of input from cortex into outputs to CA3 region [316]. Therefore, pattern separation 

within hippocampus has been proposed to rely on DG-CA3 circuit [317]. 

The role of adult hippocampal neurogenesis in pattern separation has been revealed by 

inhibiting neurogenic process and evaluating the ability of mice to distinguish similar fear 

conditioning contexts [318] and nearby locations on a radial arm maze as well [319]. Adult 

newborn neurons have a more pronounced influence in these tasks when new conditions, able 

to send overlapping patterns of input to DG and tax pattern separation, are introduced. 

Indeed, the inhibition of neurogenesis affects reversal learning on the Morris water maze [309] 

or active avoidance tasks [320]. 
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Furthermore, lifestyle factors such as exercise, which positively regulates DG neurogenesis 

(briefly described in Section 3.5.3), has been shown to influence pattern separation. Human 

data have revealed that after six weeks of exercise, visual pattern separation was improved 

compared to individuals who do not perform any exercise [321] . Other studies state that 

humans suffer an age-dependent decline in patter separation, although recognitive memory 

performance is not affected [322]. 

In addition, adult hippocampal neurogenesis has been also related to other processes. In this 

sense, it has been proposed that adult hippocampal neurogenesis may regulate emotions, 

such as anxiety and depression. However, some studies in mice have shown that the ablation 

of adult newborn neurons does not impact on baseline levels of anxiety [312, 323]. In contrast, 

other authors state that the depletion of adult newborn neurons increases anxiety levels and 

depressive behaviors [324]. Concerning humans, it is thought that dysfunctions in 

neurogenesis are likely related to mood and psychiatric disorders. Studies in postmortem 

hippocampal tissue of patients of schizophrenia have shown that there is a remarkable drop in 

the amount of proliferating cells in the SGZ compared to control patients [325]. Nevertheless, 

adult human neurogenesis in the SVZ has been recently linked to play a relevant role in the 

development of psychiatric disorders. It has been suggested that increasing adult human 

neurogenesis in the SVZ may attenuate schizophrenia symptoms [326]. 

3.5.3. Regulation of adult hippocampal neurogenesis 

The different stages of neurogenesis (proliferation, differentiation and survival) can be 

regulated by a plethora of both extrinsic and intrinsic factors [327].  

Extrinsic regulation of neurogenesis 

Concerning extrinsic factors, these include enriched environment, exercise or low-fat diets, 

considered positive regulators of hippocampal neurogenesis [328, 329]. The enriched 

environment involves a housing manipulation that provides sensory, social and motor 

stimulation [330]. Some studies have demonstrated that 4 weeks of this environment triggers 

an increase in the survival of newborn neurons in the hippocampus [331]. Furthermore, some 

authors have pointed towards an increase in neurogenesis attributed to physical exercise, 

since mice house with running wheels exhibit higher levels of neurogenesis than control mice 

[332]. Regarding the diet, some authors state that diets supplemented with omega 3 fatty 

acids increase hippocampal neurogenesis [333]. In contrast, mice diets without vitamins and 

minerals produce a negative effect in hippocampal neurogenesis [333].  
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Additionally, other extrinsic factors which regulate neurogenesis are aging and stress. 

However, these two are considered negative regulators of neurogenesis [334, 335]. Aging is 

related to great reductions in cell proliferation, survival and differentiation of neurons. Indeed, 

several studies have shown that aging leads to a persistent decline in neurogenesis in both 

rodents and humans [291, 336, 337], although the decrease is more dramatic and occurs later 

in mice than in humans [289, 290]. Furthermore, stress generally is associated with negative 

effects on cell proliferation, as shown by [338, 339]. Stress involves the response to any 

stimulus which generates environmental or physical pressure, constituting a great predictor of 

healthy aging and cognition [340]. Detrimental effects of stress on neurogenesis are linked to 

increased levels of glucocorticoids in the organism [341]. 

Intrinsic regulation of neurogenesis 

Furthermore, the regulation of adult hippocampal neurogenesis is also related to several 

intrinsic factors, such as local activity exerted by mature neurons present in the neurogenic 

niche and the signaling of other cells taking part in this microenvironment. 

Intrinsic regulation of adult hippocampal neurogenesis via mature neurons depends on 

neurotransmitters activity. In the adult SGZ, interneurons release GABA, the main inhibitory 

neurotransmitter in brain, which regulates cell proliferation, maturation, dendrite formation 

and synaptic integration of newborn neurons [342]. Furthermore, glutamate, the main 

excitatory neurotransmitter contributes to newborn cells survival in the SGZ as well [302]. On 

top of that, modulatory neurotransmitters also present a role in the intrinsic regulation of 

hippocampal neurogenesis. It has been found that one of these, serotonine, linked to 

depression and stress [332], induces proliferation of NSCs [343]. 

Apart from the role carried out by neurotransmitters, adult hippocampal neurogenesis can be 

modulated via the cell types present in the neurogenic niche of the SGZ. For instance, local 

signaling exerted by astrocytes can modulate neurogenesis in the SGZ. It has been established 

that astrocytic secretion of wingless/integrated 3a protein (Wnt3a) permits neuronal 

differentiation of NSCs [344]. Additionally, astrocytes are involved in synapse formation and 

integration of adult hippocampal newborn neurons [345-347]. Apart from astrocytes and NSCs, 

the neurogenic niche is composed of other cell types, such as endothelial cells and microglia 

[344, 348, 349]. Endothelial cells are known for releasing soluble factors that enhance NSCs 

proliferation and neurogenesis in the SGZ [350] but also in the SVZ [351]. One of the main 
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endogenous factors involved in neurogenesis regulation is microglial cells population. In the 

next section, we will delve into the role of microglial cells in neurogenesis regulation. 

3.5.4. The role of microglia in adult hippocampal neurogenesis 

Microglia are very relevant cells in the shaping of the CNS. During development, it is known 

that microglia are able to engulf apoptotic neurons and also prune synapses [16, 202, 352]. 

Subsequently, microglia secrete cytokines and other factors that support the differentiation of 

neural progenitors [353] and may regulate neuronal survival. Microglial cells have been shown 

to regulate the developmental neuronal production [354], but also exert a role in adult 

neurogenesis. As previously described in Section 5, together with SGZ of the hippocampus, the 

SVZ constitutes the unique region where neurogenesis persists throughout adulthood. 

Regarding the SVZ, microglia have been shown to exert some regulation in neurogenic process. 

It is well established that SVZ microglia secrete factors which are relevant for SVZ neurogenesis 

[351]. Several reports have shown that SVZ and rostral migratory stream (RMS) microglia are 

able to support newborn cells survival and proliferation [355-357], thus influencing 

neurogenesis in this neurogenic niche. In addition, other authors have shown that conditioned 

media from microglial cultures promote SVZ newborn cells migration and differentiation [358]. 

On top of that, as the responsible cells for eliciting the inflammatory response in brain tissue 

[359], it has been shown that microglia can modulate neurogenesis in the SVZ via 

inflammatory stimuli, at least in the early postnatal brain [360]. However, the possible 

influence of microglia on SVZ neurogenesis does not seem to be related to apoptotic cells 

phagocytosis. Recent data have shown that in the neurogenic niche of the SVZ, microglial cells 

are devoid of newborn cells fragments and also lack of TREM2 expression, a receptor related 

to the activation of microglial phagocytosis [357]. Therefore, the role of microglia in SVZ 

neurogenesis is important but has a different impact on neurogenesis regulation than 

microglial role exerted on adult hippocampal neurogenesis in the neurogenic niche of the SGZ. 

The microglial contribution to the SGZ neurogenic niche relies on two fundamental processes: 

inflammation and phagocytosis. Microglia are responsible for orchestrating the inflammatory 

response. The balance between pro-inflammatory and anti-inflammatory signaling results 

critical for supporting or inhibiting neurogenesis [361]. Furthermore, microglial cells exert an 

essential role in the neurogenic niche of the SGZ through the removal of apoptotic cells via 

phagocytosis, although the possible consequences of microglial phagocytosis for neurogenesis 

67 
 



in the SGZ have not been unraveled yet. Microglial roles in inflammation and phagocytosis and 

their link to neurogenesis in the niche of the SGZ of the hippocampus will be detailed next. 

Microglial inflammation and adult hippocampal neurogenesis 

It has been shown that inflammatory response involves negative consequences for 

neurogenesis [362, 363]. Several reports have exposed that LPS-induced inflammation inhibits 

the proliferation or survival of newborn cells in the adult rat hippocampus [364, 365]. These 

negative effects on neurogenesis are related to microglial release of pro-inflammatory 

cytokines such as IL-6, IL-β and TNF-α, known to inhibit neurogenesis both in vivo and in vitro 

[63, 347, 366]. Concerning TNF-α, some studies indicate that it can be pro-neurogenic as well 

[367]. It is important to remark that continuous release of pro-inflammatory cytokines due to 

inflammatory response can lead to apoptosis of both neurons and glial cells, and the secretion 

of neurotoxic factors [57] that could also negatively affect the neurogenic process. 

Remarkably, microglial secretion of the TGF-β cytokine can lead to the activation of pro-

inflammatory and anti-inflammatory pathways, resulting in the induction [361] or inhibition of 

neurogenesis [213]. 

Microglial phagocytosis and adult hippocampal neurogenesis 

Microglia constitute fundamental components of the neurogenic niche of the SGZ of the 

hippocampus. Related to this, it has been well suggested that ramified microglia of the SGZ 

may a critical role in adult neurogenesis regulation through the removal of newborn cells 

produced in the cascade. The vast majority of these newborn cells undergo apoptosis during 

their first days of proliferation through adulthood, and then microglia engulf and degrade 

them via phagocytosis very efficiently [28]. 

Some evidences demonstrate that after apoptotic cells phagocytosis, microglia are able to 

secrete several trophic factors. For instance, microglia are known to release TGF-β and NGF 

after phagocytosis in vitro [43, 44], which are negative and positive regulators of hippocampal 

neurogenesis, respectively [213, 368]. Therefore, the Objective 5 in this PhD Thesis will be 

focused on assessing whether microglial phagocytosis is related to any changes in 

neurogenesis in our GPR34 KO mouse model in the SGZ of the hippocampus. 

3.5.5. Methods to assess neurogenesis 

The current knowledge about adult neurogenesis is mainly due to the numerous technical 

advances which have facilitated its characterization. These techniques comprise the use of 
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nucleotide analogs, the use of genetic tools and the employment of specific markers, 

fundamentally. 

Nucleotide analogs: Among these compounds we can highlight [3H]-thymidine, 5-bromo-2-

deoxyuridine (BrdU), 5-iodo-2’-deoxyuridine (IdU) and 5-chloro-2’-deoxyuridine (CldU). These 

compounds are often injected intraperitoneally and they incorporate into DNA in place of 

thymidine in the S phase of cell cycle [369]. Cells that incorporate [3H]-thymidine are detected 

by autoradiography, whereas cells which incorporate BrdU, IdU or CldU are visualized by 

immunochemistry. BrdU is the most used of these nucleotide analogs. It allows phenotypic 

analysis [370] and quantification of newly-produced cells [371]. Additionally, BrdU labeling can 

be combined with cell-specific markers and visualized via confocal microscopy [370]. 

Nevertheless, the use of BrdU has some disadvantages, as target tissue needs to be fixed and it 

can be mutagenic at high concentrations.  

Genetic tools: the use of viral vectors is very common to study adult neurogenesis. These are 

injected in specific brain regions through stereotaxic surgery. Among them, retroviruses are 

frequently used because they specifically infect dividing cells [372], and this feature ensures 

the delivery of transgenes to proliferating cells in neurogenic niches [373] . Viral vectors 

usually carry a reporter gene, allowing the identification of those cells which have 

incorporated the vector [374]. However, their use is limited by the variability of the viral 

infection between animals [372]. 

Specific markers: endogenous cell markers are also used to study adult neurogenesis. Some of 

them are DCX, nestin or GFAP, used in this PhD Thesis to identify neuroblasts, NSCs and 

astrocytes in the neurogenic niche of the SGZ. Other markers are Ki67 or proliferating cell 

nuclear antigen (PCNA), which are only expressed in cells in division [375, 376]. Nonetheless, 

they are only useful to study proliferation but not survival or neuronal differentiation in adult 

neurogenesis [370]. 
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4.HYPOTHESIS AND OBJECTIVES 

As part of the immune system, microglia contribute to maintain brain homeostasis through 

phagocytosis of apoptotic cells. Together with phagocytosis, microglia also coordinate 

inflammation, thus controlling the first line of defense against damage in the organism. In this 

PhD Thesis, we hypothesize that several inflammatory mediators related to microglia could 

have also a role in apoptotic cell phagocytosis. 

Microglial phagocytosis of apoptotic cells depends on many receptors attached to the 

microglial membrane. One of these receptors, GPR34, which binds to lysoPS, is highly 

expressed in microglia. Thus, we hypothesize that GPR34-lysoPS signaling may constitute a 

great regulator of microglial phagocytosis which help understand more deeply the complexity 

of phagocytic process. 

Additionally, phagocytosis may involve intrinsic modifications in microglial cells upon 

engulfment of apoptotic bodies. In this PhD Thesis, we hypothesize that phagocytosis may 

impact on metabolism. Besides, considering the role of microglial phagocytosis on adult 

hippocampal neurogenesis, we hypothesize that alterations in phagocytosis could modify the 

role of microglial cells in neurogenic process.  

Objective 1. To test the role of inflammatory mediators on microglial phagocytosis of 

apoptotic cells in vivo. 

Objective  1.1.  To test the possible role of cytokine TNF-α on microglial phagocytosis 

of apoptotic cells just as apoptotic cells numbers in vivo. For this purpose, we will use 

an in vivo mouse model of epilepsy by intrahippocampal KA injection in microglial-

deficient TNF-α to induce excitotoxicity and apoptosis. Phagocytosis will be evaluated 

in the SGZ of the hippocampus and quantified by immunofluorescence in brain tissue 

sections imaged by confocal microscopy. 

Objective 1.2. To test the possible role of chemokine CX3CL1 on microglial 

phagocytosis of apoptotic cells in vivo. For this purpose, we will use CX3CR1-deficient 

mice, thus impeding CX3CL1 interaction with microglial receptor. Phagocytosis will be 

evaluated in the SGZ of the hippocampus and quantified by immunofluorescence in 

brain tissue sections imaged by confocal microscopy. 
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Objective 2. To determine the role of GPR34 receptor on microglial phagocytosis of apoptotic 

cells in vivo. For this purpose, we will use young and adult GPR34-deficient mice, preventing 

its possible influence on phagocytosis. Phagocytosis will be evaluated in the SGZ of the 

hippocampus and quantified by immunofluorescence in brain tissue sections imaged by 

confocal microscopy.  

Objective 3. To assess the role of GPR34 receptor ligand lysoPS on microglial phagocytosis of 

apoptotic cells in vitro and in vivo. For this purpose, we will first test the expression levels of 

lysoPS-associated receptors in fluorescence activated cell sorting (FACS)-sorted microglia by 

real time-quantitative polymerase chain reaction (RT-qPCR). Secondly, we will use microglial 

cells and hippocampal organotypic cultures treated with lysoPS as well as mice brains injected 

with lysoPS in the DG of the hippocampus. Phagocytosis will be quantified by 

immunofluorescence in brain tissue sections imaged by confocal microscopy. 

Objective 4. To analyze the possible impact of apoptotic cells phagocytosis on microglial cells 

metabolism in vitro. For this purpose, we will first analyze the expression levels of several key 

transcripts in the two main metabolic pathways: OXPHOS and glycolysis by RT-qPCR in BV2 

microglia after phagocytosis of apoptotic cells. Secondly, we will directly assess both metabolic 

pathways using an XF Extracellular Flux Analyzer. Next, we will assess mitochondrial 

morphology in mito7-GFP transfected BV2 cells by confocal imaging, followed by 

deconvolution and skeletonization of mitochondrial network with ImageJ. Finally, we will 

analyze several transcripts related to mitochondrial fusion and fission processes by RT-qPCR. 

Objective 5. To study the possible link between the role of GPR34 receptor on microglial 

phagocytosis of apoptotic cells and microglia role on neurogenesis in vivo. For this purpose, 

we will use young and adult GPR34-deficient mice. Neurogenesis will be quantified by 

immunofluorescence in brain tissue sections imaged by confocal microscopy.  
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5. EXPERIMENTAL PROCEDURES 

5.1. ANIMALS 

Mice were maintained in 12:12h light cycle and fed with food and water ad libitum. All 

procedures followed the European Directive 2010/63/EU and were approved by the Ethics 

Committees of the University of the Basque Country (Leioa, Spain; CEBA/205/2011, 

CEBA/206/2011, CEIAB/82/2011, CEIAB/105/2012). 

Several transgenic mouse lines were used, all of them in C57BL/6 background. Reporter mice 

CX3CR1-CreEGFP mice [87] and fms-eGFP (Macgreen) mice [377] were used for the analysis of 

microglial phagocytosis in vivo and in vitro, and to purify microglia by FACS. Inducible, 

microglial-specific TNF-α knockout mice were developed via Cre-loxP recombination by 

crossing CX3CR1-CreERT2 [378] and Rosa26-TNF-α floxed [379] mice in collaboration with 

Steffen Jung (Weizmann Institute of Science) and Knut Biber (Freiburg University, Germany). 

Inducible gene inactivation is produced by treatment with tamoxifen, which binds to the long-

binding domain (LBD) of the estrogen receptor (ER), translocating the CreER recombinase into 

the nucleus where it can initiate Cre-loxP recombination [378]. Tamoxifen was solubilized in 

corn oil (Sigma) at 10 mg/ml and mice were injected three times, subcutaneously, at 48 h 

intervals at a dose of 100 mg/kg. These mice were used for the analysis of the effect of TNF-α 

cytokine on apoptosis and microglial phagocytosis. Constitutive knockout mice for GPR34 

receptor [181] were used for the analysis of microglial phagocytosis and neurogenesis in 

collaboration with Angela Schulz, Leipzig University. For BrdU experiments, mice were 

intraperitoneally injected with a single dose of 150 mg/kg and later sacrificed at the interest 

time point depending on the experiment. 

 

5.2. CELL AND ORGANOTYPIC CULTURES 

5.2.1. Primary microglia cultures 

Postnatal day 0-1 (PND0-1) fms-eGFP mice pups were decapitated. Brain meninges were 

removed in Hank’s Balanced Solution (HBSS, Hyclone) with the aid of a magnifying scope. The 

cerebellum and olfactory bulb were cut and discarded. Once the meninges were removed, 

brains were diced and incorporated in a solution of papain (20U/ml, Sigma-Aldrich, St Louis, 
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MO, USA), a cysteine protease enzyme, and deoxyribonuclease (DNAse; 150U/ ul, Invitrogen) 

for 15 min at 37°C.  

Afterwards, tissue was homogeneized by carefully pipetting and transferred to a 50ml 

collection tube (Falcon) through filtering with a 40 µm nylon cell strainer (Fisher) with 5ml of 

20% Fetal Bovine Serum (FBS) in HBSS. The solution was then centrifuged at 200G for 5 min 

and pellet obtained was resuspended in 1ml of Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 10% Fetal Bovine Serum (FBS) and 1% antibiotic/antimycotic. The 

resuspended pellet was seeded in previously poli-L-lysine-coated (15 µl/ml, Sigma) culture 

flasks covered with 10ml of DMEM. Medium was replaced one day after and every 3 days with 

the incorporation of granulocyte-macrophage colony stimulating factor (5ng/ml, GM-CSF, 

Sigma-Aldrich, St Louis, MO, USA), which promotes microglial proliferation. At 14 days of 

culture, a well-defined microglial cell layer was grown over a layer of astrocytes. Microglial 

cells were harvested by shaking at 150 rpm for 4h at 37 °C, separating them from the lower 

astrocytic layer. Isolated microglial cells were plated at a density of 80.000 cells/well on poli-L-

lysine coated glass cover slips in 24 well-plate wells and experiments were performed 1 day 

after plating. 

5.2.2. BV2 cell line 

BV2 murine microglial cells, generated by infecting primary microglial cell cultures with a v-

raf/v-myc oncogen carrying retrovirus J2 [380], were obtained from the American Type Culture 

Collection (ATCC), and used to perform metabolism experiments, phagocytosis analysis, and 

gene expression analysis. BV2 cells were grown in 90mm Petri plates covered with 10ml of 

DMEM supplemented with 10% FBS and 1% antibiotic/antimycotic (all from Gibco). When 

confluency was reached, cells were trypsinized and replated at 1:3 each three days. Cells were 

used between passages P20 and P35. 

5.2.3. SH-SY5Y cell line  

SH-SY5Y cells (obtained from ATCC), a human neuroblastoma cell line derived from the bone 

marrow of 4 year-old female, was used as a model of apoptotic cells for phagocytosis assays. 

SH-SY5Y cells were grown in non-coated culture flasks covered with 15 ml of DMEM 

supplemented with 10% FBS and 1% antibiotic/antimycotic. When confluency was reached, 

cells were trypsinized and replated at 1:3 each three days.  
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5.2.4. Vampire-SH-SY5Y cell line 

Vampire-SH-SY5Y cells (obtained from Innoprot, Zamudio, Spain), a variant of the human 

neuroblastoma cell line formerly mentioned, was developed through a stable transfection with 

the red reporter TurboFP602 (Vampire). Vampire-SH-SY5Y cells were grown in non-coated 

culture flasks covered with 15 ml of DMEM supplemented with 10% FBS, 1% 

antibiotic/antimycotic and 0.5 % geneticin. When confluency was reached, cells were 

trypsinized and replated at 1:3 each three days. Cells were used between passages P10 and 

P30. 

5.2.5. Organotypic hippocampal slice cultures 

7 day-old fms-eGFP mice were decapitated and brains removed and placed in a miniplate 

covered with HBSS. Both hippocampi were dissected out and subsequently cut in 350 µM slices 

with the aid of a tissue chopper (Mcllwain). Chopped slices with visible DG and CA were 

selected and used for the experiments. Slices were placed on 0.4 µM culture plate inserts 

(Millipore), four slices per insert. The inserts were placed in 6-well plates, each well containing 

1ml of hippocampal organotypic culture medium composed of 50% Neurobasal Medium 

supplemented with 0.5% B27, 25% horse serum, 1% Glutamax, 1% penicillin/streptomycin (all 

from Gibco) and 1% glucose solution in HBSS. Medium was changed 24h after culture and 

every 2 days until reaching 1 week of culture. 

 

5.3. IN VITRO PHAGOCYTOSIS ASSAY 

5.3.1 Primary microglia 

Primary microglia cells were plated in poly-L-lysine treated coverslips over 24-well plate wells 

and maintained for at least 24h before phagocytosis experiments. Then microglial cells were 

fed for 3h with apoptotic SH-SY5Y cells. SH-SY5Y cells were pre-treated with staurosporine 

(STP) 3µM for 4h (Sigma) to induce them apoptosis and then were added to microglia in a 1:1 

proportion approximately. 

