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Abstract: In this article, a control strategy approach is proposed for a system consisting of a quadrotor
transporting a double pendulum. In our case, we attempt to achieve a swing free transportation
of the pendulum, while the quadrotor closely follows a specific trajectory. This dynamic system is
highly nonlinear, therefore, the fulfillment of this complex task represents a demanding challenge.
Moreover, achieving dampening of the double pendulum oscillations while following a precise
trajectory are conflicting goals. We apply a proportional derivative (PD) and a model predictive
control (MPC) controllers for this task. Transportation of a multiple pendulum with an aerial robot
is a step forward in the state of art towards the study of the transportation of loads with complex
dynamics. We provide the modeling of the quadrotor and the double pendulum. For MPC we
define the cost function that has to be minimized to achieve optimal control. We report encouraging
positive results on a simulated environmentcomparing the performance of our MPC-PD control
circuit against a PD-PD configuration, achieving a three fold reduction of the double pendulum
maximum swinging angle.

Keywords: quadorotor; double pendulum; payload transportation

1. Introduction

The research community has studied different approaches for the aerial transportation
of payloads task and since the 70s. Specifically, towed cable systems have been analyzed in
various applications like payload delivery, kites, aerial refueling systems, brick transporta-
tion, and rescue missions. The enhancements of these tasks would permit a wider spectrum
of possibilities for unmanned aerial vehicles (quadrotors), including transportation of
bigger and different types of objects, inspection and maintenance of elements and surfaces,
and emergency services related applications.

In recent years, there has been extensive interest in developing solutions for delivering
a payload by connecting it to a multirrotor quadrotor with cables [1–4]. In these approaches
the payload is often considered to be a particle mass at the end of the cable. We call this
suspended load, which is also known as slung load. Despite the different alternative
quadrotors considered in the literature to transport such payload, in this article we will
focus on quadrotors. Quadrotors deployment of cable-suspended payloads can save time
and energy, comparing to other methods, and thus, this configuration provides potential
benefits that may extend the application possibilities of these aerial systems [5]. However,
its passive dynamics affect the performance of the quadrotor, by the introduction of a new
set of inputs, such as tensions and residual vibrations. Quadrotors are a nonlinear, unstable
and underactuated system, and coupled dynamics with the attached payload adds an extra
complexity and alters the performance of precise positioning and path-following, and thus
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it is required a careful control design in order to cope with them. The problem is far from
being solved [6,7].

Research on payload stabilization suspended by a cable started decades ago, when
dealing with the control of cranes whose payload was modeled by a lumped-mass [8].
This model is simple, but it captures the complex dynamics of payload motion. Classic
equations of applied mechanics were used to model a suspended load in cranes [9], and
later extended in [10]. Nowadays, the stabilization of the slung load is pursued through the
minimization of the particle mass swing, which enables the reduction of the vibrations and
sudden shock in the quadrotor dynamic system. It is known that the transportation speed
and the removal of the payload oscillations are contradictory control goals [11], therefore,
the fulfillment of both objectives represents a challenging task for control engineering.

First research works on payload transportation by quadrotors appeared in the late
1990s [12,13]. Early attempts involved quasi-static motions to position and orient a sus-
pended load [1]. Since then, the most common dynamic modeling is the lift vector of a
payload to be fixed along the z-direction in the frame fixed to be quadrotor body, so that
quadrotors can only generate their translational motion by tilting the body frame by the
propellers in a certain direction. Usually, for these systems a cascade control configuration
is used, where an outer-loop controller is in charge of the translational control and then, an
inner loop is used to obtain the tilt angle calculated by the outer loop. For instance, [14] use
a Model Predictive Controller (MPC) strategy and linear-quadratic regulator (LQR) control
for slung load operations in hover and aggressive maneuvers, while [15] use the swinging
load angles as an error input for a proportional derivative (PD) controller that corrects the
translational controller during paths and maneuvers.

An alternative way to deal with the dynamics of the suspended load is to incorporate
it directly into the quadrotor control dynamics. In [16], the authors present a multi-rotor
with a hybrid system, interchangeable between a taut or a flexible cable. Depending on the
maneuvers to be done and obstacles found, the quadrotor control switches between the
two configurations thanks to a mixed-integer quadratic programming. In [17], the authors
use a Hamiltonian approach for the control of the nonlinear system, where the swinging
oscillations are controlled by an interconnection and damping assignment-passivity based
control. Geometric control is utilized in [18] in the model of cable decomposed in a series
of linear linked pieces. Adaptive control and slung load pose estimation for small size
quadrotors has been also introduced [19].

