
University of the Basque Country UPV/EHU
Department of Computer Architecture and Technology

Distributed Eventual Leader Election
in the Crash-Recovery and General Omission Failure Models

Dissertation

for the degree of Doctor of Philosophy

Candidate

Christian Fernández-Campusano

Supervisors

Roberto Cortiñas

Mikel Larrea

2019

(c)2020 CHRISTIAN FERNANDEZ CAMPUSANO

Abstract

Distributed applications are present in many aspects of everyday life. Banking, healthcare, or
transportation are some examples of such applications. These are built on top of distributed
systems. Roughly speaking, a distributed system is composed of a set of processes which
collaborate among them to achieve a common goal. When building such systems, designers have
to cope with several issues, such as di�erent synchrony assumptions and failure occurrences.
Distributed systems must ensure that the delivered service is trustworthy.

Agreement problems compose a fundamental class of problems in distributed systems. Agree-
ment problems follow a similar pattern: all processes must agree on some common decision.
Interestingly, most of the agreement problems can be considered as a particular instance of a
problem called consensus, and, as a consequence, they can be solved by reduction to consensus.
However, there exists a fundamental impossibility result, namely (FLP), which states that in
an asynchronous distributed system, it is impossible to achieve consensus deterministically
when at least one process may fail. A way to circumvent this obstacle is by using unreliable
failure detectors. A failure detector is an abstraction that allows encapsulating synchrony
assumptions of the system and provides (possibly incorrect) information about process failures.
A particular failure detector, called Omega, has been shown to be the weakest failure detector
for solving consensus with a majority of correct processes. Informally, Omega lies in providing
an eventual leader election mechanism.

In this work, we propose a distributed eventual leader election service prone to concurrent
crash-recovery and omissions failures. Additionally, this work presents a performance study of
consensus algorithms in omission and crash-recovery scenarios. The main contributions of
this work are: (i) a novel de�nition of an eventual leader election service in distributed systems
prone to failures of computation and connectivity, (ii) a speci�cation of a weak system model
for a distributed eventual leader election service, and (iii) three implementation approaches
of a distributed eventual leader election service (Basic, Communication-E�cient and Indirect-
Leader-Trusting Mechanism).

ii

Acknowledgements

To my dear mother (RIP two years ago), a brave and courageous woman.
To my dear father, wise and consequent.
To my dear sisters and brothers, survivors of the dictatorship in Chile.
To my dear friends. . .
To my dear advisors. . .

iv

Preface

This dissertation presents the results from the research carried out in the Distributed Systems
Group at the University of the Basque Country UPV/EHU. Additionally, the part related
to Distributed Eventual Leader Service was developed in collaboration with Michel Raynal,
researcher member of the Institut Universitaire de France & IRISA.

The published articles related to this thesis are listed below:

• A Performance Study of Consensus Algorithms (Chapter 3).

– Conference papers:

- Christian Fernández-Campusano, Roberto Cortiñas, Mikel Larrea. Improving
the TrustedPals Framework Using Paxos. PDP 2013: Work in Progress Volume,
pp. 15-16 (CORE C).

- Christian Fernández-Campusano, Roberto Cortiñas, Mikel Larrea: Boosting
Dependable Ubiquitous Computing: A Case Study. UCAmI 2013: 42-45 (WoS).

- Christian Fernández-Campusano, Roberto Cortiñas, Mikel Larrea: A Perfor-
mance Study of Consensus Algorithms in Omission and Crash-Recovery Scenarios.
PDP 2014: 240-243 (CORE C).

– Journal papers:

- Christian Fernández-Campusano, Roberto Cortiñas, Mikel Larrea: Boosting
Dependable Ubiquitous Computing: A Case Study . IEEE Latin America Transac-
tions: Vol. 12, No. 3, pp. 442-448 (2014) (JCR).

• Distributed Eventual Leader Election Service (Chapter 4).

– Conference papers:

- Christian Fernández-Campusano, Roberto Cortiñas, Mikel Larrea: A Leader
Election Service for Crash-Recovery and Omission Environments. UCAmI 2014:
320-323 (WoS).

- Christian Fernández-Campusano, Mikel Larrea, Roberto Cortiñas, Michel Ray-
nal: Eventual Leader Election Despite Crash-Recovery and Omission Failures.
PRDC 2015: 209-214 (CORE B).

- Christian Fernández-Campusano, Roberto Cortiñas, Mikel Larrea, Jian Tang:
Designing and Evaluating Fault-tolerant Leader Election Algorithms. PDP 2015,
Work in Progress Volume, pp. 3-4 (CORE C).

- Christian Fernández-Campusano, Mikel Larrea, Roberto Cortiñas, Michel Ray-
nal: A Communication-e�cient Leader Election Algorithm in Partially Syn-
chronous Systems prone to Crash-Recovery and Omission Failures. ICDCN 2016:
8:1-8:4 (CORE B).

– Journal papers:

- Christian Fernández-Campusano, Mikel Larrea, Roberto Cortiñas, Michel Ray-
nal: A Distributed Leader Election Algorithm in Crash-Recovery and Omissive
Systems. Information Processing Letters 2017, Volume 118: 100-104 (JCR).

vi

Contents

Abstract i

Acknowledgement iii

Preface v

Contents viii

List of Figures ix

List of Tables xi

List of Algorithms xiii

1 Introduction 1

1.1 Motivation . 1
1.1.1 Aim of the Thesis . 4

1.2 Contributions . 5
1.3 Thesis Outline . 6

2 Background 7

2.1 Distributed Systems . 7
2.1.1 Concurrent and Distributed Computing 8
2.1.2 Safety and Liveness Properties . 9
2.1.3 Types of Distributed Systems . 9

2.2 System Models for Distributed Systems . 11
2.2.1 Processes . 11
2.2.2 Distributed Algorithms . 12
2.2.3 Communication Links . 13
2.2.4 Time and Timing Models . 15
2.2.5 Process Failure Models . 18
2.2.6 The Environment and Non-Determinism 21

2.3 Distributed Agreement Problems . 22
2.3.1 The Non-Blocking Atomic Commitment Problem 22
2.3.2 The Consensus Problem . 23
2.3.3 The Eventual Leader Election Problem 25

2.4 Unreliable Failure Detectors . 26
2.4.1 Properties of Failure Detectors . 26
2.4.2 Failure Detector Classes . 28
2.4.3 The Omega Failure Detector . 29
2.4.4 The Notion of Failure Detector Reduction 29
2.4.5 Approaches to Implementing Failure Detectors 31

2.5 Building Blocks for Fault-Tolerant Applications 31

vii

3 A Performance Study of Consensus Algorithms 33

3.1 The Study Context . 33
3.2 An Overview of the Considered Consensus Algorithms 34

3.2.1 Chandra-Toueg’s Algorithm . 34
3.2.2 Lamport’s Paxos Algorithm . 35
3.2.3 Some Points of Comparison between both Algorithms 37
3.2.4 Both Algorithms Solve Fault-Tolerant Agreement 38

3.3 Case Study: Improving the TrustedPals Framework 38
3.3.1 Solving Yao’s Millionaire’s Problem . 39
3.3.2 A Proposal for Improving TrustedPals 40
3.3.3 System Model and Assumptions . 41
3.3.4 Architecture of TrustedPals . 42
3.3.5 Obtaining ΩOm From a Simple Reduction of ^Pom 42
3.3.6 A Novel Design of Architecture for TrustedPals 44

3.4 A Practical Comparison of both Consensus Algorithms 44
3.4.1 Related Studies . 45
3.4.2 Simulations . 45

3.5 Experimental Results . 47
3.5.1 Impact of Scalability on Average Latency 47
3.5.2 Understanding the Behavior of Average Latency 47
3.5.3 System under Multiple Simultaneous Failures 51

3.6 Chapter Summary . 53

4 Distributed Eventual Leader Election Service 55

4.1 Leader Election in Distributed Systems . 55
4.1.1 Synchrony and Failure Models . 56
4.1.2 Resilience to both Crash-Recovery and Omissions Failures 56
4.1.3 About the Detectability of Failures . 57
4.1.4 Failure Detection and Leader Election 57
4.1.5 Communication E�ciency . 58

4.2 System Model and Assumptions . 58
4.3 Specifying an Eventual Leader Election Service 60

4.3.1 From Ω to an Eventual Leader Election Functionality 61
4.4 Di�culties Underlying System Model Assumptions 63
4.5 Implementing an Eventual Leader Service . 64

4.5.1 Basic Eventual Leader Election . 65
4.5.2 Communication-E�cient Eventual Leader Election 71
4.5.3 Indirect-Leader Trusting Mechanism 78

4.6 Chapter Summary . 86

5 Conclusions and Future Work 89

5.1 Research Assessment . 89
5.2 Future Work . 91

References 93

viii

List of Figures

2.1 Steps of a process . 12
2.2 The classical architecture of distributed systems 13
2.3 Representation of the main Timing Models . 18
2.4 Failure Models in Fault-Tolerant Systems . 20
2.5 Classi�cation of Failure Detectors . 28
2.6 Building blocks: Consensus and Failure Detectors 32

3.1 Current and Proposed Architecture for TrustedPals 43
3.2 The JBotSim Library . 46
3.3 Impact of Scalability on Average Latency . 48
3.4 Average Latency in Di�erent Scenarios . 50
3.5 Comparison for Di�erent Numbers of Failures (Crash scenario) 51
3.6 Di�erent Failures Scenarios . 52

4.1 Example of three connected processes . 64
4.2 Basic Eventual Leader Election (Scenario of System) 66
4.3 Communication-E�cient Eventual Leader Election (example) 73
4.4 Eventual Leader Election with an Indirect-Leader Trusting Mechanism (example) 79

ix

x

List of Tables

2.1 Complexity vs. Computability . 21

3.1 Improvement of Paxos+ΩOm vs CT+^Pom . 49
3.2 Overhead of CT+^Pom . 49
3.3 Overhead of Paxos+ΩOm . 49
3.4 Complexity Improvement of Paxos+ΩOm vs CT+^Pom 51
3.5 Overhead of Paxos+ΩOm vs CT+^Pom (multiples failures) 52

xi

xii

Algorithms

4.1 Basic algorithm: process initialization. 66
4.2 Basic algorithm: main tasks. 67
4.3 Basic algorithm: UpdateLeader() procedure. 68
4.4 Communication-E�cient algorithm: process initialization. 73
4.5 Communication-E�cient algorithm: main tasks. 74
4.6 Communication-E�cient algorithm: UpdateLeader() procedure. 75
4.7 Indirect-Leader Trusting Mechanism: process initialization. 80
4.8 Indirect-Leader Trusting Mechanism: main tasks. 81
4.9 Indirect-Leader Trusting Mechanism: UpdateLeader() procedure. 82

xiii

xiv

1 | Introduction

"We never stop reading, although every book comes to an end,
just as we never stop living, although death is certain."

— Roberto Bolaño1

In this chapter, we present the motivation to address the leader election problem in fault-
tolerant asynchronous distributed systems. We aim at providing a distributed eventual leader
election service prone to concurrent crash-recovery and omission failures. Usually, such services
are used as a building block in fault-tolerant applications in distributed systems. We focus on
devices that must operate despite holding limited resources of computation, communication,
and storage. Finally, we present the contributions achieved in this work to provide such a
service.

Outline. The rest of the chapter is organized as follows. Section 1.1 presents the motivation
and aim of the thesis. The main contributions of this work are presented in Section 1.2. The
chapter �nishes in Section 1.3 with the structure of the thesis document.

1.1 Motivation

Nowadays, distributed systems are an essential piece in the information society. These systems
are widely used in many aspects of everyday life. We live in a distributed world where
distributed services arise at every moment. Distributed systems range from simple to highly
speci�c applications, such as banking, healthcare, transportation, and air tra�c control, among
others.

Distributed systems execute their applications on a set of networked devices, and such
distributed applications run the same pieces of code on di�erent devices. Devices must be
able to communicate in a collaborative way to achieve a common goal, regardless of their
geographical location.

1Chilean novelist, short-story writer, poet, and essayist (1953-2003).

1

2 Chapter 1. Introduction

Although there is no single de�nition of a distributed system, we can mention two quotes
formulated by well-known computer scientists to illustrate some inherent characteristics of
such systems. On the one hand, paraphrasing to George Coulouris2, he de�ned a distributed
system as follows:

“A system in which hardware or software components located at networked computers
communicate and coordinate their actions only by message passing.”

On the other hand, paraphrasing to Leslie Lamport3, one of the foremost thinkers of the theory
of distributed computing:

“A distributed system is one in which the failure of a computer you did not even know existed can
render your own computer unusable.”

Informally, we consider a distributed system composed of a set of processes that collaborate
among them to achieve a common goal by exchanging messages. Some authors consider other
communication mechanisms, such as shared memory, but in this work, we focus on the
message passing schema. In Chapter 2, we present the characteristics, de�nitions, and models
of distributed systems.

Distributed computing covers a �eld of computer science that studies distributed systems.
Distributed computing was born in the late seventies to take into account the intrinsic char-
acteristics of physically distributed systems. Consequently, distributed computing arises to
solve the problems concerning physically distributed entities (called process, node, sensor . . .),
in such a way that each entity only has some partial knowledge of the input parameters of
the problem to be solved, and its local computation outputs may depend on some non-local
input parameter. Therefore, computer entities inevitably have to exchange information and
cooperate [Ray13]. In our case, we denote by processes the physically distributed entities in
a distributed system. A process is considered an instance of an executed computer program,
and it contains the program code and its current state. Most distributed systems allow many
processes to execute concurrently. Simultaneous execution of such processes in a system may
be altered by some of them stopping working, either by su�ering a crash, a crash with a later
recovering, or disconnections from the network. However, some of them can stay alive and
continue to operate. These are the correct processes that remain operative and ensure minimal
connectivity to achieve synchronization and consistency.

Dependability [Lap87, Lap92] is the ability to deliver a reliable service. The system su�ers a
failure when the service that is provided does not meet its speci�cations. Consequently, the
dependability property is de�ned as the ability that has a distributed system to deliver trusted

2British computer scientist, http://www.coulouris.net
3American computer scientist, ”http://www.lamport.org”

http://www.coulouris.net

Section 1.1. Motivation 3

services. Dependability in distributed systems can be represented by several attributes, such
as availability, reliability, safety, security, maintainability, among others. Both availability and
reliability are critical attributes in distributed applications. Availability can be de�ned as the
ability of a system to deliver a correct service, regardless of failures. Reliability can be de�ned
as the ability to guarantee the continuous delivery of the correct service.

A distributed system is reliable if its behavior is predictable despite partial failures and
asynchronous time periods. Achieving reliability requires robust, highly available, and reliable
distributed applications, i.e., guaranteeing that the applications provide correct services despite
failures on devices or processes or communication links. Thus, to provide high availability and
reliability in a distributed system, it is required fault prevention and fault tolerance.

Fault-tolerant systems are usually based on the principle of redundancy. Redundancy implies
the replication of critical components (hardware, software, or both) in a system to increase
reliability. The replication involves sharing information to ensure consistency among the
redundant components, as a way of improving reliability and fault tolerance in the system.
The redundancy in a system is necessary to tolerate faults, but it is not enough, as shown
in [Gär99]. As a result, detecting and correcting faults are also required for building dependable
applications.

In distributed systems, consistency in the replication of critical components is ensured by using
the agreement problem. Distributed agreement problems [PSL80, PT86, BJ87, BM93, Ray10]
compose an essential class of problems in distributed systems. All agreement problems follow
a similar pattern: every correct process must agree on the same decision. Reaching agreement
in a distributed system is a fundamental issue of both theoretical and practical importance.
Consensus, Atomic Commitment, Atomic Broadcast, Group Membership are di�erent versions
of the agreement problems in fault-tolerant dependable distributed systems [CB01, DSU04].
Several agreement problems can be solved by reducing them to a consensus problem.

The distributed consensus problem [PSL80, LSP82, SL84, DDS87, BM93] constitutes a paradigm
that represents a family of agreement problems, and many agreement problems can be speci�ed
as a variant of the consensus problem. Informally, the consensus processes propose an initial
value, and they have to agree on one of the proposed values. The leader election problem [MOZ05,
GR06, Ray07, AJR10, LMA11, FLCR17] allows solving several agreement problems in distributed
systems among them the consensus problem, e.g., the Paxos consensus algorithm [Lam98,
PLL00, Lam01]. The Paxos algorithm is currently used in the computer industry (e.g., Amazon,
Google, IBM, Microsoft, VMware . . . , among others). In broad outlines, solving the leader election
problem consists in providing each process in the system with a service such that: (i) returns a
process each time it is called, and (ii) always returns the same correct process. A leader election
mechanism allows boosting fault-tolerant distributed services since it provides support for
building dependable distributed systems on speci�c timing assumptions.

The timing assumptions are fundamental to specify the study model since it allows making
assumptions about the time and order of events in a distributed system [Lam78]. In the literature,
there are two well-de�ned timing models for distributed systems [FLP85, HT93, Cri96, CGR11]:
the synchronous and asynchronous models. The synchronous model assumes that there are upper

4 Chapter 1. Introduction

bounds on time, on the transmission delay of messages, and on the relative process speeds,
and those bounds are known. In contrast, in the asynchronous model, there are no timing
assumptions for the transmission delay of messages nor for the relative speeds of processes.

Fischer, Lynch and Paterson presented an impossibility result [FLP85], which states that it is
impossible to solve agreement problems deterministically in an asynchronous model where at
least one process may fail (known as FLP impossibility result). Nevertheless, several proposals
have been presented to solve the distributed agreement problems on the synchronous model.
Given this impossibility, some researchers focused their work on identifying the minimum
amount of synchrony needed to solve agreement problems in the presence of failures.

Partially synchronous models were studied and presented by [DDS87, DLS88], such systems
were re�ned over time, starting by [CT96]. Dwork et al. [DLS88] considered two types for a
partial synchrony model. In the �rst, the timing attributes are bounded, but the bounds are
unknown. In the second, the timing attributes are bounded and known, but they hold only
after an unknown stabilization interval. Further, in [DLS88], it is shown that the consensus
problem could be solved in both models, as long as there is a majority of correct processes in
the system.

Later, the unreliable failure detectors were proposed by Chandra and Toueg [CT96] to circum-
vent the FLP impossibility result on the asynchronous model. Roughly speaking, an unreliable
failure detector is an abstract module located at each process of the system, that allows encapsu-
lating the synchrony assumptions of the system. A failure detector provides (possibly incorrect)
information about (the operational state) of the other processes in the system. Chandra and
Toueg in [CT96] de�ned eight classes of failure detectors, and they were classi�ed according to
the accuracy of the provided information. The failure detectors must guarantee two properties:
completeness and accuracy. The consensus problem could be solved by using whatever the
unreliable failure detectors introduced in [CT96].

Among the di�erent classes of failure detectors that have been proposed, we consider particu-
larly interesting the Omega failure detector (Ω) [CHT96], since it is the weakest failure detector
that allows solving the distributed consensus problem, assuming a majority of correct processes
in the system. The speci�cation of the failure detector class Omega states that: there is a time
after which all the correct processes trust the same correct process. Accordingly, the Omega failure
detector allows providing an eventual leader election functionality [LMA11].

A distributed eventual leader election service provides a single process for coordination
actions, allowing to keep a replicated system in a consistent manner despite failures. The scope
of this thesis is to provide a service as support to solve distributed consensus problems in
partially synchronous systems prone to failures of computation and connectivity.

1.1.1 Aim of the Thesis

We present the aim of this thesis by answering the following questions:

What do we want to do?

Section 1.2. Contributions 5

To provide a speci�cation and an implementation
of an eventual leader election service

in partially synchronous distributed systems
prone to concurrent crash-recovery and omission failures

How do we begin our work?

We propose a performance study of consensus algorithms in omission and crash-recovery
scenarios to provide us a better understanding of the leader election mechanisms in the
consensus.

What are our perspectives at the end of the work?

Strictly speaking, from a theoretical to a practical perspective in partially synchronous dis-
tributed systems:

(i) Theoretical perspective: chasing a weaker system model to implement an eventual
leader election service prone to both crash-recovery (computation) and message omission
(communication) failures.

(ii) Practical perspective: proposing e�cient algorithms for an eventual leader election
service prone to both crash-recoveries and message omissions failures, based on a weak
system model.

1.2 Contributions

In this work, we make some contributions to the state-of-the-art to provide a distributed
eventual leader election service as support to solve consensus problems, in the following
aspects:

• We conduct a performance study of distributed consensus algorithms in a partial syn-
chrony model, under scenarios in which a process su�ers both message omissions and
crash-recovery failures. We use the TrustedPals framework [FFP+06, CFGA+12] as a
case study. Initially, we analyze two well-known consensus algorithms: Chandra-Toueg
(round-based) versus Paxos (leader-based). Also, we propose a new architecture for the
TrustedPals framework, which is composed of a Paxos algorithm improved with the help
of an eventual leader election service (ΩOm). In order to support the proposal, we present
a performance study (by simulation) under di�erent scenarios of failure, mainly where
processes are prone to su�er both omission and crash-recovery failures. In the practical
comparative study, we use metrics to analyze their performance as the time complexity
and the message complexity.

6 Chapter 1. Introduction

• We present a new de�nition of a distributed eventual leader election service, based on an
Omega failure detector prone to failures of computation and communication. This new
de�nition allows some “incorrect” processes to participate in the agreement of a common
leader and take an active part in solving the consensus problem. For which:

(i) We de�ne a weak model to support the new de�nition of Omega, denoted
Omegacrash–recovery, omission.

(ii) We specify the properties of an eventual leadership that allows providing a dis-
tributed eventual leader election service.

• We provide three approaches that implement our proposal of a distributed eventual leader
election service (Basic, Communication-E�cient, and Indirect-Leader Trusting Mecha-
nism), in a partially synchronous model prone to concurrent crash-recovery and omissions
failures. These approaches show a progressive weakening for the implementation of
an eventual leader election service. Our algorithms tolerate the occurrence of crash-
recoveries and message omissions to any process during some �nite but unknown time,
after which a majority of processes in the system remains up and does not omit messages.

1.3 Thesis Outline

This document is structured as follows:

Chapter 2. We present the background related to a distributed eventual leader election
service working on a partially synchronous model prone to concurrent crash-recovery and
omission failures.

Chapter 3. A performance study of Chandra-Toueg and Paxos consensus algorithms is
presented. Also, a case of study is presented through a framework called TrustedPals. The
previous architecture of TrustedPals uses the Chandra-Toueg consensus algorithm adapted
to the general omission failure model. As an improvement, we propose using the Paxos
consensus algorithm, in order to extend the applicability of this framework to the crash-
recovery failure model as well. Additionally, we present a practical comparison by simulation
of both architectures, highlighting the most signi�cant results.

Chapter 4. We provide a speci�cation for a distributed eventual leader election service
in partially synchronous models prone to both crash-recovery (computation) and message
omission (communication) failures. More precisely, in those systems, any process can fail
as long as most processes meet some weak connectivity and reliability conditions. We also
provide three di�erent implementations of the speci�ed distributed eventual leader service
(Basic, Communication-E�cient, and Indirect-Leader Trusting Mechanism).

Chapter 5. We summarize the most signi�cant results obtained from the carried research on
specifying and implementing a distributed eventual leader election service, as well as suggested
directions for future work.

2 | Background

"Those who cannot remember the past are condemned to repeat it."
— George Santayana2

In this chapter, we present a background related to distributed eventual leader election. We
expose the importance of agreement problems in asynchronous distributed systems prone to
failures. Among them, we focus on the consensus problem and how it can be solved through an
eventual leader election service. Such a service is essential for building fault-tolerant dependable
applications in distributed systems.

Outline. This chapter is organized as follows. First, Section 2.1 describes distributed
computing and its relationship with concurrent and distributed systems. In Section 2.2, we
present some inherent characteristics of a distributed system. Distributed agreement problems
and the most representative classes of those problems are described in Section 2.3. Section 2.4
presents the unreliable failure detector abstraction and how it is used to solve some distributed
agreement problems, such as consensus. In Section 2.5, we conclude the chapter by describing
how distributed services can be used as building blocks for dependable applications.

2.1 Distributed Systems

In nowadays, computing applications collaboratively execute pieces of code in devices of
any kind, geographically distributed and interconnected by wired or wireless networks. A
distributed system may be considered as a set of independent computing devices that are used
jointly to make a particular task or to implement a distributed service [VR01, TS06], to reach
a common goal. The properties of a distributed system characterize its behavior, and such
properties are de�ned in a speci�c system model.

A classic distributed system is made up of n sequential deterministic processes, denoted p1, p2,
p3. . .pn, with n > 1. These processes communicate and synchronize through a communication

2Spain-American philosopher, essayist, poet, and novelist (1863-1952).

7

8 Chapter 2. Background

medium, either a network that allows processes to send and receive messages, or a set of atomic
read/write registers. Note that in this work, we only consider message-passing communication,
i.e., by sending and receiving messages).

Processes in distributed systems collaborate to exhibit some helpful behavior according to the
functionality of the distributed application. Consequently, they must meet the speci�cations of
a distributed algorithm.

2.1.1 Concurrent and Distributed Computing

The study of concurrent computing [Dij65, Dij74, Lam74, AS83] started in the 1960s, with the
presentation of the mutual exclusion problem by Dijkstra in [Dij65]. In computer science,
concurrency indicates a decomposability property. Informally, the concurrent computing is a
way of computation in which several calculations are executed over overlapping time periods
(concurrency) rather than sequentially.

Observe that here, "deterministic" means that the behavior of a process is entirely determined
from its initial state, the algorithm it executes, and (according to the communication medium)
the sequence of values read from atomic registers or the sequence of received messages.
Consequently, when di�erent sequences of values are read, or messages are received in a
di�erent order, this can produce di�erent behaviors.

A typical pattern of concurrent systems is that the processes interact with each other during
the execution of some computation. Therefore, the number of possible forms of execution in the
system can be considerably high, and the resulting outcome can be non-deterministic. Tradi-
tionally, concurrent and distributed systems are modeled through the use of non-deterministic
transitions, i.e., for some state and input, the next state can be nothing or one or two or more
possible states. Accordingly, a distributed system executes concurrent applications. The di�er-
ence between concurrent and distributed systems is how the system behaves in the presence of
failures, and this is widely studied in distributed systems.

Distributed computing was born to take into account the intrinsic characteristic of physically
distributed systems [Lam78]. Accordingly, distributed computing looks for solving problems
that involve physically distributed entities (called processes), such that each entity (i) only
has a partial knowledge of the many entries of the problem to be solved, and (ii) the computation
of their local outputs could depend on some non-local inputs. Consequently, computing entities
have to exchange information and collaborate necessarily [Ray13].

A distributed system is a�ected by its timing pattern and the set of failures in which the
system may evolve. Interestingly, a system does not master those characteristics but su�ers
it [Ray14].

Section 2.1. Distributed Systems 9

2.1.2 Safety and Liveness Properties

Usually, to prove the correctness of concurrent algorithms, two classes of properties are
used: Safety and Liveness [Lam77, AS85]. Both properties are often adopted in the design and
speci�cation of fault-tolerant distributed systems.

