
Computationally efficient deformable 3D

object tracking with a monocular RGB

camera

A dissertation submitted for the degree of Doctor in Computer Science
Jon Goenetxea Imaz

Advisors
Fadi Dornaika
Luis Unzueta

Donostia-San Sebastián, September 2020

(cc)2020 JON GOENETXEA IMAZ (cc by 4.0)

Nire amari.

Abstract

Monocular RGB cameras are present in most scopes and devices, includ-
ing embedded environments like robots, cars and home automation. Most
of these environments have in common a significant presence of human op-
erators with whom the system has to interact. This context provides the
motivation to use the captured monocular images to improve the under-
standing of the operator and the surrounding scene for more accurate results
and applications.

However, monocular images do not have depth information, which is a
crucial element in understanding the 3D scene correctly. Estimating the
three-dimensional information of an object in the scene using a single two-
dimensional image is already a challenge. The challenge grows if the object
is deformable (e.g., a human body or a human face) and there is a need to
track its movements and interactions in the scene.

Several methods attempt to solve this task, including modern regression
methods based on Deep Neural Networks. However, despite the great results,
most are computationally demanding and therefore unsuitable for several en-
vironments. Computational efficiency is a critical feature for computationally
constrained setups like embedded or onboard systems present in robotics and
automotive applications, among others.

This study proposes computationally efficient methodologies to recon-
struct and track three-dimensional deformable objects, such as human faces
and human bodies, using a single monocular RGB camera. To model the
deformability of faces and bodies, it considers two types of deformations:
non-rigid deformations for face tracking, and rigid multi-body deformations
for body pose tracking. Furthermore, it studies their performance on com-
putationally restricted devices like smartphones and onboard systems used
in the automotive industry. The information extracted from such devices
gives valuable insight into human behaviour a crucial element in improving

human-machine interaction.
We tested the proposed approaches in different challenging application

fields like onboard driver monitoring systems, human behaviour analysis from
monocular videos, and human face tracking on embedded devices.

Acknowledgements

”El guerrero victorioso gana primero y luego va a la guerra, mientras que el
guerrero derrotado va a la guerra y trata de ganar.”,

Sun Tzu, El arte de la guerra.

Y con este texto termina la aventura del guerrero derrotado que consiguió
ganar.

Hace varios años, yo era un soldado inexperto que se aventuró en un
viaje incierto con la valent́ıa inconsciente que solo los ignorantes se atreven
a blandir. Lleno de confianza, emprend́ı un camino que pensaba corto y
sosegado, pero la realidad no tardaŕıa en sacarme de mi error.

Por fortuna, aquel soldado no estaba solo, y fue gracias a esas personas
que estas leyendo estas ĺıneas.

En aquellos comienzos Fadi Dornaika, Luis Unzueta y Blanca Cases se
atrevieron a guiarme, y he de decir que lo han hecho de forma magńıfica hasta
este d́ıa. No sab́ıamos donde acabaŕıa el viaje, pero definimos un rumbo y
echamos a andar.

Durante todo el camino, Vicomtech me dio las herramientas que nece-
sitaba para sobrevivir, incluyendo el inestimable consejo de Jorge Posada
como director cient́ıfico. A todo esto se le suma la protección y el amparo
de unos compañeros inmejorables, capitaneados por Oihana Otaegui, a quien
agradezco especialmente su constante apoyo durante todo el proceso. Gra-
cias también a Maria Teresa Linaza, por su ayuda en nuestras aventuras por
Europa, a Luis Unzueta y Unai Elordi, por reconquistar las Américas y a
Nerea Aranjuelo y Juan Diego Ortega por todo el trabajo de campo y sim-
uladas carreteras. Ellos, y el resto de mis compañeros, han sido la brújula y
el mapa que han hecho que en cada montaña a atravesar hubiera un sendero
para caminar.

Y entre todos luchamos contra el peor de los enemigos: lo desconocido.
Para el que no lo sepa todav́ıa, lo que desconoces siempre tiene un plan para
sorprenderte.

Y luchamos. Luchamos mucho. Ganamos algunas veces y perdimos
muchas más. Y cada derrota daba paso a una nueva pelea.

Pero cada vez que mord́ıa el polvo, mi familia venia en mi ayuda. Sin el
ánimo de Laura y la sonrisa de mis hijos Luka y Kima, nunca podŕıa haber
llegado tan lejos.

Gracias a todos por vuestro apoyo y dedicación.
Y después de todo lo vivido en estos años, sigo siendo el mismo soldado;

inexperto, aunque algo menos ignorante. Pero sé algo que muchos todav́ıa
ignoran: Ante un viaje peligroso, lo importante no es el destino ni la calidad
de tus botas, sino la gente con la que te rodeas en el camino.

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Capture devices . 2
1.1.2 Gesture and pose interpretation 4
1.1.3 3D Tracking . 4
1.1.4 Computational limitations 7

1.2 Contributions . 8
1.3 Thesis organization . 10

2 Related work 13
2.1 Object modeling . 13

2.1.1 Human body models 16
2.1.2 Human face models . 18

2.2 3D object tracking . 20
2.2.1 Human body as a rigid multibody deformable object . 21
2.2.2 Human face as a non-rigid deformable object 23
2.2.3 Methods based on Deep Neural Networks 27

2.3 Facial gesture recognition . 28
2.4 Computationally limited systems 32
2.5 Image capture and 3D reconstruction 36
2.6 Discussion . 39

3 Feature point detection 41
3.1 Related work . 42
3.2 Face landmark detection by image gradient analysis 43

3.2.1 Lightweight facial feature detection 43
3.2.2 Experimental results 51
3.2.3 Conclusions . 51

i

3.3 Face landmark and gesture detection by DNN regression . . . 51

3.3.1 Multi-level approach 52

3.3.2 Facial attribute definition 54

3.3.3 Network structure . 55

3.3.4 Learning process . 56

3.3.5 Experimental results 60

3.3.6 Conclusions . 65

4 Face fitting with non-rigid deformations 67

4.1 Facial Feature Back-Projection (FFBP) 68

4.1.1 3D deformable model definition 68

4.1.2 Baseline fitting method 70

4.2 Multi-Stage Back-Projection (MSBP) 73

4.2.1 Deformable 3D face model 74

4.2.2 3D face model alignment 75

4.3 Face tracking in a Video Sequence 81

4.3.1 Baseline tracker . 82

4.3.2 Fast tracker . 82

4.3.3 Fast tracker with points filtering 84

4.4 Experimental results . 85

4.4.1 Experimental setup . 86

4.4.2 3D orientation comparison 88

4.4.3 3D Shape Estimation Comparison 91

4.4.4 Computation Time Comparison 92

4.4.5 Performance Analysis on ARM Architectures 93

4.4.6 Qualitative results . 97

4.5 Conclusions . 98

5 Body pose estimation with multi-body deformations 101

5.1 Method . 102

5.1.1 Camera calibration . 102

5.1.2 Body pose estimation 103

5.2 Automatic multi-body projection adjustment process 107

5.3 Experimental results . 110

5.4 Conclusions . 118

ii

6 Application fields 119
6.1 Driver inattention monitoring 120

6.1.1 Methodology . 122
6.1.2 Results . 134
6.1.3 Conclusions . 137

6.2 Sport skill analysis by 3D body pose extraction 138
6.2.1 Data capture and analysis 139
6.2.2 Extraction of the athlete’s 3D motion 141
6.2.3 3D motion analysis . 145
6.2.4 Experimental results with Pallapugno videos 148
6.2.5 Conclusions . 150

7 Conclusions and future work 153
7.1 Conclusions . 153
7.2 Future work . 155
7.3 Relevant publications . 157

7.3.1 Journals . 157
7.3.2 Books and book chapters 157
7.3.3 Conferences, congresses and workshops 158
7.3.4 Patent applications . 159

A Appendix Title 181
A.1 Candide model modified deformations 181

iii

iv

List of Figures

1.1 From left to right, an RGB image, a IR image and the depth
map from a RGBD sensor. Each color of the depth map rep-
resents a different distance value. 3

1.2 A visual representation of discriminative and generative ap-
proaches. 5

1.3 A tracked sequence (from left to right) of a face using an au-
tomatic 3D face tracker. The upper row shows the original
image captured by a colour camera and the lower row shows
the same images with a 3D face model overlapping the face
representing the tracking output. 7

1.4 A graphical representation of the process to fit a 3D model to
an RGB image. The figure includes the case of fitting non-
rigid deformable models for face gesture reconstruction and
multi-body deformable objects for human pose estimation. . . 8

1.5 The pipeline shown in Figure 1.4 with a more detailed object
region definition step, and including frame-to-frame update
elements. 10

2.1 Examples of each model representation class: a) structural
face representation, b) 2D area based face representation, c)
volumetric face representation, d) structural or kinematic body
representation, e) contour-based body representation and f)
volumetric body representation. Face image b extracted from
[34], face image c extracted from [35] and images d, e and f
extracted from [17] . 14

2.2 Some examples extracted from annotated 2D body pose datasets.
Original image extracted from [17]. 15

2.3 Some examples extracted from annotated 3D body pose datasets.
Original image extracted from [17]. 17

v

2.4 On the left, some examples of the body poses and shapes using
SMPL body model. The image shows the body pose estimated
using SMPL model configuration (brown) vs the ground truth
3D scan model (gray). On the right, some examples of the
poses and shapes using Stitch body mode. Each colour repre-
sents a different deformable body part. 18

2.5 Face feature definition examples from different annotated fa-
cial image datasets: a) [46, 47] b) [48] c) [49] d) [50] e) [51]
f) [52] g) [53] h) [54]. Image extracted from [47] 19

2.6 Different 3D vertex densities of the deformable face model
proposed by [63]. 21

2.7 On the left, 3D body pose estimations using [36]. On the right,
3D body pose estimations using [10]. 22

2.8 Examples of face deformations caused by facial cardinal ex-
pressions (top row) and examples of different human faces
(bottom row). The facial expressions in the top row are (from
left to right): neutral, happy, surprised, sad, afraid, disgusted
and angry. Images extracted from KDEF dataset [76]. 24

2.9 Left image shows some examples of the fitting results using
[19]. Right image shows the reconstruction of the 3D shape of
a face using [79]. 25

2.10 On the left, some examples of the 3D model generated by [62],
and on the right, the results of using this model with a different
actor. 26

2.11 The left image shows the region-based deformable 3D model
proposed in [81]. Right images show two examples of 3D model
fitting on a face image. 28

2.12 Action Units #2 (left) and #10 (right). Top row shows the
rest state of the action, while the bottom row shows the active
state. 31

2.13 On the left, a Raspberry Pi 4 Model B with a Broadcom
BCM2711 SoC. On the right, a carrier board designed by
”Connect Tech” for the Jetson Xavier NX from Nvidia. 34

2.14 On the left the Jetson Xavier NX SoM from Nvidia. On the
right the Coral SoM from Google. 35

2.15 On the left, Movidius Myriad-2 USB AI-accelerator (VPU)
from Intel. On the right, Coral USB AI-accelerator (TPU)
from Google. 35

vi

2.16 Simplified representation of the pinhole camera model. 37

2.17 Different images of the same face taken with a full-frame cam-
era and using objectives with different focal lengths. Original
image by Stephen Eastwood1 38

3.1 Proposed fitting approach. From left to right and top to bot-
tom: (1) The detected face region and the faceROI derived
from it (thicker line), (2) faceROI and the eyeSROIs derived
from it (thicker line), (3) faceROI, the estimated eyeROIs
and the eyebrowSROIs and mouthSROI derived from them
(thicker lines), (4) faceROI, the estimated eyeROIs and the
noseSROI derived from them (thicker line) and (5) the de-
tected facial features. 46

3.2 Facial feature detection procedure steps. From left to right
and top down: (1) eye point detection, (2) eyebrow point de-
tection, (3) mouth point detection, (4) nose point detection,
(5) contour point detection and (6) OAM tracker model ini-
tialization example. 47

3.3 The detected 32 facial points. Note that the words left and
right are relative to the observer rather than the subject. . . . 48

3.4 Eye points geometry derived in a fixed way from the estimated
eyeROIs. 48

3.5 Flowchart of the proposed multi-level analysis pipeline. 52

3.6 From left to right, a representation of the 32 landmarks de-
tected in the first level, a representation of the landmarks de-
tected in the second level and a combined representation of all
the detected features. Each colour represents the landmarks
for each face zone. 53

3.7 Examples of (from left to right) an eyebrow patch, a right eye
patch and a mouth patch using the image shown in Figure 3.6.
The red cross represents the target location of the reference
landmarks for each patch. Note that the reference point of
the mouth patch is out of the patch region. 54

3.8 The general structure of the multi-task network designed for
level 1. The layers in the trunk generate all the features for
the leave layers, sharing the output values with both leaves.
The leave layers are the output of the network. 56

vii

3.9 The neural network configuration for the attribute estimation
process. The first row shows the network configuration for
the first estimation level, including the input and the output
elements. The rows below show the network configuration for
each estimation model in the second level. A single eye model
estimates the eye attributes for both eyes, using symmetry to
estimate the attributes of the second eye. For each model, ’C’
represents the kernel size of the convolutional layer and the
’P’ represents the configuration of the pooling layer. 57

3.10 Some examples of training patches generated with the de-
scribed perturbations. From top to bottom, the original face
images, the patches for model in level 1, patches for eyebrow
model and patches for mouth model. 61

3.11 Two examples of the synthetic eye render (left column) and
some of the eye region training patches generated with those
images. The eye patches include the augmentation perturba-
tions. 62

3.12 Each image shows the estimated gesture probabilities as bars
(left), the tracked facial feature points (dots) and the esti-
mated eye gaze vector (purple arrows). The gesture defini-
tions are, from top to bottom, head pose left profile (HPLP),
head pose left-front (HPLF), head pose front (HPF), head pose
right-front (HPRF), head pose right profile (HPRP), mouth
gesture smile (MGS), mouth gesture frown (MGF), mouth ges-
ture kiss (MGK), mouth gesture neutral (MGN), eyebrow ges-
ture frown (EGF), eyebrow gesture raise (EGR) and eyebrow
gesture neutral (EGN). 63

3.13 Visual representation of the MSE and time values for Kazemi
and Sullivan [18], Baltrusaitis et al. [111] and the proposed
method (M3). 64

4.1 An adaptation of the graphical representation of the process
to fit the 3D model presented in section 1.2. 67

4.2 Face model fitting steps for FFBP (top row) and MSBP meth-
ods (bottom row). The left image shows the automatically
detected face region. The central image shows the same face
with the 2D landmarks overlapped. The right image shows
the result of the 3D model deformation and alignment. 69

viii

4.3 The geometries of the Candide-3 and the Candide-3m face
models. 70

4.4 The upper image in the figure shows the shape of the de-
formable 3D model used in this study. The lower row shows
the frontal view of the same deformable 3D model (left) and
the mean landmark shape of the used 2D landmark detector
model (right). In the current representation, all the 3D defor-
mation parameters (SUs and AUs) are set to zero value. . . . 76

4.5 Example of different deformations of the model. Each column
shows the same deformation with positive deformation values
(top row) and negative deformation values (bottom row). The
shown deformations correspond to (from left to right) lip cor-
ner depressor (AU), left eyebrow raiser (AU), mouth stretcher
(AU), eye vertical position (SU), mouth vertical position (SU)
and face width (SU). 77

4.6 Example of the optimisation steps for the 3D model align-
ment: a) the initialisation of the fitting in the centre of the
space, b) the raw estimation of the position and rotation of
the 3D object, c) the shape parameter optimisation, and d)
the animation parameter optimisation. 78

4.7 Representation of the face location update between the frames
#24 and #25 of the sequence 410 of the ’300VW challenge’
dataset [127]. The tracker extracts the face template (middle)
from the frame #24 using the projection of the 3D vertices.
Then, it finds the template in the red area in the frame #25. . 84

4.8 Fitting example for each fitting method using the same image.
The top row shows the projection of each model on the image.
The bottom row shows the side view of the same fitting. Each
column represents a method. From left to right FFBP, Huber
et al. [7], Baltrusaitis et al. [6], Bulat et al. [8], Feng et al. [85],
Kazemi and Sullivan [18] + MSBP and Baltrusaitis et al. [6]
+ MSBP. 86

4.9 Example of an annotation of the AFLW2000-3D dataset with
the ground truth vertices in blue. Each image shows in red
the FAP locations for: a) the orientation estimation and b)
the shape estimation comparison. 88

4.10 Graphical representation of the face orientation, including the
reference plane. 89

ix

4.11 Mean shape error, mean rotation error and mean elapsed time
measurements for each of the tested methods, normalised in a
range from zero to one. The highest value for each measure-
ment type is set to one while the rest of the values are scaled
accordingly. The two horizontal lines show the accuracy val-
ues of our fastest method against the rest. In all cases, smaller
is better. 94

4.12 Times needed for each device to detect the face in the im-
age(left), to detect the facial landmarks in the detected region
(center) and to fit the 3D model using the detected landmarks
(right). The vertical axis shows the time (in milliseconds) and
the horizontal axis the sample index. 95

4.13 Some results of the fitting process using the AFLW2000-3D
dataset. 97

4.14 Proposed method running on an iPhoneSE (left) and a Pixel-
C(right) using images captured with the integrated front cam-
era in real-time. 98

5.1 An adaptation of the graphical representation of the process
to fit the 3D model presented in section 1.2. 101

5.2 The CLFBA method components with their corresponding in-
puts and outputs. 103

5.3 (a) The 3D kinematic model’s hierarchical structure (based
on H-Anim [136]), (b) its body dimension parameters and (c)
its posing features for IK control (located at end-effectors and
intermediate upper and lower limb joints). 104

5.4 Examples of biomechanical rotation limits of body joints: (a)
shoulder swing limits, (b) knee flexion limits and (c) a cervical
vertebra twist limit. 106

5.5 Flowchart of the automatic multi-body projection adjustment
process. 107

5.6 Samples from the HumanEva-I dataset sequences used in the
experiments, with the pose estimations from Vicon overlapped.
From left to right, S1-Box1-C3, S1-Walk1-C2, S3-Box1-C2 and
S3-Jog1-C1 . 111

5.7 An example of the obtained pose reconstruction results (S1-
Walk1-C2): a) CLFBA, b) [27], c) [140] and d) [141] 116

x

6.1 Multi-screen simulator setup for driver behaviour analysis,
based on human-machine interaction, including PoG and 3D
face tracking . 121

6.2 Workflow of the multi-planar PoG estimation and 3D face
tracking approach. 125

6.3 A generic deformable 3D face model and some of its deforma-
tion parameters compatible with our method. 126

6.4 Examples of the distortion that happens in the normalised
appearance of the most distant eyes in non-frontal faces, when
the head’s yaw angle is changed. 130

6.5 The considered zones of interest in the simulator to analyse
the driver’s PoG. 131

6.6 Confusion matrix of the predictions obtained by our approach
for the considered gaze zones. 136

6.7 An example of PoGx signal where saccades and fixations can
be appreciated, along with the level of noise. 136

6.8 Examples of the approach running in an iPhone SE, while the
user puts thick glasses on and the system keeps working. . . . 137

6.9 Three examples of an old broadcast video captured for TV. . . 140

6.10 The figure shows: a) floor plane tool alignment with the ref-
erence element, b) 14 2D body joint landmark location, and
c) the final pose reconstruction. 142

6.11 Image (a) shows the estimation of the automatic joint detector
for a given frame [25]. Image (c) shows the same frame with
the needed 2D landmark correctly positioned for the 3D re-
construction. The image (b) shows the relation between both
representations, and how the missed landmarks (in red) are
computed. 144

6.12 Five frames processed with the automatic pose detector. The
pose in some of the frames is not correctly estimated. 145

6.13 The complete end-to-end motion comparison pipeline 146

6.14 The image shows the key-frames of the 3D reconstruction of
Pallapugno serve skill. The coloured lines represent the key-
frame of: the start of back-swing (red), the back-swing to
front-swing transition (green), the player-ball impact (blue),
and the front-swing to follow-through transition (grey). 149

xi

6.15 Comparison of the right shoulder (up) and right elbow (down)
extension features for two Pallapugno serve actions. The fea-
ture’s measurements over time as well as their similarity are
presented. The vertical lines denote specific key-frames that
mark the phase transitions as in Figure 6.14 151

A.1 The added and modified SUs and AUs in Candide-3m with
respect to Candide-3, showing their variation from -1 to 1
values, where 0 corresponds to the neutral configuration. . . . 182

xii

List of Tables

2.1 The main features of the presented face tracking methods. . . 29

2.2 Main studies based on Deep Learning approach for human 3D
body pose reconstruction and tracking. 30

2.3 Main studies based on DNN methods for face tracking. 30

3.1 Results of the landmark estimation time measurement. 64

4.1 List of shape and action units included in the deformable 3D
model. 74

4.2 Results of the Orientation Estimation Comparison. 91

4.3 Results of the Shape Reconstruction Comparison. 92

4.4 Mean Computation Times for each Device and Task. 95

4.5 Processing Time Comparison Between Devices. 96

5.1 Camera parameter estimation results of [133] (used for the
camera configuration in CLFBA and [27]) and Vicon in the
three camera viewpoints (C1-C3) from HumanEva-I dataset. . 112

5.2 2D pose estimation errors in pixels per joint, for each body
limb and for the full body, of CLFBA, [27], [140] and [141]
with respect to Vicon in HumanEva-I dataset. 114

5.3 3D pose estimation errors in cm per joint, for each body limb
and for the full body, of CLFBA, [27], [140] and [141] with
respect to Vicon in HumanEva-I dataset. 115

5.4 Body part size estimations in cm of CLFBA and Vicon in
HumanEva-I dataset . 117

5.5 Average time measurements for the optimization process, de-
pending on the parameters to be obtained 117

xiii

6.1 Comparison among different state-of-the-art eye gaze estima-
tion systems and ours. 133

6.2 Weights allocated to the motion features of each joint in the
three different phases of the Pallapugno serve 149

xiv

Chapter 1

Introduction

1.1 Motivation

Advances in fields such as robotics and artificial intelligence are progressing
by leaps and bounds. Today we can create autonomous robots capable of
walking like humans, talking like humans, and listening like humans allowing
a more natural interaction between the machine and the user.

Natural speech interfaces are tools already implemented in commercial
products and are being used in many homes to improve user experience with
multimedia applications and with home automation. Such interfaces improve
communication with specific machines, but their understanding of the user’s
situation is limited to the information provided through the voice.

The average human can see and interpret non-verbal communication com-
ing from their interlocutor. Above all, they can evaluate a large amount of
information by visually interpreting face gestures and/or body pose. This
kind of interpretation is something that machines have not yet managed to
do.

Improvements in this interpretation capacity need new ways to extract
the information from the primary sources of non-verbal communication: the
facial gesture and the pose of the body. To this end, the system needs to
track the face or body and interpret the poses and movements, both being
challenging elements to track, especially in a three-dimensional environment.

The main task of a tracking system is to estimate the position and ori-
entation of an object in the scene using a captured data sequence. This
information is sufficient to monitor possible interactions between different

1

scene elements (e.g., distances between objects or velocities), but ignores the
internal information of the tracked object. In the case of a rigid object (e.g.,
a mug or a box), its intrinsic information remains constant. However, for
deformable objects (e.g., a cat or a person) the intrinsic shape can change,
offering valuable information for the interpretation of the scene as a whole.
Thus, the next important task is to estimate the internal pose or configura-
tion of the object itself.

Presumably, a three-dimensional object also has a three-dimensional de-
formation. This assumption is especially crucial in a context where the in-
terpretation of the scene depends on the interaction of the different elements
within it. For example, we can understand that a person is greeting or
pointing, but the orientation of the gesture is an essential part of this com-
munication. The same goes for facial gestures, which can be interpreted
differently according to the orientation of the head, for example.

1.1.1 Capture devices

The first barrier between the tracking system and the real 3D scene is the
capture system. These hardware elements provide the data needed to analyse
the scene, so we must make sure that it provides the essential information.

There are several types of capture setups. Some setups are as simple as a
colour camera, while others combine several infrared cameras, spotlights and
special suits full of reflective markers. The capture system will largely deter-
mine the accuracy of the final result, but the context of the final application
usually limits the use of certain setups.

Since the use of specific suits or wearables is too intrusive in natural envi-
ronments (e.g., driver behaviour analysis), this section will focus on capture
systems that do not use them. Besides, the combination of multiple sensors
is unfeasible in several scenarios, for instance, in the case of smartphones.
Thus, we limit the possible setups to those that use a single capture sensor.

The most commonly used devices in these types of environments are:
infrared (IR) cameras, visible light cameras (red-green-blue or RGB), and
3D capture sensors combining RGB data with a depth map (RGBD). Figure
1.1 shows an example of each image type.

IR cameras capture light in a spectrum close to the colour red, which is
not visible to the human eye, and project light intensities in a plane. While
sunlight has an IR component, Infrared cameras still need a specific infrared
light source, consisting of an infrared spotlight. This extra illumination in-

2

Figure 1.1: From left to right, an RGB image, a IR image and the depth map
from a RGBD sensor. Each color of the depth map represents a different
distance value.

creases power consumption, which could be high depending on the area to
be monitored by the system. Although infrared light is not visible, it affects
the tissues of the eye [1] and can be dangerous in some instances, so it is
necessary to limit its use if it is necessary to illuminate a face directly.

RGB cameras capture the visible light of a scene and project the colour
data into a plane. They are widely used tools and are integrated into sev-
eral types of devices like smartphones, laptops, commercial intercoms and
surveillance platforms. However, similar to IR cameras, they need a light
source, and this makes them problematic in dark environments like under
illuminated rooms or night scenes.

Both device types (IR and RGB cameras) project the light information in
a single plane, losing the depth information in the process. Some studies [2–4]
propose using a multi-camera system to reconstruct the 3D information via
triangulation, but those setups include additional constraints and considera-
tions [5].

Other studies [6–11] use a predefined deformable 3D model to estimate
the depth values of the face or body by re-projection. The tracking system
adapts the appearance of the 3D model modifying its deformation parameters
while estimating its position and orientation to fit its projection in the image,
taking into account the camera parameters.

As an alternative, RGBD cameras capture RGB information plus the
depth value estimation of each pixel. The main capture techniques for RGBD

3

cameras are structured light projection (e.g., Microsoft Kinect) and time-
of-flight sensors (e.g., Microsoft Kinect 2). In both cases, the estimation
tends to be noisy and with low resolution, in addition to being sensitive to
external factors such as IR light sources (i.e., sunlight). To correctly interpret
the captured 3D information, methods like [12] use a deformable 3D model
similar to those used with RGB and IR cameras. This model helps to reduce
the noise in the captured data and prevents errors caused by occlusions and
IR light reflections.

1.1.2 Gesture and pose interpretation

The automatic interpretation of the facial gesture and the human body pose
allows for a more in-depth interpretation of the scene.

This information reinforces the analysis of other elements in the scene,
providing general context and additional information [13]. For example, fa-
cial gesture estimation can contextualise a parallel process of speech recogni-
tion, or it could determine the inattention of the user during specific actions.
Similarly, 3D body pose information can reinforce a human behaviour anal-
ysis process. Moreover, both sources of information (i.e. facial gesture and
body pose) complements each other, allowing a deeper understanding of hu-
man actions.

In motion capture and performance transfer applications, facial gesture
information improves the facial gesture transfer from a real actor to a virtual
avatar [14]. In the animation process, the expressiveness of the virtual avatar
can differ significantly from that of the actor, due to possible differences in
face shape and expressiveness between them (e.g., cartoon characters). Sys-
tems that only rely on the relative movement of facial elements with respect
to the neutral facial gesture may lose expressiveness in the transfer process,
requiring a post-production phase to correct these losses. Instead, a subjec-
tive analysis of the gesture can be applied directly to its representation in the
avatar, making the avatar smile while maintaining its original expressiveness,
for example.

1.1.3 3D Tracking

3D tracking consists of the interpretation of the 3D movements of a 3D ele-
ment in a 3D scene over a time frame. The type and nature of the interpreted

4

data depend on the adopted tracking method and the needs of the final ap-
plication.

There are different categorisations for tracking methods, depending on
the adopted approach [15–17]. However, the most meaningful in this context
could be generative vs discriminative categorisation.

At a technical level, discriminative methods segment the model deforma-
tion space during training and then discriminate between different kinds of
data instances on inference (see left image in Figure 1.2). They rely on the
conditional probability p(Y |X) to model the possible deformations.

In contrast, generative methods use a previously learned deformation
model to encapsulate the underlying join probability distribution p(X, Y)
of the deformations (see right image in Figure 1.2). To generate the defor-
mation model, we can use both automatic learning processes and structured
deformable models based on deformation constraints; such as kinematic mod-
els in the case of the human body.

Figure 1.2: A visual representation of discriminative and generative ap-
proaches.

In the field of two-dimensional facial shape reconstruction, two represen-
tative examples of those categories are the methods proposed by Kazemi
and Sullivan [18] for discriminative methods and Baltrusaitis et al. [19] for
generative methods.

In [18], the authors propose a method based on ensembles of regression
trees, which iteratively improves an initial face shape estimation using previ-
ously trained binary trees. A binary tree is a flowchart-like structure, where

5

each node discriminates between two possible outputs, deciding which is the
next node to evaluate. At the end of the tree, the leave node stores the
regression values learned during the training phase.

The method proposed in [19] relies on a PCA (principal component anal-
ysis) deformation space, which models the possible facial deformations based
on the samples of the training dataset. During inference, an iterative process
estimates the configuration to fit the PCA model with the evaluated face
image.

In summary, generative methods [10, 19, 20] rely on a previously defined
model of the tracked object, and they adapt the model configuration to
estimate the status of the object in the scene. In contrast, discriminative
methods [18, 21–23] rely on a direct mapping between the tracked object
and a previously defined deformation space. Discriminative methods are
usually computationally faster on inference compared to generative methods.
They use fast regression or boosting approaches to estimate the features
learned during the mapping learning phase, reducing the search space and
computational complexity. However, generative methods require less data
for training and are more robust for object configurations not present in the
data used to define the deformation space.

Apart from this categorisation, the tracking pipeline has different steps
[15]. Based on this pipeline, we can highlight two approaches: a) tracking
by continuous re-detection and b) tracking by a frame-to-frame update.

Tracking by re-detection methods does the object detection and pose esti-
mation in each of the frames. Then they relate the detections in consecutive
captures to generate the full tracking sequence. Conversely, methods based
on the frame-to-frame update perform the detection of the object in the
first frame then, for consecutive frame sequences, use the information of the
previous frame to update the position, orientation and pose in the current
frame.

Frame-to-frame update-based methods avoid the object detection step,
which is a computationally expensive process, reducing the required compu-
tation resources. The object information from previous frames makes the
tracking more robust to partial occlusions. However, this information can
degrade due to cumulative estimation errors or heavy occlusions, reducing
tracking accuracy. To fix the degradation, they need an extra monitoring task
when the object tracking is lost (i.e. the tracking accuracy is not acceptable)
and needs to re-detect the object restarting the tracking.

Figure 1.3 shows some example frames of a tracking sequence using these

6

Figure 1.3: A tracked sequence (from left to right) of a face using an auto-
matic 3D face tracker. The upper row shows the original image captured by
a colour camera and the lower row shows the same images with a 3D face
model overlapping the face representing the tracking output.

types of techniques.

The first column of Figure 1.3 shows the detection frame. In this in-
stance, the tracker identifies the face or the body and estimates the initial
configuration of the 3D model. The following frames (from left to right) show
how the tracker updates the deformation of the 3D model during the video
sequence.

There are different techniques to update the model configuration between
frames [15]. Each tracking system has distinctive characteristics that must
be evaluated depending on the context of the final application. A system
that needs a very detailed reconstruction of the face has some features and
limitations that, for example, a system that only needs the position and
orientation of the head does not have.

1.1.4 Computational limitations

There are application environments that can significantly benefit from the
possibilities offered by this kind of tracking system. However, at the time of
defining a tracking system, it is essential to consider the singularities of the
application context to evaluate its needs and limitations, and it is necessary
to analyse what the constraints are in each case. For example, an autonomous
robot depends on its battery to operate, so the computing power for the in-
teraction and interpretation system is limited. In driver monitoring systems

7

for vehicles, the onboard hardware analyses the data locally to avoid laten-
cies, so the energy and computing power is also limited. Furthermore, a
PC without these external limitations could have problems with computing
processes that exceed its processing capacity.

These are some examples of computationally limited environments. Fol-
lowing sections analyse the most widely adopted hardware architectures in
these kinds of environments, and they show some solutions depending on
computing needs.

1.2 Contributions

This study focuses on the estimation of the 3D pose inherent in the human
body using systems with computational limitations as the final deployment
target. More precisely, it addresses techniques for estimating the 3D human
body pose and 3D gesture of a human face (including head position and
orientation). To capture the scene data, it uses a single RGB camera due to
its simplicity, efficiency and the high amount of data captured in each frame
(e.g., high-resolution frames, texture and colour). The presented techniques
can also be applied to track other 3D elements such as hands and fingers, or
lung and heart movements for biomedical applications.

M
u
lt
i-
b
o
d
y

N
o
n
-r
ig
id

Figure 1.4: A graphical representation of the process to fit a 3D model to
an RGB image. The figure includes the case of fitting non-rigid deformable
models for face gesture reconstruction and multi-body deformable objects for
human pose estimation.

The high variability of the body and the face makes it difficult to con-
sider all the possibilities in advance. Hence, it makes more sense to do the

8

tracking using a method based on a generative approach. In this context,
and according to the scheme proposed in [15], a general tracking pipeline will
include three consecutive steps:

1. Object region estimation.

2. Feature point detection.

3. 3D model fitting.

Figure 1.4 shows a visual representation of the enumerated steps. Follow-
ing the proposed scheme, the first step locates the tracked object and defines
its region in the image. The second step detects a series of feature points of
the object in the defined image region (in 2D), and the third step uses the
detected feature points and a generic deformable 3D model to estimate the
3D configuration of the object. Some methods [24,25] combine the first and
second step in a single computation, but we represent them separately for a
better generalisation.

Based on this pipeline, the PhD study outlines the following contribu-
tions:

• An efficient facial feature point detection system based on a learning-
free feature detection method [26] .

• An efficient facial feature point detection system based on a learning-
based feature detection method, which also extracts other facial at-
tributes like facial gesture estimation, head pose and eye-gaze.

• The definition of a 3D deformable model based on rigid multi-body
deformations for human 3D body pose estimation [27].

• The definition of a 3D deformable model based on non-rigid shape
deformations for human 3D face gesture estimation [28,29].

• An efficient 3D fitting method for human body pose estimation [30–33].

• An efficient 3D fitting method for human face gesture estimation [26,
29].

9

Figure 1.5: The pipeline shown in Figure 1.4 with a more detailed object
region definition step, and including frame-to-frame update elements.

Moreover, it defines a strategy to efficiently track 3D elements in RGB
video sequences [29], using the information of the previous frame to estimate
the location of the object, and avoiding the costly computation of the object
region detection step.

Figure 1.5 shows a graphic representation of this strategy. It includes a
measurement step to decide if the object is being tracked correctly. If this
step concludes that it is not, an automatic object region detection method
locates the object in the entire image, followed by the tracking if it finds
the object. Otherwise, if the measurement step determines that the object
is correctly tracked, a 2D region update method estimates the new object
2D region using the information from the previous frame. Note that for the
first frame of the capture sequence, there is no active tracking, so the system
uses the automatic region detector to initialise it. This introduced scheme
reduces computational complexity since the frame update process is more
efficient than object detection.