In the last years, artificial neural network (ANN) based algorithms are being tested for
the control of quadrotors, despite their limitations in size, weight, power consumption, and
response to the changing environments and flying conditions, which require a continuous
retraining process of the ANN architecture [20], even more so in payload transportation
applications. Besides the application of deep learning for quadrotors artificial vision
navigation systems [21], classical control strategies have been proposed, like MPC for the
elimination of the overshoot at load release time [22], or a reinforcement learning strategy
based on the minimization of the payload oscillations for an automated cargo delivery [23].

Conventional PD controllers have proven to be an efficient solution for inner control
loop in payload transportation task by quadrotors, due to their simplicity, robustness and
good results [6,19,24–26]. Adaptive PID controller can be employed for coping with wind
disturbances and main external forces that affect the performance of the system [5,25]. On
the other hand, the MPC is designed to solve an optimization problem by defining and
minimizing an objective function which is related to both the optimal state and control
inputs. Although the interest towards this configuration gained the attention of researchers
in recent years [27–29], they still did not solve completely all the problems or explore the
possibilities related to it.

The state of the art in transportation of slung loads with quadrotors can be broadly
classified into two categories [4]: (a) Feedback control for tracking desired payload
trajectories [17,18]. (b) Trajectory planning for a quadrotor with a slung load [30–33].
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This paper follows the second approach. As in most of the prior works, the following
dynamic simplifications were made without losing precision in the results: (1) The aerody-
namic effects of the quadrotor and the payload are neglected. (2) The dynamics and pertur-
bations of the payload are considered completely decoupled from quadrotors, considering
that the the payload motion is bounded [33]. (3) The cable model is taut and non-elastic.
(4) We consider the 2D plane XZ for the modeling of the double pendulum [34,35]. These
assumptions are considered to be realistic enough for the dynamic modeling of the quadro-
tor + slung load system, except when the quadrotor enters aggressive maneuvers [36].
According to [37], the discretization of the pendulum in two mass particles and massless
and taut links represents a valid approach for the current study purpose, and it requires
lower computational cost and offers very similar results. Moreover, the usage of the pendu-
lum mathematical model as the DLO physical model widens the research possibilities, as it
permits an easier dynamic calculus of taking off and landing, which is not a fully studied
field [7]. Very recent works deal with the control of the transportation by an quadrotor of a
payload modeled as a double pendulum [38–40].

The contributions of this paper are as follows: We present a control configuration with
a PD controller embedded in a MPC controller to transport a double pendulum swinging
free and smoothly. The double pendulum is a highly nonlinear and unstable multi-body
solid. The PD controller is used for quadrotor attitude control while the MPC pursues
the precise translational control that tries to minimize the oscillations of the payload. The
considerations of the shocks of the two mass particles represent a big challenge for the
motion control of the quadrotor. The control strategy is validated in a parabolic ascending
trajectory of the quadrotor, comparing the proposed MPC-PD controller against a PD-PD
controller that tackles quadrotor path tracking, but not pendulum swing minimization.

The article is structured as follows: The dynamic modeling of the quadrotor and the
pendulum is described in Section 2. In Section 3, the control strategy developed in this
work is detailed. The experiment and results to test the efficiency of this approach are
reported in Section 4. Finally, conclusions are presented in Section 5.

2. Dynamic Modeling of the System

Figure 1 shows a schematic model of the quadrotor transporting a double pendulum.
In this system, the suspended load system consists of two mass particles m1 and m2
connected by massless straight-line links of length l1 and l2 which support forces only
along the link, and it is suspended from a single point in the center of the quadrotor. The
double pendulum links describe angles θ1 and θ2 in the plane XZ. In next subsections, the
dynamic modeling of the quadrotor and the double pendulum are going to be described.

Figure 1. Schematic representation of the drone and double pendulum system in the considered (XZ)
coordinate system for double pendulum swing.



