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Abstract: The derailment mechanism in a railway vehicle is a complex mechanical phenomenon 

which has been, and still is, the subject of intense research activity due to the serious 

consequences it can entail. Since Nadal deduced his well-known formula, many researchers have 

put forward alternative equations which all attempt to move closer to data obtained 

experimentally. This paper provides a summary of the best known, and draws up a new 

formulation based on the theoretical 3-D study of creep forces emerging in contact on the wheel 

likely to derail. It also provides an in-depth analysis of the role played by spin creepage, 

including its effect on obtaining theoretical derailment limits which are more realistic than those 

obtained using Nadal’s formula. Finally, a new derailment criteria is proposed. This new criteria 

leads to less conservative values than Nadal’s equation for zero yaw angles. When the yaw angle 

is high enough, the results obtained are coincident with those predicted by Nadal’s equation.  

 

Keywords: Whel/Rail contact; Flange climb; Spin creepage. 

 

1. Introduction 

There are many lines of research in connection with railway dynamics, although the 

importance of one such line is enhanced by its direct effect on human safety: the analysis 

and study of the causes of derailment. Fortunately very few derailments actually occur, and 

this makes trains one of the safest means of transport. Nevertheless, every time a derailment 

leads to the loss of human life, news of such events have an enormous impact on public 

opinion, jeopardising that feeling of safety which it is important for passengers to have with 

regard to travelling by train. This is why it is important to reduce the risk of derailment as 

much as possible for both passenger transit and freight trains (the latter are frequently used 

to transport hazardous materials). 

The derailment mechanism occurs when the wheel flange makes contact with the rail 

edge, a certain amount of adherence appears, and the wheel climbs right up the rail 

neutralizing the steering system. In 1896 Nadal [1] established his famous simple equation 

setting out a limit relationship between lateral force and vertical force (L/V) which may be 

transmitted to a wheel without engendering any risk of derailment. The formula depends 

solely on the friction coefficient between the wheel and the rail, and the angle of the wheel 

flange, and is used as at least an initial or basic reference by railway authorities worldwide 

[2]. 

Nadal obtained his equation on the basis of calculation hypotheses which, it is now 

known, are not completely true, and can be improved. There is a general perception, 

observed by a large number of experimental measurements, that Nadal’s formula is rather 

conservative [3-8]. Tests have been performed in which derailment occurred for a forces 

quotient much greater than the limit envisaged in the equation [3,9]. The reason for 

discrepancies between experimental measurements and the theoretical formula is that the 
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risk of derailment actually depends on other important factors such as the wheelset’s yaw 

angle or duration of lateral force. 

This has prompted a number of researchers in recent years to establish alternative 

improved formulae, which take into account not only the friction coefficient and the angle 

of the flange, but also one or more of the above mentioned factors [10-16]. These equations 

attempt to predict more accurately the actual risk of derailment at any given moment. 

Modern research focuses on the one hand on analysing the influence of certain factors on 

the risk of derailment, and on the other on adding these factors to a single mathematical 

equation for a more realistic definition of the risk of derailment. The use of this new 

equation in dynamic simulation will help establish to a greater degree of precision the safety 

of a vehicle’s movements as analysed under differing conditions, and thus optimise its 

design. This type of safety would be computed as the margin from L/V existing at each 

given moment to the L/V limit value at that moment. 

The main objective of this paper is to draw up a new formulation for the derailment limit 

L/V, based exclusively on a theoretical study of the forces emerging in wheel-rail contact in 

the moments preceding derailment. This new formulation establishes the same (L/V)lim  than 

Nadal’s equation when the yaw angle of the wheelset is high, while allows an increase of 

this limit when the yaw angle is low or negative. This is coherent with experimental 

measurements [3,14], where derailment occurred for higher values of L/V than those 

predicted by Nadal’s equation when the yaw angle is small. 

2. Derailment limits in railway dynamics 

2.1 Nadal’s equation 

In 1896 Nadal drew up his well known elegant equation [1], establishing a limit 

relationship between lateral force and vertical force which may be transmitted to a wheel 

with no risk of derailment. Nadal’s formula is based on the equilibrium of forces acting on 

the wheel in the moments prior to derailment (figure 1). The lateral and vertical forces 

transmitted to the wheel are known as L and V respectively. N and Ty are the reactive forces 

which emerge on the wheel’s contact with the rail in the normal and tangential direction. 

Drawing up the equilibrium of lateral and vertical forces, the following emerges: 

 

δδ cossin yTNL −=              (1) 

δδ sincos yTNV +=              (2) 

 

where δ is the angle of the flange. When these two expressions are divided up by sides, the 

following is then obtained: 
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Nadal assumes that the most unfavourable situation arises when tangential force Ty is at 

its maximum, since this assists with derailment. According to Coulomb’s theory, the 

maximum Ty force which can arise in contact cannot be greater than the product of the static 
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friction coefficient µ and the normal force, and this situation is known as the saturation 

condition (equation 4): 

 

NTy  max µ=      (4) 

 

Replacing this value in expression (3) leads to the following: 

 

δµ
µδ

tan 1

tan

+
−=

V

L
       (5) 

 

which is the equation established by Nadal, where δ represents the wheel’s maximum 

contact angle, which will match that of the flange, and µ  represents the friction coefficient 

between the flange and the rail, which may differ from that of other areas on the wheel. 

Nadal’s formulation is widely studied in the bibliography, as for example in references 

[6,17]. 

N

Τy
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δ

 
Figure 1.   Equilibrium of forces on the wheel in the moments prior to derailment. 

 

The importance of the Nadal criterion lies in that it furnishes a limit value for the lateral 

force which may be applied to the wheel, below which there is a guarantee that the flange 

cannot climb up the head of the rail, and therefore derailment will not take place. Nadal’s 

limit must be understood as a guaranteed minimum value, but it does not necessarily 

provide a realistic value indicating the real proximity of derailment. 

Henceforth considering the type of derailment due to the climbing flange, Nadal’s 

formula is quite conservative, mainly because it considers a lateral tangential force Ty as 

completely saturated in contact, when this is not actually the case. The possible existence of 

a longitudinal component of tangential force Tx would reduce the maximum value which 

could be attained by Ty, since according to Coulomb’s law the total tangential force cannot 

be greater than the saturation limit: 

 

NTT yx  
22 µ≤+         (6) 
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Moreover, if the situation set out in figure 1 is analysed, where the wheelset yaw angle is 

zero, when the wheel derails it climbs up the rail, thereby causing upward creepage. Not 

only the tangential force which emerges from this lateral creepage is not a maximum 

ascending force, as shown in the figure, but it would be a descending force opposing the 

slide. This situation is much more favourable in terms of preventing the risk of derailment 

than that set out in figure 1, and this would explain the result that the data obtained 

experimentally for small yaw angles indicate much higher limits than those obtained using 

Nadal’s equation. 

Nadal in fact thought that the wheel climbed at a forward contact point with respect to 

the wheel’s vertical diametral section, and this only happens when the wheelset’s yaw angle 

is not zero. Furthermore, in this situation, at the forward contact point an ascending 

tangential force tends to emerge on the wheel due to the wheel’s own rolling movement, and 

this assists derailment (figure 2). Nadal’s theory establishes that, whatever this force finally 

is, it may never be greater than µ Ν and will not have an inclination greater than the flange 

of the wheel measured on the vertical diametral plane. 