Primary microglia cells were pre-treated with lysoPS (0.3 and 3 µM and Dimethyl Sulfoxide 

(DMSO) (lysoPS vehicle, 0.3 and 3 µM) for 2h. Coverslips were finally fixed with 

paraformaldehyde (PFA) 4% for 10 min and then replaced with Phosphate Buffer Solution 

(PBS) 1X and stored at 4°C until performing immunochemistry. 

80 
 



5.3.2. BV2 cells 

BV2 cells were seeded in poly-L-lysine treated coverslips over 24 well-plate wells and after 2h 

fed with apoptotic vampire-SH-SY5Y cells (for 3h or 24h depending on the experiment), 

obtained by treatment with STP 3µM for 4h (Sigma-Aldrich, St Louis, MO, USA) at 37°C. For the 

metabolism experiments, the apoptotic cells were added to BV2 cells in a 1:1, 3:1 and 9:1 

proportion approximately (BV2 cells: Vampire-SH-SY5Y cells). For the RT-qPCR analysis BV2 

cells were fed with apoptotic vampire-SH-SY5Y cells in a 1:1 proportion approximately. For the 

mitochondrial dynamics experiments, previously transfected BV2 cells were fed with apoptotic 

vampire-SH-SY5Y cells in a 1:1 proportion approximately. In every experiment coverslips were 

fixed with PFA 4% for 10 min and then replaced with PBS 1X and stored at 4°C until performing 

immunochemistry. 

 

5.4. INTRAHIPPOCAMPAL INJECTIONS  

5.4.1. LysoPS administration  

1 month-old fms-EGFP mice were intraperitoneally anesthetized with ketamine/xylazine (10/1 

mg/kg) and were also treated with buprenorphine (1mg/kg) subcutaneously. Mice were 

shaved to exhibit the skin over the cranium and after applying povidone iodine, they were 

placed in the stereotaxic equipment by immobilization through ears and nose. Afterwards, an 

incision was cut with a scalpel in order to localize Bregma (intersection of the coronal suture 

and the sagital suture). Next, a 0.6mm whole was drilled at coordinates taken from Bregma: 

anteroposterior (AP) -1.7mm, laterolateral (LL) -1.6mm. A pooled glass microcapilary was 

inserted at -1.9mm dorsoventral (DV), and 1µL of saline, DMSO (36 µM), or lysoPS (36 µM) 

were injected into the dentate gyrus of the hippocampus using a microinjector (Nanoject II, 

Drummond Scientific, Broomal, PA, USA). Finally, the microcapillary was retracted and mice 

sutured and maintained in a thermal blanket until recovered from anesthesia. 

5.4.2. Kainate administration 

4 month-old wild type (WT) and Cre-TNF-α mice were intraperitoneally anesthetized with 

ketamine/xylazine (10/1 mg/kg) and were also treated with buprenorphine (1mg/kg) 

subcutaneously. Mice were shaved to exhibit the skin over the cranium and after applying 

povidone iodine, they were placed in the stereotaxic equipment by immobilization through 

ears and nose. Afterwards, an incision was cut with a scalpel in order to localize Bregma 
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(intersection of the coronal suture and the sagital suture). Next, a 0.6mm whole was drilled at 

coordinates taken from Bregma: AP -1.7mm, LL -1.6mm. A pooled glass microcapilary was 

inserted at -1.9mm DV and 20 (low dose) or 50 nL (high dose) of saline or KA (20mM) were 

injected into the dentate gyrus of the hippocampus using a microinjector (Nanoject II, 

Drummond Scientific, Broomal, PA, USA). Finally, the microcapillary was retracted and mice 

sutured and maintained in a thermal blanket until recovered from anesthesia [37]. 

 

5.5. IMMUNOFLUORESCENCE 

5.5.1. Antibodies 

The following antibodies were used for the different experiments: chicken anti-Green 

Fluorescent Protein (GFP) to label microglia in fms-eGFP mice (1:1000; Aves laboratories, 

Tigard, OR, USA); chicken anti-nestin for NSCs (1:1000; Aves laboratories); rabbit anti-calcium-

binding adapter molecule 1 (Iba1) for microglia (1:1000; Wako Chemicals, Neuss, Germany); 

rabbit anti-DCX for neuroblasts (1:1000; Abcam, Cambridge, UK); rabbit anti-GFAP to label 

astrocytes and NSCs (1:1000; Abcam, Cambridge, UK); rat anti-BrdU to mark cell proliferation 

(1:300; AbD Serotec); and rat anti-Cluster of Differentiation Molecule 11b (Cd11b) to visualize 

BV2 cells (1:1000;AbD Serotec). Secondary antibodies coupled to Alexa Fluor 488, Rhodamine 

Red X or Alexa Fluor 647 were purchased for Molecular Probes or from Jackson 

Immunoresearch. 

5.5.2. Primary microglia and BV2 cell cultures  

Both primary microglia and BV2 cells were treated similarly. Seeded cells on coverslips in 24 

well-plates were fixed with PFA 4% for 10 minutes. PFA was replaced by PBS 1X and plates 

stored at 4°C. Afterwards, coverslips were incubated in permeabilization solution composed of 

PBS 1X, 0,1% Triton X-100 and 0.5% Bovine Serum Albumine (BSA) (all from Sigma-Aldrich, St 

Louis, MO, USA ) for 30 minutes and then incubated for 1 h with the primary antibodies diluted 

in the mentioned solution at room temperature (RT). Once the primary antibodies were 

removed, coverslips were washed with PBS 1X and then incubated with fluorochrome-

conjugated secondary antibodies and 4’,6-diamidino-2-phenylindole (DAPI) (5 mg/ml; Sigma-

Aldrich, St Louis, MO, USA ) diluted in the permeabilization solution for 1h at RT and protected 

from light. After washing with PBS 1X, cell coverslips were mounted on glass slides with 

DakoCytomation Fluorescent Mounting Medium (DakoCytomation, Carpinteria, CA). 
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5.5.3. Hippocampal organotypic cultures immunostaining 

Slices were fixed with formaldehyde (FA) for 40min and then kept in PBS at 4°C. Next, slices 

were incubated in permeabilization solution composed of PBS 1X, 0.3% Triton X-100 and 0.5% 

BSA, (Sigma-Aldrich, St Louis, MO, USA) and then incubated overnight (O/N) with the primary 

antibodies diluted in the mentioned solution at 4°C. 

Once primary antibodies were removed from brain sections, these were washed with PBS 1X 

and then incubated with fluorochrome-conjugated secondary antibodies and DAPI (5 mg/ml; 

Sigma) diluted in the permeabilization solution for 2h at RT and protected from light. After 

washing with PBS 1X, sections were mounted on glass slides with DakoCytomation Fluorescent 

Mounting Medium (DakoCytomation, Carpinteria, CA).  

5.5.4. Brain tissue sections immunostaining 

Mice were anesthetized with 2.5% avertine and transcardially perfused with 25 ml of PBS 1X 

followed by 25 ml of 4% PFA. Afterwards, mice were decapitated and brains rapidly removed 

and maintained in PFA 4% until 3h postfixation at RT. Finally, brains were placed in PBS 1X and 

kept at 4°C. Next, six series of 50 µM-thick sections per brain hemisphere were sagitally cut 

using a Leica VT 1200S vibrating blade microtome (Leica Microsystems GmbH, Wetzlar, 

Germany). Free-floating vibratome sections were incubated in permeabilization solution 

composed of PBS 1X, 0.3% Triton X-100 and 0.5% BSA, (all from Sigma) for 3 hours and 

subsequently incubated O/N with the primary antibodies diluted in the mentioned solution at 

4°C. For nestin and BrdU staining, an antigen retrieval step was needed. Briefly, sections were 

incubated in HCl 2N for 15 min at 37°C followed by two cycles of washing with 0.1M sodium 

tetraborate for 10 min at RT prior to the application of permeabilization solution which 

eliminates unspecific unions. Once primary antibodies were removed from brain sections, 

these were washed with PBS 1X and then incubated with fluorochrome-conjugated secondary 

antibodies and DAPI (5mg/ml; Sigma) diluted in the permeabilization solution for 2h at RT and 

protected from light. After washing with PBS 1X one more time to eliminate the excess of 

secondary antibodies, sections were mounted on glass slides from septal to temporal sections 

with DakoCytomation Fluorescent Mounting Medium (DakoCytomation, Carpinteria, CA). 
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5.6. PGFP-MITO-7 PLASMID GENERATION 

pGFP-Mito-7 DNA plasmid was obtained by subcloning and combination of DsRed2-Mito-7 

DNA plasmid (Addgene Plasmid # 55838) and pPB-CAG-MbGFP DNA plasmid [381]. In brief, 

replacement of the fluorescent proteins was performed with restriction enzymes AgeI and NotI 

(Thermofisher IVGN0074 and IVGN0014) following manufacturer’s protocol (ANZA). These two 

enzymes were selected because they flank the restriction sites coding for the fluorescent 

protein in both plasmids. Enzymes were incubated (0.5 µl/enzyme) with 5 µg of plasmid for 1h 

at 37°C.  

Later, the enzymatic reaction was inactivated for 15 min at 65°C and subsequently confirmed 

by DNA electrophoresis in agarose gel (0.8%) in Tris-acetate-EDTA (TAE) for 1h at 100V. Bands 

of interest, corresponding to the Mito-7 backbone (4 Kb) and GFP (1.2 Kb), were cut with a 

blade and DNA was purified with a DNA extraction kit (Qiagen 28704). Afterwards, the 

backbone and insert sticky ends were ligated with T4 ligase (Thermofisher IVGN2104) in a 

proportion 1:3 (backbone:insert) to avoid auto-ligation of the backbone. Ligated plasmids were 

transformed into competent bacteria and grown for miniprep. 

5.6.1. Plasmid transformation 

SIG10 5-α chemically competent cells (Sigma-Aldrich CMC0007) were thawed from -80°C. 2-4 

µl of the plasmid DNA were added to the competent bacteria vial and gently mixed, resting on 

ice for 30 min to allow the plasmid to stick to the cell membrane. Later, the sample was heat-

shocked at 42°C for 30 seconds, transiently opening the cell membrane and enabling the 

entrance of the plasmid in the cells, and brought back to ice for 5 min. Afterwards, 900 µl of 

Super Optimal Catabolite (SOC) medium were added close to flame of a Bunchen lighter to 

maintain sterility, gently swirling the tube. Transformed bacteria were grown in an incubator 

at 37°C for 1h at 250 rpm in SOC medium, and subsequently pelleted by centrifugation at 5000 

rpm for 3 min. Supernatant was removed and the pellet resuspended with 100 µl of SOC 

medium by smooth pipetting. Bacteria were added to culture plate with 10 ml of solid 

Lysogeny Broth (LB) medium (Tryptone 1%, Yeast extract 0.5% and NaCl 1%, all from Sigma) 

agar supplemented with kanamycin (100 µl) to restrict the growth of bacteria to only those 

cells with a circular Mito-7 plasmid in. The plate was placed downside/down in order to attach 

cells to the agar for 5 min at RT. The plate was finally placed upside/down in an incubator O/N 

at 37°C. Next day, single bacterial colonies were selected and touched with a pipette tip. A tip 

was introduced in 5 ml of bacterial medium LB and tube shaken O/N at 37°C. DNA plasmid was 

finally purified with a Miniprep kit (Sigma-Aldrich PLN70). Final plasmid DNA concentration 
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was estimated by measuring absorbance with 1 µl of sample on Nanodrop 2000 (Thermo 

Fisher Scientific). The selected colony containing the successful pGFP-Mito-7 plasmid was 

grown using a Maxiprep (Zymo Research, Irvine, CA, USA).  

Bacterial cultures were centrifuged at 3500G for 10 min to pellet the cells. The supernatant 

was discarded and the pellet was resuspended in 14 ml of ZymoPURE P1 solution. Afterwards, 

14 ml of ZymoPURE P2 solution were added for 2-3 min to lysate the bacteria. Next, 14 ml of 

ZymoPURE P3 solution were added to neutralize the lysis reaction. The lysate was then loaded 

into a ZymoPURE Syringe Filter and clarified into a 50 ml Falcon tube. 14 ml of ZymoPURE 

Binding Buffer were added to the cleared lysate and mixed thoroughly. The mixture was 

loaded into a column and centrifuged at 500G for 2 min until the entire sample passed through 

the column. Next, the column was washed with ZymoPURE wash buffer and centrifuged at 

500G for 2 min. Finally, the plasmid DNA was eluted from the column using 400 µl of 

ZymoPURE elution buffer. A total concentration of 3700 ng/µl of plasmid DNA was obtained by 

measuring in Nanodrop 2000. 

 

5.7. TRANSFECTION  

GFP-Mito-7 plasmid DNA (Addgene) was transfected into BV2 microglial cell line by using 

lipofectamine 2000 (ThermoFisher Scientific). Mito-7 corresponds to the mitochondrial 

targeting sequence from subunit VII of cytochrome C oxidase. BV2 cells were cultured in poli-L-

lysine-treated coverslips in a 24-multiwell plate at a density of 50.000 cells per well. First, 

lipofectamine 2000 (Thermofischer Scientific) (1µl/well) was diluted in OPTI-MEM (250 µl/well) 

with no serum (Gibco) and incubated for 5 min at RT. Second, DNA (500 ng/well) was diluted in 

OPTI-MEM (250 µl/well) with no serum mixing gently. After combining both dilutions in a new 

tube, the mixture (500 µl/well) was incubated for 20 min at RT. DMEM low glucose 5% FBS 

(Gibco) (500 µl/well) was added to the tube maintaining a proportion 1:1 between OPTI-MEM 

and DMEM low glucose 5% medium. A total volume of 1ml/well was added to BV2 cells, which 

were incubated for 15-18h at 37°C. Transfection medium was then changed to DMEM 10% 

FBS, 1% antimycotic-antibiotic. Transfected cells were fed with apoptotic Vampire-SH-SY5Y 

cells for 24 h and finally fixed with PFA 4% for 10 min and then transferred to PBS 1X at 4°C 

until performing immunochemistry. 
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5.8. IMAGE ANALYSIS 

All fluorescence immunostaining images were collected using a Leica SP8 laser scanning 

microscope using a 40X oil-immersion objective and a z-step of 0.7 μm. In contrast, images 

were collected using a 63X objective and a z-step of 0.3 µM for mitochondrial morphology 

analysis. All images were imported into LAS X program (Leica) in .lif format. Brightness, 

contrast, and background were adjusted equally for the entire image using the “process” tool. 

Quantitative analysis of apoptosis and phagocytosis was performed using unbiased stereology 

methods as previously described [28]. For mouse tissue sections, at least 3 15-20 μm-thick z-

stacks located at random positions containing the DG were collected per hippocampal section, 

and a minimum of 6 sections per series were analyzed. Additionally, mean microglial volume 

was determined in the DG at all possible thresholds and divided by total image area using an 

in-house-made macro for the Fiji software [382]. For organotypic cultures, 2-3 10-20 μm-thick 

random z-stacks of the DG were collected per hippocampal slice. For cell cultures, 7 random z-

stacks were obtained per coverslip.  

5.8.1. Phagocytosis analysis 

Cell nuclei were labeled with DAPI. Apoptotic cells were identified based on the condensation 

or fragmentation of the chromatin (pyknosis/karyorrhexis). Phagocytosis of apoptotic cells was 

established when microglial processes were shown to tridimensionally encapsulate an 

apoptotic cell through the formation of well-defined pouches using orthogonal projections of 

confocal z-stacks.  

5.8.1.1. Phagocytosis in BV2 cells and primary microglial cultures 

In primary microglia and BV2 cell cultures, several measurements were performed using LAS X 

(Leica) program. First, we quantified the number of microglial cells per image. Next, we 

determined the percentage of microglia phagocytosing apoptotic cells, apoptotic cell 

membrane fragments or both. 

Finally, we quantified the percentage of phagocytic microglia per image (% of microglia 

phagocytosing apoptotic cells + % of microglia phagocytosing apoptotic cell membrane 

fragments (visualized as red inclusions) + % of microglia phagocytosing both apoptotic cells 

and apoptotic cell membrane fragments). 
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5.8.1.2. Phagocytosis in hippocampal sections and organotypic cultures 

In brain tissue sections and organotypic cultures, the number of apoptotic cells, phagocytosed 

apoptotic cells and the density of microglial cells were quantified using LAS X (Leica) program. 

In both organotypic and tissue sections, the quantification was estimated per volume by using 

the DG contained in the z-stack (by multiplying the thickness of the stack by the area of the DG 

at the center of the stack). The estimation per hippocampus was only performed in brain tissue 

sections. For that purpose, the estimation per volume was multiplied by the volume of the 

septal hippocampus (spanning from -1mm to -2.5 in the AP axes, from Bregma), which was 

calculated by taking pictures of the last 6-7 brain slices cut with the vibratome, where the 

septal hippocampus is contained, with an epifluorescent microscope (Zeiss Axiovert) at 20X. 

Other measurements were determined, such as the percentage of apoptotic cells being 

phagocytosed by microglia (Ph index), the percentage of microglia which were phagocytosing 

at least one apoptotic cell (Ph capacity) and also the coupling ratio between apoptosis and 

phagocytosis processes (Ph/A coupling). The formulae used to estimate these three 

parameters are detailed below:  

Ph index: percentage of apoptotic cells being phagocytosed by microglial cells. 

Ph index = apoPh / apotot x 100 

 

apoPh is referred to the apoptotic cells phagocytosed and apoTot to the total number of apoptotic 

cells. 

 

 

Ph capacity: percentage of microglial cells with one or more phagocytic pouches, each containing 

one apoptotic cell. 

 

Ph capacity = mgPh1 + 2 x mgPh2 + 3 x mgPh3…+ n x mgPhn /mg x 100 

 

mgPhn is the proportion of microglia with n phagocytic pouches and mg is the number of microglial 

cells. 

 

Ph/A coupling: phagocytosis/apoptosis ratio. 

 

Ph/A coupling= Ph capacity x microglia/ apotot 
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5.8.2. Mitochondrial morphology 

Mitochondrial confocal images taken in naïve or phagocytic microglia were analyzed using a 

protocol developed by Mar Márquez (Master Thesis 2018), according to previous methods 

[383] with the aid of ImageJ (FIJI) program (https://fiji.sc/). Mitochondrial images were 

deconvoluted with Huygens professional program (Scientific Volume Imaging) by using the 

Classic Maximum Likelihood Estimation algorithm (CMLE). Deconvolution parameters were 

established as 40 maximum iterations, signal to noise ratio 20, 0.05 of quality threshold, and 

optimized iteration mode. Next, non-specific background was eliminated by using FIJI 

“Substract Background” tool. Additionally, cell-specific background was eliminated by 

substracting the cell nucleus intensity. Images were then converted to binary (black and white) 

by thresholding, where a foreground pixel is assigned the maximum value (255) and 

background pixels are assigned the minimum value (0). The “skeletonize” tool of FIJI allowed 

us to define the mitochondrial features of the original image (“skeleton”) and it was analyzed 

using the plugin Analyze Skeleton 2D/3D [384]. This plugin classified the spatial distribution of 

each skeleton pixel to measure the length of each branch and the number of them. 

Two types of mitochondrial structures were distinguished: individual mitochondria 

(unbranched) and mitochondria networks (branched). Individual mitochondria were defined as 

those objects in the image that did not contain junction pixels and were comprised of 1 or 0 

branches (defined as a single point). Mitochondrial networks were defined as those objects 

which contained at least 1 junction pixel and were comprised of more than 1 branch. Based on 

this categorization, several parameters were determined in our images: the number of 

mitochondria and their length per cell; the number of branches per cell; and the number of 

junctions between branches per cell. 

 

5.9. FACS SORTING  

1 month-old Fms-eGFP mice were anesthetized with 2.5% avertine, perfused with saline and 

eventually decapitated to remove the hippocampi from the brain. After isolating the 

hippocampi they were placed in an enzymatic solution (116mM NaCl, 5.4mM KCl, 26mM 

NaHCO3, 1mM NaH2PO4, 1.5mM CaCl2, 1mM MgSO4, 0.5mM EDTA, 25mM glucose, 1mM L-

cysteine) with papain (20U/ml) and DNAse I (150U/µl, Invitrogen) at 37°C for 15 min. Once the 

solution was homogeneous, it was filtered by using a 40 µm nylon strainer to a 50ml collection 

tube (Falcon) containing 5ml of 20% FBS with HBSS. Afterwards, a Percoll gradient was used in 

order to remove the myelin. The cells were centrifuged at 200G for 5 min and then 
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resuspended in 20% Solution of Isotonic Percoll (20% SIP) in HBSS. HBSS was added carefully 

with a glass pipette in each sample. Gradients were centrifuged for 20 min at 200G with 

minimum acceleration and no brake to maintain the interphase, where myelin was trapped. 

The interphase was removed and cells were washed in HBSS by centrifuging at 200G for 5 min. 

The obtained pellet was resuspended in 500 µl of sorting buffer (25mM HEPES, 5mM EDTA, 1% 

BSA, in HBSS). Microglia sorting was performed by FACS using a FACS JAZZ (BD). The population 

of green fluorescent cells was selected, collected in Lysis Buffer (Qiagen) containing 0.7% β-

mercaptoethanol, and stored at -80°C until processing. 

 

5.10. RNA ISOLATION AND RETROTRANSCRIPTION  

5.10.1. Primary microglia and BV2 cells 

In both cases > 500.000 cells per well were scrapped from 6 well-plate wells removing the 

culture medium and including the same solution of lysis buffer with 0.7% β-Mercaptoethanol 

mentioned before. Sample was stored at -80°C until processing. Next, ribonucleic acid (RNA) 

was isolated from cell sample by using Qiagen RNeasy Mini Kit (Qiagen) according to 

manufacturer instructions which included a DNAse treatment step to eliminate genomic DNA. 

Total extracted RNA was quantified with 1 µl of sample in a Nanodrop 2000 and then a 

maximum of 5 µg of RNA were retrotranscribed with the aid of a mix of random primers 

(Invitrogen, Carisbad, CA, USA) and Superscript III Reverse Transcriptase Kit (Invitrogen, 

Carisbad, CA, USA) according to the manufacturer´s protocol in a Thermal Cycler (Applied 

Biosystems, Alcobendas, Spain). 

