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Abstract: This paper presents the design and implementation of a supervisory control and data
acquisition (SCADA) system for automatic fault detection. The proposed system offers advantages
in three areas: the prognostic capacity for preventive and predictive maintenance, improvement
in the quality of the machined product and a reduction in breakdown times. The complementary
technologies, the Industrial Internet of Things (IIoT) and various machine learning (ML) techniques,
are employed with SCADA systems to obtain the objectives. The analysis of different data sources
and the replacement of specific digital sensors with analog sensors improve the prognostic capacity
for the detection of faults with an undetermined origin. Also presented is an anomaly detection
algorithm to foresee failures and to recognize their occurrence even when they do not register as
alarms or events. The improvement in machine availability after the implementation of the novel
system guarantees the accomplishment of the proposed objectives.

Keywords: industry 4.0; industrial internet of things; supervisory control and data acquisition
system; machine learning

1. Introduction

Industry 4.0 is used as a synonym for cyber-physical production systems (CPPSs) or
cyber-physical systems when applied in the domain of the manufacturing industry [1].
Industry 4.0 is based on the complete digitalization of value chains through data processing
technologies, intelligent software and a new view of sensor facilities [2]. The goals of
Industry 4.0 are to promote decentralization, interoperability, modularity and real-time
capability. Industry 4.0 promises increased flexibility in production facilities and, in this
way, promotes mass customization, better quality and improved productivity [3]. In
summary, Industry 4.0 will become one of the broadest areas of research in the next
decade [4,5].

However, it is well-known that industry has traditionally demonstrated inertia toward
technological change. This current stage of technological development for the industrial
transformation to the smart factory is becoming faster, and it is expected to achieve un-
precedented levels in operational efficiencies [6]. One solution for overcoming an outdated
industry may be the development and implementation of retrofitting techniques with the
addition of new technologies for an efficient re-use of existing equipment [7].

Using the Internet and CPPSs, manufacturing plants can be modernized, transforming
them into intelligent factories, characterized by a continuous and instantaneous inter-
communication between different workstations that make up the production chains [8].
The Industrial Internet of Things (IIoT) and its related domains—industrial networks, big
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data and cloud computing—will bring great opportunities for promoting these industrial
upgrades [9].

Supervisory control and data acquisition (SCADA) systems are the underlying moni-
toring and control strategy components of CPPSs [10]. The SCADA system supervises a
plant or process through a master terminal unit (MTU) with one or more remote terminal
units (RTUs). Through the human–machine interface (HMI), users obtain information in
real time that allows them to improve decision-making procedures. The SCADA systems’
increasingly efficient connection with the Internet, as well as with corporate networks,
allows for the management of a great amount of data [10].

The collection of data generated by the sensors contributes to the improvement of the
control and self-diagnostic capacity in different technological areas [11–13]. The virtual
replication of a manufacturing chain and the improvement of operative procedures and test
simulations are the new possibilities for sensors in Industry 4.0 [12–14]. The data ingestion
of heterogeneous sensors and devices is a challenge which plays a significant role in
SCADA systems. Different solutions have been proposed, from the use of device templates
to strategies for data synchronization, data slicing, data splitting and data indexing [15,16].
The combination of data mining and analytics with machine learning (ML) algorithms can
be used for information extraction, data pattern recognition and fault prediction [17,18].

The evolution of technology and equipment in modern industry has made main-
tenance tasks more complex and functional. Two tasks can be highlighted in the new
generation of SCADA systems: managing a huge amount of different data and fault di-
agnosis and prognosis [19]. The manufacturing industry generates more data than any
other sector of the economy; however, on many occasions, these data do not result in
knowledge [20]. One of the main objectives of maintenance is to integrate in SCADA
systems diagnosis modules for detecting abnormal situations from sensor data [21]. The
alarms and event logs are the base knowledge for analyzing the root cause of most of the
failures, something usually undervalued in industry. The ML applications in maintenance
tasks can cover these gaps and take advantage of all these data logs, resulting in smarter
and more robust manufacturing [22–24].

In this study we analyzed the roles that sensor data analysis and treatment play in a
SCADA system for fault diagnosis, specifically for faults that have a difficult prognosis
due to root causes of unknown origin. Applications of different maintenance procedures
for identifying error patterns and estimating the useful life of the machinery components
were developed. The fulfillment of the main objective proposed and its application rely on
the improvement of the availability of machine tools in chip removal machining processes
and its adaptability to other machine processes.