Identifying safety and liveness properties provides a better understanding of the problem,
better design and speci�cations, and, consequently, clear and well-founded correctness proofs.
Formally, safety and liveness guarantee the following properties:

(i) The safety property states that some particular bad thing never happens. This property
ensures that the algorithm should not do anything wrong, i.e., a safety property is
continuously met.

(ii) The liveness property states that some particular good things will eventually happen, i.e.,
the algorithm will eventually produce a result. In other words, a liveness property will
eventually be met.

Di�erentiating between safety and liveness properties is crucial to prove that a program
ful�lls a set of logical rules for reasoning rigorously about its correctness. Informally, a safety
property involves an invariance argument, while a liveness property involves a well-founded
argument.

More information concerning safety and liveness properties can be found in [Lam77, Lam79,
AAH+85, AS85, AS87, CBTB00, BFH+06]

2.1.3 Types of Distributed Systems

Distributed systems can be categorized into the following classes:

2.1.3.1 Classical Distributed Systems

In general, a classical distributed system [Lam78, CGR11, Ray13] is composed of a �xed and
known quantity of processes (denoted n). Two processes do not have the same identity, and
each process knows the identity of all the other processes.

Usually, the communication network is fully connected. Further, depending on timing as-
sumptions, there is, or there is not an upper bound on time of message delays and the speed of
processes.

When considering classical distributed systems prone to failures, another fundamental param-
eter is the maximal number of faulty processes (denoted f). In classical distributed systems, n
and f are known. From the point of view of protocol design, a process can safely use these
parameters. Classical distributed systems are also known as static distributed systems.

10 Chapter 2. Background

2.1.3.2 Dynamic Distributed Systems

Dynamic distributed systems [MRT+05, BBRP07, LRAC12], in general terms, share a common
characteristic: processes can join and leave the system at will.

Nevertheless, there is a great need for the de�nition of such models to develop trusted services
suited to dynamic environments. Informally, a dynamic distributed system is continually
executed by a large number of processes, but any process can leave (or return) to interact with
a part of the whole system, at any time. Unlike static distributed systems, managing dynamic
systems requires to capture the notion of eventual stability.

2.1.3.3 Homonymous Distributed Systems

In homonymous distributed systems [DGFG+11, AAI+15, JAT15], the homonymy is a general-
ization of two cases: (i) the system has unique identi�ers for every process (unicity), and (ii) the
system has the same identi�er for all processes (anonymity). These cases are the two extremes
of homonymy.

Consequently, distributed systems can also be classi�ed by the identity of their processes, as
described below:

• Unique non-anonymous distributed system. Each process has its unique identi�cation
number, and its features are also unique.

• No-unique non-anonymous distributed system. Several processes may have the same
identi�er, i.e., the system has a limited number of authenticated identities, and at least
two processes share the same identi�cation number.

• Anonymous distributed system. All processes have the same identi�cation number and
the same features. The processes are anonymous, i.e., there is no way to di�erentiate
between two processes in the system.

Observe that both systems, (i) unique non-anonymous identi�ers and (ii) anonymous identi�ers,
are extreme cases of homonymous systems.

Anonymous processes are usually practical in some distributed systems, such as sensor
networks, where assigning a unique identi�er for each device is not always possible. Another
practical scenario is related to privacy problems (e.g., to hide the identity of a user in a system).

However, most of the algorithms proposed for classical distributed systems with unique
identi�ers do not work correctly in the presence of identi�cation collisions. It has been widely
studied that systems with di�erent process identi�ers can solve more problems or can perform
better than anonymous systems (where all identi�ers are implicitly the same).

As a conclusion, the leader election problem cannot be solved in anonymous systems.

Section 2.2. System Models for Distributed Systems 11

2.2 System Models for Distributed Systems

Roughly speaking, a system model is a collection of assumptions that allow de�ning characteris-
tics and constraints that a system might exhibit, such as processes classi�cation, communication
links, timing model, or failure patterns. To design an algorithm, one of the critical tasks is
de�ning the system model in which the algorithm must work. Consequently, to implement an
algorithm in a real system, it will be su�cient to know if that real system satis�es the properties
of the system model for which the algorithm was designed.

Models are a fundamental tool for designing and implementing solutions to a given problem
since, by simpli�cation, formulate the object of study and propose a set of rules to de�ne its
behavior. Consequently, a model is an abstraction of an object of interest. In [Sch93], it was
established that a good model must be accurate and tractable. A model is accurate if its analysis
o�ers a high degree of trust in the object of interest. On the other hand, a model is tractable if
its analysis is possible.

A distributed system can be modeled by describing its desirable behavior. First, it is necessary
to present the following concepts:

• State. The state of a distributed system is constituted by a state set of its components
(i.e., processes and communication channels).

• Trace. The behavior of a distributed system is represented by a sequence of states (all
possible executions). A trace is a possible execution of the system.

• Step. A pair of successive states, i.e., possible transitions between states.

Given that the behavior of a system is represented through traces, a property can be de�ned
as a collection of such traces, and it represents a component or the distributed system as a
whole. De�ning the properties of the system is a useful technique since it allows capturing
abstractions regardless of their implementation – for example, safety and liveness properties.

Below, we present the di�erent components we will use to model a distributed system, such as
processes, communication links (also communication channels), time and time models, failure
patterns, and the relationship between the environment and non-determinism.

2.2.1 Processes

A process can be de�ned as an abstract computational entity able to execute computations
in a distributed system. In this way, every process executes a copy of the same distributed
algorithm, keeping a local state of that execution without loss of generality. We consider
distributed systems composed of a �nite set of processes (Π), where Π = { p1, p2, p3 . . .pn } with
n > 1. Processes interact by exchanging messages trough communication links.

In a distributed system, a process can be considered correct or incorrect depending on its
pattern of failure (see Section 2.2.5):

12 Chapter 2. Background

• Correct process. It is a process that behaves according to its speci�cation, i.e., a process
that does not su�er any failure. We denote the number of correct processes in the system
by c .

• Incorrect process. It is a process that su�ers a failure that might a�ect its speci�cations,
e.g., a non-correct process. We denote f the number of non-correct processes.

Observe that the number of correct processes is c = n − f in a system with n processes.

2.2.2 Distributed Algorithms

A distributed algorithm is expressed through a collection of deterministic automata [Ray13],
one per process. The execution of such an algorithm is represented by a sequence of steps that
the system processes execute. In general terms, a run of an algorithm is the combination of the
followed steps and state information of a given execution.

Internal Computation

(MODULES OF THE PROCESS)

(send)(deliver)

(receive)

Outgoing MessageIncoming Message

PROCESS

Figure 2.1: Steps of a process

Figure 2.1 presents a sketch of process steps, wherein a process delivers a message from another
process, executes a local computation, or sends a message to some other process. In a more
detailed way, the �gure presents an execution step for a process, and it can be explained
as follows. A process takes an event from a particular queue, it executes a state transition
according to that event, and later it may send a message, or it appends a new event to the
appropriate queue. Similarly, when a message arrives, it is treated as an event, i.e., when a
message arrives, an event is added to the queue. A message is received by the process when
such an event is processed. Consequently, a process which does not fail can execute in�nitely
many events.

The event generation in distributed algorithms can be classi�ed into two classical approaches [ZWD+14]:
time-driven and message-driven. In time-driven algorithms, the events can be triggered using
the passage of time (measured by clocks). Instead, in message-driven algorithms, the generation
of events is only based on the reception of messages.

Section 2.2. System Models for Distributed Systems 13

2.2.3 Communication Links

Communication links or channels represent a high-level abstraction for a distributed network.
The network allows communication between heterogeneous computing devices (processes) that
compose the distributed system. Consequently, processes communicate through the exchange
of messages.

The architecture of a classical distributed system is presented in Figure 2.2, wherein pro-
cesses communicate through a network by communication links. As shown in Figure 2.2, we
di�erentiate two atomic operations for message delivery: receive and deliver.

First, receiving data (receive operation) implies that a message arrives at the target process.
Then, delivering data (deliver operation) is the following step, which precedes the third step,
processing the message. Observe that the message could be omitted after the receive operation
and before the delivery operation. Note that each sent message is marked with a unique
identi�er.

APPLICATION

ALGORITHMs

TRANSPORT

APPLICATION

ALGORITHMs

TRANSPORTNetwork

Processes DISTRIBUTED

Communication Links

send receive

deliver

ALGORITHMs

Figure 2.2: The classical architecture of distributed systems

Regarding the directionality of communication links, we consider two types: unidirectional
and bidirectional. A unidirectional communication link from a process p to another process q
allows p to send messages to q (only one-way). When a link from p to q is bidirectional, it is
assumed that the communication link allows sending messages from p to q and from q to p

(two-way).

Communication links can meet di�erent properties. Therefore, they can be classi�ed into
well-de�ned types [BCT96, ADFT08, CGR11]. On the one hand, On the one hand, the so-called
Reliable link can be built over mechanisms to detect and suppress message duplicates, plus
mechanisms for message retransmission. The main problem is that reliable communication
links cannot always be provided. On the other hand, Basu, Charron-Bost and Toueg [BCT96]
consider two models of lossy links: Fair-Lossy and Eventually Reliable.

14 Chapter 2. Background

2.2.3.1 Reliable Links

Reliable communication links [BCT96, CGR11, Ray13], also denoted as perfect links, ensure
that each message sent to a correct process is received, i.e., there is no message loss. Further,
no message is created, corrupted, or duplicated by the communication link.

Formally, reliable links guarantee the following properties:

• No creation. If a messagem is received by a process q, thenm was previously sent to q

by another process p.

• No duplication. No message is received more than once.

• No loss. If a process p sends a message m to another process q and q is correct, then q

will eventually receivem.

The “no creation" and “no duplication" properties are safety properties, whereas “no loss" is a
liveness property.

2.2.3.2 Fair-Lossy Links

A fair-lossy communication link [BCT96, CGR11, Ray13] ensure that, if an in�nite amount of
messages is sent, then it may drop (loss) an in�nite number of messages, but an in�nite subset
of messages will be received. As a consequence, if a message is sent in�nitely often, then the
receiver will eventually receive it.

Formally, a fair-lossy link must satisfy the following properties:

• No creation. If a messagem is received by a process q, thenm was previously sent to q

by another process p.

• Finite duplication. If a message m is sent a �nite number of times by a process p to a
process q, thenm cannot be delivered an in�nite number of times by q.

• Fair loss. If a process p sends a message m to a correct process q an in�nite number of
times, then q eventually receivesm from p.

Observe that a problem in the crash failure model with reliable links can be simulated using
fair-lossy links and a majority of correct processes [BCT96]. Therefore, any problem solvable
by using reliable links is also solvable by using fair-lossy links.

Section 2.2. System Models for Distributed Systems 15

2.2.3.3 Eventually Reliable Links

An eventually reliable communication link [BCT96, CGR11, Ray13] can drop (loss) messages
(like a fair lossy link), but there is a time after which all sent messages are eventually received
(like a reliable link). Observe that an eventually reliable link can lose an unbounded but �nite
number of messages.

Formally, an eventually reliable link must satisfy the following properties:

• No creation. If a messagem is received by a process q, thenm was previously sent to q

by another process p.

• No duplication. No message is received more than once.

• Finite loss. If q is correct, the number of messages sent by p to q that are not received by
q is �nite.

Reliable links are strictly stronger than eventually reliable links [BCT96], i.e., some problems
solvable with reliable links may not be solved with eventually reliable links.

2.2.4 Time and Timing Models

In this section, we examine the time assumptions and its critical impact on distributed sys-
tems. The time in distributed systems re�ects many of the characteristics which underlie the
system [Lyn96], as the computation time on a process (computation process time) and time
communication delays between processes (message delay time). There are various ways to
model uncertainties in the system and to cope with them.

First, we will introduce the concept of the clock as an abstraction for measuring the passage of
time in a system, and later we will present the di�erent models of time in distributed systems,
i.e., synchronous, asynchronous and partially synchronous models.

Clocks. In a distributed system, each process has a logical clock that enables measuring time
passage, although it is not always possible that every clock remains synchronized with the
rest of the clocks. Lamport [Lam78] proposed the concept of logical time, which allows the
time management in an abstract way. An event (also denoted as a step) can be considered as an
atomic execution (action or instruction) of an algorithm. Consequently, by using the logical
time it is possible to augment every process with a logical clock and thus to enable to order
events in distributed systems.

Global Clock. The representation of the global time in the model can be simpli�ed by
using a discrete global clock. However, a process does not have access to this clock (it is a
�ctitious device). Each event in a process is always associated with a speci�c global time, and
usually, it is assumed as a linear model of event execution. In this regard, the time domain
(denoted T) will always be represented by consecutive natural numbers.

16 Chapter 2. Background

2.2.4.1 Synchronous Model

The synchronous model [HT93] presents explicit bounds on time, i.e., a message is delivered in
a bounded time, and the relative speed of computation in a process is known. Both are bounded
and known.

Synchronous distributed systems are based on strong boundaries on message delays and
computation time. The problem with this model is that it does not accurately re�ect reality.
The positive thing about this model is that, when used, it is possible to achieve theoretical
results that can later be reduced to weaker models.

A synchronous system meets the following characteristics:

• The time to execute each step in a process is known and limited. There are upper and
lower time bounds.

• Every sent message is received within a known limited time.

• Every clock has a known and bounded deviation from real-time.

The di�erentiation between a crashed process and a slow processes is possible due to deter-
ministically detecting those failures in a synchronous system. Therefore, agreement problems
(the consensus problem, among others) can be solved e�ciently in synchronous systems.

Observe that the main problem of synchronous systems is the fact that the bounds have to be
de�ned to behave correctly in the worst case. Otherwise, the assumptions of the system model
might be violated, and therefore, the algorithm may lose its correctness.

2.2.4.2 Asynchronous Model

In the asynchronous model [FLP85, Cri96], there are no upper bounds on the transmission
delay of messages, and on the relative speed of processes, i.e., there are no timing assumptions.

A di�culty that implicitly comes with this model is how to assure both safety and liveness
properties in the system. The impossibility of solving the problem of consensus in a determinis-
tic way when a process su�ers a failure, known as the FLP impossibility result [FLP85], which
relies on the fact that sometimes it is not possible to distinguish between a failed process or a
process that is taking an in�nitely long time to reply to a message.

Some of the advantages of this model are:

• It has a better adaptation to the rapidly growing and variable load on the networks,
regarding processes and communication links.

• Algorithms that work in this model always preserve correctness (safety property), when
they are executed in any other system model.

Section 2.2. System Models for Distributed Systems 17

Several problems have been proved to be impossible to solve in asynchronous systems, given
that when a failure occurs, there are problems to detect it in a deterministic way. For instance,
let us suppose that a process p is waiting for a message m from another process q to know
whether q has crashed or not. So, during its wait p does not have any way to know how long it
should be waiting for the message before considering that there has been a failure (either a
crash of q or omission ofm). Then, there are two possible ways of making a mistake:

1. The safety property of the application is violated. It happens when p �nally decides to
consider q as faulty since the expected message has not been delivered yet. Suddenly, it
might happen that the expected message �nally arrives. Therefore, p made the wrong
decision.

2. The liveness property of the application would not be satis�ed. It happens when p decides
to wait until the message is received. Then, it might happen that the message never
arrives at p, e.g., q failed before sending it. Therefore, p made the wrong decision.

2.2.4.3 Partially Synchronous Models

In the partially synchronous model, processes have some knowledge about timing assumptions,
as they may have access to almost-synchronized clocks, or they might have estimates of how
long messages take to be delivered or how long it takes processes to execute a step. In real life,
there exist systems that almost always behave like synchronous systems but can be unstable
during some periods of time, behaving like an asynchronous system and thus exceeding normal
bounds.

The partially synchronous model was presented in [DDS87] with the aim of de�ning an inter-
mediate model between synchronous and asynchronous systems. In [DDS87], �ve parameters
have been proposed to classify di�erent partially synchronous systems, with 32 (25) di�erent
models. Regarding synchrony, four of those models were identi�ed as minimal models in which
consensus is solvable in partial synchrony.

In [DLS88], two models were considered :

• Model 1. There exist time bounds on message delays and relative speed of processes,
but they are not known.

• Model 2. Bounds exist, and they are known, but they hold only after an unknown time
called Global Stabilization Time (GST). This model is also-called eventually synchronous.
Before GST, the system behaves like an asynchronous system, and after GST, it behaves
like a synchronous system.

Later, another partially synchronous model was introduced in [CT96] with weaker assump-
tions than the previous ones (Model 1 and Model 2):

18 Chapter 2. Background

• Model 3. Bounds exist, but they are not known, and they only hold eventually.

Speci�cally, Model 3 is the partially synchronous model considered in our work. Moreover,
an eventually synchronous system is not necessary to hold its bounds continuously but only
requires that the system keeps stability during a su�ciently long time to complete the algorithm
execution.

Another important aspect is that there is no single de�nition for partially synchronous models.
The model of partial synchrony has found many re�nements, beginning by Chandra and
Toueg [CT96], where both communication and processes are partially synchronous (regardless
of the model of partial synchrony, presented by Dwork et al. [DLS88]), followed by Hermant
and Widder [HW05], where only the rate between best-case and worst-case round-trip delay
is bounded. Also, Fetzer et al. [FSS05] worked with system models in which only an average
response time is bounded.

2.2.4.4 Representation of Timing Models

The representation of the timing models is shown in Figure 2.3.

SYNCHRONOUS

PARTIALLY SYNCHRONOUS

ASYNCHRONOUS

Figure 2.3: Representation of the main Timing Models

Hence, synchronous systems ⊂ partially synchronous systems ⊂ asynchronous systems.

2.2.5 Process Failure Models

An essential aim in the design of distributed applications is to build them on systems in a way
that they can recover from some failures without harmfully a�ecting the overall performance,
i.e., if a part of the system su�ers a failure, then the remaining part continues to operate.

Bellow, we present a classi�cation of failure patterns that can su�er a process in a distributed
system. We will consider the following types of failures: Crash-Stop, General Omission, Crash-
Recovery, and Byzantine.

Section 2.2. System Models for Distributed Systems 19

2.2.5.1 Crash-Stop Failure Model

In the crash-stop model [CGR11, Ray13], also the crash model, the process that su�ers a crash
failure stops executing its algorithm, and thus it does not send and/or receive messages never
again. Basically, in this model, a faulty process operates as a correct one before it crashes, and,
after crashing, it remains inactive forever.

Observe that in synchronous systems, fail-stop processes can be e�ciently implemented by
using time-outs. A stronger type of crash, fail-stop, was proposed in [SS83]; when a process
crashes, all correct processes are informed about that failure.

The crash-stop failure in the context of agreement problems (such as the consensus problem)
was �rst proposed in [LSP82] and later extended in [HT93].

2.2.5.2 General Omission Failure Model

The omission failure model [CGR11, Ray13] occurs in the process and not in the communication
links. This failure can describe situations such as bu�er over�ows or malicious dropping of
messages. Recall that a data bu�er is a sector in physical memory storage used to store data
momentarily while it is moved to another side. For example, a bu�er between a process and
their communication link.

An omission failure can be classi�ed into send-omission and receive-omission, as follows:

• A process p su�ers a send-omission failure if it executes a send-message instruction, but
the message never reaches the link.

• A process p su�ers a receive-omission when a message is received at its destination
process, but inside this process, the message is never delivered.

The send-omission failure model was proposed in [HT93] to de�ne a failure model in which
processes can crash (but cannot recover) and su�er send-omission. Perry et al. [PT86] proposed
the general omission failure model by adding to the previous one the possibility of su�ering
receive-omission failures as well.

Further, we can distinguish between permanent and transient omission as follows:

• A process that su�ers a permanent omission failure, after omitting a message, every
subsequent message will be omitted.

• A process that su�ers a transient omission failure, will reliably send or receive messages
until another failure.

20 Chapter 2. Background

2.2.5.3 Crash-Recovery Failure Model

In the crash-recovery failure model [CGR11, Ray13], a crashed process can recover after some
time. When a crashed process recovers, it can a�ect its ability to remember the previous it
had before crashing, i.e., it may lose all pre-crash information, so it should have to start from
scratch after recovering.

Sometimes, processes are augmented with stable storage, a special type of memoria that
keeps stored information even if a crash occurs. Therefore, a crashed and recovered process
could subsequently obtain essential information to recover its operational state correctly.
However, stable storage is an expensive resource, so e�orts have been made to use it as less as
possible [HMR98, ACT00, MLJ09, CGR11].

2.2.5.4 Byzantine Failure Model

The Byzantine failure model, as de�ned in [LSP82], considers arbitrary failures, in which a
process can make wrong state transitions and send arbitrary messages. Therefore, it a�ects the
safety property since it is deviates from its algorithm speci�cation.

This type of failure is also-called malicious, and it can be modeled as if an evil entity pro-
duced them. It is also contemplated that malevolent entities can collaborate through di�erent
processes.

For more information on the Byzantine Failure Model, see [LSP82, DGFG+11, Ray13].

2.2.5.5 Connecting Failure Models

Figure 2.4 represents a classi�cation of the previously presented failure models (adapted
from [BM93, CGR11, Ray13]).

CRASH

GENERAL OMISSION

CRASH-RECOVERY

BYZANTINE

Figure 2.4: Failure Models in Fault-Tolerant Systems

The classi�cation is possible because the containing set can simulate the failures of their
subset:

Section 2.2. System Models for Distributed Systems 21

• In the General Omission model, a crashed process experiences a similar external behavior
like a process that su�ers permanent send and receive omission.

• In the Crash-Recovery model, some omission failures can be simulated through a crash
and recovery by using stable storage.

• In the Byzantine model, arbitrary failures include any other type of failure.

Under certain conditions and assumptions, each failure model may be considered as a subset
of some failure model superior that includes it (i.e., Crash ⊂ General Omission ⊂ Crash-Recovery
⊂ Byzantine).

2.2.6 The Environment and Non-Determinism

The environment of a distributed system is composed of failures (processes and communication
links) and the assumption of synchrony (from a synchronous model to an asynchronous model)
in which the system may evolve. Therefore, a system does not dominate its environment but
su�ers it. The processes in distributed systems are deterministic, then the only non-determinism
a distributed system has to cope with is the non-determinism produced by its environment.

A fundamental question in a distributed system is what can be computed. The answer to
that interrogation depends on the environment in which the considered distributed system
evolves, i.e., on the assumptions that the system is based on. Such an environment is very often
left implicit and nearly always not formulated regarding their speci�c requirements. In the
case where the environment is such that there is no synchrony assumption and the processes
may su�er failures, many problems become impossible to solve (e.g., the consensus problem in
asynchronous systems). Hence, it is essential to know the weakest assumptions (lower bounds)
that set the limits beyond which the considered distributed problem cannot be solved.

Computability and complexity are the two perspectives that allow us to understand and
study the distributed problems. Table 2.1 presents the main issues in distributed systems when
contemplating these two perspectives [Ray14].

Table 2.1: Complexity vs. Computability

Environment Failure-free Failure-prone
Synchronous Model Complexity Complexity

Asynchronous Model Complexity Computability

Remark. Deterministic means that the behavior of a process is entirely determined from its
initial state, the algorithm it executes, and the sequence of messages received.

22 Chapter 2. Background

2.3 Distributed Agreement Problems

In distributed systems, reaching agreement is a fundamental issue, both from theoretical and
practical perspective. Agreement problems follow a common pattern: all participating processes
must agree on some common decision. Examples of agreement problems are Consensus [PSL80,
LSP82], Atomic Commit [Ray97, Gue02], Group Membership [BJ87, CKV01], Totally Ordered
Broadcast [CT96, DSU04], and Leader Election [Ray13, FLCR17].

Essentially, the distributed agreement problem is a general problem where processes of a
distributed system must agree on an abstract fact. Solving the distributed agreement problem
is essential to implementing many of the current distributed applications. In this sense, the
distributed consensus problem [PSL80, LSP82] depicts a family of agreement problems, since it
represents the di�culty to solve such agreement problems in fault-tolerant distributed systems
[SL84].

Unfortunately, solving the distributed agreement is complex; e.g., it cannot be solved in
asynchronous systems prone to process failures. This result, known as the FLP impossibility
result, was presented by Fischer, Lynch and Patterson [FLP85]. In the following sections, some
solutions are presented to circumvent the FLP impossibility result.

The leader election problem is the focus of our study since it allows solving the distributed
consensus problem. The election of a distributed leader involves determining a single correct
process that coordinates the actions of all processes that make up the distributed system.

2.3.1 The Non-Blocking Atomic Commitment Problem

A fundamental problem in distributed systems is ensuring that data always remains consis-
tent [Lam80]. The non-blocking atomic commitment problem [Gue95, Ray97, Gue02] consists
of guaranteeing that all correct processes take the same decision, especially the commit or
abort of a transaction in an atomic operation.

A transaction usually involves several sites (processes). At the end of a transaction, processes
must participate in an agreement protocol to commit it (everything went well) or abort it
(something went wrong).

A commitment protocol (an agreement protocol) called Two-Phase Commit obeys a two-phase
pattern. First, each process votes either yes or no. If, for any reason (deadlock, storage problem,
concurrency control . . .), a process cannot locally commit the transaction, it votes no. Otherwise,
a yes vote implies that the process commits. The second phase declares the order to commit
the transaction if all processes voted yes or to abort it if some process voted no.

Section 2.3. Distributed Agreement Problems 23

2.3.1.1 Non-Blocking Atomic Commitment Properties

Basically, in the non-blocking atomic commitment problem, if the decision is committing, then
all processes make their updates permanent. The commit/abort value of the outcome of the
protocol depends on the votes of processes and failures. More precisely, this problem is de�ned
by the following properties [Ray97]:

• Termination. Every correct process eventually decides.

• Validity. If a process decides to commit, then all processes have voted yes.

• Integrity. A process decides at most once.

• Uniform-Agreement. No two processes decide di�erently.

• Non-Triviality property. S-Non-Triviality or AS-Non-Triviality.

The non-triviality condition aims to eliminate "non-expected" states in which the decision
does not depend on the failure scenarios and votes.

As failures can be reliably detected in synchronous systems, the Non-Triviality property for
these systems is [Had90]:

• S-Non-Triviality. If all processes vote yes and there is no failure, then the outcome decision
is to commit.

On asynchronous systems, failures can only be suspected, possibly erroneously, and the
condition has to be weaker for the problem to be solvable [Gue95]. So, the Non-Triviality
property for these systems is:

• AS-Non-Triviality. If all processes vote yes and there is no failure suspicion, then the
outcome decision is to commit.

2.3.2 The Consensus Problem

The consensus problem [PSL80, LSP82, FLP85, DDS87, DLS88, CT96] is one of the most impor-
tant problems in fault-tolerant distributed systems, and it constitutes a paradigm that represents
a class of agreement problems. Accordingly, the consensus problem has been used to solve
several agreement problems.

Informally, in consensus, processes propose an initial value, and, despite failures, correct
processes have to decide the same unique value from the proposed values. Formally, the
consensus problem is de�ned in terms of two primitives:

24 Chapter 2. Background

• Propose(v). Every process proposes an initial value (v).

• Decide(v). All (correct) processes decide on the same value (v), which must be one out of
the initially proposed values.

In a synchronous system, a process can reliably detect if another process has failed by the
use of time-outs. If the timer expires, it means that the other process has failed (assuming that
communication is reliable). Hence, reliable detection of failures is possible, and the consensus
problem can be solved.