Appl. Sci. 2021, 11, 5487 4 of 15

2.1. Double Pendulum System

The highly nonlinear dynamics of double pendulums are still of interest to scientists [41].
Transportation of a payload by a hook attached to the quadrotor corresponds to this double
pendulum paradigm, where the hook is the first mass and the payload the second [40].
Figure 1 shows the experimental setup, where the bars of the pendulum are assumed
massless. The equations describing the coordinates of the double driven pendulum masses
are given in Equation (1), where x0 and z0 represent the quadrotor instantaneous position,
and the rest of coordinates refer to the absolute position of every punctual mass. In order
to simplify computation, in this paper we will work in 2D, i.e., over the X− Z plane:

x1 = x0 + L1 sin(θ1)

z1 = z0 − L1 cos(θ1)

x2 = x1 + L2 sin(θ2)

z2 = z1 − L2 cos(θ2)

(1)

A computer algebra program was used to infer the equations for θ̈1 and θ̈2 in terms
of
(
θ̈1, θ̈2

)
= f

(
θ1, θ2, θ̇1, θ̇2

)
. The resulting equations are omitted due to its big size. The

dynamics of the double pendulum are summarized in Figure 2, where T1 and T2 are the
tension of the first and second link, respectively. Thus, the tension affecting the quadrotor
is T1. Applying fundamental results of Applied Mechanics, we can deduce the dynamic
equations expressed in the horizontal and vertical coordinates given by Equation (2):

m1 ẍ1 = −T1 sin θ1 + T2 sin θ2

m1z̈1 = T1 cos θ1−T2 cos θ2−m1g (2)

m2 ẍ2 = −T2 sin θ2

m2z̈2 = T2 cos θ2−m2g

Again, with the help of an algebraic manipulation program, we derive the equations
for T1 and T2, which we omit here for reasons of space. We can consider the quadro-
tor+slung load system as an quadrotor with bounded disturbances. Specifically, we
take into account the Z and X projections of T1, namely T1X and T1Z, for use in the
following subsection.

Figure 2. Forces in the double pendulum system.
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2.2. Quadrotor Dynamics

The governing equations of the lift and torques generated by the propellers are
as follows:

U1 = b
(

Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4

)
,

U2 = l · b
(
−Ω2

2 + Ω2
4

)
, (3)

U3 = l · b
(
−Ω2

1 −Ω2
3

)
,

U4 = d
(
−Ω2

1 + Ω2
2 −Ω2

3 + Ω2
4

)
,

where U2, U3 and U4 are the roll, pitch and yaw torques, respectively, and Ω2
i is the squared

speed of the i-th propeller, and U1 is the total thrust of the quadrotor. The parameter b and
d are the thrust and drag coefficients, respectively.

Angles φ, θ, and ψ represent the Euler angles referring the Earth inertial frame with
respect to the body-fixed frame of quadrotor (φ, θ and ψ represent the rotation along axis
X, Y and Z, respectively). Equation (4) provides necessary modifications for angular and
linear accelerations (considering that ψ, ψ̇ = 0). IXX, IYY, IZZ are the inertia moments
around the X, Y and Z axis, and m is the mass of the quadrotor. Finally, T1Z, and T1X are
the T1 components in X and Z directions.

ẍ =
cos φ sin θ

m
U1 + T1X

ÿ =
− sin φ

m
U1

z̈ = (cos θ cos φ)
U1

m
+ g + T1Z

φ̈ =
U2

Ixx
(4)

θ̈ =
U3

Iyy

ψ̈ =
U4

Izz

The integration of Equation (4) is calculated with the Euler method. Though the
numerical integration procedure can be critical for highly nonlinear systems, such as
chaotic systems [42], our system is smooth enough to allow for this computationally
cheaper approach. Considering that the control horizon of MPC control for the quadrotor
application is 1s, we have found in the recent literature that Euler provides a good balance
of numerical precision and stability, and quick response for real time applications [43,44].

2.3. Linearization and Discretization of the Model

The system nonlinear model must be linearized around the equilibrium/hover con-
ditions in order to to solve the equations that provide the optimal parameter values of
the linear controllers. For simplification, we keep constant ψ = 0. Using the Linear Time
Invariant discretization model, we can assume that the quadrotor and double pendulum
dynamics can be simplified. We can calculate the first order Taylor series around the
equilibrium point (xeq, ueq) of the nonlinear dynamics of the quadrotor obtaining [45] the
following equation:

xk+1 = Axk + Buk,

yk = Cxk, (5)
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where the xk, uk and yk vectors are the state space, input and output vectors, respectively,
defined as follows:

xk = [ xQ yQ θL1 θL2 ẋQ ẏQ θ̇L1 θ̇L2 ]T , (6)

uk = [ f φre f θre f ]T , (7)

yk = [xQ yQ θL1 θL2 θ φ]T . (8)