Chip removal machinery are widely used industrial equipment for which the IIoT
and ML techniques can notably help to improve the resolution of different maintenance
failures in relation to their undetermined root causes.

The methodological approach is based on the challenge of foreseeing faults with an
undetermined origin. The first step is the development of a preventive and predictive
maintenance procedure integrated in the SCADA system. This procedure analyzes the
sensor and actuator database from three data sources: retrofitting, digital twin and event
SCADA screens. The IIoT physical support, which facilitates data collection from different
sources within a diverse operational environment, is an Open Platform Communications
(OPC) system [25,26]. The developed environment is a response to the majority of failures,
as their origin becomes known [27,28]. However, some faults and their root causes remain
unknown [29]. The analysis of these abnormal situations leads to the decision to change
from digital to analog sensors in specific machine variables. The novel features added to the
anomaly detection procedure improve fault prognosis. Finally, for resolving hidden faults,
fundamentally those related to the malfunctioning of the machine without generating an
alarm or event, an unsupervised anomaly detection algorithm is used.

The remainder of this work is organized as follows. Section 2 surveys the related work.
Section 3 details the SCADA system’s main functions for failure detection, and provides a
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global vision of applicable procedures for their resolution. Section 4 presents the proposed
IIoT architecture and the protocols implemented. Section 5 sets out the data sources for
fault detection. Section 6 describes the use of analog sensors as a solution for the detection
of faults with unknown origins. In Section 7, the data management and machine learning
techniques and, in particular, an anomaly detection algorithm, are developed. Finally,
Section 8 presents the results and conclusions.

2. Related Work

This section describes and contrasts related work from the fields of fault and anomaly
detection in Industry 4.0.

The authors of [3] have provided a review of intelligent manufacturing techniques
in the context of Industry 4.0. In recent years, the explosive growth of sensor data in
SCADA systems through IIoT platforms has resulted in an increased use of data mining
and analytics in industrial processes, improving the role of machine learning [10,18]. In
turn, the authors of [19] surveyed the different artificial intelligent techniques for the fault
diagnosis of rotating machinery. A data-driven approach based on alarms, events and
exploratory data analysis was proposed in [20].

In order to illustrate the efficiency and usefulness of machine learning in smart manu-
facturing, with regard to fault diagnosis, different algorithms have been proposed in [21,22].
In [23], the authors outlined machine learning in the fault diagnosis of air handling units,
based on the comparison between the observed behavior and a set of behavioral patterns
generated through various fault conditions.

Furthermore, the authors of [24] undertook a survey on decision-making procedures
based on system reliability for improving predictive maintenance in Industry 4.0. This
study analyzed the impact that local failures can impose on an entire company.

Also, anomaly detection algorithms in different industry fields have been widely used.
In [30], the authors describe a new methodology for the detection of anomalies in industrial
components based on the creation of behavior patterns using unsupervised machine
learning algorithms such as K-means for clustering. An algorithm based on probability
density distribution was used to enhance the cluster patterns. Likewise, an interesting
application of an anomaly detection algorithm for early stage-bearing fault diagnosis was
presented in [31]. Similarly, machine learning methods for anomaly detection, improving
maintenance activities and security in industrial processes techniques were developed
in [32]. Finally, in [33], the author used as a case study the detection of known and
unknown faults in the automotive industry by acquiring data during production and
testing of vehicles. In this work, two-class and one-class classifiers were evaluated.

Most of the described works in fault and anomaly detection compare different machine
learning algorithms applied to a specific case study so that the proposals have enough
machine data to use these supervised and unsupervised machine learning algorithms.
In addition, the different classifiers have been successfully used to detect the anomalies.
The proposal presented in this paper is quite different since the main idea relies on using
the most effective procedure and a feasible anomaly detection algorithm for industrial
applications in a diverse range of chip removal machinery. A second difference is related
to the unknown causes of the failures that make the selection of features for the algorithms
difficult and can determine the changes in the machine structure, as it is a case of replacing
digital sensors with analog sensors. Another difference is the absence of clear data patterns
to assist with the fault identification tasks, as these faults either do not generate events
or are related to wear and fatigue in components. Finally, the results of the progressive
implementation and adaptation of the proposed system provides a knowledge base for
continuous improvement.
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3. Failure Detection Background

Designs and implementations of supervisory control and data acquisition systems
for improving the use of industrial machinery have been increasing in recent years, with
an evolution towards novel objectives, such as standardization, complex data analysis
and robustness against failure [2,21]. Figure 1 shows a SCADA system for controlling and
monitoring an industrial system.
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Figure 1. (a) Supervisory control and data acquisition (SCADA) system; (b) retrofitting scheme as SCADA screen for
locating a specific system fault.

