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Abstract
This thesis presents solutions to the control problems that exist nowadays in
industrial presses, followed by a discussion of the most appropriate control
schemes that may be used for their solution. Iterative Learning Control is
subsequently analyzed, as the most promising control scheme for machine
presses, due to its capability to improve the performance of a system that
operates repeatedly.

A novel Iterative Learning Control design is presented, which makes use of
the dynamic characteristics of the system to improve the current controller
performance and stability. This, results in an adaptation of the presented Iter-
ative Learning Control design to two use cases: the single-input-single-output
force control of mechanical presses and the multiple-input-multiple-output
position control of hydraulic presses. While existing Iterative Learning Con-
trol approaches are also described and applied to the previously mentioned
use cases, the presented novel approach has been shown to outperform the
existing algorithms in terms of control performance.

The proposed Iterative Learning Control algorithms are validated in an
experimental hydraulic test rig, in which the performance, robustness and
stability of the algorithm have been demonstrated.

Although the presented Iterative Learning Control algorithms have been
proved in industrial presses, the design methods that are addressed in this
thesis can be applied in many other industrial systems, which make the con-
tributions proposed in this thesis be transferable to other actual problems.
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Resumen
Esta tesis presenta soluciones a los problemas de control que existen hoy en
día en las prensas industriales, seguida de una discusión de las técnicas de
control más adecuadas que se pueden emplear para su solución. Posterior-
mente, se analiza el Control por Aprendizaje Iterativo, como la técnica de
control más adecuada para las prensas industriales, debido a su capacidad
para mejorar el rendimiento de un sistema que opera repetidamente.

Se presenta un nuevo diseño de Control por Aprendizaje Iterativo, que hace
uso de las características dinámicas del sistema para mejorar el rendimiento
y la estabilidad del controlador. Se presentan dos casos de uso para la
validación del diseño de control propuesto: el control de fuerza de entrada
única, salida única de prensas mecánicas y el control de posición de entrada
múltiple, salida múltiple de prensas hidráulicas. Si bien también se explican
los métodos de Control por Aprendizaje Iterativo existentes hoy en día,
también se aplican dichos métodos a los dos casos de uso mencionados
anteriormente. Se ha demostrado que el diseño propuesto en esta tesis
supera a los algoritmos existentes en términos de rendimiento de control.

Los algoritmos de Control por Aprendizaje Iterativo propuestos se validan en
un banco de pruebas hidráulico, en el que se ha demostrado el rendimiento,
la robustez y la estabilidad de los algoritmos.

Si bien los algoritmos de Control por Aprendizaje Iterativo presentados han
sido probados en prensas industriales, los métodos de diseño que se abordan
en este trabajo se pueden aplicar en muchos otros sistemas industriales, lo
que hace que los aportes propuestos en esta tesis sean transferibles a otros
problemas reales.
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Laburpena
Tesi honek gaur egun prentsa industrialetan topa ditzakegun kontrol-arazoei
irtenbideak aurkezten dizkie. Horren harira, horiek konpontzeko erabil
daitezkeen kontrol teknika egokienak eztabaidatzen dira lanean zehar. On-
doren, Ikaskuntza Iteratiboaren Kontrola aztertzen da etorkizun handiko
kontrol teknika bezala, modu errepikakor batean funtzionatzen duen sistema
baten errendimendua hobetzeko duen gaitasunagatik.

Ikaskuntza Iteratiboko Kontrolaren diseinu berri bat aurkezten da, sistemaren
ezaugarri dinamikoak erabiltzen dituena egungo kontroladorearen errendi-
mendua eta egonkortasuna hobetzeko. Honen ondorioz, aurkeztutako
Ikaskuntza Kontrol Iteratiboaren diseinua bi erabilera-kasuetara egokitzen
da: prentsa mekanikoen sarrera bakarreko-irteera bakarreko indar kon-
trolerako eta prentsa hidraulikoen sarrera anitzeko-irteera anitzeko posizio
kontrolerako. Orain arte bibliografian proposatu diren Ikaskuntza Kontrol It-
eratiboaren teknikak lehen aipatutako erabilera-kasuetara ere aplikatzen dira.
Kontrol-errendimenduari dagokionez, tesi honetan aurkeztutako Ikaskuntza
Kontrol Iteratiboaren diseinuak lehendik dauden algoritmoak gainditzen
dituela frogatzen da. Proposatutako Ikaskuntzaren Kontrol Iteratiboaren
algoritmoak banku hidrauliko esperimental batean balioztatu dira, non algo-
ritmoen errendimendua, sendotasuna eta egonkortasuna frogatu diren.

Aurkeztutako Ikaskuntzaren Kontrol Iteratiboaren algoritmoak prentsa indus-
trialetan frogatu badira ere, tesi honetan jorratzen diren diseinu-metodoak
beste industria-sistema askotan aplika daitezke. Honek balioztatzen ditu tesi
honetan proposatzen diren ekarpenak, beste arazo batzuetara transferitu
daitezkeelako.
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Introduction
1

„Sometimes I’ll start a sentence and I don’t
even know where it’s going. I just hope I find
it along the way.

— Michael Scott
(The Office)

1.1 Motivation
In the context of metal forming, press machines have been used for decades
to transform a piece of metal into any form or shape. Indeed, as industry au-
tomation has grown, most production lines have made use of press machines,
as their quick processing and easy maintenance make them ideal for mass
production.

Nowadays, modern press machines manufacturers face increasingly chal-
lenging specifications as, for the best economy in press operations, the press
should have as high accuracy as possible during the working operation. The
high accuracy must be preserved during the force application of the press to
the workpiece, where a specific force has to be provided to guarantee the
correct forming of the workpiece.

If a press controller cannot meet the workpiece design requirements, this
inevitably will lead to higher costs and longer lead-times, as the workpiece
would have to be discarded. However, providing a fully functional press
controller that satisfies every design requirement, will often result in high
productivity and growth for businesses due to the technology improvement.

At this point, is where the control challenge arises. The force applied to the
workpiece varies extremely fast, due to the high speeds involved in the press
operation, which requires fine-tuned controllers to be able of controlling
the force correctly. In order to control the force applied to the workpiece,
a feedback controller and the pressure feedback are commonly used in the
press operation. Feedback controllers generally provide good response in
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rejecting slow disturbances, however, when the disturbance is very fast, the
controller is not effective as the disturbance is faster than the controller can
respond, which could cause a considerable force overshoot, not satisfying the
force requirements.

The feedback controller is well known in industry, and many engineers are
trained in their use. While it is easy to design and tune for simple applications,
for more challenging tasks, its tuning turns cumbersome and laborious. In
press machines, the tuning of the feedback controllers is carried out in the
commissioning. This process could take several weeks, as the press operator
must ensure that the press specifications are fulfilled for the entire operating
envelope.

Furthermore, if the workpiece design is modified during the press operation,
the feedback controller tuning should be modified accordingly, starting the
commissioning process from scratch, as the controller performance could no
longer be suitable. One can imagine how delicate this process could turn,
and would think of an alternative control that reduces the commissioning
time of the press and that adapts automatically to every workpiece design
scenario.

When proposing a new control method for the industry, however, one should
be cautious, as there exist a number of requirements that need to be satisfied
before it is implemented. As any controller oriented to industry, it should
most likely be implemented in an industrial controller and it must fit into
a programming environment of a suitable programmable logic controller
(PLC). This means that the control scheme complexity and the real-time
computation power will be limited. Furthermore, the industry is usually
reluctant to new control methodologies, which could bring complexity to
their daily routine. Removal of the well-known and easy-to-tune feedback
controller may not be easy to accept.

Therefore, it is necessary to propose a controller that goes along with the
feedback controller, easy to tune, with a light computation burden and, above
all, capable of improving the existing control performance and fulfilling the
control specifications.

Iterative Learning Control (ILC) techniques have been successfully imple-
mented to solve a wide variety of industrial control-engineering problems,
e.g. mechanical systems such as robot arm manipulators, chemical processes
such as batch reactors, as well as rotatory systems such as synchronous
motors [1]. When such systems are operated repeatedly, ILC can improve
the systems’ performance from one iteration to the next.

2 Chapter 1 Introduction



ILC is known for its structural simplicity, as its implementation is an enhance-
ment of the feedback controller, not a replacement. It is attractive to industry
as its commissioning can be carried out without requiring expert knowledge
by the operator, always guaranteeing its stability and good performance.

Press machines are ideal for ILC, as they perform the same task over and
over again during their production. The considerations above lead to the
following statement:

What can the press control system learn and obtain from the repeated
task to improve the performance of the control systems?

Through this thesis we will demonstrate how ILC can help us to improve the
performance of press machines, and show that they can be more competitive
with the help of machine learning.