1.3 Thesis organization

The thesis content is structured in 7 chapters.
Chapter 1 is the current chapter and introduces general concepts, moti-

vations and contributions achieved during the research period.
Chapter 2 exposes the relevant approaches and related work presented in

the state-of-the-art literature.
Chapters 3 to 5 expose outline the methods proposed to efficiently track

10

deformable objects in monocular video sequences following the pipeline pre-
sented in the previous section. More specifically, chapter 3 focuses on the fea-
ture point detection phase and proposes several methods to efficiently detect
the two-dimensional facial features from monocular images, including exper-
imental results with in-the-wild video captures and real-time performance.
Chapter 4 proposes an efficient method to fit non-rigid 3D deformable mod-
els to faces on monocular images and also introduces the mentioned tracking
approach. Chapter 5 describes an efficient method to fit rigid multi-body 3D
deformable human body models to human poses in monocular images.

Chapter 6 shows several application examples based on the methods pro-
posed in previous chapters.

Chapter 7 outlines the conclusions and perspectives.

11

12

Chapter 2

Related work

This chapter analyses some of the elements that make up a 3D tracker based
on deformable 3D objects. According to the proposed scope, it presents the
most relevant works in the field, focusing on the human body pose and human
face gesture recognition, reconstruction and tracking. The tracking involves
recovering a set of variable configuration values from a captured image se-
quence. The configuration parameters include the three-dimensional pose
and some specific settings related to the deformable model, among others.

It first reviews the representation types and models used for human body
and face representations. Next, it examines the most relevant methods for
their tracking and reconstruction for 2D and 3D solutions followed by a
summary of some topics on facial gesture recognition, including different
gesture notations and the most relevant gesture recognition methods. Then,
it exposes different implementations of computationally limited systems and
some of the causes of those limitations. Finally, it includes some notes about
the different 3D-2D projection methods, which is a crucial element for the
correct estimation of objects in a three-dimensional scene.

2.1 Object modeling

An object tracking system has different constraints and needs depending on
the scope of the final application. Some applications may need to track an
object within the image plane (i.e., 2D tracking), or they may need more
detailed information such as the position of the object in the scene (i.e., 3D
tracking), including interactions with other objects. Due to the diversity of

13

Figure 2.1: Examples of each model representation class: a) structural face
representation, b) 2D area based face representation, c) volumetric face repre-
sentation, d) structural or kinematic body representation, e) contour-based
body representation and f) volumetric body representation. Face image b
extracted from [34], face image c extracted from [35] and images d, e and f
extracted from [17]

scenarios, the information required of the object and its representation may
vary.

The system needs to represent the appearance of the object so that it
contains the information necessary for the tracking process. Depending on
these needs, the representations can be assigned into three categories:

• Structural or skeleton-based (i.e., kinematic or structural definition)

• Contour-based (i.e., 2D patch and 2D contour definition)

• Volume-based (i.e., 3D surface definition)

In all three cases, the information density can vary depending on the
requirements. Figure 2.1 shows some examples of each class for face and
body representations.

A structural model consists of a small set of landmarks (2D or 3D de-
pending on the case) which represent the feature points for the body or the
face. They also include a set of edges defining the relationship between the
landmarks for a better visual interpretation (see images a and d on Figure
2.1).

Contour-based or silhouette-based models use the object’s outline or 2D
image information to represent the object (images b and e in Figure 2.1).

14

The detail level of the contour definition could vary from a simple rectangle
to represent the bounding box to a fitted silhouette of the body or face.

Volumetric models represent the three-dimensional appearance of the ob-
ject (images c and f in Figure 2.1) and the required level of detail depends
on the final application. These types of models can be represented using a
simple cylinder (or more than one depending on the structure of the object)
or by more detailed models that adjust to the peculiarities of the surface
structure of the object itself.

During the tracking, the model must fit the specific appearance of the ob-
ject, so the tracking system must deform the model accordingly. Depending
on the object and the tracking method, the deformation system may vary.
In the further sections, we list some strategies used to define these models in
the specific cases of body pose and face gesture reconstruction and tracking
scenarios.

Figure 2.2: Some examples extracted from annotated 2D body pose datasets.
Original image extracted from [17].

15

2.1.1 Human body models

The ability to represent the singularities of the human body pose using es-
sential elements like landmarks and edges makes the structural body models
a common choice for body pose reconstruction methods. Each landmark usu-
ally represents a body joint and edges the bones or rigid connections between
joints. Note that it is not a realistic representation of the human skeletal
structure, so not all body bones and joints need to be represented. Thus,
the structure does not match with the human bone structure in some cases.
Figures 2.2 and 2.3 show some examples of 2D and 3D body representations
extracted from manually annotated datasets.

In the case of structural 3D body representations, some articulations (i.e.,
the spine) could be simplified to avoid representation complexity and reduce
computation during tracking. This kind of 3D body representation is also
known as kinematic body representation, and encodes movement kinematics
or pose constraints in some cases [36].

Methods such as [37, 38] use an underlying two-dimensional body struc-
ture representation that includes the body trunk (with reduced spine artic-
ulation) and limbs. In contrast, other approaches like [24] also include some
feature points of the face and head. These methods define the 2D model
configuration by locating each joint of the defined structure on the image
plane. The projection of the pose in the image plane makes it unneces-
sary to consider the size of the limbs or the body symmetries. However,
in a 3D representation, ignoring these types of elements can lead to asym-
metric body reconstructions or inconsistent tracking estimations. Therefore,
methods such as [10,36] propose a 3D kinematic model whose configuration
combines global position and orientation parameters with the definition of
the angles of each of its joints. Therefore, body movement can be filtered
and smoothed during the tracking sequence.

The silhouette of the body contains part of the pose information. For
example, methods like [39] use the body silhouette to recover human 3D body
pose. However, the information about the limbs of the body suffers when
they overlap other body areas like the trunk, for example. Thus, methods
like [40,41] divide the body into smaller rectangular parts and uses the image
texture information to detect or track the body structure. The separation of
body parts makes it possible to track smaller elements of the body, but it is
still prone to tracking errors due to occlusions.

A way to better handle the self-occlusions of the body is to estimate the

16

Figure 2.3: Some examples extracted from annotated 3D body pose datasets.
Original image extracted from [17].

3D position of the body parts. To this end, methods like [42] propose a
similar body structure but using 3D volumes instead of 2D patches. This
kind of model can handle the same body motion constraints described for
the kinematical model, but also includes extra information about the volume
to extract texture information for the tracking process.

However, the appearance of the human body is not limited to the kine-
matical structure or the body pose. Volume-based parametric body models
like SMPL [43] and Stitch [44] describe the pose and external appearance of
the human body in a realistic manner, based on a learning process over a
dataset of accurate 3D scans of real actors (see Figure 2.4).

SMPL [43] represents the external 3D shape and pose of the human body
based on a set of parameterisable blendshapes. With a body pose as input,
the model combines the learned blendshapes to generate a realistic 3D body
representation for that pose.

Stitch [44] represents the external 3D body pose of the body dividing
the body shape into smaller parts. Each part defines the deformability of

17

Figure 2.4: On the left, some examples of the body poses and shapes using
SMPL body model. The image shows the body pose estimated using SMPL
model configuration (brown) vs the ground truth 3D scan model (gray). On
the right, some examples of the poses and shapes using Stitch body mode.
Each colour represents a different deformable body part.

that region based in a PCA subspace and a fitting approach to defining the
current surface appearance.

Both models have two types of parameters: the shape parameters adapt
the external appearance of the model to the appearance of the tracked person
and the pose parameters define the pose of the model.

Although the realism of the representation offers certain advantages, it
must be kept in mind that the computational load of these models is signifi-
cantly higher than the kinematic models.

2.1.2 Human face models

Structural face representations use 2D landmarks or 3D vertices to define a
feature location [45], and the number and location of the features differ de-
pending on the proposed method or reference dataset. A facial feature point
is a dominant point describing a unique location of a facial component (e.g.,
eye corner or nose tip) or an interpolated point connecting those dominant
points. However, some landmark definitions could be ambiguous in some
cases, such as facial contour points, for example. The specific list of detected
facial feature landmarks depends on the method and the implementation.

Figure 2.5 shows some examples of facial feature point lists used by struc-
tural face models found in different annotated facial databases. Usually, the
representation includes some edges to group landmarks from the same facial
element (e.g., eyes, lips or eyebrows) for a better visual interpretation.

For contour-based representations, the most straightforward 2D represen-

18

Figure 2.5: Face feature definition examples from different annotated facial
image datasets: a) [46,47] b) [48] c) [49] d) [50] e) [51] f) [52] g) [53] h) [54].
Image extracted from [47]

tation for a face is a rectangle shape representing the face texture boundaries
in the image. Facial region detectors like [9, 55, 56] use contour-based repre-
sentation. Some methods use this region information to perform a secondary
analysis to also detect internal face structures like eyes and mouth using spe-
cific feature extractors [9, 55]. Other methods [34, 57] define a facial region
silhouette and rely on the facial appearance information inside the silhouette
to determine facial bidimensional deformation and gesture.

Volumetric face representations reconstruct denser facial representations
than those generated by 3D structural models.

As an example of a simplified face pose estimation, the authors in [58]
propose a 3D head model based on a single-cylinder and a tracking method
to reconstruct the full movement of the head, but not the local face gesture.

To estimate the face gesture, the representation model needs more de-
tailed information about the facial elements like the eyes and mouth. How-

19

ever, the level of detail and the deformation method must be well considered
to maintain the right balance of representability and performance.

For example, the work presented in [59] proposes a facial model based
on blendshape deformation [60] to define the face appearance and gesture.
The model combines a set of 60 different facial gestures to adapt the original
shape of the model to the appearance of the user’s face.

Methods in [61, 62] generate a user-specific 3D face model using a user’s
video sequence as input. The generation process uses a generic blendshape
based 3D model with a predefined gesture deformation space. The proposed
method relies on an integrated PCA deformation space and a specific regres-
sion method to adapt the shape of the generic model to that of the users’
face. Moreover, it includes an extra deformation layer to encode skin level
deformations such as wrinkles.

In [63], the authors propose a 3D deformable face model with different
levels of vertex densities (see Figure 2.6). This type of model distributes the
computation required to fit the final dense model into different stages. The
initial estimation uses the smallest representation level (with fewer vertices),
and each stage updates the estimation of the previous one, having fewer
parameters to adjust in each step.

In [64], the authors propose a fully convolutional deep neural network to
estimate the dense facial shape by a set of dense template grids. Although
the experimental results show the excellent accuracy of the reconstruction,
the computational requirements are considerable, especially for environments
with limitations.

2.2 3D object tracking

Model-based 3D tracking approaches fit a 3D deformable model to the object
to be tracked, adapting the external shape or structure of the representation
model to the current configuration of the tracked object.

Considering the possible types of object deformations, we can highlight
two that are most representative:

• Rigid multibody deformations.

• The non-rigid deformations.

20

Figure 2.6: Different 3D vertex densities of the deformable face model pro-
posed by [63].

2.2.1 Human body as a rigid multibody deformable
object

An object with rigid multibody deformations behaves like a series of rigid
elements interconnected by joints. The angle variations in the joints generate
changes in the position and orientation of the component chain connected to
that joint. The human body meets this definition since the bone structure
of the human body defines a series of rigid elements that we can move to
change the body pose. There are several examples of 3D body models [65]
that vary depending on the needs of the method in question.

Many studies [10,20,36,66,67] use 3D kinematic body models to estimate
the 3D human body pose. Some approaches [20, 66] separate the 3D esti-
mation process in two different tasks. The first task uses a 2D body pose
detector like [25, 68, 69] to estimate the body pose in the image, and the
second task fits a 3D model using those 2D locations as reference.

The work presented in [66], computes the 3D model configuration using
an expectation-maximisation algorithm to generate a sparse dictionary based
on a set of heat-maps generated by the 2D joint locations from the first step.

In [20], the authors propose a pre-trained 3D pose estimator that gener-
ates a set of possible 3D body poses used to refine the given 2D landmark
estimation and evaluate the depth of each landmark. However, these kinds
of estimation methods must deal with the ambiguity of specific projections
in the 3D fitting process.

An essential problem in the context of 3D body pose estimation is the

21

Figure 2.7: On the left, 3D body pose estimations using [36]. On the right,
3D body pose estimations using [10].

lack of in-the-wild 3D body pose datasets. The accurate capture of the 3D
pose information requires complex setups and a controlled environment. In
the case of two-dimensional images, it is likely to estimate person poses from
monocular images taken in uncontrolled contexts. A human operator could
do this task manually, for example. However, the interpretation of 3D human
body poses in monocular images and the configuration of a 3D model to fit
it is not such straight forward task, even for a human.

Trying to fill this gap, the work presented in [70] uses a 2D body pose
estimation Deep Learning (DL) model as a reference and re-adapts it to gen-
erate the 3D pose estimation. This process combines the 2D estimations of
the pre-trained model with a 3D human body model to generate the new in-
ference model. The final model estimates the 2D and 3D body poses directly
from a single image.

As another suggestion to fill the lack of annotated data, in [67], the au-
thors propose an encoder-decoder based network to generate 3D human pose
estimations from multi-view datasets in a semi-supervised way. The same ar-
ticle describes using the generated data to train a 3D human pose estimator
for monocular images.

The work presented in [36] proposes an approach to improve the training
process of 3D human pose estimators using a kinematic structure to constrain
the used poses. The approach suggests inserting a kinematic 3D model of
the object into the training phase of the CNN, which on inference estimates

22

the configuration of the model directly from a monocular image (Figure 2.7
left).

Similar to kinematic model-based methods, in [71], the authors propose
fitting an SMPL model to a set of estimated 2D joint locations. This method
uses an optimisation-based approach to recover only the SMPL pose param-
eters, leaving the shape parameters constant.

The estimation of pose and shape parameters for SMPL model extends
the reconstruction complexity, and thus the computational needs. In re-
sponse, some studies such as [23, 72, 73] use extra intermediate estimations
to lessen this complexity. In [23], the authors propose using 2D joint estima-
tions, and body silhouettes, the work presented in [72] uses a 2D body part
segmentation map, and the method in [73] uses a combination of 2D body
pose estimation, 2D body part segmentation, and 3D pose.

Furthermore, other methods [74, 75] combine different three-dimensional
parametric models (i.e., structural and volumetric) to reduce the fitting com-
plexity. Both propose using a realistic 3D model, rigged with a skeletal struc-
ture for the pose deformations. They use the skeletal structure as a kinematic
representation to reduce the ambiguity of the pose, while in parallel, use the
non-rigid deformations to reconstruct the non-rigid deformable elements like
body shape and clothes (e.g., loose skirts and shirts).

Although the results using volumetric models are closer to the real ap-
pearance of the subject’s body, the amount of extra computation needed to
reconstruct the exterior appearance is considerable. Therefore, they are not
suitable for environments with computational limitations.

2.2.2 Human face as a non-rigid deformable object

Objects with non-rigid deformations are those that can experience changes
in appearance that do not follow a rigid pattern. The human face is a rep-
resentative example of an object with this kind of deformation. Even if the
face has a rigid base defined by the underlying bone structure (i.e., the skull
and jaw), the facial muscles distort the appearance of the face without any
rigid pattern (see top row of Figure 2.8). Moreover, the face shape changes
significantly between individuals, even when they have similar characteristics
like gender, age and ethnicity (see bottom row of Figure 2.8).

In order to accommodate this variability, methods such as [77, 78] di-
rectly record the user’s appearance in an initialisation phase, fitting a 3D
deformable object to the user’s face. During the tracking sequence, it adapts

23

Figure 2.8: Examples of face deformations caused by facial cardinal expres-
sions (top row) and examples of different human faces (bottom row). The
facial expressions in the top row are (from left to right): neutral, happy,
surprised, sad, afraid, disgusted and angry. Images extracted from KDEF
dataset [76].

the model configuration to the next frame, updating the registered appear-
ance with each step. This approach has the advantage of not needing a
previous training phase (it is a learning-free method), but it is prone to los-
ing the tracking due to changes in the user’s appearance (e.g., if the user
wears glasses during the tracking or light conditions change). This approach
is computationally efficient but is not robust enough to apply in uncontrolled
environments.

Face tracking methods like those proposed by [19] rely on structural 3D
face models to estimate the face shape and gesture (see Figure 2.9 left).
The method in [19] uses previously trained regressors to fit the projection
of the 3D vertices of a facial model on the face image using image patches
around the projections for the computation. These types of methods are
computationally fast but represent only the essential features of the face,
and they do not reconstruct facial details.

Other methods like [79] propose reconstructing the entire face shape using
a dense 3D model and photometric information (see Figure 2.9 right). This
method is generalisable to other deformable objects other than the face, but
the optimisation and tracking system requires an expensive computation,
and generated surface details are limited.

24

Figure 2.9: Left image shows some examples of the fitting results using [19].
Right image shows the reconstruction of the 3D shape of a face using [79].

Methods like [7,59,62,63,80,81] present a better balance between recon-
struction level and performance. What these methods have in common is
the use of a first estimation of the 2D feature points of the face, followed by
a second adjustment step of a deformable 3D model.

The method in [59] uses a user-specific 3D deformable face model, with a
previously defined set of facial gesture deformations. This method requires a
previous calibration and training step (around 40 minutes in total, according
to the authors). In this step, the user reproduces each of the gestures in
the model while a 2D feature point detector tracks the facial features. The
training process relates the 2D features captured during the calibration with
the gestures in the 3D model, building a specific regression model for the user.
During the tracking, the method achieves real-time performance (∼24fps) in
a desktop personal computer (PC). In [82] the authors adapt the method
to run on a computationally limited device like a smartphone (Motorola
MT788 cell phone), maintaining the real-time performance. In [83], the same
authors modify the method in [59] to avoid the user-specific calibration and
training step for new users. Instead of calibrating for each user, they use the
calibrations of an initial user set and adapt their regression model to the new
user, considering the differences in the 2D face feature capture step.

In [7, 63] the authors propose using a 3D model with a different level
of vertex densities to reconstruct the face shape accurately. In the first in-
stance, the detected 2D facial features help to adapt a coarse 3D deformable
face model with a limited amount of 3D vertices. Later iterations increase
the number of model vertices sequentially, increasing the level of detail in

25

facial reconstruction. Each iteration reduces the reconstruction uncertainty
for the next, also reducing the computation for the iteration. The proposed
experiments show excellent performance on a desktop PC for the shape re-
construction process. Additionally, the method in [7] also reconstructs the
face representation texture to improve the final reconstruction, which adds
critical computation times. However, both methods allow for the adaption of
the density of the model and remove the texture generation step to improve
the final tracking performance.

In [80], the authors propose an efficient method to fit and reconstruct a
3D face model using least-squares optimisation to reconstruct the shape, light
direction, light strength and albedo. The approach decouples the geometric
and photometric optimisations to simplify the optimisation and thus reduce
computational needs. Although the method extracts the proposed features
efficiently, the entire process is still computationally expensive, taking more
than two seconds to process a single image. These computation results make
the method unsuitable for real-time tracking.

Figure 2.10: On the left, some examples of the 3D model generated by [62],
and on the right, the results of using this model with a different actor.

Previously described methods rely on a generic deformable model, which
adapts to the shape of the user’s face but does not represent facial details.
However, the method described in [62] proposes a method to extract the 3D
face shape, including particular details like gesture wrinkles (see Figure 2.10).
This method relies on a previously generated 3D model which encodes the
user-specific shape, the user’s expressions and expression related details such
as wrinkles in a single blendshape based 3D face rig. The generation of this
user-specific model is fully automatic, and only needs a monocular video se-
quence of the user as input without a specific expression sequence. However,

26

the high accuracy of the method requires a huge amount of computation
during tracking, spending more than a minute for a single frame.

Similarly, and to reduce the computational cost, in [84] the authors pro-
pose a method with fewer facial details, but with real-time tracking perfor-
mance. They suggest generating a user-specific face model with user-specific
face deformations, and a dense photometric consistency measure to track the
users face in real-time. Despite the real-time performance of the tracking,
the user-specific model generation makes this approach non-viable in un-
controlled environments, and the photometric based tracking used by these
methods can suffer tracking errors and artefacts in the presence of hard shad-
ows.

More recently, the work presented in [85] proposes a Deep Neural Net-
work (DNN) based method to reconstruct the dense shape of a face without
a reference 3D deformable model, achieving real-time performance (9.8ms
per image). This method gets impressive results reconstructing faces from
monocular images even with occlusions and illumination changes. However,
it needs a dedicated GPU to achieve real-time performance, which is not
available in most cases.

As an example of a trade-off between reconstruction accuracy and real-
time performance, in [81] the authors propose a generic region-based de-
formable 3D model and a stabilisation method to improve the stability dur-
ing tracking (see Figure 2.11). This user agnostic method shows a stable
tracking performance (∼20 fps) on a smartphone (iPhone 7), maintaining a
functional reconstruction of the face gesture and the facial boundaries. It
relies on a set of detected 2D feature points and an optical-flow analysis of
the pixel values during the video sequence, combined with a non-linear least-
squares optimisation process. Additionally, it includes a stabilisation step
to correctly adapt the pose estimation to extreme gestures or out-of-plane
orientations.

Table 2.1 summarises the main face tracking methods presented in this
section and the main features of each one.

2.2.3 Methods based on Deep Neural Networks

Analysing the methods listed in the previous sections, we can see that DNN-
based methods have progressed in recent years. Surveys presented in [17]
and [86] show the evolution of the human body pose tracking and human
face tracking methods based on DNNs. Although the computational load of

27

Figure 2.11: The left image shows the region-based deformable 3D model
proposed in [81]. Right images show two examples of 3D model fitting on a
face image.

this type of approach is still very high, we can find increasingly more efficient
neural models and optimisation methods.

One of the elements that determines the performance of the final model in
this type of method is the backbone, which defines the network architecture.
Studies such as [87] show the relationship between performance and accuracy
for a broad set of network architectures in different scenarios.

Table 2.2 summarizes the methods presented for the estimation of the
body pose in previous sections. In this context, the most used backbones are
ResNet and Hourglass [88]. In the case of face reconstruction, the backbones
are more diverse. Table 2.3 shows the most notable methods in this field.

2.3 Facial gesture recognition

Both, the pose of the body and the facial gesture, represent a large part of
non-verbal communication. In particular, the facial gesture represents most
of our mental or emotional state. From the analysis of these gestures and
emotions, we can estimate the state of inattention, level of liking or other
interesting indicators for multiple applications. However, the great diversity
of facial shapes and possible deformations make it difficult to define those
facial gestures.

In the last decades, various notations have been proposed to define facial
gestures. Summarising, we can point to three main notations: a) gestures
based on micro-expressions (commonly called Action Units or AUs), b) ges-
tures based on cardinal expressions (e.g., happiness, sadness, surprise, fear,

28

Table 2.1: The main features of the presented face tracking methods.

D
or

n
ai

ka
et

al
.

20
06

[7
8]

B
al

tr
u
sa

it
is

et
al

.
20

13
[1

9]

C
ao

et
al

.
20

13
[5

9]

G
ar

ri
d
o

et
al

.
20

13
[6

1]

W
en

g
et

al
.

20
13

[8
2]

C
ao

et
al

.
20

14
[8

3]

J
en

i
et

al
.

20
15

[6
3]

T
h
ie

s
et

al
.

20
16

[8
4]

H
u
b

er
et

al
.

20
16

[7
]

G
ar

ri
d
o

et
al

.
20

16
[6

2]

Y
u

et
al

.
20

16
[7

9]

H
u

et
al

.
20

17
[8

0]

F
en

g
et

al
.

20
18

[8
5]

C
ao

et
al

.
20

18
[8

1]

Features 3 3 3 3 3 3 3 3 3 3 3

Dense Geometry 3 3 3 3 3 3 3

Dense Color 3 3 3 3 3 3 3

2 step method 3 3 3 3 3 3 3 3 3 3 3 3

1 step method 3 3

Needs training 3 3 3 3 3 3 3 3 3 3 3 3

User specific 3 3 3 3 3 3

User agnostic 3 3 3 3 3 3 3 3

Offline 3 3 3 3 3

Online 3 3 3 3 3 3 3 3 3

Needs GPU 3 3

anger and disgust), and c) gestures based on a combination of local expres-
sions (e.g., smile, kiss, blink and brow rise).

The methods based on micro-expressions [91–94] combine elemental facial
movements to generate more complex gestures (e.g., movements of several
muscles of the mouth to define the smile gesture). P. Ekman, W. Friesen
and H. Hager [95] proposed the Facial Action Coding System (or FACS)
as a naming system to define the gestures and facial movements, based on
what they call Action Units. Figure 2.12 shows some examples. The AUs
are minimal facial expressions based on individual muscle movements defined
as qualitative values (i.e., if there is muscle contraction or not). Each AU
has limited expressiveness, but the combination of AUs represents complex

29

Table 2.2: Main studies based on Deep Learning approach for human 3D
body pose reconstruction and tracking.

Method Output Backbone
Bogo et al. [71] SMPL model pose configuration DeepCut [89]
Zhou et al. [36] Kinematic model pose configura-

tion
Hourglass

Tome et al. [20] Pre-trained body pose model con-
figuration

CPM

Mehta et al. [70] Kinematic model pose configura-
tion

ResNet

Pavlakos et al. [23] SMPL model pose and shape con-
figuration

Hourglass

Omran et al. [72] SMPL model pose configuration RefineNet
Varol et al. [73] SMPL model pose and shape con-

figuration
Hourglass

Rhodin et al. [67] Pre-trained body pose model con-
figuration

Hourglass

Table 2.3: Main studies based on DNN methods for face tracking.

Method Output Backbone
Zhang et al. [90] Pose, shape, expression TCDCN
Deng et al. [9] Pose, shape, expression,

texture, illumination
ResNet

Feng et al. [85] pose, shape Custom CNN

gestures.

The methods based on emotion or cardinal expressions [96–98] use a set
of six complex emotional gestures - happiness, surprise, sadness, fear, disgust
and anger- proposed by P. Ekman, W. Friesen and H. Hager [95] to define a
wide range of facial gestures (see top row of Figure 2.8). Although nowadays,
the detected emotion types are richer, these are the most widely used.

The methods based on face region expressions can be seen as a middle
ground between the other two. Such methods estimate local zone-specific
gestures and combine them to generate the global face estimation as a com-
plete expression [24,90,99]. For example, they extract the local gesture of the
mouth from the mouth region, and the eyebrow gestures from the eyebrow

30

Figure 2.12: Action Units #2 (left) and #10 (right). Top row shows the rest
state of the action, while the bottom row shows the active state.

region. Then, combining all the extracted gestures, define a full-face gesture
representation. This approach reduces the gesture estimation complexity to
a specific facial area, reducing the complexity and narrowing the dependence
with the rest of the facial elements.

Some methods improve the limited gesture extraction by using only fea-
ture point movements, including the analysis of face texture using the face
feature points as a reference in some cases.

The method proposed in [100] analyses face texture using a set of previ-
ously detected facial feature points and a Histograms of Oriented Gradients
(HoG) analysis to extract the gesture features. With both type of features
as input, the authors propose training a specific AU regressor to estimate
the gestures. Experiments show real-time performance on a desktop PC, but
there are no measurements on computationally constrained devices.

In [96], the authors propose a specific Convolutional Neural Network
(CNN) model to extract the facial gesture directly from the face image (with-
out facial feature points) and apply it directly to a 3D virtual avatar with
gestures designed by a 3D artist. The method proposes training two CNN
models, one to extract the gesture of the actor and a second one to represent
the expressiveness of the virtual avatar. With both models, they suggest a
transfer learning technique to directly define the motion transference between
the user’s gesture model and the avatars deformation model. This strategy
improves the expressiveness of the avatar. However, it requires a training
step for each generated avatar in order to get the specific deformation model
for the character and a new motion transference model.

31

In addition, the method in [93] proposes first to detect the facial feature
landmarks of the users’ face and then estimate the facial expression using the
face texture with the landmark location as reference. In this second stage, a
set of Gabor filters analyse the area around the feature points. This method
uses information that feature point detection is not using (like skin wrinkles,
for example).

In [90], the authors outline a method to combine landmark detection and
expression estimation in a single step using a multi-task learning approach.
This method takes advantage of the correlation between facial landmark
positions and facial expressions, improving the estimation of each one in the
process. They demonstrate the improvements given by their approach, but
the number of expressions extracted is limited.

2.4 Computationally limited systems

We define a computationally limited system as a hardware device with con-
strained data processing capabilities which potentially misses requirements
of the assigned tasks. This definition includes hardware elements that, al-
though they may seem powerful (e.g., desktop PCs or computation servers),
the assigned tasks exceed their capabilities. As part of its limitations, there
are also restrictions in scaling the processing capabilities to fit the criteria.
Thus, the efficiency of the assigned tasks is something to consider.

Two representative examples of a limited system are the onboard comput-
ing hardware used in the automotive industry and broadly used smartphones.
The automotive area is quickly evolving and including more complex onboard
Advanced Driver Assistance Systems (ADAS) with a high degree of compu-
tation. ADAS involves the human behaviour analysis inside and outside the
cabin [101], for example. Furthermore, in the age of autonomous driving,
Driver Monitoring Systems (DMS) need to analyse the driver’s behaviour to
decide if it is safe to transfer driving control to the user as shown in [102].

In the case of smartphones, current devices include complex face iden-
tification [103, 104] and tracking [81, 82, 105] features to enhance security,
human-machine-interaction and several multimedia applications. Some of
those systems include computationally demanding methods to run in devices
with limitations in computation and power supply.

A typical example of a computationally limited system is an embedded
system. An embedded system is a computer system designed for a dedicated

32

function inside a more extensive system. Originally each embedded device
was specifically designed and implemented for a particular task, but nowa-
days there are generic hardware components that can be adapted to a specific
task using specific software.

We can categorise the most typical embedded systems in various groups:

• Custom boards

• Specialised PCs

• Single-board computers (SBC)

• Computer on module (CoM)

• System on module (SoM)

Custom board systems are circuits explicitly designed for a specific task.
They can contain a complete computer system similar to a PC or just the
elements necessary for the intended job. These are fitter systems, but as they
need specific manufacturing processes, the production price is something to
consider.

Specialised PCs are computers with distinctive elements (e.g., case, re-
frigeration, enclosure) for the final application environment. For example,
ruggedised PCs are designed to operate reliably in harsh environments, such
as dusty places, in high temperatures, or wet areas. They are commonly
adopted by police, firefighters, as well as military and some industrial applica-
tions. They can include standard hardware pieces, which reduce production
costs, but they are bigger and have higher power consumption.

A single-board computer (SBC) is a generic computing system that in-
cludes all the necessary computing elements (i.e., CPU, RAM or storage),
connection controllers and standard connectivity ports (e.g., USB, HDMI,
Ethernet) in a single circuit board. Typical SBC implementation like that
shown in the left image of Figure 2.13 integrates all the computing elements
and connection controllers in a single circuit called system-on-chip (SoC).
SoCs are more energy-efficient than multi-chip implementations with equiva-
lent functionality, and they are very common in the industry for smartphones
and edge computing devices.

A computer-on-module (CoM) is a subtype of SBCs system which inte-
grates all the elements in an SBC except the standard input/output con-
nectors. They include a connection bus which combines all the connectivity

33

Figure 2.13: On the left, a Raspberry Pi 4 Model B with a Broadcom
BCM2711 SoC. On the right, a carrier board designed by ”Connect Tech”
for the Jetson Xavier NX from Nvidia.

elements of the board (e.g., USB, Ethernet), and usually needs a carrier
board (similar to the example shown in the right image of Figure 2.13) to
split the bus into standard connectors or to interact with the rest of the
system.

A system-on-module (SoM) is very similar to a CoM, including the same
or similar elements. However, it has a stronger encapsulation to reduce power
consumption and heat emission. SoMs rely on SoC and similar components
to increase the encapsulation. SoMs are the most common hardware struc-
ture used for onboard computation and edge computing. Some examples
are Nvidia’s Jetson Xavier 1 (Figure 2.14 left) or Google’s Coral 2 (Figure
2.14 right), which also include specific hardware to speed up neural network
processing.

Limitations can be internal or external. Internal limitations refer to the
inherent capabilities of the hardware itself. The lack of internal CPU fre-
quency, constrained system memory size, or network bandwidth limitations
are some of the possible factors that limit computation.

In the case of machine learning computations, specific computing hard-
ware can reduce bottlenecks. Elements like Tensor Processing Units (TPU)

1Nvidia Jetson Xavier NX SoM official site (11th of May 2020):
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-
nx/

2Google Coral SoM official site (11th of May 2020):
https://www.coral.ai/products/som/

34

Figure 2.14: On the left the Jetson Xavier NX SoM from Nvidia. On the
right the Coral SoM from Google.

included in Google Coral (see Figure 2.14 (right)), Vision Processing Units
(VPU) included in Mustang form Intel or Graphics Processing Units (GPU)
included in Jetson device series (see Figure 2.14 (left)) for example, can per-
form some computation tasks related to DNNs more efficiently. Furthermore,
some commercial implementations of the named elements include standard
interfaces like USB (see Figure 2.15) or PCI connections to expand embedded
devices.

Figure 2.15: On the left, Movidius Myriad-2 USB AI-accelerator (VPU) from
Intel. On the right, Coral USB AI-accelerator (TPU) from Google.

35

External limitations refer to the constraints imposed by the scope of the
final application. Some representative examples of external constraints are
power supply limitations, heat radiation thresholds and production cost lim-
its, among others. Power Usage effectiveness is a critical element of au-
tonomous environments (e.g., automotive onboard systems or smartphones)
because significant consumption rates drastically reduce the autonomy of the
batteries. In some safety-critical system environments like aerospace control
systems, computing elements have a strict heat emission threshold.

Wide-scale adoption of these kinds of devices by the industry and re-
search communities encourages performance analysis of different inference
techniques in several scopes and hardware architectures. Benchmark suits
like [87] allow for the comparison of the performance of machine-learning
models on different hardware setups.

2.5 Image capture and 3D reconstruction

A critical point for monocular camera-based methods is the projection scheme
adopted by the approach. In a real scenario, a monocular camera projects
the captured scene data (i.e., captured light colour) into a single plane, losing
depth information in the process.

The pinhole camera model describes this projection mathematically, be-
ing close to the physical behaviour of the capture process. In this model, the
light rays that are reflected in the object pass through a single point (i.e.,
a hole) before being projected in the projection plane. Figure 2.16 shows a
simplified representation of this model.

The pinhole model describes a perspective projection of a 3D point in the
real scenario (P) to a 2D point in the image plane (p). Essential elements to
compute the projection are the intrinsic camera parameters and the extrinsic
camera parameters, mathematically described as a matrix in both cases [5].
The intrinsic camera matrix describes the geometric property of the camera.
This matrix includes the focal length (f), which is the distance between the
camera centre and the principal point (i.e., the centre of the projection plane),
and the principal point offset (x0, y0), which defines the size of the projection
image plane. The extrinsic camera matrix describes the 3D location and
3D orientation of the camera for the reference coordinate system of the 3D
scene. This information is essential in understanding the scene since it is
necessary to differentiate whether a particular pose is being performed with

36

Figure 2.16: Simplified representation of the pinhole camera model.

the individual standing or lying down, for example.

The appearance of a projected element using perspective projection varies,
mainly depending on the value of the focal length (f) as shown in Figure
2.17. To have a reference within the spectrum of possible focal lengths for
perspective projection, the focal length of the cameras mounted on Iphones
7+, 8+ and X would be equivalent to a 28 mm full-frame camera, like those
represented in Figure 2.17.