Four basic functions performed by SCADA systems for creating autonomous environ-
ments with the final objective of the improvement of a fault prognostic for faults with no
clear root causes are described below.

Automation: the control and data are linked, in a continuous and reliable way, with
the field equipment. Supervision: based on the data movement, the state of actuators
and sensors are monitored from an HMI and stored in the Cloud. Alarm management:
the events and alarms caused by an abnormal state of the process are gathered. Report
generation: the SCADA functions generate a large amount of heterogeneous data, the
analysis of which leads to different maintenance procedures, some of them based on
artificial intelligent technologies.

Figure 1 shows a typical example of a standard maintenance procedure. In Figure 1a,
a fault pops up in a SCADA screen (the red color indicates a fault); in this case, it describes
a clogged pump or strainer filter. A sensor detects the fault in a carriage’s hydrostatic
lubrication system, a situation difficult to find during a routine inspection. If the user clicks
on the SCADA screen fault, the related retrofitting scheme in Figure 1b shows the detection
of an anomaly in the starting level of the return pump to the drill tank of a machine’s right
chip collector. This level stays at “1”, causing the pump to start and stop constantly, which
is not an optimum functioning state for the motor-pump group (35M2).

The proposed SCADA system implements different improvements based on the
analysis of data generated in this situation. For example, the number of motor-pump group
operations carried out opens new predictive maintenance procedures for monitoring and
foreseeing future wear failures in this equipment. However, the question is whether it is
feasible to develop a general procedure for the early detection of failures that, on many
occasions, may have uncertain origins. Figure 2 shows a flowchart that provides an answer
to this question.

The flowchart illustrates the process of analysis of maintenance resource optimization,
determining if a breakdown is caused by a persistent or intermittent fault. If the fault is
persistent, the machine can be repaired. However, if the fault is intermittent, occurring in
erratic sequences with variable durations, it is necessary to define whether the origin of
the fault is known or not. When an intermittent problem occurs due to a known fault, the
previous procedure is followed: the fault is corrected and the machine re-started, fixing it
so it does not occur again.
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In cases where the origin of the fault is uncertain, the proposed solution is to be applied.
The first thing needed is to know the state of the machine. The next step is to obtain a
collection of variables and capture all the signals that intervene in the process for their
analysis. Subsequently, all the information collected is processed for visualization in the
SCADA graphical interface, created through retrofitting, digital twin and event log screens.
The monitoring process does not start when the fault is generated. The application is
always in operation in order to collect in real time all the events that occur in the machines.

The continuous processing of these data through different machine learning algo-
rithms can offer sufficient information to solve a failure of which the origin was previously
uncertain. The scalability in the use of these algorithms guarantees an optimal management
of the fault prognosis [23]. Finally, if the fault diagnosis system still does not have enough
information to solve the problem, it will continue collecting data, repeating the process
described above.

The last situation relates to the lack of information about the root cause of the problem.
These uncertainties are mainly due to the majority of sensors in use being digital. The
change from digital to analog sensors in strategic machinery components, which present
most of the intermittent failures, can help in identifying the root causes and lead to the
development of a solution for them.

4. IIoT and SCADA Systems

The Industrial Internet of Things and its related domains, big data and cloud com-
puting, bring great opportunities for promoting industrial advancements in Industry 4.0.
The massive data-exchange boosted by SCADA systems and IIoT demands more inci-
sive approaches to the analysis of industrial data. Data mining, analytics support and
decision-making play an important new role in the process industry [24]. Analysis of
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sensor data to predict intermittent failures due to an undetermined root cause belongs
within this framework.

Figure 3 shows the communication platform proposed for linking the SCADA system
and the database in the Cloud. However, there are two concepts that should be analyzed:
the real-time and the open communication structures. They allow precision and free design
for adaptation to different industrial applications [9,10]. The schematic shown in Figure 3
represents a general operation environment, where the procedure for fault diagnosis is
integrated and the ML algorithms use the database for prognosis tasks. These IIoT and
SCADA systems make data management and the anomaly detection algorithms portable
systems with a high degree of independency from the operating environment used for
its implementation.
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A measuring device that works in real time is able to show the value of a variable at
the precise instant when this variable changes its state. When computers, controllers or
any device that works based on a computer program to process field information are used,
a time lag appears, a delay, which can affect the instantaneous accuracy of the displayed
value. This lack of accuracy can go unnoticed, particularly in the measurement of “slow”
variables, or it can be considerable in the case of “fast” variables. Figure 3 shows an
instantaneous peak of an analog variable that must be accurately recorded and collected in
the database.