1.2 Objectives

This thesis provides solutions to the control problems that can be found in
the everyday operation of mechanical and hydraulic presses. Although both
presses are aimed at the forming of workpieces, their operation is different
and, therefore, their control challenges differ as well.

On the one hand, in mechanical presses, in order for the companies to pro-
vide the best solution for the production of high volumes of workpieces, the
force control requirements must be fulfilled accurately. These specifications
typically relate to the maximum force peak allowed in the hydraulic circuit
and the settling time of the force signal. Through the thesis we show that
when the customer sets too demanding specifications, the fulfillment of them
with the press actual feedback controllers turns into a laborious task. There-
fore, in order to satisfy every specification set by the customer, we propose to
combine the actual feedback controllers with an extra feed-forward signal,
based on ILC. Making use of the repetitive behavior of mechanical presses,
the ILC algorithm will learn which input signal will be adequate to fulfill the
desired specifications.

The proposed ILC algorithm should be simple, in the terms of ease of mainte-
nance and reliability. Furthermore, the required time to learn the optimal
input is of great importance. The learning should be as fast as possible, so
the commissioning time of the controller is reduced, which translates into a
reduction of the production costs.

1.2 Objectives 3



On the other hand, in hydraulic presses, the control challenges arise in the
position control. Typically the position control is carried out with predefined
control signals to the actuators, which have been previously tested for a
specific position trajectory. However, when the position trajectory is modified,
due to variations in the workpiece design or hydraulic modifications, the
predefined signals have to be calculated from scratch. This is a tedious task
that takes a great amount of time. Furthermore, while the new signals are
being designed the hydraulic press is inoperative, reducing the benefits.

We propose to automate the position control based on the ILC algorithm.
However, this control approach differs from the force control in mechanical
presses, as in order to provide accurate position control two variables will
need to be controlled with two different actuators, yielding a multiple-input-
multiple-output (MIMO) control. In the same way as in the force control
problem, we need to guarantee algorithm simplicity while providing fast
learning. Therefore, the challenge remains to design a stable and fast MIMO
ILC algorithm for the hydraulic presses.

1.3 Research outcomes

Regarding the scientific contributions generated during the research, the
following list displays the articles that have been published and include
contributions of the author.

(a) Trojaola I., Elorza I., Irigoyen E., Pujana A., Calleja C. (2020) Iter-
ative Learning Control for a Hydraulic Cushion. In 14th Interna-
tional Conference on Soft Computing Models in Industrial and En-
vironmental Applications (SOCO 2019), Sevilla. Advances in Intel-
ligent Systems and Computing, vol 950. Springer, Cham. https:
//doi.org/10.1007/978-3-030-20055-8_48

(b) Trojaola I., Elorza I., Irigoyen E., Pujana A., Calleja C. (2019) Hydraulic
Press Commissioning Cost Reductions via Machine Learning Solutions.
10th EUROSIM Congress on Modelling and Simulation Logroño, La
Rioja, Spain.

(c) Trojaola, I., Elorza, I., Irigoyen, E., Pujana-Arrese, A., & Calleja, C.
(2020). The Effect of Iterative Learning Control on the Force Control of
a Hydraulic Cushion. Logic Journal of the IGPL. https://doi.org/10.
1093/jigpal/jzaa056
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(d) Trojaola, I., Elorza, I., Irigoyen, E., Pujana-Arrese, A., & Calleja, C.
(2020). Iterative Learning Control and Gaussian Process Regression
for Hydraulic Cushion Control. IFAC-PapersOnLine, 53(2), 1421-1426.
https://doi.org/10.1016/j.ifacol.2020.12.1909

(e) I. Trojaola, I. Elorza, E. Irigoyen, A. Pujana-Arrese and G. Sorrosal, "An
Innovative MIMO Iterative Learning Control Approach for the Position
Control of a Hydraulic Press," in IEEE Access, vol. 9, pp. 146850-
146867, 2021. https://doi.org/10.1109/ACCESS.2021.3123668

1.4 Organization of the thesis

The thesis is organized in five main chapters. Chapter 1 and 7 are dedicated
to the introduction and conclusions, respectively.

Chapter 2 introduces the existing limitations in the force control of mechani-
cal presses and discusses alternative control approaches in order to improve
it. This lays to a machine learning control proposal based on ILC for the
hydraulic cushion control problem.

Chapter 3 presents a formal definition of ILC applied to the hydraulic cushion
control problem. First, a model-based design to improve the convergence
rate of the ILC is presented, which is accompanied by a graphical analysis
for the algorithm stability. The proposed ILC algorithm is validated under a
nonlinear high-fidelity model of a mechanical press in Matlab/Simulink and
the results are then compared to the most common ILC algorithm used in
the literature.

Chapter 4 introduces the existing limitations in the position control of a
hydraulic press, discussing the actual control approaches used in industry. As
an alternative to the existing hydraulic press control, a new MIMO position
control is proposed, so the hydraulic press operation can be automated
and the position control improved. The proposed control approach is not
straightforward, as the hydraulic press control loops are coupled, therefore
ILC is used to automatically learn suitable control actions.

Chapter 5 introduces the proposed MIMO ILC design for the position control
of hydraulic presses. The same design approach as in Chapter 3 is followed,
however, it is extended to the MIMO case. A new graphical evaluation
approach has been introduced to intuitively analyze the stability condition of
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a MIMO ILC algorithm. The algorithm is validated under a nonlinear high-
fidelity hydraulic press model in Matlab/Simulink, and it is subsequently
compared to the most common MIMO ILC algorithms in the literature.

Chapter 6, shows the experimental implementation of the two ILC algorithms
proposed in Chapters 3 and 5. Two scenarios are presented, a hydraulic test
rig and a Digital Twin platform. In the hydraulic test rig, the ILC algorithms
have been tested under realistic scenarios that can arise in the working
operation of hydraulic and mechanical presses. In the Digital Twin platform,
the ILC algorithm has been tested on a real press controller algorithm under
different conditions.

6 Chapter 1 Introduction



Mechanical press force
control system

2

2.1 Introduction
A mechanical press is a device that translates the rotational force of a motor
into a translational force that performs the pressing operation. A mechanical
press is ideal for fast and quickly repeatable applications of force over a
limited distance, as the momentum generated by the motor allows high-
production rates and accuracy.

Figure 2.1 shows the drawing process of a standard mechanical press. The
major parts are pointed out in the figure: the mechanical slide, the hydraulic
cushion and the die. The slide comprises one or more motors connected
to cranks and connecting rods, or a variety of similar mechanisms, which
move the slide in a typically sinusoidal up-and-down motion. During this
motion, the slide impacts the cushion to aid in the forming of the workpiece,
by regulating the force between some parts of the workpiece and the upper
die, which forces the workpiece against the lower die to give it the desired
shape.

The left picture shows the mechanical press before the working cycle has
begun. The workpiece is placed on the lower die. Both cushion and slide are
placed at the initial position, at the top dead center (TDC). The hydraulic
cylinders of the cushion circuit are completely extended.

The right picture shows the mechanical press once the workpiece forming
operation is finished. The workpiece shape is given by the upper and lower
die parts, and both slide and cushion are at the bottom dead center (BDC).
The hydraulic cylinders of the cushion circuit are completely retracted.

Figure 2.2 shows the typical working operation of a mechanical press. At
the beginning, both slide and cushion start at the TDC. The slide accelerates
and starts the falling motion. At the impact the Drawing phase begins, where
the slide velocity is at its maximum. The main purpose of the cushion is to
control the force between some parts of the workpiece and the upper die,
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Slide

Cushion

Lower Die

Cushion hydraulic 

Workpiece

Upper Die

circuit

Fig. 2.1: Mechanical press drawing, with mechanical slide and hydraulic cushion.

typically to control the slipping of the sheet metal as it is sucked in by the
drawing. When slide and cushion reach the BDC the Drawing phase finishes,
and both slide and cushion are returned to their respective TDC, to start the
next operation.

One of the major concerns over the last years has been to control the cushion
force, necessary for guaranteeing the correct forming of the workpiece. For
the best workpiece forming, the drawing force control should have as fast a
response time and as high an accuracy as possible during the forming of the
workpiece.

A typical hydraulic cushion force control system is shown by Fig. 2.3, which
consists of a single-acting cylinder, a proportional valve and an axial piston
pump. The external velocity into the cylinder rod represents the velocity that
the slide induces on the cushion during the stroke. This velocity is regarded
as an external disturbance, which should be counteracted in order to achieve
precise force control.

The cylinder rod is connected to the cushion and, during the Drawing phase,
as cushion and slide move down together, the piston retracts and the pressure

8 Chapter 2 Mechanical press force control system
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Fig. 2.2: Slide and cushion position and velocity for one press cycle.

inside the cylinder increases. During the retraction the fluid inside the
cylinder chamber is channeled through the proportional valve into the tank,
from port A to port T . By modifying the proportional valve opening ratio,
the pressure inside the cylinder chamber can be regulated, so the desired
pressure is achieved.