Observe that consensus has a trivial solution in systems where processes do not fail. However,
the agreement on systems where processes can fail can be much more di�cult, since the
resolvability of the consensus depends on a large extent on the possibility of detecting failures
in the processes and their communication links.

Although many solutions have been proposed to solve consensus in synchronous systems,
Fischer, Lynch and Paterson presented the FLP impossibility [FLP85], which states that it is
impossible to solve consensus deterministically in asynchronous systems where at least one
process may crash. This result generated a series of works that tried to identify the amount of
synchrony needed to solve consensus in the presence of failures, e.g., in partially synchronous
systems [DDS87, DLS88, CT96].

2.3.2.1 Consensus Properties

The consensus problem is de�ned by the following properties [CT96]:

• Termination. Every correct process eventually decides some value.

• Validity. If a process decides ν , then ν was previously proposed by some process.

• Integrity. A process decides at most once.

• Agreement. No two correct processes decide di�erently.

According to the de�nition of the agreement property, a faulty process may decide a di�erent
value from the one that correct processes agree on. Charron-Bost and Schiper show in [CS04]
that the uniform consensus problem is harder than the consensus problem. The uniform con-
sensus problem states that all (correct and faulty) processes that decide must decide the same
value. The uniform consensus problem rede�nes the agreement property as uniform agreement
property [CS04]:

• Uniform Agreement. No two processes decide di�erently.

Section 2.3. Distributed Agreement Problems 25

Remark. Any algorithm in a partial synchrony model that solves the consensus problem
also solves the uniform consensus problem [Gue95, GL08].

According to safety and liveness properties (see Chapter 2.1.2):

• Uniform Agreement, Validity, and Integrity are safety properties, whereas

• Termination is a liveness property.

Remark. Recall that a safety property establishes that the system will behave according to
its speci�cation (ensures that something bad never happens), and a liveness property states that
the system will eventually make progress (ensures that something good eventually happens).

2.3.3 The Eventual Leader Election Problem

A correct process can be considered as a leader process if such a process assumes a coordinating
role for every correct process in the system. Also, the leader process may su�er some failure at
any time, in which case, it is necessary to apply a procedure for the eventual election of a new
one [SM95].

In general terms, in the eventual leader election problem correct processes must eventually
decide the same correct process as the single leader. As a result, the system processes can be
classi�ed into two sets: leader and non-leader.

The eventual leader election problem can be solved through a distributed leader election
service with characteristics of eventuality in the time. A distributed eventual leader service can
be de�ned as follows [Ray07]:

(i) Each time it is called, it returns the identity of a process (pid), and

(ii) after some �nite time, it always returns the same (pid) corresponding to the identity of a
correct process.

The interest in the study of this problem lies partly in the di�culty of solving it in the
asynchronous system.

2.3.3.1 Eventual Leader Election Properties

More precisely, the eventual leader election problem is de�ned by the following proper-
ties [Ray07, Ray13]:

• Termination. Every correct process eventually decides some leader.

• Validity. If a process decides a leader, then this leader was previously proposed by some
process.

• Agreement. Every correct process elects the same leader.

26 Chapter 2. Background

2.4 Unreliable Failure Detectors

An unreliable failure detector is an abstract module located at each process of the system that
provides (possibly incorrect) information about (the operational state of) other processes in the
system. The principal objective of this abstract module is to provide an abstraction of the
timing assumptions of the system.

So, how does a failure detector work? Roughly speaking, the distributed systems designed with
failure detectors provide each process with access to a local failure detector module, which
monitors other processes in the system and maintains a set of suspects to have failed. A failure
detector module can make mistakes by not suspecting a process that has failed or by wrong
suspicions, i.e., it can suspect that a process p has crashed even though p is still running. If it
later determines that suspecting p was a mistake, then it eliminates p from its set of suspects.
Therefore, each module may attach and eliminate processes regularly from its set of suspected
processes. Furthermore, the failure detector modules in two di�erent processes may have
di�erent sets of suspected processes at any time.

Based on the literature, we can mention two types of failure detectors: Perfect and Unreliable.

(i) In a fully synchronous distributed system Perfect failure detector, i.e., a failure detector
that does not make mistakes can be implemented in fully synchronous systems. In such
systems, a simple timeout-based algorithm can reliably detect the failure of any process.

(ii) In a non-synchronous distributed system, a failure detector may not correctly infer about
which processes have failed, and its type is de�ned as an Unreliable failure detector. Not
surprisingly, the given information by the �rst type (i) about failed processes will be more
accurate than the information provided by those of the category of unreliable failure
detectors.

Unreliable failure detectors [CT96] can be viewed as an abstract way of incorporating partial
synchrony assumptions into the model of the distributed system. Systems using these unreliable
failure detectors are not purely asynchronous. It merely produces the vision of an asynchronous
system through the encapsulating of references to time in the failure detector, in such a way
that it allows solving the agreement problems in distributed asynchronous systems.

Clearly, in a synchronous system, the timing assumptions are stronger, allowing to provide
more accurate information about process failures. For more information, see [CT96, MMR02,
Ray05, Gue08, Ray10, FGK11, CGR11].

2.4.1 Properties of Failure Detectors

Chandra and Toueg [CT96] introduced the concept of unreliable failure detectors and how
they can be used to solve consensus in fault-tolerant asynchronous distributed systems. They
characterize unreliable failure detectors in terms of two properties: completeness and accuracy.

Section 2.4. Unreliable Failure Detectors 27

In general terms, the completeness property requires that every faulty process should be
suspected, while the accuracy property restricts the false suspicions (mistakes) that a failure
detector can make. In other words, completeness speci�es the capacity of a failure detector to
suspect a failure, and accuracy limits the mistakes of a failure detector while it is suspecting.

Chandra and Toueg [CT96] identi�ed eight classes of failure detectors (see Figure 2.5) that
combine properties of completeness and accuracy.

2.4.1.1 Completeness Properties

The �rst property that a failure detector must satisfy is the integrity property, which means
that if a process is faulty, then the failure detector should suspect it. The completeness property
can be classi�ed in:

• Strong Completeness. Every faulty process is eventually and permanently suspected by
every non-faulty process.

• Weak Completeness. Weak completeness: every faulty process is eventually and perma-
nently suspected by some non-faulty process.

Completeness by itself is not very useful. Given that strong completeness can be trivially
satis�ed by forcing every process to suspect every other process in the system permanently.
However, such a failure detector is useless since it provides no information about failures.

2.4.1.2 Accuracy Properties

The second kind of property is accuracy, which means that, if a process is suspected, then it has
failed. In general terms, this property restricts the mistakes that a failure detector can make.
The accuracy property can be classi�ed in:

• Strong Accuracy. No process is suspected before it fails (also known as Perpetual Strong
Accuracy).

• Weak Accuracy. Some correct process is never suspected (also known as Perpetual Weak
Accuracy).

• Eventual Strong Accuracy. There is a time after which correct processes are not suspected
by any correct process.

• Eventual Weak Accuracy. There is a time after which some correct process is never
suspected by any correct process.

Note that the failure detectors with eventual accuracy may suspect every process at one time
or another, while failure detectors with perpetual accuracy require that at least one correct
process is never suspected.

28 Chapter 2. Background

2.4.2 Failure Detector Classes

Failure detectors can be classi�ed based on the properties that they satisfy (completeness and
accuracy). In Figure 2.5, we show the hierarchy of failure detector classes established by
Chandra and Toueg [CT96].

STRONG

WEAK

STRONG WEAK EVENTUAL STRONG EVENTUAL WEAK

COMPLETENESS
ACCURACY

�PP S �S

Q W �Q �W

Perfect Strong

Quasi-Perfect Weak Eventually Quasi-Perfect

Eventually Perfect Eventually Strong

Eventually Weak

SYNCHRONOUS ASYNCHRONOUS

Figure 2.5: Classi�cation of Failure Detectors

Additionally, in [CT96] it is stated that any failure detector that meets weak completeness can
be transformed into a failure detector that meets strong completeness with the same accuracy
property.

We can understand the hierarchy of such classes of failure detectors as follows:

• We assume that class A is stronger than class B if the information about the failure
processes provided by the failure detector of class A also includes the information
provided by the failure detector of class B.

• We focus on the eventual weak accuracy property. We can see from the de�nition that
there is a time after which at least one correct process is never suspected by any correct
process, while in the eventual strong accuracy property every correct process eventually is
not suspected.

Often, the study of failure detectors focuses on those that satisfy the strong completeness
property (�rst row of Figure 2.5). Moreover, Chandra and Toueg [CHT96] showed that ^S is
the weakest class of failure detectors allowing to solve the distributed consensus problem in an
asynchronous system with a majority of correct processes.

Remark.

• The Perfect failure detector (P) is reliable in the sense that every suspected process is a
faulty process.

• The Eventually Perfect failure detector (^P) is unreliable since it can make mistakes,
even though eventually it will make no mistake.

• Guerraoui in [Gue00, GR04] showed that algorithms devised on the approach of unreliable
failure detection are indulgent algorithms, meaning that they never violate their safety
properties.

Section 2.4. Unreliable Failure Detectors 29

2.4.3 The Omega Failure Detector

In addition to the previous classes, Chandra, Hadzilacos and Toueg [CHT96] introduced another
failure detector class, called Omega (Ω).

TheOmega failure detector was presented as the weakest failure detector for solving consensus
with a majority of correct processes [CHT96]. From some point of time, Omega allows providing
an agreement on a correct process among all processes that are non-faulty in a system.

Chandra, Hadzilacos and Toueg [CHT96] de�ned the Omega failure detector for the crash
failure model. Basically, the output of the failure detector module of Omega at a process p is a
single process q, that p currently considers being correct (we say that p trusts q).

Formally, the Omega failure detector (Ω) has been de�ned as follows: there is a time after
which every correct process always trusts the same correct process. Observe that the de�nition,
made for the crash failure model, does not state anything about incorrect processes, which are
allowed to disagree at any time with correct processes.

The Eventually Strong (^S) failure detector class would be enough to solve consensus. How-
ever, ^P is a more natural failure detector class, in the sense that it ensures that eventually, all
correct processes have a suspected list that exactly contains incorrect processes, providing a
higher degree of accuracy than ^S. On the other hand, the Omega failure detector (Ω) provides
a leader election mechanism, which supports leader-based consensus protocols.

Some interesting observations about the Omega failure detector, which make it attractive for
our work, are:

• The Omega failure detector is equivalent to the Eventually Strong failure detector (Ω ≡
^S) [CHT96, LAA13].

• The Omega failure detector guarantees that, eventually, all the correct processes agree
permanently on a common correct process, i.e., provides an eventual leader election
functionality [MOZ05, ADFT08, MLJ09, SCL+11, LMA11].

• The Omega failure detector is a trust-based failure detector, whereas the previous ones
are suspicion based failure detectors.

• The Omega failure detector allows designing indulgent protocols [Gue00, GR04].

2.4.4 The Notion of Failure Detector Reduction

Chandra et al. [CHT96] introduced the relation "weaker than" to compare failure detectors.
Later, the notion of failure detector reduction ("weaker than") has been improved in [JT08].

A failure detector FD1 is "weaker than" another failure detector FD2, if there is an asyn-
chronous algorithm which can emulate FD1 by using FD2. In other words, FD2 is reducible to
FD1 by a reduction algorithm, and it is denoted as FD1 � FD2,

Other de�nitions are presented in [CHT96, JT08] as follows:

30 Chapter 2. Background

• Equivalent. If FD1 � FD2 and FD2 � FD1, then FD1 ≡ FD2.

• Strictly-Weaker. If FD1 � FD2 and FD2 � FD1, then FD1 ≺ FD2.

Some interesting results concerning the reducibility:

• A reduction algorithm is assumed to be asynchronous, and, as a result, it does not
implement any function in terms of failure detection.

• A reduction algorithm often implements a distributed variable where the result is an
emulated failure detector.

• A reduction algorithm depends on the system model, i.e., the relation "weaker than" is
only valid on the same model.

Therefore, the ability to compare failure detectors motivate us to chase the weakest failure
detector to solve a given problem P. Formally, a failure detector FD is the weakest failure
detector to solve P if:

• There is an algorithm that solves P using FD .

• ∀ FD1’ such that there is an algorithm that solves P using FD′1 : FD1 � FD
′
1

In reference to the failure detector classes (see Figure 2.5), we can deduce the following:

• P can simulate any class of failure detectors. S and ^P can both simulate ^S but
cannot simulate P. ^S cannot simulate any of the other classes. In consequence, ^S is
the weakest class of failure detectors.

• ^S is the weakest failure detector for solving distributed consensus problem with a
majority of correct processes [CHT96].

The chase of the weakest failure detector for many problems has been investigated in [CHT96,
CT96, ATD99, DFG+04, JT08]

Section 2.5. Building Blocks for Fault-Tolerant Applications 31

2.4.5 Approaches to Implementing Failure Detectors

There are di�erent approaches to implement a failure detector. Each process monitors the
other processes in the system through a local failure detector module. In general, the most
commonly used ways to make such supervision are:

• Polled Input/Output. When a process p monitors another process q through polling
(also known as Query/Reply), p sends a query message to q and stays waiting for an
answer to this message from q. If p does not receive an answer after a given time, p will
suspect q, i.e., p will consider q as faulty. Di�erent failure detectors based on polling have
been proposed [LAF99, LFA00, LFA04].

• Heartbeat. In a failure detector, a heartbeat protocol is frequently used to monitor the
availability of processes [ACT97, ACT99]. Every supervised process q sends a heartbeat
message periodically to monitoring processes to notify them that it is still alive. If the
monitoring processes do not receive the expected message from q after a given time, then
they will suspect q. In both cases, the waiting time depends on the timing of the system
model. In a synchronous system, that time is known and can be estimated previously.
However, in a partially synchronous system, a mechanism of auto-adjust the time-out is
necessary.

• Communication Patterns. It is an essential issue when looking for e�ciency in
communication, given that the failure detector implementations can follow di�erent
communication patterns [LAF99, ADFT04, FLCR16]. As an example, an all-to-all com-
munication pattern presents advantages, such as responsiveness, but lacks e�ciency
regarding communication. A linear communication pattern is desirable to reach a higher
degree of e�ciency. In Chapter 4, we address the e�ect of the communication pattern on
communication e�ciency.

2.5 Building Blocks for Fault-Tolerant Applications

Today, most fault-tolerant distributed applications can be built in a modular way. The building
blocks have become essential for the protocols solving agreement problems, such as consensus
algorithms (see Figure 2.6).

As mentioned earlier, a failure detector allows encapsulating the synchrony assumptions.
Therefore, fault-tolerance distributed applications can be designed as if they were executed in an
asynchronous system. An alternative and elegant approach to circumvent the FLP impossibility
of consensus in asynchronous systems was proposed in [CT96].

We take the work of Cortiñas et al. [CFGA+12] as a reference since it shows how failure detec-
tors and consensus can be used in a modular way to build fault-tolerant distributed applications.
More precisely, the building blocks are used to solve Secure Multiparty Computation [Yao82]

32 Chapter 2. Background

Application

Consensus

Failure Detector

Transport

Network

Figure 2.6: Building blocks: Consensus and Failure Detectors

in the Byzantine failure model [LSP82]. In the aforementioned work, they augmented an
asynchronous model with an unreliable failure detector. In this way, failure detectors o�er a
modular approach that allows other applications (as consensus) to use them as a building block
(see Figure 2.6).

3 | A Performance Study of Consensus Algorithms

"If two people always agree on everything, I can assure that one of the two is thinking for both."
— Sigmund Freud3

In this chapter, we present a practical comparison of two well-known distributed consensus
algorithms, with the idea of extending and improving the work presented in [CFGA+12]. We
use the TrustedPals framework as a case study of applicability since it allows us to study the
problem of uniform consensus in a practical way. We have performed simulations to compare
two consensus algorithms under di�erent scenarios of failures, using modeling techniques
and simulation tools. The results show better behavior and convergence in the improvement,
which is based on a mechanism of leader election. We believe that the proposed approach will
facilitate the development of distributed applications in highly dynamic and heterogeneous
environments.

Outline. The chapter is organized as follows. In Section 3.1, we present the context of the
study. An overview of consensus algorithms is presented in Section 3.2. The applicability of
the consensus problem is shown in Section 3.3, through the case study. Section 3.4 presents
a practical comparison of both consensus algorithms. The experimental results and analysis
obtained are shown in Section 3.5. Finally, the summary of the chapter is given in Section 3.6.

3.1 The Study Context

Dependable distributed systems are systems where reliability and availability are critical
aspects, both concerning communication and computation. Distributed systems are prone
to failures, either due to errors in the network infrastructure or devices or caused by attacks
from an adversary. As a consequence, a part of the entire system can behave inconsistently
and unpredictably, which a�ects the reliability of the system. For this reason, providing a
high degree of fault-tolerance and security to the system is a crucial aspect of the design
and development of distributed applications in scenarios where a potentially large set of
interconnected devices cooperate to achieve an aim.

In asynchronous distributed systems prone to crash failures, many problems require all the
processes to reach agreement on a decision value. Therefore, providing dependability [Lap87,

3 Austrian scholar, psychiatrist (1856–1939).

33

34 Chapter 3. A Performance Study of Consensus Algorithms

Lap92] to fault-tolerant distributed systems requires solving agreement problems, such as the
consensus problem. Additionally, the consensus problem can be used as a building block to
solve some other problems related to distributed systems.

With the idea of extending and improving the work presented in [CFGA+12], we study and
present a new proposal of architecture. We investigate the performance of two well-known con-
sensus algorithms, using as a case study a smart card-based framework that allows implementing
security policies in distributed systems, known as TrustedPals framework [FFP+06, CFGA+12].

We use the TrustedPals framework as a case study of the applicability of a solution to the
uniform consensus problem. The distributed consensus algorithms of the study are Chandra-
Toueg [CT96] and Paxos [Lam98, PLL00, Lam01]. The architecture of the TrustedPals framework
proposed in [CFGA+12] uses the Chandra-Toueg consensus algorithm adapted to the omission
failure model.

In this chapter, we propose the use of the Paxos consensus algorithm as an alternative to
extend the applicability of the framework to the crash-recovery failure model as well. We
perform a comparison of the performance of both distributed consensus algorithms through
simulation under di�erent scenarios of failures. The results obtained show a better behavior and
performance of our proposal, which relies on an eventual leader election mechanism [FCL13,
FCL14b, CRA14].

3.2 AnOverviewof theConsideredConsensusAlgorithms

Protocols that solve agreement problems are essential building blocks for fault-tolerant dis-
tributed applications. Many consensus protocols have been proposed in recent decades. Con-
sensus protocols are the foundation for the state machine replication approach in distributed
computing, as suggested by Lamport [Lam78] and surveyed by Schneider [Sch90]. Nowadays,
Paxos is the most popular consensus protocol.

State machine replication is the method widely used to implement a fault-tolerant ser-
vice [Sch90, Lam96]. State machine replication aims to make a group of distributed processes
(also known as replicas) to execute the same commands in the appropriate order, regardless of
failures. The di�erent replicas may operate independently and asynchronously.

Two consensus algorithms are studied, Chandra-Toueg [CT96] and Paxos [Lam98, PLL00,
Lam01], since they have many characteristics in common, and therefore it is relatively easy to
de�ne a meaningful comparison. Both algorithms are described in more detail below.

3.2.1 Chandra-Toueg’s Algorithm

The Chandra–Toueg consensus algorithm was published in 1996 [CT96], it was proposed to
solve the consensus problem in asynchronous systems with crash failures. The Chandra–Toueg

Section 3.2. An Overview of the Considered Consensus Algorithms 35

consensus algorithm uses an unreliable failure detector, denominated Eventually Strong Failure
Detector. It is the weakest class allowing to solve Consensus [CHT96].

The Eventually Strong Failure Detector, also known as^S, satis�es the following completeness
and accuracy properties (de�ned in [CT96]):

(i) Strong Completeness. Eventually, every process that crashes is permanently suspected by
every correct process, and

(ii) Eventual Weak Accuracy. There is a time after which some correct process is never
suspected by any correct process.

The algorithm requires reliable communication and tolerates crash failures. Moreover, it
assumes that the number of faulty processes is less than n/2, where n is the total number of
processes. Therefore, the Chandra–Toueg consensus algorithm requires a majority of correct
processes in the system.

A rotating coordinator mechanism allows to Chandra–Toueg consensus algorithm to ensure
their termination (liveness property). This means that some rounds are under the control of the
same process, each round being coordinated by a particular process. The identity of the process
that coordinates a speci�c round is predetermined from the value of a simple mathematical
equation.

3.2.2 Lamport’s Paxos Algorithm

Paxos algorithm was proposed by Lamport [Lam98, PLL00, Lam01]. Since then, Paxos has be-
come one of the most studied and used consensus protocols, and many variants and adaptations
have been proposed, e.g., Disk-Paxos, Cheap-Paxos, Fast-Paxos, Byzantine-Paxos . . .). Paxos
provides �exibility, allows the detection of failures in the crash-recovery failure model, and
facilitates the development of distributed applications in highly dynamic and heterogeneous
environments.

A leader election mechanism allows Paxos to ensure termination (liveness property). Interest-
ingly, in some scenarios, Paxos cannot guarantee progress (liveness property), but it always
preserves the safety property of consensus, despite asynchrony and process failures. Paxos
guarantees progress when the leader is unique and can communicate with a majority of correct
processes. This could imply additional requirements, e.g., a majority of correct processes in the
system (see Chapter 4).

Interestingly, the leader election mechanism required by Paxos can be provided by a well-
known failure detector proposed by Chandra, Hadzilacos and Toueg, Omega (Ω) [CHT96]. This
failure detector (Ω) provides an eventual agreement on a common leader among all non-faulty
processes in a system. It is noteworthy that Ω is the weakest failure detector for solving
consensus in crash scenarios. Observe that Ω can be trivially obtained from ^P, e.g., by
choosing as leader the non-suspected process with the lowest identi�er. Although initially
proposed for crash-prone systems, more recently, Omega has been studied in crash-recovery
systems as well [MLJ09].

36 Chapter 3. A Performance Study of Consensus Algorithms

3.2.2.1 Variants of Paxos Algorithms

There are many variants of the classic Paxos distributed consensus algorithm. These dif-
ferent options focus on making the classic Paxos algorithm more e�cient in more di�cult
environments. In this section, we brie�y introduce some of them.

The Disk Paxos [GL00] algorithm implements a reliable distributed system across a network
of processors and disks. It uses a consensus algorithm to agree on the transitions of a replicated
state machine, where progress can be guaranteed as long as most disks are available. Note that
the algorithm maintains consistency in the presence of arbitrary non-byzantine faults.

The Cheap Paxos [LM04] algorithm can guarantee a liveness property in the system, only
under the additional assumption (a set of f + 1 non-faulty processors). Hence, substitute
processors (f) are only used to handle the failed main process , where f is the tolerance number
to concurrent faults. These secondary processors take part in the recon�guration of the system
to eliminate the processor failure, after which they can remain inactive until another main
processor fails.

The Fast Paxos [Lam06a] algorithm allows agreement to occur in two message delays, provided
that there is no collision, and even with a collision agreement can be guaranteed in three message
delays. Besides, it can achieve any desired degree of fault-tolerance using as few processes as
possible.

The Fast Byzantine (FaB) [MA06] algorithm was the �rst Byzantine Paxos protocol. It only
requires two communication steps to reach consensus in the common case. Con�rming a
conjecture by Lamport [Lam06b], latency reduction implies an additional price: FaB requires
5f + 1 acceptors to tolerate f Byzantine acceptors, instead of the 3f + 1 needed by previous
protocols.

The Vertical Paxos [LMZ09] algorithm allows recon�guration while the replicated state ma-
chine is active and decides the commands. Vertical Paxos uses a secondary "master" to manage
recon�guration operations, which determine the set of acceptors and the leader for every
con�guration.

The Egalitarian Paxos (EPaxos) [MAK13] algorithm is proposed to solve the single leader
bottleneck. At a�ord to every replica receive values from the client, and these values can be
with a message delay, only if there is no dependence between commands. Further, it allows
distributing the load to all replicas evenly.

The Raft [OO14] algorithm is designed to be easy to understand. It is equivalent to Paxos in
fault-tolerance and performance. The main di�erence is that the Raft algorithm decomposes into
relatively independent sub-problems, and it is designed in a practical way to build distributed
applications.

Section 3.2. An Overview of the Considered Consensus Algorithms 37

3.2.3 Some Points of Comparison between both Algorithms

We summarize some common points of Chandra–Toueg and Paxos consensus algorithms.
Both algorithms operate in an asynchronous system model with classes of equivalent failure
detectors. As an additional requirement for correctness, they require most of their processes to
be correct. Also, they have a similar structure in their execution.

3.2.3.1 Similarities in Execution

Both consensus algorithms (Chandra-Toueg and Paxos) use a similar structure in their execution,
i.e., a sequence of rounds in which each can be represented through four phases, as described
below:

• Phase 1. In the Chandra-Toueg algorithm, all processes send their estimated value to
the coordinator process. In the case of the Paxos algorithm, the leader process sends a
preparation message to the other processes.

• Phase 2. The coordinator (Chandra-Toueg) or leader (Paxos) process waits for messages
from a majority of processes. Note that some messages might not arrive in case of
failure (crash, omission, or crash-recovery). Further, a process can reject the proposal if it
suspects that the coordinator process has failed (Chandra-Toueg) or if an earlier proposal
has been accepted for the same ballot number (Paxos).

• Phase 3. When the coordinator (Chandra-Toueg) or leader (Paxos) process receives a
majority of positive responses, an acceptance message is issued with the value to agree
on, which is based on the responses in the previous phase. A process replies with an
acceptance message, only in case it has not suspected that the coordinator has failed
(Chandra-Toueg) or an earlier proposal has not been accepted for the same ballot number
(Paxos). Otherwise, it rejects the proposal.

• Phase 4. If a majority of processes accept the proposal, then the decision reached is
transmitted to all processes. Therefore, the coordinator (Chandra-Toueg) or leader (Paxos)
process sends a message with the value decided to all processes in the system.

Each round has a coordinator/leader process that tries to impose a decision on all processes,
and if this fails, a new round is started with a new coordinator/leader. Observe that both
algorithms can execute an indeterminate sequence of rounds, and only �nish when agreement
is reached.

38 Chapter 3. A Performance Study of Consensus Algorithms

3.2.4 Both Algorithms Solve Fault-Tolerant Agreement

Both protocols solve agreement problems, and they are essential in the modular construc-
tion (as building blocks) of fault-tolerant distributed systems. The consensus algorithm of
Chandra-Toueg has some similarities with Paxos. In the Chandra-Toueg algorithm, it also uses
leader-driven rounds (coordinator), but rounds are performed sequentially, while in the Paxos
algorithm, a leader can start a new round at any time allowing various leaders to coexist.

They are two well-known asynchronous consensus algorithms. As mentioned earlier, a leading
process attempts to reach an agreement, and if it fails, another leader is elected, and retries
reach the agreement. Both algorithms structure their executions into rounds. In each round, a
process (denoted as a coordinator in Chandra-Toueg and as a leader in Paxos) tries to impose a
decision. The algorithms di�er in how they choose the coordinator/leader process for the next
round. In Chandra-Toueg, the coordinator role rotates among all processes, whereas in Paxos,
the leader is directly selected from an uncoordinated manner (wherein a process may be the
leader in consecutive rounds).