2.2 Alternative formulations 

In recent years a number of researchers have come up with alternative formulations or 

formulations as complements to Nadal’s limit in order to establish derailment risk indicators 

more in touch with reality [6]. Experimentation has proved, for instance, that for derailment 

to take place it is necessary that the lateral force applied to the wheel be maintained for a 

certain period of time, and certain theories add to Nadal’s limit by establishing minimum 

periods of time during which the lateral force must be maintained for derailment to take 

place [11]. Others attempt to consider the same effect by envisaging a minimum distance 

travelled by the vehicle with a lateral force on the wheel greater than Nadal’s limit [14]. 
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Figure 2.   Three situations in the flange contact scenario. a) Lead contact (positive angle of attack), b) radial 

position (zero angle of attack) and c) lag contact (negative angle of attack). 
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Some of the additional parameters included to establish more accurate derailment limits, 

apart from the friction coefficient and the flange angle, are as follows: 

• The wheelset yaw angle. This is a basic input datum since, as demonstrated in the 

previous section, the limit obtained using Nadal’s formula may be quite conservative for 

zero or negative yaw angles. 

• The friction coefficient on the wheelset’s other wheel. 

• The reduction of the vertical force applied to the wheel with respect to the nominal value. 

• The value of the longitudinal tangential force. 

The major parameter to be taken into consideration, omitted in Nadal’s equation, must 

surely be the wheelset’s angle of attack. This is certainly an indicator which may easily be 

evaluated in a dynamic simulation of the vehicle [18-20]. It could also be obtained on 

properly instrumented vehicles and track. The influence of the yaw angle on possible 

derailment is very high, and so it must be considered in ride safety estimations [20]. The 

graphs in figure 3 represent the L/V forces quotient for which a wheel derails in relation to 

the wheelset yaw angle, obtained both by theoretical expressions and by measured data. 

Experimental values have been taken from [3], and only the minimum value of the quotient 

obtained for each yaw angle has been drawn. Theoretical values correspond to Elkins&Wu 

criteria [12], and to the TCRP report 71 proposed criteria [14].  As may be observed, in all 

cases, for small yaw angles derailment occurs with high L/V values (significantly greater 

than Nadal’s theoretical limit), while as the yaw angle increases, the L/V value decreases to 

converge towards Nadal’s limit. Other researchs also show the same tendency comparing 

experimental measurements with dynamic simulations [5,9,21]. 
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Figure 3.   Value of the L/V quotient for which derailment occurs in relation to the yaw angle, as per 

experimental measurements and theoretical limits. 
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3. Analysis of creepage forces in 3-D 

The forces involved in Nadal’s limit (L and V) are represented on a Cartesian coordinate 

system xyz linked to the track, which moves longitudinally at the same speed as the vehicle 

(figure 4). The longitudinal axis x follows the direction of the track, the y axis is the lateral 

direction over the track plane, and axis z is perpendicular to both. If there is no 

superelevation, the z axis will be vertical. 

An initial auxiliary Cartesian system is defined as attached to the wheelset, xwywzw, the 

result of rotating the global system around the z axis at angle ψ. This ψ  is the wheelset’s 

yaw angle so that yw axis is the direction of the wheelset’s revolving shaft. 

A second auxiliary system of coordinates is positioned at the wheel-rail contact point, 

x’y’z’ (figure 5). In this system, the z’ axis is normal to the contact plane, the x’ axis is 

tangential to the rolling circle, and the y’ axis is perpendicular to the other two in such a way 

that this forms a clockwise system. Figure 5 also shows the orientation of the axes in this 

second auxiliary system if the contact point is not over the wheel’s vertical diametral 

section. Denoting ∆ as the contact point distance with respect to the vertical diametral plane 

over the xw axis, ξ is the angle rotated by the x’y’z’ system around the yw axis. An angle δ 

(the contact angle) is then rotated around the x’ axis. Figures 4 and 5 show the directions 

taken as positive for all axes. 

ψ

ψ

x

y

z

xw

yw

zw

V

O

Ow

 
Figure 4.   The xyz global reference system and the reference system attached to the wheelset, xwywzw. 
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Figure 5.   a) The reference system associated with the contact point. b) A forward contact point with respect 

to the wheel’s vertical diametral section. 
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The transformation matrix A between global system and the system associated with 

contact, in consideration of the rotations effected, is as follows: 
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senA   (7) 

 

Thus, in order to express in the global system a vector v’ defined in the contact-associated 

system, it must be multiplied by matrix A transposed: 

 

v' Av
T=        (8) 

 

The reactive force r emerging on the wheel’s point of contact with the rail has two 

components: the normal component N, which has normal direction to the contact plane z’, 

and the tangential component t. This in turn may be broken down into the two directions 

defining the contact tangential plane (x’ y’) to obtain Tx and Ty. When r is defined in the 

contact-associated system, the following is obtained: 

 

z'   y'   x' r' NTT yx ++=      (9) 

 

Subsequently, therefore, to obtain the 3 components of the contact force within the global 

system, which is where the forces quotient will be computed, the following transformation 

must be made: 

'rAr T=       10) 

 

Considering equilibrium of the wheel, the reactive force on the contact r is equal and 

opposite to the force transmitted to the wheel, f, including inertia forces. If the three 

components of this force in the global system are H, L and Z, z  y   x  f ZLH ++= . 

Considering that the vertical component of the force used in Nadal’s equation V is oriented 

in the negative direction of z, V = -Z. These equalities lead to the following expressions: 

 

)sinsincossin(cos)cossinsinsin(cos)cos(cos δψδξψδψδξψξψ −+++−= NTTH yx
(11) 

)cossinsinsin(cos)sinsinsincos(cos)cos(sin δξψδψδξψδψξψ ++−−−= NTTL yx  (12) 

)cos(cos)sin(cos)(sin δξδξξ NTTV yx ++=       (13) 

 

Drawing up the (L/V) forces quotient using the above equations, a new derailment limit is 

obtained which not only depends on the contact angle δ, but also on the wheelset’s yaw 

angle ψ and on the forward position of the contact point, represented by the angle ξ. Since 

these expressions are deduced in a system of coordinates linked to the track, they are 

independent of the track cant angle and can be used when the vehicle is negotiating a curve. 

The friction coefficient, which does not appear explicitly in the equations, is introduced by 

assuming saturation of the tangential force in the contact according to expression (6). If the 

tangential force is saturated, the components Tx and Ty are not independent. In order to study 

the influence of each of them on derailment, new coefficients are defined: 
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T

T
t x
x =       

T

T
t y
y =            (14) 

 

which represent the rate of tangential creep force emerging in direction x’ and direction y’ 

respectively, where T is the modulus of the total tangential force. 

For calculation of the derailment coefficient, it is assumed that the most unfavourable 

situation is a saturated tangential force (maximum force), since its two components Tx and 

Ty assist derailment: Ty due to its ascending vertical component (figure 1), and Tx because, if 

the contact point is in a forward position, this also creates an ascending vertical component 

(figure 2). Thus the saturation condition is: 

 

1
22 =+ yx tt      (15) 

 

While the contact angle δ can reach high values on the flange, angles ψ and ξ are always 

very small in railway dynamics. Although even these small values have a great influence on 

the vehicle’s dynamics, the practical influence of including these angles in Nadal’s 

coefficient is quite low. To demonstrate this, the variation of this coefficient (L/V) has been 

set out for non-zero values of the angles, drawn up separately for the sake of clarity. Thus, 

initially a zero value is assigned to ξ in expressions (12) and (13), and when the tx and ty 

coefficients are introduced the following is obtained: 

 

)sin(cos)cos(cos)(sin δψδψψ NTtTtL yx +−−=    (16) 

)(cos)(sin δδ NTtV y +=            (17) 

 

Assuming the saturation condition, division of the two forces gives the derailment 

coefficient in relation to the yaw angle: 

 

1tan

cos

sin
coscostan

)/(
+

−−
=

δµ
δ

ψµψµψδ

y

x

y

t

t
t

VL        (18) 

 

Here it should be noted that tx and ty are not independent, and are related by the saturation 

condition (15). If this function is represented for specific values of δ and µ (figure 6), it may 

be observed that the derailment limit is lower when the yaw angle is larger. Moreover, it is 

obvious that the limit also decreases with lower values of tx, since this involves a greater 

value of ty, which promotes the derailment, as mentioned above. When tx and ψ are zero, the 

value obtained is the same as that obtained by Nadal, since it represents the same situation. 