The cylinder pressure is the variable to control, as the force can be precisely
calculated by knowing the cylinder chamber area and pressure. Therefore,
although it will be referred to as force control, the pressure inside the cylinder
will be controlled.

We can look at the dynamic equations of the cylinder and the proportional
valve to analyze further the force control problem. The volumetric flow rate
into the cylinder port and the piston motion given by [2] is shown in the
following equation:

qA(t) = AAẋ(t) + (VAd + AAx(t))βṖA(t), (2.1)

where qA(t) is the volumetric flow rate into the cylinder chamber (m3/s), AA

is the cylinder chamber area (m2), x(t) is the piston position (m), VAd is the
cylinder chamber dead volume (m3), β is the hydraulic fluid compressibility
(1/bar) and PA(t) is the pressure in the cylinder chamber (bar).

The hydraulic compressibility is the measure of the amount of fluid volume
reduction when pressure is applied to said fluid. The first term in (2.1)
determines the flow rate change depending on the cylinder velocity. The

2.1 Introduction 9
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Fig. 2.3: Hydraulic cushion force control circuit.

second term determines the flow rate change depending on the total volume
compression at a specific pressure change rate.

The position and velocity in (2.1) are given by the slide movement, and
change continuously during the working operation of the press. Once a
specific constant pressure, PA(t), is obtained in the cylinder chamber, ṖA(t)
will be zero and the volumetric flow rate will be proportional to the velocity.

In the cushion hydraulic circuit shown by Fig. 2.3, the cylinder chamber
pressure can only be controlled by means of the proportional valve. Modifying
the proportional valve spool position the desired PA(t) is obtained, so that
the drawing of the workpiece is carried out correctly.

From Fig. 2.3, the pressure at valve port A will be equal to the cylinder
chamber pressure. In the same way, the flow into valve port A will be equal
to the flow out of the cylinder. Therefore, by controlling the pressure at valve
port A we can control the cylinder pressure. The relationship between the
pressure at the port A and the valve spool position is as follows [2]:

PA(t) = q2
A(t)∆Pref

q2
refKv(yv(t))2 , (2.2)

where yv(t) is the spool position, Kv(yv(t)) is the hydraulic conductance
(m3/(bar · s)), qref is the nominal flow rate of the valve (m3/s) and ∆Pref is
the nominal pressure of the valve (bar).
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∆Pref and qref are included to normalize Kv(yv(t)) between the [-1, +1]
interval. The hydraulic conductance, Kv(yv(t)), is a function of the valve
spool position, yv(t), it is nonlinear and often obtained via empirical tests.

During the Drawing phase, the fluid in the cylinder chamber will be channeled
through the valve to the tank. Assuming that Kv(yv(t)) is linear, i.e. yv(t) =
Kv(yv(t)), from (2.2), if the spool position is decreased the cylinder pressure
will raise, conversely, if the spool position is increased the cylinder pressure
will decrease.

The target cushion force varies depending on the desired workpiece design,
and there exist specifications that need to be fulfilled to ensure a correct
forming process, else the workpiece could get damaged. The common speci-
fications regarding the force control are listed below and shown graphically
by Fig. 2.4. These specifications will be used through the section as a
performance criteria of the designed controllers:

• The force signal overshoot must to be less than 7.5% of the nominal
force of the cylinder.

• The force signal undershoot must to be less than 5% of the nominal
force of the cylinder.

• The force signal must settle within a ±2.5% of the nominal force before
the cushion has descended 40 mm.
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Fig. 2.4: Cushion force specifications during the Drawing phase.

The force specifications depicted above vary depending on the workpiece
design, and are stipulated by the customer. Therefore, it is of great impor-
tance for the press manufacturer to provide a cushion control system that

2.1 Introduction 11



fulfills the specifications set, else the arrangement with the customer could
be lost.

2.2 Traditional hydraulic cushion control

Classical cushion force control relies on PI control, which is widely applied in
industrial applications due to its simplicity and robust performance. However,
the highly nonlinear behavior of the cushion hydraulic systems affects the
performance of the PI controller.

We can analyze the system nonlinearities from the cylinder and valve equa-
tions, (2.1) and (2.2), respectively. Matching the cylinder and valve flow
rates, we can obtain the relationship between the pressure in the cylinder
circuit, the piston velocity and the proportional valve spool position:

ṖA(t) =
Kv(yv(t))qref

√
PA(t)
∆Pref

− AAẋ(t)

(AAx(t) + VAd)β . (2.3)

From (2.3), we can see that the nonlinearities in the system come from
the variables relationship. The relationship between the pressure and its
derivative is quadratic, and Kv(yv(t)) is nonlinear. Furthermore, the position
and velocity that the slide induces on the cushion are sinusoidal and change
continuously, as shown by Fig. 2.2. This results in a continuous pressure
variation and, thus, of the pressure error, which is the input variable into the
PI controller to obtain the desired cylinder pressure.

Before the slide impacts into the cushion, the latter is at a standstill and, on
the impact, the cushion quickly accelerates to the slide’s falling velocity, as
shown by Fig. 2.2. Feedback controllers generally provide good response in
rejecting slow disturbances, however, when the disturbance is very fast, the
controller is not effective as the disturbance is faster than the controller can
respond, resulting in a considerable force overshoot in cushion force control
[3]. Intuitively, in order to get a fast controller response, we would design a
controller with high gains. However, when the controller gain is high, noise
is amplified as well and fed into the system, which could result in system
fluctuations.

We could make use of a PID controller to dampen the controller effort
and stabilize the force signal at the reference sooner. The derivative term
decreases the pressure overshoot but makes the system highly sensitive to
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noise. Indeed, it is the noise sensitivity which makes PID controller not
suitable for the pressure control in hydraulic circuits. On impact, there is an
extremely fast increase in the cylinder chamber pressure with enough noise
to render the derivative of that signal unusable.

The PI controller has to deal with the continuous pressure error variation,
external disturbances, system nonlinearities and different force operating
points, which can result in poor performance. Some authors have defined
different PI controller gains for different operation points [4, 5], however,
the idea of defining PI controller gains for every force, position and velocity
operating point is inconceivable.

Ideally, we would like a fast response controller, so the force reference signal
is reached as fast as possible. However, no matter how much we increase
the controller gains, the velocity and acceleration of the system depend on
the hydraulic compressibility of the circuit, β, which is the ratio at which
a hydraulic fluid volume decreases as a result of a pressure increase. It is
related to the system’s natural frequency which is a function of the inverse of
β, the area of the piston and the volume of the fluid.

Ideally, the natural frequency should be at least three to four times the
required frequency of acceleration i.e. the frequency at which the cylinder’s
piston and load accelerate. The system’s natural frequency is given by the
following formula [2]:

ωn =

√√√√ 4A2
A

VMβ
, (2.4)

where M is the mass of the load (kg) and V is the total volume of oil trapped
between the valve and the piston (m3).

From (2.4), increasing the cylinder area increases the natural frequency of the
cylinder. However, this results in more oil flow rate to pressurize the cylinder
chamber, which increases the time required to reach the force reference.
Furthermore, higher flow rate requires bigger hydraulic components which
usually have worse dynamic behavior. Systems with lower natural frequency
can use smaller components which tend to be cheaper, however it will
be more challenging to control them. Therefore, one must account for a
compromise between system response and circuit dimensionality.

Nowadays, the PI controller tuning process is carried out during the commis-
sioning of the press. In this stage, the plant operators should validate the
press control by ensuring that the specifications defined earlier in the project
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are fulfilled. This is a tedious and time-consuming process that typically
includes several weeks and can involve high costs.

The success of such a controller depends on the fine-tuning of the gains,
which usually depends on the operator’s ability and experience. Depending
on the systems characteristics, it could be challenging to obtain good con-
troller performance, and one may not always be able to find adequate gains.
Furthermore, the performance may as well be poor far from the operating
point.

The incentive to design a controller that fulfills the force control specifications
is, therefore, enormous, since even an efficient control system can achieve as-
tonishing system performance improvements and reduce the commissioning
time considerably.

In the subsequent sections, we give an overview of alternative control ap-
proaches to traditional hydraulic control.

2.3 Feed-forward control of a hydraulic cushion
The velocity that the slide induces on the cushion on and after the impact is
an external disturbance that the PI controller cannot counteract. A common
technique for disturbance rejection is feed-forward (FF) control, which based
on a system model tries to counteract the disturbance before it occurs [6].

Typically the force feedback has been combined with the velocity FF as a solu-
tion to the force control problem. The FF controller relies on comprehensive
system knowledge and accurate modeling so, given an inverse model of the
hydraulic cushion system, it calculates a proportional valve spool position
that rejects the velocity disturbance.