 
5.10.2. Tissue 
 

Several tissues were used as a positive control for RT-qPCR experiments. The tissue was 

directly obtained from mice previously anesthetized with 2.5% avertine. Once the tissue of 

interest was removed from the animal it was immediately disrupted with the aid of a roto-

stator homogeneizer in a solution composed of RNA lysis buffer with 0.7% β-Mercaptoethanol 

(Qiagen). Sample was stored at -80°C until processing. Next, RNA was isolated from tissue 

sample by using Qiagen RNeasy Mini Kit (Alcobendas, Spain) according to manufacturer 

instructions which included a DNAse treatment step to eliminate genomic DNA. 

Total extracted RNA was quantified with 1 µl of sample in a Nanodrop 2000 and then a 

maximum of 5 µg of RNA were retrotranscribed with the aid of a mix of random primers 
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(Invitrogen, Carisbad, CA, USA) and Superscript III Reverse Transcriptase Kit (Invitrogen, 

Carlsbad, CA, USA) according to the protocol in a Thermal Cycler (Applied Biosystems, 

Alcobendas, Spain). 

5.10.3. FACS-sorted cells 

FACS-sorted microglia (<500.000 cells) were collected in RNA lysis buffer with 0.7% β-

Mercaptoethanol and stored at -80°C until processing. RNA was isolated by using RNeasy Plus 

Micro Kit (Qiagen) according to the manufacturer instructions which included a DNAse 

treatment step to eliminate genomic DNA. Total extracted RNA was quantified in a Nanodrop 

2000. Finally, RNA was retrotranscribed by using an iScript Advanced complementary DNA 

(cDNA) Synthesis Kit (Biorad) according to the protocol in a Thermal Cycler (Applied 

Biosystems, Alcobendas, Spain).  

 

 

5.11. qPCR 

RT-qPCR was performed following MIQE guidelines (Minimal Information for Publication of 

Quantitative Real Time Experiments) [385].  

Primers were designed to amplify exon-exon junctions using PrimerBlast (NIH) to avoid 

amplification of contaminating genomic DNA or were pre-designed by Sigma-Aldrich. First of 

all, their specificity and optimal concentration was tested with positive and negative controls 

by qPCR and corroborated by electrophoresis in 2% agarose gels. Two independent reference 

genes (or housekeeping genes) were compared each other for our analyses: ornithine 

decarboxylase antizyme 1 (OAZ-1), a rate-limiting enzyme in the biosynthesis of polyamines; 

and L27A, which encodes a ribosomal protein of the 60S subunit.  

The following table (Table 1) shows all the reference genes analyzed in our experiments: 

 

 

Gene Gene ID Gene name Amplicon 
size (bp) 

Sequence 

Reference genes     

OAZ1 NM_008753 Ornithine 

decarboxylase 

antizyme 1 

51 Fwd AGCGAGAGTTCTAGGGTTGCC  

 Rev CCCCGGACCCAGGTTACTAC  

L27A BC086939 Ribosomal protein 

L27A 

101 Fwd TGTTGGAGGTGCCTGTGTTCT 

Rev CATGCAGACAAGGAAGGATGC 
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LysoPS receptors     

GPR34 NM_011823.4 G Protein-Coupled 

Receptor 34 

151 Fwd CTTCAGGAAAGCTTCAACTC 

Rev GTAACTATCAGGAGGAGAGC 

P2Y10 NM_172435.3 P2Y Receptor Family 

member 10 

80 Fwd ATGCCACAAAAGGAGCCATA 

Rev TGGTACTGTTGCTGCCCATC 

 

G2A NM_019925.4 G Protein-Coupled 

Receptor 132 

145 Fwd AGGACTGGCTTGGGTCATTTT 

Rev GGTGCTCTGAAGAACGGAGG 

GPR174 NM_001177781.1 

(variant 1) 

NM_001033251.4 

(variant 2) 

NM_001177782.1 

(variant 3) 

G Protein-Coupled 

Receptor 174 

150 Fwd GCAAGCCTGAACTCCTGTCT 

Rev CACGGTAGAAGTGGCATGGT 

 

Glycolisis genes     
 

HIF1α NM_001313919.1 
(variant 1) 

NM_010431.2 
(variant 2) 

NM_001313920.1 
(variant 3) 

Hypoxia Inducible 
Factor 1 Alpha Subunit 

93 Fwd CCTGATGTTTCTTTACTTTGCC 
 
Rev GCTGGAAGGTTTGTGGTG 

PFKM NM_001163487 Phosphofructokinase, 
Muscle 

194 Fwd CAGACTTTGAACACCGAATC 
 
Rev CCATGGTCACATGATCTTTC 

PFKFB3 NM_001177752 6-Phosphofructo-2-
Kinase/Fructose-2,6-
Biphosphatase 3 

185 Fwd AGAGGTCAGAGAACATGAAG 
 
Rev CTTCTACTCTTCAACATGGC 

Oxydative 
phosphorilation 

genes 

    

NDUFAF4 
 

NM_026742.4 NADH:Ubiquinone 
Oxidoreductase 

Complex Assembly 
Factor 4 

146 Fwd CACCGGAGTCAGTATCCAGAA 
 
Rev TCCTTTGGTTCTTGTCGTGGT 

UQCRQ 
 

NM_025352.3 Ubiquinol-Cytochrome 
C Reductase Complex 

III Subunit VII 

80 Fwd TTCAGCAAAGGCATCCCCAA 
 
Rev TAGACCACTACAAACGGCGG 

MPC1 NM_018819.4 Mitochondrial 
Pyruvate Carrier 1 

142 Fwd AGCAAGGACTTCCGGGACTA 
 
Rev AGCAACAGAGGGCGAAAGTC 

PDHB NM_024221.3 Pyruvate 
Dehydrogenase E1 

Beta Subunit 

110 Fwd ACGGTGCATACAAGGTTAGC  
 
Rev AGCTGCACCAACAGCAATTC 

IDH3G 
 

NM_008323.1 Isocitrate 
Dehydrogenase 3 
(NAD(+)) Gamma 

81 Fwd TCAAGCCAACTCTCCTCTGC 
 
Rev TTTGTTGTGAGGAAATGCTCCTT 

SDHB 
 

NM_001355515.1 Succinate 
Dehydrogenase 

Complex Iron Sulfur 
Subunit B 

94 Fwd AGAGAAGGCATCTGTGGCTC 
 
Rev AGACTTTGCTGAGGTCCGTG 

Mitochondrial 
fission genes 

    

FIS1 NM_001163243 Fission,Mitochondrial 
1 

138 Fwd TCGAAGCAAATACAATGAGG 
 
Rev TTTTCATATTCCTTGAGCCG 

DNM1L NM_001025947 Dynamin 1 Like 103 FwdGATTCAATCCGTGATGAGTATG 
 
Rev TAAGTAACCTATTCAGGGTCC 
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MFF NM_029409 Mitochondrial Fission 
Factor 

130 Fwd AGAAACGATTCCATTGTGAC 
 
RevTACGAGTAGAAGACTGGATAAG 

Mitochondrial 
fusion genes 

    

MFN1 NM_024200 Mitofusin 1 192 Fwd AACTTGCAGAAGGATTTCAAG 
 
Rev GAATAAACCCTCTTCTCTGC 

MFN2 NM_133201 Mitofusin 2 102 Fwd GTCATACCACCAATTGCTTC 
 
Rev TCACAGTCTTGACACTCTTC 

OPA1 NM_001199177 MItochondrial 
Dynamin Like GTPase 

129 Fwd GGCAGAAGATCTCAAGAAAG 
 
Rev TTCAAATAAACGCAGAGGTG 

 

Table 1. Primer sequences. Primer sequences for mRNA expression analysis by RT-qPCR. From 
left to right, the GeneBank code, the gene name, the amplicon size and the primer sequence 
are indicated. 

 

Three replica of 1.5 µl of a 1:3 dilution of cDNA were amplified. Each cDNA sample (1.5 µl) was 

mixed with a solution of 8.5 µl composed of water (H2O), forward primer (50 or 500nM), 

reverse primer (50 or 500nM) and DNA dye Power SyBrGreen (tissue and cell culture samples) 

or SsoFast Eva Green (for FACS-sorted microglia samples) (both from Biorad), pipetting a total 

volume of 10 µl per well in a Multiplate 96-well PCR plate (Biorad). The amplification protocol 

consisted on three steps: first of all, denaturalization of DNA strands by 3 min at 95°C, followed 

by the annealing of primers to DNA template by 30 seg at 60°C and 10 seg at 95°C for the DNA 

polymerization for at least 40 cycles. Next step was the performance of the melting curve 

through the progressive increase of temperature from 60 to 95°C (0.5°C each 5 seg) in a CFX96 

Touch Real-Time PCR Detection System (Biorad). In the melting curve cDNA gets denaturated 

and the fluorescence of DNA dye is lost, obtaining the melting temperature (Tm), that in which 

50 % of DNA is denatured. One single peak will indicates that one single product is amplified 

and quantification can be performed. Quantification of DNA was done by using threshold cycle 

(Ct) method. 

For each set of primers, the amplification efficiency was calculated as described below. 

LinRegPCR sotware allowed us to make a linear regression considering the relative 

fluorescence unit (RFU) sample data of the interest set of primers (excluding positive and 

negative control samples from the analysis). Afterwards, a baseline was determined and the 

mean PCR efficiency value of the interest set of primers (mean of individual PCR efficiency 
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values, corresponding to each amplified sample) were obtained. Values were in a logarithmic 

scale from 1 (0% efficiency) to 2 (100% efficiency). The software LinRegPCR also allowed us to 

determine the relative amount using the following formula:  

ΔΔCt =(1 + eff.target gene)exp(Ct sample − Ct control)/(1 + eff.reference gene)exp(Ct sample − 

Ct control)  

 

5.12. METABOLISM ANALYSIS 

Naïve and phagocytic BV2 cells grown in 90mm Petri plates were trypsinized and centrifuged 

at 200G for 5 min. Pellet was resuspended in 1ml of DMEM and 10 µl of cell solution was 

mixed with 10 µl of trypan blue solution 0.4% (Thermo Fisher Scientific, Waltham, MA, USA). 

Mixture was placed in a Neubauer Chamber in order to estimate the number of viable cells, 

those that have not internalized the trypan blue solution [386]. Later, 100 µl of cell suspension 

were plated in a Seahorse XFe96 Cell Culture Microplate (Agilent, Santa Clara, CA, USA) at a 

density of 15.000 BV2 cells per well for naive BV2 wells whereas 80 µl of the same cell 

suspension were plated for phagocytic BV2 wells. The four corner wells were no seeded so 

that they were used as background. Likewise, vampire-SH-SY5Y were induced to apoptosis for 

4h as described above (see Section 5.3, In vitro phagocytosis assay). 1h after apoptotic cells 

were added, cell medium was changed to remove non-phagocytosed apoptotic cells.  

5.12.1. OXPHOS analysis 

The analysis of the mitochondrial function was done using the Seahorse XF Cell Mito Stress Kit 

(Agilent, Santa Clara, CA, USA), which targets several components of the mitochondrial ETC. 

The kit is composed of three drugs, which were sequentially injected. First, oligomycin (1 µM) 

inhibited ATPase synthase (ETC complex V), causing a decrease in the OCR of cells (pmol/min), 

which correlates with the mitochondrial respiration coupled to ATP production. Second, FCCP  

(1 µM) was injected and, as a consequence, oxygen was maximally consumed by complex IV of 

the ETC (mitochondrial membrane potential enhancement), producing an increase in the OCR 

that correlated with the maximal mitochondrial respiration. Third, a mix of rotenone (complex 

I inhibitor, 0.5 µM) and antimycin A (complex III inhibitor, 0.5 µM) was injected and 

mitochondrial respiration was shut down, permitting to estimate the non-mitochondrial 

respiration. Drugs were pipetted in a XFe96 Sensor Cartridge (Agilent), which was pretreated 

with XF Calibrant solution (200 µl/well) O/N at 37°C in a non-CO2 incubator. DMEM 10% FBS, 

1% Antimycotic/antibiotic was replaced by XF Seahorse Medium (1mM piruvate (Merck) , 
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2mM glutamine (Sigma) and 10 mM glucose (Sigma)) in each well, including those at the 

corners (background correction or blank wells). The pH of the medium was adjusted to 7.4 

with NaOH 1N and heated at 37°C. Cells were maintained with the supplemented medium 1h 

before assay in a non-CO2 incubator (180 µl/ well).  

5.12.2. Glycolysis analysis 

The analysis of the glycolytic function was performed using the Seahorse XF Glycolysis Rate 

Assay Kit (Agilent, Santa Clara, CA, USA). Two drugs were sequentially injected in order to 

obtain an accurate measurement of the glycolytic proton efflux rate (glycoPER; pmol/min) in 

cells through the estimation of the OCR and the ECAR. First, a mix of rotenone and antimycin A 

(0.5 µM) was injected to block mitochondrial oxygen consumption. 

Thereby, PER from mitochondrial respiration (produced by the extrusion of protons via the 

Krebs cycle) could be calculated and removed from the total PER, obtaining the glycoPER. 

Second, 2-DG 50 mM was injected. This is a glucose analog which inhibits glycolysis through 

competitive binding of glucose hexokinase, first enzyme in the glycolytic pathway. The 

consequence was a stop of glycolytic acidification, measuring the non-glycolytic acidification. 

Drugs were pipetted in a XFe96 Sensor Cartridge which was pretreated with XF Calibrant 

solution (200 µl/well) O/N at 37°C in a non-CO2 incubator. DMEM 10% FBS, 1% 

Antimycotic/antibiotic was replaced by XF Seahorse Medium (1mM piruvate (Merck) , 2mM 

glutamine (Sigma), 10 mM glucose (Sigma), and HEPES buffer 5 mM for each well including 

background wells. The pH of the medium was adjusted to 7.4 with NaOH 1N and heated at 

37°C. Cells were maintained with the supplemented medium 1h before assay in a non-CO2 

incubator (180 µl/ well).  

 

5.13. STATISTICAL ANALYSIS 

SigmaPlot (San Jose, CA, USA) was used for statistical analysis. Normality and homoscedasticity 

of the experimental conditions were checked prior to applying parametrical statistics. Student 

t-test was used to compare differences between two groups, whereas 1-way Analysis of 

Variance (ANOVA) was used to analyze differences between more than two groups. Holm-

Sidak method was used as a posthoc test to determine the significance between groups in 

each factor. When data were not homoscedastic or do not follow a normal distribution, groups 

were compared using non-parametrical tests such as Mann-Whitney U test. Data reported as 
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significant were indicated in each figure legend. Data were shown as mean ± standard error of 

the mean (SEM). 
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6. RESULTS 

6.1. MICROGLIAL PHAGOCYTOSIS IS NOT REGULATED BY IMMUNE MEDIATORS TNF-α AND 

CX3CL1 

As the innate immune cells of the brain, microglia are involved in the initiation of an 

inflammatory response. Inflammation is a mechanism to protect the organism to infectious 

stimuli [32]. Together with phagocytosis, inflammation is the first line of defense against 

pathogens [35]. During inflammation and neurodegenerative diseases, microglia release several 

molecules, such as cytokines, chemokines and lipid mediators, which coordinate the microglial 

response against pathogens and debris in the brain. Microglial phagocytosis efficiency has been 

shown to be unaltered during an inflammatory challenge triggered by bacterial LPS 

administration [28] or omega-3 fatty acid deficiency [37]. Here we will focus on two major 

microglial inflammatory molecules: TNF-α and CX3CL1. TNF-α can be directly released by 

microglia, contributing to the initiation of the inflammatory response [71]. CX3CL1 facilitates 

the motility of microglia to the infection site (chemotaxis) through its interaction with CX3CR1 

expressed in the microglial membrane [87]. Considering the role of both molecules on 

microglia, we decided to explore their possible regulation of phagocytosis. To study 

phagocytosis, we focused on the DG of the hippocampus, where there is a constant production 

of newborn cells throughout adulthood and the majority of them undergo apoptosis and are 

phagocytosed by “unchallenged” microglia in physiological conditions [28]. Thus, this region 

constitutes a perfect tool through which microglial phagocytosis can be assessed. 

6.1.1. TNF-α microglial deficiency does not impair microglial phagocytosis nor reduces 

apoptosis in a mouse model of epilepsy  

TNF-α is generally considered as detrimental, since it can mediate stroke or ischemic injury [73, 

74]. However,, microglial-derived TNF-α has been shown to have neuroprotective effects in 

cerebral ischemia in mice [70] and acute excitotoxicity in vitro [68]. More recently, it was shown 

that microglia could be neuroprotective in a model of mouse organotypic slice cultures treated 

with NMDA, a glutamate agonist, to induce excitotoxicity. Slices chemically depleted of 

microglia showed an enhancement of NMDA-induced cell death, whereas their replenishment 

restored the resistance of neurons to the toxic [69]. One of the reasons behind this 

neuroprotective response was hypothesized to be the microglial release of TNF-α, as previously 

mentioned [68, 70]. With the aim to test the role of microglial-derived TNF-α in 

neuroprotection and microglial phagocytosis, we used an in vivo model of epilepsy, in which 
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seizures concur with excitotoxicity and inflammation, induced by the intrahippocampal injection 

of the glutamate analog KA [37]. In this model, the total number of apoptotic cells in the 

hippocampal DG was significantly decreased in saline mice compared to KA-injected mice at 1 

day post injection (dpi) (Figure 12A). The increased number of apoptotic cells was accompanied 

by a significant increase in the DG volume of KA-injected mice, related to the granule cell 

dispersion typical of this model and of human mesial temporal lobe epilepsy (Figure 12B). 

Additionally, KA-injected mice showed a decreased Ph index (Figure 12C) [37]. 

To test the role of microglial TNF-α on KA-induced neurotoxicity, we used inducible microglial-

specific TNF-α KO mice (via tamoxifen-induced Cre-loxP recombination) from our collaborators 

Stephen Jung from the Weizmann Institute of Science (Israel) and Knut Biber from Freiburg 

University (Germany). We restricted the analysis to the septal hippocampus, where the effect of 

KA is more consistent [37]. Our analysis in KA-injected  WT and microglial TNF-α deficient mice 

revealed that the total number of apoptotic cells in the septal hippocampus remained very 

similar in both conditions at 1dpi (1,486 ± 165.5 vs 1,648.2 ± 190.3 in WT vs TNF-α KO mice, 

respectively; p=0.56) (Figure 12D). This effect was not related to changes in the DG volume 

(Figure 12E). Furthermore, the Ph index was 4.8 ± 1.5 % in WT mice whereas in TNF-α-deficient 

mice was 10.6 ± 2.9 % (p=0.18), reflecting non-significant differences (Figure 12F). These results 

indicated that microglial TNF-α did not play an active role in the maintenance of the microglial 

phagocytic efficiency after KA-induced seizures in vivo. Additionally, TNF-α did not affect cell 

survival, since apoptosis levels were unchanged in spite of its absence on microglia. Thus, TNF-α 

was not related to any type of neuroprotective microglial response in the hippocampus in vivo.  
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Figure 12. TNF-α microglial deficiency does not impair microglial phagocytosis nor reduce 
apoptosis in a mouse model of epilepsy in vivo. Mice were treated with kainate (20 mM, 50nL) 
and sacrificed 1 day later. In the left side: A. Number of apoptotic cells per septal hippocampus 
of 2 month-old saline and Kainate (KA)-treated mice at 1 day post-injection (dpi).  KA 1 dpi time 
point is highlighted. B. Septal dentate gyrus volume (in mm3) in 2 month-old saline and KA-
treated mice at 1dpi. KA 1dpi is highlighted. C. Ph index (in % of apoptotic cells) in the septal 
hippocampus of 2 month-old saline and KA-treated mice at 1 dpi. KA 1dpi is highlighted. In the 
right side:  D. Number of apoptotic cells per septal hippocampus of 4 month-old KA-injected WT 
mice (n=3) and TNF-α deficient-microglia mice (TNF-α KO) (n=4) at 1 dpi. E. Septal dentate 
gyrus volume (in mm3) in 4 month-old KA-injected WT and TNF-α KO mice at 1dpi.  F. Ph index 
(in % of apoptotic cells) in the septal hippocampus of 4 month-old KA-injected WT mice and 
TNF-α KO mice at 1 dpi. Bars represent mean ± SEM. n.s. indicates non-significant differences 
and *** indicates p<0.001 by two tailed-Student’s test. Figures A, B and C were originally 
published in [37]. 
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6.1.2 CX3CR1 deficiency does not impair microglial phagocytosis in physiological conditions 

Neurons have been shown to inhibit microglial activity through its interaction by either 

membrane thethered or released CX3CL1 with CX3CR1 [87]. This leads us to propose that a 

glial-neuron crosstalk could influence microglial phagocytosis. With the aim to assess whether 

CX3CR1 could regulate the microglial phagocytosis of apoptotic cells, we analyzed the microglial 

behavior in young (1 month-old) CX3CR1 KO mice in the neurogenic niche of the hippocampal 

DG (Figure 13). In physiological conditions, phagocytosis is very efficient and microglia engulf 

the vast majority of newborn cells, as determined by the Ph index, i.e, the percentage of 

apoptotic cells phagocytosed by microglia, which is about 90 % (91 ± 3.1 %) [28]. 

Our analysis in CX3CR1 KO mice showed that this percentage was only slightly reduced (80.2 ± 

2.9 %), suggesting that the contribution of CX3CR1 to microglial phagocytosis through its 

interaction with CX3CL1 protein was residual. Thus, CX3CR1 microglial receptor was not a great 

candidate for the study and regulation of microglial phagocytosis in vivo.  
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Figure 13. CX3CR1 does not regulate microglial phagocytosis in vivo. Representative confocal 
z-stacks of the dentate gyrus of 1 month-old CX3CR1-deficient mice (n=4) and detailed images 
from a single focal plane of apoptotic cells. Nuclear morphology was visualized with DAPI 
(white) and microglia were visualized with GFP (green). Arrowheads point at apoptotic cells. 
Scale bars: 50µm (10 µm in high magnification images) Z=18,9 µm.  

 

6.2. PHAGOCYTOSIS RECEPTOR GPR34 IS SPECIFIC OF MICROGLIA IN VIVO AND IN VITRO 

Next, we focused on another type of potential regulator of phagocytosis, GPR34, whose 

relevance in microglial cells has recently begun to be unraveled [181]. GPR34 has so far been 

described to respond to a single ligand, the lipid lysoPS [183]. Three other G-protein coupled 

receptors have been shown to bind to lysoPS: G2A [188], P2Y10 and GPR174 [189]. To test the 

role of GPR34 and related receptors on microglial phagocytosis, we first analyzed their 

expression in microglia both in vivo and in vitro. 