This delay or time lag can also appear in the devices that make up a telecommunication
network, such as switches and routers. Consequently, the term “real time” should also take
into consideration these delays in transmission, which could be understood as errors or
noise [21].

On the other hand, “real time” is a term that should be properly valued in an industrial
environment. It is possible to define the delay that can be tolerated by the process and in
this context “strictly in real time” means that a system reacts to external events within that
specified time in 100% of cases. If the specific reaction times are overcome without causing
relevant problems, as in non-critical systems, it is called “soft real time”.

The main advantage of a PC-based system, its open structure, can become a rele-
vant drawback. The open structure allows the company and developer more freedom in
choosing the right tool for the design, programming and implementation of the SCADA
system. However, having to centralize the data sent by communication protocols from
different manufacturers can generate errors when sending the data and poor analysis from
the predictive algorithms. The treatment of corrupted data can be a major inconvenience in
obtaining favorable results. The use of Open Platform Communications (OPC) is a solution
for this issue.
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4.1. Open Platform Communications

Open Platform Communications is a communication standard for the secure and
reliable exchange of data in the industrial automation environment. It allows the flow of
information among devices from different manufacturers. The OPC standard defines the
interface between clients and servers, including real-time data, monitoring alarms and
events and accessing historical data.

The purpose of this standard is to abstract PLC-specific protocols (such as Profibus,
Modbus, Profinet, etc.) into a standardized interface allowing HMI/SCADA systems to
convert generic OPC read/write requests into device-specific requests and vice-versa.

With the introduction of service-oriented architectures in manufacturing systems, new
challenges in security and data modeling arise. The OPC Foundation developed the OPC
UA specifications to address these needs and at the same time provided a feature-rich,
open-platform architecture technology that is future-proof, scalable and extensible. This
multi-layered approach accomplishes the original design specification goals of functional
equivalence, platform independence and security [25].

4.2. Software for Interactive Work

Cyber-physical production systems need to include different technologies and have
to be able to fulfill the requirements imposed, such as optimization of the manufacturing
process, data integration, secure communication and flexible adaptation to changes, among
others [1].

SIMATIC WinCC was the software tool used in this project. It is a well-adapted envi-
ronment for working with SCADA applications. It is a scalable visualization environment
endowed with powerful functions for the supervision of automated processes. WinCC
provides full SCADA functionality in Windows, from single-user systems to distributed
multi-user systems with redundant servers [26].

WinCC integrates Visual Basic for Applications (VBA) in WinCC Graphics Designer, a
standard environment for application-specific extensions. VBA provides access to all con-
figuration data (variables, warnings, images and graphic objects, with animation included).
Figure 4 shows an implementation example.
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The result of this software combination, in the HMIs, allows managing users and
passwords, comparing different variables, programming several conditions at the same
time, sending reports of errors and storage in databases, effectively extending the failure
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prognosis for most of situations. In the following section, three examples are developed for
a better comprehension of the proposal.

5. Data Sources for Fault Detection

As previously mentioned, one of the biggest problems faced by developers in the area
of industrial maintenance is the lack of knowledge about the exact origin of the failure that
causes a breakdown. This results in an indeterminable waste of time—unfortunately more
often spent on the search for the failure than its resolution—and therefore in increased
production over-costs.

Information is the solution for fixing the faults and this information is located in the
SCADA data. Figure 5 shows three dataset sources for fault detection.
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The first source is the data obtained by retrofitting techniques. Figure 5 shows a
hydraulics and lubrication screen that has been created and animated from the original
static drawing. The retrofitting techniques transform the old documentation into new
SCADA screens, which is thus a low-cost solution with optimum results [4]. Drawings
of pipes, motors, solenoid valves and so on that change color at the same time that the
variables change state immediately indicate if a hose has pressure, if a pump is running or
if the machine is projecting coolant while machining. Changes of states in cylinders and
electro-valves are also visualized, generating a clearer understanding of the operation of
the circuits and helping to instantly identify the causes of a possible fault. In addition, these
component signals supply the database for actuators and sensors. Their analysis allows
the overcoming of potential failures in components, from intermittent faults to predictions
on wear fatigue.
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The second data source is obtained from digital twin production systems. Figure 5
shows a virtual twin of a set of automatic tool loaders and its GRAFCET (Graphe Fonctionnel
de Commande Etape Transition). The digital environment reproduces a real system, its control
variables and the functioning conditions: a robot that loads tools from the warehouse, a
changing arm that exchanges tools between the machining head and the warehouse robot,
the laser detectors for checking and measuring the tools and the different doors that open
or close depending on the needs of the machine.

