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Abstract

This paper compares the performance of three different time-varying betas that have never

previously been compared: the rolling OLS estimator, a nonparametric estimator and an

estimator based on GARCH models. The study is conducted using returns from the Mexican

stock market grouped into six portfolios for the period 2003-2009. The comparison, based

on asset pricing perspective and mean-variance space returns, concludes that GARCH based

beta estimators outperform the others when the comparison is in terms of time series while

the nonparametric estimator is more appropriate in the cross-sectional context.
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1 Introduction

Precise estimates for market betas are crucial in many financial applications including asset

pricing, corporate finance and risk management. From a pricing perspective, the empirical

failure of the unconditional Capital Asset Pricing Model (CAPM) has led to two possible

ways of relaxing restrictive assumptions under the model being considered: The first is the

use of an intertemporal framework, as in Merton (1973), that implies multiple sources of

systematic risk. The ad-hoc three-factor model of Fama and French (1993) and the four-

factor model of Carhart (1997) are successful examples of multifactor models. The second

is to eliminate the static context in the relationship between expected return and risk by

allowing time variation in both factors and loadings. In that sense, Jagannathan and Wang

(1996), Lettau and Ludvigson (2001) and Petkova and Zhan (2005) find that betas of assets

with different characteristics move differently over the business cycle and Campbell and

Vuolteenaho (2004), Fama and French (1997) and Ferson and Harvey (1999) show that

time-variation in betas helps to explain anomalies such as value, industry or size. However,

this conditional time-varying framework does not seem to be enough to improve the weak

fit of the CAPM, as shown by Lewellen and Nagel (2006). The main problem in beta

dynamics literature is that the investor’s set of conditioning information is unobservable and

consequently some assumptions have to be made. There are two main alternatives: making

assumptions about the dynamics of the betas or making assumptions about the conditional

covariance matrix of the returns.

For the first alternative, many different structures have been considered. There are

studies that assume standard stochastic processes driving the dynamics of betas, such as
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random walk, autoregressive, mean reverting and switching models. Some examples can

be found in Wells (1994), Moonis and Shah (2003) and Mergner and Bulla (2008). Other

studies use parametric approaches based on Shanken (1990), in which betas are modeled

as a function of state variables or firm characteristics as in Jagannathan and Wang (1996),

Lettau and Ludvigson (2001) and Santos and Veronesi (2004). More recently state-varying

betas have also been nonparametrically estimated by Ferreira et al. (2011). Betas have also

been assumed as a function of time, with both linear and parabolic functional forms, as

in Lin et al. (1992) and Lin and Lin (2000). Nonetheless neither empirical estimation nor

simulation results can produce a clear conclusion about the best way to model betas. If

no parametric functions are specified and no additional conditions are assumed except that

betas vary smoothly over time, then the seminal work of Fama and MacBeth (1973) suggests

the use of a rolling window ordinary least squares (OLS) estimation of the market model.

This data-driven approach has the advantage of no parameterisation but requires the prior

selection of the window length. More recently, but based on the same idea, other estimators

in the family of recursive least squares have been considered. In this sense, time-varying

conditional betas have been nonparametrically estimated by Esteban and Orbe (2010), Li

and Yang (2011) and Ang and Kristensen (2011) assuming that betas vary smoothly over time

and possibly nonlinearly. The flexibility of this nonparametric setting avoids the problem

of misspecification derived from selecting a functional form but it also requires that window

length be selected. These studies are based on the nonparametric time-varying estimator

proposed first by Robinson (1989) and extended by Orbe et al. (2005) and Orbe et al. (2006).

The second alternative, consisting of making assumptions about the conditional covari-

ance matrix of the returns, relies on the simple parametric approach of ARCH-class models.
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In this context the assumptions under multivariate GARCH (MGARCH) models make it

possible to estimate time-varying betas. In fact, the transmission of volatility between as-

sets is captured by a time-varying conditional covariance matrix whose elements are used

to calculate the beta as a ratio of covariance to variance. As the conditional covariance

matrix is time dependent, the beta obtained will also be time dependent. There has been

a great proliferation of multivariate models with GARCH structures in the last few decades

(see Bauwens et al., 2006 or Silvennoinen and Teräsvirta, 2009 for a survey) and it must be

decided which specific structure is to be used in order to estimate the betas. Some examples

of the use of MGARCH models to estimate time-varying betas can be found in Bollerslev et

al. (1988), Ng (1991), De Santis and Gérard (1998) and more recently in Choudhry (2005)

and Choudhry and Wu (2008), among others.

Given the wide variety of time-varying beta estimates, some papers compare different ap-

proaches. The most common comparison is between GARCH based estimators and Kalman

filter approaches. In general, results indicate that the latter class of estimators performs

better in terms of forecasting ability (Faff et al., 2000, and Choudhry and Wu, 2008). How-

ever, there is no agreement about the best process assumption for beta dynamics. Moreover,

when Kalman filter is compared with estimators in the class of least squares, as in Ebner

and Neumann (2005), the latter outperform the former.

In this paper three alternative methodologies for estimating time varying betas are com-

pared: the well known rolling window OLS estimator, the nonparametric time-varying es-

timator proposed in Esteban and Orbe (2010) and a beta estimator based on a GARCH

process for the conditional covariance matrix of returns. These methodologies are selected

because they avoid the need to impose assumptions about the specific functional form of beta
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dynamics. The main theoretical difference between the OLS and nonparametric estimators is

that the latter has guaranteed consistency if the bandwidth is optimally chosen. In practice,

there is an advantage in using the nonparametric estimator since there are many data-driven

window selection criteria while the OLS estimator uses the rule of the thumb. The GARCH

based beta estimator does not rely on a smoothness assumption but has the advantage of

taking into account the potential conditional heteroscedasticity of the returns. The three

estimation methodologies can be compared because they all imply that beta is the ratio of

covariance to variance. This is not necessarily true when additional sources of risk or other

time-varying estimators are considered. Specifically, the OLS, the nonparametric estimator

with a uniform and a Gaussian kernel, and for the GARCH based estimator the bivariate

BEKK and the bivariate dynamic conditional correlation (DCC) structure are considered.

The analysis is applied to daily returns for the Mexican stock market over the period

between 2003 and 2009. This is a tight market that produces high cross-sectional dispersion

in the sensitivity of individual returns to market returns. This is a desirable characteristic

for the aim of the paper because it makes it possible to analyse the performance of the

estimates in relation to different levels of beta. The sample period also contributes to the

aim of the paper because it includes the recent financial and economic crisis, ensuring enough

time variation in betas. Finally, the data frequency selection seeks to exploit the benefits of

using high-frequency data in measuring systematic risk while avoiding problems of errors in

variables that stem from nonsynchronous trading effects.