The following conclusions may be drawn from figure 6: 

• The variation in the derailment coefficient due to the yaw angle, considering its effect on 

the spatial decomposition of forces on the contact is extremely small. In rail simulations 

it is unusual that this will reach values of ψ = 4º. 

• When tx is zero (lateral force Ty saturated), the influence of the yaw angle is not 

appreciable. In fact, as may be observed in equation (18), there is a term which includes 

cos ψ in the numerator, but since this angle is very small, it is very close to 1. This means 
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that the influence of angle ψ is observed due to the lateral component of longitudinal 

force Tx, and more so the greater the yaw angle. This formulation takes no account of the 

greater effect of a large yaw angle, which is the emergence of lateral creepage on the 

wheel, extremely unfavourable in terms of derailment. Thus the influence of ψ is 

insignificant. Section 6 will include this effect in the paper’s final formulation. 
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Figure 6.   Variation of L/V in relation to the tx, parameter for two different yaw angles, in accordance with 

equation (18), assuming δ = 70º and µ = 0.3. 

 

To study the influence of a contact point in a forward position with respect to the wheel’s 

vertical diametral section, a zero value is assigned to ψ and, as in the previous case, the 

following expressions are obtained for L and V: 

 

)(sin)(cos δδ NTtL y +−=                   (19) 

)cos(cos)sin(cos)(sin δξδξξ NTtTtV yx ++=     (20) 

 

It should be noted that in reality if the yaw angle ψ is zero, it is not possible for the 

contact point to be in a forward position with respect to the wheel’s vertical diametral 

section. However, the intention is to analyse the influence of the ξ parameter on the (L/V) 

quotient, and so it is more clear to assign a zero value to the yaw angle in order to separate 

both effects. Bearing in mind that tx and ty are dependents as per equation (15), (L/V) is now: 

 

δ
ξµξδµ

µδ

cos

sin
 cos)tan1(

tan
)/(

xy

y

tt

t
VL

++

−
=         (21) 

 

Figure 7 shows equation (21) in relation to tx, for 3 values of angle ξ. Logically, the limit 

(L/V) decreases as this angle becomes greater, and the differences are more significant than 
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in the case above. It may also be observed that the value converges towards Nadal’s limit 

for values tx = 0. One of the most interesting conclusions drawn from a study of figure 7 is 

that, when the forward position of the contact point is considered, the zero value of tx is no 

longer that which provides a minimum value for L/V. This effect is accentuated as angle ξ 

increases. The phenomenon may be explained by the fact that when the contact point is in 

the forward position, a vertical component of force Tx assists derailment. For small values of 

tx, force Ty barely decreases with respect to the saturated value, while an extra vertical 

component appears due to Tx, and so the global situation is more unfavourable than if tx were 

0. 
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Figure 7.   Variation of L/V in relation to parameter tx, for 3 different values of angle ξ, as per equation (21), 

assuming δ = 70º and µ = 0.3. 

 

In the case of both angle ψ and angle ξ, they have very little influence on L/V as 

observed in the above results. Furthermore, analysis of the case in which tx = 0 (when lateral 

force is at its maximum) shows that this variation is practically non-existent. This 

contradicts the experimental results, where it is observed that the influence of the yaw angle 

is considerable. The explanation lies in the fact that if this parameter is used only for 

geometric decomposition of the forces at contact, this avoids the major repercussion of the 

yaw angle in derailment: the emergence of substantial lateral creepage.  

It may also be observed that when yaw angle ψ = 0, the L/V limit value obtained is the 

same as Nadal’s limit, and so this case does not match experimental results, where it has 

been observed that in these situations the limit is greater. 

In the light of these results, the method proposed in this paper to obtain a more realistic 

derailment limit is based on the following steps: 

• Study of the creep forces emerging on the contact when the wheelset’s yaw angle is zero, 

obtaining a theoretical value of the L/V limit greater than Nadal’s limit. 

• Correction of the limit obtained for the case where ψ = 0, based on the lateral creepage 

value emerging with yaw angles other than zero. 
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4. Derailment coefficient for the case of a zero yaw angle 

Figure 8 shows the situation of a wheel in contact with the flange when the wheelset’s yaw 

angle is zero. There are many theories to calculate creep forces on the basis of creepage 

[17,22-25], and these are distinguished in particular by the level of accuracy obtained and 

computational effort. Normally these two objectives are counterpoised. 

N

Τφ

V

L

δ

ΤL

or

V=Ω

δsin
or

V

 
Figure 8.   Forces on the wheel in a derailment situation, when the wheelset’s yaw angle is zero. The figure 

shows the two components of lateral force Ty and the wheelset rotation vector Ω. 

 

Kalker’s linear theory [26], for instance, considers longitudinal force Tx and lateral force 

Ty in accordance with the following expressions: 

 

xx CbaGT ν )   ( 11−=        (22) 

φν  )    ( )   ( 2322 CbabaGCbaGT yy −−=          (23) 

 

where νx, νy and φ are longitudinal, lateral and spin creepage, G is the shear modulus, a and 

b are the semi-axes of the contact ellipse, and Cii the creep coefficients. Kalker’s linear 

theory is only true when creepages are very low. In the moments prior to derailment, when 

contact moves to a position over the wheel flange, obviously this condition is not fulfilled, 

and these expressions are not valid. 

However, Kalker’s linear equations may be used to demonstrate a behaviour pattern 

which is maintained when creepages become larger: while longitudinal force depends only 

on longitudinal creepage, lateral force depends on both spin and lateral creepage. Moreover, 

each force is uncoupled with respect to creepages of the other force, and the only mutual 

influence which may be exerted is in a saturation situation, when an increase in one force 

must necessarily lead to a reduction in the other to maintain Coulomb’s limit. 

Although in cases where creepage is great Ty can no longer be considered as a mere sum 

between two terms as in (23), its global value may be decomposed into two virtual 

components to represent the influence of both νy and φ. Denoting TL as the Ty component 
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supposedly created by νy, and Tφ the component created by φ, figure 8 shows these forces 

acting on the wheel. 

If the yaw angle is zero, the only lateral creepage νy which can emerge on the wheel is 

that produced by lateral sliding of the wheel on the rail, when the wheelset is moving in a 

lateral direction. If it is assumed that the wheel is derailing, this sliding is in the upward 

direction, thereby creating a descending force TL to oppose derailment. The most 

unfavourable situation is therefore considering that this lateral creepage νy does not exist or, 

which comes to the same thing, that the wheel is commencing derailment. In a worst-case 

scenario, the only tangential force which ought to be considered for derailment is the lateral 

force created by spin, Tφ.  
When wheel-rail contact is on the flange, the spin is considerable due to the contact 

angle. Spin creepage is calculated as the angular velocity of the wheel in normal direction to 

the contact divided by the nominal velocity of the vehicle V. Due to the inclination of the 

flange, there is a large component of wheelset rotation velocity Ω on the normal direction to 

contact, as figure 8 shows. Denoting ro as the wheel’s nominal rolling radius, rotation 

velocity may be annotated as Ω = V/ro. The Ω component normal to the contact plane is 

divided by forward velocity V to obtain spin creepage: 

 

o

o

rV

r
V

δδ
φ sin

sin

−=
−

=      (24) 

 

As may be observed, spin is independent of the vehicle’s speed, and depends only on the 

contact angle and the wheel’s nominal rolling radius. Its negative direction along axis z’ 

creates a lateral force Tφ in the positive direction y’, as shown in figure 8. 