Note that the Chandra-Toueg algorithm considers a distributed setting that does not allow
process restarts (crash and recovery) and faulty communication links. However, it can be
modi�ed to work with the loss of messages. The Paxos algorithm tolerates process restarts
(crash and recovery) and faulty communication links, making Paxos more suitable in the use of
more practical applications. Additionally, they have a high capacity to tolerate failures, being
able to tolerate up to n

2 − 1 concurrent failures in a system with n processes.

The importance of these consensus algorithms lies in their robustness, both o�ering the
ability to preserve the safety property (i.e., always acting according to its speci�cation) de-
spite asynchrony in the system. Both algorithms are considered indulgent consensus algo-
rithms [Gue00, GR04], i.e., they are indulgent toward their failure detector in the sense that
they never violate the safety property of consensus, no matter how the underlying failure
detector behaves.

As another plus point, Paxos distinguishes three roles among the entities that participate in
the consensus, namely proposer, acceptor, and learner, providing the system with a more �ne-
grained role assignment compared to the Chandra-Toueg algorithm. Furthermore, as previously
mentioned, the Paxos algorithm can deal with crashed and crash-recovered processes as well
as with message omissions in a more natural way.

3.3 Case Study: Improving the TrustedPals Framework

We seek to extend and improve the work presented in [CFGA+12]. Thus, although the proposed
solution is suitable in the security context, it presents some drawbacks that should be improved
in order to be applied in weaker scenarios. For this reason, we use the TrustedPals framework
as a case study, since it allows us to study the distributed consensus problem and propose
improvements.

Section 3.3. Case Study: Improving the TrustedPals Framework 39

3.3.1 Solving Yao’s Millionaire’s Problem

The Yao’s Millionaire’s problem is used as a generic de�nition of the Secure Multiparty Compu-
tation problem [Yao82]. A solution to this general security problem was presented in [FFP+06],
namely TrustedPals, in which Secure Multiparty Computation is implemented by using smart
cards.

3.3.1.1 Secure Multiparty Computation Problem

The Yao’s Millionaire’s problem was introduced by Andrew Yao [Yao82], a computer scientist
and computational theorist. He presented this problem through the following sentence:

"[. . .] two millionaires, Alice and Bob, who are interested in knowing which of them is richer
without revealing their actual wealth."

The di�culty of this problem lies in developing a joint computation and communication
protocol to be executed among multiple distrusted network nodes without disclosing any
private information. Such a protocol is called Secure Multiparty Computation [Yao82], and it
has been an active research area in cryptography for more than thirty years.

The Secure Multiparty Computation (SMC) is a sub�eld of cryptography with the goal to
create methods for parties to compute a function over their inputs jointly, and keeping those
inputs private. Given that encryption alone can not provide adequate protection to implement
applications that satisfy the above problem. Because the encrypted data must be decrypted in the
receiver for processing, and the raw data will be vulnerable. Then, Trusted Computing [And03]
can solve that problem by running the software in a secure memory space of the client machine
equipped with a cryptographic coprocessor. Roughly speaking, solving SMC among processes
is achieved by having security modules jointly simulate a Trusted Third Party [Küp13].

In this way, SMC has transformed a very general security problem, i.e., it can be used to solve
various real-life issues such as distributed voting, private bidding, and online auctions, sharing
of signature or decryption functions. Besides, SMC is increasingly used in diverse �elds, from
data mining to computer vision. Unfortunately, solving SMC is very expensive in terms of
communication (number of messages), resilience to failure (amount of redundancy), and time
(number of synchronous rounds).

3.3.1.2 TrustedPals Framework

The TrustedPals framework [FFP+06, CFGA+12] (indistinctly, we will call it TrustedPals) is a
smart card-based implementation that allows reaching more e�cient solutions to the SMC
problem. Initially, TrustedPals [FFP+06] assumed a synchronous network setting and allowed
to reduce SMC to the problem of fault-tolerant consensus among smart cards. Conceptually,

40 Chapter 3. A Performance Study of Consensus Algorithms

TrustedPals considers a distributed system in which processes are locally equipped with tamper-
proof security modules. In practice, processes are implemented as a Java desktop application,
and security modules are realized using Java Card Technology [Che00] enabled smart cards.

Cortiñas et al. [CFGA+12] show how to reduce the SMC problem to the consensus problem
and how to solve the latter in a Byzantine failure model by using an Eventually Perfect Failure
Detector (^P) adapted to omission environments, and all into TrustedPals. More precisely, it
makes use of a tamper-proof smart card-based secure platform (presented in [FFP+06]) to solve
the consensus problem in a partially synchronous system prone to Byzantine failures, in which
the malicious behavior can be reduced to a more benign model of omission failures. The solution
of Cortiñas et al. [CFGA+12] is based on a uniform consensus and all-to-all communication
pattern, which helps to preserve security, but it is rather ine�cient in terms of the number
of exchanged messages. For such reason, Soraluze et al. [SCL+11] propose a more e�cient
solution that tries to avoid redundant communication.

We explore how to make TrustedPals applicable in environments with less synchrony and
show how it can be used to solve asynchronous SMC. Our study is based on the work realized
by Cortiñas et al. [CFGA+12], which we denote "current architecture" of TrustedPals. In the
current architecture of TrustedPals, the Chandra-Toueg consensus algorithm is combined with
a ^Pom failure detector class. Note that ^Pom is a ^P failure detector class from [CT96]
adapted to the general omission failure model.

Another point to note, the solution in [CFGA+12] tolerates some message omissions and
process crashes. Nevertheless, that tolerance is limited mainly due to the use of the consensus
algorithm proposed by Chandra and Toueg [CT96] which, besides requiring a majority of
correct processes, it is rather sensitive to message omissions. Initially, the algorithm was
designed assuming reliable communication.

3.3.2 A Proposal for Improving TrustedPals

In search of an improvement of the approach presented in Cortiñas et al. [CFGA+12], we present
how to weaken the assumptions of the system to cope with more dynamic environments, and
thus, to extend the applicability of TrustedPals to the crash–recovery failure model. Additionally,
we are looking for more e�cient solutions in terms of latency and quantity of messages
exchanged.

As an initial step, we propose replacing the Chandra-Toueg consensus algorithm used in [CFGA+12]
by the Paxos consensus algorithm augmented with an Omega failure detector class (Ω), in
order to achieve less restrictive solutions in omission environments such as crash-recovery
scenarios.

In the following questions, we will explore what hypothesis we want to demonstrate:

• What are we looking for? A practical comparison of two well-known distributed con-
sensus algorithms, with the purpose of extending and improving the work presented
in [CFGA+12]. Consequently, the study of e�cient solutions to solve the consensus
problem in partially synchronous distributed systems under di�erent failure models.

Section 3.3. Case Study: Improving the TrustedPals Framework 41

• How? Weakening the assumptions of the model system to deal with more dynamic
environments and, therefore, extend the applicability of TrustedPals to crash-recovery.

• Why? We think that using the Paxos distributed consensus algorithm, enriched with
an Omega failure detector in a crash-recovery failure model, improves the TrustedPals
framework substantially.

3.3.3 System Model and Assumptions

We consider a distributed system composed of a �nite set of processes, such processes com-
municate only through the exchange of messages. Additionally, we do not consider the use of
shared memory.

The communication graph is fully connected, i.e., there is a bidirectional communication
link between every pair of processes in the system. Communication links are reliable, i.e., no
message from a non-faulty process is dropped, duplicated, or modi�ed, and the links do not
generate any message.

We assume a majority of correct processes in the system, and this is a requirement for both
consensus algorithms used in this study.

Regarding timing assumptions, we consider a partial synchrony model proposed in [CT96],
which can be summarized as:

• We de�ne as: Time =⇒ ∆ (message delay) + ϕ (processing time)

- ∆, upper bound on message delay (unknown)

- ϕ, upper bound on processing time (unknown)

• We assume that: there exists a Global Stabilization Time (GST), such as:

- Before GST, the system presents an asynchronous behavior, i.e., bounds do not hold
(∆ + ϕ)

- After GST, the system presents a synchronous behavior, i.e., bounds hold (∆ + ϕ)

- GST is unknown

Regarding the failure models, we consider several failure types that could su�er a process
through the use of a gradual approach. Initially, we only consider the general omission failure
model, in which processes may crash by prematurely halting, or su�er omissions of messages
either by sending (send omission) or receiving (receive omission). The general omission failure
model was proposed by Hadzilacos [HT93] and later generalized by Perry and Toueg [PT86].
Additionally, we also consider the crash-recovery failure model in which a process may fail
and later recover [MLJ09].

Broadly speaking and except for the crash-recovery failure model, we consider the same
system model as was presented in the work of Cortiñas et al. [CFGA+12].

42 Chapter 3. A Performance Study of Consensus Algorithms

3.3.4 Architecture of TrustedPals

In Figure 3.1 (left side), we present the current architecture of TrustedPals, which is composed
of the following three modules:

• The top module presents the user application, SMC in [CFGA+12], which makes use of
the consensus service at the lower level.

• The core module, namely TrustedPals, provides the consensus service. It is composed of
a consensus algorithm adapted from the original algorithm presented in [CT96], com-
bined with an Eventually Perfect (^P) failure detector adapted to the general omission
failure model (^Pom). This failure detector provides information about well-connected
processes, i.e., processes that can actively participate in the consensus. Together with
this module, there is a smart card-based secure platform also named TrustedPals, which
allows reducing Byzantine failures to more benign process crashes or message omissions.

• Finally, the bottom module represents the distributed system in which the application
has to be executed.

Although the proposed solution is suitable in the security context presented of [CFGA+12],
it presents some drawbacks that could be improved in order to be applied in other scenarios.
For example, it does not consider processes that crash and later recover. Also, the consensus
algorithm requires a high degree of reliability on communication, i.e., non-omissive processes
and reliable channels.

3.3.5 Obtaining ΩOm From a Simple Reduction of ^Pom

As introduced in 2.4, a failure detector encapsulates the timing assumptions for a speci�c
system. It can be de�ned as an abstract module that provides information about the current
state of processes in a distributed system, and the information obtained is not necessarily
accurate.

By de�nition, an Eventually Perfect failure detector (^P) satis�es the following properties
(see Chapter 2.4):

• Strong Completeness: There is a time after which every correct process permanently
suspects every failed process.

• Eventual Strong Accuracy: There is a time after which every correct process is never
suspected by any correct process.

Section 3.3. Case Study: Improving the TrustedPals Framework 43

Secure Multi-Party Computation (SMC)

TrustedPals
(Current)

Distributed System

Consensus Algorithm

(Adaptation)

Chandra-Toueg

Failure Detector

TrustedPals
(Proposed)

Consensus Algorithm

(Adaptation)

Paxos

Failure Detector
�Pom Ωom

Figure 3.1: Current and Proposed Architecture for TrustedPals

Can we obtain an eventual leader election mechanism fault-tolerant in the omission failure
model, from an eventually perfect failure detector?

As an initial approximation, we implement the ΩOm failure detector by using the ^Pom failure
detector presented in [CFGA+12]. Then, it requires adapting the de�nition of ΩOm to the
connectedness properties presented in [CFGA+12]. This way, since in Paxos, the leader must
be able to send and receive messages from a majority of processes, our speci�cation for the
omission model is "Eventually every in-connected process trusts forever the same well-connected
process (i.e., a process that is both in-connected and out-connected)". Remember that we assumed
a majority of correct (i.e., well-connected) processes in the system.

Following the previous de�nition, we transform ^Pom into ΩOm by electing as leader the pro-
cess with the lowest identi�er among the processes considered in-connected and out-connected
by ^Pom. This requires a small adaptation of the ^Pom algorithm in order to calculate the set
of in-connected and out-connected processes, rather than just the set of out-connected processes.

This initial approximation to the implementation of ΩOm presents two advantages:

(i) As in Cortiñas et al. [CFGA+12], the use of a periodical all-to-all communication pattern,
inherent to the implementation of ^Pom, allows tolerating malicious attacks.

(ii) From a practical point of view, it allows making a fair comparison of the two consensus
algorithms, since the cost of implementation of the failure detector module in both cases
is the same.

44 Chapter 3. A Performance Study of Consensus Algorithms

3.3.6 A Novel Design of Architecture for TrustedPals

In Figure 3.1 (right side), we present a novel proposal for the architecture of the study. Note
that it keeps the modular approach of the previous one, but with two main di�erences:

• The Chandra-Toueg consensus algorithm is replaced by the Paxos algorithm [Lam98,
PLL00, Lam01].

• The failure detector considered now is an adaptation of [CHT96] for the general omission
failure model, denoted by ΩOm.

The combination of those two new elements in the architecture provides the system with
several interesting features:

(i) On the one side, the Paxos algorithm allows reaching consensus tolerating a high degree
of omissive behavior (loss of messages at processes or communication links). Also, the
Paxos algorithm allows coping with processes that crash and later recover.

(ii) On the other hand, the Omega failure detector tolerant of omissive failures, ΩOm , provides
a Paxos algorithm with the eventually stable leader required to guarantee termination.

The proposed architecture requires an Ω failure detector class for the general omission and
crash-recovery failure models, class which we denote ΩOm for the case of omission failure (that
we presented in the previous section).

3.4 APractical Comparison of bothConsensusAlgorithms

When studying distributed consensus algorithms, it is essential to consider that the protocols
that solve agreement problems are used as building blocks of fault-tolerant distributed applica-
tions. In this section, we show the results of a practical comparison of both architectures for
TrustedPals (see Figure 3.1).

In the literature, many studies are concentrating on the analysis in order to prove the correct-
ness of consensus algorithms. However, there are very few studies focused on the di�erent
failure models and how they a�ect the performance of consensus.

We have performed simulations to compare these two consensus algorithms under di�erent
failure scenarios. Besides crash failures, we also consider scenarios with message omissions
and where processes also may su�er crash-recovery failures. Our results reveal that Paxos is
more e�cient than Chandra-Toueg’s consensus algorithm if the �rst process that coordinates
or leads a round, su�ers a failure, while both algorithms work similarly when there are no
failures.

Section 3.4. A Practical Comparison of both Consensus Algorithms 45

3.4.1 Related Studies

Many protocols have been published, but little has been done to analyze their performance,
especially the performance of their fault-tolerance mechanisms. Besides, few studies use metrics
to analyze their performance, such as the time complexity (number of communication steps) or
the message complexity (number of messages exchanged).

Among the latter are found the works of Hayashibara et al. [HUSK02] and Urban et al. [UHSK04].
Both studies present a comparison in terms of latency and throughput of the classical (i.e.,
non-adapted) Chandra-Toueg and Paxos, by simulating them in scenarios without failures
and with just crash failures (i.e., without regard to omissions and crash-recovery failures).
For its part, Coccoli, Urban and Bondavalli [CUB02] analyze the latency of a consensus algo-
rithm augmented with a failure detector simulated in a stochastic network (by conducting
experiments on a cluster). They consider performance metrics related to the quality of service
(QoS) of the failure detector based on the previous work of Chen, Toueg and Aguilera [CTA02].
Sergent, Defago and Schiper [SDS01] study the impact of the failure detection mechanism
on the performance of the consensus algorithm, again in crash scenarios. Lastly, Borran et
al. [BHSS12] compare analytically di�erent round-based consensus algorithms, in a partially
synchronous system that alternates between synchronous and asynchronous periods.

3.4.2 Simulations

We implement our approaches by using JBotSim [Cas15]. Using this simulation software, we
have implemented adaptations of the consensus algorithms (Chandra-Toueg and Paxos consen-
sus algorithms). To obtain the minimum distortion in the simulation of these algorithms, we
developed a failure detector through the reduction method (from ^Pom to ΩOm). Additionally,
we implement a method to measure the performance of each algorithm under various failure
scenarios.

3.4.2.1 Simulation Tool: The JBotSim Library

JBotSim is a Java library for the simulation of distributed algorithms, with a style of program-
ming event-driven based, and its main advantage versus other alternatives is its abstraction
regarding the characteristics of the underlying network, thereby achieving a great simplicity
in the interpretation of results (Figure 3.2).

3.4.2.2 Performance Measures and Test Scenarios

The main objective of simulations has been analyzing and comparing the performance of both
distributed consensus algorithms in a quantitative manner. For this purpose, we have de�ned
two metrics:

46 Chapter 3. A Performance Study of Consensus Algorithms

Figure 3.2: The JBotSim Library

• Early Latency. We de�ne latency as the time elapsed between the beginning of the
algorithm and the instant at which the �rst process decides. This de�nition of latency, also
known as early latency, is interesting as a performance metric from the point of view of
applications relying on TrustedPals, e.g., fault-tolerant distributed services implemented
by active replication, which usually wait until the �rst reply is returned.

• Message Complexity. The second metric, complexity, is also known as message complexity;
it is de�ned as the number of messages exchanged during the execution of the consensus
algorithm. Message complexity is of interest for the deployment of TrustedPals in a
concrete system.

On the other hand, we contemplate the following four scenarios in the conducted simulations,
each one depending on the type of failure that su�ers the process that coordinates or leads one
round in the consensus:

• Failure-free. It is a scenario without failures in the system processes.

• Crash. A scenario where the process that coordinates or leads the round su�ers a crash
failure and never recovers.

Section 3.5. Experimental Results 47

• Omission. A scenario where the process that coordinates or leads the round su�ers
omissions of messages (send/receive).

• Crash-recovery. A scenario where the process that coordinates or leads the round, su�ers
a crash failure and after a period of (unknown) time, recovers.

It should be noted that we measured the latency and complexity after the system reaches its
steady-state, i.e., the failure detector module into each process permanently suspects all faulty
processes, and no correct process is wrongly suspected. In the case of ΩOm, that every failure
detector module has chosen as leader the same correct process, i.e., all correct processes trust
the same correct process as the leader.

3.5 Experimental Results

We analyzed the net e�ects on the improvement and the overhead of the average latency
through the practical comparison in several types of failues. Note that we will refer to Chandra-
Toueg consensus algorithm, as Chandra-Toueg and/or CT in tables and �gures. For its part, the
Paxos consensus algorithm hereafter will be referred to as Paxos.

We have conducted simulations consisting of several sequences of 100 consensus executions
for di�erent numbers of processes and scenarios of failure. Another important observation for
this study is that the overhead of the network has not been considered.

3.5.1 Impact of Scalability on Average Latency

Figures 3.3a and 3.3b show the scalability analysis of the average latency for a number of
processes ranging from 3 to 24. Observe that the algorithms present good scalability, both for
the failure-free and crash scenarios. It is worth mention that the omission and crash-recovery
scenarios not shown (in the previous �gures) have similar scalability. Therefore, we consider
adequate the number of 12 processes for the rest of the simulations and results that are exposed
in this section.

3.5.2 Understanding the Behavior of Average Latency

Table 3.1 and Figures 3.4a, 3.4b, 3.4c, and 3.4d present the behavior of the average latency for
the consensus algorithms described above (CT and Paxos).

Table 3.1 shows the average latency and improvement of Paxos versus Chandra-Toueg. We
can see that Paxos has a better performance for the crash (19.75%), omission (29.19%) and crash-
recovery (29.13%) scenarios, and a slightly worse performance when there is no failure (-4.08%).
Observe that the average latency of Paxos is almost steady in a range of 12 ms simulation

48 Chapter 3. A Performance Study of Consensus Algorithms

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 3 6 9 12 18 24

Av
er

ag
e

la
te

nc
y

Nodes

CT (Failure-free)
Paxos (Failure-free)

(a) Failure-free scenario

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 3 6 9 12 18 24

Av
er

ag
e

la
te

nc
y

Nodes

CT (p1 Crash)
Paxos (p1 Crash)

(b) Crash scenario

Figure 3.3: Impact of Scalability on Average Latency

Section 3.5. Experimental Results 49

Table 3.1: Improvement of Paxos+ΩOm vs CT+^Pom

Scenario CT+^Pom Paxos+ΩOm Improvement
Failure-free 11.02 11.47 -4.08%

Crash 14.53 11.66 19.75%
Omission 16.51 11.69 29.19%

Crash-recovery 16.58 11.75 29.13%

time units approximately in the four scenarios. On the other side, the behavior of the average
latency for Chandra-Toueg grows from 11.02 ms in the failure-free scenario to 16.58 ms in the
crash-recovery scenario. It is due to the fact that Paxos handles more e�ciently the leader
election mechanism, unlike Chandra-Toueg wherein each new execution of the algorithm, the
failed process is tried as the coordinator of the �rst round.

Furthermore, we can see in Figures 3.4c and 3.4d that the omission and crash-recovery
scenarios show similar behavior for both algorithms. It is because in the ^Pom failure detector,
as well as in ΩOm, processes su�ering omissions are discarded to be the coordinator (or leader).
Moreover, a crashed process that later recovers can be considered as a process that su�ers
omissions so that it will be treated as an omissive process by the failure detectors (^Pom and
ΩOm). As a consequence, both scenarios present a similar average latency.

Additionally, we analyzed the overhead of each algorithm regarding the failure-free scenario.
The results are presented in Table 3.2 and Table 3.3. Observe that the results from the current
architecture (Chandra-Toueg and ^Pom) show a performance overhead of 31.85%, 49.82%, and
50.45% for the crash, omission, and crash-recovery scenarios compared to the failure-free
scenario. On the other hand, results from the architecture based on Paxos exhibit a slight
performance degradation compared with the failure-free case. The reason is that Chandra-
Toueg relies on the rotating coordinator paradigm, while Paxos relies on a (more e�cient upon
failures) eventual leader election mechanism.

Table 3.2: Overhead of CT+^Pom

Scenario Latency Overhead
Failure-free 11.02 -

Crash 14.53 31.85%
Omission 16.51 49.82%

Crash-recovery 16.58 50.45%

Table 3.3: Overhead of Paxos+ΩOm

Scenario Latency Overhead
Failure-free 11.47 -

Crash 11.66 1.66%
Omission 11.69 1.92%

Crash-recovery 11.75 2.44%

50 Chapter 3. A Performance Study of Consensus Algorithms

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100

Av
er

ag
e

la
te

nc
y

Executions consensus (sequences)

CT (Failure-free)
Paxos (Failure-free)

(a) Failure-free scenario.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100

Av
er

ag
e

la
te

nc
y

Executions consensus (sequences)

CT (p1 Crash)
Paxos (p1 Crash)

(b) Crash scenario.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100

Av
er

ag
e

la
te

nc
y

Executions consensus (sequences)

CT (p1 Omission)
Paxos (p1 Omission)

(c) Omission scenario.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100

Av
er

ag
e

la
te

nc
y

Executions consensus (sequences)

CT (p1 Crash-recovery)
Paxos (p1 Crash-recovery)

(d) Crash-recovery scenario.

Figure 3.4: Average Latency in Di�erent Scenarios

Section 3.5. Experimental Results 51

With respect to the complexity, Table 3.4 shows the complexity and improvement of Paxos
versus Chandra-Toueg. Once more, we can see that Paxos has better performance for the
crash (23.5% of improvement), omission (36.5% of improvement) and crash-recovery (36.5.5%
of improvement) scenarios. However, it presents a slightly worse performance when there is
no failure (-14.9%). On the other hand, the current architecture (Chandra-Toueg and ^Pom)
shows a performance overhead of 45%, 81% and 81% for the crash, omission and crash-recovery
scenarios compared to the failure-free scenario, quite the contrary with the presented in the
proposed architecture based on Paxos+ΩOm, with similar cost in the four scenarios.

Table 3.4: Complexity Improvement of Paxos+ΩOm vs CT+^Pom

Scenario CT+^Pom Paxos+ΩOm Improvement
Failure-free 47 55 -14.9%

Crash 67 (+45%) 52 (-3%) 23.5%
Omission 85 (+81%) 54 (0%) 36.5%

Crash-recovery 85 (+81%) 54 (0%) 36.5%

3.5.3 System under Multiple Simultaneous Failures

We have performed a comparison for a di�erent number of processes su�ering failures simulta-
neously. Figure 3.5 shows the behavior of the average latency in the crash scenario for 1, 2,
and 3 failures, respectively.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 1 2 3

Av
er

ag
e

la
te

nc
y

Failures (nodes)

CT (Crash)
Paxos (Crash)

Figure 3.5: Comparison for Di�erent Numbers of Failures (Crash scenario)

Table 3.5 presents the overhead in each algorithm regarding the failure-free scenario. Besides,
we can compare the overhead su�ered between algorithms. The e�ect of several process failures

52 Chapter 3. A Performance Study of Consensus Algorithms

Table 3.5: Overhead of Paxos+ΩOm vs CT+^Pom (multiples failures)

Scenario CT+^Pom Paxos+ΩOm

p1 crash 31.85% 1.66%
p1 and p2 crash 71.05% 5.41%

p1, p2 and p3 crash 110.80% 8.20%

is very harmful to Chandra-Toueg and directly a�ects its average latency (overhead of 110.80%
when the �rst three processes crash), due to the increased number of rounds required to reach
consensus, i.e., when the �rst three processes have failed (p1, p2, and p3 crash) it is necessary to
execute at least four rounds.

On the other hand, when a new consensus with a stable leader starts in Paxos, then it always
succeeds in the �rst round, and hence the overhead of Paxos will not be substantially a�ected
(overhead of 8.20% when the �rst three processes crash).

To �nish, we reinforce the idea: the architecture based on Paxos exhibits slight performance
degradation compared with the architecture based on Chandra-Toueg. The reason is that the
eventual leader mechanism that uses Paxos is more e�cient on di�erent scenarios of failures, in
comparison with the rotating coordinator mechanism used in Chandra-Toueg (see Figure 3.6).

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 6 9 12 18 24 26

Av
er

ag
e

la
te

nc
y

Nodes

CT (Failure-free)

CT (p1 Crash)

CT (p1,p2 Crash)

CT (p1,p2,p3 Crash)

CT (p1 Omission)

CT (p1,p2 Omission)

CT (p1,p2,p3 Omission)

CT (p1 Crash Recovery)

CT (p1,p2 Crash Recovery)

CT (p1,p2,p3 Crash Recovery)

Paxos (Failure-free)

Paxos (p1 Crash)

Paxos (p1,p2 Crash)

Paxos (p1,p2,p3 Crash)

Paxos (p1 omission)

Paxos (p1,p2 omission)

Paxos (p1,p2,p3 omission)

Paxos (p1 Crash Recovery)

Paxos (p1,p2 Crash Recovery)

Paxos (p1,p2,p3 Crash Recovery)

Figure 3.6: Di�erent Failures Scenarios

Section 3.6. Chapter Summary 53

3.6 Chapter Summary

In this chapter, we have analyzed two well-known distributed consensus algorithms: Chandra-
Toueg and Paxos. By using the TrustedPals framework as a case of study, we presented a
modular manner of building distributed consensus algorithms in the partial synchrony model.

We have realized a practical performance study of these two indulgent consensus algo-
rithms [Gue00, GR04] upon crash-recovery and message omission failures. Both algorithms
execute in rounds, and the main di�erence among them is the way each round is coordinated.
Chandra-Toueg is based on the rotating coordinator paradigm, while Paxos is based on a leader
election mechanism.

As experimental results, we showed the performance of both algorithms under di�erent
scenarios of failures. Given the results obtained, we believe that Paxos exhibits signi�cant
advantages compared to Chandra-Toueg in dynamic and highly fault-tolerance scenarios.