The accuracy of the alternative estimators is compared in terms of their usefulness for

asset pricing or portfolio management purposes. The CAPM fit in both time series and cross-

sectional frameworks is analysed and the variance of the minimum variance portfolio that
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results from the use of the different estimators is also compared. Interesting results are found.

On the one hand, GARCH based estimators better reproduce the time series relationship

between individual returns and the market return: the market model is better fitted and

the quadratic sum of Jensen’s alphas is lower. A more detailed analysis reveals that the

gain comes from the improvement in measuring the systematic risk for the stocks with the

lowest and most unstable betas. In fact, GARCH based estimators are the worst when they

are applied to stocks highly correlated with the market. On the other hand, the conditional

heteroscedasticity assumption also seems to have benefits for portfolio diversification since

it is possible to reduce the overall risk of the portfolio if the estimation of individual risks

is based on betas from GARCH models. However, when the aim is to estimate the risk

premium, nonparametric estimators produce more accurate results. In fact, results show

cross-sectional evidence that the CAPM holds only when betas have been estimated with

nonparametric techniques.

The rest of the paper is structured as follows. Section 2 presents the estimation method-

ologies. Section 3 describes the data. Section 4 compares beta estimates descriptively.

Section 5 provides the empirical results regarding the comparison of the beta estimators in

two frameworks: asset pricing and mean-variance portfolio analysis. Section 6 concludes and

the Appendix contains the data information.

2 Methodology

The Capital Asset Pricing Model due to Sharpe (1964) and Lintner (1965) relates the ex-

pected return on an asset to its systematic market risk or beta. This beta is the sensitivity
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of the asset return to changes in the return of the market portfolio. That is, beta is the slope

of the market model:

Rit = αi + βiRmt + uit i = 1, . . . , N t = 1, . . . , T, (1)

where Rit and Rmt are the return on asset or portfolio i and on the market portfolio at time

t, respectively. Commonly, the unknown coefficients in (1) are estimated by OLS applied to

the linear regression for each portfolio.

Under the assumption that these coefficients vary with time, model (1) must be rewritten

as:

Rit = αit + βitRmt + uit i = 1, . . . , N t = 1, . . . , T.

2.1 The rolling OLS beta estimator

As Fama and MacBeth (1973) proposed, one simple way to obtain time series estimates of

betas is by a recursive OLS estimation of the market model. This consists of the minimisation

of a local sum of squared residuals for each portfolio i:

min
(αit,βit)

t−r∑
j=t−1

(Rij − αit − βitRmj)
2, (2)

where r indicates the amount of past observations to be considered at each estimation point.

From the first order conditions of the optimisation problem (2) the rolling OLS estimator is

obtained as:

(α̂it β̂it)
′
ROLL =

(
t−r∑

j=t−1

XjX
′
j

)−1 t−r∑
j=t−1

XjRij i = 1, . . . , N,
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where Xj = (1 Rmj)
′ is the j-th observation of the data matrix and the subscript ROLL

denotes the OLS rolling estimator.

In the empirical application of this estimator, a window of 120 observations for data with

daily frequency is used. The sampling frequency is selected based on the findings of Bollerslev

and Zhang (2002) or Ghysels and Jacquier (2006), who show that high-frequency data result

in a more effective measure of betas than the commonly used monthly returns. Since the

Mexican stock market is tight, a lot of stocks are far from being continuously traded with

the nonsynchronicity effects on beta estimates, so intraday data are discarded. A window

length of 120 days is used. An alternative number of observations was also considered but

it did not alter the main conclusions of the paper2.

2.2 The nonparametric time-varying beta estimator

This estimator is, as before, a recursive least squares estimator. It relies on the assumption

that the unknown time-varying coefficients, αit and βit, are smooth functions (linear or

nonlinear) of the time index. It is derived from minimising a smoothed sum of squared

residuals for a given portfolio i and for a pre-selected smoothness degree hi:

min
(αit, βit)

t−Thi∑
j=t−1

Khi,tj(Rij − αit − βitRmj)
2,

where Khi,tj = h−1
i K ((t/T − j/T )/hi) is a weight function and K(·) is a symmetric second

order kernel. The shape of this kernel determines how past observations are to be weighted.

If a uniform kernel is used all selected past observations are equally weighted but if the

Epanechnikov or the Gaussian kernels are used, larger weights are given to those observations

2Specifically, windows of 90 and 400 days were analysed. Results are available upon request.
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closer to the estimation time point and smaller weights to those farther away in time. The

parameter hi is the bandwidth that controls the amount of smoothness imposed on the

coefficients associated with the ith portfolio. Solving the first-order conditions, the estimator

has the following expression:

(α̂it β̂it)
′
NP =

(
t−Thi∑
j=t−1

Khi,tjXjX
′
j

)−1 t−Thi∑
j=t−1

Khi,tjXjRij i = 1, . . . , N,

where all elements are already defined and the subscript NP indicates the nonparametric

estimator.

Once the smoothness degree hi is fixed, the estimator obtained is consistent with the

standard rate of convergence in nonparametric settings and has a closed form, so neither

iterative methods nor initial values are needed to calculate the estimations. Since the role of

the bandwidth is to determine the amount of smoothness imposed on the betas and therefore

the number of relevant past observations to be taken into account when estimating these

betas, it is crucial to select it adequately in advance. If the bandwidth is large, the sub-

sample of significantly weighted observations is larger, that is, more past observations are

considered relevant in each local estimation. This results in a time series of estimated betas

with little variability due to the high smoothness degree. But if the bandwidth is small the

estimation sub-sample is narrowed and the estimated betas have more dispersion. Different

bandwidths (hi) are allowed for the portfolios in order to capture different possible variations

and curvatures of the betas. In consequence, the sub-sample size used at any estimation time

point is the same when estimating the betas for a given portfolio but can be different for

betas from another portfolio.

In regard to the practical issues of choosing the kernel and the bandwidths, it is well
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known that all kernels are asymptotically equivalent but that this is not the case for the

bandwidth value. An optimal bandwidth is such that it minimises an error criterion in order

to reach a trade off between the squared bias and the variance of the beta estimator. Thus

a small bandwidth leads to a small bias and a larger variance while a large bandwidth leads

to the contrary results. Generally speaking, there are three types of methods for selecting

bandwidths in a nonparametric estimation setting: Leave-one-out techniques, penalised sum

of squared residuals and plug-in methods. Härdle et al. (1988), Härdle (1990) and Wand and

Jones (1995) provide detailed discussions and some practical comparisons of these criteria.

In the context of conditional factor models Ang and Kristensen (2011) and Li and Yang

(2011) propose a bandwidth selection criteria for two-sided kernels: considering symmetric

sub-samples that take into account not only past observations but also future observations.

In this paper, only past observations are taken into account for estimating conditional betas

and the considered data-driven method for selecting the bandwidths simultaneously is based

on the proposal of Esteban and Orbe (2010), where the error is minimised for all regressions

together in order to take into account the relationships between the different bandwidths.