The linearization is developed around an equilibrium point at which the quadrotor and
the slung load system can hover on a specific position (x, y, z). Thus, f = mg + (m1 +m2)g,
where m1 and m2 is the mass of the pendulum particles as shown in Figure 1. We have that
the equilibrium conditions translate into:

φre f = θre f = 0, (9)

and the equilibrium vectors result in:

xeq = [ xQ yQ 0 0 0 0 0 0 ]T , (10)

ueq = [ mg + (m1 + m2)g 0 0 ]T . (11)

3. Control System
3.1. MPC-PD Control Configuration

The control configuration we use in the quadrotor and double pendulum system is
shown in Figure 3. For generalization purposes, variables that are not used in the actual
experiment are also included, such as Y axis or ψ angle. For reproducibility purposes we
have published our code in (http://www.ehu.eus/ccwintco/uploads/3/36/MPC-double-
pendulum.zip accessed on 7 June 2021).

• The PD controller computes the quadrotor torques and lift in Equation (4). It consists
of four decoupled Single Input Single Output (SISO) PD circuits, each in charge of
one of the four degrees of freedom (z, φ, θ and ψ). The PD equation is a discrete time
controller, where the error derivative is obtained with the division of two consequent
error in time and the chosen time increment. The main equation of the PD control is
shown next:

u(t) = KPe(t) + KD
de(t)

dt
, (12)

where e(t) is the difference between the desired value of each degree of freedom
(denoted by subindex d) and the actual value in each discrete moment. KP and KD are
the gain of the proportional and derivative terms, respectively.

• The MPC block is in charge of computing the desired attitude angles minimizing
the payload swing (zd, φd, θd and ψd). MPC is a class of advanced process control
methods [46] which computes the optimal control parameters of the system in finite
window of time, denoted the control horizon, and then applies the first step in this
control horizon. The process goes on moving the control horizon one step ahead.
The algorithm minimizes a cost function, consisting of the error between the output
and desired tracking state, subjected to some constraints. Our MPC controller is
designed over a discrete-time state space linear time-invariant (LTI) system, the
linearization of the double pendulum dynamic system described in Section 2.3. We
apply a Kalmann filter for the prediction of the states in the control horizon, thus we
have a Robust MPC, that has shown promising results in highly nonlinear quadrotor
related applications [47,48].

http://www.ehu.eus/ccwintco/uploads/3/36/MPC-double-pendulum.zip
http://www.ehu.eus/ccwintco/uploads/3/36/MPC-double-pendulum.zip


Appl. Sci. 2021, 11, 5487 7 of 15

Figure 3. MPC-PD Control Configuration of the System.

Our cost function will be the minimization of the difference between the quadrotor
position and the desired trajectory and the minimization of the control inputs, thus resulting
in Equation (13):

J = (xN−x∗N)
T Pm(xN−x∗N) +

N−1
∑

i=0
[(xi−x*

i )
TQ(xi−x∗i ) + uT

i Rui], (13)

where the control horizon is denoted by N. The terminal state and its desired state are
denoted by xN and x∗N . Pm is the weighting matrix for the motor states. Finally, the
reference state is denoted by x∗i . The minimization function is subjected to the linearized
dynamics of the double pendulum and the quadrotor:

xk+1 = Axk + Bkuk , (14)

with state and control constraints:

xi ∈ X; ui ∈ U. (15)

The system matrices A ∈ R8×8, B∈ R8×3 and C ∈ R6×8, and are not reproduced here
due to their large size. The control input constraints are defined as follows

− 10 ≤ θre f ≤ 1, (16)

− 10 ≤ φre f ≤ 10, (17)

umin ≤ uk ≤ umax, (18)

Finally, Q ∈ R8×8 and R ∈ R3×3 are the weighting matrices and their values are set
as follows:

Q = diag[( 50 50 100 100 1 1 10 10)], (19)

R = diag[(1 104 104)] . (20)

Robust MPC Using Kalmann Filter for State Prediction

A Kalmann filter is used for the prediction of the system state within the control
horizont in MPC. It is included in the MPC block in the control configuration of Figure 3.
A Kalmann filter is an optimal estimator which ‘filters’ noisy/uncertain measurements ob-
tained from a system governed by noisy LTI dynamics, such as described in Section 2.3. The
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Kalmann filter assumes that the process and measurement noise have a normal distribution
with zero mean. It consists of two phases: a time update step given in Equation (21)

x̂−k = Ax̂k−1 + Buk
P−k = APk−1 AT + Q

, (21)

and a measurement update step (Equation (22)).