Therefore, we can summarise:

• We have presented a performance study through computational simulation tools of
these two consensus algorithms under di�erent failure scenarios. Note that both (indul-
gent) algorithms are augmented with an unreliable failure detector (^Pom and ΩOm, for
Chandra-Toueg and Paxos, respectively).

• We have identi�ed and measured two key performance metrics for this study, early
latency which re�ects the time that the algorithm needs to reach a common decision, and
on the other hand, message complexity that is the number of messages required to reach
consensus. We conducted several executions of both algorithms in di�erent scenarios,
and we analyzed the average early latency and average message complexity.

• Our results show that Paxos is more e�cient than Chandra-Toueg if the �rst process
that coordinates or leads one round su�ers a failure (crash, omission, or crash-recovery),
given that Paxos handles the eventual leader election mechanism e�ciently. Also, we
can indicate that the results corresponding to the failure-free and crash scenarios are
qualitatively similar to those of the work by Hayashibara et al. [HUSK02] and Urban
et al. [UHSK04] (in those works, the omission and crash-recovery scenarios were not
considered).

54 Chapter 3. A Performance Study of Consensus Algorithms

4 | Distributed Eventual Leader Election Service

"We must use time wisely and forever realize that the time is always ripe to do right."
— Nelson Rolihlahla Mandela4

An eventual leader service is essential to design and implement reliable applications on
top of an asynchronous distributed system prone to failures. A manner to build an eventual
leader service is by solving the leader election problem. It allows solving several fault-tolerant
agreement problems such as the consensus problem. The purpose of the leader election is to
choose a single correct process that will coordinate the actions of the distributed system.
The interest in studying this problem lies in the di�culty of resolving it in an asynchronous
environment, addressing di�erent types of failures.

Outline. The Chapter is organized as follows. Leader election in distributed systems is
presented in Section 4.1. Section 4.2 describes the system model and considered assumptions.
The eventual leader election problem is presented in Section 4.3; in particular, the speci�cation
of an eventual leader election service. Section 4.4 describes the pitfalls of the system to be
considered. In Section 4.5, three novel approaches are proposed which implement a distributed
eventual leader service (Basic 4.5.1, Communication-E�cient 4.5.2, and Indirect-Leader Trusting
Mechanism 4.5.3). Finally, Section 4.6 summarizes the chapter.

4.1 Leader Election in Distributed Systems

In asynchronous distributed systems, it is complicated to evaluate if one of the processes
involved in a calculation operates correctly or has failed. Unreliable failure detectors were
proposed to deal with this problem. In essence, an unreliable failure detector [CT96] in an
abstract module which encapsulates the timing assumptions necessary to assess the operating
status of a process. A particular type of failure detector is Omega [CHT96], which outputs a
(common) single process that has not failed, allowing the implementation of a leader election
functionality.

4South African president, leading �gure in anti-apartheid movement (1918–2013).

55

56 Chapter 4. Distributed Eventual Leader Election Service

More than simply marking failed processes, unreliable failure detectors capture in an ab-
stract way timing assumptions necessary to the correct operation of many distributed algo-
rithms [CT96, Lam98]. The lack of reliability of these detectors is key to this abstraction, i.e.,
mistakes can be made, and failures are detected eventually in a way that it re�ects the intrinsic
time uncertainty in asynchronous distributed systems.

Leader election is a fundamental problem in distributed systems since it allows processes
in the system to select a unique process (leader) among them. The leader will be able to
coordinate distributed actions, allowing to solve several fault-tolerant agreement problems
such as consensus [PSL80, BM93].

4.1.1 Synchrony and Failure Models

Regarding the assumptions of time and its constraints, it can be described as follows [Ray10,
CGR11].

Asynchronous distributed systems have no bounds with regard to (i) message delay, how
much time it takes for a message to be delivered, and (ii) processing time, how much time it
takes for a process to do some computation.

Synchronous distributed systems can rely on hard bounds for message delay and computing
time.

In partially synchronous distributed systems [CT96], we consider processes and links behave
most of the time asynchronously, but there is an unknown time after which they behave
synchronously.

Another important characteristic that de�nes a distributed system is the type of failures that
the processes in the system can su�er.

4.1.2 Resilience to both Crash-Recovery and Omissions Failures

In the crash failure model [LSP82, SS83, HT93, CGR11], a correct process is supposed never to
crash. Once crashed, a process is deemed to be faulty, and it never recovers. On the other hand,
the crash-recovery failure model considers correct a process that never crashes, or crashes and
recovers a �nite number of times. Thus, in the crash-recovery failure model [HMR98, ACT00,
MLJ09, CGR11], a faulty process is a process that crashes and never recovers or a process that
crashes and recovers in�nitely often.

We have a particular interest in designing and implementing a leader election service that
addresses both crash-recovery and omission failures. Observe that, under some speci�c condi-
tions, e.g., assuming that the state of a process is never lost, each failure model could be treated
as a particular case of the other. An omission failure could be modeled as a crash before the
omission followed by a recovery, and a crash-recovery failure could be modeled as an omissive
period. Nevertheless, the systematic use of stable storage can be very restrictive, regarding both
space and latency [CGR11].

Section 4.1. Leader Election in Distributed Systems 57

4.1.3 About the Detectability of Failures

We concentrate on providing a leader election service based on the detectability of failures at
each process (i.e., completeness and accuracy). Therefore, when we consider di�erent failures
in a process, there are some interesting remarks to keep in mind.

• There are types of failures that can not be detected. For example, if a process p su�ers
send-omissions towards a crashed process, then these omissions will be undetectable,
and p could be considered a correct process.

• Some failures can be detected, but the type cannot be deterministically identi�ed. Note
that sometimes, there is no way to identify which type of failure a faulty process has
su�ered. If a processp does not receive any more expected messages from another process
q, it could be due to the fact that q is su�ering permanent send-omissions towards p.
Nevertheless, it is also possible for q to have Byzantine behavior. Both cases could be
indistinguishable.

• Instead of correct processes, sometimes it is interesting to detect good processes. In the crash
model, faulty processes stop computing and communicating. However, in other models
as crash-recovery and omission, a faulty process could still be operational as long as it
keeps a minimal ability to compute and communicate in order to solve a speci�c problem.
The concept of good process underlies in the work of Guerraoui et al. [GHM+99].

4.1.4 Failure Detection and Leader Election

A distributed system is composed of processes and communication links. A failure detector is
an abstract component that outputs not necessarily correct information about which processes
are correct or faulty. Failure detectors work locally within each process in the system, and
usually, they are implemented by exchanging messages.

A signi�cant result is that it is possible to build reliable distributed systems on top of an
unreliable failure detector [CT96]. It means that a failure detector is not supposed to be correct
while the system behaves asynchronously [FLP85], since it may make mistakes by suspecting
correct processes or trusting faulty ones. Despite the mistakes it can make, a failure detector is
a powerful abstraction as it encapsulates unpredictable system behavior.

Of particular interest for us is the Omega failure detector (Ω), initially presented in [CHT96].
Chandra et al. [CHT96] showed that Ω is the weakest failure detector for solving consensus
in partially synchronous systems with processes that can su�er failures, encapsulating the
synchrony assumptions to circumvent the FLP impossibility result [FLP85].

The Omega failure detector is considered as a leader election mechanism, a failure detector that
outputs a single trusted process. Formally, the Ω failure detector is speci�ed by the following
properties [Gue00]:

58 Chapter 4. Distributed Eventual Leader Election Service

(i) Eventual Accuracy. There is a time after which every correct process trusts some correct
process.

(ii) Eventual Agreement. There is a time after which no two correct processes trust di�erent
processes.

Both properties guarantee that every correct process will eventually trust the same correct
process. The eventual behavior means that it is necessary a long enough period of synchrony
for the properties to be accomplished.

The Ω failure detector is used as a building block to solve more complex problems such
as consensus [Lam98] and atomic broadcast [CHT96]. The Ω failure detector was devised
for a crash failure model, in which any number of processes can fail by prematurely by
halting (and not recovering). Afterward, Ω has been widely studied as a leader election, e.g.,
[Lam98, LFA00, MR01, MOZ05, MRT06, ADFT08, AJR10, LRAC12].

Later works extended the Ω failure detector study to the crash-recovery failure model. In
addition to the crash failure model, in the crash-recovery failure model, crashed processes
may recover and still participate. In this failure model, correct processes are often rede�ned as
those processes that crash and recover a �nite number of times, i.e., processes that eventually
do not crash again. Observe that this failure model subsumes the crash failure model. Martin
et al. [MLJ09, ML10] and Larrea et al. [LMA11] have proposed several Ω algorithms for the
crash-recovery failure model.

We also consider the general omission failure model, in which processes may su�er omissions
while sending or receiving messages. Several failure detectors for this failure model have
been proposed as well [SCL+11, CFGA+12]. More precisely, Delporte-Gallet et al. [DGFF05]
proposed an Ω for the crash and general omission failure model. Lately, Fernandez-Campusano
et al. [FCL14a, FLCR15, FLCR16, FLCR17] proposed a novel de�nition of Ω allowing some
”incorrect" processes to participate in the distributed agreement of a common leader and hence,
to participate actively in the consensus.

4.1.5 Communication E�ciency

Furthermore, we also look for an e�cient leader election service regarding communication
e�ciency. In this sense, we de�ne a communication-e�cient implementation of leader election
if and only if: (i) At most, (n − 1) communication links are used permanently, and (ii) from
some point on, only one process (the leader) keeps sending messages [ML10, LMA11].

4.2 System Model and Assumptions

We consider a message-passing system composed of a �nite and totally ordered set ofn processes
denoted by Π. Processes only communicate by sending and receiving messages. Every process

Section 4.2. System Model and Assumptions 59

is connected with every other process by communication links. Communication links are
reliable and cannot create or alter messages.

Regarding the timing assumptions. Like our performance study of consensus algorithms (see
Chapter 3.3), as timing assumptions, we assume a partially synchronous system based on the
model of Chandra and Toueg [CT96], i.e., there exist upper bounds on processing time and
message communication delay, although those bounds are not known a priori by processes. So,
the partial synchrony model that we consider can be summarized as:

• We de�ne as: Time =⇒ ∆ (message delay) + ϕ (processing time)

- ∆, upper bound on message delay (unknown)

- ϕ, upper bound on processing time (unknown)

• We assume that: exists a Global Stabilization Time (GST), such as:

- Before GST, the system presents an asynchronous behavior, i.e., bounds do not hold
(∆ + ϕ)

- After GST, the system presents a synchronous behavior, i.e., bounds hold (∆ + ϕ)

- GST is unknown

Regarding the failure model. Processes can fail by crashing and by omitting messages. Crashes
are not permanent, i.e., crashed processes can recover and participate again in the system.

Regarding the process classes. In every execution of the system, we have the following three
types of processes [MLJ09]:

(1) eventually up, i.e., processes that eventually remain up forever (including processes that
never crash, also named always up),

(2) eventually down, i.e., processes that eventually remain crashed forever (including pro-
cesses that never start, also named always down), and

(3) unstable, i.e., processes that crash and recover an in�nite number of times.

In addition to crash-recovery failures, processes can also fail by omission at sending and/or
receiving messages [PT86]. Omissions can be selective, i.e., concerning some given or all
processes. Also, omissions can be transient or permanent.

Indulgent consensus algorithms [Gue00, GR04] require a majority of correct processes. Hence,
we consider that correct processes are those eventually up processes that eventually communi-
cate without omissions with a majority of eventually up processes in the system.

Remark. The algorithms which are detailed below (see Section 4.5) have some di�erences
regarding the general system model, and the di�erences reside in:

60 Chapter 4. Distributed Eventual Leader Election Service

• The communication link between two processes can be either unidirectional or bidirec-
tional.

• Communication links can be either reliable or eventually reliable, and cannot create or
alter messages.

• The presented algorithm can make use or not use of stable storage to store the number of
times that the process su�ers crash-recovery failures.

4.3 Specifying an Eventual Leader Election Service

The election of an eventual leader in an asynchronous system prone to failures is an important
problem of fault-tolerant distributed computing. This problem can be solved by the imple-
mentation of the Ω failure detector, which provides a distributed eventual leader election
service.

The problem lies in that a service of this type cannot be built if the underlying system is
fully asynchronous, due to the impossibility result (FLP impossibility result [FLP85]), to solve
consensus in a deterministic way when one process su�ers a failure.

The leader election problem can be solved through a leader election service with characteristics
of eventuality in the time. An eventual leader election service [Ray07] may be de�ned as follows:

(i) Each time it is called, it returns the identity of a process (pid), and

(ii) after some �nite time, it always returns the same (pid) corresponding to the identity of a
correct process.

We want to provide access to an eventual leader election service to each process (that composes
a distributed system), with the idea of chasing the weakest system model for implementing Ω

as a distributed eventual leader election service. Such that, it allows for improving the design
and implementation of applications in asynchronous distributed systems prone to failures.

The interest in studying the problem lies partly in the di�culty of solving in asynchronous
environments by addressing di�erent types of failures. In this environment, the processes can
fail by crashing, or by crashing and later recovering (several times). In addition to these failures,
a process may su�er either a send-omission or receive-omission or both, also permanent
omissions or transient omissions, non-selective omissions, or selective omissions.

Two important points to remember (see Section 2.2.5):

• When a crashed process recovers, it may lose important information about what it has
learned or done before crashing. To avoid this, sometimes processes are enhanced with
additional stable storage where important information can be stored and later accessed
when process recovers.

Section 4.3. Specifying an Eventual Leader Election Service 61

• A process su�ers a send-omission failure if it executes a message send operation, but the
message never reaches the communication link. A process su�ers a receive-omission
when a message is received at its destination process, but at this process, the message
is never delivered. A permanent omission occurs when a process su�ers an omission
message so that every subsequent message will be omitted. Moreover, a process that
su�ers a transient omission can send/receive messages reliably again until another failure
occurs.

4.3.1 From Ω to an Eventual Leader Election Functionality

When the Ω failure detector was proposed by Chandra et al. [CHT96], it assumed only the
crash failure model. In this case, it focuses on properties that correct processes eventually ful�ll
(note that, non-correct processes eventually crash). On the other hand, when considering the
crash-recovery failure model, correct processes are usually rede�ned as eventually up processes,
although other works consider other de�nitions, e.g., good processes [ACT00]. Those processes
should eventually output a common leader, while a null value (denoted ⊥) is used to prevent
processes without a leader from disagreeing.

In addition to crash-recovery failures, we consider that processes may also su�er message
omissions. This way, an eventually up process p could su�er omissions in its communication
links with the rest processes, which could prevent process p from communicating with the rest
of the processes in the system. Such a situation could produce undesirable e�ects in the system.
So, we must provide new de�nitions and properties of the Omega failure detector as eventual
leader election functionality to a new environment of failures.

We refer to an eventual leader election functionality when every process in the system is
augmented with a module, such that it returns a process identi�er as a leader estimation (a
single correct process). Then, Ω must ensure that, after some time τ , the module at each correct
process will eventually provide the same leader identi�er (a non-faulty process). However, (1)
there is no knowledge about when τ happens and (2) before τ there may be more than one leader.

4.3.1.1 A Novel De�nition for Ω

Formally, the Omega failure detector (Ω) has been de�ned as follows [CHT96]:

De�nition 1 (Omegacrash). There is a time after which every correct process always trusts the
same correct process.

Observe that the previous de�nition, made for the crash failure model, does not state anything
about incorrect processes, which are allowed to disagree at any time with correct processes.
This fact can a�ect negatively an attempt to solve consensus due to the existence of several
leaders (the termination of leader-based consensus relies on the eventual existence of a unique
alive leader). However, in the crash failure model, incorrect processes eventually crash, so

62 Chapter 4. Distributed Eventual Leader Election Service

there will eventually exist a unique leader. Contrary to this, in the crash-recovery and omission
failure models, there can be incorrect processes running forever (e.g., unstable processes).

Clearly, processes that, due to continuous crash-recovery or permanent omissions, become
disconnected from correct processes cannot be forced to agree on the correct leader. Hence,
we consider the following alternative de�nition for Ω, proposed for the crash-recovery failure
model in [LMA11]:

De�nition 2 (Omegacrash–recovery, omission). There is a time after which (1) every correct process al-
ways trusts the same correct process `, and (2) every incorrect process may only alternate between
trusting either ` or no one (⊥, i.e., it does not trust any process).

This alternative de�nition of Ω �ts better with our system model in which some eventually
up processes, as well as unstable processes, may permanently omit messages. Observe also
that this de�nition is very interesting for leader-based consensus algorithms because it allows
incorrect processes to delay their participation in the algorithm until they trust a process, thus,
ensuring eventual agreement on the leader and making consensus solvable.

4.3.1.2 The Set of Correct Processes

As mentioned, indulgent consensus algorithms require a majority of correct processes. Hence,
we assume a majority of processes in the system, named CORE (also denoted as C), that are
eventually up and eventually and permanently do not omit messages among them.

Note that this requires the communication links among processes in the set CORE to be
eventually reliable. Also, we assume that every eventually up process that eventually and
permanently communicates without omission or loss with a majority of processes belongs to
the set CORE.

Based on the previous, processes in the CORE are considered correct. The rest of the processes,
i.e., eventually up processes not belonging to the set CORE, eventually down and unstable
processes, are considered incorrect, and their links can be lossy.

To formalize the de�nition of the CORE set, �rst, we de�ne the connected relationship:

De�nition 3. Two processes p and q are connected i� p communicates without omissions with q
in both directions (from p to q and from q to p).

Then, we de�ne the CORE set as follows:

De�nition 4. We de�neC as the set of eventually up processes that eventually and permanently
are connected with a majority of eventually up processes.

Concerning timeliness, we assume that the set CORE is partially synchronous, i.e., there is a
time after which there exist upper bounds on processing time and message communication
delay, although those bounds are not known a priori by processes. Processes not in CORE can
behave asynchronously.

Section 4.4. Di�culties Underlying System Model Assumptions 63

4.3.1.3 Eventual Leader Election Properties

De�ned the connected property (see De�nition 3), we can provide the properties of an eventual
leader service. Observe that, if and only if p is connected then:

(i) p is an eventually up process, and

(ii) p does not su�er omissions with a majority of eventually up processes in the system.

It implies that p can su�er a �nite number of crash-recoveries and in�nite omissions, as long
as it remains connected. On the other hand, non-connected processes include crashed processes,
unstable processes and, eventually up processes without enough connectivity.

Based on De�nition 4, we present the following two properties for an eventual leader

election service.

Property 1. ∃` ∈ C,∀p ∈ C : eventually and permanently leaderp = `.

There exists an eventually up process ` such that every eventually up process eventually and
permanently connected with a majority of processes eventually and permanently considers `
as the leader.

Property 2. ∀q < C : eventually and permanently: every unstable process only alternates
between either leaderq = ` or leaderq = ⊥.

There is a time after which, every non-crashed process q outputs as leader only either ` or ⊥.

4.4 Di�culties Underlying System Model Assumptions

Now we describe the pitfalls of the system de�ned in Section 4.2, and how our proposal
copes with them. An eventual leader election service in distributed systems has to manage
three main di�culties: eventual synchrony, unstable processes due to crash-recovery failures, and
communication failures due to selective omissions.

(A) Eventual synchrony. One of the main advantages of the failure detector abstraction is
that it encapsulates the timing assumptions of the system. This way, our eventual leader
election service allows eventually to select a unique leader in partially synchronous sys-
tems. For its implementation, we follow the traditional approach of periodical exchange
of ALIVE (heartbeat) messages, combined with an adaptive time-out managing and the
possibility of retracting false suspicions.

64 Chapter 4. Distributed Eventual Leader Election Service

(B) Unstable processes. Processes that crash and recover an in�nite number of times should
not be considered candidates when selecting a leader since we cannot rely on them
to reach consensus. To eventually avoid the potentially harmful e�ect of this kind of
processes, we propose to track the number of times each process recovers. This value
will eventually stop changing for eventually up processes, and it will be incremented
forever in the case of unstable processes, so we propose to consider this value when
selecting a leader.

(C) Selective omissions. We have di�erentiated two negative e�ects of selective omissions:

(i) Selective omissions may a�ect the stable leader election if they are not appropriately
managed. If a process p with a high potential to be considered leader is getting
periodically connected and later disconnected from a majority of processes, it should
not be considered as the leader, since otherwise, it would prevent the leader election
service from eventually providing a stable output. In order to avoid considering
as leader processes with such an unstable behavior in terms of communication,
we propose to monitor the number of times each process gets disconnected from a
majority of processes and to consider this measure when selecting a leader.

(ii) Also, selective omissions may create scenarios where eventually up processes
connected with a majority of processes do not communicate without omissions
with the leader. Figure 4.1 provides an example of such a scenario. There are three
processes in the system: p, q and r . p and q are connected and p and r too, i.e.,
all of them communicate without omissions with a majority of processes. When
selecting a leader, we use the rank leadership presented previously to avoid unstable
behaviors of processes. Numeric values at each process indicate a leadership rank
value (a numerical criterion to select the leader, being the lowest value the best
rank). According to these values, q should be selected as the leader. Since q and
r are not connected, we allow processes to communicate (propagate) its leader to
other processes. This way, after p selects q as the leader, p informs r about the
leadership rank of q so that r can also select q as its leader. Since every connected
process communicates without omissions with a majority of processes, only one
level of indirection is needed to reach all connected processes.

p9
q1 r 6

Figure 4.1: Example of three connected processes

4.5 Implementing an Eventual Leader Service

In this section, we present three distributed eventual leader election algorithms satisfying
De�nition 2. These three approaches implement an eventual leader election service (Basic 4.5.1,

Section 4.5. Implementing an Eventual Leader Service 65

Communication-E�cient 4.5.2, and Indirect-Leader TrustingMechanism 4.5.3) for crash-recovery
and omission environments to support fault-tolerant agreement algorithms, e.g., the Paxos
consensus algorithm.

As a novelty concerning previous works in the literature, our algorithms tolerate the occur-
rence of both crash-recoveries and message omissions to any process during some �nite but
unknown time, assuming that eventually, a majority of processes in the system remain up
forever and stops omitting messages among them.

Based on our new de�nition of Omega, we have boosted a new eventual leader election service
allowing some ”incorrect" processes to participate in the distributed agreement of a common
leader and hence, take an active part in the consensus.

4.5.1 Basic Eventual Leader Election

Our �rst proposal consists of a basic distributed leader election algorithm for crash-recovery
and omission environments. The current algorithm satis�es the de�nitions and properties
presented in Section 4.3.1.

It is worth mentioning that the considered system model is the one presented in Section 4.2,
although we must stipulate the following complementary assumptions:

• The algorithm assumes the availability of stable storage to store the number of times that
the process su�ers crash-recovery failures.

• Every pair of processes is connected by two unidirectional eventually reliable communi-
cation links, one in each direction.

4.5.1.1 Scenario of System

Algorithms 4.1, 4.2 and 4.3 show the proposal of a Basic Eventual Leader Election in detail.

Roughly speaking, as shown in Figure 4.2, every process p keeps track of its communication
with every other process by exchanging ALIVE messages periodically. In case a loss/omission
is detected, communication in that link is marked as suspicious. In order to mend transient
omissions, lost message(s) are requested to be sent again. So, to select a leader, every process
�rst checks whether it communicates well with a majority of processes. In that case, it selects
the process q in that majority that has the smallest penalty value. If that process considers
itself as the leader, then p sets q as its leader. Otherwise, no leader is set (⊥ value).

4.5.1.2 The Algorithm

Basic Eventual Leader Service is composed of an initialization part (Algorithm 4.1), and four
concurrent tasks (Algorithm 4.2) and a procedure for determining leader (Algorithm 4.3), which
we describe in the following paragraphs.

66 Chapter 4. Distributed Eventual Leader Election Service

P1

P3

P5 P4

P2

ed

eu

eu

ueu

CORE

penalty = 4

` = ⊥
penalty = 2

penalty = 7

penalty = 4

` = 3

` = 3

` = 3

PENDINGmsg

Figure 4.2: Basic Eventual Leader Election (Scenario of System)

1 | | Initialization: {Executed by process p upon start/recovery}
2 if �rst execution of the algorithm then penaltyp [p] ← 0
3 penaltyp [p] ← penaltyp [p] + 1 {penaltyp [p] is in local stable storage}

4 idMsgSentp ← 0
5 for all q ∈ Π except p do

6 penaltyp [q] ← 0
7 idMsgReceivedp [q] ← 0
8 wellConnectedInp [q] ← FALSE
9 wellConnectedOutp [q] ← FALSE

10 leaderCandidatesp [q] ← FALSE

11 wellConnectedInp [p] ← TRUE
12 wellConnectedOutp [p] ← TRUE
13 leaderCandidatesp [p] ← TRUE
14 `p ← ⊥
15 for all q ∈ Π except p do

16 Timeoutp [q] ← η
17 reset timerp [q] to Timeoutp [q]

18 start tasks Task 1, Task 2, Task 3 and Task 4

Algorithm 4.1: Basic algorithm: process initialization.

Section 4.5. Implementing an Eventual Leader Service 67

19 | | Task 1: Repeat forever every η time units {periodical sending of ALIVE messages}
20 idMsgSentp ← idMsgSentp + 1
21 for all q ∈ Π except p do

22 send(ALIVE, p, penaltyp [p], idMsgSentp , wellConnectedInp [q], `p) to q

23 | | Task 2: When receive (ALIVE, q, penaltyq , idMsgSentq , wellConnectedq , `q) {ALIVE }

24 if penaltyq > penaltyp [q] then {if q has restarted since last message}

25 penaltyp [q] ← penaltyq
26 idMsgReceivedp [q] ← idMsgSentq − 1

27 if penaltyq = penaltyp [q] then
28 if idMsgSentq = idMsgReceivedp [q] + 1 then {if expected message}

29 reset timerp [q] to Timeoutp [q]
30 idMsgReceivedp [q] ← idMsgSentq
31 wellConnectedInp [q] ← TRUE {communication from that process is OK}
32 wellConnectedOutp [q] ← wellConnectedq {learn from q if it is well connected}
33 leaderCandidatesp [q] ← (q = `q) {learn from q if it considers itself as a leader}
34 UpdateLeader() {process changes in leadership}

35 else

36 send(PENDING, p, penaltyp [q], idMsgReceivedp [q]) to q {Ask for misplaced msgs}

37 | | Task 3: When receive (PENDING, q, penaltyq , idMsgReceivedq) {misplaced msgs request}

38 if penaltyq = penaltyp [p] then
39 for all msgid from idMsgReceivedq + 1 to idMsgSentp do

40 send(ALIVE, p, penaltyp [p], msgid, wellConnectedInp [q], `p) to q

41 | | Task 4: Upon expiration of timerp [q] {ALIVE message not received in time}
42 Timeoutp [q] ← Timeoutp [q] + 1
43 wellConnectedInp [q] ← FALSE
44 leaderCandidatesp [q] ← FALSE
45 UpdateLeader()

Algorithm 4.2: Basic algorithm: main tasks.