In cases of a failure in a change sequence, the stage tag that has not been completed
remains red, alerting the operator where the problem has occurred. The fault is recorded
in the database in order to be analyzed, including information on whether the fault is
persistent or intermittent and whether its root cause is known.

The third source is the event log. Figure 5 shows a type of screen, perhaps somewhat
unusual, for fault detection. The figure shows one specific signal from the total set of
events and alarms that appear during the production time. When an anomaly during the
machining process happens, the machine activates a series of variables stored in a folder
exclusively for events and alarms. By detecting that change of state in these variables, it is
possible to visualize what situation is occurring and what part of the system it comes from.
Figure 5 also shows an abnormally delayed operation time in a hydraulic cylinder, which
could mean a reduction of pressure for its operation, possibly caused by excessive friction
or a synchronization fault. The analysis should lead to the root cause prognosis and avoid
the foreseeable blockage.

6. Analog Sensors as a Solution for Faults with Unknown Origin

Analog sensors provide an opportunity to improve the SCADA system characteristics
by increasing their efficiency in predicting failures—in particular, failures that are more
difficult to resolve because their origin remains unknown from among many possible
root causes. The replacement of a digital sensor with an analog sensor in an industrial
context is not an easy decision. Doing so means a modification of the machine structure.
In addition, this decision implies that the new feature needs to be included in the fault
detection algorithms.

Figure 6 shows a yearly report of the fault incidence for a specific machine based on the
number of notices and downtime hours. The left y-axis shows the number of maintenance
notices and downtime hours, in blue and brown bars respectively, for each part of the
machine. The Automatic Tool Changer alone accounted for 40% of the machine notices
on the right y-axis. Figure 6 illustrates the most critical components in the machine and
answers the question as to where to implement the change.

In the case of this particular yearly report, this information led to the decision to change
specific digital sensors for analog sensors in these critical components of the machine. This
option should be carefully analyzed because it involves physical changes and hardware
and software development.

The real case described in this paper allowed for the analysis of the strategic role of
an analog sensor (SA5000 from IFM) installed in the cooling system of a milling machine
(Figure 7). The cooling system was the second most common cause of downtime in the
machine. The digital flowmeter switch that was previously installed could only indicate
if the flow rate of the coolant pump was correct based on a set point programmed in
the controller.

After installing the analog flowmeter, the monitoring interface was able to control in
real-time the real flow through the coolant pipe. Figure 7a shows the sensor installed in the
pipeline and Figure 7b shows a graphic with the pressure flow measurement.

The main goal was to link the information of the cooling system flowmeter with
the type of machining operation and tool type used at all times. Then, using all the
data extracted from the machine, wear failure of the coolant pumps could be avoided,
preventing the machine from being damaged and ensuring the optimal functioning of the
cooling systems and the highest quality of the produced pieces.
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7. Data Management for Improving Prognosis Capabilities and Machine Learning

The Automatic Tool Changer in chip removal machining processes is usually engaged
in exchanging milling and drilling tools. It is very important to maintain a stable hydraulic
service pressure in this component; a reduction in pressure, for example, causes the tool
to vibrate when working and results in roughly machined pieces. This is the problem
examined in this section, as it was the most frequent source of notices and downtime hours
for the machine described in Figure 6, nearly 40%. For some unknown reason, a drop
in pressure can be noticed after certain tool changes. This should not happen due to the
existing nitrogen hydraulic accumulator in the pressure circuit. The system must ensure
the rotary shaft remains free of blockages in each of the special heads.