6.2.1. GPR34 is highly expressed in microglia in vivo 

With the purpose to assess which of the four described lysoPS-receptors (GPR34, G2A, P2Y10 

and GPR174) were expressed by microglia in vivo, we performed an analysis of their mRNA 

expression levels by RT-qPCR. We used FACS-sorted in vivo microglia isolated from the 

hippocampus of 1 month-old fms-eGFP mice (in which the fluorescent reporter eGFP is 

exclusively expressed in microglia [387]) (Figure 14A). The results clearly showed that GPR34 

was highly enriched in FACS-sorted in vivo microglia (eGFP+ population) compared to non-

microglial cells (eGFP-) (p<0.001) (Figure 14B-C), in agreement with previous publications 

showing that GPR34 was highly expressed in microglial cells [177, 178]. In contrast, G2A had no 

expression in microglial cells compared to the remaining brain cells (Figure 14B-C). 

Furthermore, both GPR174 and P2Y10 mRNA were also absent in microglia, in agreement with 

previous data showing that P2Y10 and GPR174 expression was restricted to lymphoid organs 

[192, 388] (Figure 14B-C). Therefore, the main and unique lysoPS-receptor expressed in 

microglia in vivo was GPR34.  
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Figure 14. GPR34 is specifically expressed in microglia in vivo. A. Experimental design. 1 
month-old fms-eGFP mice were sacrificed and hippocampi removed and processed by FACS 
(n=3 mice) to separate the eGFP+ population (microglia) from eGFP- population (non-microglia). 
B. Amplification curves for GPR34, G2A, P2Y10, and GPR174 mRNA showing the RFU (relative 
fluorescent units) with increased amplification cycles. C. Quantification of mRNA expression of 
GPR34, G2A, P2Y10 and GPR174 genes in eGFP+ and eGFP- populations. Each gene shows its 
normalized gene expression compared to OAZ1 gene (reference gene) in arbitrary units (a.u). 
KA-injected hippocampus at 3 days post-injection (dpi) was used as a positive control (C+). RT- 
was referred to non-retrotranscribed RNA and used as a negative control. n.d means non-
detected and *** indicates p<0.001 by two-tailed Student’s test. 

 

6.2.2. GPR34 is the predominant lysoPS-associated receptor in microglia in vitro 

A similar mRNA expression analysis of these four lysoPS-receptors was performed in primary 

microglia and the BV2 microglia cell line in order to determine whether their expression 

patterns were different compared to those observed in FACS-sorted in vivo microglia. Results 

showed that GPR34 was highly expressed in primary microglia compared to BV2 microglia 

(p<0.001) (Figure 15A-B). However, G2A expression was scarce in primary microglia whereas it 

was consistently expressed in BV2 microglia (p=0.12) (Figure 15A-B). P2Y10 and GPR174 mRNA 

were not detected neither in primary microglia nor BV2 cells (Figure 15A-B). Together, these 

results suggested that primary microglia showed a similar expression pattern compared to 

FACS-sorted microglia, since primary microglia presented a strong expression of GPR34 and 

G2A was scarcely expressed (Figure 15A-B). In contrast, BV2 microglia had a very different 

expression pattern, showing high expression of G2A but residual expression of GPR34 (Figure 

15A-B). To sum up, both in vitro and in vivo microglia had a predominant expression of GPR34.  
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Figure 15. GPR34 is the predominant lysoPS-receptor in primary microglia whereas G2A 
predominates in BV2 microglia. A. Amplification curves for GPR34, G2A, P2Y10, and GPR174 
mRNA in cultured primary microglia and BV2 microglia showing the RFU (relative fluorescent 
units) with increased amplification cycles. B. Quantification of mRNA expression of GPR34, G2A, 
P2Y10 and GPR174 genes in primary microglia (Micro, green) and BV2 microglia (BV2,blue). 
Each gene shows its normalized gene expression compared to OAZ1 gene (reference gene) in 
arbitrary units (a.u). Kainate (KA)-injected hippocampus at 3 days post-injection (dpi) was used 
as a positive control (C+). RT- was referred to non-retrotranscribed RNA and used as a negative 
control. n.d means non-detected and *** indicates p<0.001 by two-tailed Student’s test. 

 

6.3. MICROGLIAL PHAGOCYTOSIS IS REGULATED BY GPR34 IN VIVO AND IN VITRO  

Once we established that GPR34 was the main lysoPS-receptor expressed in microglia, our 

next task consisted on assessing the role of GPR34 on microglial phagocytosis. GPR34 was 

previously shown to be involved on microglial phagocytosis because GPR34-deficient microglia 

showed reduced phagocytosis of zymosan (a component of the yeast cell wall) particles or FBS-

coated latex microbeads in acutely isolated retina and hippocampal cortical slices in vitro 

[182]. To directly test the role of GPR34 on phagocytosis of apoptotic cells in vivo, we first 

evaluated microglial phagocytosis in GPR34-deficient mice at different ages. Afterwards, we 

analyzed the role of lysoPS on microglial phagocytosis in primary microglia and BV2 microglia 

cultures. Next, we tested the effect of the addition of lysoPS to hippocampal slice cultures on 

microglial phagocytosis. Lastly, we injected lysoPS in the hippocampus of mice to observe its 

impact on microglial phagocytosis in vivo. 

6.3.1. GPR34 deficiency leads to microglial phagocytosis impairment in young mice in vivo  

As stated previously, GPR34 was postulated as a new regulator of microglial phagocytosis, at 

least in vitro [182]. Thus, in order to determine the relevance of GPR34 on microglial 

phagocytosis of apoptotic cells in vivo, we analyzed microglial phagocytosis in 1 month-old WT 

and GPR34 KO mice in the neurogenic niche of the hippocampus in collaboration with Dr. 

Angela Schulz from the University of Leipzig (Germany). 

We first analyzed the number of apoptotic cells present in WT and GPR34 KO mice. In WT 

mice, the vast majority of the apoptotic cells in the DG was located in the SGZ of the DG, in 

agreement with previous findings where they were identified as newborn cells [28]. In GPR34 

KO mice a similar pattern of location of apoptotic cells was observed (Figure 16A-B) suggesting 

that in the absence of GPR34 expression, the apoptotic cells might also be newborn cells.  
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Figure 16. Microglial phagocytosis in young GPR34 KO mice. A, B. Representative confocal z-
stacks of the dentate gyrus and detailed images from a single focal plane of apoptotic cells from 
1 month-old (m.o) WT (n=3, A) and GPR34 KO mice (n=4, B). Nuclear morphology was visualized 
with DAPI (white) and microglia were visualized with Iba-1 (green). Arrowheads point at 
apoptotic cells. Scale bars: 50µm (10 µm in high magnification images) Z=29,4 µm (WT), Z=29,4 
µm (KO). 

 

We did not find significant changes in the total number of apoptotic cells (1,429.3 ± 224.3 vs 

1,012.4 ± 107.1 cells per septal hippocampus in WT and KO mice, respectively; p=0.12) (Figure 

17A), nor in the septal hippocampal volume (0.24 ± 0.03 vs 0.24 ± 0.01 mm3 in WT and KO 

mice, respectively; p=0.86) (Figure 17B), suggesting no major morphological defects. To assess 

the effect of GPR34 on microglial phagocytic efficiency we quantified the Ph index. The Ph 

index was over 90 % in WT mice (92.7 ± 1.8 %), in agreement with previous results [28]. In 

contrast, it was significantly lower in GPR34 KO mice (67.7 ± 3.1 %; p<0.001) (Figure 17C). This 

partial decrease in the Ph index suggested that GPR34 could have a modulatory role in 

microglial phagocytosis. This phagocytic impairment observed in GPR34 KO mice could be 

caused by either a reduced number of microglial cells or by a decreased Ph capacity 

(percentage of microglia with phagocytic pouch(es), phagocytosing at least one apoptotic cell) 

of each microglial cell. To further delve into the mechanisms leading to a decreased microglial 

phagocytosis in GPR34 KO mice, we analyzed the amount of microglia per hippocampus and 

their Ph capacity. The quantification of the total number of microglia showed no differences in 

WT compared to GPR34 KO mice (3,756.6 ± 600 vs 3,639.6 ± 146.1 cells per hippocampus, 

respectively; p=0.83) (Figure 17D). However, microglia occupied significantly more volume in 

the DG in WT mice (4.3 ± 0.1 %) than in GPR34 KO mice (2.7 ± 0.06 %; p<0.001) (Figure 17E). 

This “shrinkage” of microglial processes in GPR34 KO mice may be related to a reduced motility 

[37], and would explain their reduced phagocytosis. We next quantified the Ph capacity. In WT 

mice we found 19.8 ± 1.2 % of microglial cells with one pouch whereas in GPR34 KO mice only 

11.5 ± 1.8 % of microglia had a single pouch (p=0.018). Additionally, WT mice presented 2.9 ± 

1.1 % microglial cells with two pouches and in GPR34 KO mice 0.8 ± 0.2 % microglia had two 

pouches (p=0.08). Finally, no microglial cells were observed with 3 or more pouches in WT or 

KO mice (Figure 17F). The weighted average of the Ph capacity was 0.27 ± 0.01 parts per unit 

(ppu) for WT and 0.13 ± 0.01 ppu for GP34 KO mice (p=0.008) (Figure 17G). To sum up, the lack 

of GPR34 resulted in a decrease of phagocytic microglia (Figure 17H).  

Afterwards, we hypothesized that the impairment of phagocytosis (decreased Ph index and Ph 

capacity) observed in GPR34 KO mice would result in an uncoupling between apoptosis and 
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phagocytosis. These two processes are coupled in physiological conditions, excitotoxicity and 

inflammation because microglia reacts to an increase in the number of apoptotic cells with a 

proportional increase in phagocytosis [37]. To determine whether microglia was able to cope 

with the amount of apoptotic cells present in GPR34 KO mice, we quantified the Ph/A coupling 

ratio, that is, the ratio between the net phagocytosis and the net apoptosis between control 

and experimental conditions. As expected, we found that in GPR34 KO mice these processes 

were significantly uncoupled (1.00 ± 0.02 vs 0.67 ± 0.06 in WT and KO mice, respectively; 

p<0.001) (Figure 17I). All these showed results made us conclude that GPR34 KO mice suffered 

a microglial shrinkage and phagocytosis impairment in vivo which led to an uncoupling 

between phagocytosis and apoptosis processes.  
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Figure 17. GPR34 deficiency leads to an uncoupling between apoptosis and microglial 
phagocytosis in vivo. A. Number of apoptotic cells (pyknotic/karyorrhectic) per septal 
hippocampus. B. Septal dentate gyrus volume (in mm3). C. Ph index (in % of apoptotic cells) in 
the septal hippocampus. D. Total number of microglial cells (Iba1+) per septal hippocampus. E. 
Percentage of septal dentate gyrus volume occupied by microglia. F. Histogram showing the Ph 
capacity of microglia (in % of cells). G. Weighted Ph capacity of microglia in parts per unit (ppu) 
in the septal hippocampus. H. Percentage of phagocytic and non phagocytic microglia per 
condition I. Ph-A coupling (in fold change). Bars represent mean ± SEM. * indicates p< 0.05, ** 
indicates p<0.01 and *** indicates p<0.001 by two-tailed Student’s test.  

 

After observing the phagocytic impairment in 1 month-old mice caused by the lack of GPR34 

receptor, we performed a brief analysis of apoptosis and phagocytosis in more mature mice, at 

3 months of age (Figure 18A-B). 

Analysis of the total number of apoptotic cells per hippocampus showed no differences in 3 

month-old WT mice versus GPR34 KO mice (211.3 ± 18.7 vs 187.6 ± 63.1 cells, respectively; 

p=0.79), (Figure 19A), similar to 1 month-old mice. Remarkably, 3 month-old mice presented 

fewer apoptotic cells, presumably due to the progressive decline of neuroprogenitor cells and 

thus neurogenesis with age [295]. However, the Ph index decrease observed in younger 1 

month-old mice was not reproduced in 3 month-old WT compared to GPR34 KO mice (97.5 ± 

2.5 % vs 95 ± 3.6 %; p=0.64) (Figure 19B). Quantification of the total number of microglia per 

hippocampus also reflected no differences between WT and GPR34 KO mice (4469.4 ± 166.6 vs 

4323.9 ±214.1; p=0.65) (Figure 19C). Likewise, analysis of the weighted average of the Ph 

capacity followed the same pattern, showing that mature 3 month-old mice did not present 

any differences in WT mice compared to GPR34 KO mice (0.024 ± 0.004 ppu vs 0.019 ± 0.003 

ppu; p=0.40) (Figure 19D), contrary to observed in 1 month-old mice. Consequently, the Ph/A 

coupling ratio in 3 month-old mice showed no alterations between WT and GPR34 KO mice 

(1.00 ± 0.24 vs 1.11 ±0.22; p=0.76) (Figure 19E). These data obtained in 3 month-old mice 

suggested that microglial phagocytosis impairment due to the lack of GPR34 receptor was not 

maintained throughout adulthood. 
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Figure 18. Microglial phagocytosis in adult GPR34 KO mice. A, B Representative confocal z-
stacks of 3 month-old WT mice (A; n=4) and GPR34 KO mice (B; n=7). Nuclear morphology was 
visualized with DAPI (white) and microglia were visualized with Iba-1 (green). Scale bars: 50 
µm. Z=11,9 µm (WT) and Z=14,7 µm (KO).  
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Figure 19. GPR34 deficiency does not affect microglial phagocytosis in adult mice in vivo. A. 
Total number of apoptotic cells per septal hippocampus. B. Ph index (in % apoptotic cells). C. 
Total number of microglial cells (Iba1+) per septal hippocampus. D. Weighted Ph capacity (in 
ppu). E. Ph/A coupling ratio (in fold-change). Bars represent mean ± SEM. No significant 
differences were detected by two-tailed Student’s test (C, D and E) or Mann-Whitney U test (A 
and B).  
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6.3.2. GPR34 ligand lysoPS impairs microglial phagocytosis in vitro 

The above results evidenced a role of GPR34 on microglial phagocytosis, the unique lysoPS-

receptor expressed on microglia. To further test the role of GPR34 signaling on microglial 

phagocytosis, we resorted to a reductionist approach and utilized an in vitro model of 

phagocytosis using primary microglial cultures and the GPR34 ligand, lysoPS. Briefly, we 

pretreated microglia isolated from postnatal day 0-1 mice with lysoPS and DMSO (lysoPS 

vehicle) at a low dose (0.3 µM) and at a high dose (3 µM) for 2h prior to the addition of 

apoptotic cells for 3h (Figure 20A). The selected doses were based on a previous publication in 

which lysoPS 3 µM was shown to induce the activation of GPR34 in HEK293A cells transfected 

with a plasmid encoding this receptor [389].  

The percentage of phagocytic microglia was unaltered by the low dose of DMSO compared to 

the low concentration of lysoPS (0.3 µM) (38.3 ± 3.7 % vs 37 ± 4.1 %; p=0.29) (Figure 20B-C). 

However, the percentage was significantly higher in cultures treated with the high dose of 

DMSO compared to the high concentration of lysoPS (3 µM) (39.1 ± 3.7 % vs 29 ± 3.1 %; 

p<0.001) (Figure 20D-E). Furthermore, DMSO treatments did not present any effect compared 

to basal conditions (Data not shown). Thus, the effect of lysoPS on microglial phagocytosis was 

dose-dependent (Figure 20F). LysoPS was originally described as a phagocytosis enhancer. It 

was shown that lysoPS generated in apoptotic neutrophils or supplied exogenously in 

liposomes along with lysoPS-negative (ultraviolet (UV)-irradiated) apoptotic neutrophils was 

shown to enhance the phagocytic response of peritoneal macrophages in vitro [188]. 

Nevertheless, our results suggested that in primary microglia cultures lysoPS blocked 

phagocytosis, presumably by binding to microglial GPR34, the major lysoPS-receptor expressed 

in vitro (Figure 15B). These results suggested that lysoPS was a possible candidate to modulate 

microglial phagocytosis, at least in vitro.  
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Figure 20. GPR34 ligand lysoPS impairs microglial phagocytosis in cultured microglia. A. 
Experimental design. Microglia were pretreated with lysoPS and DMSO (0.3 and 3 µM) 2 h 
before adding apoptotic SH-SY5Y cells (pre-treated with STP 3 µM for 4h) for 3h. B-E are 
representative images of confocal z-stacks showing microglia (fms-EGFP, green), nuclei and 
apoptotic fragments (DAPI; white), and cm-diI (apoptotic cell membranes, red) in DMSO 0.3 and 
3 µM (B and D, respectively), and lysoPS 0.3 and 3 µM (C and E, respectively). White and red 
arrows point at apoptotic cells and their membrane fragments, respectively. Scale bars: 50 µm 
(10 µm for high magnification images). F. Percentage of phagocytic microglia in every condition. 
Bars represent mean ± SEM (from 3 independent experiments). *** indicates p<0.001 by Holm-
Sidak posthoc test (after one-Way ANOVA was significant at p<0.05).  

 

6.3.3. GPR34 ligand lysoPS impairs BV2 microglia phagocytosis in vitro 

To further confirm the phagocytosis blockade observed in primary cultures, we used BV2 

microglia, in which G2A was highly expressed whereas GPR34 was almost absent, contrary to 

primary microglia (Figure 15B). In order to test whether the addition of lysoPS had a similar 

effect on BV2 microglia phagocytosis, we performed the same phagocytosis assay as described 

above (Figure 20A) comparing the phagocytic capacity of DMSO and lysoPS-treated BV2 

microglia (Figure 21A). 

The percentage of phagocytic microglia was unaltered by the low dose of DMSO compared to 

the low concentration of lysoPS (0.3 µM) (23.1 ± 2.5 % vs 22.5 ± 1.9 %, respectively; p=0.94) 

(Figure 21B-C). However, the percentage was significantly higher in cultures treated with the 

high dose of DMSO compared to the high concentration of lysoPS (3 µM) (18.9 ± 3 % vs 15.5 ± 

2.8 %, respectively; p=0.02) (Figure 21D-E). Like in primary microglia cultures, DMSO 

treatments did not present any effect compared to basal conditions (Data not shown). Thus, 

the effect of lysoPS was dose-dependent (Figure 21F), as in primary microglia (Figure 20F). On 

top of that, the blocking effect of lysoPS on phagocytic capacity was weaker in BV2 microglia 

(18 ± 15 % reduction) compared to that observed in primary microglia cultures (26 ± 8 % 

reduction). As stated before, BV2 microglia expressed G2A and also GPR34 (almost absent 

expression) whereas primary microglia only expressed GPR34 as lysoPS-receptor (Figure 15B). 

Therefore, in BV2 microglia, the blocking effect of lysoPS was principally mediated by G2A 

(with a scarce contribution of GPR34) whereas in primary microglia was exclusively mediated 

by GPR34. In brief, these results again showed the role of lysoPS in the regulation of microglial 

phagocytosis in vitro. 
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Figure 21. GPR34 ligand lysoPS impairs BV2 microglia phagocytosis. A. Experimental design. 
Microglia were pretreated with lysoPS and DMSO (0.3 and 3 µM) 2 h before adding apoptotic 
SH-SY5Y cells (pre-treated with STP 3 µM for 4h) for 3h. B-E, representative images of confocal z-
stacks showing microglia (fms-EGFP, green), nuclei and apoptotic fragments (DAPI; white), and 
cm-diI (apoptotic cell membranes, red) in DMSO 0.3 and 3 µM (B and D, respectively), and 
LysoPS 0.3 and 3 µM (C and E, respectively). White and red arrows point at apoptotic cells and 
their membrane fragments, respectively. Scale bars: 50 µm (10 µm for high magnification 
images). F. Percentage of BV2 phagocytic microglia in every condition. Bars represent mean ± 
SEM (from 4 independent experiments). * indicates p<0.05 by Holm-Sidak posthoc test (after 
one-Way ANOVA was significant at p<0.05).  

6.3.4. GPR34 ligand lysoPS impairs microglial phagocytosis in hippocampal organotypic slice 

cultures  

To delve into the role of lysoPS on microglial phagocytosis in more complex models, we tested 

its effect on hippocampal organotypic cultures from PND 7 fms-eGFP mice, treated with DMSO 

(lysoPS vehicle) or lysoPS 10 µM for 3h, and evaluated microglial phagocytosis (Figure 22A-C).  

 

Figure 22. Effect of GPR34 ligand lysoPS on microglial phagocytosis in hippocampal slice 
cultures. A. Experimental design. Postnatal day 7 (PND7) fms-eFGP mice (n=2 per experiment, 3 
experiments) were sacrificed, their hippocampi removed and chopped in slices. After 7 days in 
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culture, slices were treated with lysoPS or DMSO (10 µM) for 3h. B. Representative images of 
confocal z-stacks from DMSO-treated slices. C. Representative images of confocal z-stacks from 
lysoPS-treated slices. Arrowheads point at non-phagocytosed apoptotic cells whereas arrows 
point at phagocytosed apoptotic cells (showed in high magnification images). Scale bars: 50 
µm (10 µm in high magnification images). 

 

First, we quantified the density of apoptotic cells, and found no significant differences 

between DMSO and lysoPS-treated slices (11 ± 0.9 vs 9.1 ± 0.9 apoptotic cells in 200,000 µm3, 

(20µm thick, 100x100µm2 slice) respectively; p=0.18) (Figure 23A). Afterwards, we analyzed 

the microglial phagocytic efficiency. In this case, DMSO-treated slices showed that microglia 

were significantly more efficient phagocytosing the apoptotic cells than in lysoPS-treated 

slices, as reflected by the drop in the Ph index (11.6 ± 0.5 % vs 7.9 ± 0.5 % in DMSO and lysoPS-

treated slices, respectively; p<0.001) (Figure 23B). This phagocytic impairment observed in 

lysoPS-treated slices could be caused by either a reduced number of microglial cells or by a 

decreased Ph capacity. For that reason, we continued analyzing the total amount of microglial 

cells and the Ph capacity. The number of microglia was similar in both DMSO and lysoPS-

treated slices (4.4 ± 0.3 vs 3.8 ± 0.3 cells in 200,000 µm3; p=0.25) (Figure 23C). The 

phagocytosis impairment was then corroborated by observing the Ph capacity. DMSO-treated-

slices presented 22.7 ± 2.1 % of microglia with one pouch whereas this percentage was 

significantly decreased to 17.3 ± 1.8 % in lysoPS-treated slices (p=0.08). Additionally, DMSO 

treatment generated 2.3 ± 1.1 % of microglia with two pouches, which was 1.6 ± 0.8 % in 

lysoPS-treated slices (p=0.56) (Figure 23D). The weighted average of the Ph capacity was 

significantly higher in DMSO-treated slices compared to lysoPS-treated slices (0.27 ± 0.01 vs 

0.20 ± 0.01 ppu; p=0.001) (Figure 23E). Therefore, DMSO-treated slices showed a decreased 

percentage of non-phagocytic microglia compared to lysoPS-treated slices (74.9 ± 1.2 % vs 81.1 

± 1.4 % in DMSO and lysoPS treatment, respectively; p=0.007) (Figure 23D). 