Kk = P−k CT(CP−k CT + R)−1

x̂k = x̂−k + Kk(yk − Cx̂−k )
Pk = (I − KkC)P−k

. (22)

The tuning parameters in a Kalmann filter are matrices Q and R, which model the
uncertainty in the measurements. The inclusion of a state estimator of Kalmann filter, adds
to the simplicity of our MPC an extra layer of robustness [46,49,50] that has shown its
efficiency in quadrotor related applications [51,52].

3.2. PD-PD Configuration

This PD-PD configuration will just count with the ability of path planning and will
dispense with pendulum swing rejection. Therefore, this control configuration uses not
linearized dynamic equations, described in Section 2. In this case, we get an outer PD in
order to calculate the desired angles of the quadrotor, and next, the inner PD loop computes
the necessary torques for the quadrotor as in the MPC-PD controller described above. The
complete control circuit is shown in Figure 4. The equations to calculate the desired angles
are specified in Equations (23) and (24). In Equation (24), x, z refer to the real position
of the quadrotor, while xd, zd are the desired position in the assigned trajectory. Their
derivatives are obtained by the numerical integration of them. The values of proportional
and derivative terms will be detailed in the experiment. φd = − arcsin

(
uz ·m
U1

)
θd = arcsin

(
uxm

U1 cos φ

) , (23)

{
ux = ẍd + KD1(ẋd − ẋ) + KP1(xd − x)
uz = z̈d + KD1({żd − ż) + KP1(zd − z)

, (24)

This control configuration is the benchmark that we will use in our experiment to
compare against the results of the proposed MPC-PD controller.

Figure 4. PD-PD control configuration of the system.
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4. Experimental Results
4.1. Experimental Setting

A computational experiment based on accurate simulations of the system has been
carried out in order to test the efficiency and validity of the model. We compare our
MPC-PD control proposal with PD-PD control configuration. The simulation experiment
was carried out using a discretization of the time variable and all the simulations cover a
time of 32 s, including the transient state of the experiment. The time increment used to
compute simulation steps is 0.01 s. Experiments have been coded in house in Matlab. The
MPC control horizon is 1 s and the selected integration step is 0.1 s. This is, the control
horizon consists of 10 steps.

Dynamic parameters of the quadrotor are assumed as in Table 1. Initial angles of
the drone are set to 0. Inner-loop PD controller parameters are computed as described
in [53]. For experiments in this paper are set as follows: KP = 130 and KD = 39, which
are the same for MPC-PD and PD-PD control configuration. In the case of PD-PD control
configuration, KP1 and KD1 values are set to 0.25 and 1.6, respectively. Thrust of the drone
is limited by hardware to 20 N. Drone starting coordinates in the XZ plane are (0, 0).

The control efficiency to follow a path and adjust correctly the quadrotor parameters
for the minimization of the double pendulum swing is going to be tested. A parabolic path
was planned for the quadrotor to follow. The quadrotor is carrying a double pendulum
and both systems are joined by an ideal punctual link. Table 2 gives the parameter setting
of the double pendulum. The equation of the parabolic path is z = 2x− 0.066 · x2. This
parabolic path introduces tangential inertial forces affecting the double pendulum that are
not considered in [40]. Double pendulum dynamics during take-off maneuvers from the
ground is not considered. Initial values of the pendulum θ1 and θ2 are set to 0.

Table 1. Quadrotor dynamic parameters.

Parameter Value

mass, m 1 kg
arm length, l 0.25 m

inertia moments, Ixx = Iyy 5× 10−3 [Nms2]
inertia moment, Izz 1× 10−2 [Nms2]

propeller thrust coefficient, b 3× 10−6 [Ns2]
drag, d 1× 10−7 [Nms2]

Table 2. Driven double pendulum data.