The objective to be considered now is to determine the maximum value of lateral force 

Tφ, since under normal conditions it will not be as high as the Coulomb limit sustained by 

Nadal, and so the derailment limit may be increased. 

To study maximum creepage forces and generalise the results, normalised creepage 

values are used in accordance with the following expressions: 
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The contact forces are also normalised with respect to their maximum value: 
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Thus the expressions in Kalker’s linear theory (equations 22 and 23) now become: 
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thereby obtaining a relationship independent of the contact parameters. 

For computation of tangential forces in this paper the FASTSIM subroutine was used 

[27], which obtains more accurate results than other theories. The subroutine discretises the 

contact ellipse in rectangular cells, and the resultant forces are obtained as the sum of those 

emerging in each cell – to this end, it is first determined whether the cell is in an adherence 

zone or a slide zone. In this paper the contact ellipses were discretised in 100 x 100 cells for 

accurate results. 

The utilisation of FASTSIM assumes that contact between wheel and rail is hertzian, and 

that therefore the area of contact between wheel and rail is an ellipse. Although that is not 

true when the wheel makes contact with the rail in an intermediate zone between the thread 

and the flange, since it is a conformal contact, it is considered sufficiently approximate for 

the case of contact with the flange (non-conformal contact), which is the case arising from a 

study of derailment. 

Hertzian theory is based on certain hypothesis that are never completely fulfilled in the 

case of wheel-rail contact, but it is well known that provides good results in railway 

dynamics when the wheel-rail contact is non-conformal (the size of the contact ellipse is 

much smaller than the radii of curvature of the bodies), and when the geometry of the 

profiles vary in a smooth way near the contact area [17,25]. That is the reason (besides the 

low computational cost) why Hertz's theory is so widely used in railway dynamics [28-31]. 

There are some situations in which this assumptions are no longer valid, for example when 

the contact occurs in the transition between the wheel thread and the flange (conformal 

contact), or, in the case of certain profiles, even when then contact point is located on the 

wheel thread, like is the case of the ORE-S1002 wheel and UIC-60 rail [32]. The geometry 

of the profiles can't be considered quadratic functions near the contact point in this case, and 

the real contact area is not an ellipse. A contact patch with a shape similar to an “8" appears, 

with two maximum normal stresses in different locations [32]. More advanced theories have 

been developed trying to solve all of these cases. 

Actually, when analysing the forces in the moments prior to derailment, the contact point 

is located on the wheel’s flange. In this situation, and taking into account the curvatures of 

the bodies mentioned before, the size of the contact area is smaller than the radii of 

curvature of the bodies in each principal direction. In addition, on the wheel’s flange there 

are not substantial changes of the profile geometry (it is a linear section). Therefore, the 

profiles can be approximated by quadratic functions near the contact area, and the 

curvatures remain constant along the contact patch. That is the reason why it can be 

considered that the contact area in the moments prior to derailment is an ellipse, according 

to the Hertz’s theory. 

Figure 9 shows how the normalised lateral tangential force fy varies in accordance with 

normalised spin φ’. Since, when spin is considered, the eccentricity of the contact ellipse 

exerts its influence on the result, figure 9 shows a number of curves, each of which 

represents different eccentricities of the contact ellipse. Ellipse eccentricity is defined as the 

quotient between its longitudinal and lateral semi-axes: σ = a/b. Zero creepages in the 

longitudinal and lateral directions were considered to obtain these graphs. 
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Figure 9.   Non-dimensional lateral force fy in relation to normalised spin for 4 different eccentricities of the 

contact ellipse. A circle marks a typical point in rail dynamics. 

 

The first thing observed in figure 9 is that force fy obtains a maximum value when φ’ 
equals 1, and subsequently decreases for greater values of φ’. This is because when spin is 

low, all or a large part of the contact ellipse is an adherence zone, and the lateral forces 

created by spin are orientated in the same direction [17,26]. With more spin, part of the 

contact ellipse is a slide zone, and stresses at these points are saturated. The upshot of this is 

that there is a zone to the rear of the ellipse where lateral stress emerge in opposition to the 

stress at the front of the zone, reducing the overall resultant force. The greater the spin and 

the slide zone, the greater this reduction. The value φ’ = 1 is, in fact, that which creates 

lateral stress close to saturation at all points on the ellipse’s central longitudinal line. If only 

these points are considered ( ∞→ba / ), the lateral force obtained with φ’ = 1 is the 

maximum permitted by Coulomb’s law (fy = 1). However, as the ellipse becomes less 

eccentric, stresses also emerge in the longitudinal direction due to spin, and these reduce 

lateral stresses in slide zones. This reduction explains the fact that, for eccentricity values 

which are not so high, lateral force does not reach the maximum value established by 

Coulomb.  

Since, therefore, this maximum value is considerably less than 1 for small eccentricities, 

one may consider the possibility of establishing this value as an upper limit for the lateral 

tangential force in computation of the derailment coefficient. Unfortunately when contact 

appears on the wheel flange, the contact ellipse which emerges has substantial eccentricity. 

That is why the upper value of force fy cannot be efficiently set using this procedure, since 

the maximum values for the curves showing high eccentricities are close to 1 (indicating 

complete saturation). 

A wheel of nominal rolling radius 425 mm and a rail head with corner radius 13 mm may 

be considered (both these values are common in rail dynamics). The curvature of the rail in 

the longitudinal direction is zero, as is the curvature of the wheel in the transversal direction 

(the flange corresponds to a straight section of the profile). Also, the wheel’s curvature 
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radius must be corrected by dividing it by the cosine of the contact angle δ, in order to 

obtain the main radius of curvature in accordance with the orientation of the flange (figure 

10). Thus, taking a flange angle of 70º (another typical value), the wheel’s curvature radius 

in the longitudinal direction is 425 mm / cos 70º = 1,243 mm at the contact point 

(disregarding the small increase in rolling radius when the contact point is located on the 

flange, with respect to the nominal radius), while that of the rail in the transversal direction 

is 13 mm. This considerable difference in curvatures means that, according to Hertz’s 

theory, the contact ellipse is substantially prolonged in the longitudinal direction. 

Specifically, using these data the value of σ in this case is 18.7. 

 

δ
r

r / cos δ

rrail = 13 mm

 
Figure 10.   Radii of curvature of the rail and the wheel when flange contact occurs. 

 

Moreover, the value of spin calculated by means of equation (24) with ro = 0.425 and δ = 

70º is 2.21. Normalising this in accordance with expression (27), a spin φ’ of 9.29 is finally 

obtained (taking µ = 0.3, G = 82 x 10
9
 N/m

2
, and Poisson coefficient 0.28). This value for φ’ 

and its corresponding force fy (0.41) are represented by a circle in figure 9. As may be 

observed, the value of the resultant force is considerably lower than 1. This means that the 

lateral force cannot reach full saturation, and so the derailment limit will be greater than that 

predicted by Nadal. Taking the data from this example, assuming a value of fy = Ty/µN = 

0.41 in equation (3) the following is obtained: 

 

δµ
µδ

tan41.01

41.0tan

+
−=

V

L
          (31) 

 

which, with δ = 70º and µ = 0.3, provides a limit value of 1.96, as against the original 1.34 

in accordance with expression (5). This theoretical value obtained for a typical rail vehicle 

case and zero yaw angle provides a good match with experimental data [5]. 

The next step is to generalise this limit value of fy, in such a way that it cannot be 

exceeded whatever the characteristics of the vehicle and the track. 