Finally, note that this nonparametric estimator generalises the rolling OLS estimator

since it can be derived as a particular case. If a uniform kernel that weights past observations

equally is considered and hi = r/T is imposed instead of selecting the smoothness degree

using a data-driven method, then the estimations obtained by the two estimators match.

Nonetheless, in this case the estimation does not take advantage of weighting the nearest

observations more highly, and since the value of the bandwidth is possibly not the optimal,

consistency is not guaranteed. In Section 3 the estimation results obtained by a uniform and

a Gaussian kernels are presented, each for its corresponding optimal bandwidth according
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to the selection criteria used. The comparison between the rolling OLS estimator and the

nonparametric estimator using a uniform kernel highlights differences from using the optimal

bandwidth while the comparison with the nonparametric estimator using a Gaussian kernel

is more instructive since weighting past observations is equivalent to using information more

efficiently.

2.3 The time-varying beta estimator based on multivariate GARCH

models.

The literature on financial econometric volatility has provided evidence of fluctuations and

high persistence in conditional variance of asset returns and conditional covariance with

the market return (see Andersen et al., 2010 for a survey). Since market betas are ratios of

conditional covariances and variances, β̂it = ĉovt(Ri, Rm)/v̂art(Rm), if these second moments

are adequately estimated by a multivariate GARCH, then betas are also expected to be

accurate estimators.

The estimation procedure for MGARCH models involves maximising the following log-

likelihood function for each portfolio i:

lnL(θ) = −1

2

T∑
t=1

ln|Hit| −
1

2

T∑
t=1

y′itH
−1
it yit,

where yit = (Rit Rmt)
′ is the vector of dependent variables containing a bivariate vector

of constants, θ is the vector of parameters to be estimated and the specification of the

conditional covariance matrix (Hit) depends on the MGARCH structure considered.

This analysis considers two different MGARCH structures often used in financial litera-

ture: BEKK and DCC. The former is the bivariate BEKK (1,1,1) due to Engle and Kroner
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(1995) and has the advantage that the positive-definite constraint of the conditional covari-

ance matrix is guaranteed by construction. The latter is the bivariate dynamic conditional

correlation specification proposed by Engle (2002), where the conditional covariance matrix

is decomposed into time-varying correlations and conditional standard deviations estimated

using univariate GARCH models.

Once the conditional covariance matrix is estimated, the time-varying GARCH based

beta for portfolio i is calculated as:

β̂l
it =

Ĥ l
i12t

Ĥ l
i22t

l = BEKK,DCC,

where Ĥ l
i12t is the estimated conditional covariance between the ith portfolio returns and

the market returns and Ĥ l
i22t is the estimated conditional variance of the market return for

l = BEKK,DCC conditional covariance matrix structures.

3 Data

This analysis uses daily logarithms of returns on 42 stocks traded on the Mexican Stock

Exchange between January 2, 2003 and December 31, 2009. The data series have been

computed from daily prices taking into account dividends and splits. The sample is selected

on the basis of representative criteria in terms of both market capitalisation and trading

volume. The sample basically coincides with the 35 firms included in the “Índice de Precios

y Cotizaciones” (IPC, hereafter). As the composition of this market index is revised annually,

this gives a total number of 42 firms in the sample period. The proxy for the risk-free asset

is the 28-day maturity Treasury Certificate and data for this proxy are collected from the

Banco de Mexico.
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To show the representativeness of the selected sample, the table in the Appendix provides

the names of the firms selected, their industrial classifications and the percentage of the total

trading volume in pesos on the Mexican Stock Exchange at the end of 2009 accounted for by

each stock. At that time the market comprised stocks issued by 85 firms, with five of them

being non domestic companies. Although the sample only contains half of the firms extant,

it accounts for 95% of the market in terms of trading volume in pesos in 2009, as can be

seen by adding the weights in the last column of the table in the Appendix.3 Moreover, the

firms selected represent all the different industrial categories.

The individual stocks are sorted and grouped into portfolios. Since one of the aims is

to analyse the appropriateness of the estimators in relation to the level and the volatility

of beta, it is important for the sorting criteria to be able to produce sufficiently different

portfolio betas. In that sense, individual betas could be used for sorting and locating stocks

in portfolios. However, this would imply, on the one hand, selecting a beta estimation

methodology first to conduct the analysis of the appropriateness of each estimator. On the

other hand, in subsequent sections asset pricing tests are used for comparing beta estimators

and the results would be subject to the concerns raised by Lewellen et al. (2010). This is

why stocks have been sorted by individual money trading volume. The composition of the

portfolios is updated monthly by using the volume in pesos of the total trades for each stock

during the month and the return of the portfolio is computed daily as the equally weighted

average of the returns on stocks in the portfolio. Thus, Portfolio 1 contains the less liquid

3The same calculation using trading volumes for other years in the sample period gives similar percentages

of representativeness.
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stocks while the most frequently traded stocks are in Portfolio 6.4

Table 1 reports the summary statistics for the return on the six portfolios, on the market

index and on the risk free asset covering the whole sample period. The mean and the

standard deviation are expressed on an annual basis. The beta estimator for each portfolio

and its standard error come from the OLS estimation of the market model using the full

sample period. Finally, the last row reports the average in time and across stocks within

each portfolio of the monthly trading volume in millions of pesos. As can be seen, major

differences in trading volume are observed; Portfolio 6 concentrates a large part of the market

trading and their stocks have 70 times more trading volume than Portfolio 1. These liquidity

differences do not imply differences in portfolio return volatilities, since standard deviation is

similar for all six portfolios, but curiously they produce increasing mean returns ranging from

14% for Portfolio 1 to 29% for Portfolio 6. Thus, it seems that this market does not show

an illiquidity premium. More importantly, betas are monotonously increasing from Portfolio

1 to Portfolio 6 and also have different levels of standard errors. Therefore, the portfolio

formation criterion produces the desirable dispersion in portfolio betas. The distribution of

the returns is negatively skewed for the risk-free asset and all portfolios except the fifth and

the market index, for which the return’s distributions are symmetric at the 5% significance

level. Regarding the kurtosis coefficient, there is a significant positive excess of kurtosis for

all cases except for the risk-free asset, for which the coefficient is negative. Therefore, the

returns are not normally distributed. This is confirmed by the Jarque Bera test.

4The classification has also been drawn up using trading volume in terms of number of shares and the

characteristics of the resulting portfolios are very similar.
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4 Conditional beta estimates

In this section descriptive statistics regarding the five time series beta estimators obtained

by the three considered methodologies are presented and compared. Rolling window OLS

is obtained with subsamples of 120 previous observations for all portfolios and denoted by

ROLL. The nonparametric estimator uses two alternative kernels: the uniform (NP-U) and

the Gaussian (NP-G). The selected bandwidth is 0.1279 for Portfolios 1, 2, 3 and 6 and

0.0896 for Portfolios 4 and 5 when the uniform kernel is used, while for the Gaussian ker-

nel the selected bandwidth is 0.0591 for all portfolios except the fifth, for which is 0.0398.