Next, we postulated that the impairment of phagocytosis through a decreased Ph index and Ph 

capacity observed in lysoPS-treated slices could result in an uncoupling between apoptosis and 

phagocytosis, as previously observed in GPR34 KO mice. Thus, we quantified the Ph/A coupling 

ratio in our slices. Expectedly, results showed that these processes were significantly 

uncoupled in lysoPS-treated slices (1.00 ± 0.06 vs 0.76 ± 0.03 in DMSO and lysoPS treatment, 

respectively; p=0.017) (Figure 23F). All these results showed that the addition of lysoPS to 

hippocampal slice cultures provoked an impairment in microglial phagocytosis leading to an 
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uncoupling between phagocytosis and apoptosis, similar to the effect in vivo caused by GPR34 

deficiency. This again demonstrates the involvement of lysoPS in microglial phagocytosis. 

 

Figure 23. GPR34 ligand lysoPS uncouples apoptosis and microglial phagocytosis in 
hippocampal slice cultures. A. Total number of apoptotic cells in 200.000 µm3 of the dentate 
gyrus (DG). B. Ph index (in % apoptotic cells) in each experimental condition. C. Total number of 
microglia in 200.000 µm3 of the DG. D. Histogram showing the Ph capacity of microglia (in % of 
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cells). E. Weighted Ph capacity (in ppu).  F. Ph/A coupling ratio (in fold-change). Bars represent 
mean ± SEM from three independent experiments. ## indicates p=0.017, ** indicates p<0.01, 
### indicates p=0.001 and *** indicates p<0.001 by two-tailed Student’s test (B and D) or 
Mann-Whitney U test (E and F). 

 

6.3.5. GPR34 ligand lysoPS does not impair microglial phagocytosis in vivo  

The next step was to determine the possible effect of lysoPS on microglial phagocytosis in vivo. 

Data obtained from in vitro experiments pointed towards a role of lysoPS in the regulation of 

microglial phagocytosis (Figures 20-23). With the aim to assess its possible role on 

phagocytosis in vivo, DMSO (lysoPS vehicle) or lysoPS 36 µM were intrahippocampally injected 

in the DG of the hippocampus of 1 month-old fms-eGFP mice and microglial phagocytosis was 

analyzed (Figure 24A-B). 

We first observed that the amount of apoptotic cells in the hippocampus was similar between 

DMSO and lysoPS-injected mice (1,696.9 ± 233.7 vs 1,693.3 ± 258.1 apoptotic cells per septal 

hippocampus in DMSO and lysoPS-injected mice, respectively; p=0.94) (Figure 25A). Regarding 

microglial phagocytic efficiency, Ph index was also similar in DMSO and lysoPS-injected mice 

(78.3 ± 3.1 % vs 75.5 ± 2.6 %; p=0.5) (Figure 25B). 

Furthermore, the number of microglia per hippocampus remained unchanged between DMSO 

and lysoPS-injected mice (4,081.1 ± 231.8 vs 4,098.5 ± 391.2; p=0.97) (Figure 25C). Regarding 

the Ph capacity, DMSO-treated mice exhibited 24.2 ± 3.4 % of microglial cells with one single 

pouch whereas 19.2 ± 2.7 % of microglia with one pouch were observed in lysoPS-treated mice 

(p=0.27). Additionally, DMSO-treated mice presented 2.7 ± 0.7 % with two pouches whereas 

lysoPS-treated mice registered 0.8 ± 0.2 % of microglia with two pouches (p=0.02, although 

this difference is not reliable because only 5 microglial cells were visualized) (Figure 25D). The 

weighted average of the Ph capacity was slightly but not significantly higher in DMSO-treated 

mice compared to lysoPS-treated mice (0.31 ± 0.04 ppu vs 0.21 ± 0.02 ppu, respectively; 

p=0.09) (Figure 25E). Finally, the quantification of the Ph/A coupling reflected a small but non-

significant decrease in lysoPS-injected mice (1.00 ± 0.10 vs 0.73 ± 0.12; p=0.13) (Figure 25F). As 

a conclusion, all these data did not give enough evidence of an impairing effect of the addition 

of lysoPS on microglial phagocytosis in vivo, as previously observed in microglia cultures.  

122 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Effect of GPR34 ligand lysoPS on microglial phagocytosis in vivo. 1 month-old fms-
eGFP mice were injected with DMSO (n=6) or lysoPS (n=7; 36 µM) into the right hippocampus 
and sacrificed 6h later. A-B. Representative confocal z-stacks of the dentate gyrus and detailed 
images from a single focal plane of apoptotic cells from 1 month-old fms-eGFP mice treated 
with DMSO (A) or lysoPS (B). Arrowheads point at apoptotic cells. Nuclear morphology was 
visualized with DAPI (white) and microglia were visualized with GFP (green). Scale bars: 50 µm 
(10 µm in high magnification images); Z=17 µm (DMSO), Z=20 µm (LysoPS). 
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Figure 25. GPR34 ligand lysoPS does not affect microglial behavior in vivo. A. Total number of 
apoptotic cells per septal hippocampus. B. Ph index (% apoptotic cells) per septal hippocampus. 
C. Total number of microglia cells per septal hippocampus. D. Histogram showing the Ph 
Capacity (in % of cells). E. Weighted Ph capacity (ppu).  F. Ph/A coupling ratio. Bars represent 
mean ± SEM from n=7 (DMSO) and n=8 (LysoPS). No significant differences were detected by 
two-tailed Student’s test. 
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6.4. PHAGOCYTOSIS TRIGGERS METABOLIC ADAPTATIONS IN MICROGLIA IN VITRO 

Once we had established the role of GPR34 on microglial phagocytosis, we focused on studying 

the consequences of phagocytosis on microglia through the analysis of microglial metabolism. 

Microglial phagocytosis is a complex process whose implications for the phagocyte are not 

fully understood yet. Engulfment and removal of apoptotic cells by microglia requires enough 

metabolic resources to meet such huge cellular demand [139]. Previous data of the laboratory 

comparing the transcriptional profile of cultured and phagocytic microglia 24h after engulfing 

apoptotic cells, pointed towards an upregulation of glycolytic pathway and a dowregulation of 

mitochondrial metabolic pathways through the phagocytic process (Data of Irune Díaz-

Aparicio Thesis; See introduction, Figure 6). Glycolysis and OXPHOS are the main ATP 

production pathways in eukaryotic cells. Therefore, our aim was to study the possible 

metabolic changes affecting these pathways in microglia during phagocytosis. We used the 

BV2 microglia cell line as our model because of the low viability observed in metabolic analysis 

with primary microglia. First, we analyzed the mRNA expression pattern of key genes of 

glycolysis and OXPHOS metabolic pathways in search of alterations upon phagocytosis. Next, 

we studied deeply these two metabolic pathways at the cellular level. Afterwards, we assessed 

the mitochondrial morphology and dynamics (fusion, fission), which are usually linked to the 

energetic state of the cell [390] [391], and whose correct balance determines the 

mitochondrial network morphology [392]. Finally, we analyzed the mRNA expression of key 

genes involved in mitochondrial fusion and fission, whose expression could be related to 

mitochondrial morphology in BV2 microglia. 

6.4.1. Glycolysis and OXPHOS genes are not altered in BV2 microglia after phagocytosis  

We aimed to confirm whether an upregulation of genes involved in glycolysis occurred in BV2 

microglia as a consequence of phagocytosis, as in primary microglia. For this purpose, we 

analyzed the mRNA expression profile of key genes encoding for glycolytic enzymes by RT-

qPCR (Genes are highlighted in Figure 26). Encoding genes for these enzymes were selected 

according to their expression rate observed in the formerly mentioned array (upregulated for 

glycolysis genes and downregulated for OXPHOS genes, respectively). 
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Figure 26. Scheme of the different metabolic pathways used for cell ATP production. The 
mitochondrial metabolic pathway is illustrated in orange and the glycolytic pathway is 
illustrated in blue. Genes analyzed for each pathway are shown in capital letters. 

 

hif-1α was the first gene tested. It encodes the alpha subunit of transcription factor hypoxia-

induced factor-1 (hif-1), a heterodimer protein which functions as a master regulator in 

glycolysis. hif-1α presented a non-significant decreased expression in naïve BV2 cells compared 

to phagocytic BV2 cells (increase of 31.4 ± 13 %; p=0.07) (Figure 27A). Other two genes 

analyzed were 6-phosphofructokinase muscle (pfkm) and 6-phosphofructo-2-kinase/fructose-

2,6-biphosphatase 3 (pfkfb3). pfkm encodes a subunit of the tetramer phosphofructokinase, 

which catalyzes the phosphorylation of fructose-6-phosphate into fructose 1,6-biphosphate. 

Naïve BV2 cells presented significantly increased expression compared to phagocytic BV2 cells 

(reduction until 43.6 ± 6.2 %, p<0.001) (Figure 27B). pfkfb3 encodes a protein that catalyzes 

the synthesis and degradation of fructose-2,6-biphosphate during glycolysis. pfkfb3 did not 

experiment any changes in its expression in naïve BV2 cells compared to phagocytic BV2 cells 

(increase of 54.4 ± 53.6 %, p=0.36) (Figure 27C). All these results were not consistent enough 

to confirm the gene expression changes in key glycolytic enzymes in BV2 cells, as observed in 

primary microglia after phagocytosis (Table 2). 
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Figure 27. Glycolysis genes are not upregulated in BV2 microglia after phagocytosis. 
Expression of HIF1-α (A), PFKM (B) and PFKFB3 (C) genes in naïve and high phagocytic (Phago 
1:1) BV2 microglia (ratio 1:1; BV2; apoptotic cells). Each gene shows its gene expression 
normalized versus OAZ1 gene (reference gene) in arbitrary units (a.u). Bars represent mean ± 
SEM. *** indicates p<0.001 by two-tailed Student’s test. N=3.  

 

Next, we tested whether there was a downregulation of mitochondrial metabolic pathways 

through phagocytosis in BV2 microglia. For this purpose, we analyzed the mRNA expression 

profile of key OXPHOS and TCA cycle enzymes by RT-qPCR (Genes are highlighted in Figure 

26).  

The OXPHOS pathway was tested by assessing three genes. We first tested NADH ubiquinone 

oxidoreductase complex assembly factor 4 (ndufaf4), a gene which encodes for a protein 

involved in the assembly of the mitochondrial complex I, which catalyzes the transfer of 

electrons from NADH to ubiquinone in the first step of the respiratory chain. This gene showed 

very increased expression in naïve BV2 cells compared to phagocytic BV2 cells (reduction to 

61.1 ± 8 %; p=0.008) (Figure 28A). Next, ubiquinol-cytochrome C reductase Complex III Subunit 

VII (uqcrq), a gene that encodes for a subunit that is a component of the ubiquinol-cytochrome 
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reductase complex III, part of the ETC, did not present significant changes in naïve BV2 cells 

compared to phagocytic BV2 cells (increase of 16.8 ± 13.5 %; p=0.28) (Figure 28B). Similarly,   

succinate dehydrogenase beta (sdhb), which encodes for a subunit of the mitochondrial 

respiratory chain complex II of the ETC, which carries electrons from FADH to Q, did not 

present any differences in naïve BV2 cells compared to phagocytic BV2 cells (reduction to 94.5 

± 9.4 %; p=0.59) (Figure 28C). 

Regarding other mitochondrial pathways, other three genes were tested. First we tested 

mitochondrial pyruvate carrier 1 (mpc1), which encodes for a protein which mediates the 

uptake of pyruvate into mitochondria, fundamental for the initiation of the TCA cycle and 

posterior OXPHOS process. It exhibited significantly decreased expression in naïve BV2 cells 

compared to phagocytic BV2 cells (increase of 73 ± 19.2 %; p=0.019) (Figure 28D). However, 

the expression pattern was unaltered in the case of isocitrate dehydrogenase 3 gamma 

(idh3g), which encodes for a subunit of isocitrate dehydrogenase complex, involved in the 

decarboxylation of isocitrate into α-ketoglutarate in the TCA cycle, showing no differences 

between naïve BV2 cells and phagocytic BV2 cells (reduction to 90.2 ± 7.5 %; p=0.26) (Figure 

28E). Lastly, pyruvate dehydroganse beta (pdhb), which encodes for a subunit of the pyruvate 

dehydrogenase mitochondrial complex, in charge of the conversion of pyruvate to acetyl-CoA 

in the TCA cycle, did not present mRNA expression change either in naïve BV2 cells compared 

to phagocytic BV2 cells (reduction to 93.5 ± 9.2 %; p=0.51) (Figure 28F). In conclusion, these 

results did not seem to be consistent enough to affirm that a negative regulation of 

mitochondrial metabolic pathways (OXPHOS and TCA cycle) through phagocytosis occurred in 

BV2 microglia as previously observed in phagocytic primary microglia (Table 2). 
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Figure 28. OXPHOS genes are not downregulated in BV2 microglia after phagocytosis. In the 
left side: Expression of NDUFAF4 (A), UQCRQ (B) and SDHB (C) genes in naïve and high 
phagocytic (Phago 1:1) BV2 microglia (ratio 1:1; BV2; apoptotic cells). In the right side: 
Expression of MPC1 (D), IDH3G (E) and PDHB (F) genes in naïve and high phagocytic  BV2 
microglia. Each gene shows its gene expression normalized versus OAZ1 gene (reference gene) 
in arbitrary units (a.u). Bars represent mean ± SEM. ## indicates p=0.019 and ** indicates 
p<0.01 by two-tailed Student’s test. N=3. 
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CELL PROCESS GENE ARRAY (Ph 24H) RTqPCR (Ph 24h) 
GLYCOLISIS HIF1α 2.77  0.07 
GLYCOLISIS PFKM -1.5 0.0008 
GLYCOLISIS PFKFB3 2 n.s 
OXIDATIVE 

PHOSPHORILATION 
NDUFAF4 -1.9 0.008 

OXIDATIVE 
PHOSPHORILATION 

MPC1 -1.4 0.019 

OXIDATIVE 
PHOSPHORILATION 

IDH3G -1.9 n.s 

OXIDATIVE 
PHOSPHORILATION 

UQCRQ -1.5 n.s 

OXIDATIVE 
PHOSPHORILATION 

PDHB -1.5 n.s 

OXIDATIVE 
PHOSPHORILATION 

SDHB -1.7 n.s 

FUSION MFN1 -1.3 n.s 
FUSION MFN2 -1.4 n.s 
FUSION OPA1 -1.8 n.s 
FISSION FIS1 -1.05 0.0014 
FISSION MFF -1.5 0.016 
FISSION DNM1L NO DATA n.s 

 

 

Table 2. Comparison of gene expression between primary microglia array and RT-qPCR 
analysis in BV2 microglia. Glycolysis analyzed genes were indicated in yellow. Oxidative 
phosphorylation analyzed genes were indicated in orange. Fusion analyzed genes were 
indicated in blue. Fission analyzed genes were indicated in magenta. Legend indicates different 
levels of gene expression. 

 

6.4.2. Glycolysis is not increased whereas OXPHOS is decreased in BV2 microglia after 

phagocytosis 

Although no consistent changes were observed in key glycolytic enzymes in BV2 phagocytic 

microglia (Figure 27), we analyzed glycolytic pathway at cellular level.  

Array RTqPCR
Overexpression, F.C. > 1.5 Upregulated < 0.05
Overexpression, F.C.  1.2-1.5 Upregulated > 0.05

Underexpression. F.C. >1.5 Downregulated < 0.05
Underexpression. F.C. 1.2-1.5 Downregulated > 0.05

No changes No changes

130 
 



The glycolytic pathway analysis was performed by measuring the PER (pmol/min). 5 

experimental conditions were defined: naïve BV2 cells, high phagocytic BV2 cells (ratio 1:1 

BV2: apoptotic cells), medium phagocytic BV2 cells (ratio 3:1), low phagocytic BV2 cells (ratio 

9:1) and a negative control of apoptotic cells. The metabolic assays were performed 24h after 

the incorporation of apoptotic cells. 

In eukaryotic cells, PER is supported by the contribution of glycolysis (through glycoPER) and 

mitochondrial Krebs Cycle (mitoPER), through de production of CO2 (which acidifies the 

extracellular medium). We first analyzed the % of PER explained by glycolytic pathway 

(glycoPER) in naïve and phagocytic BV2 microglia. Mitochondrial-derived CO2 contribution to 

the total PER is calculated by measuring the cell OCR. Then, it is substracted from total PER, 

obtaining the glycoPER. We observed that glycolysis was the main source driving PER in both 

naïve and phagocytic BV2 microglia. This glycoPER was similar in naïve (84.3 ± 4.1 %) and 

phagocytic BV2 microglia, tending to increase proportionally to the level of phagocytosis (86.3 

± 5.9 %, 90 ± 4.8 % and 94.9 ± 3.7 % in low, medium and high phagocytosis, respectively; 

p=0.45 (between groups ANOVA)). Next, we estimated the PER due to mitochondria (mitoPER), 

as the difference between basal PER (glycoPER+ mitoPER= 100 % PER) and glycoPER. MitoPER 

was similar in naïve (15.7 ± 4.1 %) and phagocytic BV2 microglia, tending to decrease 

proportionally to the level of phagocytosis (13.7 ± 5.9 %, 10 ± 4.8 % and 5.1 ± 3.7 % in low, 

medium and high phagocytosis, respectively; p=0.45 (between groups ANOVA)) (Figure 29).  
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Figure 29. Glycolysis is the major catabolic pathway both in naïve and in phagocytic BV2 
cells. Representative graph of the proton efflux rate (PER) distribution. In blue, measurements 
of naive BV2 cells; in red, measurements of low phagocytic BV2 cells (ratio 9:1; (BV2: apoptotic 
cells)); in green, measurements of medium phagocytic BV2 cells (ratio 3:1), and in yellow 
measurements of high phagocytic BV2 cells (ratio 1:1). In dark colors, % PER due to glycolysis 
(glycoPER) and in light colors, % PER due to mitochondria (mitoPER). Bars represent mean ± 
SEM. No significant differences were detected by One-way ANOVA. N=3. 

 

Afterwards, we analyzed the PER corresponding to basal glycolysis, obtained after blocking 

mitochondrial activity via addition of rotenone (which blocks ETC complex I) and antimycin A 

(which blocks ETC complex III). We observed a significantly increased percentage in naïve BV2 

cells compared to phagocytic BV2, with reductions down to 50 ± 7.9 %, 34 ± 6.3 %, and 23.9 ± 3 

% in low, medium, and high phagocytosis, respectively (p<0.001 in each group vs naïve 

microglia by Holm-Sidak posthoc test (after ANOVA was significant at p<0.05)) (Figure 30A). 

Next, we analyzed the PER corresponding to maximal glycolysis, referred to maximum PER 

reached by cells after blocking mitochondrial respiration (by addition of rotenone (ETC 

complex I blocker) and antimycin A (ETC complex III blocker)), as a percentage of the basal 

glycolysis in each group. Results showed no differences between naïve (142.3 ± 12.6 %) and 

phagocytic BV2 microglia (159.2 ± 20.2 %, 149.1 ± 20 % and 126.6 ± 12.1 % in low, medium and 

high phagocytosis respectively; p=0.59 (between groups ANOVA)) (Figure 30B). Finally, we 

estimated the PER due to non-glycolytic acidification after treatment with 2-DG (a non-

degradable analog of glucose), which reflected a non-significant but decreasing tendency in 

naïve BV2 microglia (18.7 ± 3.5 %) compared to phagocytic BV2 microglia, proportionally to the 

level of phagocytosis (21.4 ± 3.4 %, 29.7 ± 5.5 % and 43.3 ± 8.6 % in low, medium and high 

phagocytosis, respectively; p=0.06 (between groups ANOVA)) (Figure 30B). In conclusion, our 

data do not support a metabolic reprogramming in BV2 microglia towards an increased 

glycolysis through phagocytosis, possible because BV2 microglia are highly glycolytic in basal 

conditions. 
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Figure 30. Glycolysis is not increased in BV2 microglia after phagocytosis. A. Representative 
graph of the % proton efflux rate (PER) corresponding to basal glycolysis. B. Representative 
graph of the % PER corresponding to maximal glycolysis (mx glycolysis) and non-glycolytic 
acidification. In blue, measurements of naive BV2 cells; in red, measurements of low phagocytic 
BV2 cells (ratio 9:1; (BV2: apoptotic cells)); in green, measurements of medium phagocytic BV2 
cells (ratio 3:1), and in yellow measurements of high phagocytic BV2 cells (ratio 1:1). Results 
were obtained from 3 independent experiments. Bars represent mean ± SEM. *** indicates 
p<0.001 by Holm-Sidak post-hoc test (after one-way ANOVA was significant at p<0.05).  
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We next focused on OXPHOS. While no consistent changes were observed in key enzymes in 

BV2 phagocytic microglia (Figure 28), we directly measured OXPHOS using the OCR 

(pmol/min). 5 experimental conditions were defined: naïve BV2 cells, high phagocytic BV2 cells 

(ratio 1:1(BV2: apoptotic cells)), medium phagocytic BV2 cells (ratio 3:1), low phagocytic BV2 

cells (ratio 9:1) and a negative control of apoptotic cells. The metabolic assays were performed 

24h after the engulfment of apoptotic cells. 

Results of the OCR consumed in the basal mitochondrial respiration reflected a higher 

percentage in naïve BV2 cells compared to medium phagocytic BV2 cells (reduction down to 

53.4 ± 12.7 %; p=0.015) and high phagocytic BV2 cells (reduction down to 55.1 ± 13.1 %; 

p=0.018) (Figure 31A).  