Figure 9 shows that, in the case of great eccentricities of the contact ellipse, the curve 

tends to converge towards a higher limit value. Since the most unfavourable situation 

corresponds to the highest value of fy, the reference curve taken is that corresponding to 

eccentricity of σ = 600, assuming it is a value which is sufficiently large not to produce 

variations with greater eccentricities. In fact, the differences with respect to the curves for σ 



16                                              Influence of creep forces on the risk of derailment coefficient                                               

 

= 18.7 and σ = 9.4 are very small. Figure 11 shows this limit curve providing the maximum 

value of fy in relation to φ’. 
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Figure 11.   Normalised lateral force in relation to normalised spin, for eccentricity of contact ellipse σ = 600. 

 

When the limit curve has been defined, the objective is to set the value of normalised 

spin φ’. Figure 11 shows that, for values of φ’ greater than 1, the most unfavourable 

situations arise when spin is minimum, since this is close to the curve maximum. Thus the 

task consists of determining the minimum value which φ’ may reach in accordance with the 

characteristics of the vehicle. According to expression (27), and introducing the value of 

spin as per (24), this value depends on: 

 

roN

GCabab δ
µ

φ sin
' 23=              (32) 

 

According to Hertz’s theory, the contact ellipse’s semi-axes a and b are proportional to 

N
1/3

, and so the value of φ’ is independent of the normal force N. The quotient: 

 

 
N

ababL =           (33) 

 

depends only on the eccentricity of the contact ellipse, the curvatures of the bodies in 

contact, and the proportionality constant (function of the material’s elasticity constants). 

Since the eccentricity of the ellipse also depends on the curvatures of bodies in contact, this 

dependency may be exclusively reduced to the curvatures of the bodies. 

Furthermore, as set out in this section, in the case of flange contact there are only two 

non-zero curvatures, one of which corresponds to the corner of the rail, and this may be 

considered a constant in the study, equal to 0.013
-1 

m
-1

. This value is independent of the rail 

inclination. It is possible that, due to wear, this curvature will eventually be lower than the 
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nominal value, but in this case the situation it would lead to would be less unfavourable 

since the eccentricity of the ellipse would also decrease. 

To sum up, the quotient L depends only on the curvature radius of the wheel at the 

flange, which in turn depends on the rolling radius of the wheel ro and the contact angle δ. 

The Kalker coefficient C23 varies with the eccentricity of the contact ellipse which, as has 

been observed, in this case only depends on ro and δ. Thus there are only 3 vehicle 

parameters which could effect changes in the value of φ’: δ, ro and µ. When expression (32) 

is rewritten, the following is obtained: 

 

µ
δφ ),(

' orK
=            (34) 

 

It is obvious that a high friction coefficient leads to lower normalised spins, increasing 

the risk of derailment. With respect to the other two parameters, higher values of the flange 

angle δ clearly have favourable repercussions, since they increase the value of φ’. For one 

thing, the term sinδ is greater, and they also bring about an increase in the wheel’s curvature 

radius, and therefore in the eccentricity of the ellipse. Bearing in mind that the term C23 

increases with this eccentricity, δ also increases φ’ through this term. 

With respect to the influence of value ro, its repercussion is not quite so clear since it 

creates opposing effects. It increases the wheel’s curvature radius, and thus the eccentricity 

of the ellipse and the term C23. It also reduces spin, since ro emerges in the denominator of 

equation (32). 

Figure 12 represents the value of the K(δ,ro) coefficient in relation to the rolling radius ro, 

for different flange angles δ. The influence of the wheel’s rolling radius on normalised spin 

is relatively minor in comparison to δ or µ. Figure 12 shows that  the variation of coefficient 

K with ro is low, but very significant with δ. 
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Figure 12.   Values of coefficient K in relation to ro, for different flange angles δ. 
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Table1.   Minimum values of coefficient K for different flange angles, considering a range of rolling radii ro 

0.05 m to 2 m. 

δ 45º 50º 55º 60º 65º 70º 75º 80º 85º 

Kmin 0.8502 1.0029     1.2321    1.5112     1.8682     2.3836     3.3489     5.1085    10.2867 

 

Since lower values of φ’ are the most unfavourable and since coefficient K shows little 

variation with ro, the procedure is to take the minimum value of coefficient K for the entire 

range of possible rolling radii for the wheel. This makes the coefficient independent of ro, 

erring on the side of safety, with no excessive penalisation of the derailment coefficient 

(since this coefficient is relatively constant with ro). The range of rolling radii considered 

was ro = 0.05 m to ro = 2 m, in order to cover all the possible values in rail dynamics. Table 

1 shows the results of these minimum K coefficients. 

A new coefficient K1 is defined with these minimum values of K, in such a way that it is 

independent of the value of ro. Equation (34) may be drawn up as follows: 

 

µ
δφ )(

' 1K=          (35) 

 

It should be noted that in this formulation the only parameters involved in the problem 

are the flange angle δ and the friction coefficient µ, the same parameters as Nadal’s 

criterion. As an alternative to table 1, equation (36) may be used to obtain coefficient K1 

(where δ is entered in degrees). Equation (36) was calculated by fitting a double exponential 

expression to the data in table 1 using least squares. Figure 13 represents the fit. 
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Figure 13.   The coefficient K1 in relation to flange angle δ, calculated using FASTSIM. The unbroken line 

represents the exponential fit according to equation (36). 
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Once the value of φ’ is known, equation (37) is used to find the approximate value of fy: 

 
)1'(2.0 )3.09.0(31.0 −−−+= φef y             (37) 

 

Equation (37) has been obtained by fitting an exponential expression to the data in figure 

11. Finally, the limit value of the (L/V) quotient is obtained by adding the value of fy 

obtained through equation (37) to equation (3): 
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5. Derailment coefficient for the general case of a non-zero yaw angle 

5.1 Calculating normalised lateral forces 

When the wheelset is rotated at yaw angle ψ with respect to the direction of the track, 

lateral creepage νy appears at the wheel/rail contact point. This creepage is due to the 

forward movement of the wheelset which, since it runs along the track, forms an angle ψ 

with respect to the wheelset’s xw axis, and therefore with respect to the wheel plane (figure 

2). The lateral force TL produced by νy has a positive orientation with respect to the y’ axis, 

and so this is unfavourable in terms of derailment. 
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Figure 14.   Normalised lateral force in relation to normalised spin for different values of normalised lateral 

creepage, where σ = 600 and νx = 0. Circles show the forces for normalised spin 9.33, a typical value in rail 

dynamics. 

 

Figure 14 represents the normalised tangential force fy in relation to normalised spin 

creepage φ’, for different values of normalised lateral creepage νy’. Unlike the case of 
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normalised spin, the relationship between fy and νy’ is univocal when the other creepages are 

zero. In other words, there is only one curve which relates fy to νy’ when νx = 0 and φ = 0, 

with no dependence on the eccentricity of the ellipse or any other parameter. To obtain the 

curves shown in figure 14, the most unfavourable case was considered in terms of 

eccentricity of the contact ellipse (σ = 600), and zero longitudinal creepage (νx = 0). 

As lateral creepage νy’ increases, lateral force fy also increases. The initial value, i.e. the 

lowest curve νy’ = 0, corresponds to that obtained in the previous section, when the yaw 

angle is zero. It is thus important to correct this initial value, and increase it in relation to the 

lateral creepage νy’ present at contact. Figure 15 shows the increase in normalised lateral 

force fy in relation to normalised lateral creepage νy’, for different values of normalised spin 

creepage φ’. The initial point on each curve is the value of fy calculated in the previous 

section for the case ψ = 0. 
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Figure 15.   Normalised lateral force fy in relation to normalised lateral creepage νy’, for different values of 

normalised spin creepage φ’ between 2 and 12. 

 

As figure 15 shows, the lower the value of normalised spin φ’, the greater the initial value 

of force fy and the greater its increase with lateral creepage νy’. It is also observed that the 

curves increase asymptotically up to the limit value of 1. The value of lateral force fy 

corresponding to zero lateral creepage νy’ is denoted as  fyo obtained in the previous section. 