Other projection approaches, like the orthographic projection, assumes
that all light rays coming from the object are parallel to each other and
perpendicular to the image plane. Following the model proposed in Figure
2.16, this could be interpreted as a focal length with infinite value.

An orthographic projection represents the three-dimensional nature of the
object. However, it does not represent the object as it would be perceived
by a human observer or a monocular camera. Considering the infinite focal
length value as a reference for orthographic projection, and the examples
shown in Figure 2.17, it can be seen that the appearance of the captured
face varies significantly between both types of projection.

Moreover, consisting of all the captured parallel rays, the object pro-
jection has the same size independent of the distance of the object with
respect to the camera. Trying to introduce a distance representation, weak-
perspective projection combines an orthographic projection with a scale factor
to change the size of the projection. A weak-perspective projection assumes

3Image taken from (18/5/2020): http://stepheneastwood.com/tutorials/lensdistortion/strippage.htm

37

Figure 2.17: Different images of the same face taken with a full-frame camera
and using objectives with different focal lengths. Original image by Stephen
Eastwood3

that the depth values of the object are significantly smaller than the distance
between the camera and the object, and thus, negligible. However, this as-
sumption is not right in many scenarios, like face tracking applications used
in smartphones, where the object (i.e., the face) is too close to the camera.
Even this approach is closer to a perspective projection; the appearance of the
projected element does not represent the object as perceived by an observer
because the focal length of the capture is not considered.

Face images in Figure 2.17 shows how the appearance of a captured ele-
ment could vary depending on the focal length. Some 3D model reconstruc-
tion methods use weak-perspective (e.g., [61, 106]) or normalized projection
spaces (e.g., [38,63,64]) with a fixed focal length value. Even if these recon-
structions do not estimate the position of the object with respect to the cam-
era, the initial reconstruction can be placed in the 3D space using methods
like [107], similar to that proposed by [6]. However, the initial reconstruc-
tion could not fit correctly with the object due to perspective deformation,
causing fitting errors and tracking artefacts.

38

2.6 Discussion

The examples presented in this chapter show that many methods have been
proposed to solve the problem of tracking deformable objects. Depending
on the final application, this tracking can be performed on the image plane
as a two-dimensional object, in a reduced three-dimensional space, or a fully
three-dimensional space. Some of the methods track a series of points (e.g.,
facial landmarks, body pose structure) in two or three-dimensional space. In
contrast, others can extract details from objects, such as the volume of body
parts or even wrinkles caused by certain facial gestures.

Additionally, this chapter described methods dedicated to the estimation
of the facial gesture, detecting facial gestures belonging to one of the proposed
categorisations (i.e., micro-expressions, cardinal expressions or a mixture of
both). This information improves the understanding of the scene, providing
an emotional context to the captured body or face movements, and therefore,
making its interpretation deeper.

However, within all these methods, few studies consider the possible limi-
tations related to the integration of these methods in final real-world setups.
Limitations in critical aspects such as energy consumption, computing power
or the size of usable memory are elements to consider when using a method
in a real scenario. These limitations can make a tracking method unfeasible
in specific situations or contexts.

This study focuses on solving the problem of tracking three-dimensional
deformable objects in a three-dimensional environment, keeping computa-
tional consumption as low as possible. In addition, it includes various ex-
periments to ensure the viability of the proposed methods in setups with
limitations such as those discussed in this chapter.

39

40

Chapter 3

Feature point detection

The first step in the proposed pipeline for 3D object tracking is the extraction
of feature points of the object, either face or body. Further steps strongly
rely on these feature points, so their precision and accuracy determine the
performance of the end result.

Although this step is common for both types of objects, this section
will focus on the detection of the facial feature points. Same or similar
methods can also be applied to the scope of body pose detection. This
chapter introduces two computationally efficient methods for extracting the
facial feature points from monocular images.

The first method is a learning-free method based on a local image gradi-
ent analysis. This approach focuses on scenarios with extreme memory and
computation limitations, like those where even loading a statistical or regres-
sion model in memory could be a problem. It analyses the image gradients on
each internal face element region (i.e., eyes, nose and mouth) to determine the
location of the feature points. Even if other methods based on sophisticated
features and regressions show better accuracy than the presented approach,
the extreme computational lightness of the presented method could make it
the only choice in most restricted scenarios.

The second proposed method is a multi-level, multi-modal and multi-
task method (named M3) based on a DNN approach which results in the
detection of facial feature points and the estimation of local face gestures
(e.g., smiling, kissing or frowning). A set of neural networks, divided into
various estimation levels, combine different data inputs (image and head
orientation) for the estimation using a multi-task strategy. The computation
levels reduce the estimation space to smaller facial zones thereby reducing

41

variability and solving the estimation with specialised zone-specific models.
Each model takes advantage of synergies between estimated attributes (i.e.,
landmarks and gestures) to improve the final performance of both elements
using a multi-task strategy. The combination of the models provides a robust
and lightweight facial point detection system able to run on computationally
limited systems such as smartphones with real-time performance (∼30 fps).

3.1 Related work

Within the scope of automatic detection of facial feature points, there are
many and diverse methods to detect characteristic points in monocular im-
ages [45, 108].

A widely adopted method was presented in [109]. This method proposed
iteratively improving an initial rough estimation of the face, analysing the
region around each landmark to improve the previous location with each
repetition. On each iteration, a two-dimensional structural model constrains
the new locations considering all the landmark set to avoid unnatural or
impossible point distributions.

Later, studies [18, 110] suggest using specialised regressors to detect the
face landmarks, dramatically improving the performance of the process. They
both assume that the regression method includes the global facial shape con-
straints for the entire facial structure, avoiding the use of a shape verification
process. However, in both cases, accuracy suffers in the presence of out-of-
plane head rotations.

To include the nature of the three-dimensional faces in the estimation
process, other methods like [38,111] propose to use a three-dimensional point
distribution model.

In [38], the authors propose a method to estimate all facial landmarks us-
ing a DeepLearning (DL) based regression model. To improve computational
performance, they adopt a binarization strategy, which reduces the computa-
tion time at the cost of some precision. Despite the binarization process, the
fitting method is still computationally expensive for computationally limited
hardware.

Baltruslaitis et al. [111] propose a method based on [109], using a spe-
cialised DL based regressor to analyse the image patch of each landmark. It
also includes a 3D shape model to constrain the global point distribution,
achieving real-time performance (∼30 fps) on a desktop PC.

42

As a real-time DL method, study [90] outlines the extraction of facial
features and a set of facial gestures using the same computation adopting
a multi-task strategy. Based on a direct relationship between the landmark
locations and the face gesture, the proposed method uses the facial gestures
to improve the landmark estimation, and the landmarks to estimate the face
gestures. This method achieves real-time performance on a desktop PC with
a limited set of facial gestures.

Other proposals like [9] include landmark detection as part of the face
region detection process in the entire image. This strategy reduces the time
needed to detect landmarks because region detection includes part of the
feature extraction computation. However, the detection step is inseparable,
leaving out approaches based on tracking to reduce the significant computa-
tion needed by the detection task.

3.2 Face landmark detection by image gradi-

ent analysis

In this section, we propose a learning-free approach for detecting facial fea-
tures that can retain the advantages of both learning-free and learning-based
approaches. In particular, the advantages of learning-based approaches (i.e.,
rich set of facial features, real-time detection, accurate localization) will be
retained in our proposed approach. In addition, the proposed approach will
have the two advantages that are associated with learning free approaches.
First, there is no tedious learning phase. Second, unlike many learning ap-
proaches whose performance can downgrade if imaging conditions change,
our proposed approach is training free and hence independent of training
conditions.

3.2.1 Lightweight facial feature detection

This method separates the facial region given by a face detector into smaller
facial zones and estimates the landmarks in each zone separately. Thus, the
proposed approach requires an initial stage of face detection, which, depend-
ing on the approach taken, might also require a facial training stage, such
as [112, 113]. Nevertheless, these face detection techniques do not limit the
search as much as the facial feature detection methods would do under differ-
ent lighting conditions, and with different facial expressions and appearances;

43

therefore, we consider them acceptable for our purpose. Furthermore, these
approaches have proved to be robust and do not need any retraining. We can
also apply the same detection techniques (i.e., [112,113]) for localizing facial
parts such as the eyes, nose and mouth. However, we do not consider their
detection as a strict requirement because we also consider low-resolution fa-
cial images or partially occluded ones, which would prevent the detectors
from finding them correctly. However, we include these as potential reinforc-
ing checks since they can locate the facial parts with higher precision in more
favourable circumstances.

Figures 3.1 and 3.2 and Algorithm 1 show the whole fitting process step by
step, where the term ROI refers to a region of interest (the sought region)
and SROI to a search ROI. The input data related to the eyes, nose and
mouth can be ROI or SROI, depending on whether the corresponding object
detector has already detected them or not, as mentioned above. Algorithm
1 aims to detect 32 facial points in any input image (Figure 3.3). Their 2D
positions are fixed within their corresponding regions, taking into account
the scale of the found local regions and the in-plane rotation of the face (roll
angle). Thus, by finding the ROI of a face part as well as the roll angle,
the 2D points of that face part will be automatically and rapidly estimated.
This process is good enough to allow an OAM tracker such as [78] to fit a
3D model on subsequent frames with a visually alike correlation between the
model and the face images (Figure 3.2-(6)). This is especially the case of
contour points, which help in the initialization but do not match with real
landmarks, which cannot be determined with a high degree of certainty on a
face image even by trained observers. Once a face region has been located on
an image (e.g., using [112,113]), all 32 point positions are always estimated,
even if they are not visible in the image, due to occlusions.

First, the eye points are estimated, then the eyebrows, followed by the
mouth, the nose and finally the contour points. The search regions derive
from the detected face and eye regions (Figure 3.1). In case eyeROIs have
not been detected by an external detector (i.e., they have not been input to
Algorithm 1), Algorithms 2, 3 and 4 are applied to estimate their boundaries1.
Then, we determine the eyepoint positions and the face roll angle θ, derived
proportionally and fixedly from the geometry of those ROIs. Figure 3.4 shows
that the eye centre positions correspond to those of the eyeROI centres, that

1Note that algorithms 2, 3 and 4 are also used for estimating the ROI boundaries of
the eyebrows, nose and mouth. Algorithm 2 invokes both algorithms 3 and 4.

44

Algorithm 1: Lightweight facial feature detection algorithm

Input: ROI of different facial regions (faceROI, lEye(S)ROI, rEye(S)ROI,
nose(S)ROI, mouth(S)ROI), peak values (px, py), contour point
threshold (binThresh)

Output: The detected landmarks (eyePoints, eyebrowPoints, mouthPoints,
nosePoints, contourPoints)

for each eye do

if ¬ eyeROI then
Detect eyeROI in eyeSROI (eyeSROI, px, py) → eyeROI

end

end

Estimate roll rotation angle derived from eyeROIs → θ

Estimate eye point positions in a fixed way derived from (eyeROIs, θ) → eyePoints

for each eyebrow do
Get the eyebrow search region derived from (faceROI and eyeROI) and rotate it (−θ)
→ rotEyebrowSROI

ROIBoundDetection(rotEyebrowSROI, not used, py) → rotEyebrowROI

Estimate eyebrow point positions in a fixed way derived from rotEyebrowROI

Apply θ rotation and transform to global image coordinates → eyebrowPoints

end

for mouth and nose do

if ¬ partROI then
Rotate partSROI (−θ) → rotPartSROI

ROIBoundDetection(rotPartSROI, px, py) → rotPartROI (Alg. 2)

else
Rotate partROI (−θ) → rotPartROI

end

Estimate part point positions in a fixed way derived from rotPartROI

Apply θ rotation and transform to global image coordinates → partPoints

end

ContourPointDetection(faceROI, eyeCenters, lEyeLCorner, rEyeRCorner, mouthCorners,

binThresh) → contourPoints (Alg. 5)

45

Figure 3.1: Proposed fitting approach. From left to right and top to bottom:
(1) The detected face region and the faceROI derived from it (thicker line),
(2) faceROI and the eyeSROIs derived from it (thicker line), (3) faceROI,
the estimated eyeROIs and the eyebrowSROIs and mouthSROI derived from
them (thicker lines), (4) faceROI, the estimated eyeROIs and the noseSROI
derived from them (thicker line) and (5) the detected facial features.

eye widths and heights are equal in both sides with a proportion obtained
from the mean ROI sizes, where θ is measured, and how the rest of eye
points are located. As we rely on face detectors, the roll angle variation
has a limited range, and therefore the eyes have well-defined search regions.
Thanks to the eyes displaying approximate radial symmetry, we do not need
the roll estimation for their localization.

For the estimation of the additional facial feature points in the eyebrows,
mouth and nose, their corresponding ROI boundaries are used as a reference,
also in a fixed way. These boundaries are also obtained through Algorithms
2, 3 and 4, considering the influence of the roll angle θ. In the specific
case of eyebrows, as some people have bangs occluding them, or even no
eyebrows, we do not calculate the boundaries in the X direction but fix them
according to the search region width and the expected eyebrow geometry in

46

Figure 3.2: Facial feature detection procedure steps. From left to right and
top down: (1) eye point detection, (2) eyebrow point detection, (3) mouth
point detection, (4) nose point detection, (5) contour point detection and (6)
OAM tracker model initialization example.

the 3D model. The parameters px and py are thresholds for the normalized
gradient maps for detecting the horizontal and vertical boundaries. In our
experiments we use px = 20 and py = 50 in all cases.

The double sigmoidal filtering applied to the search regions (Algorithm 2)
allows us to reduce the influence of directional illumination, while the squared
sigmoidal gradient calculation accentuates the likely edges, and neglects the
edge direction information, and considers only the edge strength [114]. The
estimation of the contour point positions is done in a fixed way too, taking
into account the eye and mouth positions. Algorithm 5 returns eight contour
points: the forehead centre, the left and right cheeks, the four facial corners
and the chin bottom point. Even though none of these points is a fiducial
point, they are useful for 3D model fitting and tracking. In the case of the
facial side corner estimation, the image region that goes from the facial region
boundary to its corresponding mouth corner is analyzed, assuming that a
noticeable X gradient appears in that region in one of the sides but not in
the other when the subject exhibits a non-frontal pose, which corresponds
to the face side boundary (e.g., see Figure 3.2-(5)). For this, we calculate
the squared sigmoidal gradient in X and assume that those side points lie
on it. These side points subsequently allow us to better estimate the pitch

47

Figure 3.3: The detected 32 facial points. Note that the words left and right
are relative to the observer rather than the subject.

Figure 3.4: Eye points geometry derived in a fixed way from the estimated
eyeROIs.

angle of the face. However, there might be cases in which both sides have
a noticeable gradient in X, which may correspond not only to the face side
boundary but also to other features such as beard, or local shadows. In order
to filter these cases, we assume that the side that should take into account
the gradient to estimate the X positions is that in which the mean positions
are closer to the face region boundary. In contrast, for the other side, the X
positions are those of the boundary itself (see Figure 3.2). The parameter
binThresh is the binarization threshold for the normalized gradient map in
X. In our experiments we use binThresh = 150.

48

Algorithm 2: ROI boundary detection algorithm

Input: Face search ROI (SROI), peak values (px, py)
Output: Boundary values leftX, rightX, bottomY and topY

Apply double sigmoidal filter to SROI → dsSROI

Apply squared sigmoidal Y gradient to dsSROI → ssySROI

YBoundDetection(ssySROI, py) → (bottomY and topY) (alg. 3)

XBoundDetection(ssySROI, px, bottomY, topY) → (leftX and rightX) (alg. 4)

Algorithm 3: ROI Y boundary detection algorithm

Input: Y sigmoidal gradient ROI(ssySROI), Y peak value(py)
Output: Boundary values on Y axis bottomY and topY

for each row in ssySROI do
(ssySROIheight/2− |ssySROIheight/2− y|)· py → w

(w ·
∑width

x=1 ssySROIx)→ wVertProjrow
end

Normalize wVertProj values from 0 to 100

Locate the local maximum above py with the lowest position in wVertProj → maxLowY

(maxLowY + ssySROIheight/4)→ topY

(maxLowY− ssySROIheight/4)→ bottomY

Algorithm 4: ROI X boundary detection algorithm

Input: X sigmoidal gradient ROI(ssySROI), X peak value(px)
Output: Boundary values on X axis leftX and rightX

for each col in ssySROI do
(ssySROIwidth/2− |ssySROIwidth/2− x|) · px → w

(w ·
∑topY

y=bottomY ssySROIy)→ wHorProjcol

end

Normalize wHorProj values from 0 to 100

Locate the first value above px starting from the left and right sides in wHorProj

→ (leftX and rightX)

49

Algorithm 5: Contour feature detection algorithm

Input: Face data faceROI, eyeCenters, lEyeLCorner, rEyeRCorner,
mouthCorners and binThresh

Output: Contour features (foreheadCenter,lCheek, rCheek, facialCorners and
chinBottom)

faceVector← (lEyeCenter + rEyeCenter−mouthLCorner−mouthRCorner)/2

foreheadCenter← (lEyeCenter + rEyeCenter + faceVector)/2

lCheek← (lEyeLCorner + lEyeCenter− faceVector)/2

rCheek← (rEyeRCorner + rEyeCenter− faceVector)/2

ssxFaceROI ← Apply squared sigmoidal X gradient to faceROI and normalize between 0 and

255

for each facial side do
ssxFacialCornerROI ← Get region between mouthCorner and faceROI outer boundary

binFacialCornerROI ← Binarize ssxFacialCornerROI with binThresh and remove

clusters (obtained through [115]) with area < 0.8 · ssxFacialCornerROIheight

facialUCornery ← 0.75 · ssxFacialCornerROIheight

facialUCornerx ← Get X centroid of white pixels at facialUCornery in

binFacialCornerROI

facialLCornery ← 0.25 · ssxFacialCornerROIheight

facialUCornerx ← Get X centroid of white pixels at facialUCornery in

binFacialCornerROI

facialCorners← Transform to global image coordinates

end

facialCorners ← Check which side from facialCorners mean X position is further from its

corresponding face region boundary, and then set their X positions in the boundary

chinBottom ← Calculate the intersection between the bottom of faceROI and the line traced

by faceVector

50

3.2.2 Experimental results

To demonstrate the performance of the proposed method, we tested it on an
iPad 2. For the test, we used images taken from the CMU Pose, Illumination
and Expression (PIE) [116] database. Specifically, images with the face in
front orientation and with a neutral gesture were used. In total, 7134 images
were used. In this test, the landmark detection process needed an average
time of 22 milliseconds to detect the entire set of landmarks, using the CPU (1
GHz dual-core 32-bit Cortex-A9) of the iPad 2. As a reference, Constrained
Local Model (CLM) method needs an average time of 88 milliseconds to
estimate the landmarks in each image during a tracking sequence, while the
first image of the sequence needed nearly 250 milliseconds.

3.2.3 Conclusions

This section proposed a very efficient method to detect a set of facial feature
points in monocular images. As it is not based on a pre-trained statistical
model, it does not require a previous training phase. Thus, it is not biased
by the variability of samples in the training dataset.

Unfortunately, this approach has some limitations. For example, it as-
sumes that the user’s face is near frontal, which limits the out-of-plane ro-
tation of the face. Moreover, the mouth region landmarks only include the
outer boundary of the mouth. Thus, it cannot estimate if the mouth is open.

Despite these limitations, the capabilities of the proposed method are
sufficient for many applications in controlled or semi-controlled scenarios.
Moreover, the computational efficiency of the feature extraction makes it
suitable for very constrained hardware devices, such as an iPad 2.

3.3 Face landmark and gesture detection by

DNN regression

Depending on the final application, a facial analysis method may need to
identify different kinds of facial attributes. The list of possible attributes
includes such diverse elements as the facial feature points, the orientation of
the head, the eye-gaze and the local gestures, among others.

The extraction of each of the named attributes is a challenging task. How-
ever, there are synergies between some attributes that could be harnessed to

51

improve the performance of the final estimation. For instance, facial feature
points and the estimation of the facial gesture are strictly related attributes,
and it is possible to combine them taking advantage of this relationship to
improve the accuracy of both estimations.

Based on the approach presented in [90], this section proposes an efficient
method (named M3) to improve the landmark and gesture estimations, as
well as other attributes like eye gaze and head orientation. It divides the
process into two levels. The first level detects a small sub-set of feature
points for the facial elements (i.e., face contour, eyes, nose and mouth) and
estimates the head orientation. The feature points extracted in the first
level define the facial element regions in the face image. The second level
combines the head orientation estimation and the image patch of each facial
region and estimates the specific landmarks and attributes for each region.
The separation of the estimations reduces the complexity of the estimation
and improves local expressiveness, maintaining efficiency.

3.3.1 Multi-level approach

The process has two levels of analysis (see Figure 3.5): a) holistic face at-
tribute detection and b) facial zone-specific attribute estimation.

Figure 3.5: Flowchart of the proposed multi-level analysis pipeline.

The first level extracts general facial attributes. It takes the entire face
in to consideration in order to estimate an initial set of landmarks and the
head pose (i.e., the face yaw orientation).

The second level uses the output of the first level as input - it extracts
the attributes of each facial zone (i.e., landmarks, gestures or gaze). First,
it generates a set of normalised facial zone patches, one for each face region
(i.e., mouth, eyebrows and each eye). Then, it estimates the zone-specific

52

landmarks and gestures using the zone patches and the orientation of the
head.

The final output merges all the landmarks from both levels into a single
set of 68 landmarks. Figure 3.6 shows all the landmarks detected on each
level and the final set of landmarks for a face image.

Figure 3.6: From left to right, a representation of the 32 landmarks detected
in the first level, a representation of the landmarks detected in the second
level and a combined representation of all the detected features. Each colour
represents the landmarks for each face zone.

The zone patch generation process uses two reference landmarks from
the landmark set extracted in the first step. Then, it applies a warping
procedure to align the reference landmarks with two target locations in a
previously defined zone patch template. The warping procedure normalises
the orientation and size of the zone image region. Note that this process
could add some unwanted distortion in patch regions occluded by a large out
of plane head rotation.

The reference feature points used to generate the patches are those that
maintain their relative location during gestures. Considering the high de-
formability of the mouth region, we chose feature points out of the gesture
influence, like the bottom of the nose and the chin. We selected those land-
marks because the influence of the evaluated mouth gestures in those lo-
cations is small enough to assume that they are stable or relatively static.
Likewise, the reference points for each eye region are the eye corner land-
marks, and the reference points for the eyebrow region are the left eye left
corner and the right eye right corner landmarks, including both eyebrows in
the same image patch. Figure 3.7 shows some examples of normalised face
patches, including the location of the reference landmarks.

53

Figure 3.7: Examples of (from left to right) an eyebrow patch, a right eye
patch and a mouth patch using the image shown in Figure 3.6. The red cross
represents the target location of the reference landmarks for each patch. Note
that the reference point of the mouth patch is out of the patch region.

To enhance the zone patches for the inference step, we apply a bilateral
filtering process to reduce the possible noise in the warped image. At the
same time, it preserves the information of edges and general shape. In the
case of the eye regions, the warping process smooths the edge information
because the size of this region tends to be small compared with the entire face
region. An image intensity histogram equalisation compensates the sharpness
reduction increasing the contrast and normalising the brightness for the eye
patches.

Finally, each zone-specific neural network extracts the landmarks and at-
tributes of each zone patch, also considering the estimated head orientation.
The inclusion of the head orientation in the estimation process helps to ig-
nore or reduce distortions caused by large head rotations during the warping
procedure, making the estimation more reliable.

3.3.2 Facial attribute definition

The final estimation includes different facial attributes: a) the orientation of
the head, b) the gesture of the mouth, c) the gesture of the eyebrows and d)
the eye gaze of each eye.

The head pose (i.e., face yaw orientation) is defined as a classification
between 5 possible classes -60 (for angles <-60), -30 (for angles from -60 to
-30), 0 (for angles from -30 to 30), 30 (for angles from 30 to 60) and 60 (for
angles >60).

The included zone-specific gestures are: smile, mouth frown and kiss
gestures for the mouth region and inner eyebrow raise and inner eyebrow

54

frown for the eyebrow region. The gestures in each region are mutually
exclusive, so only one can be active in a frame. Other gestures (e.g., mouth
open) can be directly extracted from the landmark positions, measuring the
distance between inner mouth landmarks, for example.

Gesture estimation is a classification process which estimates the proba-
bility distribution of the group of gestures for each face element. Moreover,
we include an additional neutral class for each region to represent the ab-
sence of all gestures. The final probability estimation of the gestures in a
face region is normalised using a softmax function.

Eye gaze estimation defines a gaze vector for each eye as a normalised
vector of three values.

3.3.3 Network structure

Each network relies on a Multi-Task Learning (MTL) approach for the es-
timation process. It defines a CNN model to generate a list of outputs of
different types and meanings using the same computation, similar to the
method proposed by Zhang et al. [90]. Conventional MTL approaches try to
optimise all tasks at once using a combined loss function. In our case, the
loss function combines the loss of each task, assigning different priorities to
each one. This priority designation defines the landmark detection as the
primary task, setting the gesture estimation as an auxiliary task. Even if the
landmarks have higher priority than the gestures, the gesture information im-
proves the accuracy of the landmark detection due to the direct correlation
between the position of the landmarks and the definition of each gesture.

The structure of each network has two parts, a) the trunk which performs
the general feature extraction, and b) the leaves in charge of the final task
estimations. The trunk of the network estimates all the features needed by
the leaves to generate their estimations. The trunk shares its output with
all the leaves, which use this information to estimate the landmarks and
gestures. During training, the process updates the weights of the trunk and
leaves combining all the outputs of the network. Hence, all the estimation
tasks influence the training of the feature detection, enhancing their results
through the synergies between them. See Figure 3.8 for a visual example of
a multi-task network.

The trunk is a concatenation of four convolutional layers, including a
pooling step after each convolution, and a final fully connected layer. Each
convolution layer includes a Rectified Linear Unit (ReLU) activation func-

55

face landmarks

head pose

Trunk Leaves

Figure 3.8: The general structure of the multi-task network designed for
level 1. The layers in the trunk generate all the features for the leave layers,
sharing the output values with both leaves. The leave layers are the output
of the network.

tion. This network configuration is similar for all the cases, with small varia-
tion in layer sizes. Figure 3.9 shows the detailed configuration of each layer.

The input of the network in the first layer is only the cropped image
of the face. However, the networks in the second level have two inputs: the
normalised face zone patch and the orientation of the head estimated in layer
one. To include the orientation of the head in the estimation process, the
networks in the second level include an extra fully connected layer. This layer
includes the head orientation values as concatenated elements (see Figure
3.9). Then, the final fully connected layer integrates all the elements into a
single output vector.

Figure 3.9 includes the details and configuration of the proposed networks,
and how the output of level 1 interacts with the estimation process of level
2.

3.3.4 Learning process

Due to the multilayer structure of the method, the learning process has two
phases. In the first phase, we train the neural network defined for level 1.
Then, in a second phase, we use the model trained for level 1 to generate the
input data to train the models in level 2.

In all the cases, we define the landmarks yi as a list of x and y coordinate
values in the image Ii, ordered as a unique list yi = {x0

i , y
0
i , x

1
i , y

1
i , ..., x

n
i , y

n
i }.

The error function for the landmarks is set as a least square problem,

L(y, I,W) =
1

2

N∑
i=1

‖yi − f(Ii; W)‖2 (3.1)

56

Figure 3.9: The neural network configuration for the attribute estimation
process. The first row shows the network configuration for the first estimation
level, including the input and the output elements. The rows below show the
network configuration for each estimation model in the second level. A single
eye model estimates the eye attributes for both eyes, using symmetry to
estimate the attributes of the second eye. For each model, ’C’ represents the
kernel size of the convolutional layer and the ’P’ represents the configuration
of the pooling layer.

57

where f is the model function, N is the number of images in the batch
and W is a list of weights that encapsulates the trained parameters of the
neural network.

As mentioned previously, the model in level 1 classifies the head pose
values (i.e., head yaw orientation) in five classes. Each head orientation class
takes a probability value in the range [0, 1]. For the ground truth, a class
has the value 1 if the head pose matches the class or 0 if it does not. As an
orientation can only belong to one of the classes, they are mutually exclusive.

To compute the head’s pose probability, the method adopts a softmax
function P , which models the class posterior probability. P combines all
orientation classes in a list of probabilities h = {h0, h1, ..., h4}. Equation
(3.2) shows the cross-entropy loss function used for the head orientation
error during the training process for a list of A classes. In this equation, hi,a
represents the ground truth value of the orientation class a for the image i.

H(h, I,W) = −
N∑
i=1

A∑
a=1

hi,a log(P (hi,a|Ii; W)) (3.2)

For the final error function, we combine equations (3.1) and (3.2) in a
single expression to produce a combined output. The final loss function (3.3)
includes a regularisation term to penalise high layer weight values, similar to
the function proposed in [90]. To maintain the landmark estimation as the
primary task, the final loss function includes a priority factor λ to manage
the influence of the orientation class estimation error in the learning process.
We define the λ value experimentally to correctly balance the landmark and
gesture estimations.

arg min
W

{
L(y, I,W) + λH(h, I,W) + ‖W‖2

2

}
(3.3)

For models in level 2, the learning process follows a similar approach.
However, the data used as ground truth for the training of the models in
level 2 needs to be generated using the model trained for level 1. Thus, we
processed the training dataset using the model trained for level 1, storing the
output data for the posterior level 2 training phase.

For the mouth and eyebrow regions, each gesture g gets a value in the
range [0, 1], 1 being if the gesture is present and 0 if the gesture is not present.
For the training process, it uses a loss function similar to (3.3) to determine
the gesture probability model.

58

The softmax function P models the class posterior probability. To sim-
plify the output and assuming that the gestures in the training dataset are
mutually exclusive, it combines all gestures for a facial zone in a list of ges-
ture probabilities g = {g0, g1, ..., gn}. For example, for the gestures in the
mouth region (smile, mouth frown and kiss) the gesture probability distri-
bution would be g = {gsmile, gfrown, gkiss, gneutral}. The last value (gneutral)
defines the absence of any gesture, having the value of 1 when none of the
defined gestures is present. Equation (3.4) shows the cross-entropy loss func-
tion used for the gesture error during the training process for a list of B
gestures (including the neutral gesture). In this equation, gi,b represents the
ground-truth value of the gesture b for the image i.

G(g, I,W) = −
N∑
i=1

B∑
b=1

gi,b log(P (gi,b|Ii; W)) (3.4)

For the landmarks in the mouth and eyebrow regions, the learning process
uses the same loss function presented in Equation (3.1). Both loss functions
(L and G) are combined in a single expression (equation (3.5)) to produce
a combined output. The equation also includes the regularisation term and
the balance modifier λ.

arg min
W

{
L(y, I,W) + λG(g, I,W) + ‖W‖2

2

}
(3.5)

For the attributes in the eye region, the learning process replaces the
classification loss function with a regression function similar to that presented
in Equation (3.1). In Equation (3.6), g is the model function, the vector vi
represents the ground truth values for the eye gaze vector on image i, and v
lists the eye gaze vector values for all the images.

V (v, I,W) =
1

2

N∑
i=1

‖vi − g(Ii; W)‖2 (3.6)

Similar to previous examples, the final loss function for the eye region
(Equation (3.7)) combines the error of the landmarks and the eye gaze esti-
mation, with the additional λ factor to manage the influence of the secondary
task.

arg min
W

{
L(y, I,W) + λV (v, I,W) + ‖W‖2

2

}
(3.7)

59

3.3.5 Experimental results

To evaluate the general performance of M3, this section compares the com-
putation time of its implementation with two real-time methods proposed
in the literature: Kazemi and Sullivan [18] and Baltrusaitis et al. [111]. Al-
though the method by [111] is also capable of estimating certain gestures, the
experimental comparison focuses only on the result of the main task, which
is the extraction of facial feature points.

The authors in [18] propose a fast landmark detection method, able to es-
timate 68 face landmarks in a single millisecond. It relies on linear regressors,
using binary pixel comparisons as a feature.

The work presented in [111] combines the AU detector presented in [100]
with efficient methods to extract facial feature landmarks [117], head orien-
tation estimation, and facial texture generation in a single analysis tool.

Model training

For the training phase, we used a subset of the images from the Multi-Task
Facial Landmark (MTFL) dataset presented in [90]. However, we manually
re-annotated the entire dataset with 68 facial landmarks, the gestures of the
mouth (smile, mouth frown and kiss) and the gestures of the eyebrows (inner
eyebrow raise and inner eyebrow frown).

First, we generated a mirrored copy of each image, doubling the number
of samples. Then, we used an automatic landmark detection based on [18] to
get a first estimation of the facial landmarks. Finally, we manually checked
the results to discard the images with significant landmark estimation errors.
The final dataset had 18720 images in total.

To increase the number of samples in the training dataset and increase
the robustness of the estimation in different image capture conditions, we
augmented the number of samples using different image perturbations (e.g.,
random noise, affine transformations and occlusions).

In addition, we balanced the dataset for the classification. Thus, the final
training dataset for each classification process (i.e., the models for level 1,
eyebrows and mouth) had the same number of samples for each of the classes
to classify. For example, for the model in level 1, we generated a different
number of augmentation images so that the number of final samples was
the same for each orientation. We followed the same approach to create the
training data for mouth and eyebrow models in level 2. Figure 3.10 shows

60

Figure 3.10: Some examples of training patches generated with the described
perturbations. From top to bottom, the original face images, the patches for
model in level 1, patches for eyebrow model and patches for mouth model.

some examples of different training patches.

For the eye regions, we used the samples created using a synthetic eye
image generator based on the approach proposed in [118]. It creates a set
of photo-realistic 3D eye renders, simulating eyes from different persons by
variations in shape, skin colour and skin texture, among others. It also
varies the eye-gaze and the orientation of the head with respect to the camera
randomly. The left column of Figure 3.11 shows some examples of the output
given by the previously mentioned method. As the image generation relies on
a 3D eye model, the output information includes an accurate eye gaze vector
and eye landmarks. With the set of eye images and landmarks, we generated
the eye patches for training. We augmented the generated crops with a list
of perturbations, including random noise, partial occlusions and transparent
white boxes simulating reflections from glasses. Figure 3.11 shows some
examples of the eye region patches generated for training.

61

Figure 3.11: Two examples of the synthetic eye render (left column) and
some of the eye region training patches generated with those images. The
eye patches include the augmentation perturbations.

Performance comparison

For the comparison, we used a desktop PC to measure the processing time of
each method. The PC included an Intel i5-9400F (@ 2.90GHz) as the main
CPU, and 16 gigabytes of RAM, using an Ubuntu 18.04 as the operating
system. No hardware acceleration was used in any of the cases.

The database used to make the comparison is the one presented by Sag-
onas et al. [47]. This database includes 600 images of different resolutions
annotated manually with 68 facial feature points that include points for the
eyes, eyebrows, nose, mouth and the contour of the face. Since the three
compared methods needed a facial region to initialise the estimation process,
the bounding boxes of the landmarks defined in the database were used as
input for each evaluated method.

The point detection error is the mean square error (MSE) using the 68
points on the face and averaging across all images in the dataset. We nor-
malised the estimation of each image using the interocular distance. This
normalisation avoided biases caused by different image sizes in the dataset.

The measurement of computing time in each case included only the time
necessary for the calculation of the feature points, excluding any image han-
dling process (like loading or resizing processes) or the initialisation of the
models.