The % OCR consumed for ATP production (obtained after injecting oligomycin, an ATPase 

blocker) was higher in naïve BV2 than in phagocytic BV2 cells, and was significantly different in 

the case of high phagocytic BV2 microglia (40.9 ± 8.7 % for naïve BV2 vs 4.9 ± 6.1 % for high 

phagocytic BV2; p=0.013) (Figure 31B). We next calculated the maximum respiration rate as a 

percentage of the basal respiration, in the presence of the ionophore FCCP, which collapses 

the proton gradient and disrupts mitochondrial membrane potential. As a consequence, the 

electron flow through the ETC is uninhibited and oxygen is maximally consumed by ETC 

complex IV. The maximum respiratory rate was higher in naïve BV2 cells (186.9 ± 3.5 %) 

compared to medium phagocytic BV2 microglia and high phagocytic BV2 microglia (79.9 ± 20.9 

%; p=0.022 and 67.3 ± 28.1 %; p=0.013 in medium and high phagocytosis, respectively) (Figure 

31B). The % OCR consumed for maximal respiration gave rise to an estimation of the spare 

capacity (difference between maximal mitochondrial respiration and basal mitochondrial 

respiration). There was a tendency of a clear but non-significantly increased percentage in 

naïve BV2 cells (117.5 ± 32.9 %) compared to phagocytic BV2 cells (101.2 ± 18.2 %, 42.8 ± 14.3 

% and 28.2 ± 17.9 % in low, medium and high phagocytosis, respectively; p=0.054 (between 

groups ANOVA)) (Figure 31B). Finally, the % OCR for non-mitochondrial respiration, driven by 

processes outside the mitochondria and calculated as the percentage of oxygen consumed 

after blocking the respiratory chain by injecting a mix of rotenone and antimycin A, was non-

significantly decreased in naïve BV2 cells (30.6 ± 4 %) compared to phagocytic BV2 cells (45.6 ± 

9.9 %, 62.8 ± 6 % and 60.8 ± 10.7% in low, medium and high phagocytosis, respectively; p=0.11 

(between groups ANOVA)) (Figure 31B). To sum up, apoptotic cells phagocytosis in BV2 

microglia generated a reduction of the OXPHOS in agreement with the transcriptional profile 

observed in primary microglia (See introduction, Figure 6). 
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Figure 31. OXPHOS is reduced in BV2 microglia after phagocytosis. A. Representative graph of 
the % oxygen consumption rate (OCR) corresponding to basal mitochondrial respiration. B. 
Representative graph of the % OCR consumed for ATP production, maximal respiration (mx 
respiration), spare capacity and non-mitochondrial respiration (from left to right). In blue, 
measurements of naive BV2 cells; in red, measurements of low phagocytic BV2 cells (ratio 9:1; 
(BV2: apoptotic cells)); in green, measurements of medium phagocytic BV2 cells (ratio 3:1), and 
in yellow measurements of high phagocytic BV2 cells (ratio 1:1).  Results were obtained from 3 
independent experiments. Bars represent mean ± SEM. * indicates p<0.05 and ## indicates 
p=0.015 and p=0.018, respectively (in A) and p=0.013 (in B) by Holm-Sidak posthoc test (after 
one-way ANOVA was significant at p<0.05).  
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6.4.3. Mitochondrial morphology is affected in BV2 microglia after phagocytosis 

The metabolic analysis at cellular level showed a reduction of the OXPHOS pathway in 

phagocytic BV2 microglia. In order to better understand if this metabolic change was related to 

mitochondrial structural alterations, we studied the mitochondrial morphology in phagocytic 

and naïve BV2 cells. To visualize mitochondria, cells were transfected with a mitochondrial-

tagged reporter, pGFP-Mito-7 (Addgene). With the aim to analyze mitochondrial morphology, 

we developed an image analysis process which consisted in deconvolution and skeletonization 

of the mitochondrial network (Figure 32A-D). 

The skeleton’s analysis revealed that phagocytic BV2 microglia presented fewer mitochondria 

(decrease down to 47.2 ± 17.1 %, p=0.037), both in individual mitochondria (decrease down to 

49.22 ± 20.1, p=0.06) and in those forming networks (reduction down to 40.4 ± 15.5 %, 

p=0.033). However, the mitochondrial length did not present any changes between naïve and 

phagocytic BV2 conditions, neither in the total length (decrease until 80.2 ± 38.2 %, p=0.59) 

nor in the length of those forming networks (reduction down to 80.51 ± 38.6 %, p=0.6). 

Mitochondria observed in phagocytic BV2 microglia were less ramified (decrease down to 

64.43 ± 19.79 %, p=0.048) but the number of branches were similar in naïve and phagocytic 

BV2 (reduction down to 68.6 ± 22.02 %, p=0.083). The analysis of the number of mitochondrial 

network junctions revealed that phagocytic BV2 presented fewer junctions (decrease down to 

55.52 ± 18.95 %, p=0.052). In brief, these results suggested that BV2 microglia phagocytosis 

reduced mitochondrial morphology complexity (Figure 32E). 
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Figure 32. Mitochondrial morphology is altered in BV2 microglia after phagocytosis. 
Representative confocal z-stacks of a naïve (A) and phagocytic (B) BV2 microglia cell showing 
the mitochondrial network (Mito7GFP, green) and the nuclei (DAPI, grey). Binary images (black 
and white) defining the skeleton of naïve cell (C) and phagocytic cell (D) showing the 
mitochondrial network (black) and the nuclei (grey). Scale bars: 50 µm. Z=5,8 µm (Control) 
Z=6,3 µm (Phagocytic). (E) Graph showing mitochondrial morphology analysis results. In blue, 
measurements of naïve BV2 microglia and in red measurements of high phagocytic BV2 
microglia (ratio 1:1; BV2: apoptotic cells). From left to right, measurements of number of 
mitochondria per cell (single or mitochondrial networks), total length of mitochondria (single 
and mitochondrial networks) per cell, total branches in single mitochondria and in 
mitochondrial networks per cell and the total number of junctions between networks per cell. 
Bars represent mean ± SEM. Two independent experiments were performed with 5-6 cells 
analyzed per experiment.* indicates p<0.05 and # indicates p= 0.06 and p=0.052 by two-tailed 
Student’s test.  

 

6.4.4. Mitochondrial fusion genes remain unaltered but mitochondrial fission genes are 
affected in BV2 microglia after phagocytosis 

Mitochondrial remodeling via fusion/fission is well known to be relevant for OXPHOS [227]. 

The loss of fusion triggers a decrease in mtDNA and the membrane potential, implying a 

defective function of the respiratory chain both in vivo and in vitro [392, 393]. Furthermore, 

OXPHOS inhibition is generally linked to enhancement of fission [254]. Taking this into account, 

we decided to analyze several genes related to mitochondrial fusion and fission (Figure 33), 

which could be modified in BV2 microglia through phagocytosis. 
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Figure 33. Mitochondrial fusion and fission processes. Fusion genes analyzed are represented 
in blue and fission genes analyzed are represented in green.  

 

We first analyzed fusion genes. Genes were selected basing on previous publications pointing 

towards three fundamental protein-encoding genes involved in this process [249, 252]. On one 

hand, mfn1 and mfn2. These genes encode for two outer-membrane GTPases that interact 

each other mediating outer mitochondrial membrane fusion. Neither mfn1 (reduction down to 

86.2 ± 11.9 %; p=0.31) (Figure 34A) nor mfn2 (increase up to 9.6 ± 15.1 %; p=0.56) (Figure 34B) 

presented any significant changes in expression in naïve compared to phagocytic BV2 

microglia. On the other hand opa1, a gene that encodes for a GTPase which mediates inner-

membrane fusion and also regulates the balance between mitochondrial fusion and fission, did 

not present any change of expression either comparing naïve versus phagocytic BV2 microglia 

(reduction down to 96.7 ± 11.1 %; p=0.78) (Figure 34C).  

Next, we analyzed the main fission genes. Other three genes were tested: mitochondrial 

fission protein 1 (fis1), mitochondrial fission factor (mff) and dynamin 1-like (dnm1l). Both fis1 

and mff encode for receptor proteins which help recruiting dnm1l protein to the mitochondrial 

outer membrane, promoting fission. fis1 showed decreased expression in naïve compared to 

phagocytic BV2 cells (increase up to 124.1 ± 15.9 %; p=0.0014) (Figure 34D). In contrast, mff 

presented increased expression in naïve BV2 compared to phagocytic BV2 cells (decrease 

down to 79.1 ± 5.3%, p=0.016) (Figure 34E). dnm1l, which encodes for the main fission 

mediator protein, presented increased expression in naïve BV2 cells compared to phagocytic 

BV2 cells (decrease down to 73.5 ± 6.85 %, p=0.016) (Figure 34F). Summing up, these results 

reflected an alteration in genes involved in mitochondrial fission process through phagocytosis 

in BV2 microglia. 
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Figure 34. Mitochondrial fusion genes remain unaltered but mitochondrial fission genes and 
morphology are affected in BV2 phagocytic microglia in vitro. Expression of MFN1 (A), MFN2 
(B), OPA1 (C) fusion genes and FIS1 (D), MFF (E) and DNM1L (F) fission genes in naïve and high 
phagocytic BV2 microglia (ratio 1:1; BV2; apoptotic cells) (Phago 1:1). Each gene shows its 
gene expression normalized versus OAZ1 gene (reference gene) in arbitrary units (a.u). Bars 
represent mean ± SEM. ## indicates p=0.016 and ### indicates p=0.001 by two-tailed Student’s 
test. N=3. 
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6.5. PHAGOCYTOSIS IMPAIRMENT DOES NOT LEAD TO ALTERED NEUROGENESIS IN VIVO  

Once we determined the metabolic profile of microglia upon phagocytosis, we studied the 

possible implications of microglial phagocytosis on their surrounding cells. Microglial crosstalk 

with neurons results crucial in the neurogenic niche of the hippocampus. Microglia 

phagocytose the excess of apoptotic newborn neurons [28] produced by neuroprogenitors 

generated from NSCs [292]. It has been suggested that microglia could influence adult 

neurogenesis, such as when activated by inflammation [354] or when neurogenesis is induced 

by an enriched environment [394]. However, it has not been elucidated the impact of 

microglial phagocytosis on adult hippocampal neurogenesis [28]. Previous work of the 

laboratory pointed towards a modulatory role of phagocytic microglia in the proliferation and 

differentiation of neural progenitors in vitro as well as in the proliferation of neuroblasts in 

vivo (Data of Irune-Díaz Aparicio Thesis). Thus, with the aim to test whether it could exist a 

concomitant effect of the microglial phagocytosis impairment caused by GPR34 deficiency on 

the regulation of adult hippocampal neurogenesis in vivo, we analyzed whether the phagocytic 

impairment located in the DG could result in alterations in the neurogenic cascade (cell 

proliferation, NSCs and neuroblasts). Neurogenesis analysis was performed in several batches 

of 1 month and 3 month-old mice (Measured parameters are detailed in Table 3). 

 

Table 3. Neurogenesis-related analysis performed per mice age. Brief description of 
parameters tested. Total cell proliferation, neural stem cells (NSCs) (total and proliferating) and 
neuroblasts (total and proliferating) were measured in 1 month-old WT and GPR34 KO mice 
(injected with BrdU). Total NSCs and neuroblasts were measured in 3 month-old WT and GPR34 
KO mice (non-injected). NSCs were identified as double-positive for nestin and glial fibrilar 
acidic protein (GFAP) whereas neuroblasts were identified as positive for doublecortin (DCX). 

  

6.5.1. GPR34 deficiency does not affect newborn cells proliferation in 1 month-old mice 

To delve into the changes in the neurogenic cascade induced by the lack of microglial GPR34, 

we analyzed the NSCs and neuroblasts in 1 month-old WT and GPR34 KO mice. These mice 

were intraperitoneally injected with BrdU (a thymidine analog which binds in the S-phase of 

cell cycle) and sacrificed 24h after the injection, allowing us to estimate cell proliferation. 

1 month-old mice (BrdU-injected) 3 month-old mice (Non-injected)

Total cell proliferation
Total NSCs and neuroblasts

Proliferating NSCs and neuroblasts
Total NSCs and neuroblasts
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Analyses were carried out in the septal hippocampus because the innervations in this region 

involve more neurogenic activity [395]. 

First, we quantified the total number of proliferating (BrdU+) cells (Figure 35A-B). Total 

proliferation analysis showed no differences in the number of BrdU+ cells per hippocampus in 

WT compared to KO mice (2,425.6 ± 142.4 vs 2,533.6 ± 83.4 cells, respectively; p=0.54) (Figure 

35C). Afterwards, we analyzed total NSCs (Figure 36A-B), defined as cells whose soma is 

located in the SGZ, are labeled with nestin and GFAP, and have an apical, radial process 

extending into the granular zone (Nestin+, GFAP+ cells) [295]. We found a trend of fewer NSCS 

in WT mice compared to GPR34 KO mice (14,140.5 ± 761.1 vs 16,256 ± 508.9 cells per septal 

hippocampus; p=0.08) (Figure 36C). Finally, we analyzed proliferating NSCs by quantifying the 

number of Nestin+, GFAP+, BrdU+ cells. Unfortunately, the low number of cells labeled (18 cells 

in WT mice (n=3) and 11 cells in KO mice (n=3)) did not allow us to obtain reliable data about 

NSC proliferation (data not shown). 
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Figure 35. GPR34 deficiency does not affect cell proliferation in 1 month-old mice. A, B 
Representative confocal z-stacks of the dentate gyrus of 1 month-old WT (A) and KO mice (B) 
(n=3, each). Nuclei were visualized in DAPI (white) and BrdU+ cells were visualized in yellow. 
Scale bars: 50 µm Z=19 µm (WT) Z=21 µm (KO).  C. Total proliferating (BrdU+) cells per septal 
hippocampus. Bars represent mean ± SEM. No significant differences were observed by two-
tailed Student’s test.  
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Figure 36. GPR34 deficiency does not alter neural stem cells population in 1 month-old mice. 
A, B Representative confocal z-stacks of the dentate gyrus of 1 month-old WT (A) and KO mice 
(B) (n=3, each). Nestin was visualized in green and GFAP was visualized in magenta. Neural 
stem cells (NSCs) were double-positive for nestin and GFAP. Scale bars: 50 µm Z=19 µm (WT) 
Z=21 µm (KO). C. Total number of NSCs (Nestin+, GFAP+) per septal hippocampus. Bars 
represent mean ± SEM. No significant differences were observed by two-tailed Student’s test. 

 

Next, we analyzed the neuroblasts population labeled with DCX (Figure 37A-B). We found no 

significant differences between WT and GPR34 KO mice in the total number of neuroblasts 

(DCX+ cells) (53,952.3 ± 2,182.6 vs 54,963.9 ± 765.1 cells per septal hippocampus in WT and 

KO, respectively; p=0.76) (Figure 38A). We also quantified the neuroblasts attending to their 

maturation stage. Three subpopulations can be distinguished basing on their maturation stage: 

A/B cells, which are devoid of processes or presented short ones; C/D cells, characterized by 

medium processes, some of them able to reach the molecular layer of the hippocampus; and 

E/F cells, which have one strong dendrite branching in the molecular layer or a dendritic tree 

branching in the granular cell layer of the hippocampus [301]. 

We observed similar amounts of A/B DCX+ cells per hippocampus in both WT and GPR34 KO 

mice (19,665.3 ± 2053.5 vs 18,941.8 ± 729.5 cells; p=0.75) (Figure 38B) and a slight but non-

significant decreased amount of C/D DCX+ cells in WT versus GPR34 KO mice (2,219.6 ± 214.8 

vs 2,693 ± 6.8; p=0.09) (Figure 38C). Additionally, the quantification of E/F DCX+ cells per 

hippocampus again showed no differences between WT and GPR34 KO mice (32,088.2 ± 

2625.4 vs 33,305.9 ± 466.4; p=0.67) (Figure 38D). Furthermore, we found a similar distribution 

of the neuroblast types in WT and GPR34 KO mice (Figure 38E). We also estimated the 

proliferation of neuroblasts (DCX+BrdU+ cells) and found similar percentages in WT and GPR34 

KO mice (5.3 ± 0.9 % vs 4.5 ± 0.6 %; p=0.49) (Figures 37A-B and 38F). Similarly, the total 

number of DCX+BrdU+ cells per hippocampus was not significantly different differences 

between WT and GPR34 KO mice (1,234.4 ± 126.7 vs 1,071.18 ± 131.1; p=0.42) (Figure 38G). 
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These results lead us to conclude that impaired microglial phagocytosis through the absence of 

GPR34 did not have an effect on neuroblasts proliferation in 1 month-old mice.  

 

 

 

 

 

 

 

 

 

Figure 37. Effect of GPR34 on newborn cells in 1 month-old mice. Representative confocal z-
stacks of the dentate gyrus of 1 month-old WT mice (A) and GPR34 KO mice (B) (n=3, each). 
Neuroblasts were visualized with DCX (magenta) and BrdU was visualized in yellow.  Scale bars: 
50 µm. Z=23 µm (WT) Z=21 µm (KO). 
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Figure 38. GPR34 deficiency does not alter newborn cells production in 1 month-old mice. A. 
Total number of neuroblasts per septal hippocampus. B. Total number of A/B neuroblasts per 
septal hippocampus. C. Total number of C/D neuroblasts per septal hippocampus. D. Total 
number of E/F neuroblasts per septal hippocampus. E. Distribution of neuroblasts populations 
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(in %). F. Percentage of proliferative neuroblasts per septal hippocampus. G. Total number of 
proliferating neuroblasts per septal hippocampus.  Bars represent mean ± SEM. I. No significant 
differences were observed by two-tailed Student’s test.  

 

6.5.2. GPR34 deficiency decreases mature neuroblasts in 3 month-old mice 

We extended our analysis of neurogenesis to older mice. For this purpose, we received from 

our collaborators another batch of 3 month-old GPR34 KO mice, although in this case they had 

not been injected with BrdU. 

We first analyzed the NSCs population (nestin+, GFAP+ cells with radial morphology) (Figure 

39A-B). Again, we observed no differences in the number of NSCs between WT and GPR34 KO 

mice (5,965.68 ± 145.9 vs 5,489.3 ± 370.9 cells per septal hippocampus, respectively; p=0.37) 

(Figure 39C). Secondly, we analyzed neuroblasts (DCX+ cells) (Figure 40A-B), and observed an 

increased number in the total DCX+ cells in WT compared to GPR34 KO mice (9,550.6 ± 527.2 

vs 7,829.3 ± 491.4 cells per septal hippocampus; p=0.05) (Figure 41A). No differences were 

observed in the number of A/B DCX+ cells (3,318.2 ± 268.5 vs 3,148.6 ± 299.3 in WT and KO 

mice, respectively; p=0.71) (Figure 41B) or C/D DCX+ cells (467.4 ± 216.1 vs 547.6 ± 58.4 in WT 

and KO mice, respectively; p=0.65) (Figure 41C). However, there was a significant increased 

number of E/F DCX+ cells in WT mice (5,720.9 ± 468.4) compared to GPR34 KO mice (4,097 ± 

288.1; p=0.01) (Figure 41D). As a consequence, we found a non-significant trend to increased 

percentage of E/F DCX+ cells in the hippocampus in WT compared to GPR34 KO mice (59.7 ± 

2.5 % vs 52.6 ± 2.6 %, respectively; p=0.1) (Figure 41E).  These evidences, together with the 

fact that 3 month-old GPR34 KO mice did not show any differences in microglial phagocytosis 

compared to WT mice, suggested that microglial phagocytosis was not presumably the 

underlying cause of fewer mature newborns neurons in 3 month-old adult mice. 
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Figure 39. GPR34 deficiency remains stem cells population unaltered in 3 month-old mice. A. 
Representative confocal z-stacks of the dentate gyrus of 3 month-old WT mice (n=4). B. 
Representative confocal z-stacsk of the dentate gyrus of 3 month-old GPR34 KO mice (n=7). 
Astrocytes were visualized with GFAP (magenta). Neural stem cells were positive for nestin 
(green) and GFAP (magenta). Scale bars: 50 µM, Z=19,5 µM (WT) Z=15,4 µM (KO). C. Total 
number of neural stem cells (Nestin+,GFAP+) per septal hippocampus. Bars represent mean ± 
SEM. No significant differences were observed by two-tailed Student’s test. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 40. Effect of GPR34 deficiency on newborn neurons in 3 month-old mice. A, B. 
Representative confocal z-stack of the dentate gyrus of 3 month-old WT mice (A, n=4) and 
GPR34 KO mice (B, n=7).  Neuroblasts were visualized with DCX (magenta). Scale bars: 50 µM 
(10 µM in high magnification images). Detailed images from a single focal plane of A-B, C-D 
and E-F neuroblasts are shown. Z=18,2 µm (WT) Z=22,4 µm (KO). 
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Figure 41. GPR34 deficiency decreases newborn neurons in 3 month-old mice.  A. Total 
number of neuroblasts per septal hippocampus. B. Total number of A-B neuroblasts per septal 
hippocampus. C. Total number of C-D neuroblasts per septal hippocampus. D. Total number of 
E-F neuroblasts per septal hippocampus. E. Distribution of neuroblasts populations (in %). Bars 
represent mean ± SEM. # indicates p=0.051 and ## indicates p=0.012 by two-tailed Student’s 
test. 
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7. DISCUSSION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



7. DISCUSSION 

Apoptosis or “programmed” cell death occurs during development and aging both in 

physiological and pathological conditions [142]. Dead cells need to be rapidly removed from 

the tissue to prevent the spillover of intracellular contents and to suppress the start of an 

inflammatory response [1]. The removal of cell debris is achieved through the recognition, 

engulfment and degradation of dead cells through a process called phagocytosis [104]. 

Together with inflammation, phagocytosis constitutes the first line of defense of the innate 

immune system [35]. In the mammalian CNS the innate immune response is performed by 

microglia, the resident macrophages.  

In this PhD Thesis, we initially delved into the mechanisms regulating microglial phagocytosis 

efficiency. We first assessed the role of several inflammatory mediators in this process, such as 

TNF-α and CX3CL1. We found that they did not have a significant role in microglial 

phagocytosis regulation. We then focused on a novel postulated regulator of phagocytosis, the 

G-coupled receptor GPR34 and its ligand lysoPS. On one hand, our data revealed that GPR34 

was an active participant in the regulation of phagocytic process in microglia since its absence 

produced a decrease in the phagocytosis of apoptotic cells in vivo. On the other hand, the 

addition of lysoPS to microglial cultures and organotypic cultures reduced the microglial 

phagocytic potential but this effect was not evidenced in vivo. 

In the second part of this PhD Thesis, we studied downstream consequences of phagocytosis 

for microglia, focusing on metabolic adaptations; as well as on surrounding neurons, focusing 

on the adult neurogenic niche. Our results suggested that microglial phagocytosis triggered 

some metabolic adaptations in BV2 microglia, such as the downregulation of OXPHOS pathway 

accompanied by morphological changes in the mitochondria in vitro. Regarding neurogenesis, 

we observed that phagocytosis impairment due to GPR34 absence did not imply any changes 

in neurogenic cascade of young mice in vivo. Curiously, adult mice, which did not present 

impaired phagocytosis due to GPR34 absence, presented a decreased production of mature 

neurons in vivo. All these data seem to support that microglial phagocytosis constitutes a 

relevant process that not only contributes to brain homeostasis but also could influence other 

cellular processes such as metabolism, whereas further investigation is needed to demonstrate 

that microglial phagocytosis may influence neurogenesis. In the next sections all these 

observed results will be deeply discussed. 