Figure 15 corrects this value fyo in relation to lateral creepage νy’.  
Alternatively, equation (39) may be used, which provides this value in consideration of 

the value of spin φ’ and lateral creepage νy’. To obtain equation (39), each curve in figure 15 

has been approximated by two straight lines. The first straight line has the same slope (m) as 

the original curve at its initial point. The second represents saturation, and so it is horizontal 

with fy = 1. As figure 15 shows, the initial section of each curve is comparable to a straight 

line, and the error incurred with intermediate creepages is low and always on the side of 

safety, since the straight line provides higher values for lateral force fy than the original 
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curve. In addition, taking into account that fy value needs to be evaluated in each integration 

step or measurement point, this linear approximation provides a very efficient equation in 

terms of computational cost. 
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The expression of slope m in (39) was obtained by using an exponential function to fit 

the values of initial gradients m in relation to normalised spin φ’. Figure 15 shows how these 

initial gradients decrease as φ’ increases. Figure 16 represents these slopes in relation to spin 

φ’, and compares them to the fitting obtained with equation (39). The criterion followed was 

an attempt to properly fit the interval of spins from 2 to 25, the most commonly used in 

railway dynamics but assuring at the same time that for any value of the normalized spin, 

the result of the approximation is conservative, higher than the result obtained with 

FASTSIM. The kind of approximation that best achieves both goals is an exponential 

equation as (39), where the function descends asymptotically to a lowest limit (0.07 in this 

case) but always above the values corresponding to the highest normalized spins. As it can 

be seen in figure 16, the fitting is excellent for common spin values, and on the safe side for 

greater spin values. The criterion of considering only spins greater than 2 was also 

employed. As seen in the previous section, it is extremely improbable that spin will ever be 

so low, and since for these spin values one is considering an initial value of fyo in such close 

proximity to 1, it is not worthwhile correcting it. The assumption in these limit cases is that 

force fy is totally saturated. Figure 17 compares the results obtained from the straight-line 

approximation in equation (39) with respect to the original curves. The greatest differences 

emerge for small normalised φ’ values when force fy approaches saturation. 
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Figure 16.   Initial slopes for curves fy – vy’ in figure 15 in relation to normalised spin φ’(broken line). The 

figure also shows fitting of m in accordance with expression (39) (unbroken line). 
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Here it is important to point out that calculation of the slope in accordance with 

expression (39) need only be carried out once, at the beginning of experimental 

measurements or dynamic simulation. As explained in the previous section, the value of φ’ 
required to calculate fyo and m (equation 39) depends only on flange angle δ and the friction 

coefficient µ. Both these data are established at the commencement of the process, and so 

both φ’ and fyo are known from the outset. To calculate fy at a given moment while the 

vehicle is in motion, only the straight-line equation shown in the first equation in (39) is 

needed. The most costly operation in expression (39) in terms of computation time is the 

calculation of slope m. However, as said before, this calculation is performed only once, and 

it is not necessary to repeat the calculation while the vehicle is in motion. 
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Figure 17.   Approximation of fy curves in relation to νy’ (unbroken lines) by straight lines (broken lines). The 

graph shows three specific cases of normalised spin creepage φ’. 

 

5.2 Calculating normalised lateral creepage 

Once maximum lateral force fy, modified in accordance with normalised lateral creepage 

νy’, has been obtained, the last step is to obtain lateral creepage νy’ in relation to the 

wheelset’s yaw angle. Lateral creepage νy appearing in contact at a certain time depends on 

many factors, such as the vehicle’s velocity, position of the contact point, the wheelset’s 

lateral velocity and, of course, the yaw angle. When considering the derailment situation, 

two hypotheses are assumed which simplify the calculation of creepage in this limit 

situation: 

• Contact is on the wheel flange. 

• The wheelset does not have lateral velocity. When the wheel is derailing, the wheelset’s 

lateral velocity causes creep in opposition to derailment, and so it is considered that the 
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most unfavourable situation is that in which the wheelset’s lateral velocity is zero (quasi-

static equilibrium of forces). 

Under these conditions (contact on the flange and quasi-static wheelset equilibrium), and 

assuming that the yaw angle is known, it is possible to determine lateral creepage and the 

contact point’s forward position with respect to the wheel’s vertical diametral section. In the 

case of a conical wheel profile, the contact point’s forward position, represented by angle 

ξ in figure 5, may be determined theoretically by imposing the tangency of the wheel and 

rail surfaces on contact. This angle ξ depends only on the cone angle δ and the yaw angle ψ, 

and can be calculated by the following equation: 

 

ψδξ tantansin =      (40) 

 

A real wheel profile is obviously a long way from being perfectly conical. When a real 

vehicle is actually moving, or during a computer simulation, in general one cannot predict 

the longitudinal position of the contact point based on the contact angle [33], and it is 

necessary to conduct a detailed 3D geometric analysis of the profiles involved. However, in 

the moments prior to derailment, or while derailment is occurring, it is known that the 

contact point is located on the wheel flange. The flange constitutes a perfectly conical 

section of the wheel. All wheel profiles have a linear section that constitutes the inside face 

of the flange. This linear section usually has a great inclination (60º-70º) in order to avoid 

the derailment of the wheel. If the contact occurs in this section, as is the case in the 

moments prior to derailment, one can predict the location of the contact point in the 

longitudinal direction using tangency conditions. The rest of the geometry of the wheel 

profile doesn’t cause any influence if the contact point is located on the flange. In the case 

of a worn wheel, the linear section of the profile could disappear due to wear. The most 

unfavourable situation for this case is to consider the maximum contact angle of the wheel 

profile, since this produces the maximum forward separation of the contact point in 

longitudinal direction, and therefore, a higher lateral creepage. 

With respect to the value of lateral creepage νy, the calculation is performed in due 

consideration of the new forward position of the contact point due to the conicity of the 

flange. In quasi-static conditions, and on a conical surface area, this value is calculated in 

accordance with expression (41): 
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where it must be observed that this creepage is considered in the contact reference system. 

Other researchers [3] use a more complex expression to calculate lateral creepage, in due 

consideration of the contact point’s forward position. If expression (40) is used to obtain this 

position, both formulations are equivalent for small yaw angles. 

In accordance with equation (26), by introducing expression (41) normalised lateral 

creepage νy’ may be considered as:  
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As may be observed, creepage logically depends on the yaw angle ψ, where the relation 

is linear for small angles (as is almost always the case in rail dynamics). It also depends, as 

in Nadal’s limit and the calculation of fyo, on flange angle δ and friction coefficient µ, the 

two main parameters involved in calculating the risk of derailment. 

The term 
3

2

22

N

abC
does not depend on normal force since, as stated, the contact ellipse’s 

semi-axes (a and b) vary with N
1/3

. This term depends on the eccentricity of the ellipse, 

which in turn depends on the curvature radii of the contact surfaces, the influence of which 

may be reduced, as observed in the previous section, to ro and δ. The coefficient 

representing this term is denoted as C1, and it is defined by the following equation: 
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in such a way that normalised lateral creepage νy’, in due consideration of equation (42), is 

now considered as follows: 
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Finally, and perhaps most importantly, normalised lateral creepage νy’ depends on the 

normal force in contact N, which was not the case for calculation of normalised spin φ’. As 

observed in equation (44), normal force emerges in the denominator to the power (1/3), and 

so the value of νy’ is not actually bounded. If normal force N tends towards zero, because 

the wheel is undergoing dynamic discharge when the vehicle is in motion, for instance, 

creepage νy’ will tend towards infinity, for any non-zero yaw angle. This means that lateral 

force fy will be completely saturated, and the derailment limit will be the same as Nadal’s 

limit. In practice, with non-zero normal forces, what happens is that the value of this normal 

force exerts a great influence on the speed with which the lateral force fy becomes saturated 

as the yaw angle becomes larger. Small normal forces lead to saturation of the lateral force 

with smaller yaw angles, and so from the point of view of derailment risk this is 

unfavourable. 