Figure 8 shows the hydraulic circuit and measured data in the pressure sensor of the
analyzed system. The sensor used was the same analog sensor as previously (SA5000 from
IFM), which can be programed as an analog flowmeter or an analog pressure meter.
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In this kind of maintenance problem, the difficulty of determining the useful life of
each element of the hydraulic circuit and the discharge of the nitrogen accumulator is
assumed. In addition, the problem involves not only an unexpected machine stop, but
also the quality of the machining. This last problem was detected with a product quality
inspection but the machine did not give any warning of the event. What is proposed is the
application of different techniques to determine whether intervention in the equipment is
necessary based on the value of certain indicators. The techniques that can be employed
to acquire or determine these indicators can be non-invasive measurements, performance
data, scheduled tests and behaviors detected from the monitoring system.

7.1. Condition-Based Maintenance

Condition-based maintenance (CBM) combines three elements: data acquisition, data
processing and maintenance decision-making [27,28]. A simple procedure for maintenance
decision-making is to perform the statistics calculation of SCADA data in intervals in differ-
ent time horizons and, in this way, check whether the possible anomalous trends detected
are the result of some specific requirement or are maintained over time. The statistics
calculations chosen for this purpose were the arithmetic mean and the standard deviation.

The arithmetic mean of a finite set of values aims to offer the expected value or the
mathematical expectation of the sample used. To do this, all the sample values are added
(x(i)) and divided by the number of addends (m).

µ =
1
m
·

n

∑
i=1

x(i) (1)

The standard deviation is a statistic used to quantify the variation or dispersion of a
set of data, indicating its tendency to be grouped close to its mean value.

σ =

√
1
m
·

m

∑
i=1

(x (i)−µ)
2

(2)

In Figure 9, pressure data captured over a certain period of time, the calculated
arithmetic mean value (165.30 bar) and the standard deviation (2.2821) are shown. These
data are considered within the standard work conditions window. If the pressure evolution
generates a notice or error in the CDM system, a warning is sent to the maintenance staff.
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Under standard conditions, the working pressure of the system is between 150 and
170 bar. The fluctuations are due to the demand pumps and pressure accumulator. The
idea is to record the pressure values every 500 ms, whenever the machine is in operation,
and to include these data in the statistics method, which would establish the conditions for
preventive and predictive maintenance actions.

The value of the arithmetic mean and its evolution can be used as an indicator of
the wear of the pump and the accumulator. In our case study, for the detection of a
continued decrease over time, a daily average lower than 162 bar was set as a standard,
and if maintained over five days it would lead to a request for a time window to intervene
in the machine and check the status of the hydraulic system. On the other hand, a standard
deviation greater than 3.25 was set to trigger a review notice and activate preventive
maintenance; a deviation greater than 3.75 bar was set to trigger a notice for high priority
maintenance action.

7.2. Machine Learning

Machine learning is a subset of artificial intelligence methods actively used in indus-
trial settings [22]. The applications involve supervised and unsupervised algorithms for
supporting the optimization of maintenance decisions about locating faults and machine
malfunctioning with an unclear origin [23,24].

A significant issue in the case study under examination is that faults very rarely
occur and when they do occur, they depend on multiple factors. The creation of different
behavior patterns based on the progressive degradation of industrial components can
provide advance failure warning and precise fault detection [29–31]. Most of pertinent
studies in the literature compare different classifiers when dealing with a specific problem
in a machine component, for which the probability of failure is studied or predicted. On
many occasions, there are data available that allow the identification of a behavior pattern
model that can be considered “normal” or there are anomaly data for training and cross-
reference dataset creation [30–33]. In our case study, the failure or malfunction is detected,
but its origin is undetermined and so is the component, or components, of the machine
that cause it. In addition, there are no initial data for the anomaly to adjust the metric for
predicting the fault. These two facts make it difficult to predict and search for the origin
of the failure. In this case study, unsupervised machine learning algorithms for anomaly
detection can be employed to investigate possible solutions for these situations.
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The data features considered are the pressure (x1) and the tool’s three axis positions
(x2, x3, x4) for robotic arm movement. Table 1 shows a set of real data for analysis.

Table 1. Input data: sensor pressure (x1) and the tool’s three axis positions (x2, x3 and x4).

Pressure (bar) X-axis (mm) Y-axis (mm) Z-axis (mm)

166.7101 1450.00 −3000.8 0
166.577 1450.00 −3000.8 0

166.6435 1612.44 −3000.8 −82.5457
149.4734 2901.50 −3000.8 −737.6
163.0498 2901.50 −3000.8 −737.6
166.4439 2901.50 −3000.8 −737.6
162.9167 2363.06 −3000.8 −463.9846
165.8449 1450.00 −3000.8 0

The number of the sample m for the anomaly detection algorithm can be defined in a
flexible mode. As previously mentioned, the sample time for security in the OPC UA is
500 ms; all the features are captured at the same time and, as a result, in sixty seconds the
system can have 120 samples for each feature. In the following analysis, m = 468.

