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ABSTRACT 

Polymeric membranes either containing, or built from, ionic liquids (ILs) are of great interest for 

enhanced CO2/light gas separation due to the stronger affinity of ILs toward quadrupolar CO2 

molecules, and hence, high CO2 solubility selectivity. Herein, we report the development of a 

series of four novel anionic poly(IL)-IL composite membranes via a photopolymerization 

method for effective CO2 separation. Interestingly, these are the first examples of anionic 

poly(IL)-IL composite systems, in which the poly(IL) component has delocalized sulfonimide 

anions pendant from the polymer backbone with imidazolium cations as “free” counterions. Two 

types of photopolymerizable methacryloxy-based IL monomers (MILs) with highly delocalized 

anions (–SO2–N(-)–SO2–CF3 and –SO2–N(-)–SO2–C7H7) and mobile imidazolium ([C2mim]+) 

counter cations were successfully synthesized and photopolymerized with two distinct amounts 

of free IL containing the same structural cation ([C2mim][Tf2N]) and 20 wt% PEGDA 

crosslinker, to serve as a composite matrix. The structure-property relationships of the four 

newly developed anionic poly(IL)-IL composite membranes were extensively characterized by 

TGA, DSC, and XRD analysis. All of the newly developed anionic poly(IL)-IL composite 

membranes exhibited superior CO2/CH4 and CO2/N2 selectivities together with moderate CO2/H2 

selectivity and reasonable CO2 permeabilities. The membrane with an optimal composition and 

polymer architecture (MIL-C7H7/PEGDA(20%)/IL(1eq.))  reaches the 2008 Robeson upper bound 

limit of CO2/CH4, due to the simultaneous improvement in permeability and selectivity (CO2 

permeability ~ 20 barrer and αCO2/CH4 ~119). This study provides a promising strategy to 

explore the benefits of anionic poly(IL)-IL composites to separate CO2 from flue gas, natural 

gas, and syngas streams and open up new possibilities in the polymer membrane design with 

strong candidate materials for practical applications. 
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INTRODUCTION 

The steady increase in atmospheric CO2 has been a major concern in 21st Century as it leads to 

climate change-derived environmental and economic threats such as global warming, increase in 

hurricanes, sea-level rise, ocean acidification, glacial melting, and occupational heat stress, etc.1-3 

The development of efficient and economical technologies is important to separate CO2 for 

geological sequestration or utilization as a chemical feedstock. CO2 capture and storage (CCS), a 

technology for isolating and collecting CO2 emissions from point sources and storing them in 

underground reservoirs at a depth of approximately 1500 m has emerged as central research 

project in many countries.4, 5 Over the past century, several types of separation processes 

including absorption,6, 7 pressure swing adsorption,8, 9 cryogenic distillation,10 and membrane-

based separation11, 12 have been scaled to separate CO2 from gas mixtures at various pressures 

and compositions such as CO2/N2 (flue gas streams),13, 14 CO2/CH4 (natural gas/biogas 

streams)15, 16  and CO2/H2 (fuel gas or syngas).17  

 

Membrane-based gas separation utilizing polymeric materials has been one of the promising 

technologies because of a low capital cost, operational simplicity, energy efficiency, modular 

nature (easy to scale up), and most importantly, environmental benignity (relying on physical 

separation mechanisms).11, 18, 19 In the gas separation membrane process, a high-

performance membrane ideally needs to exhibit a high permeability and a high selectivity as  

high permeability reduces the membrane area required to treat a given amount of gas, while high 

selectivity increases the purity of the product gas, thereby offering a cost-effective separation 
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process. To prepare CO2-selective separation membranes, polymers with high permeability and 

strong CO2 affinity should be designed. CO2 is a polar gas with a quadrupole moment and due to 

its’ critical properties (Tc = 31.1 oC, Pc = 72.9 atm) is more easily condensed and is much more 

soluble in common polymers than other light gases (H2, N2, and CH4). Further, the CO2/light gas 

selectivity of polymer membranes can often be improved by the introduction of more polar 

functional groups, such as ionic liquids (ILs),20 amines,21 or poly(ethylene oxide)s.22, 23 

 

ILs, a class of low temperature molten salts with large and asymmetric organic cations and 

organic or inorganic anions have emerged as promising separation materials that rival 

conventional absorption technologies due to their large CO2 solubility, excellent chemical, 

thermal, and electrochemical stability, and lack of volatility.24-26 Furthermore, the tunable 

properties of ILs which are controlled by selection from a large array of functional groups and 

possible cation/anion types, bestows a greater utility for the design of CO2 separation 

membranes. This combination of ILs with membrane technology (i.e., polymeric membranes 

either containing or built from ILs) is a more advanced approach and has been the subject of 

numerous investigations for enhanced CO2 separation over the past two decades.27-33  

 

Supported ionic liquid membranes (SILMs), in which ILs are impregnated into microporous 

polymers, were the earliest form of  IL-containing membranes with ideal CO2 permeabilities > 

1000 barrer and CO2/N2 permselectivity > 20.28 Despite the auspicious CO2 separation 

performance, the leaching (or “blow-out”) of immobilized ILs under even moderate 

transmembrane pressure differentials limited the practical use of SILMs in industrial 

applications. Including our previous works, membranes prepared via the polymerization of ILs 
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which contain styrene, acrylate or vinyl groups appended to imidazolium cations, also known as 

poly(IL)s, have become of greater interest than SILMs for CO2 separation because of moderate 

gas separation properties and superior mechanical properties.30, 31, 34  

 

Research in poly(IL)s is driven by the desire to combine the characteristic properties and 

functions of ILs and classic polymers to enhance the overall performance of the 

material. Specifically, poly(IL)s are a subset of polyelectrolytes that share many features with 

ILs, such as their high CO2 solubility and designer nature. On the other hand, it has been proved 

that the introduction of “free” ILs into neat poly(IL)s increases CO2 permeability dramatically, 

and poly(IL)-IL composite membrane properties can also be tuned with respect to the IL 

content.35-37 Nevertheless, the polymer structures used to prepare poly(IL)s have largely been 

limited to polycations (i.e., polymer-bound cations), particularly imidazolium groups, as they 

garnered the most expected common properties of ILs. There have not been any studies on 

poly(ILs), where anions are covalently bound to the polymer chain rather than serving as mobile 

counterions in poly(IL)-IL systems. Comprehensive studies on macromolecular structures and 

the structure-property relationships are still significant to design more poly(IL)s in membrane-

based gas separation applications.  