Therefore, although bandwidths are allowed to vary with portfolios, the data-driven selected

values indicate that betas have the same smoothness degree for most portfolios and hence

the number of relevant past observations is the same. Finally, the two alternative GARCH

specifications produce time series of beta estimates that are denoted as BEKK and DCC.

In the GARCH context the total sample information is used (producing series of 1764 daily

betas) and the estimation method does not weight the observations according to their tem-

poral neighbourhood but according to the conditional heteroscedasticity structure. In order

to provide a homogeneous comparable context, the sample of beta estimates is restricted to

the period between 17th October, 2003 and 31st December, 2009, with a total of 1564 daily

beta estimates for each estimator.

Table 2 presents the mean and the standard deviation of the time series of estimated

betas for each portfolio and for all alternatives considered. The general conclusion is that

all estimation methods produce conditional betas series that move around a very similar

mean value, smaller than the point beta estimate from the market model (see Table 1),
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and differences between estimates are observed in standard deviations. Comparing ROLL

and the NP estimates, it can be seen that the former one has, in general, a smaller mean

but a larger standard deviation, which are similar when different kernels are used. The

comparison between ROLL and GARCH estimates shows that GARCH beta estimates are

more volatile, with BEKK estimates having larger standard deviations and smaller means

than DCC estimates. These results are confirmed in Figure 1 which shows the time series

beta estimates for the two extreme portfolios. Subfigures 1(a) and 1(b) compare ROLL and

NP estimates while Subfigures 1(c) and 1(d) compare ROLL and GARCH based estimates.

All betas move around the same long term mean, the NP methods produce smoother betas

than ROLL and changes in the short term are much more pronounced in estimates from

GARCH structures. In addition, independently of the estimation methodology, mean betas

increase and standard deviations of betas decrease, almost monotonously, from the portfolio

containing the least liquid stocks to the portfolio containing the most liquid stocks.

In order to gain insight into the similarities of different time-varying betas estimates

the average correlations between pairs of conditional beta estimates are computed. Table

3 reports the correlations calculated for each portfolio and then averaged over all of them.

Results indicate that the pattern is very similar for beta estimates based on minimising some

kind of least squares, on the one hand, and for beta estimates from GARCH specifications, on

the other hand. However, the correlation between any of the estimated betas of each group

is much smaller, with the largest value being 0.56795 for the correlation between DCC and

NP-G estimated betas and the lowest 0.40049, for the correlation between BEKK and NP-U

estimated betas. This finding evidences the different consequences that the assumption of

16



the conditional covariance of returns has on the resulting beta estimate.5

Regarding the pattern of the estimated betas for all portfolios, Figure 2 shows the rolling

OLS, the NP with the Gaussian kernel and the BEKK based beta estimators for all six port-

folios. As mentioned above, the volatility of beta estimates decreases and the mean increases

from Portfolios 1 to 6 for all estimation methodologies. Independently of the portfolio, the

most volatile beta estimates are those obtained using the GARCH specification, while the

pattern of beta estimates is smoother and similar among the rolling and nonparametric

estimators.

5 Beta estimator comparison

In this section the accuracy of the different estimators is compared. Since true betas are

not observable, it is not possible to conduct traditional analyses such as the in-sample bias

or the out-of-sample forecasting power for beta estimates. Instead, the comparison is made

in terms of the utility of time-varying beta estimates for two important actual applications:

Asset pricing and portfolio management.

5.1 The asset pricing perspective

This subsection analyses how systematic risk may be assessed more accurately through the

use of one beta estimation methodology or another. For this purpose the simplest asset

pricing framework is considered: the CAPM. It must be pointed out that this exercise

5Similar results are obtained in Faff et al. (2000) when comparing Kalman filter and GARCH based beta

estimators.
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does not set out to test the CAPM -the point is not whether the model is misspecified or

not- and that the analysis presented here could easily be extended to a multi-factor asset

pricing model. However, this model offers a simple way of looking at the expected positive

relationship between returns and systematic risk that any underlying investor’s preferences

would imply. In that sense, a beta estimate is more accurate if it is able to improve this

relationship.

Next, two different settings for the comparison are considered. The first is based on time

series analysis and the second on cross-section analysis.

5.1.1 Time series analysis

The first comparison between beta estimates relies on the appropriateness of the factor model

representation. That is, for each portfolio, the different beta estimates are compared in terms

of fit for the market model. Since time-varying coefficients are estimated, R-squared statistics

are not necessarily bounded and they cannot be comparable. Instead, the return variance

explained by the market model, V R1 = var(R̂i)/var(Ri), is used as a measure of goodness

of fit, and the return variance that the model fails to explain, V R2 = var(ûi)/var(Ri), as a

measure of the estimation error.6 It must be pointed out that the computation of R̂it and

ûit requires estimates for parameter αit and BEKK and DCC models do not provide them.

In these cases, an estimation of αit is obtained from the average of the market model where

the time variation comes from each daily beta estimate:

α̂l
it = R̄i − β̂l

itR̄m i = 1, . . . , N t = 1, . . . , T l = BEKK, DCC,

where R̄i and R̄m are the mean returns on portfolio i and the market portfolio, respectively.

6These measures are used in Ferson and Harvey (1991) and Harvey et al. (2002), among others.
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Table 4 shows the values of V R1 and V R2 criteria for each portfolio and each estima-

tor. Results for the two measures are very similar when the ROLL and NP estimators are

compared, since both estimators are based on the use of recursive least squares. In general,

ROLL estimates show a larger fit (larger V R1) but also a larger estimation error (larger

V R2). This finding could be due to the bandwidth size. Since the number of past relevant

observations that the method uses is smaller for the rolling OLS than for the NP, the smooth-

ness degree imposed is lesser and in consequence the estimated betas have a smaller bias but

a larger variance. Looking at the results overall, it can be concluded that the market model

is better explained when beta estimates come from GARCH models. The only exception

is Portfolio 2, where NP-G produces the lowest V R2. Finally, comparing the criteria when

the two GARCH specifications are used the conclusions are not clear, since results differ

depending on the portfolio and the fit measure.

The second comparison within this time-series framework employs Jensen’s alphas as a

measure of the error adjustment of the model. The Jensen’s alpha associated with each beta

estimator is computed for each portfolio and period as the difference between the observed

return and the estimated return:

α̂J
it = (Rit −Rft)− β̂it (Rmt −Rft) i = 1, . . . , N t = 1, . . . , T,

where Rft represents the risk-free rate.