Initialization. During initialization, Lines 1 to 18, every process p �rst checks whether it
is the �rst execution of the algorithm, in which case it initializes its penalty value to 0 (Line 2).
Then, p increments its penalty value by 1 (Line 3). It is important to note that, although penalty
values of all processes in the system will be locally stored by p in a vector called penaltyp ,
only p’s own penalty, i.e., penaltyp[p], is stored in stable storage. In order to detect message
losses/omissions, processes will send messages with an increasing sequence number. This
sequence number, idMsgSentp , is initialized to 0 (Line 4). Next, the penaltyp vector is initialized
to 0 for the rest of the processes q (Line 6). The vector that is used by p to store the sequence
number of the last message received from every other process q, named idMsgReceivedp , is
initialized to 0 (Line 7). Two Boolean vectors, named wellConnectedInp and wellConnectedOutp ,
are used to indicate if p is well connected at reception and at sending with every other process,
respectively. They are initialized to FALSE (Lines 8-9). Finally, another vector leaderCandidatesp ,
initialized to FALSE (Line 10), is used to indicate if a process considers itself as a candidate to

68 Chapter 4. Distributed Eventual Leader Election Service

46 | | Procedure UpdateLeader: {select a leader based on collected information}
{First, calculate the set of wellConnected processes}

47 Cp ← ∅

48 for all q ∈ Π do

49 if

(
wellConnectedInp [q] = TRUE and

wellConnectedOutp [q] = TRUE

)
then insert q into Cp

{Now, select the leader among well connected processes which considers themselves as leader}
50 `p ← ⊥
51 if |Cp | > n/2 then
52 q ← select process ∈ Cp with smallest penaltyp [q], using the process id to break ties
53 if leaderCandidatesp [q] = TRUE then `p ← q

54 else

55 penaltyp [p] ← penaltyp [p] + 1 {penaltyp [p] is in local stable storage}

Algorithm 4.3: Basic algorithm: UpdateLeader() procedure.

become leader or not. This information will be used to avoid disagreement between correct
and unstable processes. By de�nition, p is always well connected with itself (Lines 11-12). Also,
p considers itself a candidate for becoming the leader (Line 13). Processes start the execution
of the algorithm with no leader, which is re�ected in the ⊥ value assigned to the variable
`p (Line 14). Finally, p initializes its timeout value with respect to each process q to η (the
periodicity of message sending), and resets a timer to this value on q (Lines 15-17). After that,
p starts the four tasks of the algorithm (Lines 18) concurrently .

Task 1. In Task 1 (Lines 19-22), which is executed periodically every η time units, process
p �rst increments the sequence number idMsgSentp (Line 20), and then sends an ALIVE mes-
sage to every other process q (Lines 21-22). Besides the sequence number, the message also
includes p’s incarnation value (penaltyp[p]), p’s connectedness at reception with respect to q

(wellConnectedInp[q]), and p’s leader (`p). As we will see, the fact that p = `p will be interpreted
by the receiver of this message as the indication that p considers itself as a candidate to become
leader.

Task 2. In Task 2 (Lines 23-36), when process p receives an ALIVE message from another
process q, p �rst updates if needed q’s penalty value in penaltyp[q] (Line 25), in which case
idMsgReceivedp[q] is set to the right value for the message to be processed in the subsequent
code at Lines 27-28. Then, if the received message is the “expected” one from q, p resets
timerp[q] to Timeoutp[q] (Line 29), and updates its variables as follows: idMsgReceivedp[q] is
set to idMsgSentq (Line 30), wellConnectedInp[q] is set to TRUE (Line 31), wellConnectedOutp[q]
is set to wellConnectedq (Line 32), and leaderCandidatesp[q] is set to TRUE if q = `q , and to
FALSE otherwise (Line 33). Finally, p calls the UpdateLeader() procedure (Line 34) in order to
determine its new leader. Finally, if the received message in this task is not the expected one
from q but penaltyq = penaltyp[q] (Line 35), then the message is discarded and p sends back a
PENDING message to q (Line 36), in which p informs q about the penalty value and sequence
number of the last expected message received from q (penaltyp[q], idMsдReceivedp[q]).

Section 4.5. Implementing an Eventual Leader Service 69

Task 3. In Task 3 (Lines 37-40), when process p receives a PENDING message from another
process q, if p’s current penalty value corresponds to the value received in the message (Line 38),
then p re-sends all the “pending” ALIVE messages between p and q (Lines 39-40), in order to
re-establish the well connectedness between p and q. Pending messages correspond to the
interval idMsgReceivedq + 1, . . . , idMsgSentp . This task allows coping with transient message
omissions between p and q, as well as with messages that have not been received by q because
it was down (i.e., crashed) when p sent them.

Task 4. In Task 4 (Lines 41-45), upon expiration of any of p’s timers timerp[q], p �rst incre-
ments Timeoutp[q] (Line 42) in order to avoid premature (erroneous) timeouts on q. However,
it could be the case that q has really crashed, or has su�ered a message omission with p. Hence,
p’s connectedness at reception with q is set to FALSE (Line 43), as well as leaderCandidatesp[q]
(Line 44). Then, p calls the UpdateLeader() procedure (Line 45) in order to determine its new
leader.

UpdateLeader. In the UpdateLeader() procedure (Lines 46-55), p elects a leader only if it is
well connected both at reception and at sending with a majority of processes (Line 51), selecting
among the processes with which p is well connected the process q with smallest penaltyp[q]
value (using the process id to break ties). If p has leaderCandidatesp[q] to TRUE, then p elects q
as its leader (Line 53). Otherwise, i.e., if p is not well connected with a majority of processes, or
the process q with smallest penaltyp[q] value has leaderCandidatesp[q] to FALSE, then p does
not elect any leader, setting `p to ⊥ (Line 50). Also, p increases its penalty value if it is not well
connected with a majority of processes (Line 55).

4.5.1.3 Correctness of Algorithm

We now show the correctness proof for the Basic Eventual Leader Service, satisfying De�ni-
tion 2, and the properties of Section 4.3.1.1.

All the time instants considered are assumed to be after every eventually up process has
de�nitely recovered, and every eventually down process has de�nitely crashed and all its
messages have been delivered, lost or omitted. Also, the unknown bounds on processing time
and message communication delay apply to the setC (CORE), as well as the eventual reliability
of communication links.

Lemma 1. For every correct process p, i.e., belonging to the set C , eventually penaltyp[p] does
not increase anymore.

Proof. Since p is correct, Line 3 gets executed a �nite number of times at p. Observe that correct
processes eventually communicate timely and stop omitting messages among them. By the
algorithm there is a time after which correct processes stop erroneously suspecting each other,
because they adjust their timeout values, and receive ALIVE messages before the timers expire.
Since there is a majority of correct processes, eventually the condition of Line 51 will always
be satis�ed at p and Line 55 will not get executed anymore. �

70 Chapter 4. Distributed Eventual Leader Election Service

Lemma 2. For every incorrect process p, i.e., not belonging to the setC , eventually (1) p does not
communicate without omission with a majority of processes anymore, or (2) penaltyp[p] increases
forever.

Proof. Case (1) applies to eventually down processes. Case (2) applies to unstable processes,
since Line 3 gets executed an in�nite number of times. Finally, let p be an eventually up but
incorrect process. By de�nition p will never communicate permanently without omission
with a majority of processes (otherwise p would be a correct process). Hence, whenever p
communicates without omission with a majority of processes, it will eventually “loose” this
connectivity, and Line 55 will get executed. �

Remark. Let ` be the correct process with smallest penalty value (using the process id to break
ties).

Lemma 3. Eventually and permanently, `` = `.

Proof. By a similar reasoning to the one of Lemma 1, eventually `will havewellConnectedIn`[q] =
TRUE and wellConnectedOut`[q] = TRUE permanently for a majority of processes q. Conse-
quently, in the UpdateLeader() procedure ` will select itself in Line 52 since it is the correct pro-
cess with smallest penalty value. Since by de�nition every process p has leaderCandidatesp[p] =
TRUE permanently, ` will always set `` to itself in Line 53 of the algorithm. �

Lemma 4. Eventually, every ALIVE message sent by ` has `` = `.

Proof. Follows directly from Lemma 3 and Line 22 of the algorithm. �

Lemma 5. Eventually and permanently, for every correct process p, `p = `.

Proof. Follows directly from Lemma 3 for p = `. Let p , ` be a correct process. By the same
reasoning to Lemma 3, there is a time after which p will have wellConnectedInp[q] = TRUE
and wellConnectedOutp[q] = TRUE for a majority of processes q, and ` is in that majority.
Consequently, in the UpdateLeader() procedure p will select ` as its leader since ` is the correct
process with smallest penalty value, and by Lemma 4 all the ALIVE messages sent by ` have
`` = `. �

Lemma 6. Eventually and permanently, every ALIVE message sent by every eventually up pro-
cess p , ` has `p = ` or `p = ⊥.

Proof. Follows directly from Lemma 5 and Line 22 of the algorithm for every correct process
p , `. Let p be an eventually up but incorrect process. By Lemma 2, eventually p does not
communicate without omission with a majority of processes anymore, or penaltyp[p] will be
permanently bigger than the penalty value of any correct process. Hence, in case p commu-
nicates without omission with a majority of processes that includes `, in the UpdateLeader()
procedure p will select ` as its leader and will hence send ALIVE messages with `p = `; other-
wise, i.e., if p does not communicate without omission with a majority of processes anymore,
or it communicates without omission with a majority of processes that does not include `, then
in the UpdateLeader() procedure p will set `p to ⊥ and will hence send ALIVE messages with
`p = ⊥. �

Section 4.5. Implementing an Eventual Leader Service 71

Lemma7. There is a time after which every incorrect processmay only alternate between trusting
either ` or no one.

Proof. Follows directly from Lemma 6 for eventually up but incorrect processes. Let p be an
unstable process. By the fact that p crashes and recovers an in�nite number of times, eventually
and permanently the penalty value of p will be bigger than the penalty value of any correct
process. Also, by the algorithm, p initially sets `p to ⊥. The only way for p to change its leader
is to receive ALIVE messages timely from a majority of processes, which implies the reception
from at least one correct process q. Hence, p will never select an incorrect process r as its
leader in the UpdateLeader() procedure, since q’s penalty value is smaller than r ’s. Moreover,
since by Lemmas 4 and 6, among correct processes only ` sends ALIVE messages with `` = `,
the only way for p to change its leader is to receive ALIVE messages timely from a majority of
processes that includes `, in which case p will set ` as its leader. �

Theorem 1. The algorithm presented in Algorithm 4.1, 4.2 and 4.3 implements Omega in crash-
recovery and omissive systems, satisfying De�nition 2.

Proof. Follows directly from Lemmas 5 and 7. �

4.5.1.4 Constraints and Drawbacks

• The proposed algorithm does not address the unfavourable e�ects that present the
selective omissions when creating scenarios where eventually up processes connected
with a majority of processes do not communicate without omissions with the leader.

• The systematic use of stable storage can be very restrictive, regarding both space and
latency.

• We understand better the relationship between di�erent failure types and their net e�ect.
However, it is possible to de�ne a weaker model.

4.5.2 Communication-E�cient Eventual Leader Election

Our second proposal consists of a communication-e�cient distributed leader election algorithm
for crash-recovery and omission environments. The algorithm satis�es the de�nitions and
properties presented in Section 4.3.1.

An eventual leader election service is communication-e�cient when [LMA11]: there is a
time after which only one process (the elected leader) sends messages forever. Observe that this
de�nition implies that unstable processes eventually stop sending messages. Note also that in
order to satisfy this property we require the elected leader to communicate directly without
omissions with the rest of alive processes. Otherwise, i.e., if we weaken the communication
assumption, message forwarding is required.

72 Chapter 4. Distributed Eventual Leader Election Service

Formally, in this case eventually only the elected leader would send new messages forever, the
rest of the processes would forward them to reach all other processes in the system. Therefore,
the proposed algorithm is communication-e�cient, i.e., eventually, each process of the
well-connected majority communicates only with the elected leader.

It is worth mentioning that the considered system model is the one presented in Section 4.2,
with the following complementary assumptions:

• The algorithm does not assume the availability of stable storage to store the number of
times that the process su�ers crash-recovery failures.

• Every process is connected with every other process by two reliable communication links,
one in each direction.

4.5.2.1 Scenario of System

Algorithms 4.4, 4.5 and 4.6 show the proposal of a Communication-E�cient Eventual

Leader Election in detail. Roughly speaking, as shown in Figure 4.3, every process p keeps
track of its communication with every other process by exchanging ALIVE messages peri-
odically. In the case that an omission is detected, communication in that link is marked as
suspicious (in order to mend transient omissions, omitted messages are requested to be sent
again).

Three types of messages are used: RECOVERED messages, which are sent during initialization
and upon recovery, ALIVE messages, which are sent periodically and carry a sequence number
in order to detect omissions, and PENDING messages, which are sent upon omission detection.

Note that eventually up and unstable processes send a �nite and an in�nite number of
RECOVERED messages, respectively. For each unstable process u, we assume that some correct
process receives an in�nite subset of the RECOVERED messages sent by u.

4.5.2.2 The Algorithm

Communication-E�cient Eventual Leader Service is composed of an initialization part (Algo-
rithm 4.4), �ve concurrent tasks (Algorithm 4.5) and a procedure for determining the leader
(Algorithm 4.6), which we describe in the following paragraphs.

Initialization. During initialization, Lines 1 to 15, every process p starts the execution
of the algorithm with no leader, which is re�ected in the ⊥ value assigned to the variable `p .
Also, p sets a timer with respect to each process q. Figure 4.4 shows the initialization procedure
executed by every process p when (i) p starts for the �rst time, and (ii) every time p recovers
after a crash. This procedure initializes the set of variables that process p will use to track
information about itself and the rest of processes in the system. It is worthy to note that stable
storage is not used to store the number of crash-recovery failures.

Section 4.5. Implementing an Eventual Leader Service 73

P1

P3

P5 P4

P2

ed

eu

eu

ueu

CORE

recovered = 4

` = ⊥
recovered = 9

recovered = 7

recovered = 4

` = 3

` = 3

` = 3

PENDINGmsg
RECOV EREDmsg

Figure 4.3: Communication-E�cient Eventual Leader Election (example)

1 | | Initialization: {Executed by process p upon start/recovery}
2 recoveredp [p] ← 0
3 for all q ∈ Π except p do

4 recoveredp [q] ← 0 {number of RECOVERED messages received from q}
5 send(RECOVERED, p) to q
6 idMsgSentp [q] ← 0 {sequence number for sending ALIVE messages to q}

7 idMsgReceivedp [q] ← 0 {sequence number of the last ALIVE message received from q}

8 wellConnectedInp [q] ← FALSE {TRUE if p communicates without omissions at reception with q}
9 wellConnectedOutp [q] ← FALSE {TRUE if p communicates without omissions at sending with q}

10 leaderCandidatesp [q] ← FALSE {TRUE if q considers itself as leader}

11 `p ← ⊥ {initially p has no leader, i.e., it does not trust any process}
12 for all q ∈ Π except p do

13 Timeoutp [q] ← η {p’s timeout on q is initialized to the periodicity of ALIVE sending by q in Task 2}
14 reset timerp [q] to Timeoutp [q]

15 start tasks Task 1, Task 2, Task 3, Task 4 and Task 5

Algorithm 4.4: Communication-E�cient algorithm: process initialization.

74 Chapter 4. Distributed Eventual Leader Election Service

16 | | Task 1: When receive (RECOVERED, q) {RECOVERED reception}
17 recoveredp [q] ← recoveredp [q] + 1
18 UpdateLeader()

19 | | Task 2: Repeat forever every η time units {ALIVE sending}
20 if `p = ⊥ or `p = p then {if p has no leader or considers itself as leader, send ALIVE to all}
21 for all q ∈ Π except p do

22 idMsgSentp [q] ← idMsgSentp [q] + 1
23 send(ALIVE, p, recoveredp , idMsgSentp [q], wellConnectedInp [q], `p) to q

24 else {if p has a leader di�erent from itself, send ALIVE to its leader}
25 idMsgSentp [`p] ← idMsgSentp [`p] + 1
26 send(ALIVE, p, recoveredp , idMsgSentp [`p], wellConnectedInp [`p], `p) to `p

27 | | Task 3: When receive (ALIVE, q, recoveredq , idMsgSentq , wellConnectedq , `q) {ALIVE reception}

28 if idMsgSentq = idMsgReceivedp [q] + 1 then {if expected message}

29 reset timerp [q] to Timeoutp [q]
30 for all q ∈ Π do

31 recoveredp [q] ← max(recoveredp [q], recoveredq[q])

32 idMsgReceivedp [q] ← idMsgSentq
33 wellConnectedInp [q] ← TRUE {communication with q at reception is OK}
34 wellConnectedOutp [q] ← wellConnectedq {learn from q if p is well connected with q at sending}
35 leaderCandidatesp [q] ← (q = `q) {learn if q considers itself as a leader}
36 UpdateLeader()
37 else

38 send(PENDING, p, idMsgReceivedp [q]) to q {ask for pending messages}

39 | | Task 4: When receive (PENDING, q, idMsgReceivedq) {PENDING reception}

40 if idMsgReceivedq < idMsgSentp [q] then {if q has not received some of p’s ALIVE messages, re-send them to q}

41 for all msgid from idMsgReceivedq + 1 to idMsgSentp [q] do
42 send(ALIVE, p, recoveredp , msgid, wellConnectedInp [q], `p) to q

43 else {if q’s sequence number is bigger than p’s (i.e., p has crashed and recovered), p adjusts its sequence number towards q}
44 idMsgSentp [q] ← idMsgReceivedq

45 | | Task 5: Upon expiration of Timerp [q] {timer expiration while waiting for the next ALIVE message}
46 Timeoutp [q] ← Timeoutp [q] + 1
47 wellConnectedInp [q] ← FALSE
48 leaderCandidatesp [q] ← FALSE
49 UpdateLeader()

Algorithm 4.5: Communication-E�cient algorithm: main tasks.

Section 4.5. Implementing an Eventual Leader Service 75

50 | | Procedure UpdateLeader: {leader election based on collected information}
51 Cp ← {p} {Cp is p’s estimation of the set CORE}
52 for all q ∈ Π except p do

53 if wellConnectedInp [q] = TRUE and wellConnectedOutp [q] = TRUE then insert q into Cp

54 `p ← ⊥
55 q ← select process ∈ Cp with smallest recoveredp [q], using process identi�ers to break ties
56 if q = p then

57 if |Cp | > n/2 then `p ← p
58 else

59 if leaderCandidatesp [q] = TRUE then `p ← q

Algorithm 4.6: Communication-E�cient algorithm: UpdateLeader() procedure.

Task 1. In Task 1 (Lines 16-18), every process p accounts each RECOVERED message it
receives, calling the UpdateLeader() procedure.

Task 2. In Task 2 (Lines 19-26), which is executed periodically, if either p has no leader or
considers itself the leader, then it sends ALIVE to all processes. Otherwise, i.e., if p considers
itself the leader, then it sends ALIVE to processes in Cp . Otherwise, if p has no leader, then it
sends ALIVE to all processes. Finally, if p has a leader di�erent from itself, then it sends ALIVE
to its leader.

Task 3. In Task 3 (Lines 27-38), when p receives an ALIVE message from another process q,
if the received message is the expected one from q, p resets timerp[q] and updates its variables
accordingly, after which it calls the UpdateLeader() procedure. Otherwise, if the received
message is not the expected one from q, then the message is discarded and p sends back a
PENDING message to q.

Task 4. In Task 4 (Lines 39-44), when p receives a PENDING message from another process
q, p either re-sends all the pending ALIVE messages between p and q or updates accordingly
its sending sequence number with respect to q, (i.e., if p has crashed and recovered), in order to
re-establish as soon as possible the well connectedness between them.

Task 5. In Task 5 (Lines 44-49), upon expiration of any of p’s timers timerp[q], p �rst incre-
ments Timeoutp[q] in order to avoid premature timeouts on q, updates its connectedness with
q accordingly, and calls the UpdateLeader() procedure.

UpdateLeader. In the UpdateLeader() procedure, p �rst calculates the set Cp of processes
with which it communicates well (including itself). Then, p selects the process q in Cp that
has recovered fewer times. Finally, p sets q as its leader if either (1) q = p and Cp contains a

76 Chapter 4. Distributed Eventual Leader Election Service

majority of processes, or (2) q , p and q considers itself as leader. Otherwise, no leader is set
(⊥ value).

With this algorithm, the correct process ` with the lowest RECOVERED counter will be even-
tually and permanently elected as leader by all the correct processes. The rest of processes
will adopt ` as their leader only if they communicate well with `. Otherwise, they will have
no leader. Hence, the algorithm satis�es De�nition 2. Finally, observe that the algorithm is
communication-e�cient, i.e., eventually each process of the well-connected majority com-
municates only with the elected leader.

4.5.2.3 Correctness of Algorithm

We now show the correctness proof for the Communication-E�cient Eventual Leader Service,
satisfying De�nition 2 and the properties of Section 4.3.1.1. We also show that the algorithm is
communication-e�cient, i.e., eventually each process of the well-connected majority commu-
nicates only with the elected leader.

Although any process can su�er crash-recovery and omission failures, we assume that there
is a time after which a majority of processes in the system remain up forever and stop omitting
messages among them. Processes in this majority, named CORE, are said to be correct, while
the rest of processes, i.e., eventually up processes not belonging to the set CORE, eventually
down and unstable processes, are incorrect.

Observe that in the algorithm, RECOVERED messages are only sent during initialization (Line
5). Hence, by de�nition, eventually up processes send a �nite number of RECOVERED messages,
while unstable processes send an in�nite number of RECOVERED messages. For each unstable
process u, we assume that an in�nite subset of the RECOVERED messages sent by u is received
by some correct process.

All the time instants considered in the proof are assumed to be after:

(1) Every eventually up process has de�nitely recovered, and all its RECOVERED messages
have already been either delivered or omitted, and

(2) every eventually down process has de�nitely crashed, and all its messages have already
been either delivered or omitted.

Let be ` the correct process with smallest RECOVERED counter at any process in the system
(using the process identi�ers to break ties).

Lemma 8. Eventually and permanently, `` = `.

Proof. Since there is a majority of correct processes CORE which includes ` such that eventually
processes in the set CORE stop omitting messages among them, by the algorithm there is a time
after which correct processes stop erroneously suspecting `. This is because they adjust their

Section 4.5. Implementing an Eventual Leader Service 77

timeout value with respect to `, and receive ALIVE messages timely, i.e., before the timer expires.
Hence, process ` will have wellConnectedIn`[q] = TRUE and wellConnectedOut`[q] = TRUE for
a majority of processes q. Consequently, in the UpdateLeader() procedure ` will select itself as
leader since it is the correct process belonging to the set CORE with the smallest RECOVERED
counter and Cp > n/2 (Lines 56-57). �

Lemma 9. Eventually, every ALIVE message sent by ` has `` = `.

Proof. Follows directly from Lemma 8 and Line 23 of the algorithm. �

Lemma 10. Eventually and permanently, for every correct process p, `p = `.

Proof. Follows directly from Lemma 8 for p = `. Let p , ` be a correct process. By Lemma 8
and Task 2 of the algorithm, ` sends an ALIVE message periodically to p. By the algorithm,
eventually and permanently p will receive these ALIVE messages timely, i.e., before its timer
with respect to ` expires. Consequently, in the UpdateLeader() procedure p will select ` as its
leader since it is the process belonging to Cp with the smallest RECOVERED counter, and since
by Lemma 9 all the ALIVE messages sent by ` have `` = `, then leaderCandidatesp[`] = TRUE
(Line 59). �

Lemma 11. Eventually and permanently, every ALIVE message sent by every eventually up
process p , ` has `p = ` or `p = ⊥.

Proof. Follows directly from Lemma 10 and Line 26 of the algorithm for every correct process
p , `. Let p , ` be an eventually up but incorrect process, i.e., not belonging to the set CORE. In
case p communicates without omissions with `, by the algorithm, eventually and permanently
p will have leaderCandidatesp[`] = TRUE. Hence, in the UpdateLeader() procedure p will select
` as its leader and will hence send ALIVE messages with `p = `; otherwise, i.e., if p does not
communicate without omissions with `, then in the UpdateLeader() procedure p will set `p to
⊥ and will hence send ALIVE messages with `p = ⊥. �

Lemma 12. There is a time after which every incorrect process p may only alternate between
trusting either ⊥ (i.e., it does not trust any process) or `.

Proof. Follows directly from Lemma 11 for eventually up but incorrect processes. Let p be an
unstable process. By the fact that p crashes and recovers an in�nite number of times, and sends
a RECOVERED message upon recovery, eventually and permanently the RECOVERED counter
of p at every correct process will be bigger than the RECOVERED counter of any eventually up
process. Also, by the algorithm, p initially sets `p to ⊥. By Lemmas 9 and 11, among eventually
up processes only ` sends ALIVE messages with `` = `. Hence, the only way for p to change
its leader is to receive an ALIVE message from `, in which case p will set ` as its leader in
the UpdateLeader() procedure, since `’s RECOVERED counter at p is the smallest among all
processes in Cp . �

Theorem 2. The algorithm presented in Algorithm 4.4, 4.5 and 4.6 implements Omega in par-
tially synchronous systems prone to crash-recovery and omission failures, satisfying De�nition 2.

78 Chapter 4. Distributed Eventual Leader Election Service

Proof. Follows directly from Lemmas 10 and 12. �

Theorem 3. The algorithm presented in Algorithm 4.4, 4.5 and 4.6 is communication-e�cient,
i.e., eventually each process of the well-connected majority communicates only with the elected
leader.

Proof. By Lemmas 9 and 10 and Task 2 (Algorithm 4.5), eventually and permanently among
correct processes only ` sends a message periodically to the rest, while correct but non-leader
processes send a message periodically to `. �

4.5.2.4 Constraints and Drawbacks

• The proposed algorithm does not address the unfavourable e�ects that present the
selective omissions when create scenarios where eventually up processes connected with
a majority of processes do not communicate without omissions with the leader.

• We added an extra cost in handling messages, but stable storage is not necessary.

4.5.3 Indirect-Leader Trusting Mechanism

Our third proposal consists of a distributed leader election algorithm with an indirect leader
trusting mechanism for crash-recovery and omission environments. The algorithm satis�es
the de�nitions and properties presented in Section 4.3.1.

Unlike the previously presented algorithms, we provide an indirect-leader trusting mechanism
that allows that even processes that su�er omissions with the leader may trust that leader, as
long as they eventually communicate without omissions with a majority of correct processes.
As a result, our approach allows implementing eventual leader election in systems with weaker
assumptions compared to previous works.

The considered system model is the one presented in Section 4.2, augmented with the following
complementary assumptions:

• The algorithm presented uses stable storage to store the number of times the process
su�ers crash-recovery failures.

• The communication channel between two processes is a bidirectional reliable communi-
cation link, and cannot create or alter messages.

Section 4.5. Implementing an Eventual Leader Service 79

4.5.3.1 Scenario of System

Algorithms 4.7, 4.8 and 4.9 show the proposal of an Eventual Leader Election with Indirect-

Leader Trusting Mechanism in detail. Roughly speaking, as shown in Figure 4.4, processes
exchange heartbeat messages periodically, messages carry a sequence number in order to
detect omissions, and each process tracks: (1) the number of times it recovers, and (2) the num-
ber of times they become disconnected from a majority. The algorithm uses the rank concept
(leadership-demoting), which represents the instability of every process in terms of computabil-
ity and communication. We provide a mechanism to trust a leader even if communications with
the leader are omission-prone, allowing to provide an eventual leader service that handles three
main di�culties: (a) eventual synchrony, (b) unstable processes due to crash-recovery failures
and (c) communication failures due to selective omissions.