155 
 



7.1. CROSSTALK INFLAMMATION-PHAGOCYTOSIS IN MICROGLIA 

Inflammation is triggered as part of the innate immune system to protect the organism against 

any harmful stimulus, such as pathogens or excessive cell death [32]. Upon these stimuli, 

microglia respond by releasing several soluble factors, such as proteins of the complement 

cascade as well as chemokines or cytokines [12]. Chemokines help recruit microglia to the 

injury site [83], whereas cytokines, also released by astrocytes, endothelial cells and even 

neurons [47, 48] are in charge of executing the inflammatory response, which implies swelling, 

redness, heat, pain and fever in the affected tissue to initiate its repair [46]. 

Together with inflammation, phagocytosis constitutes the other fundamental component of 

the innate immune response [35], by rapidly removing invading microorganisms and cell 

debris, thus preventing the spillover of intracellular contents in response to infection or 

damage [1]. Thus, we analyzed the possible role in phagocytosis of two well-known 

inflammatory mediators: TNF-α and CX3CL1 (through its receptor CX3CR1). 

7.1.1. TNF-α does not modulate neither apoptosis nor phagocytosis in vivo  

TNF-α is one of the major pro-inflammatory cytokines (along with IL-6 and IL-β), mainly 

released by microglia [61] during the initiation of the inflammatory response [78]. TNF-α has 

been shown to be neurotoxic in vivo after focal cerebral ischemia [73, 74] and in vitro, where 

the addition of TNF-α to neuron-glial co-cultures induce neuronal loss [75]. Nevertheless, TNF-

α has been also postulated as neuroprotective in excitotoxicity in vitro [68, 69]. TNF-α has 

been proposed to exert this neuroprotective effect through its interaction with TNFR2 [71] 

whereas its interaction with TNFR1 has been related with neurotoxicity [76].  

Thus, we tested the role of microglial TNF-α on neuronal apoptosis and microglial phagocytosis 

in a mouse model of MTLE induced by intrahippocampal administration of KA. In this model, 

seizures and neuronal death are accompanied by tissue inflammation as well as microglial 

overpression of mRNA of several pro-inflammatory cytokines, including TNF-α [37]. We 

hypothesized that in addition to the excitotoxicity induced by seizures, TNF-α secreted by 

microglia could contribute to neuronal apoptosis. However, our experiments revealed that 

apoptosis was unchanged in microglial TNF-α-deficient mice compared to WT mice, suggesting 

that microglia TNF-α secretion was not linked to neuronal death in the experimental model 

tested. These results are in disagreement with the neurotoxic effect produced by this cytokine 

and postulated by [73, 74]. Moreover, our results did not allow us to observe either a 

neuroprotective role of microglial TNF-α, as reported by [70, 396, 397]. In any case, it is 
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important to remark that experimental models are different from that we have used. As 

shown by [70], microglial secretion of TNF-α protects neurons in a model of cerebral ischemia 

in mice. This neuroprotective role of TNF-α is in line with some in vitro studies performed by 

[68, 398]. Curiously, it has been shown that microglial TNF-α release and thus neuroprotection 

depends on previous stimulation of ATP-activated purine receptor P2X7 [399-401]. Our data 

suggested that microglial influence on neuronal survival does not depend on TNF-α secretion 

during excitotoxicity in the KA-induced epilepsy model. In brief, we can conclude that TNF-α 

secreted by microglia does not exert a neuroprotective response in KA-induced epilepsy.  

As for microglial TNF-α impact on phagocytosis, we checked phagocytic capabilities of 

microglia by measuring the Ph index in TNF-α-deficient mice. Our results showed that 

microglial phagocytosis was unaltered in TNF-α-deficient mice, since the percentage of 

apoptotic cells engulfed by microglia was similar compared to WT mice. Therefore, our data 

suggested that TNF-α secreted by microglia does not either regulate microglial phagocytosis of 

apoptotic neurons. Contrary to this, [75] show that TNF-α addition to neuron-glial cultures 

produces neuronal loss via microglial activation and phagocytosis of  viable neurons, causing 

neuronal death by phagoptosis. Phagoptosis has been shown to be produced by inflammation, 

triggering transient expression of PS in live neurons outer cell membrane, being recognized 

and engulfed by microglia [126].Therefore, neuronal loss is triggered by microglia and not by 

TNF-α, in line with our in vivo previous data referred to apoptosis, which show that neuronal 

health does not depend on TNF-α secreted by microglia. Despite its involvement in the 

microglial inflammatory response [78], neuronal death [73, 74] or survival [68, 70], microglial 

TNF-α does not act either as an autocrine mechanism to regulate the apoptotic cells 

phagocytosis in vivo.  

7.1.2. CX3CL1 does not regulate phagocytosis of apoptotic cells in vivo  

One of the most established “find-me” signals produced by apoptotic cells to enable the 

recruitment of microglia is the chemokine CX3CL1, cleaved from the apoptotic cell’s 

membrane [101, 144] by the enzyme ADAM17. According to this, some authors suggest that 

CX3CL1 released by apoptotic cells serves as a chemoattractant for microglia [102].  

To directly test the role of CX3CL1 and its receptor CX3CR1 on phagocytosis in vivo, we 

analyzed microglial phagocytosis in 1 month-old CX3CR1-deficient mice. Our results showed 

that microglia were able to phagocytose up to 80 % of dead cells in CX3CR1-deficient mice. 

This percentage was similar to what our group have previously reported in WT mice in 

physiological conditions, where microglia have been shown to phagocytose up to 90 % of dead 
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cells [28]. Therefore, non-significant differences were observed in microglial phagocytosis in 

the absence of CX3CR1. These results were in apparent disagreement with [102], who showed 

that extracellular soluble components harvested from (ethanol-induced) apoptotic mice brains 

induce microglial migration towards apoptotic cells in a CX3CL1-dependent manner.   

Several experimental differences may explain the discrepancy, such as the age of the animals, 

the region studied or the induction of apoptosis. While we studied physiological apoptosis in 

the DG of the hippocampus of 1 month-old mice, [102] studied ethanol-induced apoptosis in 

the cortex of PND7 mice. In addition, they focused on apoptotic cell-induced chemotaxis of 

microglial processes while we directly analyzed engulfment of apoptotic cells. 

We directly quantified phagocytosis of apoptotic cells by determining the percentage of 

apoptotic cells engulfed in phagocytic pouches by microglia (Ph index), as defined by [28], and 

found no significant differences between WT and KO mice. In contrast, [102] analyzed 

chemotaxis by quantifying the apoptotic cells in contact (engulfed or not) with microglia, 

showing that microglial processes failed to associate with dead corpses in CX3CR1-deficient 

microglia. Besides, they determined that the percentage of microglia containing engulfed 

apoptotic cells was similar in WT and CX3CR1-deficient cells, reporting no significant 

differences in phagocytosis [102]. Thus, under ethanol-induced injury, CX3CL1 signals to 

microglia in a CX3CR1-dependent manner, evidencing a defect in the attraction of microglial 

processes to apoptotic cells (chemotaxis) but not in their phagocytosis. Summing up, despite 

its validated role as a chemotactic factor for microglia towards apoptotic cells during ethanol 

treatment, we conclude that CX3CL1 (through its receptor CX3CR1) does not act as a regulator 

of phagocytosis of apoptotic cells in vivo in physiological conditions in the adult hippocampus. 

Despite the fact that both inflammation and phagocytosis constitute fundamental processes of 

the innate immune response, the data shown above highlight that neither TNF-α nor CX3CL1 

inflammatory mediators exert a role in phagocytosis regulation. Therefore, in this PhD Thesis 

we have not found any evidences pointing towards a role of inflammation in regulating 

phagocytosis. Nevertheless, some studies have shown that inflammation and phagocytosis can 

regulate each other. Some in vitro studies have remarked that inflammatory stimuli induce 

multinucleated cultured microglia (primary rat microglia and BV2 microglia), increasing their 

capacity to phagocytose beads and PC12 cells [36], evidencing that inflammation can regulate 

phagocytosis. Furthermore, it has been also demonstrated that phagocytosis regulates 

inflammation. This is shown by [38], who state that defects in the clearance of apoptotic cells 

by macrophages are linked to the initiation of an inflammatory response. Besides, other 
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authors have stated that the clearance of apoptotic cells by macrophages inhibits the initiation 

of inflammatory or immune responses, in part through the release of anti-inflammatory 

cytokines [42, 402]. Other in vitro studies have shown that the anti-inflammatory role of 

phagocytosis in microglia involves the release of anti-inflammatory cytokines, such as TGF-β 

and trophic factors such as NGF [43, 44]. Consequently, an impairment in phagocytosis may be 

linked with an inflammatory response, as has been shown in a model of epilepsy [37] and in 

brain tumours [403]. Therefore, we can conclude that a direct dialogue and balance between 

inflammatory and phagocytic responses result essential to guarantee the accurate immune 

function of microglia and macrophages in order to preserve tissue homeostasis by preventing 

damage to the organism.  

 

7.2. GPR34 AND LYSOPS ON MICROGLIAL PHAGOCYTOSIS 

The correct engulfment of apoptotic cells by microglia is mediated by several receptors located 

in the microglial surface, which detect and bind to the “eat-me” signals produced by apoptotic 

cells [139]. Some of these engulfment receptors are TIM-4 [166], MERTK [168] and also TREM2 

or VNR, which exert their role through their interaction with DAP12 [173] and MFG-E8 [170], 

respectively. Among this plethora of receptors, we focused on GPR34, which has been involved 

in chemotactic migration through lysoPS [404], its known ligand [176], a molecule derived 

from the classical “eat-me” signal PS.  

7.2.1. GPR34 is the sole lysoPS receptor expressed in adult mouse microglia in vivo  

GPR34 is highly expressed in immune cells such as mast cells, macrophages or immune system-

derived cell lines [181]. However, GPR34 is preferentially expressed in (both human and 

mouse) microglial cells [177, 182, 405, 406] compared to astrocytes, oligodendrocytes and 

neurons [177, 178]. To confirm these evidences, we purified microglia from mice hippocampal 

tissue and found that GPR34 mRNA was highly expressed in microglia compared to non-

microglial cells. On top of that, we found that GPR34 was the unique lysoPS receptor transcript 

expressed in this cell type, as other lysoPS-associated receptors (such as G2A, P2Y10 and 

GPR174) were undetectable in acutely purified microglia. Similarly, GPR34 mRNA, but not 

other lysoPS-associated receptors, was highly expressed in primary microglia cultures. These 

results were in agreement with previous analyses, in which GPR34 mRNA is highly expressed in 

cultured microglia compared to these three other receptors with affinity for lysoPS [193]. Thus, 
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we can state GPR34 is the unique lysoPS-receptor expressed in microglia in vivo, whereas it is 

predominant (but not exclusive) in vitro. 

As previously mentioned, in addition to GPR34, other lysoPS receptors are G2A [188, 190], 

P2Y10 and GPR174 [189]. We found that transcripts for these receptors were not detectable in 

acutely isolated microglia and only G2A mRNA was (barely) expressed in primary cultures. In 

contrast, the microglial cell line BV2 expressed low levels of GPR34 and higher levels of G2A. 

Regarding P2Y10 and GPR174, they were both absent in microglia (in vivo and in vitro), in line 

with previous publications showing that both receptors (P2Y10 and GPR174) are restricted to 

the spleen and thymus [192, 388]. Since in vivo microglia are enriched in GPR34 whereas BV2 

cells are enriched in G2A, our data suggested that in vivo microglia are a good model to study 

the effect of lysoPS on phagocytosis, since every possible phagocytic response involving lysoPS 

would be linked to its interaction with (our receptor of interest) GPR34. Furthermore, BV2 cells 

may constitute a better model to study the impact of G2A-lysoPS interaction on phagocytic 

response.  

7.2.2. GPR34 contributes to apoptotic cells clearance in young but not in adult mice 

To study the role of GPR34 on microglial phagocytosis we used a constitutive KO model [181]. 

We observed decreased microglial phagocytosis in 1 month-old GPR34 KO mice, demonstrated 

through a decreased microglial Ph index and Ph capacity. Additionally, the phagocytic 

impairment was accompanied by an uncoupling between phagocytosis and apoptosis. These 

results were in agreement with in vitro phagocytosis assays performed in isolated retina and 

cortical slices from adult GPR34-deficient mice [182]. Microglial cells of GPR34-deficient mice 

showed fewer zymosan particles and/or latex microbeads phagocytosed than microglia from 

control mice [182]. Curiously, recent reports establish that GPR34-deficient mice are also 

characterized by presenting alterations in immune functions. For instance, pulmonary infection 

with the yeast-like fungus Cryptococcus neoformans triggers an increased number of colonies 

in the brain (lungs and spleen as well) compared to WT mice at 60 days post-infection [181]. 

This is possibly related to an imbalance between T helper (Th)1 and Th2 cytokines, both 

involved in the response against this pathogen [407]. It has been also speculated that the 

increased brain pathogen burden may be related to altered microglial phagocytosis via GPR34, 

which may impede the clearance of pathogens [182]. 

We also analyzed older 3 month-old GPR34-deficient mice, finding that the microglial 

phagocytic impairment observed in 1 month-old mice was not maintained and suggesting that 

the control of phagocytosis by GPR34 was not produced throughout adulthood. This 
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suggestion is in line with recent reports that state that GPR34 expression is reduced in aged 

human brains [408]. Considering our data, although mice are not aged at 3 months, we can 

speculate that GPR34 expression and thus its effect on microglial phagocytosis may be 

gradually reduced with increased age. The reduction of GPR34 expression may prevent its 

contribution to microglial phagocytosis. In brief, our data suggested that GPR34 is a regulator 

of microglial phagocytosis of apoptotic cells in vivo in the young hippocampus. 

Several mechanisms could explain the deficiency in microglial phagocytosis registered in 1 

month-old GPR34 KO mice. For instance, we observed that GPR34-deficient microglia showed 

morphological changes, as they occupied a smaller territory in the DG of the hippocampus. 

Microglial processes retraction has been previously linked to phagocytosis impairment during 

seizures [37]. Thus, the “shrinkage” of microglia we observed in GPR34-deficient mice may 

explain the phagocytic impairment produced. In line with this hypothesis, microglia from 

GPR34-deficient mice have larger somata, fewer branches and occupy a smaller area [182]. 

Thereby, we speculate that microglial processes retraction may be related to a decreased 

motility, thus influencing the phagocytic response. 

Another mechanism that may explain the altered phagocytosis in 1 month-old GPR34-deficient 

mice is their altered expression of several genes related to phagocytosis [182]. For instance, 

receptor for activated C kinase 1 (rack1) is upregulated, whereas dedicator of cytokinesis 4 

(dock4) is downregulated [182]. rack1 gene encodes for an anchoring protein which enables 

the translocation of protein kinase C (PKC) from the cytosol to the membrane [409]. PKC 

activity is crucial for phagocytosis since its two isozymes (α and β) have been shown to interact 

with F-actin cytoskeleton [410], implied in the engulfment of particles in several cell types. 

PKCα has been associated with phagosomal membranes, suggesting a role in phagocytosis 

[411], whereas PKCβ, along with isozyme α, has been implied in phagocytosis of latex beads by 

THP1 cells [412]. rack1 results fundamental for phagocytosis because in human monocytes 

infected with Epstein-Barr virus (EBV), the immediate-early protein ZEBRA of EBV is able to 

interact with rack1, disrupting the translocation of PKC isozymes α and β to the monocytes 

membrane, thus affecting phagocytosis [413]. On the other hand, dock4 modulates dynamics 

of actin cytoskeleton activity [414], since it encodes for a protein that regulates Rac1 GTPase 

activity, which involves the reorganization of the phagocyte cytoskeleton leading to the 

formation of the phagocytic pouch in charge of engulfing corpses, visualized in human kidney 

epithelial 293T cells and LR73 CHO cell line [158, 159]. Therefore, the phagocytosis impairment 

observed in vitro [182] and (in young mice) in vivo (this PhD Thesis) is possibly related to the 

reduced expression of key cytoskeletal proteins, such as dock4.  
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7.2.3. LysoPS inhibits microglial phagocytosis in cultures 

Once corroborated the role of microglial receptor GPR34 on phagocytosis, we tested the 

involvement of its ligand: LysoPS. GPR34, as a member of P2Y12-like receptors group [415], is 

associated to lipids and nucleotides as its possible physiological ligands [416, 417]. Specifically, 

lysoPS has been identified as the endogenous ligand for GPR34 [176]. This finding is supported 

by [418], but other authors initially argued against the conclusion that lysoPS constitutes a 

ligand for GPR34 [181]. However, this controversy can be explained by differences in the lipid 

moiety used: subsequent studies observed that GPR34 is more attracted to 2-acyl-lysoPS, 

produced by PS-PLA1, than to 1-acyl-lysoPS, produced by PS-PLA2 [183]. Thus, GPR34 has been 

defined to have high and predominant affinity for lysoPS with a fatty acid at the sn-2 position 

in its glycerol backbone [175]. Despite its great affinity for GPR34, lysoPS can bind at least to 

other three receptors: G2A, P2Y10 and GPR174.  

We directly tested the role of lysoPS in phagocytosis of apoptotic cells using primary microglia 

and BV2 cells cultures, finding an impairment. We observed a phagocytic impairment in 

primary microglia (GPR34high) that was slightly higher than in BV2 cells (G2Ahigh), suggesting a 

stronger role of GRP34 than G2A in lysoPS-induced regulation of microglial phagocytosis. No 

roles were attributed to P2Y10 and GPR174 in this regulation since, based on our previous 

results, they were both absent in microglia. We then validated these results in more complex 

models, such as hippocampal organotypic cultures. We found fewer apoptotic cells 

phagocytosed by microglia (decreased Ph index) and an increase of non-phagocytic microglia 

(decreased Ph capacity). These results suggested that lysoPS addition involved an uncoupling 

between apoptosis and phagocytosis in primary cultures and organotypic cultures, similar to 

the effect of genetic depletion of GPR34 in vivo. This role is opposed to what was postulated 

by [188, 190], who stated that lysoPS enhances the phagocytosis of dying neutrophils by 

macrophages. This apparent disagreement could result from differences arising on lysoPS 

production, its mode of presentation, or its concentration, as we will now discuss. 

The mechanism of lysoPS production has not been well studied in cells other than platelets 

and neutrophils [188], where it appears to be generated via NADPH oxidase and 

phospholipase-mediated mechanisms, respectively [191, 419]. Given the ubiquitous presence 

of oxidases and phospholipases, together with the fact that SHSY5Y cells have been shown to 

express NADPH oxidase mRNA [420], it is likely that lysoPS may be generated and exposed in 

the membrane of our apoptotic SHSY5Y neurons via some of these enzymatic pathways. The 

added lysoPS may compete for microglial GPR34 with the lysoPS produced by the apoptotic 
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cells used in our experiments, triggering an impairing effect on microglial phagocytosis, 

contrary to the enhancer role of lysoPS observed in macrophages [188].  

Another reason that may explain the discrepancy with postulated effect of lysoPS on 

phagocytosis by [188] relies on the mode of presentation of lysoPS. When bound to a cell 

membrane or to a liposome, lysoPS acts as an enhancer of phagocytosis [188]. However, when 

lysoPS was added to the culture media in our experiments, it impaired phagocytosis. Similarly, 

lysoPS bound to albumin protein or solved in methanol, was not able to enhance phagocytosis 

[190]. Thereby, the mode of presentation of lysoPS to microglia seems crucial for the 

phagocytic response to apoptotic cells. 

Finally, the efficient concentration of lysoPS reached in the cultures and in vivo may have an 

impact on phagocytosis. While we have reported that microglial phagocytosis was impaired in 

primary cultures at 3 µM lysoPS, many microglial processes follow U-shaped curves and it is 

possible that higher or lower concentrations may enhance phagocytosis. For instance,  10 µM 

lysoPS induces a ramified morphology in cultured microglia, with long processes whose tips are 

cone-like shaped [193], very similar to in vivo surveillant microglia [9]. We speculate that a 

ramified morphology may be related to the motility of the processes, which in turn is 

necessary for microglia to extend their processes towards the apoptotic cells and engulf them. 

Therefore, increasing lysoPS concentration may increase microglial motility and thus 

phagocytic response. 

Furthermore, hippocampal organotypic cultures are more complex models, as they maintain 

the connectivity between neurons as well as the endogenous populations of microglia and 

astrocytes. Initial approaches with lysoPS (3 µM) did not impact on phagocytosis at all, 

contrary to the phagocytosis impairment seen in microglia cultures. However, increasing 

lysoPS (10 µM) led to a blockade of microglial phagocytosis, although increasing lysoPS dose 

did not change microglial morphology compared to initial lysoPS (3 µM) treatment tested. 

Thus, we speculate that the more complex in vitro model is a higher lysoPS concentration may 

be needed to influence microglial phagocytosis. 

7.2.4. Microglia do not respond to lysoPS in vivo  

Lastly, we directly tested the role of lysoPS injection into the hippocampus. Initial approaches 

with 10 µM lysoPS did not show any effect on microglial phagocytosis in vivo, contrary to what 

was observed in organotypic cultures. We resorted to a higher lysoPS concentration (36 µM, 

1:100 from lysoPS stock), observing non-significant alterations neither in the Ph index nor in 
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the Ph capacity of microglial cells. This result was in disagreement with our results in vitro, in 

which lysoPS addition was shown to alter microglial phagocytosis. Some issues need to be 

considered in order to explain this lack of microglial response to lysoPS in vivo. 

On one hand, we propose that intrinsic properties of lysoPS could be the underlying cause of 

this unaltered microglial phagocytic behavior. All phospholipids have a head and a tail group 

[421]. The head group, attracted by water, may facilitate lysoPS diffusion over the extracellular 

space in brain tissue, which is an advantage for its diffusion over the hippocampal region. 

However, an effective diffusion of drug could reduce its local effect on microglia.  

On the other hand, metabolic processes involving phospholipids could explain the lack of 

response of lysoPS in vivo. For instance, it is known that lysoPS incorporates into the 

membrane of living cells [422] and then flip to the inner monolayer turning into PS via 

acyltransferases in a process called Lands cycle [423, 424].  In vitro data show that exogenously 

applied lysoPS triggers this phenomenon in primary microglia [193]. Given that in our primary 

microglia (and organotypic cultures) lysoPS addition produced an impairing effect on microglial 

phagocytosis, it is not likely that Lands cycle was produced. Nevertheless, we can speculate 

that exogenously applied lysoPS in the mice hippocampus could trigger this phenomenon in 

microglia and other living cells membrane, avoiding any possible effect on microglial 

phagocytosis.  

Furthermore, it is likely that technical issues may explain the unaltered microglial response to 

lysoPS, so it would be advisable to test different drug concentrations and treatment times in 

order to faithfully assess whether lysoPS manages to regulate microglial phagocytosis in vivo. 

Summing up, we can conclude that lysoPS exerts a modulating role in microglial phagocytosis 

in vitro. Furthermore, more investigation is needed to completely discard lysoPS as a candidate 

to modulate microglial phagocytosis in vivo. 