The quadratic sum of these alphas is calculated as a measure of the model misspecification

which allows a comparison to be made between different estimation methods. A large value

of the quadratic sum of alphas indicates a poor specification of the model since the estimated

returns differ greatly from the observed returns. Table 5 reports this measure. The bottom

19



row shows the total sum for all portfolios. It can be seen that beta estimates from GARCH

models produce the lowest alphas for four out of the six portfolios, which implies the lowest

values for the quadratic sum of alphas aggregating all portfolios. Specifically, the DCC

estimator presents the lowest errors for Portfolios 1 and 5 while BEKK is the best at reducing

errors for Portfolios 3 and 4. However, the two GARCH estimators are the worst when pricing

Portfolios 2 and 6. Finally, in accordance with the results provided in Table 4, for Portfolio

2 the lowest errors are associated with the NP-G estimator.

In order to learn whether the differences observed in Table 5 are relevant for each port-

folio, a pairwise comparison of Jensen’s alphas, in absolute values, associated with two beta

estimators is conducted by the Wilcoxon signed rank test. Table 6 reports the median

difference between the two series of alphas expressed on an annual basis. For example, a

comparison of ROLL and NP-U in Portfolio 1, -0.00319 indicates that if the ROLL beta

estimate is used the pricing error is 0.319% lower, in terms of annual returns, than if the

NP-U estimate is used. The number in parenthesis is the p-value for the test of the null

that this median difference is zero. Observation of results for all portfolios reveals a small

number of significant differences in absolute alphas. The most notable case occurs for Port-

folio 1. Results for this portfolio indicate that DCC performs better than any of the other

estimators. This beta estimator produces a pricing error of approximately 1% lower than

any estimator based on least squares. As expected, the median pricing difference, although

statistically significant, is lower than with the BEKK estimator. In contrast, the DCC esti-

mator produces significant, higher errors than ROLL, NP-G or BEKK beta estimators when

pricing Portfolio 6. For the rest of the portfolios, the only notable conclusion is that NP-G

performs better than ROLL.
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Therefore, the analysis of Jensen’s alphas gives a general conclusion: It seems that the

conditional heteroscedasticity structure helps in estimating time-varying betas for assets

with market betas highly volatile; however this structure is not useful when the relationship

between the return on the asset and the market return is relatively stable.

5.1.2 Cross-sectional analysis

In this subsection the estimators are compared in terms of the market risk premium implied

by the different estimated betas. Under rational expectations there should be a positive

relationship between expected returns and systematic risk cross-sectionally. For this purpose,

the simple CAPM framework is used. The model may of course be misspecified but this is

not a limitation since the positive relationship between market betas and expected returns

could be justified under any other investors preference assumption.

Using the Fama and MacBeth (1973) methodology, the following cross-sectional regression

is estimated for each day in the sample period:

Rit −Rft = γ0t + γmtβit + eit i = 1, . . . , N, (3)

where the beta is approximated by each of the five beta estimators considered. A reasonable

beta estimator should produce a positive, significant market risk premium and the more

precise the above cross-sectional relationship is, the more accurate the beta estimator is.

Additionally, since excess returns are used as dependent variable, an intercept statistically

equal to zero indicates a good model fit.

The results from the Fama-MacBeth estimation of the model are presented in Table

7. This table reports the estimates of the intercept and the market risk premium (x102),
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their t-statistics for individual significance and the corresponding Shanken (1992) adjusted

t-statistics. The left panel of the table shows the results when daily portfolio returns and

betas are used in the estimation of (3) and running one regression each day. The right panel

provides the results when monthly returns and the beta estimator corresponding to the last

day of the previous month are used to reduce the excessive noise that daily observations

could introduce into this cross-sectional analysis. In this case, the number of regressions is

75 corresponding to the number of months in the period analysed.

Intercepts are non-statistically different from zero and market risk premia are positive

for all beta estimates and the two data frequencies. However, differences in the value and

significance of the risk premia are observed for different beta estimators. In both panels,

the best results are obtained for the two non-parametric estimators. At daily frequency,

these are the only cases in which risk premia are significantly positive at the 10% level. The

results for the monthly frequency are still more conclusive. Risk premia associated with NP

beta estimators are positively significant at the 5% level while risk premium values and the

standard errors for ROLL and GARCH structures are similar and not significant.

Thus, the results of this analysis indicate that nonparametric time-varying beta estimates

are better at capturing the cross-sectional dispersion in mean returns. This suggests, on the

one hand, that the size of the window and the right weighting matters since these are the

only differences between NP-U and ROLL estimators. Therefore, an optimal mechanism for

choosing the bandwidth is important. On the other hand, the high volatility in the GARCH

based betas seems to have a negative effect on the stability of the relationship between

systematic risk and mean returns. And then, for estimating the price of risk, methodologies

based on smoothness mechanisms are more appropriate for the prior estimation of systematic
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risk.

5.2 Portfolio management analysis

An important application of betas is their use in portfolio management. Since individual

betas are part of the variance of a portfolio, the power of prediction of the different beta

estimators can be studied by analysing whether the purpose indicated in the portfolio con-

struction criterion is achieved in the next period.

For each of the estimation methodologies considered, betas for all six portfolios are taken

in order to obtain an estimation of the next period covariance matrix, which can then be

used to obtain the composition of the overall minimum variance portfolio. Thus, the beta

estimators are compared by analysing the variance of the resulting portfolio.

Specifically, according to the market model, for a given month s the covariance matrix

of a set of N asset returns is:

Σs = σ2
msBsB

′
s +Ds,

where σ2
ms is the variance of the market return, Bs is an N -vector of individual betas and Ds

is an N × N matrix of the idiosyncratic variance-covariances, all them measured in month

s. The variance of the market return is estimated using daily returns within month s; beta

estimates on the last day of month s − 1 are used as predictors of elements of Bs; and Ds

is estimated as the residual covariance matrix from the market model consistent with these

beta estimates employing daily returns within month s:

D̂s =
1

Td

Û ′
sÛs,
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where Ûs is a Td × N matrix containing the residuals ûisd = Risd − α̂is−1 − β̂is−1Rmsd for

i = 1, . . . , N , d = 1, ...Td, where Td is the number of days in the month s and s = 1, . . . , S

with S being the number of months in the sample.

The portfolio formation criterion consists of investing in the minimum variance portfolio

which implies choosing the portfolio weights (ωs) that solve the following problem:

Min ω′
sΣsωs

s.t. ω′
s1 =1

This optimisation problem is solved for each month and each beta estimate, then the daily

return of the minimum variance portfolio is computed for all the days in the month and its

variance is recorded. The most successful beta estimator should lead to portfolios with the

lowest variance.

Table 8 provides the results for the comparisons of pairs of series of the variance of

the minimum variance portfolio conducted via the Wilcoxon median test. For each pair of

estimates, the median difference between the two variance series and the p-value for the null

that this difference is zero are reported.