The FF controller design is influenced by model uncertainties, which could
reduce the accuracy of the velocity disturbance rejection. This means that the
FF needs a feedback control loop in order to get accurate tracking [7]. The
FF controller makes the proportional valve open faster to reject the velocity
disturbance while the feedback control loop corrects the small deviations.

FF has already been used in hydraulic systems to improve the control perfor-
mance. In [8], a velocity FF was included in the force control of a hydraulic
system. The FF gain was based on the piston area and the servo-valve
flow gain, from which a spool position proportional to the velocity was ob-
tained. Incorporating the FF controller considerably improved the system
performance.
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A FF controller to counteract the servo valve pressure drop in the working
operation of a shock actuator was designed in [9]. The FF controller signal
was based on the nominal model of the mechanical system with the desired
motion as input and the required servo valve command as output. The FF
controller obtained better performance than the feedback controller.

Other works, such as [10, 11, 12, 13], have also investigated on the use of
FF control in hydraulic systems. However, they are extensions of the works
carried out by [8, 9], in which fuzzy models or robustness against model
uncertainties are incorporated.

In this thesis, in order to reject the slide velocity disturbance into the cushion,
as shown in [8], a velocity FF is designed. To that end, an inverse model of
the hydraulic cushion system is derived to obtain the required relationship
between the velocity and the valve spool position.

The model inverse for the FF controller has to represent the nonlinear rela-
tionship of all the known characteristics of the hydraulic cushion components:
hydraulic cylinder and proportional valve. Using the cylinder and valve equa-
tions, (2.1) and (2.2), respectively, we can obtain the mathematical model
relating the slide velocity to the required valve spool position. Matching the
cylinder and valve flow rates, we get the following inverse model:

Kv(yv(t)) =
 ṖA(t)(VAd + AAx(t))β + AAẋ(t)√

PA(t)


√

∆Pref

qref

. (2.5)

From (2.5) we do not know the value of the pressure derivative ṖA(t). Here
is where we make use of the feedback controller, which, as we have explained
above, supports the FF controller to get accurate tracking. We can set ṖA(t)
to be the output of the PI controller so, if there exist any uncertainties in
the system parameters, the deviation will be corrected by the PI controller
by modifying ṖA(t). Actually, the output of the PI controller will be the
estimation of ˙̂

PA(t), which in general differs from ṖA(t).

From (2.5) we must obtain the spool position, yv(t), so it can be directly
applied to the valve. However, we have the hydraulic conductance, Kv(yv(t)),
as output. Therefore, we need to take the inverse of Kv(yv(t)), so yv(t) is
obtained as an output. Note that, as explained in Section 2.1, we do not
know Kv(yv(t)), the inverse will be just an estimation, K̂−1

v (t). The resulting
FF controller with the ˙̂

PA(t) and K̂−1
v (t) considerations results as follows:
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ŷv(t) = K̂−1
v


˙̂
PA(t)(VAd + AAx(t))β

√
∆Pref√

PA(t)qref︸ ︷︷ ︸
F L

+
AAẋ(t)

√
∆Pref√

PA(t)qref︸ ︷︷ ︸
F F

 . (2.6)

The first term corresponds to feedback linearization (FL) and cancels the non-
linearities in the system to get an equivalent linear system. It will contribute
by correcting the minor errors remaining in the force reference tracking
The second term, which corresponds to FF, eliminates the velocity distur-
bance in the system. When the slide velocity decreases, the FF term will
become smaller and the pressure level will be maintained by the FL term, as
it depends on the PI controller.

In the estimation of ŷv(t), the FL term will not be a significant contributor,
as β is very small, see Appendix C.0.2. Therefore, if there exist any model
uncertainties present in FL, the estimation of ŷv(t) will still be within an
acceptable margin and the deviation will be corrected by the PI controller.
However, the velocity disturbance FF term is large and, if it is not eliminated
correctly, it will cause large overshoot and settling time.

The resulting block diagram with the FF, FL and the PI controllers is shown
on Fig. 2.5.

FLPI
˙̂
PA∑ ∑e

ẋ

-
Pref

ŷv
System

FF

P

Fig. 2.5: Cushion force control block diagram with FF+FL+PI control.

Apart from the velocity disturbance rejection, the FF and FL controllers
insertion in the cushion force control loop, gives an interpretation of how
the PI controller gains should be designed. Consider (2.6), during the force
control, we can define PA(t) to be equal to the desired pressure reference,
Pref , as the pressure signal will be close to the reference. During the Drawing
phase, the piston position will change continuously. However, we can define
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the piston position to be the mean of the total piston stroke length, x̄. As
the piston stroke is very small, by considering x(t) as x̄, there will not be
significant differences.

With the above simplifications in the FF controller design, we can obtain a
simplified model of the cushion force control. Assuming that every system
parameter cancels out with the introduction of the FF and FL controllers, the
cushion force control loop would result as shown by Fig. 2.6.

PI
ˆ̇P∑ e P

-
Pref

∫

Fig. 2.6: Cushion force control block diagram simplified.

After the simplifications with the FF and FL controller, the resulting plant is
an integrator, which relates the PI output with the feedback pressure. With
the PI proportional and integral gains being, KP and KI , respectively, the
resulting closed loop system response is as follows:

P (s)
Pref (s) = KP s+KI

s2 +KP s+KI

. (2.7)

Equation (2.7), leads to an expression we are familiar with to choose appro-
priate PI gains. Indeed, (2.7) is a second order transfer function with natural
frequency ω0 =

√
KI and with damping KP = 2ζω0.

However, in the system simplification we have not considered the system
high-frequency dynamics, just the known dynamics. Therefore, this PI gains
design is only true for frequencies low enough for the system high-frequency
dynamics, such as valve dynamics, to remain negligible. This limitation
effectively sets an upper limit for KI and KP and a lower limit for the settling
time.

With the inclusion of the FF and FL terms, we have established a design
procedure for the PI controller, which is based on the desired damping and
natural frequency. In the FF and FL design we have not included the valve
dynamics as they are unknown. Some authors neglect the effect of these
dynamics [14, 15], however, most studies approximate these dynamics with a
second-order transfer function, depending on the valve natural frequency and
damping coefficient [16, 17, 18]. In the next section, we will analyze how
these valve dynamics affect the performance of the FF and FL controllers.
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2.3.1 Valve dynamics anticipation

From the FF and FL controllers output, we obtain the valve spool position
input. If the design of the FF and FL controllers is correct, the calculated input
will counteract the system’s external velocity disturbance yielding a precise
force control. As explained in the previous section, we have not included the
valve dynamics in the FF and FL design, therefore the velocity disturbance
will not be completely eliminated. The valve dynamics are usually given
by the manufacturer, under different working conditions. In Fig. 2.7, the
valve spool dynamics for a proportional servo valve Bosch Rexroth 4WRTE,
at ∆Pref = 10 bar and qref = 600 lpm are shown.
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Fig. 2.7: Valve step responses.

From Fig. 2.7, if we want the valve to open, for instance, from 0 to 0.5, it
will take around 30ms. These dynamics need to be considered for the FF and
FL controllers input to the valve, as if the valve response time is too slow the
disturbance will not be counteracted. Furthermore, if we are working with
an industrial controller, there will exist communication delays between the
controller and system. According to [19], there exist three communication
delays: communication delay between the sensor and the controller, the
computation delay, and the controller and actuator communication delay.

Ideally, if the valve was infinitely fast and no communication delays between
the controller and the system existed, it would be enough to introduce the FF
and FL signals just when the force signal reaches the reference, as the valve
would open instantly to the spool position commanded by the controller.

In Fig. 2.8 the FF and FL response for a 240 bar step response is shown.
The FF and FL input have been introduced just when the cylinder chamber
pressure signal reaches the reference. The FF signal input opens the valve
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spool instantaneously to attenuate the effect of the velocity disturbance into
the cushion. As described above, the effect of the FL input is smaller than the
FF input. Note that these simulations have been obtained from a mechanical
press model simulation in Matlab/Simulink, which precision and accuracy
will be detailed in Section 3.5.
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Fig. 2.8: FF control for a pressure step reference of 240 bar.

In Fig. 2.8 the overshoot is due to the neglected valve response time. The
maximum opening spool position is reached after the pressure has reached
the specified reference, as it has been pointed out with the circles. If the valve
had been opened sooner, the overshoot would have been reduced. However,
if the valve is opened too soon, we would see the opposite behavior and the
pressure increase would be too slow.

To eliminate the overshoot caused by the velocity disturbance, it is necessary
to consider the valve dynamics and the system communication delays to
obtain the exact instant the FF and FL signals should be introduced. This
instant will be referred to as the pressure percentage (PP).
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The PP calculation is an approximate estimation method of the instant the
FF and FL signals should be introduced, to avoid any overshoot. It is based
on measured system delay communications and modeled valve dynamics.