62

Qualitative results

Figure 3.12: Each image shows the estimated gesture probabilities as bars
(left), the tracked facial feature points (dots) and the estimated eye gaze vec-
tor (purple arrows). The gesture definitions are, from top to bottom, head
pose left profile (HPLP), head pose left-front (HPLF), head pose front (HPF),
head pose right-front (HPRF), head pose right profile (HPRP), mouth ges-
ture smile (MGS), mouth gesture frown (MGF), mouth gesture kiss (MGK),
mouth gesture neutral (MGN), eyebrow gesture frown (EGF), eyebrow ges-
ture raise (EGR) and eyebrow gesture neutral (EGN).

During tracking, the method extracted the landmark positions and ges-
ture probabilities from the users face. Figure 3.12 shows some examples of
attributes extracted from a monocular video sequence.

Moreover, in the experiments using embedded devices, the implementa-
tion reached real-time performance (> 25 fps) using the embedded camera
as image source. The hardware used for the experiments was the Iphone SE,
which has an A9 (ARMv8-A dual-core @ 1.85 GHz) central processor.

63

Quantitative results

Taking all this into account, Table 3.1 presents the data extracted from
the comparison. The table includes the landmark estimation error and the
average time for their calculation.

Table 3.1: Results of the landmark estimation time measurement.

Method MSE Time (seconds)
Kazemi and Sullivan [18] 0.0872 0.0018
Baltrusaitis et al. [111] 0.0184 0.0389

M3 (Ours) 0.0227 0.0074

The method proposed in [111] is more accurate than the other methods,
but the computation time is also significantly higher. In the case of [18], it
estimates the feature points very efficiently, but at the cost of significantly
higher error.

To see the relationship between the MSE and the computation time,
Figure 3.13 shows the values in a visual representation. The image shows
how the proposed method improves the CPU time and error compared to
the other two.

Figure 3.13: Visual representation of the MSE and time values for Kazemi
and Sullivan [18], Baltrusaitis et al. [111] and the proposed method (M3).

M3 presents a better balance between computational load and precision,
extracting data from the face gesture in the process.

64

3.3.6 Conclusions

This section presented a computationally efficient method to estimate the
facial feature points as well as several additional attributes (i.e., head ori-
entation, facial gestures and eye gaze orientation) in a single computation.
Experiments show that it improves the balance of precision vs computation
time compared to other methods proposed in state-of-the-art methods.

Given the computation time required for the estimation of landmarks,
the method is a clear candidate to be used in systems with computational
limitations, allowing for additional computations such as 3D estimation of
facial attributes.

65

66

Chapter 4

Face fitting with non-rigid
deformations

In the previous chapter, we analysed various techniques for detecting the
facial feature points in an image. However, to move from an image’s two-
dimensional coordinates to a scene’s three-dimensional coordinates, we need
to add depth to those landmarks and determine the spatial relationship be-
tween the object (in this case, the face) and the camera.

In this chapter, we are going to analyse how we can make this transition
using a deformable 3D model as a reference. This scheme follows the steps
presented in the introductory chapter, in which we presented a tracking sys-
tem based on three stages. Figure 4.1 reviews this scheme, adding certain
specific elements of the facial tracking environment.

Figure 4.1: An adaptation of the graphical representation of the process to
fit the 3D model presented in section 1.2.

During the research process for this doctoral thesis, we proposed differ-
ent versions of this fitting approach. This chapter presents two of those
versions. The first lays the foundations of the method (called Facial Feature

67

Back-Projection or FFBP). The second version (called Multi-Stage Back-
Projection or MSBP) reformulates the problem to resolve deficiencies in
FFBP, improving the quality of the final result.

This fitting approach configures a 3D deformable model using as input
the feature points detected using an automatic feature detector (like one of
the methods presented in chapter 3) and the camera parameters.

The proposed 3D deformable model alignment method is based on a two-
step approach (see Figure 4.2). In the first step, a set of 2D fiducial face
landmarks are located in the image, representing key points on the face of
the user. In the second step, a deformable 3D model is deformed and adapted
to those landmarks.

During the tracking, the proposed approach fits a deformable 3D model
with the tracked face onto each of the images. This section introduces the
fitting process for a single image of the sequence. Further sections will explain
how to use this method to track the face in the entire video efficiently.

4.1 Facial Feature Back-Projection (FFBP)

The baseline version of the face model-fitting method estimates the rigid
parameters (position and orientation) and gesture parameters in a single
optimisation step. To simplify the projection computation, it assumes a
weak perspective projection to estimate the error function.

4.1.1 3D deformable model definition

The 3D generic face model we adopt is a modified version of Candide-3 [119].
We will refer to this as Candide-3m. The modifications consist primarily
in simplifying and streamlining the model in order to enhance the fitting
and tracking capabilities of the original. Figure 4.3 shows the Candide-3m
geometry compared to the original model. Figure A.1 shows the added and
modified shape units (SUs) and animation units (AUs) for Candide-3.

The Candide-3m model has the following modifications for Candide-3:

• The geometry around the eyes has been simplified by removing the
vertices that form the eyelids.

• The triangular mesh around the eyes and mouth has been tweaked, to
make the mesh density more uniform in those areas and to fit the new

68

Figure 4.2: Face model fitting steps for FFBP (top row) and MSBP methods
(bottom row). The left image shows the automatically detected face region.
The central image shows the same face with the 2D landmarks overlapped.
The right image shows the result of the 3D model deformation and alignment.

vertex list.

• The SUs have been changed in order to make them more appropri-
ate for the initialisation procedure proposed in this study: (1) Cheeks
Z, Chin Width and Eyes Vertical Difference SUs have been removed,
maintaining the rest, and (2) three more have been added, called Eye-
brow Width, Eyebrow Separation and Nose Width.

• The AUs have also been changed in order to allow for more expres-

69

−1 −0.5 0 0.5 1

−0.5

0

0.5

1

Candide−3 Neutral Configuration

−1 −0.5 0 0.5 1

−0.5

0

0.5

1

Candide−3m Neutral Configuration

Figure 4.3: The geometries of the Candide-3 and the Candide-3m face mod-
els.

siveness: (1) All MPEG-4 FAPs have been removed, (2) the Upper
Lip Raiser, Lid Tightener, Nose Wrinkler, Lip Presser and Upper Lid
Raiser animation unit vectors (AUVs) have been removed, and (3) the
Outer Brow Raiser AUV has been split into left and right AUVs, and
(4) the Eyes Closed AUV has been split into left and right AUVs and
reorganised according to the new vertex list.

4.1.2 Baseline fitting method

Once the facial features have been located in the image, the next stage is
to determine which position, orientation, shape units (SUs) and animation
units (AUs) provide for the best fit possible.

In the original experimental work [26], we used the 32 facial features de-
tected using the landmark detection method explained in section 3.2, and we
related them to a subset of vertices in the Candide-3m face model. However,
any set of facial landmarks could be used to fit the model. In the forthcoming
experimental section, for instance, we use a set of 68 landmarks to fit the
Candide-3m model.

In any case, we use the existing correspondence between the 3D model
points and the 2D facial features to make the face model fitting more efficient.
The 3D face model is given by the 3D coordinates of its vertices Pi, i =
1, ..., n, where n is the number of vertices. Thus, the shape, up to a global
scale, can be fully described by a 3n-vector g, the concatenation of the 3D

70

coordinates of all vertices (equation (4.1)), where g is the standard shape
of the model, the columns of S and A are the shape and animation units,
and τ su ∈ Rm and τ au ∈ Rk, are the shape and animation control vectors,
respectively.

The configuration of the 3D generic model is given by the 3D face pose
parameters (rotations and translations in the three axes) and the shape and
animation control vectors, τ su and τ au. These define the parameter vector
b (equation (4.2)).

g = g + Sτ su + Aτ au (4.1)

bt = [tx, ty, tz, θx, θy, θz, τ su, τ au] (4.2)

A shape unit provides a way to deform the 3D model in order to adapt
inter-person parameters such as the eye width and the eye separation dis-
tance. (see 4.1.1). Thus, the term Sτ su accounts for the shape or inter-person
variability, while the term Aτ au accounts for the facial or intra-person an-
imation. Hence, in theory, for face tracking, the shape units would remain
constant, while the animation units could vary. However, it is challenging to
perfectly separate both kinds of variability defining the generic face model
such as they would fit any kind of human face. This challenge is due to the
neutral facial expression, which varies significantly from person to person.
Therefore, in our initialisation process, we must consider both the shape and
animation units, without an explicit distinction between them. Only after
the initialisation can we assume that the shape units remain constant during
the tracking stage. Furthermore, we consider a subset of the animation units
in order to reduce the computational load [78].

In equation (4.1), the 3D shape is expressed in a local coordinate system.
However, one should relate the 3D coordinates to the 2D image coordinate
system. To this end, we adopt the weak perspective projection model. We
neglect the perspective effects since the depth variation of the face can be
considered small, when compared to its absolute depth from the camera.
Therefore, the mapping between the 3D face model and the image is given
by a 2 × 4 matrix M, encapsulating both the 3D face pose and the camera
parameters. Thus, a 3D vertex Pi = [Xi, Yi, Zi]

T ⊂ g will be projected onto
the image point pi = [ui, vi]

T ⊂ I (where I refers to the image), as defined in
equation (4.3).

71

pi = [ui, vi]
T = M[Xi, Yi, Zi, 1]T (4.3)

The projection matrix M is given by equation (4.4), where αu and αv are
the camera focal length expressed in vertical and horizontal pixels, respec-
tively. (uc, vc) denote the 2D coordinates of the principle point, rT1 and rT2
are the first two rows of the 3D rotation matrix, and s is a global scale (the
Candide model is given up to a scale).

M =

[αu

tz
s rT1 αu

tx
tz

+ uc
αv

tz
s rT2 αv

ty
tz

+ vc

]
(4.4)

The central idea behind this approach for deformable 3D model fitting is
to estimate the 3D model configuration by minimizing the distances between
the detected facial points and their counterparts in the projected model,
with:

dj = [xj, yj]
T ⊂ I (4.5)

where q is the number of detected facial points, j = 1, ..., q and q ≤
n. Algorithm 6 shows the proposed method (FFBP), as we are inferring
the configuration of a 3D deformable model from sparse data corresponding
to one of its 2D projections. The more data we detect on the image, the
more shape and animation units we will be able to vary in the model. The
minimum condition to be ensured is that the points to be matched should
not lie on the same plane. Thus, our objective is to minimize equation
(4.6), where pj is the 2D projection of the 3D point Pj. Its 2D coordinates
depend on the model parameters (encapsulated in b). These coordinates
are obtained via equations (4.1) and (4.3). The weight elements wj refer to
confidence values (0 ≤ wj ≤ 1) for their corresponding dj. This confidence
depends on the method used for the detection of points.

For this approach, we recommend setting the higher weights (e.g., 1)
to eye points, mouth points, nose top and base points, and the forehead
centre point; in a second level (e.g., 0.8) the eyebrow points and the rest of
the contour points; and finally in a third level (e.g., 0.2) the left and right
nostrils. We apply the POS algorithm 1, in order to get an initial guess of the

1POS is a pose solver based on a linearization of the perspective projection equations,
which corresponds to a single iteration of POSIT [120].

72

position and orientation of the face object, before the optimisation procedure
starts.

b∗ = arg min
b

q∑
j=1

wj · [({dj}x − {pj(b)}x)2 + ({dj}y − {pj(b)}y)2] (4.6)

The degrees of freedom from the Candide model (to be optimised) are set
in a normalised framework so that their variations are not biased towards any
in particular. Empirically, we found that it was better to keep the translation
estimated by POS algorithm constant since the sensitivity of LM is very high
to these global parameters. For this reason, we keep constant the position
obtained through POS and optimise the rest of parameters, which can better
accomplish this requirement.

Algorithm 6: Facial feature back-projection (FFBP) algorithm

Input: Standard shape of the 3D model g, confidence values w, shape unitsS,
animation unitsA and detected landmark list d

Output: The final configuration b of the aligned 3D model

Apply POS algorithm [120] to g with d → (θ0x and θ0y and θ0z and t0x and t0y and t0z)

Minimize equation (4.6) through the LM algorithm [121], taking into account equations (4.1)

and (4.3) for the update in the iterative optimization process. The position is kept constant

(tx = t0x, ty = t0y , tz = t0z) → b

4.2 Multi-Stage Back-Projection (MSBP)

After settling the foundations of the method, we identified two fundamental
improvements. The first improvement relies on changing the assumption of
a weak perspective projection model to a more realistic projection (i.e., full
perspective projection). This change should improve the estimation of 3D
positioning in the 3D scene.

The second improvement focuses on separating the optimisation process
into different cost functions, estimating the entire configuration of the model
into separated steps. Consequently, we first estimate the model parameters
that have the most significant influence on the cost function (e.g., position
and orientation), the remaining parameters with less influence (e.g., SU and

73

AU control parameters) are computed in a second optimisation. This change
should improve the accuracy of SU and AU parameters.

Additionally, we revisited the deformable 3D model. The model used
for the MSBP method focuses on reducing the distances in the image plane
between the detected 2D landmarks and the perspective projection of the 3D
model.

Further sections outline in detail the implementation of the improved
MSBP fitting method.

4.2.1 Deformable 3D face model

The proposed deformable model is a parametric face mask with a defined
set of 3D vertices and triangular surfaces (see Figure 4.4). It has a set of
previously defined deformation parameters divided into two groups: 11 Shape
Units (SUs) and 6 Animation Units (AUs). Table 4.1 shows the list of SU
and AU names.

Table 4.1: List of shape and action units included in the deformable 3D
model.

Shape Units Action Units

Eyes Height Open Mouth
Eyes Separation Distance Raise Left Outer Eyebrow
Eyes Vertical Position Raise Nose Bridge
Eyes Width Raise Right Outer Eyebrow
Face Length Smile
Face Roundness Stretch Lips
Lip Thickness
Mouth Vertical Position
Mouth Width
Nose Width
Nose Z Extension

While previous studies describe similar 3D models [119], we have gener-
ated an entirely new 3D model for this study. The motivation is to provide
a deformable 3D model whose vertices match easily with the 2D landmarks
provided by the landmark detector.

74

Indeed, the 3D model must be related to the result of the landmark de-
tector to align the 3D model. For this reason, we define a strict relationship
between the 3D vertices and the 2D landmarks. We established this rela-
tionship previously, considering the projection of the model vertices (without
deformation) in the image plane. After manually aligning the projection of
the vertices with the 2D landmarks, we associate each landmark with the
closest vertex projection. These relationships are stored as landmark-vertex
couples to be used later in the optimisation step.

The deformation parameters are used to adapt the form of the mesh to
the different possible face shape and gestures. The SU parameters modify
the shape of the mesh to adjust it to the specific face shape of the user
(e.g., vertical mouth position or face width) and are assumed constant for
the face of a particular individual. The AU parameters modify the mesh
to adapt the model to the specific gesture of the tracked face (e.g., smiling,
blinking or mouth opening) and they can change during the tracking in a
video stream. Each AU parameter controls a particular deformation (e.g.,
left eyebrow-raiser or mouth stretcher) as can be seen in 4.5.

Hence, the entire configuration of the 3D model, bt, for a certain 3D face
pose is composed by: 1) the rigid configuration parameters (position tx, ty, tz
and orientation θx, θy, θz) of the model with respect to the camera, 2) the list
of SU parameters τ su, and 3) the list of AU parameters τ au. Equation (4.7)
shows a vector with the entire set of the model parameters.

bt = [tx, ty, tz, θx, θy, θz, τ su, τ au] (4.7)

4.2.2 3D face model alignment

The 3D mesh is aligned with the detected 2D landmarks through three sep-
arate non-linear optimization steps:

1. Estimate the rigid parameters (tx, ty, tz, θx, θy, θz) of the 3D model.

2. Estimate all the shape deformation parameters τ su in a single opti-
mization.

3. Estimate each animation deformation parameter τ au sequentially.

Splitting the unknowns into three parts leads to better efficiency and
stability. The first step infers the global pose even when the AU and SU do

75

Figure 4.4: The upper image in the figure shows the shape of the deformable
3D model used in this study. The lower row shows the frontal view of the
same deformable 3D model (left) and the mean landmark shape of the used
2D landmark detector model (right). In the current representation, all the
3D deformation parameters (SUs and AUs) are set to zero value.

76

Figure 4.5: Example of different deformations of the model. Each column
shows the same deformation with positive deformation values (top row) and
negative deformation values (bottom row). The shown deformations corre-
spond to (from left to right) lip corner depressor (AU), left eyebrow raiser
(AU), mouth stretcher (AU), eye vertical position (SU), mouth vertical po-
sition (SU) and face width (SU).

not correspond to the real ones2, giving a better initial position to estimate
the shape and pose. The second step relocates the face structure adapting
the entire facial shape, and the third step refines the local gestures relying
on the estimations of previous operations.

Figure 4.6 shows an example of the alignment. Each optimization process
tries to find the parameters b which minimize the sum of Euclidean distances
(L2) between the landmark positions y and the projection of the related
model vertices P (b, cx, cy, fx, fy).

This projection function adopts the pinhole (perspective) camera model
[5] (ignoring the lens distortion). cx, cy, fx and fy denote the intrinsic camera
parameters (sensor centre in x, sensor centre in y, focal length in x and focal
length in y respectively). If the camera parameters are unknown for a certain
device, the system assumes a set of previously defined values. This simple
camera model provides good realism for full perspective projections.

Equation (4.8) describes the generic loss function:

e = argmin
b

n∑
i=1

‖yi − P (b, cx, cy, fx, fy)‖2 (4.8)

2This is motivated by the fact that the 3D pose parameters benefit from the global
rigidity of the head as seen in the set of the 2D points.

77

(a) (b)

(c) (d)

Figure 4.6: Example of the optimisation steps for the 3D model alignment:
a) the initialisation of the fitting in the centre of the space, b) the raw esti-
mation of the position and rotation of the 3D object, c) the shape parameter
optimisation, and d) the animation parameter optimisation.

where n is the number of 2D landmarks and e the fitting error value. The
loss function is the same in all the optimisation phases, but at each stage,
the error value is computed using a different list of landmark-vertex couples.
Thus, the first step uses all the landmark-vertex couples; the second step
only uses the landmark-vertex couples related to the shape unit parameters

78

of the 3D model, and the third step uses the landmark-vertex couples related
to the animation unit analysed in each case.

Before the fitting process, the 3D model is initialized with a neutral con-
figuration:

b̂ = [0, 0, Z0, 0, 0, 0,0,0] (4.9)

Z0 =
1

2
(Znear + Zfar) (4.10)

Thus, when the location of the model is unknown, it is initialized in the
centre of the tracking 3D space, the corresponding rotation values are set to
zero (in a vertical position and faced to the camera) and all the deformation
parameters are set to zero as shown in the first image of Figure 4.63. The
position of the 3D model is on the optical axis of the camera (the vertical
and horizontal location values since ty and tx are set to zero) and the depth
value tz is set as Z0 the centre point of the space between previously defined
Znear and Zfar 3D planes, as shown in (4.10).

If we know the configuration of the model in the previous frame (bt−1),
the same position and orientation parameters are used as the initial guess.
This initialisation reduces the iterations needed to estimate the current pose.

After initializing the model, the first optimization step estimates the pose
parameters (tx, ty, tz, θx, θy, θz) with a Levenber-Marquardt (LM) non-linear
optimization method. The error computation includes all the landmark-
vertex couples.

Then, the second optimisation step computes all the shape unit param-
eters (τ su) to adapt the form of the 3D model to the face shape of the
user. This step does not change the pose parameters (position and orien-
tation) computed in the first step, keeping them constant. We use a Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm for non-linear optimisa-
tion. This computation only uses the landmark-vertex couples involved in
the shape deformation to reduce the calculation.

The third optimisation step estimates each animation unit parameter
(τ au) one by one to adapt the shape of the 3D model to the gesture of the
face. As in the previous step, we are using a BFGS non-linear optimisation
method. This step only uses the landmark-vertex couples related to the
calculated AU deformation to reduce the computation.

3The projection of the 3D model is not centred in the image because the face region was
cropped to improve the visibility of the face region in this text. However, the projection
of the object corresponds to the centre of the original image.

79

Regarding the pose parameter computation (face model position and ori-
entation), LM shows good results with low computation times. However,
when we use LM for deformation parameter estimation (second and third
optimisation steps), the results are not so good. To improve the optimisa-
tion results given by LM estimating the deformation parameters, we used the
BFGS optimisation method instead, maintaining the LM method for the rigid
parameters. BFGS is more robust than LM for general optimisation prob-
lems. For example, if the second derivative of the function to be optimised
is negative definite, the iterations needed by the LM method for convergence
increase dramatically. In contrast, BFGS needs more computation than LM,
and thus, more processing time.

The heterogeneous nature of the parameters used for the model and
the full perspective projection needs a normalisation procedure to ensure
a nonbiased result towards one or some of the parameters. The objective
of the normalization step is to maintain the values of each pose parameter
(tx, ty, tz, θx, θy, θz) between the values -1 and +1. We use (4.11) to trans-
form the value space of the model parameters from the real value space to
the normalised value space.

t
′

x = tx/Z0

t
′

y = ty/Z0

t
′

z = 2 ∗ (tz − Znear)/(Znear − Zfar) + 1

θ
′

x = θx/π

θ
′

y = θy/π

θ
′

z = θz/π

(4.11)

We remember that the value Z0 represents the centre point of the space
between the 3D planes Znear and Zfar, which are previously defined.

After the first optimization step has estimated the pose parameters of the
model using the normalized values (t

′
x, t

′
y, t
′
z, θ

′
x, θ

′
y, θ

′
z), they need to be trans-

formed again to the original value space. This transformation is computed
using (4.12) (inverse of (4.11)):

80

tx = t
′

x ∗ Z0

ty = t
′

y ∗ Z0

tz =
1

2
∗ (t

′

z − 1) ∗ (Znear − Zfar) + Znear

θx = θ
′

x ∗ π
θy = θ

′

y ∗ π
θz = θ

′

z ∗ π

(4.12)

Algorithm 7 summarises the entire fitting process, including the model
initialisation and normalisation calls.

Algorithm 7: Multi-Stage back-projection (MSBP).

Input: Set of 2D face landmarks l, landmark and vertex relation list R,
previous frame configuration bt−1

Output: The configuration bt of the aligned 3D model

if Previous configuration bt−1 defined then
Initialize the model with previous frame configuration bt = bt−1

else

Initialize the model with neutral configuration bt = b̂

end

Set deformation values (τ su, τau) to zero in bt Change from configuration values to normalized

value ranges (equation (4.11)) (bt)→ b
′
t

Optimize position and orientation using LM (b
′
t, l,R)→ (θ

′
x, θ

′
y , θ

′
z , t

′
x, t

′
y , t

′
z)

Optimize shape deformation using BFGS (b
′
t, l,R)→ τ

′
su

for auj ∈ τ
′
au do

Optimize gesture deformation using BFGS (b
′
t, l,R)→ au

′
j

end

Change from normalized values to configuration value ranges (equation (4.12)) (b
′
t)→ bt

4.3 Face tracking in a Video Sequence

Video sequences have important differences when compared to single images.
We can consider a video sequence as a series of concatenated single images.
However, there is a direct relationship between the content of all the frames in
the sequence. The tracker can take advantage of this association to improve
performance.

81

This section has three parts. First, we expose how a baseline tracker
works, considering each image as an independent frame. Then, we show
how the relationship between the images can improve the performance of the
tracking. Finally, we show an efficient filtering approach to reduce landmark
detection jittering during the tracking.

4.3.1 Baseline tracker

The basic 3D tracking flow in a video sequence I processes each frame Ii
in three steps: 1) the detection of the face region r, 2) the detection of the
feature points in the image and 3) the 3D model fitting.

The first step estimates the face region in the image using an automatic
face detection method [122–125]. Then, the second step detects the 2D fea-
ture points of the face in the detected region. Finally, the third step computes
the configuration b for the 3D deformable model using the detected 2D land-
marks l as explained in section 4.2.2.

If the detector does not detect any face in the image, the system continues
to the next frame ignoring the point detection and the 3D fitting (steps 2
and 3). In the next frame, the face detector tries again to find a face in the
image.

4.3.2 Fast tracker

The baseline tracker needs to call on the face detector on each frame. The
face detector needs to analyse the entire image, a computationally expensive
process. To make the tracking more efficient, we propose a method to reduce
the computational needs of the facial region re-detection between consecutive
images using the information of the previous frame.

In an image sequence captured in real-time (v30fps), we can assume
that the facial appearance of the user has no significant changes from one
frame to the next. We can use the face appearance information in a frame to
determine the new face location in the next frame, using a template-matching
approach [126]. Moreover, we restrict the template search area to the region
around the face in the previous frame. These two modifications significantly
reduce the re-detection computation compared to the original automatic face
detector.

However, this tracking approach still needs an automatic face detector to
locate the face in the first image of the sequence. In addition, the appearance

82

of the face could change significantly in some cases (e.g., partial occlusions or
re-detection errors) causing the tracking to fail. In those cases, the automatic
face detector restarts the tracking, locating the face again in the next frame.
Thus, we combine the automatic face detection and the template-matching
based re-detection in the same pipeline, keeping the computational cost to a
minimum.

To avoid tracking errors caused by global changes in the image (e.g.,
global illumination changes, automatic gain corrections), we normalise the
cross-correlation value of the similarity measurement during the template-
matching analysis. This normalisation reduces the influence of global changes
in the template comparison.

Regular execution of the tracking algorithm works as follows.
First, an automatic face detector initialises the tracking sequence of a

user. This first step finds a face in the entire image using a previously
trained face model. Using the face region defined in subsection 4.3.1, the
feature points are detected and fit to the 3D model following the steps in
Algorithm 7.

The tracker projects a set of vertices of the fitted 3D model onto the
image to determine the face image region for the template-matching.

In the next frame, the tracker finds the most similar image area using as
template the region it learned from in the previous frame. Using the new
region, steps 2 and 3 find the new feature points and fit them to the 3D
model. Once again, it projects the 3D model vertices to determine the new
face region for the next frame.

Figure 4.7 shows an example re-detection step using a video sequence.
Note that since the detected 2D landmarks rely on local facial features

in the image, they compensate for small errors in the location of the facial
region. Then, the 3D model fitting process uses the 2D landmarks to acquire
the 3D model configuration, ignoring the detected area for that task. This
way of generating the facial template reduces the error accumulation that is
usually associated with an iterative template-matching process.

However, there are some cases where the template-matching based track-
ing could fail. For example, an error in the 2D landmark detection could
make the tracker estimate an incorrect face template, degrading the track-
ing even when the template was correctly found. To detect those cases, the
tracker checks the learned patch using an MMOD [122] face classifier to en-
sure that the section contains a valid face. The MMOD method was initially
designed to detect faces in images by checking all the possible image regions,

83

Figure 4.7: Representation of the face location update between the frames
#24 and #25 of the sequence 410 of the ’300VW challenge’ dataset [127].
The tracker extracts the face template (middle) from the frame #24 using
the projection of the 3D vertices. Then, it finds the template in the red area
in the frame #25.

changing the location and size of the tested area. In the case of the template
validation process, MMOD only checks a single space: the entire template
patch. This restriction reduces the computation significantly, achieving a
lightweight validation approach.

If the result of the validation is negative, the tracker discards the fitting
process, and it calls on the automatic face detector in the next frame, to
restart the tracking sequence.

4.3.3 Fast tracker with points filtering

The 2D landmark extraction process can be noisy in some cases, affecting
the robustness of the tracking process.

To reduce the impact of noisy detections, we include a filtering step based
on an optical flow analysis [128] of the image. This analysis method reduces
the jittering in the landmark detection without the delays added by other
filtering methods like moving average filter or Kalman filter.

The optical flow analysis method takes two consecutive frames and a list
of pixel locations (i.e., a list of 2D landmarks) in the first frame. Next, it
analyses the pixel value changes between two consecutive images and around

84

the original locations, estimating the position of the points in the second
image.

Different factors cause the optical flow analysis to deteriorate over time
(e.g., error accumulation, wrong evaluations, regions with uniform colour).
To limit the effect of the deterioration, we define a maximum distance (e.g.,
5-pixel diameter) between the detected landmark location and the estimation
given by optical flow analysis. If the range exceeds the specified threshold,
the tracker uses the detected landmark for the 3D model fitting and the
further optical flow estimations for that landmark. If the distance is less
than the threshold, then it uses the optical flow prediction as the current
landmark location.

This filtering method reduces the noise efficiently in the detection without
perceptible delays in the tracking. Algorithm 8 shows the filtering process.
Moreover, Algorithm 9 combines the fast-tracking approach and the filtering
process in the same tracking pipeline.

Algorithm 8: Optical flow-based filtering method.

Input: Current face image It, Previous face image It−1, Previous landmark
locations lt−1, Current landmark detections ld

Output: List of filtered landmark positions l

threshold = 5 pixels

if First frame of tracking sequence then

Use detected landmark ld → l

else

Estimate optical flow (It, It−1, lt−1) → lo for lon ∈ lo do

Compute euclidean distance (ldn, l
o
n)→ d

if d > threshold then

Use detected landmark ldn → ln

else
Use filter estimation lon → ln

end

end

end

4.4 Experimental results

In this section, we present the experimental results and the used setup.

85

Algorithm 9: Final face tracking approach.

Input: Face image sequence I, landmark and vertex relation list R

Output: The configuration b of the fitted 3D model

redetect = True

for It ∈ I do

if redetect then
Use a face detector to estimate face region → r redetect = False

else
Use template-matching to detect a face region (It,At−1)→ r

Validate face region (r)

if Validation negative then
redetect = True

end

end

if Not redetect then

Detect face landmarks (r, It)→ ld

Filter detected landmarks (It, It−1, lt−1, l
d)→ lt (Algorithm 8)

Fit 3D model with 2D landmarks (lt,R)→ bt (Algorithm 7)

Store face region appearance (bt, It)→ At

end

end

4.4.1 Experimental setup

Figure 4.8: Fitting example for each fitting method using the same image.
The top row shows the projection of each model on the image. The bot-
tom row shows the side view of the same fitting. Each column represents
a method. From left to right FFBP, Huber et al. [7], Baltrusaitis et al. [6],
Bulat et al. [8], Feng et al. [85], Kazemi and Sullivan [18] + MSBP and
Baltrusaitis et al. [6] + MSBP.

First, we compared the accuracy of the different selected methods using

86

two measurements: 1) the 3D orientation difference between the ground truth
and the estimated values, and 2) the distance between the ground truth
3D vertices and the predicted vertices (expressed in the same coordinate
system). Then, we compared the performance between the tested methods
and the proposed tracking method in different ARM devices with similar
hardware setup but different operating systems. For all operating systems,
we used a native implementation of the design. In some instances (on iOS
and Android), we had to use the primary language of the system (Objective-
C and Java respectively) for the deployment, camera image acquisition and
method execution calls.

We compared the accuracy of the proposed solutions with four different
approaches to face fitting [6–8, 85]. The list included two different two-step
methods for 3D alignment [6,7] for desktop PC and two single-step 3D land-
mark detection methods [8, 85] for desktop PC (in [38] the same authors
propose an efficient method for landmark detection, but this method only
detects the 2D positions).

For the comparison, we included the baseline fitting method FFBP using
the learning-free landmark detection method exposed in section 3.2 (FFBP),
following the original approach presented in [26]. In addition, we combined
the MSBP method with the estimation given by two different 2D landmark
detection methods (Kazemi and Sullivan [18] and Baltrusaitis et al. [6]). An
example result of each method can be seen in Figure 4.8.

The dataset adopted as ground truth in the accuracy comparison experi-
ments is called AFLW2000-3D and was generated using an automatic 3D face
fitting method proposed by Xiangyu et al. [129]. It includes the first 2000
images from the AFLW dataset [130] with a list of 68 annotated 3D points
following the same distribution (see Figure 4.2) for each image. Moreover,
as all the methods in the comparison experiments need an initial face region
detection, the entire dataset was processed using the MMOD face detection
method. We included five different MMOD models (front view, full-profile
view and half-profile view) for different face out of plane orientations. After
removing the images with extreme out of plane rotations and the images
without face detection, the final dataset included 1357 images of the original
dataset.

For the face tracking, we used 300VW challenge dataset [127]. Each video
sequence in this dataset shows a human talking and moving in front of the
camera in non-controlled environments. The dataset included videos with
different frame sizes, from 1280x720 to 480x360, and with a frame-rate close

87

to 30 frames per second.

4.4.2 3D orientation comparison

A widely adopted approach to measure the accuracy of a fitting method is to
compare the re-projection of the fitted model with a set of ground truth 2D
landmarks. However, this measure does not consider the orientation of the
3D reconstruction. As shown in Figure 4.8, the 3D orientation of the face
model can differ between methods even though the projection of the model is
apparently correct in all of them. This experiment compared the orientation
estimation of the different methods.

The ground truth dataset does not include an explicit 3D orientation
value for each image, and some of the tested methods do not estimate this
information. Thus, the orientation is measured using three representative
face feature points. The same strategy is used to extract the face orienta-
tion given by the tested methods to avoid possible biases introduced by the
differences in the definition of the 3D model in each technique.

As all the methods proposed for the accuracy comparison experiments
(including the ground truth dataset) have different 3D model definitions (see
Figure 4.8), a unified face model is proposed. We define the unified model by
a subset of vertices representing Face Animation Parameter (FAP) defined
by MPEG-4 international standard [131] and mostly present in the models
of all methods.

(a) (b)

Figure 4.9: Example of an annotation of the AFLW2000-3D dataset with the
ground truth vertices in blue. Each image shows in red the FAP locations
for: a) the orientation estimation and b) the shape estimation comparison.

For the orientation computation, a set of three points are selected using

88

the same MPEG-4 international standard [131]. Figure 4.9 (a) shows a visual
representation of the selected feature points. We have selected three points
considering these requirements:

1. The points are present in all models used by the tested methods.

2. The relative 3D position of the points is not significantly changed by
face gesture deformations.

3. The points have enough information to estimate the face orientation.

From this definition, we have selected the FAPs defined for the left eye
left corner (FAP 3.12), right eye right corner (FAP 3.7) and the base point
of the nose (FAP 9.15).

Figure 4.10: Graphical representation of the face orientation, including the
reference plane.

Once a face pose estimation is given, the orientation is measured as fol-
lows. First, we transform all the model points to the same coordinate system,
using the ground truth dataset as reference. Then, we define a plane using
the three reference points, as shown in Figure 4.10. The 3 × 3 rotation ma-
trix Rm is computed using the unit vector described by the points FAP 3.12
and FAP 3.7 as î axis, the normal vector of the plane as k̂ axis, and the cross
product between î and k̂ as the ĵ axis.

Using this process, we compute the Rm rotation matrices for all face pose
estimations given by each evaluated method. We also calculate the rotation

89

matrices for each of the estimates in the ground truth dataset, which we
distinguish by calling it Rg.

Based on the ground truth rotation matrix Rg and the estimated rotation
matrixRm the orientation error is computed using (4.13). If both orientations
are equal, the result of the multiplication is the identity matrix, meaning that
the orientation error is zero. To reduce the measurement to a single value,
we transform the error matrix Re into an axis-rotation representation using
the Rodrigues formula, and we only consider the angle value.