P1

P2

P3

eu

eu

eu rankleader= 1

rankleader= 6

rankleader= 9

` = ⊥

` = ⊥

` = ⊥

P1

P2

P3

eu

eu

eu rankleader= 1

rankleader= 6

rankleader= 9

` = 2

` = ⊥

` = 2

P1

P2

P3

eu

eu

eu rankleader= 1

rankleader= 6

rankleader= 9

` = 2

` = 2

` = 2

P1

P2

P3

eu

eu

eu rankleader= 1

rankleader= 6

rankleader= 9

` = 2

` = ⊥

` = 2

` = 2 (propagate)

t1 t2

t3 t4

t4 > t3 > t2 > t1

Figure 4.4: Eventual Leader Election with an Indirect-Leader Trusting Mechanism (example)

4.5.3.2 The Algorithm

Eventual Indirect-Leader Service is composed of an initialization part (Algorithm 4.7), four
concurrent tasks (Algorithm 4.8), and a procedure for determining the leader (Algorithm 4.9),
which we describe in the following paragraphs.

80 Chapter 4. Distributed Eventual Leader Election Service

{Note: leader is a complex variable (id` , epoch` , disconns` , lastAliveID`)}

1 | | Task Initialization: {executed by every process p upon start/recovery}
2 if �rst execution of the algorithm then epochp ← 0
3 epochp ← epochp + 1 {increment epoch after starting}

4 disconnsp ← 0 {initialize counter for disconnections from majority}
5 idMsgSentp ← 0 {initialize message counter}

6 connectedWithMajorityp ← FALSE {initially, p is not connected to a majority}

7 NOLEADER← (⊥, 0, 0) {null leader (⊥, epochs, disconns)}
8 leaderTuplep ← NOLEADER {output provided by the service}

9 leaderTupleToPropagatep ← NOLEADER {leader propagated by p}

10 for all q ∈ Π except p do {initialize info about every other process}
11 Epochsp [q] ← 0 {epoch of q}

12 IdMsgReceivedp [q] ← 0 {last msg id received from q}

13 CommInp [q] ← FALSE {commun. state from q to p}
14 CommOutp [q] ← FALSE {commun. state from p to q}
15 LeaderOthersTuplep [q] ← NOLEADER
16 Timeoutsp [q] ← η
17 reset Timersp [q] to Timeoutsp [q]

18 start tasks Task 1, Task 2, Task 3 and Task 4

Algorithm 4.7: Indirect-Leader Trusting Mechanism: process initialization.

Initialization. The initialization procedure is executed by every process p when: (i) p
starts up for the �rst time, and (ii) every time p recovers after a crash. During initialization,
Lines 1 to 18, this procedure initializes the set of variables that process p will use to track
information about itself and the rest of processes in the system. It is worth to note that
stable storage is used to store the value of the epochp number despite crash-recovery failures.
This variable contains the number of times a process has executed this procedure, i.e., it has
recovered.

Task 1. In Task 1 (Lines 19-22), every process p sends periodical ALIVE messages to every
other process, so that process crashes can be detected. To detect message omissions, messages
are tagged with a message identi�er (variable idMsgSentp), together with the epoch of the
sender (variable epochp). Every process p monitors the communication state of its bidirectional
links with every other process q, using variable CommInp[q] for the communication from q to p
and variable CommOutp[q] for the communication from p to q, being TRUE while all messages
are delivered on time and FALSE otherwise. Observe that p can only monitor on reception
the communication link from q to p, i.e., only one direction of the bidirectional link. For this
reason, every process p includes in its ALIVE messages to process q the communication state
from q to p. This way, every process gets information about the communication state of its
outgoing communication links and, as result, of the bidirectional communication link between
p and q. Finally, information about process leadership is sent into ALIVE messages (we will
describe the content later).

Section 4.5. Implementing an Eventual Leader Service 81

19 | | Task 1: Repeat forever every η time units {send periodical ALIVEs}
20 idMsgSentp ← idMsgSentp + 1
21 for all q ∈ Π except p do

22 send(ALIVE, p, epochp , idMsgSentp , CommInp [q], leaderTupleToPropagatep) to q

23 | | Task 2: When receive from q an ALIVE message (ALIVE, q, epochq , idMsgSentq , Commq , leaderTupleq)
{ALIVE reception}

24 if epochq > Epochsp [q] then {if q has restarted since last message}

25 Epochsp [q] ← epochq
26 IdMsgReceivedp [q] ← idMsgSentq − 1

27 if epochq = Epochsp [q] then
28 if idMsgSentq = IdMsgReceivedp [q] + 1 then {if expected message}

29 IdMsgReceivedp [q] ← idMsgSentq
30 CommInp [q] ← TRUE {communication from q is OK}
31 reset Timersp [q] to Timeoutsp [q]
32 CommOutp [q] ← communq {learn about comm. from p to q}
33 LeaderOthersTuplep [q] ← leaderTupleq {learn from q its leader}

34 UpdateLeader() {process changes in leadership}

35 else

36 send(PENDING, p, Epochsp [q], IdMsgReceivedp [q]) to q

37 | | Task 3: When receive (PENDING, q, epochq , idMsgReceivedq) {PENDING reception}

38 if epochq = Epochsp [q] then
39 for all msgid from idMsgReceivedq + 1 to idMsgSentp do

40 send(ALIVE, p, epochp , msgidp , CommInp [q], leaderTupleToPropagatep) to q

41 | | Task 4: Upon expiration of Timersp [q] {timer expiration while waiting for the next ALIVE message}
42 Timeoutsp [q] ← Timeoutsp [q] + 1
43 CommInp [q] ← FALSE
44 LeaderOthersTuplep [q] ← NOLEADER
45 UpdateLeader()

Algorithm 4.8: Indirect-Leader Trusting Mechanism: main tasks.

82 Chapter 4. Distributed Eventual Leader Election Service

46 | | Procedure UpdateLeader {output a leader estimation}
47 Cp ← {p} {First, calculate the set of connected processes}
48 for all q ∈ Π except p do

49 if

(
CommInp [q] = TRUE and

CommOutp [q] = TRUE

)
then insert q into Cp

{Check if p has lost connectivity with a majority of processes }
50 if |Cp | <= n/2 and connectedWithMajorityp = TRUE then

51 disconnsp = disconnsp + 1

52 connectedWithMajorityp ← (|Cp | > n/2) {for next checking}

53 if connectedWithMajorityp = TRUE then {Check if p can be leader}

54 tempLeaderTuple← (p, epochsp, disconnsp)
55 else

56 tempLeaderTuple← NOLEADER

57 for all q ∈ Cp except p do {Search for the best leader}
58 if LeaderOthersTuplep [q].id < {⊥,p} then
59 tempLeaderTuple = GetBestLeader(tempLeaderTuple, LeaderOthersTuplep [q])

60 leaderTuplep ← tempLeaderTuplep {Output of the service}

61 if leaderTuplep .id ∈ Cp then {Leader propagation only when connected}

62 leaderTupleToPropagatep = leaderTuplep
63 else

64 leaderTupleToPropagatep = NOLEADER

65 | | Function GetBestLeader(leaderTuplei , leaderTuplej) {output the best candidate}

66 if leaderTuplei .id = ⊥ then r
67 eturn leaderTuplej
68 if leaderTuplej .id = ⊥ then r
69 eturn leaderTuplei
70 punishi ← leaderTuplei .epoch + leaderTuplei .disconns
71 punishj ← leaderTuplej .epoch + leaderTuplej .disconns

72 if

(
punishi < punishj or
(punishi = punishj and leaderTuplei .id < leaderTuplei .id)

)
then

73 return leaderTuplei
74 else

75 return leaderTuplej

Algorithm 4.9: Indirect-Leader Trusting Mechanism: UpdateLeader() procedure.

Section 4.5. Implementing an Eventual Leader Service 83

Task 2, Task 3 andTask 4. Received ALIVE messages are processed in Task 2 (Lines 23-36).
First, it is checked whether the received message is the expected one in the sequence (based on
the epoch of the process and the last received message identi�er) in order to control omissions.
In case a gap in the sequence is detected, a PENDING message is sent to the sender reclaiming
omitted messages (which will be processed by the sender process in Task 3, Lines 37-40). In
case the received message is the expected one, communication state is set to TRUE (variable
CommInp[q]) and information about process q is processed (variables Commq and LeaderTupleq).
Finally, processing �nishes by resetting the timer associated with the timely delivery of ALIVE
messages from that process. Observe that this timer allows to control the timely delivery of
ALIVE messages. If an expected message from a process q is not received before its associated
timer expires, then process p will execute Task 4 (Lines 41-45), setting CommInp[q] to FALSE
and, thus, recalculating leadership.

Recall that every process p selects a leader based on its state and recollected information
about the state of the processes p is connected with. A process l is considered leader if: (i) l
is connected with a majority of processes, and (ii) l has the lowest rank (based on the number of
crash-recoveries and the number of disconnections from a majority).

This implementation is presented in the procedure UpdateLeader() in Algorithm 4.9, which we
will describe now. It is important to note that leader information is stored in a 3-tuple variable
composed of:

(1) identi�er of the process,

(2) number of epochs, and

(3) number of disconnections.

To distinguish this type of variables, the name of the variable includes the “Tuple” string, e.g.,
leaderTuplep . To denote a null leader, i.e., no leader, we use a NOLEADER constant, composed of
(⊥, 0, 0) (see procedure Initialization in Algorithm 4.7). Each process p manages a leaderTuplep
variable, which provides the output of the leader election service, i.e., leaderp . It also stores a
vector named LeaderOthersTuplep containing leaders selected by other processes (according to
the information extracted from received ALIVE messages). Process p is allowed to communicate
its leader `p to other processes in case p and `p are connected (condition implemented by the
variable leaderTupleToPropagatep).

UpdateLeader. The UpdateLeader procedure in Algorithm 4.9 contains the core imple-
mentation of the leader election mechanism (Lines 46-64). Procedure starts in Line 47 by
calculating the set of processes Cp process p is connected with (including itself). Then, the
variable disconnsp is incremented in case connectivity with a majority of processes has been
lost (the variable connectedWithMajorityp = TRUE indicates that process p was connected with
a majority of processes). The next step, in Line 53, consist of searching for the best leader; �rst
checking whether p itself is a leader candidate (see Line 53) and then evaluating the leader of

84 Chapter 4. Distributed Eventual Leader Election Service

every process connected to p (see Line 57). A temporary variable tempLeaderTuple is used to
avoid pointlessly changing the leaderTuplep variable. Observe that in Line 58, leaders of other
processes are discarded when are either ⊥ or p. The second case is due to the fact that p has
more updated information about itself than any other process has.

GetBestLeader. Leader selection criteria is modularized by the GetBestLeader function
(Lines 65-75), which analyses the information about two leaders and returns the best leader
between both of them. In our implementation a rank/punish is calculated for each leader
candidate based on its epoch and disconnection-from–majority counters. Finally, the function
returns the leader with the smallest punish or, in case of draw, the leader with the smallest
process identi�er.

4.5.3.3 Correctness of Algorithm

We now show the correctness proof for the Eventual Indirect-Leader Service, satisfying Def-
inition 2 and the properties of Section 4.3.1.1. All time instants considered in the proof are
assumed to be after every eventually up process has de�nitely recovered, and every eventually
down process has de�nitely crashed, and all its messages have been delivered, lost or omitted.
Also, the unknown bounds on processing time and on message communication delay apply to
the set CORE (C), as well as the eventual reliability of communication links.

Lemma 13. ∀p ∈ C8 eventually and permanently punishp will not change.

Proof. punishp is a variable composed of two values: epochp and disconnsp . We show that
eventually both values will remain stable. Recall that by de�nition every process p in C is
eventually up, which implies that eventually p will not recover again and, consequently, epochp
will not be updated any more (procedure Initialization in Figure 4.7). On the other hand, by
de�nition p will eventually and permanently communicate without omissions with a majority
of processes. Hence, eventually disconnsp will not change any more (since Line 51 will not be
executed). As a result, eventually punishp will not change any more for every p ∈ C . �

Lemma 14. There exists a process ` ∈ C such that ` will eventually and permanently have the
minimal punish value (and the lowest identi�er in case of draw) among all processes in C .

Proof. By Lemma 13 there exists a time after which punishp remains unchanged ∀p ∈ C . As a
consequence, there will eventually and permanently exist a process ` ∈ C with the minimal
punish` value forever (and smallest process identi�er in case of draw) among all processes in
C . �

Lemma 15. ∀q < C eventually and permanently either (1) q is eventually down or (2) punishq
increases in�nitely or (3) q is not connected with a majority of processes.

8Recall the de�nition of the set C in Section 4.3.1.1

Section 4.5. Implementing an Eventual Leader Service 85

Proof. If q < C then q is not eventually up or q is not eventually and permanently connected
with a majority of eventually up. In case q is not eventually up, q is either an eventually down
process, case (1) of the statement, or an unstable process. Unstable processes crash and recover
in�nite times, i.e., execute the Initialization procedure (Algorithm 4.7) in�nite times. As a result,
q will increment epochp variable in�nite times and, thus, punishp will be incremented forever,
i.e., case (2) of the statement. On the other hand, in case q is an eventually up process that
connects-and-disconnects from a majority forever, its disconnsp variable will be incremented
forever (see Line 52 in Figure 4.9) and, thus, punishp will be incremented forever, i.e., case (2) of
the statement. Finally, in case q eventually and permanently is not connected with a majority,
case (3) of the Lemma is ful�lled. �

Lemma16. Eventually and permanently∀p ∈ Π connectedwith amajority of processes punishp ≥
punish` .

Proof. By Lemma 14 ∀p ∈ C eventually and permanently punishp ≥ punish`. By Lemma 15,
∀q < C and connected with a majority its variable punishq will be increased forever and, thus,
eventually and permanently punishq > punish` . �

Remark. A process p considers itself as leader, i.e., leaderp = p in case (1) p is connected with a
majority of processes and (2) p has the smallest punish value among the leader candidates p is
connected with.

Lemma 17. Eventually and permanently leader` = `.

Proof. Since ` ∈ C , eventually and permanently ` will be connected with a majority of processes.
This way, when executing the UpdateLeader() procedure, ` will consider itself as a candidate
to be leader (Line 54). By Lemma 16, ` has better punish than any other leader candidate q is
compared with (See Lines 57–59), so leader` = `. �

Lemma 18. ∀p ∈ C eventually and permanently leaderp = `.

Proof. By Lemma 17 eventually and permanently leader` = `. By Task 1 ` will spread its
leadership to all processes and at least a majority of processes (recall that ` ∈ C) will receive
that information and consequently execute UpdateLeader(). By Lemma 16, eventually and
permanently every process p connected with ` will have leaderp = `. Additionally, every
process connected with ` is allowed to spread ` as leader (by using the leaderTupleToPropagateP
variable), so that all processes in C can be reached. �

Lemma 19. ∀q < C eventually and permanently leaderq = ` or leaderq = ⊥.

Proof. In case q is connected with a process p ∈ C then leaderq = ` (by Lemma 16). Con-
sequently, every process r < C connected with q will receive this information so eventually
and permanently leaderr = `. In case q does not receive any information about leadership,
leaderq = ⊥. �

86 Chapter 4. Distributed Eventual Leader Election Service

Theorem 4. The algorithm presented in Algorithm 4.7, 4.8 and 4.9 implements a eventual leader
election service (Omega in crash-recovery and omissive systems) satisfying De�nition 2, and ful-
�lls the properties of Section 4.3.1.1.

Proof. Follows directly from Lemmas 18 and 19. �

4.5.3.4 Constraints and Drawbacks

• The systematic use of stable storage can be very restrictive, regarding both space and
latency.

• System assumptions could be even weaker by incrementing the level of indirection when
propagating leadership among processes (n hops).

• Other practical measures could be considered such as process connectivity or the quality
of the majority of processes with which the analyzed process communicates well.

their net e�ect. However, it is possible to achieve a weaker model yet.

4.6 Chapter Summary

We believe that an eventual leader election service exhibits signi�cant advantages in dynamic
and highly fault tolerance scenarios, such as those in asynchronous systems. The aforemen-
tioned service allows boosting distributed consensus algorithms, e.g., Paxos. We can summarize
this chapter as follows:

• We provide a novel re-de�nition for the Omega failure detector based on a system model
de�ned previously, in which a process can su�er both crash-recovery and omission
failures at the same time, allowing some non-correct process to still agree on a common
leader, and thus, participate in consensus.

• We provide the properties for an eventual leader service based on the new de�nition
of the Omega failure detector in which processes can su�er both crash-recovery and
omission failures at the same time.

• We show the implementation of three eventual leader election algorithms for crash-
recovery and omission environments. The main di�erence between our algorithms and
other similar algorithms of this type available in the literature consists of the failure
handling strategy. Moreover, others handle crash and crash-recovery failure model,
where the omissions are treated in the same way as a crash or crash-recovery failure, or
omissions are not treated.

Section 4.6. Chapter Summary 87

– Regarding the eventual leader functionality. We presented a novels leader election
algorithm for crash-recovery and omission environments. The main novelty of the
algorithm is that it tolerates the occurrence of both types of failures to any process,
assuming that eventually, a majority of processes remain up and communicates
without omissions. It eventually provides a common leader to every eventually
up process able to eventually communicate without omissions with a majority of
processes, or a null value otherwise.

– Regarding the leadership capacity. The e�ects of process failures have a signi�cant
impact on their leadership capacity. Initially, we only considered in this rank a
punish value for every leadership-demoting failure type (crash-recovery, disconnec-
tion), which ensures that eventually unstable processes in terms of computability
or communication will eventually be discarded as the leader. Additionally, some
other (practical) measures could be considered, such as process connectivity or the
quality of the majority of processes with which the analyzed process communicates
well. For example, the works proposed in [AGSS13] for punishing too dynamic
behavior of processes or in [BJS11] to assign scores dependent on the application.

88 Chapter 4. Distributed Eventual Leader Election Service

5 | Conclusions and Future Work

In this work, we have studied how to solve the leader election problem in fault-tolerant
distributed systems with the purpose to solve the consensus problem. First, we have conducted
a performance study of consensus algorithms in crash-recovery and general omission failure
scenarios and, subsequently, we have proposed an eventual leader election service for distributed
systems.

Solving the distributed leader election problem is not easy since we have to cope with: (i) fault-
tolerant asynchronous systems, and (ii) the crash-recovery and general omission failure models.
Accordingly, we have speci�ed and implemented a distributed eventual leader election service
on partially synchronous systems, in which processes can su�er both crash-recovery and
omission failures at the same time.

In the following, we present the contributions of the work and identify directions for future
research.

5.1 Research Assessment

We believe that the present work has contributed to the state of the art of the eventual leader
election service in distributed systems in the following aspects:

Our experimental results have revealed that a leader election mechanism is more e�cient than a
rotating coordinator mechanism in order to solve the fault-tolerant distributed consensus problem.

First, we have analyzed the building blocks of two well-known distributed consensus
algorithms: Chandra-Toueg [CT96] and Paxos [Lam98, PLL00, Lam01]. Both consensus
algorithms have a comparable structure, i.e., they execute a sequence of rounds, each
round being composed of four phases. Nevertheless, these algorithms present an inherent
di�erence when having to determine who coordinates (Chandra-Toueg) or leads (Paxos)
in a particular round. Chandra-Toueg is based on the rotating coordinator mechanism,
while Paxos is based on a leader election mechanism. For this purpose, we conducted
several executions of both algorithms on a partially synchronous model. To evaluate their
e�ciency, we have analyzed the average early latency and average message complexity in
di�erent failure scenarios. Our results exhibit that Paxos is more e�cient than Chandra-
Toueg when the process which coordinates or leads one round su�ers a failure (crash,

89

90 Chapter 5. Conclusions and Future Work

omission, or crash-recovery). As a result, we can conclude that the leader election
mechanism that uses Paxos provides a signi�cant advantage in comparison with Chandra-
Toueg’s when running in faulty environments.

We have boosted the eventual leader election service as a component that enables the building
of fault-tolerant distributed applications.

We have worked on a consensus algorithm based on an eventual leader election service
since it allows to deal with more restricted scenarios regarding the computation and
communication capabilities. Accordingly, an eventual leader election service may be
used as a modular block to implement dependable distributed applications. Indeed,
several fault-tolerant distributed agreement algorithms rely on an eventual leader election
service in partially synchronous models. Besides, this service always preserves safety
and guarantee liveness as soon as a unique leader remains for su�ciently long in the
system [Gue00, GR04].

We have provided a novel de�nition of the Omega failure detector and the properties of a dis-
tributed eventual leader election service, which tolerates both crash-recovery and message omis-
sion failures at the same time.

Our proposal allows guaranteeing a distributed eventual leader election service that
copes with false suspicions, unstable processes, and selective omissions. Such failures can
a�ect the computation (crash-recovery) and communication (message omissions) between
processes. Therefore, we have presented a novel de�nition of the Omega failure detector,
denoted by Omeдacrash–recovery, omission. It is interesting to note that the de�nition allows
some incorrect processes still agree on a common leader. In this way, the processes can
participate as much as possible in solving the distributed agreement problem, such as the
uniform-consensus problem.

We have de�ned a weak system model of a distributed eventual leader election service.

We have presented a weak system model. This system model facilitates the speci�cation
and implementation of a distributed eventual leader election functionality. Such function-
ality enables a�ording to each process a distributed eventual leader election service on a
partially synchronous model, wherein the processes can su�er failures of crash-recovery
and omissions at the same time.

We have helped to better understand the relation between the di�erent types of failures and,
therefore, achieve a better view of their net e�ect on the system.

Section 5.2. Future Work 91

We have described the pitfalls of the de�ned system and how the proposal copes with them.
We have provided a distributed eventual leader election service to manage three mainly
di�culties; eventual synchrony, unstable processes due to crash-recovery and omissions
failures, and communication failures due to selective omissions.

We have presented an approach of a progressive weakening in the implementation of a dis-
tributed eventual leader election service.

We have presented three novel mechanisms to eventually trust the same non-faulty
process (the leader process), even if communications with the leader process are prone to
crash-recovery and omission at the same time, as long as eventually there is a majority
of eventually up processes that communicate without omissions with a majority of
eventually up processes. The proposed implementations satisfy the de�nitions and
properties previously speci�ed. They are as follows:

(i) An eventual leader election algorithm, wherein any process may su�er failures for-
ever, as long as a majority of processes meet some weak connectivity and reliability
conditions.

(ii) A communication-e�cient leader election algorithm, its communication pattern pro-
vides a �exible way to build overlay networks with a high ability of adaptation on
di�erent scenarios of failure.

(iii) An eventual leader election with indirect leader trusting mechanism, it allows that
even processes that su�er omissions with the leader may trust that leader, as long
as they eventually communicate without omissions with a majority of processes.

5.2 Future Work

We are interested in studying the weakest system model that allows implementing an eventual
leader election in fault-tolerant distributed systems. The above will allow us to specify and
implement new and novel services. Mainly, we are interested in working the following issues:

• A performance study of the distributed eventual leader election service in wireless sensor
network applications.

We believe that our algorithms can be used in devices that have a limited capacity
of computation, storage, and battery (i.e., Distributed Sensor Networks). Therefore,
we wish to carry out a new performance study of the proposed algorithms under
di�erent scenarios of failures. Through a practical comparison between the di�erent
implementations of the distributed eventual leader election service proposed in this
work, analyzing its performance experimentally.

92 Chapter 5. Conclusions and Future Work

• The chase of the weakest system model to implement a distributed eventual leader election
service.

We seek to boost e�cient communication in the di�erent approaches proposed for
an eventual leader election service. One way is improving the indirect-leadership
trusting mechanism, avoiding cycles of outdated, propagated information, which
could be implemented by using an additional timer for the leader. Additionally,
incrementing the level of indirection when propagating leadership among processes.
Additionally, other researching lines could be explored, such as addressing arbitrary
failures, and di�erent alternatives for membership in the processes of the system.

Bibliography

[AAH+85] Mack W. Alford, Jean-Pierre Ansart, Günter Hommel, Leslie Lamport, Barbara Liskov,
Geo� P. Mullery, and Fred B. Schneider, editors. Distributed Systems: Methods and Tools for
Speci�cation, An Advanced Course, April 3-12, 1984 and April 16-25, 1985 Munich, volume
190 of Lecture Notes in Computer Science. Springer, 1985.

[AAI+15] Sergio Arévalo, Antonio Fernández Anta, Damien Imbs, Ernesto Jiménez, and Michel
Raynal. Failure detectors in homonymous distributed systems (with an application to
consensus). J. Parallel Distrib. Comput., 83:83–95, 2015.

[ACT97] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Heartbeat: A timeout-free failure
detector for quiescent reliable communication. In Marios Mavronicolas and Philippas
Tsigas, editors, Distributed Algorithms, 11th International Workshop, WDAG ’97, Saarbrücken,
Germany, September 24-26, 1997, Proceedings, volume 1320 of Lecture Notes in Computer
Science, pages 126–140. Springer, 1997.

[ACT99] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Using the heartbeat failure detector
for quiescent reliable communication and consensus in partitionable networks. Theor.
Comput. Sci., 220(1):3–30, 1999.

[ACT00] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Failure detection and consensus in
the crash-recovery model. Distributed Computing, 13(2):99–125, 2000.

[ADFT04] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg.
Communication-e�cient leader election and consensus with limited link synchrony. In
Chaudhuri and Kutten [CK04], pages 328–337.

[ADFT08] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg.
On implementing omega in systems with weak reliability and synchrony assumptions.
Distributed Computing, 21(4):285–314, 2008.

[AGSS13] Luciana Arantes, Fabíola Greve, Pierre Sens, and Véronique Simon. Eventual leader election
in evolving mobile networks. In Roberto Baldoni, Nicolas Nisse, and Maarten van Steen,
editors, Principles of Distributed Systems - 17th International Conference, OPODIS 2013, Nice,
France, December 16-18, 2013. Proceedings, volume 8304 of Lecture Notes in Computer Science,
pages 23–37. Springer, 2013.

[AJR10] Antonio Fernández Anta, Ernesto Jiménez, and Michel Raynal. Eventual leader election
with weak assumptions on initial knowledge, communication reliability, and synchrony. J.
Comput. Sci. Technol., 25(6):1267–1281, 2010.

93

94 Bibliography

[And03] Ross J. Anderson. Cryptography and competition policy: issues with ’trusted computing’.
In Elizabeth Borowsky and Sergio Rajsbaum, editors, Proceedings of the Twenty-Second ACM
Symposium on Principles of Distributed Computing, PODC 2003, Boston, Massachusetts, USA,
July 13-16, 2003, pages 3–10. ACM, 2003.

[AS83] Gregory R. Andrews and Fred B. Schneider. Concepts and notations for concurrent pro-
gramming. ACM Comput. Surv., 15(1):3–43, 1983.

[AS85] Bowen Alpern and Fred B. Schneider. De�ning liveness. Inf. Process. Lett., 21(4):181–185,
1985.