Parameter Value

m1, m2 0.3 kg
L1, L2 0.5 m

4.2. Results

The visual comparison between planned path and the path actually followed by the
simulated quadrotor and double pendulum are shown in Figures 5 and 6 for the MPC-PD
and the benchmarking PD-PD control systems, respectively. As can be seen, the MPC-PD
system achieves highly precise path-following, while the path followed by the PD-PD
control system is quite irregular. Figure 7 shows the swing angle of the bottom pendulum
mass, θ2, along the time of the path achieved by the MPC-PD control system. The maximum
value is θ2 = 0.23 rads. Figure 8 shows the evolution in time of θ2 under the PD-PD control
system. Its maximum value is θ2 = 0.61 rads. Thus, we achieve a three fold reduction of
the double pendulum swinging in the simulated trajectory conditions.

Due to the lack of performance of PD-PD control configuration, in the following we
focus on the MPC-PD controller. Figure 9 plots the variation in time of the vertical tension
of the first component of the double pendulum, that is, T1Z, which represents the tension
of the cable attached to the quadrotor and supporting the combined weight of the two
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particle masses, m1 and m2. Finally, Figure 10 plots the orientation of the quadrotor θ along
the simulation time. As we can see, it falls within the maximum and minimum limits
defined in Section 3. The quadrotor adopts a changing pitch angle orientation, so that it can
compensate the swing of the double pendulum, converging to a stationary hover attitude
at the end of the experiment.

Figure 5. Path planned (green) and followed (blue) by the quadrotor in XZ plane under control of
the MPC-PD control system.

Figure 6. Path planned (green) and followed (blue) by the quadrotor in XZ plane under control of
the PD-PD control system.
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Figure 7. Swing angle θ2 of the second pendulum along time achieved by the MPC-PD control system.

Figure 8. Swing angle θ2 of the second pendulum along time achieved by the PD-PD control system.

Figure 9. Vertical tension T1 of the first pendulum under MPC-PD control.
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Figure 10. Quadrotor θ angle along time under MPC-PD control.

5. Conclusions

A system composed of a quadrotor and a double pendulum is a highly nonlinear
dynamical system which represents a big challenge to achieve a smooth and precise
control performance. The proposed MPC-PC control configuration approach aims to
dampen the swing of the double pendulum by the precise and smooth control of the drone
orientation. Transporting the pendulum with the least possible oscillations, we can avoid
large perturbations affecting the quadrotor and the aggressive increase or decrease of the
horizontal and vertical positions of the loads relative to the quadrotor.

The experiment reported in this article validates the proposed control approach for
the transportation of a driven double pendulum. Including a comparison against a PD-PD
control system configuration. The MPC-PD proposal achieves a three fold reduction of
the double pendulum swinging angle. The experiment proved that the quadrotor under
MPC-PD control is capable of following the assigned path, despite the variability of T1Z
and T1X. The navigation control is robust enough to stick close to the parabolic planned
trajectory (Figure 5). We considered that the most easily perturbable pendulum mass was
m2, and thus, in Figure 7 we can see that the maximum oscillation has a maximum of about
0.23 rads, and rapidly converges to 0. This stability of the driven double pendulum can
also be observed in Figure 9, where T1Z is plotted. As each pendulum mass weights 0.3 kg,
we see that the vertical component of tension of the cable attached to the drone holds
6N along the whole trajectory, which means that T1X force is almost null and therefore, it
encourages the navigation stability of the drone along the path. Therefore, the design of the
MPC described in Section 3 proves to be capable of achieving both the swing-free trajectory
and the precise navigation along the planned path. Finally, in Figure 10, we can see that
the quadrotor manages the double pendulum swing rejection by some compensations in
the heading angle, θ. Since we start with the pendulum masses vertically alienated, i.e.,
θ1 = θ2 = 0, the beginning of the advance of the quadrotor forces the pendulum swing
backwards due to inertia, which is compensated by the quadrotor by reducing its heading
angle till it overcomes the transient starting regime and thus, making the two pendulum
masses swing slowly forward.

In the recent bibliography suggested by the reviewers, we found a quite recent work
dealing with the control of a double pendulum transportation, while trying to amortiguate
the double pendulum swing [38–40]. Specifically, they use classical PID controllers to
handle this problem. Contrary to our proposed MPC-PD approach, PIDs can neither
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include system constraints, nor they can benefit from the robustness of Kalmann filtering.
Experimental results in [38–40] are quite interesting and we plan future work in order to
reproduce their with our MPC-PD control approach. Further work would be directed to
test the adaptive behaviour in aggressive maneuvers and include interactions with physical
walls for the payload, such as collisions or taking offs.
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