 

Herein, we report the development of, to the best of our knowledge, the first anionic poly(IL) 

membranes via a photopolymerization for enhanced CO2 separation, in which the poly(IL) 

component has delocalized sulfonimide anions pendant from the polymer backbone and 

imidazolium cations as mobile counterions. As depicted in Chart 1, two types of methacryloxy-

based IL monomers (MILs) with negatively charged trifluoromethanesulfonimide (MIL–CF3) 
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and para-toluenesulfonimide (MIL–C7H7) groups having 1-ethyl-3-methylimidazolium 

([C2mim]+) counterions have been designed and prepared for the synthesis of photopolymerized 

anionic poly(IL) membranes.  The reactive methacrylate functional group and the delocalized 

anions (–SO2–N(-)–SO2–CF3 and –SO2–N(-)–SO2–C7H7) were separated by a flexible –(CH2)3– 

spacer. The main goal of this work is to report the benefits of abovementioned poly(IL)-IL 

composite membranes utilizing the possibilities of anionic poly(IL)s, for the first time. 

Therefore, we have selected a widely used free IL similar to the counterion of the newly 

designed MILs, 1-ethyl-3-methylimidazolium bistriflimide ([C2mim][Tf2N]) for effective CO2 

separation. On the other hand, according to our previous investigations, it has been substantiated 

that a porous polymer membrane support is required for imidazolium poly(IL)s as they are too 

brittle/fragile to form free-standing membranes.30, 38 In this work, we anticipate a promising 

strategy of introduction of a crosslinking structure into the poly(IL) macrostructure for achieving 

better mechanical stability as well as high free IL loadings. Further interest turned out to the 

utilization of crosslinking network structures into anionic poly(IL)-ILs, where by choosing an 

appropriate crosslinker such as poly(ethylene glycol) diacrylate (PEGDA) which may also 

enhance separation performance. PEGDA contains ethylene oxide (EO) (i.e., -(CH2CH2O)n-) 

units in its backbone, which often increases the CO2 sorption concentration and improves CO2 

permeability and selectivity over other light gases, particularly for CO2/H2 separation.23, 39 

However, we have not considered a comparative study on PEGDA contents as the present work 

exclusively focused on anionic poly(IL)-IL composites. To this end, the CO2 separation 

properties, together with physical properties of the novel anionic poly(IL)-IL composite 

membranes containing a minimal amount (i.e., 20 wt%) of crosslinked PEO content were 

reported.   
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Chart 1. Structures of the anionic methacryloxy-based IL monomers (MILs) used in this study. 

 

 

MATERIALS AND METHODS 

Materials. Potassium 3-(methacryloyloxy) propane-1-sulfonate (PMAS, 98%) and poly(ethylene 

glycol) diacrylate (PEGDA, Mw= 575 g mol-1) was purchased from Aldrich (St. Louis, MO, 

USA). Lithium hydride (LiH, >97%), trifluoromethanesulfonamide (>98%), and p-

toluenesulfonamide (>98%) were purchased from Alfa Aesar (Tewksbury, MA, USA). 

Triethylamine (Et3N) was purchased from Oakwood Chemical (Estill, SC, USA). Ethanol 

(EtOH, 200 proof), N,N-dimethylformamide (DMF, ACS grade), diethyl ether (Et2O, anhydrous) 

and toluene (anhydrous) were purchased from VWR (Atlanta, GA, USA). Thionyl chloride 

(SOCl2, >99%, Aldrich) was distilled over linseed oil prior to use. Tetrahydrofuran (THF, 99+%, 

Acros) was dehydrated by distillation over sodium and benzophenone radical anion. 

 

The ILs [C2mim][Br] and [C2mim][Tf2N] were prepared from 1-methylimidazole (99%, Aldrich) 

(St. Louis, MO, USA), 1-bromoethane (99%, Aldrich) (St. Louis, MO, USA), and LiTf2N (99%, 

3M) (Minneapolis, MN, USA) according to our previously reported work.40 Their 1H NMR 



8 
 

spectra are provided in the Supporting Information (Figure S1 and S2). All other chemicals, 

unless otherwise noted, were obtained from commercial sources and used as received. 