As shown by Fig. 2.2, the trajectory the press must follow is known before-
hand. Under this assumption, in (2.6) the slide velocity at the impact, ẋ, is
known and with PA defined as the desired pressure reference, an estimation
of ŷv at the impact can be obtained.

Once the value of ŷv at the stroke is obtained, the valve response time, λv, to
that spool position can be calculated based on the valve dynamics shown by
Fig. 2.7. If any communication delays existed they would be added to λv.

The pressure increase that takes place during λv is the overshoot that ex-
ists in the force control. We can anticipate this pressure increase, ∆P , by
introducing the FF signal at Pref −∆P so no overshoot exists in the pressure
reference tracking. To that end, ∆P should be calculated beforehand.

∆P can be computed by means of the isothermal compressibility equation,
which relates the variation of the pressure at a constant temperature with
the change in volume inside a body [20]:

∆P = ∆xAA

VTβ
, (2.8)

where ∆x is the piston displacement during the valve opening delay that
can be computed from the reference trajectory. VT is the total oil volume
between the piston and the proportional valve.

Subtracting ∆P from the pressure reference, Pref , the PP at which the FF
input signal should be introduced is obtained:

PP (%) = Pref −∆P
Pref

100. (2.9)

Consider, for example, the following system parameters: ∆x = 0.0021 m,
AA = 0.0284 m2, β = 1.25 ·10−4 1/bar and Vt = 0.0279 m3. Following (2.8):

∆P = 0.0021 · 0.0284
1.25 · 10−4 · 0.0279 = 17.1 bar. (2.10)

For a 240 bar pressure reference, the following PP is obtained:

PP = 240− 17.1
240 100 = 92.88%. (2.11)
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Introducing the computed ŷv from the FF control at a 92.88% with respect to
the pressure reference, the force control shown by Fig. 2.9 is obtained.
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Fig. 2.9: FF control for a pressure step reference of 240 bar, with the PP calculation
at 92%.

Now, due to the anticipation of the pressure increase, the valve spool is
opened at the exact moment when the pressure signal reaches the reference.
The result is an improved pressure reference tracking.

To analyze the FF and FL performance for the entire pressure operating range,
a 60 bar pressure reference tracking is shown by Fig. 2.10. From equations
(2.8) to (2.9), for 60 bar step reference the FF control must be introduced
at a 71% of the reference. The resulting overshoot is minimum and every
specification are fulfilled.

This calculation is an approximation as it is based on a simplified model of the
valve dynamics and on system communications that can vary considerably.
However, it illustrates the nuances of FF use in the context of hydraulic
actuator force control.
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Fig. 2.10: FF control for a pressure step reference of 60 bar, with the PP calculation
at 71%.

2.3.2 Feed-forward model mismatch

In the previous section, we have analyzed how much the FF performance is
affected by the valve dynamics. In this section, an analysis of the dependency
of the FF controller on the model parameters is carried out.

In the FF controller design, the estimation of K̂−1
v has been included in order

to obtain yv(t) as output. This function is unknown and nonlinear, and its
estimation affects both the FF and FL terms. The slightest model mismatch
in K̂−1

v influences the FF and FL performance considerably.

Kv(yv(t)) relates the calculated valve spool position with the valve command
input. In the simulations carried out in Section 2.3.1, a linear function has
been considered for Kv(yv(t)), i.e. the valve spool position is equivalent to
the valve command input, Kv(yv(t)) = yv(t).

With this consideration, if the valve real Kv(yv(t)) was linear too, K̂v(yv(t))
and Kv(yv(t)) would cancel each other, simplifying the system and obtaining
a precise pressure tracking with the FF and FL controllers.
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However, if the estimation K̂v(yv(t)) and the real valve Kv(yv(t)) differ, it
will affect both the FF and FL terms, resulting in an inaccurate estimation
of ŷv(t). Consider the scenario shown by Fig. 2.11, where the real Kv(yv(t))
has a slight nonlinearity, a -0.2 command input gives -0.16 spool position
and, on the contrary, our estimation, K̂v(yv(t)), is completely linear.
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Fig. 2.11: Scenario where the real Kv(yv(t)) differs from the estimation K̂v(yv(t)).

A slight difference between K̂v(yv(t)) and Kv(yv(t)) results in an inaccurate
reference tracking, with high overshoot and large settling time, as shown by
Fig. 2.12.

If we do not consider the valve nonlinearity in the FF and FL design, a poor
estimation of yv(t) is obtained and the control performance is penalized as
shown by Fig. 2.12.

In order to improve the estimation of K̂v(yv(t)), we can make use of regres-
sion techniques to estimate Kv(yv(t)) and improve the performance of the FF
control. There exist a great deal of machine learning (ML) regression tech-
niques to estimate the value of nonlinear functions such as Kv(yv(t)), e.g.,
Neural Networks [21], k-nearest neighbor [22], support-vector machine [23]
or Gaussian processes [24]. These methods have a common procedure, they
receive multiple pair of input and output values from which they optimize
the function that generates such outputs.

With an good estimation of K̂v(yv(t)) we can correct the input obtained from
the FF controller, and improve the force control. Figure 2.13 shows the re-
sulting force controller diagram after incorporating the Kv(yv(t)) estimation.
After the FF and FL controllers, we include the estimation of the inverse of
Kv(yv(t)), so the controller output is corrected before it is sent to the valve.
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Fig. 2.12: 240 bar pressure tracking and valve spool position for nonlinear
Kv(yv(t)).

FL K̂−1
v (u)PI

˙̂
PA∑ ∑e

-
Pref

yvK̂v
System

FF

P

Fig. 2.13: Cushion force control block diagram with FF and Kv(yv(t)) estimation.

Note that from the FF and FL controllers we obtain K̂v, different to Fig. 2.5,
as in Fig. 2.11 we have defined a Kv(yv(t)) 6= yv(t).

The estimation of Kv(yv(t)) will be as good as the data available, therefore,
the more data under different operating conditions available the better the
prediction will be. To obtain training points for Kv(yv(t)) we apply open-loop
control to the cushion and let the slide be in standstill at the TDC during the
entire cycle.

In open-loop control, when the cushion is at the TDC if we set a valve
constant spool position, the fluid in the cylinder chamber (Fig. 2.3) will be
channeled through the valve to the tank. This results in the cushion falling
at a constant velocity and, in the cylinder chamber the pressure signal will
settle at a constant value until the piston reaches the rod-end.
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The above can be seen setting a -0.2 command input to the proportional valve,
the cushion descends due to its weight at a constant velocity of ẋ = −85.59
mm/s and the chamber pressure settles at PA = 23.1 bar, see Fig. 2.14.
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Fig. 2.14: Valve spool position, cushion velocity and cylinder chamber pressure,
with decoupled slide.

In the same way as in Section 2.3, matching the valve and cylinder volumetric
flow rates in equations (2.1) and (2.2), we can obtain a value for Kv(yv)
from the values obtained in Fig. 2.14. At steady-state conditions the pressure
is constant, therefore, the pressure differential is zero. The expression (2.5)
for Kv(yv) simplifies to:

Kv(yv) =
AAẋ

√
∆Pref√

PAqref

. (2.12)

For AA = 0.0284 m2, ∆Pref = 10 bar and qref = 0.01 m3/s, we obtain
Kv(yv) = −0.16, which is the biased value of the spool position in Fig.
2.11. This procedure is carried out for different valve spool positions, so
training samples at different operating conditions are obtained, to perform
the regression.
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Note that any regression based technique of the ones depicted above could
be used. We do not aim to investigate on the regression method, but to
illustrate the performance benefits of estimating K̂v(yv(t)). Figure 2.15,
shows a regression-based estimation for K̂v(yv(t)).
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Fig. 2.15: K̂v(yv(t)) estimation for the nonlinear case, based on training samples.

We include the K̂v(yv(t)) estimation in the force control loop, as shown by
Fig. 2.13, and perform a 240 bar reference tracking, which is shown by Fig.
2.16.

With the inclusion of K̂v(yv(t)) in the FF and FL design, the overshoot and
settling time of the pressure signal are improved. Now the valve spool
position is not the sum of the FF and FL controllers, as we apply their output
to K̂−1

v (u(t)) before sending it to the valve.

In Fig. 2.17, we show a comparison between the yv(t) with the K̂v(yv(t))
estimation in the FF and FL controllers and without it. With the inclusion
of K̂v(yv(t)), the valve opens faster and more, so the overshoot is elimi-
nated. Furthermore, from t ≈ 2.8s on, the valve closes more than the linear
estimation to keep the pressure around the reference.

As already concluded by [25], for the FF and FL to work, it is necessary to
know every system parameter so that they can be canceled out to obtain
accurate reference tracking. The hydraulic circuits model uncertainties,
complicate the correct application of techniques such as FF and FL.