The results are quite conclusive: in between 70% and 90% of the months the GARCH

based beta estimators produce lower variances than estimators based on least squares, and

this difference in variance has a high value on the median and is clearly significant. Thus, for

the purpose of risk hedging in portfolio decisions, beta estimates from autoregressive condi-

tional heteroscedasticity assumptions are superior to methods that do not assume structure

on variance-covariance returns. Finally, when ROLL and NP estimators are compared the

differences in the resulting variance portfolio are not so big but NP-G is significantly bet-

ter than rolling OLS with both the standard selection of the window size and the optimal
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window size.

6 Conclusions

This paper compares the performances of three time-varying beta estimators for the market

model that have never previously been compared with one another homogenously: the rolling

window OLS estimator, a nonparametric estimator and the time-varying beta estimator from

a GARCH structure for the conditional variance of the errors of the market model. These

three methodologies were selected out of all the different estimation possibilities because

they maintain the beta definition: the ratio of the covariance between the return on an asset

and the market return and the variance of the market return. It is important to note that

a multivariate model and other methodologies that require parametric assumptions about

beta dynamics may disturb this definition. In this sense, any potential advantages of each

estimator over the others can be easily identified. The nonparametric estimator allows the

optimal window length to be chosen while the GARCH based estimator has the advantage

of taking into account the return’s conditional heteroscedasticity.

Specifically, both uniform and Gaussian kernels are used for the nonparametric estimator

and DCC and BEKK models are considered in the GARCH specifications. Therefore, five

beta estimates are obtained for each of the six portfolios of daily returns for the Mexican

stock market in the period 2003-2009.

The analysis is conducted under two frameworks: an asset pricing perspective that as-

sumes the CAPM and the mean-variance space for returns. In the first case the accuracy

of beta estimates is analysed using different measures of the time-series fit of the model
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and looking at the cross-sectional relationship between mean returns and market betas. In

the mean-variance context, the forecasting power of different beta estimates is obtained by

comparing the results of the minimum variance portfolio.

The comparison of the different estimators gives a clear message. GARCH based beta

estimators are more volatile, which improves the fit of the market model for all portfolios.

In fact, the conditional heteroscedasticity structure on the return errors especially improves

the estimation of time-varying betas for those assets with highly volatile market betas. As

a result, for the purpose of risk hedging, beta estimates from GARCH assumptions are

superior, as the minimum variance portfolio analysis shows.

Nonetheless, nonparametric time-varying beta estimates are better at capturing the cross-

sectional dispersion in mean returns while the high volatility in GARCH based betas has

a negative effect on the stability of the relationship between systematic risk and mean re-

turns. Consequently, in estimating the price of risk, methodologies based on smoothness

mechanisms are more appropriate for the prior estimation of systematic risk.

Given the different conclusions are obtained depending on whether returns are analysed

in a time-series or in a cross-sectional setting, one possible improvement could be to propose

a new estimator that combines the advantages of both these estimators, i.e. an estimator

that imposes smoothness on the betas and simultaneously takes into account the conditional

heteroscedasticity structure on the return errors. Future research will be based on this idea.
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Appendix

Description of Individual Stocks

Ticker Firm Name Sector Trading

Volume

AMX-L América Móvil Telecomunications/Services 23.22

TELMEX-L Teléfonos de Mexico Telecomunications/Services 3.49

TELINT-L Telmex Internacional Telecomunications/Services 2.09

TELECOM-A1 Carso Global Telecom Telecomunications/Services 1.89

AXTEL-CPO Axtel Telecomunications/Services 1.84

TLEVISA-CPO Grupo Televisa Telecomunications/Radio and Television 3.33

TVAZTCA-CPO TV Azteca Telecomunications/Radio and Television 1.07

ICH-B Industrias CH Materials/Steel 0.21

SIMEC-B Grupo Simec Materials/Steel 0.17

GMEXICO-B Grupo Mexico Materials/Metals and Mining 7.65

AUTLAND-B Compañ́ıa minera Autland Materials/Metals and Mining 0.12

CEMEX-CPO Cemex Materials/Construction 4.63

MEXCHEM Mexichem Materials/Chemical Products 0.93

ASUR-B Grupo Aeroportuario del Sureste Industrials/Transportation 0.87

GAP-B Grupo Aeroportuario del Paćıfico Industrials/Transportation 0.50

OMA-B Grupo Aeroportuario del Centro Norte Industrials/Transportation 0.15

GEO-B Corporación Geo Industrials/Construction 1.73

URBI Urbi Desarrollos Urbanos Industrials/Construction 1.40

HOMEX Desarrolladora Homex Industrials/Construction 1.39

ICA Empresas ICA Industrials/Construction 1.33

IDEAL-B1 Impulsora del Desarrollo y el Industrials/Construction 1.11

Empleo en América Latina Construction

ARA Consorcio Ara Industrials/Construction 1.10

SARE-B Sare Holding Industrials/Construction 0.06

ALFA-A Alfa Industrials/Capital Goods 1.43

GCARSO-A1 Grupo Carso Industrials/Capital Goods 1.02

LAB-B Genomma Lab Internacional Health/Medicine Distrib. 1.50

BOLSA-A Bolsa Mexicana de Valores Financial Services/Financial Markets 0.24

GFNORTE-O Grupo Financiero Banorte Financial Services/Financial Groups 2.04
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GFINBUR-O Grupo Financiero Inbursa Financial Services/Financial Groups 1.07

COMPART-O Banco Compartamos Financial Services/Commercial Banks 0.79

WALMEX-V Wal-Mart de Mexico Consumer Staples/Hypermarkets 13.22

COMERCI-UBC Controladora Comercial Mexicana Consumer Staples/Hypermarkets 0.07

KIMBER-A Kimberly-Clark Mexico Consumer Staples/Household Products 1.06

BIMBO-A Grupo Bimbo Consumer Staples/Food 1.00

GRUMA-B Gruma Sab de C.V. Consumer Staples/Food 0.51

FEMSA-UBD Fomento Económico Mexicano Consumer Staples/Beverages 5.82

GMODELO-C Grupo Modelo Consumer Staples/Beverages 1.70

ARCA Embotelladoras Arcas Consumer Staples/Beverages 0.54

KOF-L Coca-cola Femsa Consumer Staples/Beverages 0.07

ELEKTRA Grupo Elektra Consumer Discret./Retails 1.28

GFAMSA-A Grupo Famsa Consumer Discret./Retails 0.50

SORIANA-B Organización Soriana Consumer Staples/Hypermarkets 1.01

Notes:

For each stock this table reports the name of the ticker, the corresponding firm, its industrial classification

and the proportion for which each stock accounts in the total volume in Mexican pesos traded on the stock

market at the end of 2009.
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Table 1: Summary Statistics of Returns and Beta Estimates