 

Synthesis of polymerizable anionic methacryloxy-based ionic liquid monomers (MILs). Two 

types of methacryloxy-based IL monomers (MILs) with negatively charged 

trifluoromethanesulfonimide (MIL–CF3) and para-toluenesulfonimide (MIL–C7H7) groups 

having [C2mim]+ counterions were synthesized according to the developed procedures of 

previously reported works.41, 42 

Synthesis of 3-(chlorosulfonyl)propyl methacrylate (I). Freshly dried PMAS (30 g, 121.79 

mmol) was suspended with 50 mL of anhydrous THF in 1000 mL round-bottom flask equipped 

with a magnetic stir bar under inert atmosphere and 3.4 mL of DMF as a catalyst was injected via 

syringe. The reaction mixture was cooled to 0–1 OC and an excess amount of SOCl2 (79.69 g, 

669.8 mmol) was added dropwise while stirring. The reaction was set to stir at 0–1 OC for 1 h, 

and then at r.t. for 12 h. After the reaction time, the obtained suspension was carefully quenched 

by pouring into crushed ice (600 g) and the upper aqueous layer was decanted, and the lower 

organic oily layer was diluted with DCM (160 mL). The DCM solution was washed with water 

(6 × 35 mL) and then dried over anhydrous MgSO4, and the solvent was evaporated under 

reduced pressure at temperature ≤ 30 OC. The residual colorless or slightly yellow transparent oil 

was finally dried under vacuum at 25 OC for 12 h. Yield: 24.5 g (88%); 1H NMR (500 MHz, 

CDCl3) δ= 6.15 (s, 1H, CH2=C(CH3)–), 5.65 (s, 1H, CH2=C(CH3)–), 4.35 (t, 2H, CO–O– CH2–), 

3.81 (m, 2H, –CH2–SO2Cl), 2.48-2.46 (m, 2H, CH2–CH2– CH2–), 1.96 (s, 3H,CH2 = C(CH3)–) ; 

(FT-IR)/cm-1 1720, 1638, 1512, 1454, 1375, 1298, 1162, 1065, 947, 894, 816, 770 and 655. 
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Synthesis of triethyl ammonium 1-[3-(methacryloyloxy) propylsulfonyl]-(trifluoromethane-

sulfonyl)imide (IIa) and triethyl ammonium 1-[3-(methacryloyloxy) propylsulfonyl]-(p-

toluene-sulfonyl)imide (IIb). For preparing ‘trifluoromethanesulfonimide’ derivative (IIa), triflu

oromethanesulfonamide (6.58 g, 44.12 mmol) was loaded into a 500 mL round-bottom-flask 

with a magnetic stir bar under inert atmosphere and freshly distilled anhydrous Et3N (9.82 g, 97.

06 mmol) was added under stirring. The reaction mixture was diluted with 40 mL of anhydrous 

THF and was cooled down to 0 OC. The solution of I (10 g, 44.12 mmol) in 15 mL of anhydrous 

THF was added dropwise under inert atmosphere to the obtained cooled colorless THF solution o

f trifluoromethanesulfonamide and Et3N. The reaction was set to stir at 0–1 OC for 1 h, and then 

at r.t. for 1 h. After the reaction time, the resulted mixture was filtered, and the filtrate was gently 

evaporated at r.t. The residual slightly yellow oil was collected and dissolved in 90 mL of DCM. 

The DCM solution was washed with water (4 × 35 mL) and then dried over anhydrous MgSO4. 

Solid MgSO4 was removed by filtration and a catalytic amount of inhibitor (4-methoxyphenol) w

as added to the filtrate. The solvent was evaporated under reduced pressure at temperature ≤ 30 

OC and the residual slightly yellow transparent oil was finally dried at under vacuum at 25 OC for 

6 h. Yield: 16.6 g (85%); 1H NMR (500 MHz, CDCl3) δ= 7.80 (bs, 1H, H–N(C2H5)3), 6.11 (s, 1H

, CH2=C(CH3)–), 5.58 (t, 1H, CH2=C(CH3)–), 4.27 (t, 2H, CO–O–CH2–), 3.29-3.18 (m, 8H, H–

N (CH2CH3)3 + –CH2–SO2–N–), 2.27-2.17 (m, 2H, CH2–CH2– CH2–), 1.94 (s, 3H,CH2 = 

C(CH3)–), 1.38-1.36 (t, 9H, H–N(CH2CH3)3); (FT-IR)/cm-1 2985, 2958, 1718, 1637, 1475, 1456, 

1298, 1180, 1058, 945, 835, 816, 702 and 625. 

 

 
The ‘para-toluenesulfonimide’ derivative (IIb) was synthesized by the same method from 40 mL 

solution of anhydrous THF with para-toluenesulfonamide (7.55 g, 44.12 mmol) and Et3N (9.82 
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g, 97.06 mmol), and the solution of I (10 g, 44.12 mmol) in 15 mL anhydrous THF. The purified 

product as slightly yellow transparent oil was collected and dried at under vacuum at 25 OC for 6 

h. Yield: 17.1 g (84%); 1H NMR (500 MHz, CDCl3) δ= 9.1 (bs, 1H, H–N(C2H5)3), 7.84 (bs 2H, 

2×ArH), 7.29-7.23 (bs 2H, 2×ArH), 6.12 (s, 1H, CH2=C(CH3)–), 5.58 (t, 1H, CH2=C(CH3)–), 

4.22 (t, 2H, CO–O–CH2–), 3.27-3.20 (m, 8H, H–N (CH2CH3)3 + –CH2–SO2–N–), 2.4 (bs 3H, 

ArCH3), 2.22-2.17 (m, 2H, CH2–CH2– CH2–), 1.97 (s, 3H,CH2 = C(CH3)–), 1.46-1.34 (t, 9H, H–

N(CH2CH3)3); (FT-IR)/cm-1 2985, 2958, 2860, 1720, 1638, 1475, 1456, 1298, 1180, 1055, 948, 

835, 816, 705 and 620. 