Re = RgR
T
m (4.13)

The results of the orientation comparison are listed in Table 4.2. As the
mean rotation error over 1357 images (in radians) shows, the accuracy of
MSBP method improves the results of most of the compared methods -those
proposed by Huber et al. [7] and Feng et al. [85] being the only methods
with better orientation accuracy. Note that even though the reference 3D
landmarks for the measurements are the same in all cases (shown in Figure
4.10), different 3D models are used in some instanced (shown in Figure 4.8).
These 3D models are deformed by the applied approach based on their shape
and deformability. In the case of [6], its projections rely on weak-perspective
instead of full-perspective (the one considered in our case). Therefore, some
assumptions are required that might not be valid in some applications (e.g.,
if the face is quite close to the camera viewpoint, and the depth of the facial
parts cannot be considered to be in the same plane).

In these experiments, [6] obtains slightly better results than [6] + MSBP
fitting. However, taking into account these considerations, we believe that is
because the 3D model used in [6] for its own fitting process is more detailed
than the one we have used for our fitting. Nevertheless, the results from
[6] vs [6] + MSBP fitting are similar to each other, with the remarkable
difference that [6] requires weak-perspective assumptions, and that [18] +
MSBP fitting obtains the best results of all. It is also relevant to see the
differences between [18] + MSBP fitting and [6] + MSBP fitting, both using
exactly the same 3D model, to better understand how the fitting approach
improves accuracy when more accurate 2D points are provided even though
the 3D model is not as detailed as that of [6].

90

Table 4.2: Results of the Orientation Estimation Comparison.

Method Mean
Rotation
Error
(radians)

Error
Standard
Deviation

FFBP 0.2299 0.1152
Huber et al. [7] 0.1634 0.1112
Baltrusaitis et al. [6] 0.2112 0.1952
Bulat et al. [8] 0.2088 0.1082
Feng et al. [85] 0.1132 0.1179
MSBP (points by Kazemi and Sullivan [18]) 0.1875 0.1185
MSBP (points by Baltrusaitis et al. [6]) 0.2694 0.1912

4.4.3 3D Shape Estimation Comparison

We used the 3D shape of the models as a measurement of accuracy because
of the lack of ground truth data based on model parameters. Moreover, as
different approaches use different parameters for their models, a comparison
in the parametric space is not possible. Note that accurate 3D shape es-
timation means that the algorithm accurately recovers both types of shape
parameters: the SUs and the AUs.

As in the case of the orientation, the shape estimation comparison needs
a unified model definition for all the tested methods. Similarly, we made
the unified model by using a subset of vertices representing FAPs defined by
MPEG-4 international standard [131] and mostly present in the models of all
methods. Some of the points are not present in all, but can be easily com-
puted using a combination of two other vertices of the model. The selected
26 FAPs are 4.6, 4.4, 4.2, 4.1, 4.3, 4.5, 3.12, 3.14, 3.8, 3.10, 3.11, 3.13, 3.7,
3.9, 9.3, 9.4, 9.15, 9.5, 8.4, 8.1, 8.3, 8.2, 2.5, 2.2, 2.4, and 2.3.

Figure 4.9 (b) shows an example of this model, represented by red dots.
In this example, it can be seen that, while the top and bottom FAPs of each
eye are not present, they can be easily computed as the centre position of
the vertices on both sides of those FAPs.

To measure the shape reconstruction error between the ground truth and
the estimation given by a tested method, the defined subset of vertices is
extracted from each model. Both subsets are aligned using the Procrustes
analysis to scale, translate and rotate them. Then, we measure the shape

91

error as the sum of the squares of the pointwise differences (L2 distance)
between both vertex sets.

Table 4.3: Results of the Shape Reconstruction Comparison.

Method Mean
Shape
Error

Mean
Fit-
ting
Time
(secs)

Fitting
Time
Devia-
tion

FFBP 0.0182 0.0017 0.0006
Huber et al. [7] 0.0114 0.0471 0.0134
Baltrusaitis et al. [6] 0.0136 0.0116 0.0040
Bulat et al. [8] (GPU) 0.0072 0.0358 0.0053
Feng et al. [85] (CPU) 0.0052 0.2291 0.0266
MSBP (points by Kazemi and Sullivan [18]) 0.0117 0.0054 0.0003
MSBP (points by Baltrusaitis et al. [6]) 0.0145 0.0128 0.0041

Table 4.3 shows the mean shape error across all the images in the used
dataset (1357 images). The methods proposed by Bulat et al. [8] and Feng
et al. [85] have the best results. Note that part of the AFLW2000-3D dataset
was used to generate the model used by Bulat et al. [8]. In the case of Feng et
al. [85], the good accuracy of reconstruction requires significant computation
time compared with the other methods. The MSBP approach shows good
performance, coming close to the method with the second best accuracy-
time results [7]. Note that in the comparison, for [6] + MSBP fitting, we
only used the 2D landmark positions provided from [6], ignoring the 3D
deformable model that it uses internally, but which was also computed, as
it is part of the process to get the 2D landmarks. This explains why [6] +
MSBP fitting is slightly slower than [6] alone.

4.4.4 Computation Time Comparison

In this section, we compare the mean computation time of each method
while they try to estimate the 3D face shape in the previously defined 1357
images of the AFLW2000-3D dataset. We used a desktop PC to measure

92

the performance because the implementation of most of the tested methods
was not focused on ARM architectures. The computer used had an Intel
i7-4770K CPU (@ 3.50GHz), 16 GB of physical memory and Ubuntu 17.10
as OS.

For the method described in [8], an extra GPU was used because of the
special needs of the approach.

The time measure only includes the fitting time of the image, excluding
the time needed to load the model, image acquisition, face region detection
or any other pre-processing task.

Table 4.3 shows the mean processing time (in seconds) for each tested
method and Figure 4.8 shows an example of each fitting. The method pre-
sented in [26] was the fastest in the experiments, but it also had the worst
results in the accuracy testing (see sections 4.4.3 and 4.4.2). The method
proposed (Kazemi and Sullivan [18] + MSBP) showed the second shortest
processing time. It outperformed the rest of the tested methods, while the
accuracy was similar to most of the other approaches. Huber et al. [7], Bulat
et al. [8] and Feng et al. [85] have better reconstruction accuracy, but they
also needed more time.

For a better visual comparison between the tested methods, Figure 4.11
shows all the values in the same plot, normalised on a unified scale. We
exclude Feng et al. [85] in this figure because the required computation time
makes it unsuitable for real-time tracking systems, making it difficult to
compare to the other methods.

4.4.5 Performance Analysis on ARM Architectures

In this section, the performance of one of the proposed methods is tested
using different ARM devices with similar computational power. We chose our
proposed MSBP fitting method that relies on the face points provided by the
Kazemi and Sullivan [18] method because it has the smallest computation
time measured on a PC.

The ARM devices used in the experiment are: 1) iPhone SE (using iOS
10.11), with an A9 (ARMv8-A dual-core @ 1.85 GHz) processor as CPU,
2) a Pixel-C (using Android 6.0), with a Tegra X1(ARMv8-A quad-core @
1.9 GHz) as CPU, and 3) a JetsonTX1 (using Ubuntu 16.04), with an A57
(ARMv8-A quad-core) processor as CPU. The hardware specification in all
the cases is similar. Even the JetsonTX1 device is ready to use the integrated
Nvidia GPU units; the GPU was excluded from the experiment, using only

93

Figure 4.11: Mean shape error, mean rotation error and mean elapsed time
measurements for each of the tested methods, normalised in a range from zero
to one. The highest value for each measurement type is set to one while the
rest of the values are scaled accordingly. The two horizontal lines show the
accuracy values of our fastest method against the rest. In all cases, smaller
is better.

the installed CPU. The PC uses Ubuntu 17.10 as operative system.
First, we measured the time of the different stages of the proposed method

(face detection, facial landmark detection, and 3D model fitting) on each de-
vice separately. This experiment did not rely on a tracking method, so it
detected the face using the face detection methods for each frame. This test
shows the different computation times needed for each part of the method,
allowing us to compare the performance of the ARM platforms and PC ar-
chitecture.

For this test, we used the AFLW2000-3D dataset as in previous sections,
with images of 450x450 pixels. Figure 4.12 shows a visual representation of
the results. Table 4.4 presents the mean computation times for each platform
and task. From the original 2000 images in the dataset 1490 faces were
detected, so the landmark detection and the fitting method were applied to
1490 faces (including faces not labelled in the original dataset).

The full-face detection step is the most computationally demanding of

94

Figure 4.12: Times needed for each device to detect the face in the im-
age(left), to detect the facial landmarks in the detected region (center) and
to fit the 3D model using the detected landmarks (right). The vertical axis
shows the time (in milliseconds) and the horizontal axis the sample index.

all platforms, but Android and JetsonTX1 need significantly more time than
iOS and PC to achieve the same task. For the landmark detection, the
ranking changes, the iOS device being the slowest, but with just a minute
difference considering the case of face region detection. For the 3D model
fitting, Android is again the slowest, and iOS device and the PC showing
very close performance.

Table 4.4: Mean Computation Times for each Device and Task.

Device Arch. OS Face Re-
gion

Face
Land-
marks

Model
Fitting

PC x86-64 Ubuntu 17.10 26.24ms 1.4ms 2.02ms
iPhoneSE ARM iOS 10.11 38.77ms 5.39ms 1.89ms
Pixel-C ARM Android 6.0 178.92ms 4.84ms 5.61ms
JetsonTX1 ARM Ubuntu 16.04 95.06ms 3.84ms 3.65ms

Additionally, we tested the tracking method on each device to check the
suitability of an entire tracking scenario. This experiment measured the
time needed to process each frame of a series of video sequences. The video
dataset used in the analysis was the 300VW challenge dataset [127]. All
the video files were processed twice on each device; the first time using the
face detection method on each image and then fitting the 3D face model as
described in section 4.2.2, and the second time using the tracking method

95

proposed in section 4.3.

Those two scenarios show the performance of the tracking method on each
ARM device, and the performance difference between the tracking method
and the continuous re-detection approach. Moreover, the correctly tracked
frames are also counted to show the number of frames successfully processed
with each technique. The detection method used in both scenarios (tracking
and re-detection) is MMOD because of its robustness and high detection
rate.

The time measure only includes the processing time of the image, ex-
cluding the time needed to load the model, image acquisition or any other
pre-processing task. However, the face detection and filtering computation
times varies depending on the image size, so the expected processing time
was higher than in the previous experiment. We only used the CPU for the
calculus, excluding any extra hardware component like GPUs.

Table 4.5: Processing Time Comparison Between Devices.

Device Method Avg.
Time
(ms)

Fps Correct
Frames

Correct
Frames
%

iPhoneSE Tracking 19.6 51.0 186466 91.77
iPhoneSE Re-detect 525.6 1.9 178332 87.92
Pixel-C Tracking 57.5 17.4 184550 91.49
Pixel-C Re-detect 799.0 1.25 177486 87.99

JetsonTX1 Tracking 33.5 29.8 185110 92.44
JetsonTX1 Re-detect 287.4 3.47 177342 88.41

Table 4.5 shows the experimental results for each device using the 201,705
frames of the 300VW challenge dataset [127]. It lists both test cases (track-
ing and continuous re-detection). The estimated frames per second values
are calculated using only the time needed for the frame computation. A
frame is set as correct if the mean square error (MSE) between the estimated
landmarks and the ground truth landmarks (both normalised) is less than
an experimentally defined threshold (0.03 in this case).

Compared with the re-detection scenario, the tracking method had better
results on performance and robustness, being faster and more reliable.

96

Moreover, the tracking method could track the face in more frames than
using the face detector in each frame. The tracking method reached real-time
performance (v30fps) on all devices.

An interesting point here is that, apparently, the hardware used is not the
only element to take into account. The Android device shows worse results
than others with similar specifications.

4.4.6 Qualitative results

This section presents some qualitative results of the proposed method.
Regarding the fitting method presented in section 4.2, and beyond the

quantitative experiments, Figure 4.13 shows some examples of the final fit-
ting results. The projection of the final model on different in-the-wild face
captures can be seen, including partial occlusions (i.e., hair and glasses), dif-
ferent illumination and various facial orientations. Despite these variations,
the results are visually accurate - it is possible to reconstruct the direction
and gesture of each face.

Figure 4.13: Some results of the fitting process using the AFLW2000-3D
dataset.

In the case of the fast-tracking approach, the proposed method achieves
real-time performance tracking on smart-phones using the embedded camera

97

for the capture. Figure 4.14 shows the proposed method running in two of
the devices used in the experiments. In both cases, the implementation runs
in real-time (29-30 fps on iPhoneSE and 26-27fps on Pixel-C).

Figure 4.14: Proposed method running on an iPhoneSE (left) and a Pixel-
C(right) using images captured with the integrated front camera in real-time.

With regard to the other methods tested in ARM devices, in Cao et
al. [81] the authors analyse the performance of the method using an iPhone7
for the experiments. Their method focuses on virtual avatar puppetry and
virtual makeup and includes a stabilisation system to increase the fitting
accuracy and robustness. However, it requires more computation, achieving
a running speed of 20 frames per second. The MSBP method achieves 30
frames per second on an iPhone SE, which is one generation older, and thus,
has lower computational power. Although the method proposed by Cao et
al. [81] is more robust and precise, its computing needs are higher, making
it unfeasible in computationally constrained devices.

In Deng et al. [9], the authors test the proposed method on different
kinds of devices including an ARM device with an ARM-RK3399 processor,
which includes a dual-core Cortex-A72 and a quad-core Cortex-A53. Their
approach achieves a processing speed of 16 frames per second, ignoring the
time cost of the included dense regression step. Compared with the device
used in our experiments, the ARM-RK3399 processor has significantly higher
performance, especially if the separate NEON processor included in ARM-
RK3399 chip is in use during the tests.

4.5 Conclusions

This section presented a method to efficiently align deformable 3D face mod-
els to faces in images and track faces in video sequences. The computational

98

needs of the entire tracking pipeline make it fast enough to use it in limited
environments such as on-board systems and smart-phones.

The experimental results show how the reconstruction and estimation ac-
curacy is close to other state-of-the-art methods, while maintaining a fast
processing speed. The method reconstructs face gesture, shape and orien-
tation even with significant out-of-plane orientations, different illumination
and partial occlusions.

We tested the approach on different devices with limited computational
power, including smart-phones and small embedded systems oriented to the
automotive industry. The results show how it correctly tracks a user with
real-time performance in several video sequences and using real-time cap-
tures.

The experimental results also show how the operating system used for
the implementation has a significant impact on the final performance of the
application.

99

100

Chapter 5

Body pose estimation with
multi-body deformations

Following the same scheme presented in previous chapters, we can fit multi-
body based deformable 3D models to a set of 2D feature landmarks in an
image. Considering the camera configuration and adopting a full-perspective
projection model, the final result represents the 3D pose and location of the
body pose in the real scene. Figure 5.1 shows this scheme, adding certain
specific elements of the body pose reconstruction case.

Figure 5.1: An adaptation of the graphical representation of the process to
fit the 3D model presented in section 1.2.

This chapter presents a hierarchical optimisation procedure that adjusts
a parametrised multi-body 3D kinematic model, based on the combina-
tion of efficient perspective-n-point camera pose estimation and constrained
viewpoint-dependent inverse kinematics. It explicitly considers and preserves
the relations between the 3D subject’s overall scale; the level of relevance
between the overall scale and the specific body part sizes; its depth with
respect to the camera; and its configuration related to the reference floor

101

of a predefined 3D world. The proposed method, which will be referred as
Contextualized Learning-Free Body Adjustment (CLFBA), works efficiently,
without the need of learning 2D/3D mapping models from the training data.
Therefore, it is not affected by data characteristic differences between train-
ing and deployment stages.

We consider using automatic body feature detectors like those presented
in [25,68,69] to detect the 2D body features in the image.

5.1 Method

Figure 5.2 shows the components of the CLFBA method. First, the camera
configuration is done by adjusting the reference floor of the predefined 3D
world to four key-points in the image. For many human body tracking appli-
cations, it is enough to use a static camera without zooming operations, so
in such cases, the camera should be configured only once, during the instal-
lation stage. Otherwise, the reference floor must be readjusted each time the
camera is moved or zoomed, e.g., manually or by applying visual SLAM tech-
niques [132]. Once the reference floor is adjusted to the observed scene, the
body pose estimation procedure can be applied under a tracking-by-detection
scope.

5.1.1 Camera calibration

The camera calibration process is based on the approach presented in [133].
This method estimates the intrinsic and extrinsic parameters of the camera
by adjusting a planar rectangle representing the floor in the 3D space being
observed, which will be shared by all entities in the scene. For this adjust-
ment, the user manually annotates the 2D positions of the four corners of
the rectangle on the image and assigns metric measurements to its two sides.
These data are then used to compute the homography between the image
and the floor planes using the DLT (Direct Linear Transform) algorithm [5].
Once the homography has been calculated, the rotation and translation of
the camera are extracted from the resulting matrix. Finally, the re-projection
error over the set of camera parameters is optimised using the Levenberg-
Marquardt (LM) non-linear optimisation method [134,135]. This approach is
valid for cameras without considerable distortion, which is the case of typical
video cameras used for broadcasting and surveillance. This optimization ap-

102

Figure 5.2: The CLFBA method components with their corresponding inputs
and outputs.

proach runs efficiently, and therefore, while the user is setting the corner 2D
positions and the side sizes, the tracking system can show augmented reality
feedback about the 3D placement of the reference floor, in real-time. More
specifically, lines perpendicular to the plane are drawn at each corner, with
their estimated metric measurements, so that users can check the suitability
of the obtained results during the camera configuration (left image in Figure
5.2).

5.1.2 Body pose estimation

Once the camera has been calibrated, the system continuously processes im-
ages from the video stream. First, the 2D body joint positions are located in
the input image by state-of-the-art body part detectors such as [25, 68, 69].
Then, the 3D kinematic model is adjusted to the 2D joint positions, also
considering its possible interaction with the floor reference. During this

103

adjustment process, the parameters of the body are estimated in order to
optimise the overlap of its projection with respect to the 2D positions lo-
cated in the image. This is an ill-posed problem as the kinematic model
has many parameters that cannot be obtained directly from the image data
due to non-measurable depth variations, self-occlusions, and the irreversible
perspective projection. To solve this problem under a learning-free scope,
a set of constraints are imposed, such as the biomechanical rotation limits
of joints, body symmetry, multi-body kinematic motion constraints, or the
relation of the body joints with respect to the reference floor. The relevance
of the parameter variations is taken into account hierarchically during the
projection overlapping process.

Figure 5.3: (a) The 3D kinematic model’s hierarchical structure (based on H-
Anim [136]), (b) its body dimension parameters and (c) its posing features
for IK control (located at end-effectors and intermediate upper and lower
limb joints).

A key component of the method is the parametrised multi-body 3D kine-
matic model, with a posing mechanism in the 3D metric space based on
constrained viewpoint-dependent inverse kinematic (IK) (i.e., IK that con-
siders the in-plane motion of posing features and body motion constraints,
such as body joint rotation constraints and collisions in the 3D world). Fig-
ure 5.3 shows the hierarchical structure of joints, which follows the H-Anim
standard [136]; the parameters to control the lengths of the body parts; and
the posing features used for IK. The selected kinematic model has 21 joints
(listed in Figure 5.3 left), with 54 degrees-of-freedom (DoF); six for the root

104

joint and three for the rest, except for sternoclavicular joints (no twist), el-
bows (only flexion and twist), wrists (no twist) and knees (only flexion).
Nevertheless, the method supports a different number of joints in the spine
(if required). There are twelve parameters that control the sizes of the body
parts, and two parameters that control the total length of the back and neck
(d6 and d8), which distribute the lengths of each body segment inside them
proportionally. The sizes of the graphical objects that represent the body
segments vary proportionally to their related body part lengths in order to
adapt to different scales appropriately.

In addition, there are fourteen posing features located at key joints which
allow the model to be posed through IK. The posing features at the end-
effectors (represented as cubes in Figure 5.3-c) allow the variation of their
positions and orientations, while the rest (represented as spheres in Figure
5.3-c) only their positions. The IK strategy varies the configuration of the
body differently, depending on which posing feature is moved. Then, the
motion of each body limb (arms and legs) and the central part of the body
(pelvis, trunk, neck, head) are distinguished separately.

In the case of the arms and legs, moving their posing features only affects
their corresponding body limb, but not the rest of the body:

• When the end-effector posing feature (wrist/ankle) is moved, the two
segments of the limb are moved.

• When the intermediate posing feature (elbow/knee) is moved, the limb
rotates around the axis between the limb’s root (shoulder/hip) and the
end-effector (wrist/ankle).

• When the posing features at the sternoclavicular joints are moved, the
shoulders and their corresponding full arms are moved as rigid bodies,
rotating around the sternoclavicular joints.

In the case of the central part of the body, the motion of its posing
features (at the root joint, head and hips) affects the configuration of the
whole structure:

• When the posing feature at the root joint is moved, the whole body is
moved as a rigid solid in the 3D space.

• When the posing features at the hips are moved, the pelvis is rotated
around the root joint, while the rest of the posing features are kept

105

in place. Therefore, the IK procedure makes the body adapt to the
relative change of the posing features in order to match them.

• When the posing feature at the head is moved, the spine joints are
bent, giving major preference to the neck, and allowing the translation
of the root in the spine’s axial direction. Additionally, the arm and leg
end-effectors are kept in place, and therefore the IK procedure makes
arms and legs adapt to them, as shoulders and hips move.

This IK strategy has proved to be adequate for the posing of the kinematic
model with viewpoint constraints. In this study, this process is automated,
as explained in the following section. The motion of the joints is constrained
by biomechanical rotation limits that prevent unfeasible poses (Figure 5.4).
These joint rotation limits are parametrised with circumduction-swing-twist
rotation angles in order to model complex biomechanical rotation limits.
This is a more appropriate strategy compared to other alternatives such as
constraining Euler angles or exponential maps [27], as the workspaces are
closer to the real behaviour of human body joints. Finally, posing features
are prevented from surpassing the floor, which is also considered by the IK
procedure to correct the body poses accordingly.

(a) (b) (c)

Figure 5.4: Examples of biomechanical rotation limits of body joints: (a)
shoulder swing limits, (b) knee flexion limits and (c) a cervical vertebra
twist limit.

106

5.2 Automatic multi-body projection adjust-

ment process

This process corresponds to the automation of the hierarchical constrained
3D body adjustment shown in Figure 5.2 and Figure 5.5. The process aims
to minimize the overall projection error between the 2D joint positions au-
tomatically obtained by the body part detector and the image projections
of their corresponding joints in the 3D kinematic model, taking into con-
sideration the kinematic and floor-contact constraints and the hierarchical
relevance of the parameter variations. Thus, the objective function is the
following:

e = argmin
1

n

n∑
j=1

(pj − wj)2 (5.1)

where p = {p1, p2, p3, ...} are the detected/annotated 2D joint positions,
which include the following posing features: root, hips, knees, ankles, shoul-
ders, elbows, wrists and head; w = {w1, w2, w3, ...} are the 2D projections
of the corresponding 3D body posing features; n is the number of (anno-
tated/detected) 2D joint positions; and e is the residual error.

11

0

11

Figure 5.5: Flowchart of the automatic multi-body projection adjustment
process.

Algorithm 10 shows the entire proposed method to automatically obtain
the 3D pose and body dimension parameters from the image observations,
while Algorithm 11 shows the procedure to fit a kinematic 3D model with

107

specific dimensions to 2D annotations, which is done during the optimization.
There is a nested loop of two layers in the optimisation procedure, in which
both try to minimise the objective function (5.1), with independent termina-
tion criteria (maximum residual error value, minimum residual error variation
value, the maximum number of iterations), but hierarchically sharing the pa-
rameter values. In the outer loop, a coarse variation of body dimensions is
considered in order to change the body scale. In contrast, refined variations
are done for each body dimension separately in the inner loop. This way, a
major priority is given to the scale variations which have a larger influence
in the correct posing than those of each body part separately. The outer
loop optimisation is solved with the method [137], while the inner one is
solved with the method [138]. The former, known as DIRECT-L algorithm,
is the locally biased variant of DIRECT (DIviding RECTangles algorithm),
which is a deterministic-search algorithm based on systematic division of the
search domain into smaller and smaller hyper-rectangles (see [137] for de-
tails). The latter, known as COBYLA (Constrained Optimisation BY Linear
Approximations) algorithm, is a derivative-free optimisation procedure with
non-linear inequality and equality constraints. It constructs successive linear
approximations of the objective function and constraints via a simplex of
n+ 1 points (in n dimensions). It optimises these approximations in a trust
region at each step (see [138] for details).

The notation in the algorithms is the following:

• K(X0, d0, b): 3D kinematic model with initial default parameter val-
ues for X and d.

• X: 3D pose parameters.

• d: body dimension parameters.

• b: constraints related to biomechanical rotation limits of joints, body
symmetry and multi-body kinematic motion constraints.

• C = fx, fy, cx, cy, txyz, Rxyz: camera calibration parameters.

• f : reference floor plane annotated in the calibration stage.

• s: body scale.

• δ: body dimension parameter variations.

108

• ε: body scale variation.

Algorithm 10: 3D body pose and body part lengths estimation
from 2D image data.

Input: 3D kinematic model (K), landmarks (p), camera parameters (C), body
scale (s), body dimension parameters (d0) and floor plane (f)

Output: Final pose parameters (X), final body dimensions (d)

d0 → d

if Face region available then

while not termination condition 1: e1 > 52(pixels2)|δe1 < 0.01|iterations1 > 50 [137] do
s+ ε→ s

update d ∗ s→ d

while not termination condition 2:

e2 > 52(pixels2)|δe < 0.01|iterations2 > 100 [138] do
d + δ → d

fit human body(K, p, d, C, f) → X (Algorithm 11)

get projection error (X,C,p) → e2

end

get projection error (X, C, p) → e1

if floor cross then
e1 + BIG NUMBER → e1

end

end

update pose with x

else
fit human body(K, p, d, C, f) → X (Algorithm 11)

end

In Algorithm 11, the human body fitting from 2D annotations to 3D pose
is completed through two different stages. First, the central part of the body
is placed by fitting the coordinates of the 3D model’s shoulders, hips and
body root joints to their corresponding 2D target locations through EPnP
(Efficient PnP) [107]. PnP stands for perspective-n-point problem and refers
to the problem of estimating the pose of a calibrated camera from n 3D-to-
2D point correspondences. EPnP expresses the n 3D points of an object (n
≥ 4 for both planar and non-planar configurations) as a weighted sum of
four virtual control points. The PnP problem then estimates the coordinates
of these control points in the reference system of the camera (see [107] for
details).

Once the central body part position and orientation are obtained, the
body limbs are fitted by IK. In addition, the method takes advantage of

109

Algorithm 11: Fit human body from 2D annotations to 3D pose.

Input: 3D kinematic model (K), landmarks (p), camera parameters (C) and
floor plane (f)

Output: Final pose parameters (X)

Fit central body part (pelvis, trunk, neck, head):

solvePnP(centralBody(p,X)) → X [107]

Fit body limbs:

if floor contact then
Compute intersection with f→ floor depth diff

limb(X) + floor depth diff

end

Apply constrained viewpoint-dependent IK → X

the information provided by the possible interaction of the body with the
predefined floor plane. If a foot is in contact with this plane, its depth is
defined by the intersection of the floor plane and the perpendicular line to
the 2D image that crosses the annotated 2D foot position. The possible error
of the depth of the body joints is checked and corrected with this value. In
cases where both feet are in contact with the floor, mean depth is computed
for the corrective value applied to the different depths of the body joints.
This procedure is also applicable to human body poses where body parts in
contact with the floor are not necessarily feet.

In order to detect floor-contact constraints directly from image cues, the
spatial relation of the reference floor and the entities in the scene with respect
to the camera viewpoint could be considered, for example, by annotating
as contact those body joint projections which lie on specific areas of the
image for specific kinds of body pose projections (related to specific actions,
such as walking, etc.) provided by state-of-the-art body part detectors (such
as [25,68,69]). However, as this issue is scene and application dependent, we
do not propose a general solution for it in this study.

5.3 Experimental results

Sequences from the well-known HumanEva dataset [139] were used to eval-
uate the performance of the CLFBA method. The dataset contains se-
quences of synchronised multiple views of different people performing several
actions which are being captured simultaneously by optical marker-based
motion capture (Vicon). We used 12 monocular video sequences from the

110

HumanEva-I subset, 119,097 valid frames in total (the valid ones are those
with non-corrupted Vicon data), which show two different subjects (S1 and
S3), performing two actions each (S1: Box1 and Walk1; S3: Box1 and Jog1),
recorded from three different viewpoints (C1-C3). Figure 5.6 shows sam-
ples from these selected sequences. The resolution of the video images is
640x480. Thus, the accuracy obtained by CLFBA has been compared to Vi-
con and representative state-of-the-art learning-free [27] and learning-based
approaches [140] and [141]. Both learning-based methods have been trained
using selected sequences from the CMU motion capture dataset [142]. Hence,
the considered relations between the 3D model and the 2D projections in the
training stage can differ significantly from those in the testing data, as may
happen during the deployment stage. The use of data from datasets gen-
erated under different conditions for training and testing is appropriate in
order to evaluate generalisation problems that could arise in learning-based
approaches, compared to learning-free.

In these experiments, the potential error resulting from the 2D image lo-
cation of body parts was avoided, as this error corresponds to the accuracy of
the detector (such as [25,68,69]) to be combined with the 3D body pose esti-
mator. Therefore, for a fair comparison, the same 2D input data (extracted
from the reconstructed Vicon skeleton and projected image coordinates), was
used for all approaches.

Figure 5.6: Samples from the HumanEva-I dataset sequences used in the
experiments, with the pose estimations from Vicon overlapped. From left to
right, S1-Box1-C3, S1-Walk1-C2, S3-Box1-C2 and S3-Jog1-C1

First, as a preliminary step for the analysis of the accuracy obtained by
CLFBA, we evaluated the calibration parameters obtained by [133] (which is
the method used for the camera configuration in CLFBA and [27]), compared
to those accurate measures taken by Vicon. Table 5.1 shows the obtained
results. Camera parameters from [140] and [141] cannot be included in this
comparison as these approaches assume weak perspective projection, and
therefore there is not a direct correspondence between their 3D space units

111

Table 5.1: Camera parameter estimation results of [133] (used for the camera
configuration in CLFBA and [27]) and Vicon in the three camera viewpoints
(C1-C3) from HumanEva-I dataset.

Cam. Method fx(px) fy(px) cx(px) cy(px) tx(cm) ty(cm) tz(cm) Rx(o) Ry(o) Rz(o)

C1 [133] 872.56 870.64 327.18 265.68 -20.70 -25.08 510.32 74.81 75.86 -64.76

Vicon 765.79 765.33 299.77 232.35 -20.28 -11.43 418.38 71.47 83.22 -69.51

Error 106.77 105.31 27.41 33.33 0.42 13.64 91.93 3.34 7.36 4.75

C2 [133] 661.90 661.02 326.98 244.98 -10.12 -7.07 390.26 75.68 80.07 -65.87

Vicon 688.42 686.79 273.00 221.97 12.73 8.40 357.61 71.47 83.22 -69.51

Error 26.52 25.77 53.98 23.01 22.85 15.47 32.65 4.21 3.15 3.64

C3 [133] 733.90 733.01 326.98 244.98 26.57 -25.49 466.99 75.05 78.29 -66.21

Vicon 724.27 723.57 302.63 204.91 35.18 3.14 430.55 71.47 83.22 -69.51

Error 9.63 9.44 24.35 40.07 8.61 28.63 36.44 3.58 4.93 3.30

Avg errors 47.64 46.84 35.25 32.14 10.63 19.25 53.68 3.71 5.14 3.90

St-dev 51.90 51.29 16.29 8.59 11.35 8.18 33.19 0.45 2.11 0.76

and the world’s metric measurements. In this experiment, we manually set
the four corners of the reference floor, taking into account the dimensions
of the scene described in [139]. Figure 5.2 shows an example of how these
corners were placed.

As can be seen in Table 5.1, the in-plane translations (tx, ty) have less
average error (about 15 cm) and variability (about 10 cm) than in the depth
direction (tz) (about 53 and 33 cm, respectively). The average depth distance
with respect to the world coordinate system is about 370 cm, which results
in relative average errors of around 4-14% in translation. Moreover, for
each camera viewpoint, it can also be seen that the largest error variations
happen again in tz, while the measurements are more stable at tx and ty.
These differences between in-plane (XY) and out-of-plane (Z) directions are
expected because of the lack of direct measurements in the depth direction.
All obtained rotations have similar error values, around 4o, but the Ry error
is higher than the Rz error. This has been overseen as previously explained,
due to the lack of direct measurements in the depth direction. However, the
lower Rx error is due to the fact that the viewpoint benefits the estimation
of the orientation in that direction. Besides, the orientation error stability
from viewpoint to viewpoint is higher because of this constraint as well.

112

Regarding intrinsic parameters, the larger error comes from the focal
length estimation (fx, fy), which has an average relative error of about 6%
with a standard deviation of about 7%, while the average relative error for
the principal point calculation (cx, cy) is about 6% with a standard deviation
of about 2%. The main deviations can be found at camera C1, because no
appropriate image landmarks were used during the manual annotation of the
reference floor corners, which resulted in a remarkable difference between the
estimated plane and the real one.

Tables 5.2 and 5.3 show the 2D and 3D pose estimation errors, respec-
tively, of CLFBA, [27], [140] and [141], compared to Vicon, for each body
limb, the head, and also the full-body, including all the body joints. In
the case of the 3D error, Procrustes alignment has been applied to the esti-
mated 3D poses with the ground-truth (Vicon) to compute the error, as done
in [140] and [141], because these two approaches rely on weak perspective
projection and therefore the obtained 3D data cannot be measured against
Vicon, directly.

It can be observed that the average lowest 2D re-projection errors cor-
respond to CLFBA and [140], while [27] and especially [141] obtain higher
error values. In the case of 3D errors, CLFBA and [27] obtain lower errors
compared to [140] and especially [141]. According to these results, it seems
that [140] can generalise better than [141], when there are significant differ-
ences between training and testing data, as happened in this experiment.

Learning-free approaches do not use any kind of training data, and there-
fore, they are not influenced by this kind of problem. However, if we anal-
yse in detail the spatial relationship between the reference floor and the
reconstructed 3D human body poses, we can observe that there might be re-
markable differences between the reconstruction results obtained by CLFBA
and [27], as shown in Figure 5.7 (e.g., separations between the floor and feet
that should be in contact or different orientations of trunks with respect to
the horizontal plane). As CLFBA handles hierarchically holistic scale vari-
ations with respect to the refined body part length variations during the
optimisation, and considers floor-contact constraints explicitly, it can obtain
more coherent reconstructions with respect to the shared 3D world when
compared to [27].

Table 5.4 shows the errors in size measurements of the body parts in
CLFBA. In this case, checking the result differences from action to action for
each subject, it can be observed that the measurements can have remarkable
differences. Those differences are due to the accumulated errors coming from

113

Table 5.2: 2D pose estimation errors in pixels per joint, for each body limb
and for the full body, of CLFBA, [27], [140] and [141] with respect to Vicon
in HumanEva-I dataset.