[AS87] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed Com-
puting, 2(3):117–126, 1987.

[ATD99] Marcos Kawazoe Aguilera, Sam Toueg, and Borislav Deianov. Revising the weakest failure
detector for uniform reliable broadcast. In Jayanti [Jay99], pages 19–33.

[BBRP07] Roberto Baldoni, Marin Bertier, Michel Raynal, and Sara Tucci Piergiovanni. Looking
for a de�nition of dynamic distributed systems. In Victor E. Malyshkin, editor, Parallel
Computing Technologies, 9th International Conference, PaCT 2007, Pereslavl-Zalessky, Russia,
September 3-7, 2007, Proceedings, volume 4671 of Lecture Notes in Computer Science, pages
1–14. Springer, 2007.

[BCT96] Anindya Basu, Bernadette Charron-Bost, and Sam Toueg. Simulating reliable links with
unreliable links in the presence of process crashes. In Babaoglu and Marzullo [BM96],
pages 105–122.

[BFH+06] Zinaida Benenson, Felix C. Freiling, Thorsten Holz, Dogan Kesdogan, and Lucia Draque
Penso. Safety, liveness, and information �ow: Dependability revisited. In Wolfgang Karl,
Jürgen Becker, Karl-Erwin Großpietsch, Christian Hochberger, and Erik Maehle, editors,
ARCS 2006 - 19th International Conference on Architecture of Computing Systems, Workshops
Proceedings, March 16, 2006, Frankfurt am Main, Germany, volume 81 of LNI, pages 56–65.
GI, 2006.

[BHSS12] Fatemeh Borran, Martin Hutle, Nuno Santos, and André Schiper. Quantitative analysis of
consensus algorithms. IEEE Trans. Dependable Sec. Comput., 9(2):236–249, 2012.

[BJ87] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence of
failures. ACM Trans. Comput. Syst., 5(1):47–76, 1987.

[BJS11] Diogo Becker, Flavio Junqueira, and Marco Sera�ni. Leader election for replicated services
using application scores. In Fabio Kon and Anne-Marie Kermarrec, editors, Middleware 2011
- ACM/IFIP/USENIX 12th International Middleware Conference, Lisbon, Portugal, December
12-16, 2011. Proceedings, volume 7049 of Lecture Notes in Computer Science, pages 289–308.
Springer, 2011.

[BM93] Michael Barborak and Miroslaw Malek. The consensus problem in fault-tolerant computing.
ACM Comput. Surv., 25(2):171–220, 1993.

[BM96] Özalp Babaoglu and Keith Marzullo, editors. Distributed Algorithms, 10th International
Workshop, WDAG ’96, Bologna, Italy, October 9-11, 1996, Proceedings, volume 1151 of Lecture
Notes in Computer Science. Springer, 1996.

Bibliography 95

[Cas15] Arnaud Casteigts. Jbotsim: a tool for fast prototyping of distributed algorithms in dynamic
networks. In Proceedings of the 8nd international ICST conference on simulation tools and
techniques, SIMUTools’15, Athens, Greece, 2015.

[CB01] Bernadette Charron-Bost. Agreement problems in fault-tolerant distributed systems. In
Proceedings of the 28th Conference on Current Trends in Theory and Practice of Informatics
Piestany: Theory and Practice of Informatics, SOFSEM ’01, pages 10–32, London, UK, UK,
2001. Springer-Verlag.

[CBTB00] Bernadette Charron-Bost, Sam Toueg, and Anindya Basu. Revisiting safety and liveness in
the context of failures. In Catuscia Palamidessi, editor, CONCUR, volume 1877 of Lecture
Notes in Computer Science, pages 552–565. Springer, 2000.

[CFGA+12] Roberto Cortiñas, Felix C. Freiling, Marjan Ghajar-Azadanlou, Alberto Lafuente, Mikel
Larrea, Lucia Draque Penso, and Iratxe Soraluze. Secure Failure Detection and Consensus
in TrustedPals. IEEE Trans. Dependable Sec. Comput., 9(4):610–625, 2012.

[CGR11] Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. Introduction to Reliable and
Secure Distributed Programming (2. ed.). Springer, 2011.

[Che00] Zhiqun Chen. Java Card Technology for Smart Cards: Architecture and Programmer’s Guide.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[CHT96] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector
for solving consensus. Journal of the ACM, 43(4):685–722, 1996.

[CK04] Soma Chaudhuri and Shay Kutten, editors. Proceedings of the Twenty-Third Annual ACM
Symposium on Principles of Distributed Computing, PODC 2004, St. John’s, Newfoundland,
Canada, July 25-28, 2004. ACM, 2004.

[CKV01] Gregory Chockler, Idit Keidar, and Roman Vitenberg. Group communication speci�cations:
a comprehensive study. ACM Comput. Surv., 33(4):427–469, 2001.

[CRA14] C. Fernandez Campusano, R. Cortinas Rodriguez, and M. Larrea Alava. Boosting dependable
ubiquitous computing: A case study. IEEE Latin America Transactions, 12(3):442–448, May
2014.

[Cri96] Flaviu Cristian. Synchronous and asynchronous group communication. Commun. ACM,
39(4):88–97, 1996.

[CS04] Bernadette Charron-Bost and André Schiper. Uniform consensus is harder than consensus.
J. Algorithms, 51(1):15–37, 2004.

[CT96] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, 1996.

[CTA02] Wei Chen, Sam Toueg, and Marcos Kawazoe Aguilera. On the quality of service of failure
detectors. IEEE Trans. Computers, 51(1):13–32, 2002.

[CUB02] Andrea Coccoli, Péter Urbán, and Andrea Bondavalli. Performance analysis of a consensus
algorithm combining stochastic activity networks and measurements. In DSN, pages
551–560. IEEE Computer Society, 2002.

96 Bibliography

[DDS87] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism needed
for distributed consensus. J. ACM, 34(1):77–97, January 1987.

[DFG+04] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Vassos Hadzilacos, Petr
Kouznetsov, and Sam Toueg. The weakest failure detectors to solve certain fundamental
problems in distributed computing. In Chaudhuri and Kutten [CK04], pages 338–346.

[DGFF05] Carole Delporte-Gallet, Hugues Fauconnier, and Felix C. Freiling. Revisiting failure de-
tection and consensus in omission failure environments. In Dang Van Hung and Martin
Wirsing, editors, ICTAC, volume 3722 of Lecture Notes in Computer Science, pages 394–408.
Springer, 2005.

[DGFG+11] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Anne-Marie Kermarrec,
Eric Ruppert, and Hung Tran-The. Byzantine agreement with homonyms. In Proceedings
of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
PODC ’11, pages 21–30, New York, NY, USA, 2011. ACM.

[Dij65] Edsger W. Dijkstra. Solution of a problem in concurrent programming control. Commun.
ACM, 8(9):569, 1965.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974.

[DLS88] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, 1988.

[DSU04] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372–421, 2004.

[FCL13] Christian Fernández-Campusano, Roberto Cortiñas, and Mikel Larrea. Boosting dependable
ubiquitous computing: A case study. In Gabriel Urzaiz, Sergio F. Ochoa, José Bravo, Lim-
ing Luke Chen, and Jonice Oliveira, editors, Ubiquitous Computing and Ambient Intelligence.
Context-Awareness and Context-Driven Interaction - 7th International Conference, UCAmI
2013, Carrillo, Costa Rica, December 2-6, 2013, Proceedings, volume 8276 of Lecture Notes in
Computer Science, pages 42–45. Springer, 2013.

[FCL14a] Christian Fernández-Campusano, Roberto Cortiñas, and Mikel Larrea. A leader election
service for crash-recovery and omission environments. In Ramón Hervás, Sungyoung Lee,
Chris D. Nugent, and José Bravo, editors, Ubiquitous Computing and Ambient Intelligence.
Personalisation and User Adapted Services - 8th International Conference, UCAmI 2014, Belfast,
UK, December 2-5, 2014. Proceedings, volume 8867 of Lecture Notes in Computer Science,
pages 320–323. Springer, 2014.

[FCL14b] Christian Fernández-Campusano, Roberto Cortiñas, and Mikel Larrea. A performance
study of consensus algorithms in omission and crash-recovery scenarios. In 22nd Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2014,
Torino, Italy, February 12-14, 2014, pages 240–243. IEEE Computer Society, 2014.

[FFP+06] Milan Fort, Felix C. Freiling, Lucia Draque Penso, Zinaida Benenson, and Dogan Kesdogan.
Trustedpals: Secure multiparty computation implemented with smart cards. In Dieter
Gollmann, Jan Meier, and Andrei Sabelfeld, editors, ESORICS, volume 4189 of Lecture Notes
in Computer Science, pages 34–48. Springer, 2006.

Bibliography 97

[FGK11] Felix C. Freiling, Rachid Guerraoui, and Petr Kuznetsov. The failure detector abstraction.
ACM Comput. Surv., 43(2):9, 2011.

[FLCR15] Christian Fernández-Campusano, Mikel Larrea, Roberto Cortiñas, and Michel Raynal.
Eventual leader election despite crash-recovery and omission failures. In Guojun Wang,
Tatsuhiro Tsuchiya, and Dong Xiang, editors, 21st IEEE Paci�c Rim International Symposium
on Dependable Computing, PRDC 2015, Zhangjiajie, China, November 18-20, 2015, pages
209–214. IEEE Computer Society, 2015.

[FLCR16] Christian Fernández-Campusano, Mikel Larrea, Roberto Cortiñas, and Michel Raynal. A
communication-e�cient leader election algorithm in partially synchronous systems prone
to crash-recovery and omission failures. In Proceedings of the 17th International Conference
on Distributed Computing and Networking, Singapore, January 4-7, 2016, pages 8:1–8:4. ACM,
2016.

[FLCR17] Christian Fernández-Campusano, Mikel Larrea, Roberto Cortiñas, and Michel Raynal. A
distributed leader election algorithm in crash-recovery and omissive systems. Inf. Process.
Lett., 118:100–104, 2017.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[FSS05] Christof Fetzer, Ulrich Schmid, and Martin Süßkraut. On the possibility of consensus in
asynchronous systems with �nite average response times. In 25th International Conference
on Distributed Computing Systems (ICDCS 2005), 6-10 June 2005, Columbus, OH, USA, pages
271–280. IEEE Computer Society, 2005.

[Gär99] Felix C. Gärtner. Fundamentals of fault-tolerant distributed computing in asynchronous
environments. ACM Comput. Surv., 31(1):1–26, 1999.

[GHM+99] Rachid Guerraoui, Michel Hur�n, Achour Mostéfaoui, Rui Carlos Oliveira, Michel Raynal,
and André Schiper. Consensus in asynchronous distributed systems: A concise guided tour.
In Sacha Krakowiak and Santosh K. Shrivastava, editors, Advances in Distributed Systems,
Advanced Distributed Computing: From Algorithms to Systems, volume 1752 of Lecture Notes
in Computer Science, pages 33–47. Springer, 1999.

[GL00] Eli Gafni and Leslie Lamport. Disk paxos. In Maurice Herlihy, editor, DISC, volume 1914 of
Lecture Notes in Computer Science, pages 330–344. Springer, 2000.

[GL08] Rachid Guerraoui and Nancy A. Lynch. A general characterization of indulgence. TAAS,
3(4):20:1–20:19, 2008.

[GR04] Rachid Guerraoui and Michel Raynal. The Information Structure of Indulgent Consensus.
IEEE Transactions on Computers, 53(4):453–466, 2004.

[GR06] Rachid Guerraoui and Michel Raynal. A leader election protocol for eventually synchronous
shared memory systems. In The Fourth IEEE Workshop on Software Technologies for Future
Embedded and Ubiquitous Systems and the Second International Workshop on Collaborative
Computing, Integration, and Assurance, SEUS 2006 / WCCIA 2006, Gyeongju, South Korea,
April 27-28, 2006, pages 75–80. IEEE Computer Society, 2006.

98 Bibliography

[Gue95] Rachid Guerraoui. Revistiting the relationship between non-blocking atomic commitment
and consensus. In Jean-Michel Hélary and Michel Raynal, editors, Distributed Algorithms,
9th International Workshop, WDAG ’95, Le Mont-Saint-Michel, France, September 13-15, 1995,
Proceedings, volume 972 of Lecture Notes in Computer Science, pages 87–100. Springer, 1995.

[Gue00] Rachid Guerraoui. Indulgent algorithms (preliminary version). In Gil Neiger, editor,
Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing,
July 16-19, 2000, Portland, Oregon, USA., pages 289–297. ACM, 2000.

[Gue02] Rachid Guerraoui. Non-blocking atomic commit in asynchronous distributed systems with
failure detectors. Distributed Computing, 15(1):17–25, 2002.

[Gue08] Rachid Guerraoui. Failure detectors. In Encyclopedia of Algorithms. Springer-Verlag New
York, 2008.

[Had90] Vassos Hadzilacos. On the relationship between the atomic commitment and consensus
problems. In Proceedings of the Asilomar Workshop on Fault-Tolerant Distributed Computing,
pages 201–208, London, UK, UK, 1990. Springer-Verlag.

[HMR98] Michel Hur�n, Achour Mostéfaoui, and Michel Raynal. Consensus in asynchronous systems
where processes can crash and recover. In The Seventeenth Symposium on Reliable Distributed
Systems, SRDS 1998, West Lafayette, Indiana, USA, October 20-22, 1998, Proceedings, pages
280–286. IEEE Computer Society, 1998.

[HT93] Vassos Hadzilacos and Sam Toueg. Distributed systems (2nd ed.). In Sape Mullender, editor,
Distributed Systems, chapter Fault-tolerant broadcasts and related problems, pages 97–145.
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1993.

[HUSK02] Naohiro Hayashibara, Péter Urbán, André Schiper, and Takuya Katayama. Performance
comparison between the paxos and chandra-toueg consensus algorithms. In Proc. of
International Arab Conference on Information Technology, Doha, Qatar, pages 526–533, 2002.

[HW05] Jean-François Hermant and Josef Widder. Implementing reliable distributed real-time
systems with the Theta-model. In James H. Anderson, Giuseppe Prencipe, and Roger
Wattenhofer, editors, Principles of Distributed Systems, 9th International Conference, OPODIS
2005, Pisa, Italy, December 12-14, 2005, Revised Selected Papers, volume 3974 of Lecture Notes
in Computer Science, pages 334–350. Springer, 2005.

[JAT15] Ernesto Jiménez, Sergio Arévalo, and Jian Tang. Fault-tolerant broadcast in anonymous
systems. The Journal of Supercomputing, 71(11):4172–4191, 2015.

[Jay99] Prasad Jayanti, editor. Distributed Computing, 13th International Symposium, Bratislava,
Slovak Republic, September 27-29, 1999, Proceedings, volume 1693 of Lecture Notes in Computer
Science. Springer, 1999.

[JT08] Prasad Jayanti and Sam Toueg. Every problem has a weakest failure detector. In Rida A. Bazzi
and Boaz Patt-Shamir, editors, Proceedings of the Twenty-Seventh Annual ACM Symposium
on Principles of Distributed Computing, PODC 2008, Toronto, Canada, August 18-21, 2008,
pages 75–84. ACM, 2008.

[Küp13] Alptekin Küpçü. Distributing trusted third parties. SIGACT News, 44(2):92–112, 2013.

Bibliography 99

[LAA13] Mikel Larrea, Antonio Fernández Anta, and Sergio Arévalo. Implementing the weakest
failure detector for solving the consensus problem. IJPEDS, 28(6):537–555, 2013.

[LAF99] Mikel Larrea, Sergio Arévalo, and Antonio Fernández. E�cient algorithms to implement
unreliable failure detectors in partially synchronous systems. In Jayanti [Jay99], pages
34–48.

[Lam74] Leslie Lamport. A new solution of dijkstra’s concurrent programming problem. Commun.
ACM, 17(8):453–455, 1974.

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans. Software
Eng., 3(2):125–143, 1977.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, July 1978.

[Lam79] Leslie Lamport. A new approach to proving the correctness of multiprocess programs.
ACM Trans. Program. Lang. Syst., 1(1):84–97, 1979.

[Lam80] Butler W. Lampson. Atomic transactions. In Distributed Systems - Architecture and Imple-
mentation, An Advanced Course, pages 246–265, 1980.

[Lam96] Butler W. Lampson. How to build a highly available system using consensus. In Babaoglu
and Marzullo [BM96], pages 1–17.

[Lam98] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, 1998.

[Lam01] Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25, 2001.

[Lam06a] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

[Lam06b] Leslie Lamport. Lower bounds for asynchronous consensus. Distributed Computing,
19(2):104–125, 2006.

[Lap87] Jean-Claude Laprie. The dependability approach to critical computing systems. In Howard K.
Nichols and Dan Simpson, editors, ESEC ’87, 1st European Software Engineering Confer-
ence, Strasbourg, France, September 9-11, 1987, Proceedings, volume 289 of Lecture Notes in
Computer Science, pages 233–243. Springer, 1987.

[Lap92] Jean-Claude Laprie. Dependability: A unifying concept for reliable, safe, secure computing.
In Jan van Leeuwen, editor, Algorithms, Software, Architecture - Information Processing
’92, Volume 1, Proceedings of the IFIP 12th World Computer Congress, Madrid, Spain, 7-11
September 1992, volume A-12 of IFIP Transactions, pages 585–593. North-Holland, 1992.

[LFA00] Mikel Larrea, Antonio Fernández, and Sergio Arévalo. Optimal implementation of the
weakest failure detector for solving consensus. In SRDS, pages 52–59, 2000.

[LFA04] Mikel Larrea, Antonio Fernández, and Sergio Arévalo. On the implementation of unreliable
failure detectors in partially synchronous systems. IEEE Trans. Computers, 53(7):815–828,
2004.

[LM04] Leslie Lamport and Mike Massa. Cheap paxos. In DSN, pages 307–314. IEEE Computer
Society, 2004.

100 Bibliography

[LMA11] Mikel Larrea, Cristian Martín, and Iratxe Soraluze Arriola. Communication-e�cient leader
election in crash-recovery systems. Journal of Systems and Software, 84(12):2186–2195,
2011.

[LMZ09] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Vertical paxos and primary-backup
replication. In Srikanta Tirthapura and Lorenzo Alvisi, editors, Proceedings of the 28th
Annual ACM Symposium on Principles of Distributed Computing, PODC 2009, Calgary,
Alberta, Canada, August 10-12, 2009, pages 312–313. ACM, 2009.

[LRAC12] Mikel Larrea, Michel Raynal, Iratxe Soraluze Arriola, and Roberto Cortiñas. Specifying and
implementing an eventual leader service for dynamic systems. IJWGS, 8(3):204–224, 2012.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1996.

[MA06] Jean-Philippe Martin and Lorenzo Alvisi. Fast byzantine consensus. IEEE Trans. Dependable
Secur. Comput., 3(3):202–215, July 2006.

[MAK13] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more consensus
in egalitarian parliaments. In Michael Kaminsky and Mike Dahlin, editors, SOSP, pages
358–372. ACM, 2013.

[ML10] Cristian Martín and Mikel Larrea. A simple and communication-e�cient omega algorithm
in the crash-recovery model. Inf. Process. Lett., 110(3):83–87, 2010.

[MLJ09] Cristian Martín, Mikel Larrea, and Ernesto Jiménez. Implementing the omega failure
detector in the crash-recovery failure model. J. Comput. Syst. Sci., 75(3):178–189, 2009.

[MMR02] Achour Mostéfaoui, Eric Mourgaya, and Michel Raynal. An introduction to oracles for
asynchronous distributed systems. Future Generation Comp. Syst., 18(6):757–767, 2002.

[MOZ05] Dahlia Malkhi, Florian Oprea, and Lidong Zhou. Omega meets paxos: Leader election and
stability without eventual timely links. In Pierre Fraigniaud, editor, DISC, volume 3724 of
Lecture Notes in Computer Science, pages 199–213. Springer, 2005.

[MR01] Achour Mostéfaoui and Michel Raynal. Leader-based consensus. Parallel Processing Letters,
11(1):95–107, 2001.

[MRT+05] Achour Mostéfaoui, Michel Raynal, Corentin Travers, Stacy Patterson, Divyakant Agrawal,
and Amr El Abbadi. From static distributed systems to dynamic systems. In 24th IEEE
Symposium on Reliable Distributed Systems (SRDS 2005),26-28 October 2005, Orlando, FL,
USA, pages 109–118. IEEE Computer Society, 2005.

[MRT06] Achour Mostéfaoui, Michel Raynal, and Corentin Travers. Time-free and timer-based
assumptions can be combined to obtain eventual leadership. IEEE Trans. Parallel Distrib.
Syst., 17(7):656–666, 2006.

[OO14] Diego Ongaro and John K. Ousterhout. In search of an understandable consensus algorithm.
In Garth Gibson and Nickolai Zeldovich, editors, 2014 USENIX Annual Technical Confer-
ence, USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014., pages 305–319. USENIX
Association, 2014.

Bibliography 101

[PLL00] Roberto De Prisco, Butler W. Lampson, and Nancy A. Lynch. Revisiting the PAXOS
algorithm. Theor. Comput. Sci., 243(1-2):35–91, 2000.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228–234, 1980.

[PT86] Kenneth J. Perry and Sam Toueg. Distributed agreement in the presence of processor and
communication faults. IEEE Trans. Software Eng., 12(3):477–482, 1986.

[Ray97] Michel Raynal. A case study of agreement problems in distributed systems: Non-blocking
atomic commitment. In 2nd High-Assurance Systems Engineering Workshop (HASE ’97),
August 11-12, 1997, Washington, DC, USA, Proceedings, pages 209–214. IEEE Computer
Society, 1997.

[Ray05] Michel Raynal. A short introduction to failure detectors for asynchronous distributed
systems. SIGACT News, 36(1):53–70, 2005.

[Ray07] Michel Raynal. Eventual leader service in unreliable asynchronous systems: Why? how?
In Sixth IEEE International Symposium on Network Computing and Applications (NCA 2007),
12 - 14 July 2007, Cambridge, MA, USA, pages 11–24. IEEE Computer Society, 2007.

[Ray10] Michel Raynal. Communication and Agreement Abstractions for Fault-Tolerant Asynchronous
Distributed Systems. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, 2010.

[Ray13] Michel Raynal. Distributed Algorithms for Message-Passing Systems. Springer, 2013.

[Ray14] Michel Raynal. What can be computed in a distributed system? In Saddek Bensalem, Yassine
Lakhnech, and Axel Legay, editors, From Programs to Systems. The Systems perspective in
Computing - ETAPS Workshop, FPS 2014, in Honor of Joseph Sifakis, Grenoble, France, April
6, 2014. Proceedings, volume 8415 of Lecture Notes in Computer Science, pages 209–224.
Springer, 2014.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

[Sch93] Fred B. Schneider. Distributed systems (2nd ed.). In Sape Mullender, editor, Distributed
Systems, chapter What Good Are Models and What Models Are Good?, pages 17–26. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1993.

[SCL+11] Iratxe Soraluze, Roberto Cortiñas, Alberto Lafuente, Mikel Larrea, and Felix C. Freiling.
Communication-e�cient failure detection and consensus in omission environments. Inf.
Process. Lett., 111(6):262–268, 2011.

[SDS01] Nicole Sergent, Xavier Défago, and André Schiper. Impact of a failure detection mechanism
on the performance of consensus. In PRDC, pages 137–145. IEEE Computer Society, 2001.

[SL84] Fred B. Schneider and Leslie Lamport. Paradigms for distributed programs. In Mack W. Al-
ford, Jean-Pierre Ansart, Günter Hommel, Leslie Lamport, Barbara Liskov, Geo� P. Mullery,
and Fred B. Schneider, editors, Distributed Systems: Methods and Tools for Speci�cation, An
Advanced Course, April 3-12, 1984 and April 16-25, 1985 Munich, volume 190 of Lecture Notes
in Computer Science, pages 431–480. Springer, 1984.

102 Bibliography

[SM95] Laura S. Sabel and Keith Marzullo. Election vs. consensus in asynchronous systems.
Technical report, Cornell University, Ithaca, NY, USA, 1995.

[SS83] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: An approach to designing
fault-tolerant computing systems. ACM Trans. Comput. Syst., 1(3):222–238, August 1983.

[TS06] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles and Paradigms
(2Nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[UHSK04] Péter Urbán, Naohiro Hayashibara, André Schiper, and Takuya Katayama. Performance
comparison of a rotating coordinator and a leader based consensus algorithm. In SRDS,
pages 4–17. IEEE Computer Society, 2004.

[VR01] Paulo Verissimo and Luis Rodrigues. Distributed Systems for System Architects. Kluwer
Academic Publishers, Norwell, MA, USA, 2001.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS,
pages 160–164. IEEE Computer Society, 1982.

[ZWD+14] Lei Zou, Zidong Wang, Hongli Dong, Yurong Liu, and Huijun Gao. Time-and event-driven
communication process for networked control systems: A survey. In Abstract and Applied
Analysis, volume 2014. Hindawi Publishing Corporation, 2014.

	Abstract
	Acknowledgement
	Preface
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Aim of the Thesis

	Contributions
	Thesis Outline

	Background
	Distributed Systems
	Concurrent and Distributed Computing
	Safety and Liveness Properties
	Types of Distributed Systems

	System Models for Distributed Systems
	Processes
	Distributed Algorithms
	Communication Links
	Time and Timing Models
	Process Failure Models
	The Environment and Non-Determinism

	Distributed Agreement Problems
	The Non-Blocking Atomic Commitment Problem
	The Consensus Problem
	The Eventual Leader Election Problem

	Unreliable Failure Detectors
	Properties of Failure Detectors
	Failure Detector Classes
	The Omega Failure Detector
	The Notion of Failure Detector Reduction
	Approaches to Implementing Failure Detectors

	Building Blocks for Fault-Tolerant Applications

	A Performance Study of Consensus Algorithms
	The Study Context
	An Overview of the Considered Consensus Algorithms
	Chandra-Toueg's Algorithm
	Lamport's Paxos Algorithm
	Some Points of Comparison between both Algorithms
	Both Algorithms Solve Fault-Tolerant Agreement

	Case Study: Improving the TrustedPals Framework
	Solving Yao's Millionaire's Problem
	A Proposal for Improving TrustedPals
	System Model and Assumptions
	Architecture of TrustedPals
	Obtaining Om From a Simple Reduction of Pom
	A Novel Design of Architecture for TrustedPals

	A Practical Comparison of both Consensus Algorithms
	Related Studies
	Simulations

	Experimental Results
	Impact of Scalability on Average Latency
	Understanding the Behavior of Average Latency
	System under Multiple Simultaneous Failures

	Chapter Summary

	Distributed Eventual Leader Election Service
	Leader Election in Distributed Systems
	Synchrony and Failure Models
	Resilience to both Crash-Recovery and Omissions Failures
	About the Detectability of Failures
	Failure Detection and Leader Election
	Communication Efficiency

	System Model and Assumptions
	Specifying an Eventual Leader Election Service
	From to an Eventual Leader Election Functionality

	Difficulties Underlying System Model Assumptions
	Implementing an Eventual Leader Service
	Basic Eventual Leader Election
	Communication-Efficient Eventual Leader Election
	Indirect-Leader Trusting Mechanism

	Chapter Summary

	Conclusions and Future Work
	Research Assessment
	Future Work

	References