 

Synthesis of 1-ethyl-3-methylimidazolium 1-[3-(methacryloyloxy) propylsulfonyl]-

(trifluoromethane-sulfonyl)imide (MIL-CF3) and 1-ethyl-3-methylimidazolium1-[3-

(methacryloyloxy) propylsulfonyl]-(p-toluene-sulfonyl)imide (MIL-C7H7). For preparing MIL-

CF3, a solution of IIa (10 g, 22.7 mmol) in 30 mL of anhydrous THF was cooled to 0 OC in a 

250 mL round-bottom-flask equipped with a magnetic stir bar under inert atmosphere. To this, a 

suspension of LiH (0.27 g, 34.05 mmol) in 15 mL of anhydrous THF was added dropwise with 

vigorous stirring. Later, the reaction mixture was allowed to warm up to room temperature and 

continued to stir for 2 h. After the reaction time, the resulted mixture was filtered to remove 

unreacted LiH. The residual filtrate was concentrated under reduced pressure and the obtained oil 

was washed with hexane (3 × 20 mL) under vigorous stirring. After decanting the last portion of 

hexane, the obtained slightly yellow very viscous oil was vacuum dried at 25 OC for 1 h in order 

to yield an intermediate product IIIa. Further on the IIIa (7.45 g, 21.58 mmol) was dissolved in 

50 mL of distilled water and added dropwise to the solution of [C2mim][Br] (5.77 g, 30.21 

mmol) in 20 mL of distilled water at ambient temperature. The mixture was stirred 1 h at 25 OC 
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until precipitation of an oil was observed and thus the upper aqueous layer was decanted, and the 

residual oil was dissolved in 50 mL of DCM. Later, the DCM solution was washed with water (3 

× 30 mL) and dried over anhydrous MgSO4. The resultant solution was filtered and a catalytic 

amount of 4-methoxyphenol was added as an inhibitor, and the solvent was evaporated under 

reduced pressure at temperature ≤ 30 OC. The colorless transparent fluid oil was vacuum dried at 

30 OC for 1 h to obtain the final product MIL-CF3. Yield: 7.15 g (70%); 1H NMR (500 MHz, 

CDCl3) δ= 9.05 (s, 1H, N=CH–N), 7.38  (s, 2H, N–CH=CH-N), 6.10 (s, 1H, CH2=C(CH3)–), 

5.57 (s, 1H, CH2=C(CH3)–), 4.27 (t, 4H, CO–O–CH2– + –CH3–CH2–N–), 3.97 (s, 3H, CH3-N) 

3.27-3.23 (m, 2H, –CH2–SO2–N–), 2.27-2.17 (m, 2H, CH2–CH2–CH2–), 1.93 (s, 3H,CH2 = 

C(CH3)–), 1.54 (t, 3H, –CH3–CH2–N–); (FT-IR)/cm-1 2985, 2958, 1718, 1637, 1475, 1456, 1320, 

1298, 1180, 1058, 945, 835, 814, 705 and 625. 

The ‘para-toluenesulfonimide’ containing MIL-C7H7 was synthesized by the same method 

from a solution of IIb (10 g, 21.6 mmol) in 30 mL of anhydrous THF 40 mL and a suspension of 

LiH (0.26 g, 32.42 mol) in 15 mL of anhydrous THF, followed by cation exchange from an 

intermediate product IIIb (7.5 g, 20.42 mmol) with [C2mim][Tf2N] (5.85 g, 30.6 mmol) in total 

amount of 70 mL distilled water. A slightly yellow high viscous oil was collected upon DCM 

extraction and dried at under vacuum at 30 OC for 1 h to obtain the final product MIL- C7H7. 

Yield: 6.9 g (72%);1H NMR (500 MHz, CDCl3) δ= 9.40 (s, 1H, N=CH–N), 7.78  (m, 2H, N–

CH=CH-N), 7.34 (bs 2H, 2×ArH), 7.16 (bs 2H, 2×ArH), 6.06 (s, 1H, CH2=C(CH3)–), 5.53 (s, 

1H, CH2=C(CH3)–), 4.26-4.15 (t, 4H, CO–O–CH2– + –CH3–CH2–N–), 3.89 (s, 3H, CH3-N) 

3.14-3.07 (m, 2H, –CH2–SO2–N–), 2.38-2.34 (bs 3H, ArCH3), 2.16-2.10 (m, 2H, CH2–CH2–

CH2–), 1.90 (s, 3H,CH2 = C(CH3)–), 1.45 (t, 3H, –CH3–CH2–N–); (FT-IR)/cm-1 2980, 2955, 

2850, 1720, 1637, 1470, 1455, 1320, 1298, 1180, 1058, 945, 835, 816, 702 and 620. 
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Preparation of anionic poly(IL)-IL composite membranes. The newly synthesized 

polymerizable anionic methacryloxy-based IL monomer (either MIL-CF3 or MIL-C7H7) and the 

desired amount of free IL [C2mim][Tf2N] (0.5 or 1 molar equivalent) were mixed with a 20 wt% 

of PEGDA crosslinker in a glass vial at room temperature (r.t.). Then a commercially available 

photoinitiator (2-hydroxy-2-methylpropiophenone) was added into the mixture at 1 wt% and 

magnetically stirred at r.t.  The resultant homogeneous solution was degassed to remove the 

possible bubbles by ultrasonication for 10 min at r.t. The mixture was then poured onto a clean 

Rain-X® coated quartz plate and sandwiched by using a second identical quartz plate on the top. 

The plates were separated by aluminum tapes as spacers to control the membrane thickness. The 

plates were then placed under a 365 nm UV lamp (0.8 mW/cm2 at 4 cm distance) for 30 min. 

Post-irradiation, the plates were separated easily using a clean razor blade because of spacers and 

the crosslinked anionic poly(IL)-IL composite membrane was peeled off. The membrane 

thickness of newly developed anionic poly(IL)-IL composite membranes was controlled to be 90 

- 150 µm. These membranes were evaluated by various characterization methods and permeation 

tests. 