Once normalised lateral creepage in relation to all the parameters affecting the problem 

has been established in equation (44), the only task remaining is to determine the value of 

coefficient C1. Figure 18 represents the value of coefficient C1 in relation to the nominal 

rolling radius ro, for certain values of flange angle δ. To obtain these curves, G = 82 MPa 

has been considered, a curvature radius for the rail head in the transversal direction of 0.013 

m, and ro/cos δ  as the curvature radius for the wheel in the longitudinal direction (the 

remaining curvatures are zero). 

The curves shown in figure 18 are quite rectilinear, although with a certain amount of 

convexity. Also, as may be observed in this figure, the higher slopes correspond to curves 

providing higher values of coefficient C1. The ratio between slopes and C1 values remains 

relatively constant for the various flange angles. In order to obtain the best results for values 

of the parameters most characteristic of rail dynamics, adjustment of the curves in figure 18 

is carried out considering the range of ro rolling radii between 0.2 and 0.7 metres. Figure 19 
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shows coefficient C1 for this new range of values, where it may be observed that the curves 

are practically straight sections. 
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Figure 18.   Coefficient C1 in relation to nominal rolling radius ro, for different values of flange angle δ. 

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

r

C

o (m) 

1 

δ = 50º 

δ = 60º 

δ = 70º 

δ = 80º 

 
Figure 19.   Values of coefficient C1 over the range of rolling radii between 0.2 m and 0.7 m, for 4 different 

values of flange angle. The broken lines show the fit obtained using rectilinear approximation. 

 

The first and last values of the curves in figure 19 are used to calculate the gradients of 

the straight-line approximations. Thus, since this covers a more or less broad range of ro 
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values, singularities are avoided and smoother results are produced. With a flange angle δ, 

the gradient of the corresponding curve is calculated as follows: 

 

0.2-0.7

)2.0(  1)7.0(  1 00 == −
= rr

abs
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m        (45) 

 

If this slope is divided by a specific value for the C1 coefficient on the actual curve, a 

relative slope mrel is obtained. The reason this relative slope is used is that, as will be 

observed below, its value remains relatively constant for the range of δ flange angles 

studied. The C1 coefficient for a rolling radius ro = 0.45 m is taken as the reference value. It 

is used to calculate the relative slope mrel and also to positionate the straight-line 

approximation, since it is a very common value for railway vehicles. Thus the relative slope 

mrel is defined as: 
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Figure 20 represents this value of the relative slope mrel for δ flange angle values between 

50º and 80º. As may be observed, the value remains relatively constant within this zone. 

Maximum variation occurs between maximum value mrel = 1.39 and minimum value mrel = 

1.24 for flange angles δ = 50º and δ = 66º respectively. If the mean value of the two is 

considered (mrel = 1.31) as the relative slope’s common value for the various flange angles, 

the maximum error incurred within the ranges studied is extremely small (around 1%). 
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Figure 20.   Value of relative gradient mrel in relation to flange angle δ. 

 

Therefore the curve fit in figure 19 is carried out using rectilinear lines with relative slope 

mrel = 1.31, placed at the point C1 (ro=0.45): 
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The value of C1 (ro=0.45) in relation to flange angle δ still has to be determined. Figure 21 

shows this function, and also the exponential fit obtained using least squares according to 

expression (48), where the flange angle δ is in degrees. 
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In this way, once coefficient C1 (ro=0.45) has been obtained, a fit may be performed for the 

curves in figure 19 by rectilinear lines through equation (47). Figure 19 shows the fit result 

following the method described, in broken lines, for each of the 4 curves. Finally, 

calculation of creepage is reduced to the following: 
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Again it must be borne in mind that, with the exception of the last term of equation (49), 

the flange angle δ, the rolling radius ro and the friction coefficient µ are known at the 

commencement of analysis, and so it is only necessary to calculate the first part of the 

equation once. 
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Figure 21.   Coefficient C1 for a rolling radius ro = 0.45 m, for the various flange angles δ. 

 

5.3 Calculating lateral creepage for the case of negative yaw angles 

In the previous section, the case of a positive yaw angle has been studied. This situation is 

the most unfavourable in terms of risk of derailment. For that reason, derailment criteria 
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including the influence of the yaw angle usualy focus on positive values of that angle. 

Results obtained for negative yaw angles are less critical, because the risk of derailment is 

always low under that circumstances. Therefore, all the coefficients obtained in the previous 

section have been calculated using positive values of the lateral creepage (corresponding to 

positive yaw angles). Nevertheless, these results can be easily extended to negative values 

of such creepages. The only thing that must be done is to consider the variation of the lateral 

force fy as a function of the lateral creepage νy’ (shown in figure 15) also for negative values 

of νy’. 
The goal is to fit the curves shown in figure 15 also for the negative values of νy’, in the 

same way equation (39) does for the positive values. In this way, one can reduce the lateral 

force fy when νy’ is negative, but always trying to obtain fitted values of fy higher than the 

real ones, this is, on the side of safety. Figure 22 shows two of the curves of figure 15 for 

negative values of νy’. It also shows the rectilinear fit obtained with equation (39). As can be 

observed, when the spin creepage is high, the curve is almost a straight line. The equation 

(39) provides a good match also for negative values of νy’ in this case. When the spin 

creepage is lower, the curves are not so rectilinear, although there is a central section near 

νy’ = 0 that can be considered as a straight line. 
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Figure 22.   Approximation of fy curves in relation to νy’ (unbroken lines) by straight lines of equation (36) 

(broken lines). The graph shows two specific cases of normalised spin creepage φ’. 

 

If equation (39) is used to approximate the curves of figure 15 also for negative values of 

lateral creepage νy’,  the lateral force fy obtained is always higher than the one obtained with 

FASTSIM. In addition, it provides a very good match for high values of spin creepage, the 

usual situation in the case of derailment of railway vehicles. For lower values of spin 

creepage, equation (39) leads to more conservative values of the derailment limit, but 

nevertheless the result is a derailment limit higher than that obtained for a zero yaw angle, 

as was intended. Therefore, equation (39) can be used for negative values of νy’ , taking into 

account that the negative limit of fy is -1. 
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5.4 Summary of the method 

The following are the equations to be applied to obtain the limit of (L/V) using the 

methodology expressed in the previous sections (table 2). 

It is also possible to include the favourable effect of a possible longitudinal creep force in 

the derailment limit obtained using this new formulation, as shown in section 3. If one 

disregards the influence of yaw angle ψ and the forward position of the contact point 

represented by angle ξ on the geometry of the problem, a final equation is obtained similar 

to that in table 2, substituting the term fy for ty in the expression of (L/V)lim. The difference is 

that, as considered in section 3, lateral force would be restricted here only by Coulomb’s 

limit, along with possible longitudinal creep force. If this force did not exist, the lateral 

force would be the maximum permitted by Coulomb (fy = 1), and this is not always true, as 

has been shown. 