Action Method L
ef

t
le

g

R
ig

h
t

le
g

L
ef

t
a
rm

R
ig

h
t

a
rm

H
ea

d

F
u

ll
b

o
d

y

S1Box1 CLFBA 6.35 6.14 5.99 5.79 5.17 5.85

[27] 9.02 8.86 7.54 7.35 4.88 7.73

[140] 5.98 6.01 6.35 5.91 7.59 6.19

[141] 22.79 22.63 18.39 17.24 12.15 19.52

S1Walk1 CLFBA 6.29 6.20 5.13 5.39 4.97 5.55

[27] 8.93 8.91 6.60 6.21 5.00 7.29

[140] 7.44 6.85 7.21 7.36 6.24 7.04

[141] 19.77 19.54 15.96 15.18 10.12 16.97

S3Box1 CLFBA 6.88 6.84 5.81 5.93 5.90 6.14

[27] 8.87 8.70 8.25 8.33 5.23 8.08

[140] 6.20 6.47 6.32 6.62 7.79 6.49

[141] 25.48 25.96 20.29 19.06 9.88 14.94

S3Jog1 CLFBA 6.78 7.10 6.04 6.44 5.39 6.32

[27] 8.04 8.51 7.31 7.38 5.34 7.39

[140] 6.78 6.75 7.14 7.06 7.05 6.88

[141] 23.37 23.43 18.03 17.83 12.04 19.97

Average

(StdDev)

CLFBA 6.57 (0.30) 6.57 (0.47) 5.74 (0.42) 5.89 (0.43) 5.36 (0.40) 5.96 (0.33)

[27] 8.71 (0.45) 8.74 (0.18) 7.42 (0.68) 7.32 (0.87) 5.11 (0.21) 7.62 (0.36)

[140] 6.60 (0.65) 6.52 (0.49) 6.76 (0.63) 6.74 (0.63) 7.17 (0.7) 6.65 (0.38)

[141] 22.85 (2.36) 22.89 (2.64) 18.17 (1.77) 17.33 (1.62) 11.05 (1.21) 17.85 (2.35)

the previous steps (camera calibration and body posing), depending on the
perspective and the pose with respect to the viewpoint. This is expected, tak-
ing into account the lack of direct measurements in the depth direction and
self-occlusions. The resulting average measurement error is approximately
9.8 cm with a standard deviation of about 3.8 cm.

114

Table 5.3: 3D pose estimation errors in cm per joint, for each body limb and
for the full body, of CLFBA, [27], [140] and [141] with respect to Vicon in
HumanEva-I dataset.

Action Method L
ef

t
le

g

R
ig

h
t

le
g

L
ef

t
a
rm

R
ig

h
t

a
rm

H
ea

d

F
u

ll
b

o
d

y

S1Box1 CLFBA 11.81 11.94 13.13 14.05 5.41 11.72

[27] 15.17 15.72 16.43 17.49 8.14 14.93

[140] 13.45 15.19 12.90 11.17 16.88 13.21

[141] 17.34 16.19 23.44 24.62 12.11 19.16

S1Walk1 CLFBA 10.17 10.68 8.58 9.70 6.73 9.11

[27] 14.34 14.49 12.55 13.44 9.94 12.87

[140] 15.77 15.70 15.59 15.01 16.33 14.96

[141] 21.09 18.58 24.88 23.37 12.89 20.29

S3Box1 CLFBA 11.74 13.85 15.78 16.48 7.87 13.41

[27] 20.92 20.26 19.62 20.08 10.11 18.58

[140] 17.49 20.20 20.97 20.13 21.17 19.17

[141] 28.00 23.93 33.96 33.98 14.31 27.59

S3Jog1 CLFBA 11.29 11.21 10.58 9.63 4.90 9.83

[27] 15.25 15.26 13.53 12.77 7.56 13.08

[140] 16.06 13.78 13.07 14.92 18.61 14.36

[141] 23.31 25.12 31.73 23.75 16.32 24.07

Average CLFBA 11.25 (0.75) 11.92 (1.39) 12.02 (3.12) 12.46 (3.38) 6.23 (1.34) 11.02 (1.94)

(StdDev) [27] 16.42 (3.03) 16.43 (2.60) 15.53 (3.18) 15.94 (3.46) 8.94 (1.28) 14.86 (2.64)

[140] 15.69 (1.67) 16.22 (2.77) 15.63 (3.76) 15.31 (3.68) 18.25 (2.18) 15.42 (2.60)

[141] 22.44 (4.45) 20.95 (4.26) 28.50 (5.13) 26.43 (5.06) 13.91 (1.85) 22.78 (3.83)

115

(a) (b)

(c) (d)

Figure 5.7: An example of the obtained pose reconstruction results (S1-
Walk1-C2): a) CLFBA, b) [27], c) [140] and d) [141]

Finally, Table 5.5 shows the average time measurements required by the
optimisation process, programmed in C++, and executed on a desktop PC
Intel Core Quad @2.50GHz and 8 GB RAM. As can be seen, if the optimisa-
tion process is set to estimate the pose only or both the pose and the body
dimensions but varying only the scale, the processing time is sufficient for
real-time processing. In the case that both the pose and the body dimensions
should be estimated, the method requires about one second to process, and
therefore the frame rate would decrease to near real-time processing.

In the case of [140] and [141], the same testing samples required an av-
erage processing time of about five seconds. However, the results are not
comparable as [140] and [141] are programmed in Matlab, and CLFBA in
C++. However, taking into account the general time differences between
C++ and Matlab programs in operations such as those included in these two
algorithms, it can be assumed that the time consumption of the full process
is comparable.

116

Table 5.4: Body part size estimations in cm of CLFBA and Vicon in
HumanEva-I dataset

Action Method L
ef

t
th

ig
h

R
ig

h
t

th
ig

h

L
ef

t
ca

lf

R
ig

h
t

ca
lf

L
ef

t
u

p
p

er
ar

m

R
ig

h
t

u
p

p
er

a
rm

L
ef

t
fo

re
a
rm

R
ig

h
t

fo
re

ar
m

C
en

tr
a
l

b
o
d

y
le

n
g
th

C
en

tr
a
l

b
o
d

y
w

id
th

S1Box1
CLFBA 30.91 30.91 38.94 38.94 21.46 21.46 19.55 19.55 55.05 28.11
Vicon 39.65 43.03 38.58 36.66 27.61 26.43 24.92 25.82 58.83 29.63

S1Walk1
CLFBA 33.63 33.63 42.01 42.01 24.07 24.07 22.00 22.00 56.38 28.71
Vicon 38.44 40.35 39.57 36.55 25.07 25.73 24.98 24.41 60.12 32.99

S3Box1
CLFBA 30.37 30.37 38.50 38.50 21.43 21.43 19.50 19.50 55.14 28.42
Vicon 43.55 45.24 42.06 39.18 31.88 32.23 29.98 30.79 69.42 35.38

S3Jog1
CLFBA 29.04 29.04 36.87 36.87 20.05 20.05 18.22 18.22 53.60 27.82
Vicon 44.02 43.54 43.10 40.76 31.68 33.01 29.72 29.75 70.69 37.37

Avg. errors 10.43 12.05 3.15 3.08 7.31 7.60 7.58 7.87 9.72 5.58
StDev 4.57 3.76 2.45 2.06 4.82 5.21 4.07 4.37 6.98 3.46

Table 5.5: Average time measurements for the optimization process, depend-
ing on the parameters to be obtained

Task Time (secs)
Estimate pose and body dimensions 1.097
Estimate pose and body dimensions only varying scale 0.016
Estimate pose only 0.001

117

5.4 Conclusions

In this section, we have presented a learning-free approach for estimating
the 3D pose and the dimensions of a kinematic 3D body, contextualised
in a predefined 3D world, given a set of 2D body features extracted from
monocular images. This contextualisation has the advantage of providing
further semantic information about the observed scene. In contrast, state-of-
the-art methods typically assume the use of orthographic or weak perspective
projections, and therefore the spatial 3D relation of the observed entities
(e.g., people or objects) in a shared 3D space is not considered, as in the
presented approach.

The presented approach handles hierarchically holistic scale variations
concerning the refined body part length variations during the 3D-to-2D ad-
justment process, and considers floor-contact constraints explicitly, so it can
obtain more coherent reconstructions for the shared 3D world, compared to
other state-of-the-art approaches. Additionally, in contrast to learning-based
methods, which are very frequent in recent literature, there is no need for
a training stage with a database of human poses, just a set of constraints
related to kinematics and their possible interactions with a reference floor.
Future work will explore the possibility of including further and more so-
phisticated constraints in the reconstruction process, in order to reduce the
solution search space, especially in the out-of-plane direction. These con-
straints in the out-of-plane direction can come from pre-trained data related
to actions foreseen in the context of the final application. These pre-trained
data could be used to initialise the automatic multi-body projection adjust-
ment process explained in this study.

118

Chapter 6

Application fields

In previous chapters, we have seen various techniques to estimate the three-
dimensional pose and gesture of the human face and the human body in
monocular images. To show the applicability of the presented methods, in
this chapter, we present two examples of final application scenarios in more
detail.

The first application scenario focuses on the face 3D gesture and poses
extraction to analyse the behaviour of a human driver. It is part of a driver
monitoring system integrated into a driving simulator. In this context, the
monitoring system is tasked with estimating the driver’s attention using the
information extracted from images captured with a monocular camera. Ex-
tracting the gesture and pose of the driver’s face and his eye gaze using the
method presented in Chapter 4, the monitoring system estimates the point
of gaze of the user in the 3D space.

The second example application focuses on the body pose tracking method.
It extracts estimations related to the playing style of different athletes to eval-
uate their performance when doing sports . The proposed method extracts
the pose of various athletes from videos recorded during games played on real
courts using the method presented in Chapter 5. Analysing the extracted
body pose information, it evaluates the performance of each player comparing
the game style with the players’ considered reference.

119

6.1 Driver inattention monitoring

Typically, state-of-the-art eye gaze estimation techniques obtain the point of
gaze (PoG) on one screen only [143]. However, in the case of driving sim-
ulators, there are usually more than one, e.g., one for the front view, one
for each side view, another one for the dashboard (see Figure 6.1). Further-
more, there can be different objects of interest at different locations of each
screen and obtaining the gaze fixations and saccades, derived from the PoG,
accurately on each screen is important for driver behaviour analysis [144].
Additionally, it is also preferable to simplify the installation and calibration
of sensors and to reduce power consumption as much as possible, avoiding
alternative possibilities such as placing a dedicated PoG estimator on each
screen. Thus, in our context, we only consider one monocular camera in front
of the user and a humble CPU(e.g., those included in an embedded PC or a
smartphone).

In automotive platforms, visual features of the face and eye regions of
a driver provide cues about their degree of alertness, perception and vehi-
cle control. Knowledge about drivers’ cognitive state helps to predict, for
example, if the driver intends to change lanes or is aware of obstacles and
can thereby avoid fatal accidents. These systems use eye-tracking setups
mounted on a car’s dashboard along with computing hardware running ma-
chine vision algorithms, with computational capabilities far below from those
of off-the-shelf desktop PCs. Major sources of error in automotive systems
arise principally from platform and user head movements, variable illumina-
tion, and occlusion due to shadows or users wearing glasses, which need to be
handled robustly but also efficiently due to the computational constraints.
Current state-of-the-art of eye gaze estimation systems applied to automotive
platforms include different kinds of approaches and uses. Some approaches
consider eye movement features (e.g., fixations, saccades and smooth pur-
suits) to derive driver cognitive states, such as driver distraction [145]. Other
approaches apply classification techniques to eye images related to different
gaze zones, to detect where the driver is looking while driving [146]. Some
approaches track facial features, 3D head poses and gaze directions relative to
the car geometry to detect the eyes-off-the road condition of the driver [147].
Other approaches study the driver’s gaze behaviour (e.g., glance frequency
and glance time) to evaluate driving performance when they interact with
other devices (e.g., a portable navigation system) while driving [148]. Finally,
some approaches study the dynamics between the head pose and gaze be-

120

Figure 6.1: Multi-screen simulator setup for driver behaviour analysis, based
on human-machine interaction, including PoG and 3D face tracking

haviour of drivers to predict gaze locations from the position and orientation
of a driver’s head [149] or to categorise different kinds of driver behaviour
while driving [150].

The primary motivation of this application is to increase the level of
sophistication of such cases by developing a more accurate, more robust,
but still efficient method of estimating the head pose and eye gaze of drivers,
compared to previous approaches. We paid particular attention to the case of
multi-screen simulators, where we can directly establish the relation between
the PoG and the rendered graphics. Therefore, the tracking system could
extract richer data for behaviour analysis. In order to do so, it is necessary
to relate the 2D image projections of the driver’s facial and ocular cues,
captured from the monocular camera, with the 3D space. Ideally, this would
require not only obtaining the person’s 3D eye gaze vectors from the images,
but also the person’s 3D eye positions and the surrounding potential targets’

121

geometries in the same 3D space, the camera characteristics from which
that space is observed, and an additional calibration stage done by the user.
However, in cases like automotive applications, it is not easy to obtain all such
data. It is not comfortable for a driver to spend time calibrating the eye gaze
system. Another important factor is that the estimated gaze vector should
have a low level of noise while still being sensitive to quick eye movements.
Finally, the estimated gaze vector should be robust enough to detect head
movements, which in the case of driving, normally happen many times.

The approach to tackling all these factors consists of a hybrid proce-
dure that combines appearance-based and model-based computer vision tech-
niques to extract the 3D geometric representations of the user’s face and gaze
directions. It places all these elements in the same virtual 3D space as those
of the monocular camera and the screens. This reconstructed virtual 3D
world is where the driver’s behaviour can then be analysed, based on the
estimated PoG in the different targets of the scene and the 3D head pose,
without necessarily requiring calibration data. It has been designed to have
an acceptable balance between accuracy, robustness and efficiency so that it
can be integrated into devices with low computational capabilities such as
those that might be used in vehicles.

The following sections describe the proposed hybrid system, illustrate de-
tails about the performed experiments and present the conclusions achieved
based on the results.

6.1.1 Methodology

The methods to estimate the eye gaze from monocular images and videos
can be categorised into two types of approaches: model-based [147,151] and
appearance-based [146,150,152–156]. Next, we study more in detail the pros
and cons of each, and then we explain our proposed hybrid approach.

Model-based vs appearance-based

The model-based approach relies explicitly on 3D graphical models that rep-
resent the geometry of the eye (typically as spheres) which fits the model to
the person’s detected eye features in the image (typically, the iris and the
eye corners). Thus, the fitted 3D model allows inferring the 3D eye gaze
vector, which determines where the person is looking. These methods have
some drawbacks. For example, they require the precise location of the iris

122

of the eye in the image; this is often impossible, for example when the user’s
eyes are not wide open, which is the normal case. In order to estimate the
eye gaze direction, they need the user’s head coordinates system as reference.
Therefore, the success of these methods is highly dependent on the precision
with which the user’s head coordinates system has been localised. Moreover,
although simple, they require an initialisation scheme: the user needs to in-
tentionally look at one or more points on a screen. Otherwise, the precision
of the obtained eye vectors is not good enough. In summary, since they are
pure geometric methods, their precision is strongly dependent on the preci-
sion of the estimated eyeball and pupil centres. However, it is generally not
possible to obtain this information with high precision in common images.

In contrast, the appearance-based approach establishes a direct relation-
ship between the person’s eye appearance and the corresponding eye gaze
data of interest (e.g., the 3D eye gaze vector) by applying machine learning
techniques. Thus, it uses a dataset of annotated images to train a regres-
sion model and then deduces where the person is looking when it applies the
trained model to the person’s eye image extracted from the picture.

In the last few years, appearance-based methods have greatly benefited
from the revolutionary results obtained by the emerging deep learning tech-
niques in computer vision applications and have become the current state-of-
the-art in the field. They allow for a much better generalisation of the learned
relationship between the eye appearance and the corresponding eye gaze data
than alternative machine learning approaches (based on handcrafted image
features and shallow layered learning architectures). Deep learning tech-
niques use a huge dataset of annotated images for training, with hundreds
of thousands or even millions of samples. Those samples may include real
data [152,156], photo-realistic synthetic data [153,155] or even a mixture of
both [154]. This way, systems designed to estimate eye gaze direction obtain
better accuracy with people whose appearance is not in the training dataset
of the regression model.

However, an effective eye gaze direction estimation system does not only
need to obtain accurate eye gaze data from eye images. It also has to properly
apply the eye gaze data to the environment, so that it is possible to deduce
where the person is looking.

123

Hybrid approach

Figure 6.2 shows the general overview of the workflow of our approach, where
the inputs are a monocular image taken by one camera in front of the user,
a parametric deformable 3D face model (Figure 6.3), the camera intrinsic
parameters and the screen geometries. The outputs are his/her estimated
PoG for the considered screens and his/her facial mesh in the 3D space, which
includes information about his/her head position, orientation and expression.
In this workflow, we distinguish three blocks: (1) the adjustment of the 3D
face model to the user’s face image, (2) the normalisation of the 3D gaze
estimation and (3) the estimation of the eye gaze direction with respect to
the targets.

The first block comprises computer vision procedures to detect and track
facial regions on the image, localise facial landmarks and fit the 3D face
model to those landmarks by optimising the following objective function:

e = argmin
1

n

n∑
j=1

[dj − p(f, w, h, t, r, s, a)j]
2 (6.1)

where:

• d = d1, d2, d3, ... are the detected 2D landmark positions.

• p = p1, p2, p3, ... are the 2D projections of the corresponding 3D
deformable model vertices. p is a function that depends on the camera
parameters (f , w, h) and on the parameters of the graphical object
(t, r, s, a). Function p represents the 2D projections on a surface of
vertices, which are 3D. The goal is to minimise the distance between
the detected 2D landmark positions in the image and the vertices of
the projections.

• f is the focal length of the camera from which the image was obtained.

• w is the image pixel width.

• h is the image pixel height.

• t = tx, ty, tz are the XYZ positions of the face model with respect to
the camera.

124

Figure 6.2: Workflow of the multi-planar PoG estimation and 3D face track-
ing approach.

• r = rx, ry, rz are the roll-pitch-yaw rotation angles of the face model
with respect to the camera.

• s = s1, s2, s3, ... are the shape-related deformation parameters.

• a = a1, a2, a3, ... are the action-related deformation parameters.

• n is the number of 2D landmark positions.

• e is the residual error.

For the localisation of the user’s face region, and following the structure
presented in previous chapters, two stages are distinguished: (1) the initial
face detection and posterior re-detections when the tracking is lost, and (2)
the in-between face tracking. This approach is relevant as tracking algorithms
are typically more efficient and require less memory than those for face de-
tection. Thus, the face detection algorithm is only activated when the user’s

125

Figure 6.3: A generic deformable 3D face model and some of its deformation
parameters compatible with our method.

face is not being tracked. For face detection, it uses the SSD deep neural
network proposed in [157], which has shown to be robust under challenging
conditions, trained specifically with multiple-pose faces. The tracking relies
on CLNF [19], applied at landmark-level, which has a good balance between
computational cost and localisation reliability and stability. The landmark
distribution is constrained by a parametric 3D face model, to avoid impossi-
ble human facial shapes. It considers the tracking lost when the image under
the face region does not correspond to a human face, according to the learned
face pattern (see Algorithms 12 and 13 for further details).

Once the different facial parts are localised, it extracts the image re-
gions around both eyes. Next, their shape and intensity distributions are
normalised, so that a deep neural network, based on [152], can infer the cor-
responding 3D gaze vectors. Then, it calculates an overall gaze vector of the
user as the weighted mean vector of both eyes with its origin at the midpoint
of both eyes (see Algorithm 14).

The affine transformation matrix M is calculated as follows:[
α β (1− α) · cx − β · cy
−β α β · cx + (1− α) · cy

]
(6.2)

where:

126

Algorithm 12: Hybrid face model detection-tracking fitting algo-
rithm.

Input: The image sequence (I)
Output: The face model parameters {t, r, s, a} that overlap the model to the

user’s face, throughout I

for Ij ∈ I do

if Previous configuration bi−1 defined then
Reset the face model parameters of the graphical model to the neutral configuration

Run the face region detector in the image

Store the detected user’s face image patch and face region

else
Locate a stored face image patch in the image (via pattern matching)

Verify that the located patch corresponds to a real face (via pattern classification)

if Located face region contains a real face then
Store the located face region

end

end

if Face region available then
Run the face landmark detector in the face region

Adjust the 3D face model to the detected landmarks (Algorithm 13) → {t, r, s, a}
end

end Optional

Filter {t, r, s, a} with an appropriate approach for face movements

• α = s ∗ cos(θ)

• β = s ∗ sin(θ)

• s = (w − 2 ∗m1)

• θ refers the horizontal rotation angle of the line that connects both eye
corners.

• cx, cy are the image coordinates of the centre of rotation in the source
image. Then, the source image Iinput is transformed, which is to say,
normalised in shape, using the matrix M, as follows.

Ishapenorm (x, y) = Iinput(M11x+M12y +M13,M21x+M22y +M23) (6.3)

Note that the applied eye shape normalisation procedure usually results in
distorted images; normally, the further the user’s face is from frontal view-

127

Algorithm 13: Three-stage face model adjustment algorithm.

Input: Set of 2D landmark positions d in the image, the relation list between
the landmark and vertices and the camera parameters {f, w, h}

Output: The face model parameters {t, r, s, a} that overlap the model to the
user’s face

Set the deformation parameters {s,a} to zero

Convert the current parameter values to the normalised range workspace

Optimise, using for example the Levenberg-Marquardt algorithm [134,135], Eq. (6.1) with

{t, r} as the only variables

Optimise, using for example the BFGS algorithm [158–161], Eq. (6.1) with {s} as the only

variables

for ak ∈ a do
Optimise, using for example the BFGS algorithm, Eq. (6.1) with {ak} as the only variable

end

points, (i.e., the more distant an eye’s appearance may look) , the more
distorted the image becomes.

As a matter of example, Figure 6.4 shows three examples of the distortion
that happens in the normalised appearance of distant eyes in non-frontal
faces, when the head’s yaw angle is changed. As can be observed, the green
points do not match exactly the white ones because the deformability of
the graphical object is not perfect. At most, e is minimised (Eq. (6.1)).
Consequently, this distortion may affect the stability of the estimated gaze
for different yaw rotation angles of the head. A similar instability may also
happen for different pitch angles but to a lesser degree.

Thus, in order to reduce this effect, the vectors obtained in the previous
step ({gl,gr}

reg
norm) are corrected by a factor that gives more importance to

the dominant eye (the less distorted eye) and which are proportional to the
head’s pitch and yaw rotation angles, as follows:

{gl,gr}
corrected
norm = {wd · gl, (1− wd) · gr}

reg
norm +


Ky · (ry − ry0)
Kx · (rx − rx0)

0

 (6.4)

where:

• wd is the weight of eye dominance.

• rx0 is the reference pitch angle.

128

Algorithm 14: Normalised left and right eye gaze vectors estima-
tion algorithm.

Input: The image sequence I, 2D left {e1, e2}l and right {e1, e2}r eye corner
landmark positions, throughout I, the adjusted face model geometry and
parameters, throughout I and the pre-trained deep neural network for
regressing 3D gazes from normalised eye images.

Output: The user’s normalised left and right eye gaze vectors estimation
{gl,gr}norm, throughout I

for Ij ∈ I do
Calculate M for each eye (Eq. (6.2))

Obtain Ishapenorm for each eye (Eq. (6.3))

Obtain Inorm for each eye (via image equalisation)

Mirror Inorm for the eye not corresponding to that considered by the regressor (left or

right)

Process both Inorm with the pre-trained deep neural network

Un-mirror the response for the mirrored eye image (→ {gl,gr}
reg
norm)j

Apply the dominant eye and head rotation’s correction factor (Eq. (6.4))

(→ {gl,gr}
corrected
norm)j

Divide both regression results by their corresponding Euclidean norms (→ {gl,gr}norm)j

end

• ry0 is the reference yaw angle.

• Kx is the proportionality constant for the pitch angle.

• Ky is the proportionality constant for the yaw angle.

In the case of big out-of-plane head rotations where both eye images are
too distorted to be reliable, the gaze estimation relies solely on the head
direction. The values of these parameters and ranges are experimentally
determined, depending on the final application. For instance, the reference
pitch and yaw angles could be the average values from those observed during
the image sequence, while the user’s head poses are closer to frontal view-
points. At the same time, the proportionality constants could be determined
based on the observations of the gaze stability while the user is moving the
head but maintaining the point of gaze. Finally, each vector is divided by
the Euclidean norm to assure that the resulting vectors have a unit norm.
We use the same method to obtain both normalised gaze vectors.

Remarkably, these 3D eye gaze vectors have been obtained without any
previous calibration (e.g., without any initialisation procedures). This lack

129

Figure 6.4: Examples of the distortion that happens in the normalised ap-
pearance of the most distant eyes in non-frontal faces, when the head’s yaw
angle is changed.

of calibration is especially important in applications requiring real-time mon-
itoring of the eye gaze, such as automotive applications.

Algorithm 15 shows how the eye gaze direction is estimated with respect
to the targets. First, it places the target geometries relative to the camera’s
coordinate system, which is the same reference used for the face and eye
gaze vectors, already estimated in previous blocks. The camera’s coordinate
system has been previously established. In other words, it assumes that the
camera’s coordinate system is well-known. A target is modelled or referred to
as a set of polygons formed by k points b and lines l, and their corresponding
planar surfaces {v, q} (where v is the normal vector and q the distance from
the origin) that define the objects that need to be related to the user’s point
of gaze (e.g., a screen is represented by a rectangular plane). Then, it places
the 3D face model in the scene with the resulting parameters. Next, it
transforms the normalised left and right eye 3D gaze vectors, so that they
refer to the coordinate system of the camera (i.e., not to the normalised
camera viewpoint, as before). To this end, it removes the effect of the rotation
angle θ included by the affine transformation used to normalise each eye

130

shape:

{gl, gr} =


−cos(θ) · ({gl, gr}norm)x + sin(θ) · ({gl, gr}norm)y
−sin(θ) · ({gl, gr}norm)x − cos(θ) · ({gl, gr}norm)y

({gl, gr}norm)z

 (6.5)

Then, both gaze vectors are combined by calculating its geometric mean
g, which is assumed to be the user’s overall gaze vector. The gaze vector
may optionally be filtered by considering its frame-to-frame motion and an
appropriate filtering method for eye movements. The origin of this vector
is preferably placed in the middle position (mean value) of both eye centres
from the 3D face, ε. Thus, the point of gaze PoG for each target plane can
be estimated:

PoGt = ε+
(q− v · ε)
v · g

· g (6.6)

Figure 6.5: The considered zones of interest in the simulator to analyse the
driver’s PoG.

Finally, using a point-in-polygon strategy [162] it sees if any of the cal-
culated PoGs lie within any of the screens. As can be observed, the point-
in-polygon strategy may result in the PoG going through a polygon, or not
going through any polygon. If it does not go through a polygon, the method
provides the closest polygon. For example, in Algorithm 14 at line 11, if the
PoG does not go through a polygon, the distance to the polygon is stored.
And at line 12, the currently measured distance is compared to the minimum
measured distance (which is stored), in order to guarantee that the closest
polygon is finally selected.

131

Algorithm 15: Target-related point of gaze estimation algorithm.

Input: The set of polygons formed by k points b and lines l, plane normal
vectors v and plane distances q with respect to the camera that represent
the target objects {bk, lk, {v, q}}t. The adjusted face model geometry
and parameters {t, r, s,a}, throughout I. The user’s normalised left and
right eye gaze vectors estimation {gl,gr}norm, throughout I.

Output: The user’s PoG PoGj with respect to the targets in the scene,
throughout I.

Place the target polygons with {bk, lk, {v, q}}t
for Ij ∈ I do

Place the 3D face model with {t, r, s,a}
Transform {gl,gr}norm with Eq. (6.5)

Calculate the geometric mean vector

(Optional) Filter with an appropriate approach for gaze movements

BIG NUMBER→ dmin
t

for target t do
Calculate the point of gaze in the target’s plane with Eq. (6.6) → PoGt

Apply a point-in-polygon strategy to the target’s polygon

if point is in polygon then
PoGt → PoGj and break the loop

else
Store PoGt and distance to polygon dt

end

if dt < dmin
t then

dt → dmin
t

PoGt → PoGj

end

end

end

132

T
ab

le
6.

1:
C

om
p
ar

is
on

am
on

g
d
iff

er
en

t
st

at
e-

of
-t

h
e-

ar
t

ey
e

ga
ze

es
ti

m
at

io
n

sy
st

em
s

an
d

ou
rs

.

C
a
te

g
o
ry

P
a
p

e
r

S
e
tu

p
A

cc
u

ra
cy

m
e
tr

ic
s

(M
e
a
n

%
a
n

d
/
o
r

o
)

M
o
d
el

-b
as

ed
[1

47
]

1
ca

m
er

a

1
IR

il
lu

m
in

at
or

18
ga

ze
zo

n
es

co
n
si

d
er

in
g

d
ay

(n
o-

gl
as

se
s/

gl
as

se
s/

su
n
-g

la
ss

es
)

n
ig

h
t

(n
o-

gl
as

se
s/

gl
as

se
s)

sc
en

ar
io

s

95
%

on
-t

h
e-

ro
ad

90
%

off
-t

h
e-

ro
ad

(f
or

al
l

sc
en

ar
io

s)

[1
51

]
3

ca
m

er
as

(2
fa

ci
n
g

d
ri

ve
r,

1
lo

ok
in

g
ou

t)

6
ga

ze
zo

n
es

94
.9

%

A
p
p

ea
ra

n
ce

-b
as

ed

[1
46

]
1

ca
m

er
a

8
ga

ze
zo

n
es

92
.7

5%

[1
50

]
1

ca
m

er
a

6
ga

ze
zo

n
es

94
.6

%

[1
56

]
1

ca
m

er
a

20
on

-s
cr

ee
n

p
os

it
io

n
s

10
.8

o
(c

ro
ss

-d
at

as
et

ev
al

u
at

io
n
)

H
y
b
ri

d
O

u
rs

1
ca

m
er

a

7
ga

ze
zo

n
es

97
.0

%
/

4.
6o

(f
ro

n
t

sc
re

en
)

87
.7

%
/

11
.5

o
(s

id
e

sc
re

en
s)

133

6.1.2 Results

We have evaluated our approach with an experiment where eight people
were recorded by a camera in front of them while using a driving simulator
with three screens (Figure 6.1). The participants were requested to look
at different control points located at zones of interest on the screens: (1)
left window, (2) left side mirror, (3) horizon, (4) road, (5) navigation panel,
(6) rear mirror and (7) right side mirror (Figure 6.5). They were free to
rotate their head as needed (i.e., no instructions were given about this).
We measured the accuracy of our approach in this setup without including
a user calibration stage. Thus, if the PoG obtained directly, as explained
above, lies within the targeted zone of interest, it is considered a correct
response, otherwise it is considered wrong. In addition, we measured the
angle between the vector that goes from the head to the targeted control
point and from the head to the estimated PoG.

Table 6.1 shows the results, along with those obtained by other state-
of-the-art model-based [147, 151] and appearance-based [146, 150, 156] al-
ternatives with similar setups and conditions. Ideally, we would have re-
implemented and adapted all these approaches to our setup so that we could
measure the differences under the same working conditions. However, tak-
ing into account that many implementation details are not available in the
publications, which can be important for the reproduction of the reported
results, we preferred to include them here directly with their corresponding
setups and accuracy metrics. In some cases, the results are in degrees be-
tween the estimated and ground-truth gaze vectors. In other cases, with a
percentage of the number of times in which the eye gaze reaches the correct
gaze zones. In our case, we provide both metrics so that it is easier to com-
pare the approaches, despite the differences among the setups and conditions.
Nevertheless, note that for this reason, the comparison is more qualitative
than quantitative, except for the setups for their corresponding ground truth
measurements.

[151] has the most different setup as it uses two cameras to capture the
driver’s data. Hence, it has the possibility of estimating 3D features directly
and thus improves accuracy, compared to the monocular case. However,
we prefer to avoid such as setup in order to simplify the installation and
configuration (i.e., calibration) and reduce power consumption.

In the case of [147], it follows a similar scope to ours, using facial feature
tracking, 3D head pose and gaze estimation, but with some relevant differ-

134

ences. The head-pose estimation algorithm relies on the ’weak-perspective’
assumption, which with the kind of images obtained in this setup, produces
an inherent error due to the orthographic projection that needs to be com-
pensated. On the other hand, its proposed gaze vector estimation procedure
is model-based, which has the drawbacks previously stated.

Both [146] and [150] rely on classifiers trained with the relations between
gaze zones and feature descriptors composed of 2D facial part and ocular
image cues. The drawback of these kinds of approaches is that, as they do
not estimate 3D data, they need to be specifically trained for each setup, and
provide more limited information for behaviour analysis.

[156] relies on a deep neural network to estimate the 3D gaze vector,
similar to our approach, but includes both the normalised eye appearance
and the head orientation as input data for the network. In this case, the
authors evaluate the approach with people looking at a laptop screen, so no
profile views are contemplated like those that occur in our case when users
look at the side screens, and the eye appearances get distorted.

In our case, we obtain sufficient accuracy to relate rendered graphics with
the user’s observations, despite not having calibrated the system for each
user. As expected, the accuracy is lower for the side screens, but still high
enough (Figure 6.6). At any rate, these errors should be considered when
designing the recognition areas for the interaction of the elements within
the scene (i.e., for higher errors, the area of interaction around the element
should be larger as well). Figure 6.7 shows that our approach can handle
quick eye movements while maintaining a low level of noise for fixations.

To evaluate the efficiency of our approach and its suitability for running
in devices which can then be used in real vehicles, we have integrated it with
an app for smartphones with iOS and Android operating systems (Figure
6.8). This environment is close to a real scenario, where one cannot expect
to install CPUs/GPUs like those of desktop/laptop PCs. It is worth noting
that the operating system can also have an impact on the overall perfor-
mance of the app. This difference is due to the multi-level structure and
different programming languages in which the app needs to be programmed
(i.e., the core of the approach is programmed in C++ for both operating
systems, while the interface is in Objective-C for iOS and Java for Android).
More specifically, we have tested the iOS app in an iPhone SE (with iOS
10.3.2) and the Android app in a Docomo smartphone (with Android 6).
The measured average FPS (frames-per-second) of our app in each case was
30 and 20, respectively. These results reveal the efficiency and suitability of

135

Figure 6.6: Confusion matrix of the predictions obtained by our approach
for the considered gaze zones.

Figure 6.7: An example of PoGx signal where saccades and fixations can be
appreciated, along with the level of noise.

our approach to be applied in a real-world scenario.

136

Figure 6.8: Examples of the approach running in an iPhone SE, while the
user puts thick glasses on and the system keeps working.

6.1.3 Conclusions

One of the advantages of our approach is that with a simple setup, we can
efficiently estimate the PoG of the user in multiple screens of a simulator,
allowing us to directly relate the rendered graphics that represent the differ-
ent elements of the scene with the user’s observations. This way, it is easier
to generate richer data for developing driving behaviour analysis approaches.
Another advantage is that it can be integrated, processed and executed in
devices with low computational capabilities, such as smartphones. Future
work will principally focus on optimising the deep neural network designs for
face detection, landmark localisation and eye gaze vector estimation stages
to further improve their efficiency in ARM-based CPUs. We also plan to
adapt the approach to real vehicle setups.

137

6.2 Sport skill analysis by 3D body pose ex-

traction

In the last decades, cultural diversity has emerged as a primary concern,
representing not only a resource to be preserved but also an asset to be
promoted [163]. In the sports field, diversity is symbolised by a great number
of Traditional Sports and Games (TSG), considered by UNESCO as a part
of the Intangible Cultural Heritage [164].