 

Characterization. 1H NMR spectra were obtained on a Bruker Avance (500 MHz) instrument 

using d6-DMSO as a reference or internal deuterium lock. FT-IR spectra of the materials were 

recorded using a Perkin-Elmer Spectrum 2 in the range of 4000–400 cm-1. Thermogravimetric 

analysis (TGA) of the polymer materials was conducted using Seiko TG-DTA 7300 by heating 

samples from r.t. to 700°C at a heating rate of 10°C/min under N2 flow. The glass transition 

temperature (Tg) of each polymer material was measured using a DSC (TA Instruments, DSC 
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Q20) from 20°C to 300°C with a scan rate of 10°C min-1 under N2. The Wide-angle X-ray 

diffraction (WAXD) patterns of the membranes were measured using a Bruker D8 Discover 

diffractometer by employing a scanning rate of 4°/min in a 2θ range from 5° to 60° with a Co 

Kα1 X-ray source (λ = 0.17886). The d-spacings values were calculated using Bragg’s Law (d = 

λ/2 sinθ). 

 

Gas separation measurements. The pure gas permeation measurements of newly developed 

anionic poly(IL)-IL composite membranes were performed using a high-vacuum time lag 

apparatus based on the constant-volume/variable-pressure method, as described in our previous 

works.43 All measurements were conducted at 20 °C and the feed pressure was ∼3 atm (∼45 

psia) against initial downstream vacuum (<0.01 psia). Pressures and temperatures were measured 

and recorded using most recent version of LabVIEW software (National Instruments). Before 

each permeation measurement, both the feed and the permeate sides were thoroughly evacuated 

to remove any residual gases. The pressure rises versus time transient of the permeate side, 

equipped with a pressure transducer, was recorded and passed to a desktop computer through a 

shield data cable. The permeability coefficient was determined from the linear slope of the 

downstream pressure rise versus time plot (dp/dt) according to the following equation:   

  

𝑃 =
273
76  ×

𝑉𝑙
𝐴𝑇𝑝  ×

𝑑𝑝
𝑑𝑡                    (1) 

 

where P is the permeability expressed in Barrer (1 barrer = 10−10 cm3(STP)cm cm−2 s−1 cmHg−1); 

V (cm3) is the downstream volume; l (cm) is the membrane thickness; A (cm2) is the effective 

area of the membrane; T (K) is the temperature of measurement; p0 (Torr) is the pressure of the 
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feed gas in the upstream chamber and dp/dt is the rate of the pressure rise under the steady state. 

The ideal permselectivity, αA/B, of the membrane for a pair of gases (A and B) was calculated 

from the ratio of the individual gas permeability coefficients as, PA/PB. 

RESULTS AND DISCUSSION 

Synthesis and structural characterization of polymerizable anionic methacryloxy-based 

ionic liquid monomers (MILs) 

As outlined in Scheme 1, the synthesis of polymerizable anionic ILs with two distinct negatively 

charged substituents (–SO2–N(-)–SO2–CF3 and –SO2–N(-)–SO2–C7H7) having similar [C2mim]+ 

counterion were conducted in four steps: (i) conversion of PMAS into the sulfonyl chloride 

derivative (I) by reacting with SOCl2 in the presence of DMF as a catalyst, (ii) the coupling 

reaction of I with trifluoromethanesulfonamide or p-toluenesulfonamide (Scheme 1, IIa and IIb 

respectively) in the presence of a 2.2 molar amount of Et3N, (iii) triethylammonium exchange 

reaction with LiH in the anhydrous THF (Scheme 1, IIIa and IIIb), and (iv) a metathesis 

reaction between the lithium salts of the desired monomers and the respective imidazolium 

bromide ionic liquid (Scheme 1, MIL-CF3 and MIL-C7H7). The structural characterization of 

newly developed MILs was further analyzed by 1H NMR (Figure 1) and FTIR spectroscopic 

measurements (discussed later in Figure 3). The 1H NMR spectra of both MILs were 

unambiguously consistent with their proposed chemical structures. 1H NMR spectra of MILs 

(Figure 1) showed all the characteristic signals of imidazolium ring protons (at δ 9.4 and 7.78 

ppm) and vinyl protons (at δ 6.06 and 5.53 ppm) along with the well resolved signals at δ 4.26, 

3.89, 3.27, 2.27, 1.93, and 1.54 ppm for alkyl chains, indicating the successful synthesis of newly 

developed polymerizable anionic IL monomers. In addition, aromatic protons (Ha and Hb at 7.34 
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and 7.16, respectively) of MIL-C7H7 were further confirmed the negatively charged –SO2–N(-)–

SO2–C7H7 substituent, proving the structural variation of newly developed MILs (Figure 1(b)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1. Schematic representation of the preparation of polymerizable anionic methacryloxy-
based ionic liquid monomers (MILs). 
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Figure 1. 1H NMR spectra of newly developed polymerizable anionic monomers (a) MIL-CF3 
and (b) MIL-C7H7. 
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Preparation and characterization of anionic poly(IL)-IL composite membranes with 

crosslinked PEGDA network (MIL/PEGDA(20%)/IL). The selection of a technique for polymer 

membrane fabrication is always depended on the choice of polymer and the desired application 

of the membrane. For the potential practical applications in gas separation, poly(IL)-IL 

composite membranes are usually prepare via a UV-photopolymerization method.37, 44 In this 

work, an equimolar ratio was considered to incorporate non-polymerizable ILs (i.e., free ILs) 

into anionic poly(IL) matrix in order to equilibrate the number of free cations. As depicted in 

Figure 2, four blend solutions were prepared from the two newly designed polymerizable anionic 

MILs (MIL-CF3 and MIL-C7H7) with 0.5 and 1 eq. amount of free IL ([C2mim] [Tf2N]).  