26 Chapter 2 Mechanical press force control system



2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
200

250

300

P
is

to
n

 C
h

a
m

b
e

r 
P

re
s
s
u

re
 (

b
a

r)

Pressure Reference

Pressure Signal

-2.5% Tolerance

+2.5 Tolerance

2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

Time (s)

-0.2

-0.15

-0.1

-0.05

0

0.05

V
a

lv
e

 S
p

o
o

l 
P

o
s
it
io

n FF input signal

FL input signal

Valve spool position

Fig. 2.16: 240 bar pressure tracking and valve spool position with K̂v(yv(t)) esti-
mation included.
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Fig. 2.17: Valve spool position without considering Kv(yv(t)) nonlinearity, and
considering it.

2.4 Conclusions to Chapter 2

During the working operation of a mechanical press it is of great importance
to fulfill the force control specifications. These specifications ensure the cor-
rect forming of the workpiece and are set by the customer. Not fulfilling the
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specifications can cause serious consequences, from damaging the workpiece
to losing the sale arrangement with the customers.

Nowadays, the force control is carried out with a PI controller, however, the
hydraulic circuit nonlinear behaviors result in poor control performance as
the process deviates from the operating point. The need for advanced control
algorithms that can obtain good force reference tracking is deemed necessary,
so the force specifications can be fulfilled for the entire working range.

Control techniques such as FF control provide a good alternative for coun-
teract external disturbance before it affects the system. This is ideal for
the velocity that the slides induces on the cushion on and after the impact,
which results in the pressure overshoot, as the slide velocity is a known
disturbance.

We have seen that the FF controller is sensitive to model mismatches, and we
need to make use of dynamics anticipation approaches or machine learning
techniques to counteract the system uncertainties. However, in order to
generate a valid data set for the machine learning algorithm training, several
test have to be done in the press. This procedure should be repeated for every
desired spool position until a valid dataset is obtained. Although it could
be automated, it has been shown in the previous section that it requires a
substantial effort to produce a large-scale set of data. Furthermore, during
the service time of the valves, the dynamics might change, which would
involve conducting the tests for the training points again.

Machine learning regression techniques are not deemed an appropriate
solution to the cushion force control problem, as creating suitable data for the
prediction is time-consuming and tedious. Techniques such as Reinforcement
Learning (RL) could be of use, to obtain a policy that based on a specific cost
function fulfills the cushion force control specifications.

RL is a machine learning technique for control problems, i.e. applications
where actions need to be taken for the realization of a particular goal. The
RL algorithm will choose the best action to take in a given situation, which is
learned from experience by performing interactions with the environment.
In general, it is best suited for applications where you can realize a lot of
interactions with the environment quickly and cheaply.

In recent years the trend in RL has been to increase the efficiency of algo-
rithms. When the RL algorithm does not have any information about the
environment, the number of interactions that must be carried out to find an
adequate control strategy can be problematic. To reduce the complexity of
these algorithms, in systems in which a description of the model is available,
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supervised learning has been incorporated into the design of RL algorithms
[26, 27].

At this point is where we consider the suitability of RL techniques for our
cushion force control problem. RL learns from experience, which is basically
trial and error learning. However, we know how the hydraulic cushion
must be controlled, we aim to improve the controller performance so the
specifications are fulfilled. To this end, we seek a controller with the ability
to learn from the existing control scheme, to update the control behavior
and, consequently, improve the system performance.

Considering the limitations of the existing ML techniques and taking ad-
vantage of the repetitive process of a hydraulic press, we propose ILC as
an alternative Machine Learning approach to the hydraulic cushion control
problem. ILC can be regarded as an RL technique, as learning a task by
repeating it many times (interactions with the model) can yield to perfecting
it (optimize the task) by making minor adjustments progressively (modify
the policy). An extensive analysis and design of ILC in a hydraulic actuator
force control system is given in the next chapter.
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Iterative Learning
Control in hydraulic
cushion force control

3

3.1 Introduction

ILC is founded on the concept that a system that performs the same process
repeatedly, as is the case of mechanical presses, can improve its performance
by learning from previous experience. Ideally, as iterations go on, the error
between the desired force reference and the system response will vanish.

Figure 3.1 shows a typical ILC scheme in a feedback control loop. At the end
of each j-th iteration the error, Ej, is filtered through the learning filter, L,
added to the previous control, and filtered again through Q. The resulting
signal is added, in the subsequent iteration, to the output of the feedback
controller, C.

ILC was originally suggested by Uchiyama [28] (in Japanese) to improve
the trajectory tracking of a mechanical arm. The idea of correcting the
performance of a system by trial was further extended by Arimoto in [29],
for a mechanical robot operation. The ILC learning law proposed by Arimoto
is given by:

uj+1(t) = uj(t) + γ(t)ėj(t), (3.1)

where uj(t) is called the FF term of the ILC and γ(t)ėj(t) is the updating law
for ILC. Equation (3.1) is a differential-type (D-type) ILC algorithm as it uses
the error derivative, ėj(t). γ(t) is the learning function and determines the
contribution of the tracking error into the next iteration input uj+1(t) at the
j-th iteration.

The principles that underlie the correct working of the ILC algorithm were
summarized as a set of postulates by Arimoto in [30]. If these postulates are
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Fig. 3.1: ILC parallel arrangement with feedback controller.

fulfilled, the system output converges into the desired output trajectory as
the number of iterations approaches infinity.

These postulates are reformulated to fit the framework of this project:

1. Every iteration ends in a fixed time duration tf .

2. The desired reference r(t) is known over the total time interval the ILC
is working.

3. The initial state of the system is repeated at every iteration, i.e. the
initial state is the same at every iteration.

4. Invariance of the system is ensured throughout the iterations.

5. Every output yj(t) can be measured and thereby the error tracking
signal, ej(t), can be used in the calculation of the next input.

6. Given a desired output trajectory r(t) with a piecewise continuous
derivative, there is a unique input that excites the system and yields
the output yj(t) = r(t).

Over the last decades, there have been significant contributions regarding
the development of ILC design methods. To avoid the additional noise in the
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error evaluation in (3.1), the proportional-type (P-type) ILC was proposed by
Arimoto in [30]:

uj+1(t) = uj(t) + γ(t)ej(t). (3.2)

Unlike the D-type ILC algorithm, the P-type algorithm does not require for
the error derivative. Both D-type and P-type algorithms multiply the error
by the learning gain γ(t), which maps the error to the corresponding control
space. However, the design of such algorithms can be problematic, specially
in the presence of measurement noise and disturbances [31].

A common technique to eliminate the noise and disturbance in the error
signal is to design the learning of the ILC algorithm as a low-pass filter, so
the undesired high-frequencies are attenuated [32, 33, 34]. A typical ILC
learning law can be designed with γ(t) being a low-pass filter to guarantee the
algorithm stability under disturbances. However, one must be conservative
when choosing the cut-off frequency of the learning filter, as it could cause
over-correction of the error components, affecting the algorithm learning.

The use of a low-pass filter improves system stability, however, the phase lag
introduced by the filter could affect the stability condition to be satisfied at a
certain frequency range [35]. To improve the performance of the filter in a
wider frequency range, zero-phase filtering (ZPF) is commonly used in the
ILC design [36, 37], as it allows to filter the error signal forward and then,
apply backward filtering to the filtered signal. Backward filtering generates
phase lead to compensate for the phase loss of the forward filtering to achieve
a zero-phase effect.

Furthermore, higher-order ILC algorithms were developed to further improve
the convergence rate of the algorithm [38, 39], in which the error profile
information from two or more previous iterations was used. However, this
approach increases considerably the required memory usage of the algorithm.
A comprehensive review of the existing ILC techniques and theory is given
by Bristow in [40] and by Ahn in [1].

Regarding the application of ILC algorithms in hydraulic circuits, it was first
applied by [41] for the position tracking control of a hydraulic cylinder. The
D-type ILC algorithm was used with a delay time included in the learning
law. Increasing the delay time, the convergence rate of the algorithm was
improved, however, the stability got affected. With a small delay time, the
error converged to a bigger value but the overall stability improved.

To improve the convergence rate, a PD-type ILC algorithm was designed for
the position control of a six degrees of freedom hydraulic platform in [42].
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The algorithm stability issues were accounted including a forgetting factor in
the learning law, to reduce the initial control value influence.

The PD-type experiences the same drawbacks as the P-type and D-type algo-
rithms in the presence of noise and disturbances [31]. To that end, a P-type
ILC algorithm with a low-pass filter was proposed for the position tracking of
a hydraulic cylinder in [43]. To improve the stability and robustness of the
algorithm, a filter was included in the learning gain design, to discard the
high frequencies.