Due to globalisation trends and the growing media influence of some
sports, many TSG have already been lost or are at risk of disappearing. As
stated by UNESCO, preserving information and knowledge about them is
important for the generations to come. TSG should adapt to the cultural
changes of the living generation, without affecting their originality.

Despite the key role of the specific sport techniques and playing skills in
the game, the execution of these unique patterns of movements is often taken
for granted, as part of the tradition and the experience. This information is
considered essential to promote teaching and coaching at all levels, therefore
guaranteeing their preservation.

To reach this goal, this section presents a new method that allows for
the reconstruction of the 3D body poses of players while performing a sport-
action and then evaluating the execution by comparing the techniques in-
volved to a reference dataset, using monocular videos as input.

This approach takes advantage of the 3D human body pose tracking
method presented in Chapter 5. In addition, it includes a semantic analysis
procedure designed to evaluate the extracted body movements that form the
technique of the performed skill.

This combined application allows us to:

• Study-specific sports techniques from legacy videos, by reconstructing the
3D motions of athletes from the past.

• Study the skills of the players from different periods by studying their
techniques and comparing them in various videos.

• Monitoring the temporal evolution of techniques and playing styles of a
sport by extracting data from legacy videos of different periods.

• Evaluate body motions comparing a sample motion with a golden-standard
in 3D, extracting complete quantitative and qualitative performance

138

analysis of the athlete.

To evaluate the application of the method, we show (in section 6.2.4) some
experimental results with complex sports actions involved in Pallapugno, a
traditional Italian sport practised in the north-west part of the country, an
area which includes some provinces of Liguria and Piedmont.

6.2.1 Data capture and analysis

In the market, we can find some dedicated software tools for motion analysis
of sports videos. Popular examples are the Open Source tool Kinovea1 and
commercial tools such as ProAnalyst2. People with no specific technological
skills can also use these software platforms because they are easy and intu-
itive. However, while they are able to provide accurate information, this is
only possible under specific viewpoints (avoiding occlusions) and with high-
quality video input, and currently, they do not provide 3D pose information
from monocular images.

When the source is a legacy video, the quality of the image is often far
from optimal (see legacy capture examples in Figure 6.9). Thus, it is reason-
able to include a manual refinement step, were the inaccuracies introduced
by the automatic estimation phase can be refined by the user to improve the
accuracy of the movement analysis and the skill comparison steps.

To this end, Wei et al. [37], proposed a video-based motion modelling
technique for generating physically realistic 3D human motion by monocular
video sequences. Their work describes a semi-automatic process which allows
for the identification of body joints starting from selected ”key-frames”, the
contact with ground and objects. We estimate the transition between key-
frames through the combination of interpolations and the correspondence
between image textures.

The method exposed in section 5 revisits this kind of approach proposing
a semi-automatic method divided into two main steps. First, it configures
the camera by adjusting the reference floor of the pre-defined 3D world to
four key-points on the image. Then it applies the body pose estimation
procedure by fitting a parametrised multi-body 3D kinematic model to the
2D image body features. To reduce the users’ manual interaction, the 2D

1Official website (10/07/2020): https://www.kinovea.org/
2Official website (10/07/2020): http://www.xcitex.com/proanalyst-motion-analysis-

software.php

139

marker annotation task is almost entirely automated by a method similar to
that shown by Cao et al. [25]. This method allows for the automatic detection
of a set of human body joints (and other fiducial landmarks) on a monocular
image, estimating their 2D location. Even if the detector configures the key-
frames, the semi-automatic pipeline allows the user to correct the possible
mistakes in the detection. The combination of both techniques ensures very
accurate motion captures.

Figure 6.9: Three examples of an old broadcast video captured for TV.

Typical movement evaluation approaches rely on temporal alignment to
take into account temporal inconsistencies in the compared motions, through
either a dynamic time warping technique (DTW) [165] as in [166] or graph-
based approaches [167]. Then, the quality of the motions is quantified against
model movements typically using the distances between the measurements
of the corresponding motion feature [167, 168] or the temporal alignment
score [166,169].

140

A common limitation related to the use of a pure scoring system is that
it becomes harder to distinguish between performance levels due to the mul-
tidimensionality of the data. Therefore, in [169], a fuzzy logic approach was
utilised to infer performance quality levels and offer more meaningful feed-
back. Furthermore, in [170], an LMA components based analysis is conducted
to offer both qualitative and quantitative analysis results simultaneously.

The proposed approach has adapted and extended the work by Alexiadis
et al. [171],which describes a method for automatically evaluating dance per-
formance from human motion capture data by comparing the movement of
the user with the gold-standard performed by a teacher. The method aims
at providing qualitative and quantitative information to assess performance
through a semantic pyramid decomposition scoring scheme based on a time-
series similarity measure instead of per feature distances. Ultimately, this
analysis method derives the level of similarity between the two motions and
offers meaningful and rich information by incorporating contextual knowl-
edge through the form of experts’ input.

6.2.2 Extraction of the athlete’s 3D motion

For this method, we use a modified version of the contextualised learning-free
body adjustment (CLFBA) approach described in section 5. This method
consists of two main steps: a) a camera parameter estimation step to compute
the intrinsic and extrinsic parameters of the camera, and b) a 3D body pose
reconstruction using a set of reference frames (key-frames) to reconstruct the
entire body motion of the video sequence. The second step includes some
modifications to reduce user interaction, including an automatic 2D feature
detector to avoid the manual annotation of those in the key-frames.

Estimation of the camera parameters

The camera configuration (intrinsic and extrinsic parameters) is estimated
using a visible element in the scene (with a rectangular shape and in the
plane of the floor, if possible) with known dimensions (commonly found in
most sports, e.g., lines on the field). We named this element as the reference
element. The user has to align a rectangular 3D graphical tool (that rep-
resents the floor plane) with the reference element (see left image in Figure
6.10).

141

(a) (b)

(c)

Figure 6.10: The figure shows: a) floor plane tool alignment with the refer-
ence element, b) 14 2D body joint landmark location, and c) the final pose
reconstruction.

The method obtains the camera parameters by computing the homogra-
phy between the image and the floor (the aligned rectangle) using a direct
linear transformation [5]. We minimise the re-projection error over the set
of the parameters of the camera using the Levenberg-Marquardt nonlinear
optimisation method [121].

The captured reference floor must be readjusted each time the camera is
moved or zoomed.

Body pose estimation

For the 3D body pose estimation, the user manually selects a set of key-frames
from the video sequence. The number of key-frames depends on the length
of the video sequence and the complexity of the analysed skill. Although an
initial set of key-frames is selected first by the user, it can be modified during
the reconstruction process if needed.

142

For each key-frame, a set of 14 body joints (Figure 6.11(c)) is superposed
on the image using 2D markers that correspond to the main human body
joints. It represents the spinal articulation as a point in the centre of the
back.

The position of the 14 body joints is estimated automatically using an
approach similar to [25]. This method is based on a CNN approach and can
locate the entire body structure (see Figure 6.11 (a)) of multiple persons in
a single image. As with regular CNN approaches, a previous training stage
is needed. This stage uses a large dataset of manually annotated images to
compute the proper weights of the neural network.

An iterative computation is applied to new images using the trained net-
work, computing a list of possible joint locations and the relationship between
them in each iteration. Each stage improves the result of the previous itera-
tion, increasing accuracy, and reducing potential wrong estimations in earlier
stages. As the image can represent more than one person, the detected joints
must be related to those of the same body. To this end, a relation estimator
encodes the location and orientation of the limbs. It determines which of the
detected joints belongs to a particular person in the image.

This process gives, as a result, a list of related 2D joint positions per
person in the image (see Figure 6.11 (a)). Comparing this output with the
14 joints needed for the key-frames (see Figure 6.11 (c)), it can be observed
that the joint detector gives a different amount of points. The arm and leg
joint points (including shoulder and hip points) match in both structures.
The head base position is the middle point between the head side landmarks
provided by the automatic estimation. Moreover, it defines the point repre-
senting the spinal articulation in the key-frame as the intersection of the lines
that connect the left shoulder with the right hip and the right shoulder with
the left hip. The diagram (Figure 6.11 (b)) shows how both point structures
are related and the estimation of the missed points in a graphical way.

The automatic joint detector reduces the key-frame configuration time,
but some frames could be hard to configure for the detector. In some cases,
the detection fails, because of the pose, self occlusions or other non-controlled
factors. Figure 6.12 shows a case where, even though similar frames are
correctly estimated (the first and last frames in this sequence), there are
some wrongly estimated frames. The probability of a wrongly estimated
pose increases when the quality of the image decreases (expected in legacy
videos). As the accuracy of the pose estimation is a key part of the movement
extraction, we include a refinement step. Therefore, the user can correct the

143

(a) (b) (c)

Figure 6.11: Image (a) shows the estimation of the automatic joint detector
for a given frame [25]. Image (c) shows the same frame with the needed
2D landmark correctly positioned for the 3D reconstruction. The image
(b) shows the relation between both representations, and how the missed
landmarks (in red) are computed.

wrongly estimated key-frames manually.

Once each key-frame has the 14 body joints properly located, a parametrised
3D kinematic model is automatically adjusted to the 2D joint positions in
each key-frame using the CLFBA method.

For the manual refinement, the posing features located at key joints allow
the pose modification of the model through IK.

An interpolation process automatically estimates the pose of the player
between key-frames.

In traditional sports, a stage of action could contain a few players creating
quite a large number of occlusions. Movement interpolation can reduce the
impact of the occlusions in the capture process, filling the gaps between clear
player images. Even if the occluded movement is an estimation, it could still
be accurate if the estimated sequence is short (10-15 frames).

144

Figure 6.12: Five frames processed with the automatic pose detector. The
pose in some of the frames is not correctly estimated.

6.2.3 3D motion analysis

The data extracted from a single video sequence can generate useful infor-
mation about the skill of the player. However, this information must be
interpreted by an expert to assess its performance quality. To facilitate data
interpretation, the proposed method compares the motion sequence to be
evaluated (called trial motion) with a reference motion sequence (called ref-
erence motion) captured from an elite and/or professional athlete perform-
ing the same sports action. This reference can be extracted from a video
sequence specifically captured for the data comparison or could be generated
from monocular TV broadcast videos (e.g., legacy videos). The system iden-
tifies their differences and generates an evaluation as feedback for the coach,
who can use this information to design specific exercises for the player to
improve their technique.

The methodology (see Figure 6.13) consists of three stages. Initially, we
pre-process the trial motion to be make it compatible for comparison and to
accommodate non-uniform and noisy representations. Then the two move-
ments are temporally aligned to establish correspondences between them.
Finally, the motion comparison follows, offering feedback to both the user
and their coach.

Motion pre-processing

Initially, motions need to be re-targeted to enable their straightforward com-
parison. Motion re-targeting transforms the body structure of motions into
a common canonical form to overcome errors due to variations in the body

145

Figure 6.13: The complete end-to-end motion comparison pipeline

structure in the sub-sequent comparison step. We use an extended version of
the method proposed by Ahmadi et al. [172] for the whole body. We extract
motions as described in section 6.2.2, preserving the same body structure,
and allowing a generic motion analysis pipeline. It enables comparisons with
motions extracted through other digitisation means. In addition, body struc-
ture re-targeting further harmonises the two motions to an equally sized body,
alleviating any limitations that might be related to variations of the body
size and allowing Euclidean comparisons between the positions of the joints.

Then, motion filtering is applied to the canonical motions to filter out any
noise introduced by the digitisation process and correct any erroneous pose
estimations. As fast joint displacements typically characterise sport actions
signals but at the same time may also suffer from erroneous estimations that
result in sharp spikes, we use the Savitzy-Golay [173] amplitude preserving
filter. As filter properties are in the time domain, it is straightforwardly
differentiated. Thus, the smoothed derivative of the motion features signals
can also be calculated, ultimately providing further additional features (e.g.,
velocity, and acceleration).

Temporal alignment

With the trial and reference motions now represented in the same canonical
structure, the next step is the temporal alignment between the two mo-
tions to take into account the varying execution speed differences, spread
between the different segments/phases of each action, coordination dispar-
ity, and starting/ending offsets. The approach described in [171] is used with
some modifications.

First, the joint positions are pure quaternions, and then a global tempo-
ral alignment is achieved via quaternionic cross-covariance. We calculate the
global shift between the two motions extracting the cross-covariance max-

146

imum. Contrary to [171], we use forward quaternionic cross-covariance in-
stead of the circular one used in the dance scenario, as TSG actions do not
typically include periodic motion patterns.

The next step involves local temporal alignment, driven by Dynamic Time
Warping [165], operating on the pure quaternions. However, we use the high-
est kinetic energy limb instead of allowing all the joint positions to contribute,
as typically, sports actions are performed by a primary, single limb. This ap-
proach, in turn, produces a set of dense correspondences between the two -
now aligned - motion sequences.

Comparison

As the final feedback focuses on a coaching scenario, we seek to provide richer
semantic information to drive the progression of the user through coaching,
avoiding complicated low-level information (joint positions, joint velocities,
3D-flow based scores, etc.). Thus, the use of anthropometric features (e.g.,
joint flexion, extension, adduction, abduction, speed, and acceleration), has
been selected as an easier way to communicate between the coach and user.

This semantic interpretation requires an expert’s (e.g., sports analyst,
coach) knowledge as input through a pre-defined set of motion features and
their relative weighting. We use this input to drive the analysis of the sport
technique, effectively infusing it with the expert’s experience.

Moreover, semantic information is further complemented by segregating
each action into phases and splitting the feature selection and weights among
them. While phase extraction is manually annotated for the reference mo-
tion, the trial motion is automatically segmented through the correspon-
dences established between both motion sequences during the alignment
step (section 6.2.3). The frames between those phases denote important
key-frames for the motion extraction step. Overall, the evaluation scheme is
oriented towards mapping the expertise of the coach into the motion analysis
methodology and offer meaningful evaluations in order to stimulate efficient
training and coaching.

We extended the scoring process by utilising a similarity metric for com-
paring the motion features and obtaining a score in time. The Structured
Similarity Index Metric (SSIM) [174] is adopted from the image quality anal-
ysis field and used for the calculation of the motion feature time-series sim-
ilarity. In the one-dimensional formulation, the SSIM is the weighted com-
bination of: an amplitude term, scoring the average value of a set of motion

147

features; a contrast term, scoring the variance of a motion feature; and a
temporal term, scoring the correlation of a motion feature in time.

We calculate SSIM around temporal neighbourhoods of each motion fea-
ture, and their average is used to calculate the aggregated score. Finally,
after calculating the score of each feature, the overall motion performance is
depicted by the weighted average of all the selected motion features.

6.2.4 Experimental results with Pallapugno videos

We demonstrate the complete motion analysis pipeline by extracting and
comparing two Pallapugno serves performed by an acknowledged practi-
tioner. They were recorded at different times during two Pallapugno games,
from similar challenging viewpoints behind the performer that introduce se-
vere self-occlusions. They are both very fast actions for a common video
capture device, with significant motion blur lasting 174 and 129 frames. We
have empirically selected the longer movement sequence as the reference mo-
tion and the shorter as the trial motion, and annotate the phases for the
reference motion.

First, the complete motion sequence is extracted (Figure 6.14). Then, we
define and annotate the phases of the sports action, setting the key-frames as
a frame in the transitions between them. We identify four time-points: start
of the back-swing; the start of the front-swing (coinciding with the end of the
back-swing); ball impact; and after-swing relaxation. Performance evaluation
for each phase is accomplished via the weighted similarity contributions of M
selected features F = {Fi | F1, . . . ,FM} and is thus measured by the phase
similarity score Si =

∑M
i=1wiFi, where Fi denotes the measurement time

series of the selected feature for the temporal segment of that phase. In this
way, we achieve a semantic pyramidal decomposition scheme, which better
communicates the shortcomings of each performance. First, we identify in
which particular phase the user’s technique fails. Then, we generate precise
guidelines for improvement by pinpointing the lowest scoring features (i.e.,
the right elbow needs to further extend during the back-swing).

Table 6.2 presents a set of expert-defined (coach) weights that we use for
the overall scoring. It identifies the respective skill phase they belong to, the
motion feature of the joint and type, as well as the overall weighting of each
phase.

Figure 6.15 illustrates the right shoulder and elbow extension features
respectively for all phases of the reference and trial actions, as well as their

148

Figure 6.14: The image shows the key-frames of the 3D reconstruction of Pal-
lapugno serve skill. The coloured lines represent the key-frame of: the start
of back-swing (red), the back-swing to front-swing transition (green), the
player-ball impact (blue), and the front-swing to follow-through transition
(grey).

Phase Joint Feature Weight Phase Sum
Back-swing Right Shoulder Extension 16.00%

40%Back-swing Right Elbow Extension 16.00%
Back-swing Right Knee Flexion 8%
Front-swing Right Shoulder Extension 12.00%

40%
Front-swing Right Elbow Extension 12.00%
Front-swing Right Wrist Linear Velocity 8.00%
Front-swing Torso Angular Velocity 6.00%
Front-swing Right Knee Flexion 2.00%

Follow through Right Wrist Linear Velocity 13.00%

20%
Follow through Torso Angular Velocity 2.00%
Follow through Right Elbow Extension 2.00%
Follow through Right Shoulder Extension 3.00%

Table 6.2: Weights allocated to the motion features of each joint in the three
different phases of the Pallapugno serve

similarity in time. While the captured motions are highly similar as they are
both samples of the same action performed by the same expert, a discrep-
ancy is apparent at the elbow’s follow-through phase, during the right arm’s
relaxation after ball impact. The analysis scheme mentioned above will help
in identifying this issue. For the analysed action, the follow-through phase

149

scores the lowest compared to its expected contribution. In numbers, it ac-
cumulates a score of 14.58% (the score being an extension of the weighted
sum of the feature similarities for that phase to a percentage). This value
has a ratio of 0.729 compared to the overall 20% nominal score as presented
in Table 6.2 for the follow-through phase. At the same time, the ratios for
the other two phases are 0.788 and 0.888 for the back-swing and front-swing
respectively.

The feedback will guide the expert/coach through a decomposition ap-
proach to further investigate the follow-through phase and then identify the
differences in technique. While the performance deviation can also be found
in the follow-through phase for the shoulder extension (with the back-swing
and front-swing phases also highly similar), there is a larger deviation for
the right elbow extension feature. We defined the weights used for these
terms experimentally. They were specifically 0.5 for the amplitude, 0.4 for
the distribution and 0.1 for the structural.

6.2.5 Conclusions

We have presented a method to reconstruct and analyse the body movements
of a sports player in monocular video sequences while performing a sports
action, generating a semantic evaluation as feedback. TSG coaches and in-
stitutions can use this method to analyse the evolution of the sport and the
skills of present and past players.

We validated the method in the assessment of the relative performance
of two Pallapugno Serve skills performed by the same professional athlete in
two different matches and courts.

Furthermore, we presented the improvement and acceleration of a process
for the 3D pose estimation from monocular image. To this end, we established
the automation of manual key-framing by employing an automatic detection
method based on deep neural networks, significantly reducing the time and
effort required in the process.

The entire methodology is intented to aid in the preservation and promo-
tion of TSG, where lower-cost solutions are a key element in ensuring their
eventual use. The proposed methodology can contribute to this end by also
involving coaches in a multitude of ways which, during training sessions with
players, will enable them to document their performance and progression
through time.

A lot of technical challenges associated with performance evaluation, but

150

Figure 6.15: Comparison of the right shoulder (up) and right elbow (down)
extension features for two Pallapugno serve actions. The feature’s measure-
ments over time as well as their similarity are presented. The vertical lines
denote specific key-frames that mark the phase transitions as in Figure 6.14

.

also issues like objectivity versus personal intuition, had to be addressed
jointly in a unified framework. To that end, a compromise between numerical
analysis and coach input was found by allowing the coaches to influence
the automatic scoring procedure and guide it through their expert-defined
weighting schemes.

151

152

Chapter 7

Conclusions and future work

This section summarises the main conclusions from work carried out during
the research process. In addition, it suggests some steps to follow in the
future based on the results of the proposed methods.

7.1 Conclusions

This study presented various methods to track deformable three-dimensional
objects on monocular RGB camera captures. For the final application con-
text, it assumes hardware environments with limited computational power
like onboard or embedded devices. Thus, the proposed methods focus on
computational efficiency.

For the tracking process, this study considered two types of deformable
3D objects: objects with non-rigid deformations, and objects with rigid
multi-body deformations. These two types of deformation represent most
deformable objects, so the proposed methods are widely generalizable. To
present an example of each type of deformation and guided by the main mo-
tivations of this research, it proposed a method for tracking human faces as a
non-rigid deformable object and the human body pose as a rigid multi-body
object.

Additionally, this study also proposed a tracking pipeline divided into
two parts: the detection of feature points of the object in the image, and the
adjustment of a pre-designed 3D deformable object using the detected feature
points. Regarding the first part of this pipeline, we proposed two efficient
methods to extract feature points from monocular images. For the second

153

part, we proposed two adjustment methods to fit generic 3D models (i.e.,
with non-rigid or rigid multi-body deformations) to the image representation
of the object using the described feature points.

This research proposed two different techniques for the estimation of two-
dimensional feature points in the image, using the facial feature point de-
tection as a representative example. The first uses a gradient analysis in
predefined sub-zones within the bounding box of the face in the image. This
analysis turned out to be computationally very efficient while revealing the
location of the feature points of the area under analysis. Performance tests
using an iPad2, first released on March 11, 2011, demonstrated the method’s
efficiency in hardware with few resources.

The second technique is a regression process divided into various statis-
tical models based on deep learning algorithms. It distributes the regression
models into two processing layers. The first level extracts general face at-
tributes (i.e., some landmarks and face orientation), and the second layer ex-
tracts zone-specific attributes like gestures, the eye gaze and specific feature
points of each face region (i.e., eyes, eyebrows, and mouth). The proposed
deep learning models combine multiple input data such as image and facial
orientation value and generate multiple outputs using a multi-task processing
strategy. Despite the large amount of information that it can extract from
an image, experiments showed that the proposed method is computationally
more efficient than other similar methods, improving even the precision of
the estimation.

For the transition between the two-dimensional face landmark scope to
the three-dimensional face tracking, this study proposed a method to fit a
deformable 3D model to the user’s face using the detected 2D feature points.
As part of the process, this method adjusts the rigid parameters (i.e., po-
sition and orientation) of the face model in the 3D environment in front of
the camera using a full projection scheme. This type of projection allows for
the estimation of the 3D face position in the 3D space in front of the cap-
turing camera. Thus, it is possible to identify the interactions of the tracked
face with other elements of the scene. Moreover, it adjusts the shape of the
three-dimensional model to the user’s facial shape, as well as its gesture at
each moment of the tracking, enabling the use of this information for poste-
rior behaviour analysis. The experiments demonstrated the computational
efficiency of the method. At the same time, the precision of the estimation
is very similar to other methods proposed in the scientific literature, which
present higher computational needs.

154

For the fitting of the body pose, this work proposed a method based
on a generic deformable 3D model of the body, which includes a series of
articular constraints. Similar to the face fitting method, it relies on a series
of two-dimensional feature points (in this case, the most representative joint
locations) to fit the three-dimensional model using a full-projection scheme.
Experiments showed that the proposed method correctly extracts both the
body pose and the estimation of the lengths of the different body elements
without any previous training phase.

To test the validity of the proposed methods, and the presented track-
ing pipeline, 3D monitoring methods were tested in two final application
environments.

We integrated the facial tracking method as part of an onboard driver
monitoring system. The driver monitoring system uses the tracking infor-
mation to get the users location in the 3D scene. Then, a second process-
ing phase identified the driver’s eye-gaze vector and presents it in a three-
dimensional environment along with the position of various elements of the
car or a driving simulator, defining the point-of-gaze of the driver. This in-
formation is crucial to determine what the user’s focus of attention is, and
their alertness. The experiments demonstrated the validity of the extracted
data, being an accurate representation of the position and orientation of the
user with respect to the camera.

The human body pose extraction method was also integrated into an
application to estimate the athlete’s performance during the practice of a
sport. In this context, the system extracts the position and pose data of
the athletes’ body during sports practice and uses the data for subsequent
analysis of the athlete’s performance. This type of analysis helps instruc-
tors to improve the performance of athletes, making it possible to compare
the technique of an athlete with previous captures or with captures from
other players of reference. Experiments demonstrated the method’s ability
to extract valuable information when analyzing such activities.

7.2 Future work

This section outlines various avenues for further development and research.
For the task of detecting bidimensional feature points, it would be inter-

esting to add more gestures to the detection. Gestures that include the open-
ing of the mouth can be particularly confusing, since depending on whether

155

the jaw moves or not, the gesture could be interpreted as ”open the mouth”,
or ”separate the lips”. This disambiguation is especially important in appli-
cations that analyze a user’s speech or read lips through images. Further-
more, with the inclusion of asymmetric gestures, it could have direct medical
applications such as rehabilitation analysis in cases of facial paralysis.

It is also necessary to include a full estimate of head orientation (yaw,
pitch and roll) to improve the fitting. This information can be used for
initialization of the 3D model in the subsequent adjustment phase, reduc-
ing possible initialization errors. The same strategy could be used with the
detected gestures, which can be part of the 3D adjustment initialization, in-
creasing the initial similarity between users’ gesture and model configuration,
reducing the possible local minima in the parameter optimization phase.

This study presented the detection of feature facial points as an exam-
ple in the 2D extraction part. However, a similar system could improve the
estimation of joints in the context of body adjustment. Thus, a first phase
could estimate the general orientation of the body, and a second phase could
use this orientation to locate the feature points of the limbs. In addition,
an estimation of the gesture (global or local) could use possible body con-
figurations depending on the context of the capture. This constraint should
improve the estimation of body landmarks. For example, in the context of
sports practice, gestures or actions related to sport (e.g., running, jumping,
defending, taking off) could be taken as a basis to reduce the space of possible
body positions.

In the same way, this additional information could be used for the initial-
ization of the three-dimensional model, reducing the computation and thus
the computational load.

For its part, the context of DNN-based regression methods provides par-
ticular possibilities for performance improvement. Depending on the hard-
ware to be used, techniques such as model binarization, or weight optimiza-
tion within the model can significantly reduce the computational load with-
out sacrificing too much estimation precision. Combining these strategies
with specific acceleration hardware such as the one presented in section 2.4
can significantly improve the final performance of the tuning process.

156

7.3 Relevant publications

During the research process, we presented a series of observable contribu-
tions to the scientific community in a series of publications in international
conferences and journals, also including a patent application. Below is the
list with all these contributions:

7.3.1 Journals

• Jon Goenetxea, Luis Unzueta, Fadi Dornaika, and Oihana Otaegui,
”Efficient deformable 3D face model tracking with limited hardware
resources,” Multimedia Tools and Applications, vol. 79, pp. 12373-
12400, 2020. JCR Impact Factor 2019: 2.313; Q2-34/108-”Computer
Science, Software Engineering - SCIE”

• Luis Unzueta, Nerea Aranjuelo, Jon Goenetxea, Mikel Rodriguez and
Maria Teresa Linaza, ”Contextualised Learning-Free Three-Dimensional
Body Pose Estimation from Two-Dimensional Body Features in Monoc-
ular Images,” IET Computer Vision, vol. 10(4), pp. 299-307, 2016.
JCR Impact Factor 2016: 0.878; Q4-0104/0133-”Computer Science,
Artificial Intelligence - SCIE”

• Luis Unzueta, Waldir Pimenta, Jon Goenetxea, Luis Paulo Santos and
Fadi Dornaika, ”Efficient Generic Face Model Fitting to Images and
Videos,” Image and Vision Computing, vol. 32(5), pp. 321-334, 2014.
JCR Impact Factor 2014: 1.587; Q1-0022/0104-”Computer Science,
Software Engineering - SCIE”

7.3.2 Books and book chapters

• Luis Unzueta, Waldir Pimenta, Jon Goenetxea, Luis Paulo Santos and
Fadi Dornaika, ”Efficient Deformable 3D Face Model Fitting to Monoc-
ular Images,” in Advances in Face Image Analysis: Theory and Appli-
cations, Fadi Dornaika, Ed. United Arab Emirates: Bentham Science
Publishers, 2016, pp. 154-180. ISBN 978-1-68108-111-3. Indexed in
EBSCO.

• Jon Goenetxea, Luis Unzueta, Maria Teresa Linaza, Mikel Rodriguez,
Noel E. O’Connor and Kieran Moran, ”Capturing the Sporting Heroes

157

of Our Past by Extracting 3D Movements from Legacy Video Con-
tent,” in Digital Heritage: Progress in Cultural Heritage: Documen-
tation, Preservation, and Protection. EuroMed 2014. Lecture Notes
in Computer Science, vol. 8740, Marinos Ioannides, Nadia Magnenat-
Thalmann, Eleanor Fink, Roko Zarnic, Alex-Yianing Yen and Ewald
Quak, Eds. Switzerland: Springer International Publishing AG, 2014,
pp. 48-58. ISBN 978-3-319-13694-3.

7.3.3 Conferences, congresses and workshops

• Jon Goenetxea, Luis Unzueta, Unai Elordi, Juan Diego Ortega and Oi-
hana Otaegui, ”Efficient Monocular Point-of-Gaze Estimation on Mul-
tiple Screens and 3D Face Tracking for Driver Behaviour Analysis,” in
Proceedings of the International Conference on Driver Distraction and
Inattention, 2018 (online).

• Alejandro Clemotte, Harbil Arregui, Miguel A. Velasco, Luis Unzueta,
Jon Goenetxea, Unai Elordi, Eduardo Rocon, Ramon Ceres, Javier
Bengoechea, Iosu Arizkuren and Eduardo Jauregui, ”Trajectory Clus-
tering for the Classification of Eye-Tracking Users with Motor Disor-
ders,” in Proceedings of Jornadas de Automática, Madrid, 2016. ISBN:
978-84-617-4298-1. Awarded the ”Best Bioengineering Work.”

• Francois Destelle, Amin Ahmadi, Kieran Moran, Noel E. O’Connor,
Nikolaos Zioulis, Anargyros Chatzitofis, Dimitrios Zarpalas, Petros Daras,
Luis Unzueta, Jon Goenetxea, Mikel Rodriguez, Maria Teresa Linaza,
Yvain Tisserand and Nadia Magnenat-Thalmann, ”A Multi-Modal 3D
Capturing Platform for Learning and Preservation of Traditional Sports
and Games,” in Proceedings of the ACM International Conference on
Multimedia (ACMMM), Brisbane, Australia, 2015, pp. 747-748. Class
1 Conference in GII-GRIN-SCIE (GGS) 2017.

• Luis Unzueta, Jon Goenetxea, Mikel Rodriguez and Maria Teresa Linaza,
”Viewpoint-dependent 3D Human Body Posing for Sports Legacy Re-
covery from Images and Video,” in Proceedings of the European Signal
Processing Conference (EUSIPCO), Lisbon, Portugal, 2014, pp. 361-
365. SJR Indicator 2014: 0.253; 0055/0258-”Computer Science; Signal
Processing”

158

• Noel E. O’Connor, Yvain Tisserand, Anargyros Chatzitofis, François
Destelle, Jon Goenetxea, Luis Unzueta, Dimitrios Zarpalas, Petros
Daras, Maria Teresa Linaza, Kieran Moran and Nadia Magnenat-Thalmann,
”Interactive Games for Preservation and Promotion of Sporting Move-
ments,” in Proceedings of the European Signal Processing Conference
(EUSIPCO), Lisbon, Portugal, 2014, pp. 351-355. SJR Indicator 2014:
0.253; 0055/0258-”Computer Science; Signal Processing”

7.3.4 Patent applications

• Luis Unzueta, Jon Goenetxea, Unai Elordi and Oihana Otaegui, ”Method,
system and computer program product for eye gaze direction estima-
tion”. EP3506149-A1, 2019. [Status: Pending].

159

160

Bibliography

[1] N. Kourkoumelis and M. Tzaphlidou, “Eye safety related to near in-
frared radiation exposure to biometric devices,” TheScientificWorld-
Journal, vol. 11, pp. 520–8, 03 2011.

[2] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand Keypoint De-
tection in Single Images using Multiview Bootstrapping,” Cvpr, 2017.

[3] F. Wu, L. Bao, Y. Chen, Y. Ling, Y. Song, S. Li, K. N. Ngan, and
W. Liu, “MVF-Net: Multi-view 3D face morphable model regression,”
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol. 2019-June, pp. 959–968, 2019.

[4] J. Liang and M. C. Lin, “Shape-Aware Human Pose and Shape Recon-
struction Using Multi-View Images,” in International Conference on
Computer Vision (ICCV), pp. 4352–4362, 2019.

[5] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521540518, second ed.,
2004.

[6] T. Baltrusaitis, P. Robinson, and L. P. Morency, “OpenFace: An open
source facial behavior analysis toolkit,” 2016 IEEE Winter Conference
on Applications of Computer Vision, WACV 2016, 2016.

[7] P. Huber, G. Hu, R. Tena, P. Mortazavian, W. P. Koppen, W. J.
Christmas, M. Rätsch, and J. Kittler, “A multiresolution 3d morphable
face model and fitting framework,” in Conference on Computer Vi-
sion, Imaging and Computer Graphics Theory and Applications (VISI-
GRAPP), pp. 79–86, 2016.

161

[8] A. Bulat and G. Tzimiropoulos, “How far are we from solving the 2D
& 3D Face Alignment problem? (and a dataset of 230,000 3D facial
landmarks),” in IEEE International Conference on Computer Vision
(ICCV), (Venice, Italy), IEEE, 2017.

[9] J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou, “Reti-
naFace: Single-stage Dense Face Localisation in the Wild,” ArXiv,
2019.

[10] D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin, M.-h. Shafiei, H.-p.
Seidel, D. Casas, C. Theobalt, M. Shafiei, H.-P. Seidel, and W. Xu,
“VNect: Real-time 3D Human Pose Estimation with a Single RGB
Camera,” ACM Trans. Graph., vol. 36, no. 4, pp. 1–13, 2017.

[11] B. Ko, “A Brief Review of Facial Emotion Recognition Based on Visual
Information,” Sensors, vol. 18, no. 2, p. 401, 2018.

[12] J. Thies, M. Zollhöfer, M. Nießner, L. Valgaerts, M. Stamminger, and
C. Theobalt, “Real-time expression transfer for facial reenactment,”
ACM Transactions on Graphics, vol. 34, no. 6, pp. 1–14, 2015.

[13] T. Mittal, P. Guhan, U. Bhattacharya, R. Chandra, A. Bera, and
D. Manocha, “Emoticon: Context-aware multimodal emotion recog-
nition using frege’s principle,” ArXiv, vol. abs/2003.06692, 2020.

[14] D. Aneja, B. Chaudhuri, A. Colburn, G. Faigin, L. Shapiro, and
B. Mones, “Learning to generate 3d stylized character expressions from
humans,” in 2018 IEEE Winter Conference on Applications of Com-
puter Vision (WACV), pp. 160–169, March 2018.

[15] N. Almohaimeed and M. Prince, “A Comparative Study of different
Oject Tracking Methods in a Video,” International Journal of Com-
puter Applications, vol. 181, no. 41, pp. 1–8, 2019.

[16] M. Zollhöfer, J. Thies, P. Garrido, D. Bradley, T. Beeler, P. Pérez,
M. Stamminger, M. Nießner, and C. Theobalt, “State of the art on
monocular 3D face reconstruction, tracking, and applications,” Com-
puter Graphics Forum, vol. 37, no. 2, pp. 523–550, 2018.