PEGDA was added at 20 wt.% to each blend solution as a crosslinker and cast into composite 

membranes under UV irradiation to yield MIL-CF3/PEGDA(20%)/IL(0.5eq.), MIL-

CF3/PEGDA(20%)/IL(1eq.), MIL-C7H7/PEGDA(20%)/IL(0.5eq.), and MIL-C7H7/PEGDA(20%)/IL(1eq.). 

Here, it also should be mentioned that, the objective of grafting polyethylene glycol (PEG) 

network was to make the anionic poly(IL)-IL membranes less brittle rather than utilizing PEG 

contents for separation requirements as reported elsewhere.39  All the anionic poly(IL)-IL 

composites were obtained as soft, flexible, and free-standing membranes, which were adequate 

for gas permeation testing (Figure 2).  
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Figure 2. Schematic diagram for the preparation of anionic poly(IL)-IL composite membranes 
with crosslinked PEGDA network. 
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Figure 3. FT-IR spectra of newly developed anionic methacryloxy IL monomers (MIL-CF3 and 
MIL-C7H7) and corresponding anionic poly(IL)-IL composite membranes together with PEGDA 
crosslinker. 
 

As depicted in Figure 3, the extent of crosslinking was supported by the FT-IR spectra, which 

revealed that the characteristic peaks corresponding to the C=C stretching (at 1635 cm-1), =CH2 

bending (at 940 cm-1 and 815 cm-1) of anionic methacrylate (MILs) and PEGDA crosslinker 

completely disappeared after UV-irradiation, indicating that the crosslinking was complete.45 At 

the same time, the peaks corresponding to the C-N vibrations of the imidazolium cation (at 1320 

cm-1) and SO2 and SNS stretching vibrations (at 1190 cm−1 and 1050 cm−1, respectively) of –

SO2–N–SO2– anions further proved that newly developed anionic poly(IL)-IL composite matrix 

were successfully formed (Figure 3). 

TGA analysis of the newly developed anionic poly(IL)-IL composite membranes displayed 

very similar thermograms with three-stage degradations and showed thermal stabilities up to 

280°C, as it can be seen in Figure 4. The first stage of weight loss is observed between 280 and 

380 °C corresponding to the decomposition of the crosslinker and the acrylate part of the 

polymer backbone. The second shoulder degradation between 380 and 450 °C is attributed to the 

decomposition of the anions and imidazole ring, as observed in other IL systems.46 Finally, the 

third degradation at an elevated temperature between 450 °C is attributed to the degradation of 

the residual oligo(ethylene oxide) segments.45 Overall, the crosslinked anionic poly(IL)-IL 

composite membranes were found to have a high thermal stability, which is desirable for 

membrane-based gas separation. In CO2 separation processes, high performance membranes 
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essentially need to display high thermal stability, particularly for CO2/N2 separations in flue gas 

streams.14, 47  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. TGA curves of anionic poly(IL)-IL composite membranes with crosslinked PEGDA 
network (MIL/PEGDA(20%)/IL). 

Physical properties of anionic poly(IL)-IL composite membranes. The polymer chain 

packing conditions of crosslinked anionic poly(IL)-IL composite membranes were examined by 

wide angle X-ray diffraction (WAXD). As depicted in Figure 5, two distinct peak distributions 

were found for the anionic poly(IL)-IL composite membranes based on the different free IL 

contents. While a bimodal diffraction peak was observed in the XRD patterns of composite 

membranes contain 0.5 equivalent amount of free ILs (MIL-CF3/PEGDA(20%)/IL(0.5eq.) and 

C7H7/PEGDA(20%)/IL(0.5eq.)),  a single-peak distribution was obtained for 1 equivalent IL 

containing membranes (MIL-CF3/PEGDA(20%)/IL(1eq.) and MIL-C7H7/PEGDA(20%)/IL(1eq.)). These 
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results imply that the average inter-chain distance diminishes in the 0.5 eq. free IL blends and 

non-uniformly packed structure is yielded for both MIL-CF3/PEGDA(20%)/IL(0.5eq.) and 

C7H7/PEGDA(20%)/IL(0.5eq.) membranes. The inter-chain spacing values of all the four composite 

membranes are calculated from the main halo and summarized in the Table 1, according to the 

Bragg equation. It was surprisingly observed that a high d-spacing of 6.63 Å found for MIL-

C7H7/PEGDA(20%)/IL(1eq.), plausible because of bulky aromatic rings disruptions. On the other 

hand, the XRD results also revealed that the interpenetrating crosslinked networks are 

amorphous, there were no sharp peaks exhibited in all XRD patterns, and the tendency to 

crystallize due to PEG contents has not been observed. This further proved that the barely 

minimum amount of PEGDA contents in the newly developed anionic poly(IL)-IL composite 

membranes are apparently appropriate to form flexible free standing membranes. 

The thermal transition properties of anionic poly(IL)-IL composite membranes as a 

function of their chemical structures and chain packing architectures were further investigated 

using a DSC analysis (Table 1, Figure 6).  A single Tg of below 0 oC was observed for all anionic 

poly(IL)-IL composite membranes, supplementing the XRD results that the membranes were not 

crystalline and that the newly developed MILs and free ILs were miscible with the PEO network. 

The MIL-CF3/PEGDA(20%)/IL(0.5eq.), MIL-CF3/PEGDA(20%)/IL(1eq.), and MIL-

C7H7/PEGDA(20%)/IL(0.5eq.), membranes exhibited similar Tg values, around -20 oC, whereas a 

substantially lower value (-35 oC) was observed for the MIL-C7H7/PEGDA(20%)/IL(1eq.). The 

lower Tg value obtained for MIL-C7H7/PEGDA(20%)/IL(1eq.) was attributed to a looser packing of 

the ionic groups within the crosslinked network at this composition ratio, suggesting that chain 

mobility of the delocalized anions (i.e., –SO2–N(-)–SO2–C7H7) separated by the flexible spacer 
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groups (i.e., -(CH2)3-) within the crosslinked acrylates and PEO were high and hence an 

enhanced gas permeability was expected 

for the membrane with this composition. 