Data set =


x1

1 x1
2 x1

3 x1
4

...
...
...

...
xm

1 xm
2 xm

2 xm
4

 (3)

The anomaly detection is based on a Gaussian distribution:

p
(

x;µ,σ2
)
=

1√
2πσ

exp(− (x−µ)2

2σ2 ) (4)

where µ is the arithmetic mean and σ2 is the variance.
The Gaussian density for all features can be determined as follows:

p(x)= p
(

x1;µ1,σ2
1

)
p
(

x2;µ2,σ2
2

)
p
(

x3;µ3,σ2
3

)
. . . .p

(
xn;µn,σ2

n

)
=

n

∏
j=1

p
(

xj;µj,σ
2
j

)
(5)

p(x) =
n

∏
j=1

p
(

xj;µj,σ
2
j

)
=

n

∏
j=1

1√
2πσj

exp
(−

(xj−µj)
2

2σ2
j

)

(6)

The anomaly detection is activated when the Gaussian density has a lower probability
than a constant value “epsilon”:

p(x)< ε (7)

This value ε is selected based on the F1 score metric.
After observing the distribution data, we implemented a multivariate Gaussian distribution:

p(x;µ, Σ) =
1

(2π)
n
2 |Σ|

1
2

exp(− 1
2 (x−µ)TΣ−1(x−µ)) (8)

where µ ∈ Rn is the arithmetic mean vector and Σ ∈ Rnxn is the covariance matrix.
The results can be observed in Figure 10a,b. Figure 10a shows the data distribution,

with the pressure in bars on the x-axis and the three-dimensional robot arm position
(XYZ) on the y-axis. Figure 10b shows probability results, analyzed as a multivariate
Gaussian distribution.
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Figure 10. (a) The position arm axis related to hydraulic circuit pressure with about m = 468 samples for each feature. (b)
Multivariate Gaussian distribution p(x;µ, Σ).

As previously mentioned, the constant ε for accomplishing p(x) < ε is adjusted
through the F1 score metric. A point of difference in this case is that, compared with other
applications of anomaly detection algorithms, there is no pattern for the recognition of
positive faults. This fact makes it difficult to use a cross-reference dataset to adjust the
metric. Once the epsilon value has been selected, the applied solution consists in analyzing
the possible outliers, which in this case results in 17 situations of possible anomalies that
could result in a malfunction in the machining process and consequent quality faults
in the machined pieces. These outliers result in tp (true positives situations), fp (false
positive situations), fn (false negative situations) and tn (true negative situations) and this
information allows for the improvement of the precision of the F1 score metric for future
prognosis. The precision (P) and recall (R) parameters are applied for computing the metric:

F1−score = 2
PR

P + R
(9)

P and R can be obtained as follows:

P =
tp

tp + fp
(10)

R =
tp

tp + fn
(11)

where tp represents the true positive situations where the prediction and the actual situation
are coincident and the fault exists; fp represents the false positive situations where a fault is
predicted but there is no fault in the machine; fn represents the false negative situations
where the prediction is that there is no fault, but the fault exists in the machine; and, finally,
tn represents the true negative situations where the prediction and the actual situation are
coincident and the fault does not exist.

8. Results and Conclusions

The novel supervisory control and data acquisition (SCADA) system proposed can
contribute to advances relevant to the analysis of faults with undetermined origins. This
knowledge helps in foreseeing these faults and improving the functionality of machinery.

The main contributions of this work can be summarized in the following six points:
firstly, the implementation of a maintenance procedure for fault prognosis integrated in a
SCADA system; secondly, the design of a communication platform that linked the SCADA
system and a Cloud server for data concentration in a secure and normalized database;
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thirdly, the development of different data sources for fault detection that were connected
to the database; fourthly, fault prognosis was improved when changing from digital to
analog sensors; fifthly, the foreseeing of failures with an undetermined origin; finally,
the development of an unsupervised anomaly detection algorithm for the detection of
malfunctioning machinery.

The results offer advantages in three areas: an increase in prognosis capacity for
preventive and predictive maintenance, an improvement in machined product quality and
considerable reductions in breakdown times.

Table 2 and Figure 11 show the availability improvement of three different machine
tools in machining processes of chip removal over fifteen months in 2019 and 2020, after
the implementation the proposed system.