This approach was also followed by [44], where a low-pass filter was included
in the learning filter design to improve the pressure control of two hydraulic
cylinders. With the low-pass filter, the high frequency uncertainties and noise
were filtered. The phase loss of the Butterworth filter was counteracted by
introducing a time-shift operator to provide system stability. The convergence
rate of the algorithm was low compared to other studies as the ILC design
was focused on the stability of the system towards external disturbances
rather than improving the convergence rate.

Some works have studied the implementation of ILC in industrial environ-
ments. In [45], a fast norm-optimal ILC that simplifies the algorithm structure
and increments its speed is designed. A combination of a PID controller and
ILC is implemented by [46] in an industrial SIEMENS SIMOTION controller
for a production machine. The authors focused on the applicability of the ILC
in industrial applications rather than on stability and convergence conditions.
No analysis about the learning gain design is given as it is chosen by trial an
error.

These works, although they improved the control performance of a hydraulic
system in comparison to the existing feedback controller, do not focus on
the convergence rate analysis of the algorithm. The convergence rate is a
fundamental aspect of an ILC algorithm and one should aim to obtain the
fastest convergence rate possible to reduce the number of iterations needed.
The fewer iterations required, the shorter the commissioning time of the
hydraulic cushion control will be, which translates into a reduction of the
production costs.

From the above, one can conclude that there exists a gap in the literature
regarding the design of ILC algorithms in hydraulic systems. No analysis of
the convergence rate improvement of the ILC algorithm to optimize the press
working operation has been done. Furthermore, this improvement should be
enhanced with a stability analysis of the algorithm, as stability is an essential
property for industrial practice. The next section is dedicated to the analysis
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of the ILC algorithm, which yields a design proposal to improve the stability
and convergence rate of the existing ILC designs.

3.2 SISO ILC

The design and analysis of the ILC is done in frequency-domain, as it allows
the analysis of the convergence and the stability making use of techniques
such as Bode plots or Nyquist diagrams [36]. With the frequency-domain
analysis, we can make use of frequency domain methods to filter those un-
certain and undesired dynamics of the hydraulic circuit, as well as guarantee
the stability of the system within a specific frequency range.

Equation (3.3) shows the error propagation equation for the frequency-
domain, which derivation is described in Appendix A, and relates the error
at the current iteration to the next. We can drop the matrix notation, as we
are working in a single-input-single-output (SISO) system, which results in
the following error propagation equation:

Ej+1(s) = (1−G(s)S(s)L(s))Ej(s), (3.3)

where S(s) = 1/(1 + G(s)C(s)) is the sensitivity transfer function of the
system.

From (3.3), if the term 1−G(s)S(s)L(s) is less than one for every frequency,
then system stability is ensured and the error will decrease from one iteration
to the next. Otherwise, if 1−G(s)S(s)L(s) > 1, the error decrease will not
be guaranteed as iterations go on. From the above a sufficient condition
for the stability of the algorithm and for convergence can be set, which was
given by [40] in the frequency domain, where s = jw:

|1−G(jw)S(jw)L(jw)| < 1
Q(jw) ∀ω ∈ [−∞,∞], (3.4)

where Q(jw) is normally a gain that enlarges the stability region. The L(s)
learning filter must fulfill (3.4) for the system to be stable and the error to
converge towards zero.

There exist several design approaches for L(s), some of which have been
mentioned in the previous section. The inversion of the plant dynamics is
a benchmark approach to achieve a quick convergence rate. Generally, it is
not easy to obtain an exact model that represents the real plant, and this
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approach is sensitive to modeling errors [47]. Therefore, one must accept
that without an exact plant model, the convergence rate will get affected.

Several studies have addressed the incorporation of the known model dynam-
ics in the L(s) design to increase the convergence rate of the ILC algorithm.
A parameter optimal ILC (POILC) was designed in [47]. The POILC design
was based on an approximate inverse model of the plant and, to improve
robustness, a learning gain was included that adaptively changed at each
iteration. However, this design yielded a more complex condition for mono-
tonic convergence and relied on the good tracking performance at the first
iteration.

The optimization problem for model-based ILC controller is also developed
in [48, 49, 50]. In these works, a quadratic cost function is defined, from
which an optimal solution for the ILC problem is obtained. A quadratic
cost function is also introduced to analyze the convergence on a model-
based ILC in [51] for time-varying systems. These approaches rely on the
tuning of the weighting matrix in order to obtain a global minimum in the
minimization problem. Furthermore, it is hard to explicitly define the ILC
multiple objectives in a cost function such as the convergence, robustness,
stability and input constraint.

Finding an adequate cost function to optimize can turn hard and laborious.
An alternative and more straightforward approach is to compute an approxi-
mate inverse of the nominal plant, rather than the exact model system. For
systems with unstable zeros, pseudo-inverse and stable inversion methods
have been proposed in [52, 53], respectively. In [54], an analysis of which
inversion approach to use depending on the system zeros is carried out.

For the hydraulic cushion model inverse system, we need to map the pressure
error with the valve spool position. To that end, we use the same dynamic
model as the one used for the FF controller, which was defined in (2.6).
Neither unstable zeros nor unstable poles exist in this model, therefore direct
inversion can be applied.

In [55] direct inversion was applied in an electronic printer, where the
learning filter was designed as L(s) = (G(s)S(s))−1. Instead of including
a low-pass filter in the L(s) design, the Q(s) filter was used to guarantee
robustness to modeling errors. However, Q(s) should be designed properly, as
a Q(s) with a module different from one penalizes the algorithm performance
[40].

Direct model inversion was also employed in [56] for a wafer system. In
[56], it is proposed to include the controller in the model inverse ILC design
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based on the series and parallel ILC designs. Pp(s) is the process sensitivity
function for the parallel architecture, which is used as a parametric model of
the system to design the learning filter, and is such as:

Pp(s) = G(s)
1 +G(s)C(s) . (3.5)

In [56], unlike in [55], the low-pass filter was applied to the inverse of Pp(s)
to deal with the high frequency differences. This is the most common proce-
dure that one can find in the literature when applying direct inversion [56,
57, 58, 59]. Although fast convergence tracking is achieved, the algorithm
performance is penalized as the inclusion of the low-pass filter to counteract
model mismatches affects both G(s) and C(s).

We claim it can be avoided that the low-pass filter included to achieve
robustness to plant uncertainty affects both G(s) and C(s). One can design
L(s) so that the low-pass filter only affects the inverse of G(s), excluding
C(s), so the model differences can be reduced.

For a system with a parallel structure comprising an ILC algorithm and a
feedback controller, we propose the following model inverse L(s) design:

L(s) = (S(s)G(s))−1 = 1 +G(s)C(s)
G(s) = G−1(s) + C(s). (3.6)

In (3.6), only G(s) is inverted and C(s) is completely known, as it is the
existing feedback controller in the system. The low-pass filters to deal with
high frequency differences will only apply to G−1(s), not affecting C(s). With
this L(s) design, the convergence rate is improved regarding [56, 57, 58, 59]
as the model differences are reduced.

3.3 SISO ILC learning filter design
For the purpose of designing L(s) based on (3.6), a linearized state space
system of the hydraulic cushion circuit is derived, from which G−1(s) will be
obtained.

In the same way as carried out in Section 2.3, in the cushion hydraulic circuit
shown in Fig. 2.3, during the Drawing phase the flow out of the cylinder
chamber will equal to the flow into the proportional valve. From the cylinder
and valve model equations, see (2.1) and (2.2), a linearized state space with
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the pressure of the cylinder, the valve spool position and velocity as state
variables, and the valve command as input, is derived.

For illustrative purposes the dynamics of the proportional valve from u to yv

are modeled as a second-order transfer function, Gv(s). These dynamics will
not be considered in the learning filter design. However, they will serve us to
see how the unmodelled dynamics affect the ILC performance:

Gv(s) = yv(s)
u(s) = ω2

v

s2 + 2ωvζs+ ω2
v

, (3.7)

where ωv and ζ are the valve natural frequency and damping, respectively.

The linearized hydraulic cushion system results in:

δṖA

δẏv
δÿv

 =

A11 A12 0
0 0 1
0 −ω2

n −2ωnζ


δPa

δyv
δẏv

+

 0
0
ω2

n

 δu. (3.8)

With A11 and A12 defined as:

A11 = −
Kv(ȳv)

√
∆Pref

(VAd + AAx)βqref

1
2
√
P̄A

A12 = −

√
P̄Aqref

(VAd + AAx)β
√

∆Pref

K ′v(ȳv),

where δPA = PA− P̄A and δyv = yv− ȳv , are the small-signal deviation from
an operating point obtained in steady-state conditions, P̄A and ȳv respectively.
K ′v(ȳv) is the hydraulic conductance derivative with respect to yv.