 

 

 

   
 

 

 

 

 

 

 

 

 

Figure 5. Wide-angle X-ray diffraction 
plots obtained from anionic poly(IL)-IL 
composite membranes with crosslinked 
PEGDA network 
(MIL/PEGDA(20%)/IL). 
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Figure 6. DSC curves of anionic poly(IL)-IL composite membranes with crosslinked PEGDA 
network (MIL/PEGDA(20%)/IL). 
 

 
 
Table 1. Physical parameters that characterized the anionic poly(IL)-IL composite membranes 
 
 
 
 
 
 
 
 
 

Gas permeation measurements and CO2 separation performance of anionic poly(IL)-IL 

composite membranes. 

The gas separation performances of all the newly developed anionic poly(IL)-IL composite 

membranes were measured using a lab-made high-vacuum time-lag unit according to the 

Membrane Tg 
(OC) 

d-spacing (Å) 

MIL-CF3/PEGDA(20%)/IL(0.5eq.) -18.8 6.12 

MIL-CF3/PEGDA(20%)/IL(1eq.) -20.6 6.09 

MIL-C7H7/PEGDA(20%)/IL(0.5eq.) -22.5 6.05 

MIL-C7H7/PEGDA(20%)/IL(1eq.) -35.2 6.63 
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constant volume/variable-pressure method. The pure gas permeabilities of CO2, H2, N2, and CH4 

and permselectivities of CO2/H2, CO2/N2, and CO2/CH4 are summarized in Table 2, while the 

solubility and diffusivity coefficients are depicted in Table 3. Generally, the CO2-preferential 

separation membranes are either rubbery polymers or contain polar functional groups to interact 

with the quadrupolar CO2 molecules, the CO2 solubility in such polymers are one to two orders 

of magnitude higher than that of the other typical gases.48, 49 On the other hand, Bernardo et al. 

reported that the incorporation of a strongly sorbing component apparently reduces the size-

sieving ability and enhances the permeability due to a drastic increase in diffusivity.50 Therefore, 

in the present work, the incorporation of free IL into anionic poly(IL) matrix anticipated to have 

a double effect of high CO2 solubility and an increase in the diffusivity, which even could be 

more favorable for CO2/H2 reverse-selectivity behavior. The obtained results revealed that the 

permeability of each single gas for the composite membranes are in the order of CO2 (3.3 Å) > 

H2 (2.89 Å) > N2 (3.6 Å) > CH4 (3.8 Å) (see Table 2). Most notably, CO2 displayed the highest 

gas permeability among the four gases, even much higher than that of H2 with a smaller 

diameter, due to the high CO2-philic behavior of the newly developed anionic poly(IL)-IL 

composite  membranes.         

 

 

 

 

 

Table 2. Pure gas permeabilities (P)a and permselectivities (α) of anionic poly(IL)-IL composite 
membranes at 3 atm and 20 ○C 

Membrane PCO2 PH2 PN2 PCH4 αCO2/H2 αCO2/N2 αCO2/CH4 
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 aP in barrers, where 1 barrer = 10-10 [cm3 (STP) cm]/(cm2 s cm Hg) 

 
Table 3. Pure gas diffusivity coefficientsa and solubility coefficientsb of anionic poly(IL)-IL 
composite membranes at 3 atm and 20 ○C 

aDiffusivity coefficient (10-8 cm2/s). bSolubility coefficient (10-2 cm3 (STP) cm-3 cm-1 Hg-1) 

 

As shown in Table 2, the gas permeabilities of –SO2–N(-)–SO2–C7H7 segments containing 

composite membranes displayed a  dramatic increase in permeabilities with respect to their free 

IL contents; for example, the CO2 permeabilities of MIL-C7H7/PEGDA(20%)/IL(0.5eq.) and MIL-

C7H7/PEGDA(20%)/IL(1eq.) were 4.67 and 20.4 barrer, respectively. This drastic increase in 

permeability is due to the enhanced diffusivity as a result of effectively improved flexibility in 

the polymer chain, which agrees with the d-spacing data and the thermal transition properties (a 

much lower Tg and higher d-spacing value was obtained for MIL-C7H7/PEGDA(20%)/IL(1eq.)). In 

contrast, an odd behavior was also observed in the present work with the –SO2–N(-)–SO2–CF3 

segments containing composite membranes. There was no increment in permeability observed 

with increasing amount of free IL content in –SO2–N(-)–SO2–CF3 segments containing composite 

membranes, even slight reduction in permeability was obtained; for example, the CO2 

permeabilities of MIL-CF3/PEGDA(20%)/IL(0.5eq.) and MIL-CF3/PEGDA(20%)/IL(1eq.) were 7.69 and 

MIL-CF3/PEGDA(20%)/IL(0.5eq.) 7.69 2.83 0.165 0.136 2.71 46.6 56.54 
MIL-CF3/PEGDA(20%)/IL(1eq.) 5.94 1.87 0.115 0.096 3.18 51.65 61.88 

MIL-C7H7/PEGDA(20%)/IL(0.5eq.) 4.67 1.65 0.071 0.066 2.83 65.77 70.75 
MIL-C7H7/PEGDA(20%)/IL(1eq.) 20.4 4.97 0.235 0.172 4.1 86.81 118.6 