 

7.3. MICROGLIAL METABOLIC REWIREMENT UPON PHAGOCYTOSIS 

Another goal of this PhD Thesis was to test whether phagocytosis could entail some metabolic 

changes or adaptations in microglia. All phagocytes, including microglia, possess downstream 

mechanisms which permit the degradation of cell debris or pathogens [425]. In macrophages, 

it is known that a metabolic shift from OXPHOS to aerobic glycolysis is produced upon 

phagocytosis of microbial targets [212]. Nevertheless, very little is known about metabolic 

processes triggered by microglial phagocytosis. 
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7.3.1. Phagocytosis does not trigger a metabolic switch to glycolysis in BV2 microglia 

Cytosolic glycolysis constitutes one of the two main metabolic pathways responsible for ATP 

production in eukaryotic cells, together with mitochondrial OXPHOS. Our results showed that 

phagocytosis was not accompanied by changes in the glycolytic pathway in BV2 microglia. In 

contrast, upon engulfment of microbes, macrophages undergo a metabolic reprogramming 

(“trained immunity”) [212]. The basis of this training in macrophages has been recently 

proposed as a shift from OXPHOS to aerobic glycolisis, supported by epigenetic modifications 

in key genes of the glycolysis pathway controlled by the master glycolysis transcription factor 

HIF-1α [212, 426]. Nevertheless, it is important to remark that “trained immunity” performed 

by macrophages was seen at 7 days post-phagocytosis whereas our experiments were 

evaluated at 24h upon phagocytosis. Thus, we speculate that more prolonged time after 

phagocytosis might make possible to observe an upregulation of glycolysis in BV2 phagocytic 

microglia. Our data, which showed no shift from OXPHOS to glycolysis upon BV2 microglia 

phagocytosis, were also contrary to stated by some other authors [427]. They state that after 

engulfment of dead cells by phagocytosis, several genes are upregulated promoting glycolysis 

in insulin-responsive CHO-derived cell line LR73 phagocytes [142]. After corpse uptake, several 

genes of the solute carrier family are activated, promoting glucose uptake and lactate release 

whereas a concurrent suppression of the OXPHOS pathway is produced [427].  

The origin of the discrepancy between [427] and our experiments may rely on several aspects 

that need to be considered. First of all, the metabolic analysis of glycolysis by [427] was 

performed with a less reliable method than the one used in this PhD Thesis. Their method 

includes the measurement of the ECAR generated by glycolysis and also by mitochondrial 

OXPHOS, but did not take into account that the mitochondrial Krebs Cycle produces CO2, 

which acidifies the extracellular medium and contributes to ECAR. In contrast, our method 

removes mitochondrial contribution to the ECAR, by blocking mitochondrial activity with 

specific blockers of complexes I and III of the mitochondrial respiratory chain. As a result, we 

obtained a more reliable measurement of glycolytic activity of phagocytes upon the 

engulfment of cargo.  

In addition, it is important to remark that [427] state that the activation of glycolysis occurs 

early on, in the first hour after engulfment, and glycolysis pathway activity is analyzed only for 

2h upon phagocytosis. Considering that our analysis of glycolytic pathway is performed at 24h 

after engulfment and no changes are detected in glycolysis, we speculate that glycolysis 

upregulation via phagocytosis observed by [427] may be transient. In addition to this, 
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experiments performed by [427] use the LR73 CHO cell line [428] as phagocyte model whereas 

we employed a microglial cell line (BV2). It is likely that BV2 microglia respond in a different 

(and possibly better) way to a phagocytic challenge due its similarities to microglial cells 

(considered as professional phagocytes) than CHO cells could do. These originate from ovaries 

and thus are not specialized in phagocytosis, although its rapid growth in suspension has 

extended their use in vitro. Thus, it is likely that the effect of cell type used as phagocyte 

model constitutes another source of discrepancy.  

The choice of BV2 cell line as the microglial model for our biochemical studies was due to 

technical limitations with primary microglia. Immortalized microglia cell lines, such as BV2, are 

commonly used due to their highly proliferative nature, a typical feature of cancer cells. Cancer 

cells present an uncontrolled proliferation since they consume much larger quantities of 

glucose than normal cells and metabolize it principally through glycolysis [429, 430]. As shown 

in our results, highly proliferative BV2 cells present high basal glycolysis, so these cells could 

suppose a disadvantage for studying glycolytic pathway behavior upon phagocytosis compared 

to primary microglia, maybe explaining the unaltered glycolytic activity in BV2 microglia upon 

phagocytosis of apoptotic cells. However, several studies report that BV2 microglial glycolysis 

increases under different stimuli, such as LPS or NO. LPS increases lactate production in BV2 

microglia and primary microglia [431], while decreases both oxygen and ATP production at the 

mitochondrial level [277, 278]. In this way, Voloboueva et al. suggest that a switch to glycolysis 

could maintain the ATP production in BV2 cells, since NO gives rise to OXPHOS inhibition [274, 

275], in line with observed in dendritic cells [432]. On the other hand, Bernhart et al. reported 

that LPA, a phospholipid recognized as a relevant signaling molecule, is able to promote some 

changes in glycolysis in C13NJ cells, another microglial cell line [276]. Considering that upon 

LPS stimulation, glycolysis is increased in both BV2 and primary microglia, we speculate that 

both cell types could have a similar metabolic behavior upon apoptotic cells phagocytosis. 

Nonetheless, gene expression analyses of key enzymes in glycolysis in BV2 phagocytic 

microglia were not consistent with the upregulation of glycolytic genes in primary microglia 

upon 24 h of phagocytosis (Data from Irune Díaz-Aparicio PhD Thesis, 2018). Thereby, we can 

conclude that microglia BV2 cell line and primary microglia regulate differently the glycolytic 

pathway and the phagocytosis. 

In summary, our data suggest that microglia BV2 cells phagocytose apoptotic cells in a 

glycolysis independent-manner, contrary to observed in macrophages and other phagocytes, 

in which phagocytic activity on apoptotic cells is directly related to glycolysis [212, 427].  
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7.3.2. Phagocytosis disrupts mitochondrial metabolism in BV2 microglia  

Phagocytosis has high metabolic demands that rely mostly on the mitochondria, which play an 

essential role in cellular metabolism [163]. We analyzed the mitochondrial function (focusing 

on OXPHOS) upon phagocytosis. Our results showed a downregulation of OXPHOS upon 

phagocytosis in BV2 microglia which was not related to changes in gene expression, except for 

ndufaf4 (coding for a protein involved in the assembly of mitochondrial complex I). These data 

did not match with preliminary data of the laboratory using gene expression arrays comparing 

naïve and phagocytic cultures of primary microglia, which pointed towards a downregulation 

of key genes of mitochondrial metabolic pathways, including OXPHOS, in primary microglia 

upon 24h after phagocytosis (Data from Irune Díaz-Aparicio PhD Thesis, 2018).  

One explanation for the discrepancy is that arrays analyze all genes involved in OXPHOS (and 

other mitochondrial pathways) whereas our analyses (via RT-qPCR) were focused on a minimal 

group of genes involved in OXPHOS. On top of that, our analyses were performed in BV2 

microglia [380], whose features are different from those of primary microglia, as explained 

above.  

The reduced OXPHOS triggered by phagocytosis could be related to altered mitochondrial 

morphology. Our data reflected a decreased number and less ramified mitochondria upon 

phagocytosis in BV2 microglia. In the last few years, it has been proposed a link between 

mitochondrial metabolism and mitochondrial dynamics. It was shown that mitochondrial 

fusion and fission dynamics are intimately related to metabolic changes [433]. Thereby, we 

speculate that OXPHOS decrease upon phagocytosis is linked to mitochondrial morphology 

changes, which may be triggered by an unbalance between mitochondrial fusion and fission 

dynamics. In fact, Chen et al. have linked disruption in fusion to a decrease in OXPHO5 in 

fusion-defective mouse embryonic fibroblasts (MEFs) [392]. However, analyzing the expression 

of key fusion genes by RT-qPCR analyses, we have shown that those expression genes 

remained unaltered, independiently of OXPHOS. Furthermore, all key fission genes examined 

presented altered expression in BV2 phagocytic microglia. Mff and dnm1l were downregulated 

whereas fis1 was upregultated upon phagocytosis. These findings are in agreement with the 

results reported by [254, 434], in which OXPHOS inhibition (via mitochondrial uncouplers, such 

as FCCP or CCCP) was linked to enhancement of fission. Therefore, OXPHOS reduction in BV2 

microglia upon phagocytosis leads to changes in fission processes. Additionally, based on our 

data, we could also speculate that OXPHOS reduction in phagocytic BV2 microglia could 

decrease mitochondrial mitophagy, since it has been shown that increased OXPHOS is linked to 
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increased mitophagy [262]. In summary, OXPHOS decrease in phagocytic BV2 cells is 

accompanied by alterations in mitochondrial fission genes and could suggest alterations in 

mitophagy. 

Overall, we can conclude that mitochondrial metabolic disruption, reflected by decreased 

OXPHOS, is accompanied by morphological changes in these organelles upon phagocytosis of 

apoptotic cells. However, the fact that this mitochondrial impairment is not compensated by 

an increase in glycolysis, lead us to speculate that other metabolic pathways, which have not 

been analyzed, such as β-oxidation of fatty acids or purine metabolism, could present some 

alterations. Related to purine metabolism, [278] show that increase in glucose uptake in BV2 

microglia involves the rise in PPP pathway, so that we speculate that this pathway is not 

altered in our BV2 microglia experiments.  Furthermore, these results could suggest that BV2 

phagocytic microglia enter in a metabolic quiescence period in which their mitochondria suffer 

a blockade after the engulfment of dead cells. We speculate that a mitochondrial blockade 

could interfere with important microglial features, like their scanning capacity in the brain 

parenchyma [8, 9], since this surveillance state in microglia is likely to rely in OXPHOS [435]. As 

a summary, we can conclude that phagocytic response and thus maintaining of brain 

homeostasis is tightly associated with biochemical modifications produced within microglial 

cells in order to develop their functions properly.  

 

7.4. MICROGLIA AND NEUROGENESIS 

The SGZ of the hippocampus constitutes one of the major sites for the birth of new neurons 

from radial NSCs [299, 436]. Neurogenesis in the SGZ is produced throughout life, including 

senescence in mice [437], although its existence in humans is under strong discussion, since 

recent reports support that neurogenesis persists across lifespan [290, 291] but on the 

contrary, other publications claim that is limited to childhood [289] . 

Microglial cells are regulators in the neurogenic niche of the SGZ. They phagocytose the excess 

of newborn cells undergoing apoptosis, maintaining the homeostasis of the baseline 

neurogenic cascade in the young adult SGZ [28]. However, the role of microglia in 

neurogenesis may not be limited to removal of dead cells. Other mechanisms allow microglia 

to regulate neurogenesis, such as the secretion of soluble factors.  When treated with IL-4 or 

IFN-γ, cultured microglia promote neurogenesis via reduction of TNF-α and increased 

production of insulin growth factor 1 (IGF-1) [354], a well-known inducer of neurogenesis 
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[438]. Another growth factor such as brain-derived neurotrophic factor (BDNF) has been 

shown to be expressed by microglia, also promoting neurogenesis [439].  

7.4.1. Phagocytosis does not regulate newborn cells production in the niche of the SGZ 

Microglia have acquired relevance on neurogenesis since they determine inflammation rates in 

the cellular environment, which influences the survival of the newborn neurons in the adult 

hippocampus. Some authors have shown that inflammation via LPS administration inhibits 

neurogenesis in the adult rat hippocampus via microglial release of pro-inflammatory 

cytokines IL-6 and TNF-α [366]. Other authors also established that microglial activation, 

induced by an inflammatory stimulus, impairs neurogenesis in adult rats [364]. Nonetheless, 

other inflammatory cells such as astrocytes can also exert a role in neurogenesis regulation. 

For instance, chronic astrocytic release of IL-6 in transgenic mice reduces proliferation, survival 

and differentiation of newborn neurons, thus decreasing neurogenesis [347]. Thus, 

inflammation can regulate neurogenesis through the activation of glial cells. 

In addition to inflammation, phagocytosis may also regulate neurogenesis. Some in vitro 

studies have linked microglial phagocytosis to the secretion of several factors by microglia, 

which may help regulating neurogenic process. For example, microglia have been shown to 

release higher levels of TGF-β and NGF after phagocytosis in vitro [43], which are negative and 

positive regulators of hippocampal neurogenesis, respectively [213, 368]. Furthermore, in vitro 

approaches in our laboratory have revealed that conditioned media from phagocytic microglia 

alters the proliferation and differentiation of cultured neural progenitors in vitro and in vivo 

(Data from Irune Díaz-Aparicio PhD Thesis, 2018), evidencing the role of microglial 

phagocytosis secretome on neurogenesis. 

To directly test the role of microglial phagocytosis on neurogenesis in vivo, we used the GPR34 

KO mice as a genetic model of phagocytosis impairment [181]. The analyses were focused on 

analyzing the populations of neuroblasts (newborn cells) and radial NSCs (in charge of the 

newborn cells production in the neurogenic cascade) in young (1 month-old) and adult (3 

months-old) mice in the neurogenic niche of the SGZ. We found that impaired phagocytosis 

observed in 1 month-old GPR34 KO mice did not imply any changes in neuroblasts population. 

This is contrary to results obtained in other in vivo 1 month-old mice models of phagocytosis 

impairment tested in our laboratory (Data from Iñaki Paris PhD Thesis). On one hand, mice 

deficient in P2Y12, another phagocytic receptor highly expressed in microglia [177], showed 

decreased neuroblasts numbers. On the other hand, double KO mice for MertK and Axl 

receptors, both related to phagocytosis [168, 440], also registered decreased amount of 
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neuroblasts (Data from Irune Díaz-Aparicio PhD Thesis, 2018). This discrepancy could be 

produced as a result of the different contribution of each receptor to phagocytosis process in 

young mice. Surprisingly, 3 month-old GPR34 KO mice, which did not show any phagocytosis 

impairment, registered a reduction in the E-F neuroblasts, the most mature newborn neurons 

in the neurogenic cascade. Importantly, 3 month-old mice registered a scarce number of 

apoptotic cells compared to young 1 month-old mice. This was expected considering that 

neurogenesis is dramatically reduced with age [295]. This point, in conjunction with the fact 

that the vast majority of apoptotic cells produced during neurogenesis in the SGZ are removed 

by microglia [28], triggers a minor apoptotic activity throughout adulthood. Consequently, 

microglial phagocytosis results observed in 3 month-old mice need to be cautiously 

interpreted. We speculate that fewer apoptotic cells may prevent us from observing a 

regulation of microglial phagocytosis via GPR34 in adult mice (as clearly shown in young mice), 

which may explain the decreased number of neuroblasts. Thus, further investigation is needed 

to rule out the role of GPR34 on microglial phagocytosis in adult mice. 

Since microglial cells seem to regulate neuroblasts population via phagocytosis, they may also 

control the rNSCs population, in charge of the production of these newborn cells in the SGZ. 

Nonetheless, no changes were detected in rNSCs in our GPR34 KO mice model in the SGZ. 

Besides, young GPR34 KO mice did not show any changes in cell proliferation. Together with 

the fact that very few rNSCS were labeled with BrdU, we could suggest that microglial 

phagocytosis impairment observed in GPR34 KO mice is not linked to rNSCS behavior.  

Altogether, these data do not suggest that there is a link between microglial phagocytosis and 

newborn cells production in the neurogenic niche of the SGZ. This is contrary to previous 

studies, in which toxin-induced microglial reduction in the DG of the SGZ is sufficient to disrupt 

hippocampal neurogenesis due to reduced survival of neuroblasts [441]. Remarkably, 

microglial reduction is reversed via induction of VEGF, a well-known angiogenic factor, which 

increases microglial population and also induces a strong neurogenic response exclusively in 

the DG [214, 442, 443]. However, VEGF-induced neurogenesis by DG microglia can be 

abolished by inhibiting tyrosine kinase Axl, which has been shown to play a role in adult 

hippocampal neurogenesis [444, 445]. The latter, in conjunction with the fact that DG 

microglia express Axl receptor [441] support the idea that DG microglia are able to influence 

neurogenesis and that Axl receptor, linked to phagocytosis, and maybe other phagocytosis-

related receptors expressed in DG microglia, such as GPR34, could have a modulatory effect on 

neurogenesis through their role in the phagocytosis of apoptotic cells by microglia. However, 

our data do not allow us to assign this modulatory role in neurogenesis to GPR34. Therefore, 
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we conclude that we have no evidences pointing towards the role of microglia on 

neurogenesis regulation through phagocytosis of dead newborn neurons in the DG of the SGZ. 

The regulation of neurogenesis by microglia via phagocytosis of apoptotic newborn cells may 

extend to other neurogenic niches. Together with the SGZ of the hippocampus, the SVZ of the 

lateral ventricles constitute the two only brain regions where neurogenesis is produced 

throughout adulthood [446]. Despite our data do not show that microglial phagocytosis is 

involved in neurogenesis regulation in the SGZ, the engulfment of dead cells exerted by these 

phagocytes might be a mechanism to modulate neurogenesis in the SVZ. It is known that 

microglial cells in the SVZ produce soluble factors which are essential for SVZ neurogenesis 

[351]. However, according to [357], the neurogenic role of microglia in the SVZ does not seem 

to be related to phagocytic activity, since microglia within the SVZ are largely nonphagocytic, 

although these microglial cells are essential for neuroblast survival and migration to the 

olfactory bulb (OB). Remarkably, other authors highlight the role of SVZ microglia in 

neurogenesis via inflammatory stimuli. Studies performed by [360] show that activated 

microglia (via LPS treatment) in the early postnatal SVZ increase neurogenesis (and 

oligodendrogenesis) via cytokines release. Moreover, other authors have shown that LPS-

stimulated microglia are able to phagocytose live neural precursor cells (phagoptosis) in the 

primate SVZ during the development of cerebral cortex [27]. This is consistent with the 

concept that microglia are able to engulf live cells during inflammation [105] and suggests that 

both inflammation and phagocytosis processes could influence the role of microglial cells on 

neurogenesis. Curiously, periventricular microglia, another microglial population located 

within the ventricular zone (VZ), near the lateral ventricles, are also able to contact with neural 

precursor cells in primates [447], thus impacting on prenatal cortical neurogenesis [448], 

remarking that microglia manage to regulate neural precursor cells population, in line with 

[27]. In short, we can say that both inflammation and phagocytosis seem to exert a role in 

regulating neurogenesis by microglia in the SVZ (and also in the VZ) whereas our data cannot 

link microglial phagocytosis process to neurogenesis regulation in the SGZ.  

Finally, in addition to the role here described of microglial cells on neurogenesis, other 

immune cells are also part in stem cell niches. For instance, macrophages and T cells are also 

key components of stem cell niches [449], which are located in diverse sites other than brain 

tissue, such as the bone marrow or the intestine, among others [450]. Specifically, these two 

cell types have emerged as important regulators of stem cells under physiological conditions 

[451, 452]. In the bone marrow, macrophages retain hematopoietic stem cells (HSCs) in the 

mesenchymal stem cell niche [453], whereas T cells, located close to HSCs, secrete IL-10 and 
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adenosine to control HSC quiescence and pool size [454]. In the intestine, macrophages 

express colony stimulating factor 1 receptor (CSF1R), promoting the differentiation of 

intestinal stem cells (ISCs), which is abolished when mice are treated with blocking antibodies 

against CSF1R [455]. Furthermore, depletion of T cells leads to a reduction in ISCs [456], 

remarking a crucial role of these cells in ISC pool size.  As a conclusion, the role of immune cells 

in the stem cell niches regulation is shared by many cell types other than microglia, whose 

communication with stem cells may be fundamental in health and disease [450].  
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8. CONCLUSIONS 

1. MICROGLIAL PHAGOCYTOSIS IS NOT REGULATED BY INFLAMMATORY MEDIATORS TNF-α  

AND CX3CL1 IN VIVO 

-Granule neuron apoptosis and microglial phagocytosis in KA-induced epilepsy are not 

regulated by microglial TNF-α.  

-Microglial phagocytosis in physiological conditions is not regulated by genetic deficiency of 

CX3CR1. 

 

2. GPR34 IS A POTENTIAL REGULATOR OF MICROGLIAL PHAGOCYTOSIS IN VIVO 

-GPR34 mRNA is highly expressed in microglia in vivo and in vitro whereas G2A, GPR174 and 

P2Y10 are not expressed. 

-Microglial phagocytosis is uncoupled from apoptosis in 1 month-old mice lacking GPR34 

because fewer apoptotic cells are phagocytosed and non-phagocytic microglia increase. 

-GPR34-deficient microglia occupy fewer volume in the DG, which could be explained by the 

retraction of their processes, explaining the phagocytic impairment produced. 

-Microglial phagocytic impairment caused by GPR34 deficiency in 1 month-old mice is not 

maintained at 3 months of age. 

 

3. LYSOPS HAS A MODULATORY ROLE IN PHAGOCYTOSIS IN VITRO BUT NOT IN VIVO 

-The addition of lysoPS to microglia cultures exerts a blocking effect on phagocytosis since it 

increases non-phagocytic microglia, contrary to its previously stated role as an enhancer of 

phagocytosis in macrophages. 

-The addition of lysoPS to hippocampal slice cultures leads to an uncoupling between 

apoptosis and phagocytosis because fewer apoptotic cells are phagocytosed and non-

phagocytic microglia increase, similar to the effect of genetic depletion of GPR34 in vivo. 

-The injection of lysoPS into the hippocampus of mice does not affect microglial phagocytosis. 
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4. PHAGOCYTOSIS IS LINKED TO METABOLIC CHANGES IN BV2 MICROGLIA IN VITRO  

-BV2 cells are highly glycolytic, and phagocytosis does not significantly increase glycolysis as 

shown by hif-1α, pfkm and pfkfb3 gene expression. 

-BV2 microglial phagocytosis of apoptotic cells involves the downregulation of mitochondrial 

OXPHOS as shown by ndufaf4 gene expression. 

-The downregulation of mitochondrial metabolism in phagocytic BV2 microglia is accompanied 

by morphological changes in mitochondrial network as well as alterations in genes involved in 

mitochondrial fission. 

 

5. MICROGLIAL PHAGOCYTOSIS IS NOT LINKED TO NEUROGENESIS IN VIVO 

-Microglial phagocytic impairment caused by GPR34 deficiency does not imply changes neither 

in newborn cells nor NSCs population in young mice. 

-There is a decreased number of mature newborn cells in adult GPR34-deficient mice, although 

there are no evidences of microglial phagocytic impairment, thus a link between microglial 

phagocytosis and the neuronal production in the DG of the hippocampus cannot be confirmed. 
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