 
Table 2. Summary of the equations. 
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Initially considering the possibility that fy may not be saturated (i.e., fy < 1), an increase in 

longitudinal force (bringing about an increase in tx) would not initially cause a reduction in 

lateral force fy, since the resultant force would not be saturated. It is as of a certain value of 

tx that the resultant force becomes saturated, and fy begins to fall. Logically, for tx values 

above that limit, the lateral force fy = ty (considering equation 15) is smaller than the one 

obtained with table 2. Thus the expression to be used is shown in equation (50): 
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In relation to the geometric influence of angles ψ and ξ, disregarded in expression (50) 

and in the equations in table 2, on observation of figure 6 it may be concluded that it serves 

no purpose to consider the influence of the yaw angle ψ, since the differences obtained are 

minimum. Nor does angle ξ have much influence, as shown by figure 7. Considering a 

flange angle δ = 70º, a yaw angle ψ = 4º (a value which is not usually exceeded in rail 

dynamics), and equation (40), one finds ξ = 11º. Even so, this influence could be 

appreciable if tx is a high value close to 1. This influence may be included in equation (50) 

by merely using formula (21) to calculate (L/V)lim, substituting coefficient ty for f’y, defined 

in equation (50). 

6. Discussion of results 

As has been observed, the main parameters influencing the derailment limit are the flange 

angle δ, the friction coefficient µ, the nominal rolling radius of the wheel ro, the wheelset 

yaw angle ψ, and the normal force on contact N. Of these 5 parameters, the first 3 are 

known at the commencement of analysis, while the values of the yaw angle and normal 

force change as the vehicle moves along the track. This is why it is necessary to include 

these values and update the derailment limit at each measurement point, or at each step of 

integration. 

The negative influence of the yaw angle on the derailment limit is well known. It is also 

well known that dynamic reductions of the vertical load on the wheel are extremely 

unfavourable in terms of derailment, since they cause a reduction in normal force and 

therefore an increase in the coefficient (L/V) [3,13]. In fact, a reduction in normal force is 

specially harmful since not only does it increase the value of the coefficient (L/V), but 

simultaneously reduces the permissible limit (L/V)lim. This is because, with low normal 

forces, lateral creepage saturates rapidly, even when the wheelset’s yaw angles are small. 

These results agree with some experimental measurements where it is shown that light 

vehicles are more likely to derail. 

Some of the results obtained for the derailment limit (L/V)lim for a number of wheel 

characteristics are set out below, with exclusive application of the equations in table 2. All 

the graphs show the limit value of the (L/V) quotient in relation to the yaw angle, comparing 

the results obtained for several normal forces. Broken lines show the limit established with 

Nadal’s equation (which is independent of the yaw angle). 

In the light of the results shown in figure 23, it may be observed that the fall in the (L/V) 

quotient as the yaw angle increases is practically linear in all cases. It may likewise be 

observed how the nominal rolling radius ro exerts an influence on the results which cannot 

be considered as negligible. A high value of ro leads to a sharper fall in (L/V)lim with the yaw 

angle, and this is unfavourable in terms of derailment. This negative influence of the 

wheel’s nominal radius was observed in Parena’s work [34], that was based on dynamic 

simulations of a single wheelset, although the cause of this behaviour was not studied. On 

the other hand, as deduced in section 4, the initial value of (L/V)lim with a zero yaw angle is 

independent of ro. 

Finally, analysis of the graphs in figure 23 allows one to determine that the parameters 

exerting a negative influence on the derailment limit according to Nadal’s theory are 

actually twice as harmful, since they cause a sharper fall in the limit with the yaw angle. It 

can be observed how, when the friction coefficient µ rises or the flange angle δ decreases, 

not only do the (L/V) quotients fall, but the curves also approach Nadal’s limit more rapidly 

as the yaw angle increases. 



J. Santamaria et al.                                                                                                                31 

 

0 1 2 3 4 5 6 7 8

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

ψ

(L
/V

)

d = 70º , mu = 0.3, ro = 0.45 m

N = 1000 N
N = 10000 N
N = 40000 N
N = 100000 N
Nadal's value

(mrad) 

lim
 

(a)  
0 1 2 3 4 5 6 7 8

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

ψ

(L
/V

)

d = 70º , mu = 0.3, ro = 0.6 m

N = 1000 N
N = 10000 N
N = 40000 N
N = 100000 N
Nadal's value

(mrad) 

lim
 

(b) 
 

 
0 1 2 3 4 5 6 7 8

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
N = 1000 N
N = 10000 N
N = 40000 N
N = 100000 N
Nadal's value

ψ (mrad) 

(L
/V

)l
im

 

d = 60º , mu = 0.3, ro = 0.45 m

(c)  
0 1 2 3 4 5 6 7 8

0.9

1

1.1

1.2

1.3

1.4

1.5
N = 1000 N
N = 10000 N
N = 40000 N
N = 100000 N
Nadal's value

(mrad) ψ

(L
/V

)l
im

 

d = 70º , mu = 0.5, ro = 0.45 m

(d) 
 

 
0 1 2 3 4 5 6 7 8

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
N = 1000 N
N = 10000 N
N = 40000 N
N = 100000 N
Nadal's value

ψ (mrad) 

(L
/V

)l
im

 

d = 70º , mu = 0.3, ro = 0.3 m

(e)  
0 1 2 3 4 5 6 7 8

0.65

0.7

0.75

0.8

0.85

0.9

0.95
N = 1000 N
N = 10000 N
N = 40000 N
N = 100000 N
Nadal's values

ψ (mrad) 

(L
/V

)l
im

 

d = 60º , mu = 0.5, ro = 0.6 m

(f) 
 

Figure 23.   (L/V) obtained using the procedure described in table 2, in relation to the wheelset’s yaw angle. 

The various curves on each graph show different values for the normal force on the wheel. a) Wheel with δ = 

70º, µ = 0.3 and ro = 0.45 m. b) Wheel with δ = 70º, µ = 0.3 and ro = 0.6 m. c) Wheel with δ = 60º, µ = 0.3 and 

ro = 0.45 m. d) Wheel with δ = 70º, µ = 0.5 and ro = 0.45 m. e) Wheel with δ = 70º, µ = 0.3 and ro = 0.3 m. f) 

Wheel with δ = 60º, µ = 0.5 and ro = 0.6 m. 

 

7. Conclusions 

This paper has performed a theoretical study of the role played by creepage forces during 

the derailment process. As a result, a methodology has been established for simple practical 

application to increase the Nadal limit when circumstances are not so adverse as those 
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contemplated when the limit was deduced. In particular, the new formulation takes account 

of the yaw angle of the wheelset as a basic input parameter to correct Nadal’s limit, 

increasing the limit when this angle is smaller. The result is a method which is efficient and 

fast in terms of computation, providing derailment coefficient limit values which are less 

conservative than Nadal’s limit, as observed in real situations. The results are also 

compatible with Nadal’s formula in the sense that when the wheelset’s yaw angle increases, 

the limit obtained tends towards Nadal’s theoretical limit, and it is not reduced in any case. 

The method considered may be used in both dynamic computer simulations and in 

instrumented vehicles to provide more realistic values of derailment proximity at all times.  

In addition to providing a new procedure for calculation of the derailment limit, the 

theoretical analysis used also shows how, apart from the flange angle and the friction 

coefficient, other vehicle data may also exert significant influence on the derailment limit. 

In particular, the wheel’s rolling radius can considerably reduce this limit in view of the 

effect of contact curvature on creepage forces. Similarly, it has been demonstrated 

theoretically that the influence of other parameters on the risk of derailment is greater than 

was originally established. For instance, a reduction in the normal force in contact causes a 

significant reduction in the derailment limit when the yaw angle is not zero. In consequence, 

wheels with light loads or wheels subject to dynamic discharge while the vehicle is in 

motion are more likely to derail not only due to an increase in the (L/V) quotient, as is well 

known, but also due to simultaneous reduction of the quotient limit. One major contribution 

of the formulation in this paper is that, once the friction coefficient and the flange angle are 

known, derailment limits are obtained which do not only vary with the yaw angle, but also 

with the other parameters mentioned, providing more accurate values. 

It has likewise been shown that the negative influence on the risk of derailment of an 

increase in the friction coefficient and a reduction in the flange angle is slightly greater than 

the influence envisaged by Nadal’s formulation. 
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