Membrane DCO2 DN2 DCH4 SCO2 SN2 SCH4 

MIL-CF3/PEGDA(20%)/IL(0.5eq.) 2.81 0.989 0.48 2.74 0.167 0.283 

MIL-CF3/PEGDA(20%)/IL(1eq.) 2.49 0.875 0.45 2.39 0.131 0.213 

MIL-C7H7/PEGDA(20%)/IL(0.5eq.) 2.14 0.689 0.39 2.18 0.103 0.169 

MIL-C7H7/PEGDA(20%)/IL(1eq.) 8.31 1.39 1.12 2.46 0.169 0.154 
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5.94 barrer, respectively (Table 2). This was an unexpected result from a poly(IL)-IL system 

attributed due to the decrease of gas diffusivity (see Table 3) in MIL-CF3/PEGDA(20%)/IL(1eq.) 

membrane, plausible because of dense amorphous chain packing regardless to the free IL 

contents, which is in a good agreement with the XRD and DSC data of newly developed anionic 

poly(IL)-IL composites.  

 

At the same time, all the newly developed anionic poly(IL)-IL composite membranes exhibited 

much higher CO2 solubility than the N2, or CH4 solubilities, due to a stronger affinity of ionic 

liquid groups toward quadrupolar CO2 molecules. Consequently, all the anionic poly(IL)-IL 

composite membranes presented excellent CO2/CH4, CO2/N2, and CO2/H2 permselectivities, in 

particular, the MIL-C7H7/PEGDA(20%)/IL(1eq.) showed an extraordinary high CO2 selectivity for 

three gas pairs of αCO2/CH4=118.6, αCO2/N2 = 86.8, and αCO2/H2 = 4.1. The CO2 permeability 

versus CO2/CH4, CO2/N2, and CO2/H2 selectivity values of anionic poly(IL)-IL composite 

membranes (Fig. 7(a), 7(b), and 7(c), respectively) were then compared to the upper bound of the 

Robeson plot and the upper bound proposed by Freeman, et al.51-53 The permeability–selectivity 

tradeoff data reported in literature for other cationic poly(IL)-IL composites are also illustrated in 

the upper bound plot for comparison.35-37, 44, 54-57  
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Figure 7. “Upper bound” plot for comparing the CO2/CH4 (a), CO2/N2 (b), and CO2/H2 
separation performances of anionic poly(IL)-IL composites with other previously reported 
poly(IL)-ILs composite membranes.  
 

All anionic poly(IL)-IL composite membranes exhibited outstanding CO2/CH4 performances 

with curves positioned above the Robeson upper bound of 1991. Moreover, the MIL-C7H7/PEG

DA(20%)/IL(1eq.) membrane curves appeared above even the 2008 upper bound with extraordinary 

separation factor of 118.6. To the best of our knowledge, this is the highest selectivity value yet 
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reported for CO2/CH4 separation in poly(IL)-IL systems. Although all anionic poly(IL)-IL 

composite membranes fell below the upper bound line for CO2/N2, they were comparable and 

within the general range of other poly(IL)-IL systems. Furthermore, as can be seen from Fig. 

7(c), the separation performance level of all the anionic poly(IL)-IL membranes reached the 

reverse CO2/H2 upper bound limit. These results clearly indicated that all the anionic poly(IL)-IL 

composite membranes have remarkable capacities for enhanced selective separation of CO2.  

 

It is also important to note here that a direct comparison of newly developed anionic poly(IL)-IL 

composites with their crosslinked PEO units have not been focused due to the amounts of 

PEGDA monomer that can be incorporated in the anionic poly(IL) matrix, thanks to the modest 

amount of 20 wt% PEGDA monomer to form thin flexible anionic poly(IL)-IL composite 

membranes. The feature to tailor the structure-property relationships and the CO2 separation 

capacity of anionic poly(IL)-IL with various amount of PEO units will be the subject of our 

further research. We also foresee an extension study to develop many anionic poly(IL)s with 

potentially fine-tuned substructures by introducing more flexible spacers (e.g., extended alkyl 

chains or ethylene oxide chains) and high polar delocalized anions (e.g., cyanamide anions) in 

our forthcoming works.    

   

CONCLUSION 

This study provides a facile method to develop novel anionic poly(IL)-IL composite membranes 

for high-performance CO2 separation. Two types of photopolymerizable methacryloxy-based 

ionic liquid monomers (MILs) with highly delocalized anions (–SO2–N(-)–SO2–CF3 and –SO2–

N(-)–SO2–C7H7) and mobile [C2mim]+ counter cations were successfully synthesized. Further, the 
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photopolymerization of these two anionic MILs with the two distinct amounts of free IL 

containing the same structural cation ([C2mim][Tf2N]) and 20 wt% PEGDA crosslinker, to serve 

as a composite matrix, were led to form four novel anionic poly(IL)-IL composite membranes. 

All the newly developed flexible, transparent, and free-standing anionic poly(IL)-IL composite 

membranes exhibited excellent compatibility, high thermal stability, and enhanced CO2 

separation properties. The anionic poly(IL)-IL membranes showed superior CO2/CH4 and 

CO2/N2 selectivities with moderate CO2/H2 selectivity, whilst obtaining reasonable gas 

permeabilities. Moreover, the MIL-C7H7/PEGDA(20%)/IL(1eq.) membrane was able to surpass the 

CO2/CH4 upper bound limit, due to the simultaneous improvement in permeability and 

selectivity. The results showed that the newly developed anionic poly(IL)-IL composite 

membranes have remarkable potential to separate CO2 from flue gas, natural gas, and syngas 

streams, making them strong candidate materials for practical applications.  
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Introducing the first example of anionic poly(IL)-IL composite membranes for effective CO2 
separation with many more aspects that convey green chemistry and polymer membrane-based 
separation engineering. 

 