Table 2. Scheduled hours and loss of availability in three machines over fifteen months.

Mth1 Mth2 Mth3 Mth4 Mth5 Mth6 Mth7 Mth8 Mth9 Mth10 Mth11 Mth12 Mth13 Mth14 Mth15

M
A

C
H

IN
E

1

Scheduled
Hours 545.99 571.78 550.83 614.76 612.86 547.47 583.15 536.26 586.94 569.5 546.38 528.15 531.06 515.17 264.29

Loss of
Availability

(Hours)
12.2 15.17 8.08 11.62 13.09 9.8 13.04 10.05 9.66 13.03 7.79 6.19 6.88 4.12 1.03

Availability
(%) 97.77 97.35 98.53 98.11 97.86 98.21 97.76 98.13 98.35 97.71 98.57 98.83 98.7 99.2 99.61

M
A

C
H

IN
E

2

Scheduled
(Hours) 552.77 548.7 586.22 649.74 656.2 579.59 602.76 552.53 596.28 587.88 593.31 546.66 561.34 568.02 279.87

Loss of
Availability

(Hours)
9.16 8.26 9.54 11.01 9.95 8.18 9.34 8.75 9.07 10.52 9.46 5.27 6.51 5.16 1.35

Availability
(%) 98.34 98.59 98.37 98.31 98.48 98.59 98.45 98.42 98.48 98.21 98.41 99.04 98.84 99.09 99.52

M
A

C
H

IN
E

3

Scheduled
(Hours) 548.73 549.43 550.97 618.85 580.66 524.3 592.2 548.46 601.08 559.86 558.7 487.97 536.94 560.01 262.54

Loss of
Availability

(Hours)
11.64 9.02 9.08 14.75 7.79 7.38 11.97 10.27 11.74 8.97 6.57 6.39 6.89 1.88 1.51

Availability
(%) 97.88 98.36 98.35 97.62 98.66 98.59 97.98 98.13 98.05 98.4 98.82 98.69 98.72 99.66 99.44

33 32.45 26.7 37.38 30.83 25.36 34.35 29.07 30.47 32.52 23.82 17.85 20.28 11.16 3.89
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The three machines analyzed were in the same production line and each of them
had different architectures and tasks. Table 1 represents the data used for training the
anomaly detection algorithm for machine 1. Machines 2 and 3 (as seen in Table 2 and
Figure 11 together with machine 1) were twin machines that did not have a y-axis. The
implementation of the proposed technical solution in these different machines shows a
continuing improvement in the availability of the three machines. This demonstrates that
this algorithm has potential for widespread implementation in different types of machines.

The progressive improvements in the fifteen-month period can be summarized as
follows: in the first five months, retrofitting, digital twin and event screens were created
and tested; in the following three months, the OPC UA server and client communication
was developed; and from the eighth month onward, machine learning algorithms and
data management became operative. It is possible to observe how the improvement was
progressive and increased notably over the last five months. The SCADA systems and the
machine learning algorithms integrated in them improved their accuracy and efficiency for
early fault detection due to the amount of data that they acquired.

One of the most noteworthy points of the proposal presented in this paper was that,
for many of the solved problems, their causes could not be analyzed before applying the
proposed methodology. The failures occurred but their root causes were not known. As a
result of the real examples described throughout the paper, it was possible to show that
not only can the origins of problems that cause machine downtime be analyzed, but that
the root causes of problems that result in the production of low-quality machined parts can
be analyzed as well.

In summary, this study described a SCADA system that combines complexity and
agility in the relationship between operator and machine to improve fault prognosis for
undetermined root causes. It is recommended that industries continue to research and
innovate to obtain the best possible performance outcomes from the potential of the smart
factory. The development of more sophisticated SCADA systems to optimize sensor
data management and the improvement of industrial predictive maintenance with the
implementation of robust diagnosis tools are means to meet this challenge.

The results obtained in this industrial research project, through the investigation of
a multi-featured production process affected by intermittent faults and malfunctions of
undetermined origins, were applied within the context of Industry 4.0 and the Industrial
Internet of Things. The progressive evolution of this work will be centered on the latest
research developments concerning the recognition and prognosis of failures that do not
generate events when they are occurring. Systematic data analysis of different machines
with the same problem and the application of machine learning techniques will result in
the development of common procedures for the prediction of these failures that are difficult
to detect with standard maintenance operations.
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