Port. 1 Port. 2 Port. 3 Port. 4 Port. 5 Port. 6 IPC TC

Mean 0.1401 0.2062 0.3263 0.2053 0.2404 0.2914 0.2366 0.0496

Std. Dv. 0.2634 0.2182 0.2370 0.2662 0.2579 0.2719 0.2310 0.0006

Skewness -0.5418 -0.5357 -0.1317 -1.4388 -0.0451 -0.1263 0.1023 -0.2892

Excess Kurtosis 5.2145 3.6191 7.5339 29.5635 5.6639 5.0603 5.3426 -0.4960

JB (×103) 2.0848 1.0470 4.1769 64.8480 2.3585 1.8867 2.1010 0.0426

Beta 0.6523 0.6949 0.7958 0.9027 0.9667 1.1059

(std. err.) (0.022) (0.015) (0.015) (0.017) (0.013) (0.009)

Volume (million) 119.874 298.962 497.886 817.236 1682.89 8280.50

Notes :

This table presents the summary statistics for the daily returns on 6 portfolios where stocks

are sorted by trading volume, the market index (IPC) and the risk-free asset (TC) returns for

the period between January 2, 2003 and December 31, 2009. Means and standard deviations

are on an annual basis. Beta is the OLS estimate from the market model and its standard

error is shown bellow in parentheses. Volume indicates the average over time and across

stocks in each portfolio of the monthly trading volume expressed in millions of Mexican

pesos.
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Table 2: Summary Statistics of Beta Estimates

Port. Statistic ROLL NP-U NP-G BEKK DCC

1 Mean 0.64306 0.64418 0.64356 0.63208 0.63859

Std. Dv. 0.21544 0.15340 0.17320 0.29100 0.22748

2 Mean 0.69788 0.68721 0.69150 0.71146 0.73322

Std. Dv. 0.13793 0.09058 0.10527 0.15658 0.13397

3 Mean 0.75433 0.75913 0.75943 0.74916 0.78374

Std. Dv. 0.11777 0.08998 0.10166 0.13661 0.12069

4 Mean 0.82728 0.82880 0.82879 0.80581 0.84891

Std. Dv. 0.15181 0.14398 0.13860 0.16433 0.15550

5 Mean 0.91797 0.91952 0.91949 0.91076 0.92989

Std. Dv. 0.11253 0.10464 0.11301 0.14380 0.12329

6 Mean 1.07423 1.07515 1.07530 1.07224 1.07493

Std. Dv. 0.06711 0.05676 0.06013 0.06877 0.08035

Notes :

This table presents summary statistics for time series of portfolio beta estimates that are

daily in frequency and cover the period between October 17, 2003 and December 31, 2009.

Portfolios are constructed by sorting stocks by trading volume in pesos such that Portfolios 1

and 6 contain the least and the most liquid stocks, respectively. ROLL indicates the rolling

120-day window OLS, NP-U and NP-G refer to the nonparametric beta estimates using

uniform and Gaussian kernels, respectively, and BEKK and DCC refer to beta estimates

computed using covariances and variances from BEKK or DCC GARCH models.
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Table 3: Average Correlations of Alternative Beta Estimates

ROLL NP-U NP-G BEKK DCC

ROLL 1 0.87181 0.95698 0.48085 0.51768

NP-U 1 0.92973 0.40049 0.44023

NP-G 1 0.52510 0.56795

BEKK 1 0.83994

DCC 1

Notes :

This table presents average correlations between pairs of conditional beta estimates for the

period between October 17, 2003 and December 31, 2009. Correlations are calculated for

each portfolio and averaged over all of them. ROLL indicates the rolling 120-day window

OLS, NP-U and NP-G refer to the nonparametric beta estimates using uniform and Gaussian

kernels, respectively, and BEKK and DCC refer to beta estimates computed using covariances

and variances from BEKK or DCC GARCH models.
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Table 4: Model Fit Criteria

Port. Crit. ROLL NP-U NP-G BEKK DCC

1 VR1 0.35305 0.32071 0.33601 0.41067 0.39818

VR2 0.64917 0.65419 0.64650 0.63800 0.63676

2 VR1 0.56155 0.51100 0.53289 0.61597 0.58320

VR2 0.44636 0.44984 0.44371 0.46298 0.45917

3 VR1 0.60847 0.57303 0.59854 0.63702 0.64128

VR2 0.38480 0.38834 0.38279 0.37247 0.37605

4 VR1 0.63827 0.63492 0.62377 0.66514 0.72413

VR2 0.37584 0.37499 0.37398 0.35524 0.36889

5 VR1 0.78174 0.77337 0.78270 0.80586 0.79655

VR2 0.24562 0.24510 0.24412 0.24012 0.23905

6 VR1 0.88501 0.87285 0.88357 0.88993 0.89473

VR2 0.11092 0.11007 0.11026 0.10964 0.11106

Notes :

This table presents the return variance explained by the market model, VR1, and the return

variance that the model fails to explain, VR2, for each portfolio in the period between

October 17, 2003 and December 31, 2009. Portfolios are constructed by sorting stocks by

trading volume in pesos such that Portfolios 1 and 6 contain the least and the most liquid

stocks, respectively. ROLL indicates the rolling 120-day window OLS, NP-U and NP-G refer

to the nonparametric beta estimates using uniform and Gaussian kernels, respectively, and

BEKK and DCC refer to beta estimates computed using covariances and variances from

BEKK or DCC GARCH models.
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Table 5: Quadratic Sum of Jensen’s Alphas

Portfolio ROLL NP-U NP-G BEKK DCC

1 0.2787 0.2801 0.2777 0.2740 0.2734

2 0.1381 0.1391 0.1375 0.1442 0.1428

3 0.1406 0.1415 0.1400 0.1370 0.1382

4 0.1775 0.1771 0.1774 0.1696 0.1763

5 0.1074 0.1074 0.1068 0.1063 0.1058

6 0.0542 0.0541 0.0540 0.0542 0.0549

Sum 0.8964 0.8993 0.8934 0.8854 0.8913

Notes :

This table reports the quadratic sum of daily Jensen’s alphas from October 17, 2003 to

December 31, 2009 from the CAPM for each portfolio and each alternative estimator. The

sum for all portfolios appears in the last row. ROLL indicates the rolling 120-day window

OLS, NP-U and NP-G refer to the nonparametric beta estimates using uniform and Gaussian

kernels, respectively, and BEKK and DCC refer to beta estimates computed using covariances

and variances from BEKK or DCC GARCH models.
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Table 6: Comparison of Jensen’s Alphas in Absolute Values. Median Test

Portfolio 1 Portfolio 2

NP-U NP-G BEKK DCC NP-U NP-G BEKK DCC

ROLL -0.00319 -0.00010 0.00753 0.01149 ROLL -0.00126 0.00074 0.00551 0.00320
(0.14) (0.44) (0.16) (0.01) (0.18) (0.18) (0.27) (0.30)