162

[17] Y. Chen, Y. Tian, and M. He, “Monocular human pose estimation: A
survey of deep learning-based methods,” Computer Vision and Image
Understanding, vol. 192, no. January, p. 102897, 2020.

[18] V. Kazemi and S. Josephine, “One Millisecond Face Alignment with an
Ensemble of Regression Trees,” Computer Vision and Pattern Recog-
nition (CVPR), 2014.

[19] T. Baltrušaitis, P. Robinson, and L. P. Morency, “Constrained local
neural fields for robust facial landmark detection in the wild,” in Pro-
ceedings of the IEEE International Conference on Computer Vision,
2013.

[20] D. Tome, C. Russell, and L. Agapito, “Lifting from the deep: Con-
volutional 3D pose estimation from a single image,” in Conference on
Computer Vision and Pattern Recognition, CVPR, vol. 2017-Janua,
pp. 5689–5698, IEEE, 2017.

[21] E. Richardson, M. Sela, and R. Kimmel, “3d face reconstruction by
learning from synthetic data,” in 2016 Fourth International Conference
on 3D Vision (3DV), pp. 460–469, 2016.

[22] A. Tewari, M. Zollöfer, H. Kim, P. Garrido, F. Bernard, P. Perez,
and T. Christian, “MoFA: Model-based Deep Convolutional Face Au-
toencoder for Unsupervised Monocular Reconstruction,” in The IEEE
International Conference on Computer Vision (ICCV), 2017.

[23] G. Pavlakos, L. Zhu, X. Zhou, and K. Daniilidis, “Learning to Estimate
3D Human Pose and Shape from a Single Color Image,” in Conference
on Computer Vision and Pattern Recognition, IEEE, 2018.

[24] C. Cao, H. Wu, Y. Weng, T. Shao, and K. Zhou, “Real-time facial
animation with image-based dynamic avatars,” ACM Transactions on
Graphics, vol. 35, no. 4, pp. 1–12, 2016.

[25] Z. Cao, T. Simon, S. E. Wei, and Y. Sheikh, “Realtime multi-person 2D
pose estimation using part affinity fields,” in Conference on Computer
Vision and Pattern Recognition, CVPR, vol. 2017-Janua, pp. 1302–
1310, IEEE, 2017.

163

[26] L. Unzueta, W. Pimenta, J. Goenetxea, L. P. Santos, and F. Dornaika,
“Efficient generic face model fitting to images and videos,” Image and
Vision Computing, vol. 32, no. 5, pp. 321–334, 2014.

[27] L. Unzueta, J. Goenetxea, M. Rodriguez, and M. Linaza, “Viewpoint-
dependent 3D human body posing for sports legacy recovery from im-
ages and video,” in European Signal Processing Conference, 2014.

[28] J. Goenetxea, L. Unzueta, U. Elordi, J. D. Ortega, and O. Otaegui,
“Efficient monocular point-of-gaze estimation on multiple screens and
3D face tracking for driver behaviour analysis,” in Proceedings of the 6th
Driver Distraction and Inattention conference, (Gothenburg, Sweden),
pp. 118–125, Sweden MEETX AB, 2018.

[29] J. Goenetxea, L. Unzueta, F. Dornaika, and O. Otaegui, “Efficient
deformable 3D face model tracking with limited hardware resources,”
Multimedia Tools and Applications, 2020.

[30] J. Goenetxea, M. Linaza, M. Rodriguez, and L. Unzueta, “Viewpoint-
dependent 3D Human Body Posing for Sports Legacy Recovery From
Images and Video,” in Digital Heritage. Progress in Cultural Heritage:
Documentation, Preservation, and Protection, Springer International
Publishing, 2014.

[31] J. Goenetxea, L. Unzueta, M. T. Linaza, M. Rodriguez, N. E.
O\textquoterightConnor, and K. Moran, “Capturing the sporting
heroes of our past by extracting 3D movements from legacy video
content,” in Digital Heritage. Progress in Cultural Heritage: Docu-
mentation, Preservation, and Protection, (Cham), pp. 48–58, Springer
International Publishing, 2014.

[32] F. Destelle, A. Ahmadi, K. Moran, N. O’Connor, N. Zioulis, A. Chatz-
itofis, D. Zarpalas, P. Daras, L. Unzueta, J. Goenetxea, M. Rodriguez,
M. Linaza, Y. Tisserand, and N. Thalmann, “A Multi-Modal 3D cap-
turing platform for learning and preservation of traditional sports and
games,” in MM 2015 - Proceedings of the 2015 ACM Multimedia Con-
ference, 2015.

[33] L. Unzueta, N. Aranjuelo, J. Goenetxea, M. T. Linaza, and M. Ro-
driguez, “Contextualised learning-free three-dimensional body pose es-

164

timation from two-dimensional body features in monocular images,”
IET Computer Vision, vol. 10, no. 4, pp. 299–307, 2016.

[34] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance
models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, pp. 681–
685, June 2001.

[35] G. Fyffe, A. Jones, O. Alexander, R. Ichikari, and P. Debevec, “Driving
high-resolution facial scans with video performance capture,” ACM
Transactions on Graphics, vol. 34, no. 1, pp. 1–13, 2014.

[36] X. Zhou, X. Sun, W. Zhang, S. Liang, and Y. Wei, “Deep kinematic
pose regression,” in Computer Vision–ECCV Workshops, vol. 9915
LNCS, pp. 186–201, Springer, 2016.

[37] X. Wei and J. Chai, “Videomocap: Modeling physically realistic hu-
man motion from monocular video sequences,” in ACM SIGGRAPH
2010 Papers, SIGGRAPH ’10, (New York, NY, USA), Association for
Computing Machinery, 2010.

[38] A. Bulat and G. Tzimiropoulos, “Binarized Convolutional Landmark
Localizers for Human Pose Estimation and Face Alignment with Lim-
ited Resources,” in IEEE International Conference on Computer Vi-
sion (ICCV), (Venice, Italy), IEEE, 2017.

[39] A. Agarwal and B. Triggs, “Recovering 3d human pose from monoc-
ular images,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, pp. 44–58, January 2006.

[40] S. X. Ju, M. J. Black, and Y. Yacoob, “Cardboard people: a parameter-
ized model of articulated image motion,” in International Conference
on Automatic Face and Gesture Recognition, pp. 38–44, 1996.

[41] M. Andriluka, S. Roth, and B. Schiele, “Pictorial structures revisited:
People detection and articulated pose estimation,” in 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 1014–1021,
2009.

[42] L. Sigal, M. Isard, H. Haussecker, and M. J. Black, “Loose-limbed peo-
ple: Estimating 3D human pose and motion using non-parametric be-
lief propagation,” in International Journal of Computer Vision, vol. 98,
pp. 15–48, 2012.

165

[43] M. Loper, N. Mahmood, J. Romero, G. Pons-moll, and M. J. Black,
“SMPL: A Skinned Multi-Person Linear Model,” ACM Trans. Graphics
(Proc. SIGGRAPH Asia), vol. 34, no. 6, pp. 248:1—-248:16, 2015.

[44] S. Zuffi and M. J. Black, “The stitched puppet: A graphical model of
3d human shape and pose,” in Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3537–3546, IEEE, 2015.

[45] X. Jin and X. Tan, “Face alignment in-the-wild: A Survey,” Computer
Vision and Image Understanding, vol. 162, pp. 1–22, 2017.

[46] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “Multi-pie,”
Image Vision Comput., vol. 28, p. 807–813, May 2010.

[47] C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou, and M. Pan-
tic, “300 faces In-the-wild challenge: Database and results,” Image and
Vision Computing, vol. 47, pp. 3–18, 2016.

[48] K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre, “Xm2vtsdb:
The extended m2vts database,” in Second international conference
on audio and video-based biometric person authentication, vol. 964,
pp. 965–966, 1999.

[49] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, Jin Chang,
K. Hoffman, J. Marques, Jaesik Min, and W. Worek, “Overview of
the face recognition grand challenge,” in 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05),
vol. 1, pp. 947–954 vol. 1, 2005.

[50] A. M. Martinez, “The ar face database,” CVC Technical Report24,
1998.

[51] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, and N. Kumar, “Lo-
calizing parts of faces using a consensus of exemplars,” in CVPR 2011,
pp. 545–552, 2011.

[52] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang, “Interac-
tive facial feature localization,” in Computer Vision – ECCV 2012
(A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, eds.),
(Berlin, Heidelberg), pp. 679–692, Springer Berlin Heidelberg, 2012.

166

[53] X. Zhu and D. Ramanan, “Face detection, pose estimation, and land-
mark localization in the wild,” in 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2879–2886, 2012.

[54] M. Köstinger, P. Wohlhart, P. M. Roth, and H. Bischof, “Annotated
facial landmarks in the wild: A large-scale, real-world database for
facial landmark localization,” in 2011 IEEE International Conference
on Computer Vision Workshops (ICCV Workshops), pp. 2144–2151,
2011.

[55] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint Face Detection and
Alignment Using Multitask Cascaded Convolutional Networks,” IEEE
Signal Processing Letters, vol. 23, no. 10, pp. 1499–1503, 2016.

[56] H. Qin, J. Yan, X. Li, and X. Hu, “Joint Training of Cascaded CNN
for Face Detection,” Cvpr, pp. 3456–3465, 2016.

[57] G. Tzimiropoulos and M. Pantic, “Fast Algorithms for Fitting Active
Appearance Models to Unconstrained Images,” International Journal
of Computer Vision, vol. 122, no. 1, pp. 17–33, 2017.

[58] J. Xiao, T. Moriyama, T. Kanade, and J. Cohn, “Robust full-motion
recovery of head by dynamic templates and re-registration techniques,”
International Journal of Imaging Systems and Technology, vol. 13,
pp. 85 – 94, September 2003.

[59] C. Cao, Y. Weng, S. Lin, and K. Zhou, “3D Shape Regression for Real-
time Facial Animation,” ACM Transactions on Graphics, vol. 32, no. 4,
pp. 1–10, 2013.

[60] J. P. Lewis, K. Anjyo, T. Rhee, M. Zhang, F. Pighin, and Z. Deng,
“Practice and Theory of Blendshape Facial Models,” in Eurographics
2014 - State of the Art Reports (S. Lefebvre and M. Spagnuolo, eds.),
The Eurographics Association, 2014.

[61] P. Garrido, L. Valgaert, C. Wu, and C. Theobalt, “Reconstructing
detailed dynamic face geometry from monocular video,” ACM Trans-
actions on Graphics, vol. 32, no. 6, pp. 1–10, 2013.

[62] P. Garrido, M. Zollhöfer, D. Casas, L. Valgaerts, K. Varanasi, P. Pérez,
and C. Theobalt, “Reconstruction of Personalized 3D Face Rigs from

167

Monocular Video,” ACM Transactions on Graphics, vol. 35, no. 3,
pp. 1–15, 2016.

[63] L. A. Jeni, J. F. Cohn, and T. Kanade, “Dense 3d face alignment from
2d videos in real-time,” in 11th IEEE International Conference and
Workshops on Automatic Face and Gesture Recognition (FG), vol. 1,
pp. 1–8, 2015.

[64] R. A. Güler, G. Trigeorgis, E. Antonakos, P. Snape, S. Zafeiriou, and
I. Kokkinos, “DenseReg: Fully Convolutional Dense Shape Regression
In-the-Wild,” in Computer Vision and Pattern Recognition (CVPR),
pp. 2614–2623, IEEE, 2017.

[65] Z. Q. Cheng, Y. Chen, R. R. Martin, T. Wu, and Z. Song, “Para-
metric modeling of 3D human body shape—A survey,” Computers and
Graphics (Pergamon), vol. 71, pp. 88–100, 2018.

[66] X. Zhou, M. Zhu, S. Leonardos, K. G. Derpanis, and K. Daniilidis,
“Sparseness meets deepness: 3D human pose estimation from monocu-
lar video,” in IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, vol. 2016-Decem, pp. 4966–4975, IEEE, 2016.

[67] H. Rhodin, M. Salzmann, and P. Fua, “Unsupervised geometry-aware
representation for 3D human pose estimation,” in The European Con-
ference on Computer Vision (ECCV), vol. 11214 LNCS, (Munich),
pp. 765–782, Springer, 2018.

[68] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via
deep neural networks,” in Computer Vision and Pattern . . . , IEEE,
2014.

[69] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and
B. Schiele, “Deepercut: A deeper, stronger, and faster multi-person
pose estimation model,” in Computer Vision – ECCV, vol. 9910 LNCS,
pp. 34–50, Springer International Publishing, 2016.

[70] D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko, W. Xu, and
C. Theobalt, “Monocular 3D human pose estimation in the wild us-
ing improved CNN supervision,” in International Conference on 3D
Vision, 3DV, pp. 506–516, 2017.

168

[71] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero, and M. J.
Black, “Keep it SMPL: Automatic Estimation of 3D Human Pose and
Shape from a Single Image,” ArXiv, pp. 34–36, 2016.

[72] M. Omran, C. Lassner, G. Pons-Moll, P. V. Gehler, and B. Schiele,
“Neural Body Fitting: Unifying Deep Learning and Model Based Hu-
man Pose and Shape Estimation,” in International Conference on 3D
Vision (3DV), pp. 484–494, IEEE, 2018.

[73] G. Varol, D. Ceylan, B. Russell, J. Yang, E. Yumer, and C. Schmid,
“BodyNet: Volumetric Inference of 3D Human Body Shapes,” in Com-
puter Vision – ECCV, (Cham), pp. 20—-38, Springer International
Publishing, 2018.

[74] H. Joo, T. Simon, and Y. Sheikh, “Total Capture: A 3D Deforma-
tion Model for Tracking Faces, Hands, and Bodies *,” in Cvpr 2018,
pp. 8320–8329, 2018.

[75] M. Habermann, W. Xu, M. Zollhoefer, G. Pons-Moll, and C. Theobalt,
“DeepCap: Monocular Human Performance Capture Using Weak Su-
pervision,” in Conference on Computer Vision and Pattern Recognition
(CVPR), IEEE, 2020.

[76] D. Lundqvist, A. Flykt, and A. Öhman, “The karolinska directed emo-
tional faces – kdef,” CD ROM from Department of Clinical Neuro-
science, Psychology section, 1998.

[77] A. Jepson, D. Fleet, and T. El-Maraghi, “Robust online appearance
models for visual tracking,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 25, no. 10, pp. 1296–1311, 2003.

[78] F. Dornaika and F. Davoine, “On appearance based face and facial
action tracking,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 16, no. 9, pp. 1107–1124, 2006.

[79] R. Yu, C. Russell, N. D. F. Campbell, and L. Agapito, “Direct, dense,
and deformable: Template-based non-rigid 3D reconstruction from
RGB video,” Proceedings of the IEEE International Conference on
Computer Vision, vol. 11-18-Dece, pp. 918–926, 2016.

169

[80] G. Hu, F. Yan, J. Kittler, W. Christmas, C. H. Chan, Z. Feng, and
P. Huber, “Efficient 3D morphable face model fitting,” Pattern Recog-
nition, vol. 67, no. February, pp. 366–379, 2017.

[81] C. Cao, M. Chai, O. Woodford, and L. Luo, “Stabilized Real-time Face
Tracking via a Learned Dynamic Rigidity Prior,” ACM Transactions
on Graphics, vol. 37, no. 6, p. 233, 2018.

[82] Y. Weng, C. Cao, Q. Hou, and K. Zhou, “Real-time facial animation
on mobile devices,” Graphical Models, vol. 76, no. 3, pp. 172 – 179,
2014.

[83] C. Cao, Q. Hou, and K. Zhou, “Displaced dynamic expression regres-
sion for real-time facial tracking and animation,” ACM Transactions
on Graphics, vol. 33, no. 4, pp. 1–10, 2014.

[84] J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. NieB-
ner, “Face2Face: Real-Time Face Capture and Reenactment of RGB
Videos,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2387–2395, 2016.

[85] Y. Feng, F. Wu, X. Shao, Y. Wang, and X. Zhou, “Joint 3D Face Re-
construction and Dense Alignment with Position Map Regression Net-
work,” in European Conference on Computer Vision (ECCV) (V. Fer-
rari, M. Hebert, C. Sminchisescu, and Y. Weiss, eds.), (Munich),
Springer, Cham, 2018.

[86] B. Egger, W. A. P. Smith, A. Tewari, S. Wuhrer, M. Zollhoefer,
T. Beeler, F. Bernard, T. Bolkart, A. Kortylewski, S. Romdhani,
C. Theobalt, V. Blanz, and T. Vetter, “3D Morphable Face Mod-
els—Past, Present, and Future,” ACM Transactions on Graphics,
vol. 39, no. 5, pp. 1–38, 2020.

[87] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S.
Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John,
P. Kanwar, D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng, P. Mi-
cikevicius, C. Osborne, G. Pekhimenko, A. T. R. Rajan, D. Sequeira,
A. Sirasao, F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu, L. Xu,

170

K. Yamada, B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou, “Mlperf
inference benchmark,” 2019.

[88] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for hu-
man pose estimation,” in Computer Vision – ECCV 2016 (B. Leibe,
J. Matas, N. Sebe, and M. Welling, eds.), (Cham), pp. 483–499,
Springer International Publishing, 2016.

[89] M. Rajchl, M. C. H. Lee, O. Oktay, K. Kamnitsas, J. Passerat-
Palmbach, W. Bai, M. Damodaram, M. A. Rutherford, J. V. Haj-
nal, B. Kainz, and D. Rueckert, “Deepcut: Object segmentation from
bounding box annotations using convolutional neural networks,” IEEE
Transactions on Medical Imaging, vol. 36, no. 2, pp. 674–683, 2017.

[90] Z. Zhang, P. Luo, C. C. Loy, and X. Tang, “Facial landmark detection
by deep multi-task learning,” in European Conference on Computer
Vision (ECCV), pp. 94–108, Springer International Publishing, 2014.

[91] W. Li, F. Abtahi, and Z. Zhu, “Action unit detection with region adap-
tation, multi-labeling learning and optimal temporal fusing,” Proceed-
ings - 30th IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2017, vol. 2017-Janua, pp. 6766–6775, 2017.

[92] Z. Shao, Z. Liu, J. Cai, and L. Ma, “Deep Adaptive Attention for Joint
Facial Action Unit Detection and Face Alignment,” ArXiv, 2018.

[93] N. Rathee and D. Ganotra, “An efficient approach for facial action
unit intensity detection using distance metric learning based on co-
sine similarity,” Signal, Image and Video Processing, vol. 12, no. 6,
pp. 1141–1148, 2018.

[94] E. Sanchez-Lozano, G. Tzimiropoulos, and M. Valstar, “Joint Action
Unit localisation and intensity estimation through heatmap regres-
sion,” in BMVC, pp. 1–12, 2018.

[95] P. Ekman, W. V. Friesen, and H. Hager, Facial action coding system.
Investigator’s Guide. 2002.

[96] D. Aneja, A. Colburn, G. Faigin, L. Shapiro, and B. Mones, “Model-
ing Stylized Character Expressions via Deep Learning,” in Computer

171

Vision ACCV 2016 (S.-H. Lai, V. Lepetit, K. Nishino, and Y. Sato,
eds.), vol. 1, pp. 136—-153, Springer International Publishing, 2017.

[97] G. Pons and D. Masip, “Multi-task, multi-label and multi-domain
learning with residual convolutional networks for emotion recognition,”
CoRR, 2018.

[98] N. Jain, S. Kumar, A. Kumar, P. Shamsolmoali, and M. Zareapoor,
“Hybrid deep neural networks for face emotion recognition,” Pattern
Recognition Letters, vol. 115, pp. 101 – 106, 2018. Multimodal Fusion
for Pattern Recognition.

[99] A. Ranjan, T. Bolkart, S. Sanyal, and M. J. Black, “Generating 3d
faces using convolutional mesh autoencoders,” in European Conference
on Computer Vision (ECCV) (V. Ferrari, M. Hebert, C. Sminchisescu,
and Y. Weiss, eds.), (Cham), pp. 725–741, Springer International Pub-
lishing, 2018.

[100] T. Baltrušaitis, M. Mahmoud, and P. Robinson, “Cross-dataset learn-
ing and person-specific normalisation for automatic Action Unit detec-
tion,” in International Conference and Workshops on Automatic Face
and Gesture Recognition (FG), pp. 1–6, IEEE, 2015.

[101] E. Ohn-Bar and M. M. Trivedi, “Looking at humans in the age of
self-driving and highly automated vehicles,” IEEE Transactions on In-
telligent Vehicles, vol. 1, no. 1, pp. 90–104, 2016.

[102] L. Fridman, “Human-centered autonomous vehicle systems: Principles
of effective shared autonomy,” CoRR, vol. abs/1810.01835, 2018.

[103] J. Olivares-Mercado, K. Toscano-Medina, G. Sanchez-Perez, H. Perez-
Meana, and M. Nakano-Miyatake, “Face recognition system for smart-
phone based on lbp,” in 2017 5th International Workshop on Biomet-
rics and Forensics (IWBF), pp. 1–6, 2017.

[104] H. Baqeel and S. Saeed, “Face detection authentication on smart-
phones: End users usability assessment experiences,” in 2019 Inter-
national Conference on Computer and Information Sciences (ICCIS),
pp. 1–6, 2019.

172

[105] Y. Lin, J. Shen, S. Cheng, and M. Pantic, “Mobile face tracking: A sur-
vey and benchmark,” Proceedings of the Computer Vision and Pattern
Recognition (CVPR), Salt Lake City, UT, USA, pp. 18–22, 2018.

[106] J. M. Saragih, S. Lucey, and J. F. Cohn, “Real-time Avatar Animation
from a Single Image,” in Automatic Face & Gesture Recognition and
Workshops, pp. 117–124, IEEE, 2011.

[107] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o(n)
solution to the pnp problem,” International Journal of Computer Vi-
sion, vol. 81, 02 2009.

[108] Y. Wu and Q. Ji, “Facial Landmark Detection: a Literature Survey,”
International Journal of Computer Vision, 2018.

[109] J. M. Saragih, S. Lucey, and J. F. Cohn, “Face alignment through sub-
space constrained mean-shifts,” in IEEE 12th International Conference
on Computer Vision, pp. 1034–1041, Sept 2009.

[110] S. Ren, X. Cao, Y. Wei, and J. Sun, “Face alignment at 3000 FPS
via regressing local binary features,” Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition,
vol. 1, no. 1, pp. 1685–1692, 2014.

[111] T. Baltrušaitis, A. Zadeh, Y. C. Lim, and L. P. Morency, “OpenFace
2.0: Facial behavior analysis toolkit,” in Proceedings - 13th IEEE Inter-
national Conference on Automatic Face and Gesture Recognition, FG
2018file:///home/goe/Downloads/baltrusaitis2018.pdf, IEEE, 2018.

[112] P. Viola and M. J. Jones, “Robust real-time face detection,” Interna-
tional Journal of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[113] R. Lienhart and J. Maydt, “An extended set of Haar-like features for
rapid object detection,” in Proceedings of the IEEE International Con-
ference on Image Processing, vol. 1, pp. 900–903, 2002.

[114] M. Zhou, Y. Wang, X. Feng, and X. Wang, “A robust texture prepro-
cessing for AAM,” in Proceedings of the International Conference on
Computer Science and Software Engineering, vol. 2, pp. 919–922, 2008.

173

[115] S. Suzuki and K. Be, “Topological structural analysis of digitized binary
images by border following,” Computer Vision, Graphics, and Image
Processing, vol. 30, no. 1, pp. 32–46, 1985.

[116] T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination, and ex-
pression database,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 25, no. 12, pp. 1615–1618, 2003.

[117] A. Zadeh, T. Baltrušaitis, and L. P. Morency, “Convolutional Experts
Constrained Local Model for Facial Landmark Detection,” in IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition Workshops, vol. 2017-July, pp. 2051–2059, IEEE, 2017.

[118] E. Wood, T. Baltrušaitis, L.-P. Morency, P. Robinson, and A. Bulling,
“Learning an appearance-based gaze estimator from one million synthe-
sised images,” in Proceedings of the Ninth Biennial ACM Symposium
on Eye Tracking Research & Applications, pp. 131–138, 2016.

[119] J. Ahlberg, “Candide-3 - an updated parameterized face,” 2001.

[120] D. F. Dementhon and L. S. Davis, “Model-based object pose in 25 lines
of code,” Int. J. Comput. Vision, vol. 15, p. 123–141, June 1995.

[121] J. More, Levenberg–Marquardt algorithm: implementation and theory.
University of Dundee, Jan 1977.

[122] D. E. King, “Max-margin object detection,” CoRR,
vol. abs/1502.00046, 2015.

[123] N. Markus, M. Frljak, I. S. Pandzic, J. Ahlberg, and R. Forchheimer,
“A method for object detection based on pixel intensity comparisons,”
CoRR, vol. abs/1305.4537, 2013.

[124] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), vol. 9905 LNCS, pp. 21–
37, 2016.

174

[125] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient Con-
volutional Neural Networks for Mobile Vision Applications,” ArXiv,
2017.

[126] J. P. Lewis, “Fast template matching,” Pattern Recognition, vol. 10,
no. 11, pp. 120–123, 1995.

[127] J. Shen, S. Zafeiriou, G. G. Chrysos, J. Kossaifi, G. Tzimiropoulos, and
M. Pantic, “The first facial landmark tracking in-the-wild challenge:
Benchmark and results,” in 2015 IEEE International Conference on
Computer Vision Workshop (ICCVW), pp. 1003–1011, Dec 2015.

[128] J. yves Bouguet, “Pyramidal implementation of the lucas kanade fea-
ture tracker,” Intel Corporation, Microprocessor Research Labs, 2000.

[129] X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li, “Face alignment across
large poses: A 3d solution,” CoRR, vol. abs/1511.07212, 2015.

[130] P. M. R. Martin Koestinger, Paul Wohlhart and H. Bischof, “An-
notated Facial Landmarks in the Wild: A Large-scale, Real-world
Database for Facial Landmark Localization,” in Proc. First IEEE In-
ternational Workshop on Benchmarking Facial Image Analysis Tech-
nologies, 2011.

[131] J. Ostermann, Face Animation in MPEG-4, pp. 17–55. John Wiley &
Sons, Ltd, 2003.

[132] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, “Vi-
sual simultaneous localization and mapping: a survey,” Artificial In-
telligence Review, vol. 43, pp. 55–81, Jan 2015.

[133] M. Nieto, J. D. Ortega, A. Cortes, and S. Gaines, “Perspective mul-
tiscale detection and tracking of persons,” in MultiMedia Modeling
(C. Gurrin, F. Hopfgartner, W. Hurst, H. Johansen, H. Lee, and
N. O’Connor, eds.), (Cham), pp. 92–103, Springer International Pub-
lishing, 2014.

[134] K. Levenberg, “A Method for the Solution of Certain Non – Linear
Problems in Least Squares,” Quarterly of Applied Mathematics, vol. 2,
pp. 164–168, 1944.

175

[135] D. W. Marquardt, “An algorithm for least-squares estimation of non-
linear parameters,” Journal of the Society for Industrial and Applied
Mathematics, vol. 11, no. 2, pp. 431–441, 1963.

[136] “H-Anim standard.” Available at: “https://www.web3d.org/working-
groups/humanoid-animation-hanim. Accessed: 2020-07-07.

[137] J. Gablonsky and C. Kelley, “A locally-biased form of the direct algo-
rithm,” Journal of Global Optimization, vol. 21, pp. 27–37, Sep 2001.

[138] M. J. D. Powell, A Direct Search Optimization Method That Models the
Objective and Constraint Functions by Linear Interpolation, pp. 51–67.
Dordrecht: Springer Netherlands, 1994.

[139] L. Sigal, A. Balan, and M. J. Black, “HumanEva: Synchronized video
and motion capture dataset and baseline algorithm for evaluation of
articulated human motion,” International Journal of Computer Vision,
vol. 87, pp. 4–27, Mar. 2010.

[140] V. Ramakrishna, T. Kanade, and Y. Sheikh, “Reconstructing 3d hu-
man pose from 2d image landmarks,” in Computer Vision – ECCV
2012 (A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid,
eds.), (Berlin, Heidelberg), pp. 573–586, Springer Berlin Heidelberg,
2012.

[141] I. Akhter and M. J. Black, “Pose-conditioned joint angle limits for 3d
human pose reconstruction,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1446–1455, June 2015.

[142] “CMU Graphics Lab motion capture database.” Available at: “http://
www.mocap.cs.cmu.edu/. Accessed: 2020-07-07.

[143] A. Kar and P. Corcoran, “A review and analysis of eye-gaze estimation
systems, algorithms and performance evaluation methods in consumer
platforms,” IEEE Access, vol. 5, pp. 16495–16519, 2017.

[144] E. Kasneci, G. Kasneci, T. C. Kübler, and W. Rosenstiel, “Online
recognition of fixations, saccades, and smooth pursuits for automated
analysis of traffic hazard perception,” in Artificial Neural Networks
(P. Koprinkova-Hristova, V. Mladenov, and N. K. Kasabov, eds.),
(Cham), pp. 411–434, Springer International Publishing, 2015.

176

[145] Y. Liang, M. L. Reyes, and J. D. Lee, “Real-time detection of driver
cognitive distraction using support vector machines,” IEEE Transac-
tions on Intelligent Transportation Systems, vol. 8, no. 2, pp. 340–350,
2007.

[146] M.-C. Chuang, R. Bala, E. Bernal, P. Paul, and A. Burry, “Estimat-
ing gaze direction of vehicle drivers using a smartphone camera,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recogn. Work. (CVPRW),
p. 165–170, 06 2014.

[147] F. Vicente, Z. Huang, X. Xiong, F. De La Torre, W. Zhang, and D. Levi,
“Driver Gaze Tracking and Eyes off the Road Detection System,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 4,
pp. 2014–2027, 2015.

[148] R. Zheng, K. Nakano, H. Ishiko, K. Hagita, M. Kihira, and T. Yokozeki,
“Eye-gaze tracking analysis of driver behavior while interacting with
navigation systems in an urban area,” IEEE Transactions on Human-
Machine Systems, vol. 46, no. 4, pp. 546–556, 2016.

[149] S. Jha and C. Busso, “Analyzing the relationship between head pose
and gaze to model driver visual attention,” in 2016 IEEE 19th In-
ternational Conference on Intelligent Transportation Systems (ITSC),
pp. 2157–2162, 2016.

[150] L. Fridman, J. Lee, B. Reimer, and T. Victor, “‘owl’ and ‘lizard’: pat-
terns of head pose and eye pose in driver gaze classification,” IET
Computer Vision, vol. 10, no. 4, pp. 308–313, 2016.

[151] A. Tawari, K. H. Chen, and M. M. Trivedi, “Where is the driver look-
ing: Analysis of head, eye and iris for robust gaze zone estimation,”
in 17th International IEEE Conference on Intelligent Transportation
Systems (ITSC), pp. 988–994, 2014.

[152] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “Appearance-based
gaze estimation in the wild,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4511–4520, 2015.

[153] E. Wood, T. Baltruaitis, X. Zhang, Y. Sugano, P. Robinson, and
A. Bulling, “Rendering of eyes for eye-shape registration and gaze

177

estimation,” in IEEE International Conference on Computer Vision
(ICCV), pp. 3756–3764, 2015.

[154] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and
R. Webb, “Learning from simulated and unsupervised images through
adversarial training,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2242–2251, 2017.

[155] R. Ranjan, S. De Mello, and J. Kautz, “Light-weight head pose invari-
ant gaze tracking,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pp. 2237–22378, 2018.

[156] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “Mpiigaze: Real-world
dataset and deep appearance-based gaze estimation,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 41, no. 1,
pp. 162–175, 2019.

[157] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in Computer Vision
– ECCV 2016 (B. Leibe, J. Matas, N. Sebe, and M. Welling, eds.),
(Cham), pp. 21–37, Springer International Publishing, 2016.

[158] C. G. Broyden, “The Convergence of a Class of Double-rank Mini-
mization Algorithms: 2. The New Algorithm,” IMA Journal of Applied
Mathematics, vol. 6, no. 3, pp. 222–231, 1970.

[159] R. Fletcher, “A new approach to variable metric algorithms,” The
Computer Journal, vol. 13, no. 3, pp. 317–322, 1970.

[160] D. Goldfarb, “A Family of Variable Metric Methods Derived by Varia-
tional Means,” Mathematics of Computation, vol. 24, pp. 23–26, 1970.

[161] D. F. Shanno, “Conditioning of Quasi-Newton Methods for Function
Minimization,” Mathematics of Computation, vol. 24, pp. 647–656,
1970.

[162] E. Haines, Point in Polygon Strategies, p. 24–46. USA: Academic Press
Professional, Inc., 1994.

[163] UNESCO, “Investing in cultural diversity and intercultural dialogue,”
2009.

178

[164] R. Kurin, “Safeguarding intangible cultural heritage,” Museum inter-
national, no. 1-2, pp. 66–77, 2004.

[165] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.,” in International Conference on Knowledge
Discovery and Data Mining, no. 16 in AAAIWS’94, pp. 359–370, Seat-
tle, WA, AAAI Press, 1994.

[166] N. M. Khan, S. Lin, L. Guan, and B. Guo, “A visual evaluation frame-
work for in-home physical rehabilitation,” in International Symposium
on Multimedia, pp. 237–240, IEEE, 2014, 2014.

[167] O. Çeliktutan, C. B. Akgul, C. Wolf, and B. Sankur, “Graph-based
analysis of physical exercise actions,” in International workshop on
multimedia indexing and information retrieval for healthcare, pp. 23–
32, ACM, 2013, 2013.

[168] G. Sun, P. Muneesawang, M. Kyan, H. Li, L. Zhong, N. Dong, B. El-
der, and L. Guan, “An advanced computational intelligence system for
training of ballet dance in a cave virtual reality environment,” in In-
ternational Symposium on Multimedia, pp. 159–166, IEEE, 2014, 2014.

[169] C. J. Su, “Personal rehabilitation exercise assistant with kinect and
dynamic time warping,” International Journal of Information and Ed-
ucation Technology, no. 4, p. 448, 2013.

[170] A. Aristidou, E. Stavrakis, and Y. Chrysanthou, “Motion analysis for
folk dance evaluation,” in Eurographics Workshop on Graphics and
Cultural Heritage, pp. 55–64, Eurographics Association, 2014.

[171] D. S. Alexiadis and P. Daras, “Quaternionic signal processing tech-
niques for automatic evaluation of dance performances from mocap
data,” Transactions on Multimedia, no. 5, pp. 1391–1406, 2014.

[172] A. Ahmadi, F. Destelle, C. Richter, D. Monaghan, N. Connor, and
K. Moran, “Framework for comprehensive analysis of a swing in sports
using low-cost inertial sensors,” in International Sensors Conference,
pp. 2211–2214, IEEE, 2014.

179

[173] A. Savitzky and M. J. Golay, “Smoothing and differentiation of data
by simplified least squares procedures.,” Analytical chemistry, vol. 36,
no. 8, pp. 1627–1639, 1964.

[174] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image qual-
ity assessment: From error visibility to structural similarity,” Transac-
tions on Image Processing, no. 4, pp. 600–612, 2004.

180

Appendix A

Appendix Title

A.1 Candide model modified deformations

This section shows the modified AU and SU deformations applied to the
original Candide [119] model to define our Candide-3m model.

181

Figure A.1: The added and modified SUs and AUs in Candide-3m with
respect to Candide-3, showing their variation from -1 to 1 values, where 0
corresponds to the neutral configuration.

182