NP-U 0.00460 0.00754 0.01134 NP-U 0.00233 0.00744 0.00306
(0.00) (0.03) (0.00) (0.00) (0.05) (0.09)

NP-G 0.00447 0.00718 NP-G 0.00482 0.00373
(0.24) (0.02) (0.38) (0.29)

BEKK 0.00329 BEKK -0.00197
(0.02) (0.79)

Portfolio 3 Portfolio 4

NP-U NP-G BEKK DCC NP-U NP-G BEKK DCC

ROLL 0.00299 0.00141 0.00421 0.00201 ROLL 0.00090 0.00119 -0.00093 -0.00162
(0.29) (0.02) (0.05) (0.17) (0.02) (0.02) (0.69) (0.92)

NP-U 0.00022 0.00362 0.00220 NP-U 0.00053 -0.00046 0.00079
(0.52) (0.08) (0.18) (0.12) (0.75) (0.97)

NP-G 0.00210 0.00068 NP-G -0.00062 -0.00306
(0.15) (0.31) (0.90) (0.56)

BEKK 0.00048 BEKK 0.00214
(0.62) (0.99)

Portfolio 5 Portfolio 6

NP-U NP-G BEKK DCC NP-U NP-G BEKK DCC

ROLL 0.00028 0.00118 0.00298 0.00735 ROLL 0.00063 0.00001 -0.00371 -0.00259
(0.41) (0.04) (0.43) (0.10) (0.78) (0.35) (0.09) (0.04)

NP-U 0.00023 -0.00004 0.00455 NP-U 0.00018 -0.00135 -0.00255
(0.19) (0.49) (0.15) (0.47) (0.30) (0.07)

NP-G -0.00001 0.00486 NP-G -0.00182 -0.00231
(0.64) (0.16) (0.11) (0.02)

BEKK 0.00105 BEKK -0.00187
(0.79) (0.00)

Notes :

This table shows the results of the Wilcoxon signed rank test comparing a pair of Jensen’s

alpha series obtained from the CAPM using alternative estimators. ROLL indicates the

rolling 120-day window OLS, NP-U and NP-G refer to the nonparametric beta estimates us-

ing uniform and Gaussian kernels, respectively, and BEKK and DCC refer to beta estimates

computed using covariances and variances from BEKK or DCC GARCH models. Alphas

are daily in frequency, from October 17, 2003 to December 31, 2009, with absolute values on

an annual basis. For each pair, the median difference and in parentheses the corresponding

p-value for the null of equal median are reported.
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Table 7: Cross-Sectional Estimation

Daily frequency Monthly frequency

γ0 γ1 γ0 γ1

Estimate 0.0101 0.0821 0.4088 1.6655

ROLL t-stat. 0.181 1.251 0.320 1.502

Adj. t-stat. 0.181 1.250 0.311 1.459

Estimate -0.0045 0.1012 -0.2203 2.3191

NP-U t-stat. -0.081 1.568 -0.181 2.210

Adj. t-stat. -0.081 1.566 -0.176 2.147

Estimate -0.0054 0.1045 -0.0386 2.1628

NP-G t-stat. -0.098 1.601 -0.031 1.955

Adj. t-stat. -0.098 1.599 -0.030 1.898

Estimate 0.0329 0.0566 0.9704 1.1540

BEKK t-stat. 0.615 0.891 0.847 1.196

Adj. t-stat. 0.614 0.890 0.823 1.161

Estimate 0.0462 0.0436 0.4642 1.6817

DCC t-stat. 0.852 0.671 0.410 1.682

Adj. t-stat. 0.851 0.670 0.398 1.634

Notes :

This table shows the results of the cross-sectional estimation of the CAPM for all alternative

estimators. ROLL indicates the rolling 120-day window OLS, NP-U and NP-G refer to the

nonparametric beta estimates using uniform and Gaussian kernels, respectively, and BEKK

and DCC refer to beta estimates computed using covariances and variances from BEKK

or DCC GARCH models. The Fama and MacBeth methodology is applied to the period

from October 17, 2003 to December 31, 2009. The left panel shows daily data (1564 cross-

sectional regressions) and the right panel shows monthly returns and the beta estimation for

the last day of the previous corresponding month (75 cross-sectional regressions). For each

risk premium, the estimate (×102), its t-statistic and the corresponding Shanken-adjusted

t-statistic are reported.
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Table 8: Out of Sample Variance Comparison for the Global Minimum Variance Portfolio

x/y NP-U NP-G BEKK DCC

% x > y 48.00 70.67 76.00 77.33

ROLL Median (×104) -0.3820 0.8594 5.4509 4.7913

p-value 0.2767 0.0009 0.0000 0.0000

% x > y 73.33 82.67 90.67

NP-U Median (×104) 1.0738 7.2178 3.9241

p-value 0.0001 0.0000 0.0000

% x > y 78.67 78.67

NP-G Median (×104) 4.3094 3.3413

p-value 0.0000 0.0000

% x > y 42.67

BEKK Median (×104) -0.5491

p-value 0.7077

Notes :

This table shows the results of the Wilcoxon signed rank test when comparing a pair of series

of estimated variances of the minimum variance portfolio obtained by alternative estimators.

Specifically, the percentage of cases for which x produces higher variance than y, the median

differences between the variances and the p-value for the null that this difference is zero are

reported. ROLL indicates the rolling 120-day window OLS, NP-U and NP-G refer to the

nonparametric beta estimates using uniform and Gaussian kernels, respectively, and BEKK

and DCC refer to beta estimates computed using covariances and variances from BEKK or

DCC GARCH models.
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Figure 1: Rolling Beta Estimates vs Alternatives
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(d) ROLL vs GARCH (Portfolio 6)

Notes :

This figure shows the rolling beta estimates versus the estimates obtained with the other

two estimation methods for Portfolios 1 and 6. ROLL indicates the rolling 120-day window

OLS, NP-U and NP-G refer to the nonparametric beta estimates using uniform and Gaussian

kernels, respectively, and BEKK and DCC refer to beta estimates computed using covariances

and variances from BEKK or DCC GARCH models. Portfolios are constructed by sorting

stocks by trading volume in pesos such that Portfolios 1 and 6 contain the least and the

most liquid stocks, respectively.
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Figure 2: Alternative Beta Estimates for all Portfolios
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(b) Portfolio 2
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(f) Portfolio 6

Notes :

This figure shows the beta estimates using alternative estimators for Portfolios 1 to 6. ROLL

indicates the rolling 120-day window OLS, NP-G refers to the nonparametric beta estimates

using a Gaussian kernel and BEKK refers to beta estimates computed using covariances

and variances from a BEKK model. Portfolios are constructed by sorting stocks by trading

volume in pesos such that Portfolios 1 and 6 contain the least and the most liquid stocks,

respectively.
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