The dynamics corresponding to the valve are not considered in the plant
inverse design for L(s), the simplified plant inverse is designed as follows:

Ĝ−1(s) = s− A11

A12
. (3.9)

The Bode diagram of the inverse of the system shown in (3.8), G−1(s),
and the simplified system, Ĝ−1(s), without the valve dynamics is shown in
Fig. 3.2. At low frequencies, both systems have the same response and, as
frequency increases, the responses deviate. This is due to the exclusion of
the valve dynamics, which affect the system at high frequencies.
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Fig. 3.2: Bode diagram of the plant inverse G−1(s), and simplified plant inverse
Ĝ−1(s).

The L(s) filter design depends on the position, x, which has been considered
constant although the cylinder retracts during the Drawing phase. The fluid
compressibility varies because of pressure and temperature changes taking
place in the cylinder chamber and the air mixed with the oil. Moreover,
Kv(ȳv) and its derivative K ′v(ȳv) are unknown. Clearly, as some system
dynamics are not included in the L(s) filter design, the plant will not be
completely simplified in (3.3), which will affect the convergence rate of the
algorithm.

As shown in Fig. 3.2, Ĝ−1(s) acts as a high frequency amplifier, by which the
unknown and undesired high frequency dynamics of the system will not be
attenuated. Therefore, as already done in [56, 60], we include a low-pass
filter in the L(s) design, however, it will only affect Ĝ−1(s), which results
as:

Ĝ−1
f (s) = s− A11

A12

ω4
r

(s+ ωr)4 , (3.10)

where ωr is the filter cutoff frequency in rad/s.
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With the low-pass filter we introduce a considerable phase lag in our system,
see the response of Ĝ−1

f (s) in Fig. 3.3. To avoid the additional phase lag, ZPF
is widely used in ILC design as explained in Section 3.1.

ZPF is applied in the model inverse design to avoid any phase lag and to
filter the undesired high frequency dynamics. From the ILC block diagram
shown in Fig. 3.1, the signal out of the ILC scheme is added to the feedback
controller signal. In our case, the controller signal is the proportional valve
spool position input, which has a physical limitation, the spool position must
not exceed the range [-1, 0]. Therefore, the signal obtained from the ZPF
must not exceed said range. To that end, an anti-windup has been included
in the filtering process. The ZPF algorithm with the anti-windup is explained
in Appendix B.

The resulting plant inverse design with the ZPF is:

Ĝ−1
zpf (s) = s− A11

A12

ω2
r

(s+ ωr)2
ω2

r

(s− ωr)2 . (3.11)
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Fig. 3.3: Bode diagram of the plant inverse G−1(s), with low-pass filters Ĝ−1
f (s)

and with ZPF Ĝ−1
zpf (s).
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In Fig. 3.3, the Bode diagram of the resulting plant inverse after the ZPF
is shown. The high frequencies are attenuated without losing phase. The
resulting L(s) design is thus:

L(s) = s− A11

A12

ω2
r

(s+ ωr)2
ω2

r

(s− ωr)2︸ ︷︷ ︸
Ĝ−1

zpf

+C(s). (3.12)

3.4 SISO ILC stability analysis
The stability of the ILC algorithm, given the proposed L(s) design, must be
proven. As explained in Section 3.2, the L(s) filter must fulfill the monotonic
convergence condition in (3.4).

In the literature there exist various approaches to analyze the algorithm
stability. The Hurwitz stability is used in [61], the Schur stability is applied
in [62, 63] and the vertex points of the interval Markov parameters are used
in [64].

These methods require many computations and cannot be directly applied to
an ILC algorithm. A more straightforward method is to analyze the stability
graphically in the frequency domain, as it is done in [44, 47, 37, 65].

In these studies, the response for all the frequencies up to the Nyquist
frequency is plotted to analyze the convergence condition given in (3.4).
This convergence condition can be interpreted on a Nyquist plot; if the
frequency response remains inside the unit circle, the ILC algorithm will
converge to zero error. Else, if the response gets out of the unit circle, the
ILC algorithm will diverge.

If an accurate model inverse is included in the L(s) design, the resulting
Nyquist plot would be zero for all frequencies, as the right-hand side in (3.3)
would vanish. However, our L(s) design is far from being ideal as some
simplifications have been done and the uncertain high frequencies have been
attenuated with ZPF.

Hence, we should aim to obtain the frequency response as close as possible
to the origin. The closer to the origin, the faster those error frequencies
will be corrected by the ILC algorithm. The frequency response of L(s) =
Ĝ−1

zpf (s) + C(s) is shown by Fig. 3.4, for the system parameters specified
in Appendix C.0.2. As the frequency increases, the response diverges from
the origin but does not get out of the stability circle, which guarantees the
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stability of the algorithm at high frequencies. Note that the unit circle has
been enlarged, with a Q = 0.96.
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Fig. 3.4: |1−G(s)S(s)L(s)| frequency response with L(s) = Ĝ−1
zpf (s) + C(s).

3.5 Simulation study: SISO ILC
implementation in a hydraulic cushion
circuit
The performance of the designed ILC algorithm is evaluated in a nonlinear
model of a cushion hydraulic circuit, implemented in Matlab/Simulink. The
system implementation is shown in Fig. 3.5, and consists of every element
shown previously in Fig. 2.3. A translational sensor has been added to
monitor the cushion displacement and velocity. With the pressure sensor we
measure the cylinder chamber pressure to carry out the force control during
the Drawing phase. From the valve sensor we obtain the actual spool position
values. With the ideal translational source, we simulate the slide trajectory
and adjust the impact velocity.

The press model elements have been developed in a novel library made by
Ikerlan, the precision and accuracy of which have been validated in [66].
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Fig. 3.5: Simscape implementation of the cushion hydraulic circuit.

With this library, components are easily parametrized with data-sheet in-
formation in contrast to other Simscape libraries, which requires acquiring
constructive parameters obtainable only from laboratory experiments. This
novel approach allows reproducing the physical behavior of industrial com-
ponents with high precision without losing Real-Time capabilities.

We consider the scenario of Section 2.3.2, where the real Kv(yv) differs from
the estimation K̂v(yv), as shown in Fig. 2.11. The pressure signal tracking
for a 240 bar reference is shown in Fig. 3.6a. Under this scenario, at the first
iteration where no ILC signal exists, the FF control is poor due to the model
mismatches included. From iteration two on, the ILC algorithm is used in
combination with the FF controller, to improve the FF controller performance
under model uncertainty conditions.

The ILC algorithm impact on the control over iterations can be seen in Fig.
3.6b, where the total input and the ILC contribution in the input are shown.
In order to reach as fast as possible the reference and avoid any overshoot,
the ILC introduces an oscillation in the input, at t ≈ 2.5s, that maintains the
pressure around the reference. From t ≈ 2.5s to t ≈ 2.8s, the spool position

3.5 Simulation study: SISO ILC implementation in a hydraulic
cushion circuit
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reaches -0.2 value, just where the mismatch had been introduced in Fig. 2.11.
To counteract this mismatch, the ILC adds a constant input value of -0.03
as a correction to the controller. At the end of the step, from t ≈ 2.8s on,
the ILC input signal impact decreases and the FF controller maintains the
pressure level around the reference, as shown in Fig. 3.6a.
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Fig. 3.6: Pressure and input signal for a 240 bar reference.

As a performance index for the proposed force control ILC algorithm, the root
mean square error (RMSE) between the pressure reference and the cylinder
pressure signal is shown in Fig. 3.7. Here, the steady state error is defined as
the value the RMSE converges to. A high steady state error indicates that the
error between the reference and the actual signal has not been corrected.

The RMSE is reduced by a factor of 8 in the pressure tracking, and a fast
convergence rate is obtained as at the fourth iteration the error is considerably
reduced, with respect to the first iteration with the FF controller. Note that
it is physically impossible to reduce the RMSE below 0.8083, as we cannot
obtain a faster pressure increase due to oil compressibility.

We evaluate the robustness of the ILC algorithm at a different operating point
for a step reference of 60 bar, as shown in Fig. 3.8a. We can see that at a
low pressure reference the specifications are fulfilled and the pressure signal
does not exceed the settling time tolerance or overshoot limits. At the first
iteration, with the FF controller, the steady state error is considerable and the
signal does not recover. With the ILC signal, as iterations go on, the pressure
signal follows the reference, with no steady state error. The ILC contribution
to the FF controller can be seen in Fig. 3.8b.

The RMSE over iterations is shown in Fig. 3.9, although at the first iteration
with the FF controller the error is low, the ILC algorithm reduces that error
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Fig. 3.7: RMSE between the cylinder pressure and the 240 bar reference over
iterations.

by a factor of 3.5. Note that, for a 60 bar pressure reference, it is impossible
to obtain a RMSE less than 0.2, due to oil compressibility.

3.6 SISO ILC performance comparison

To evaluate the performance of the proposed ILC algorithm, two different
ILC algorithms are designed through this section to carry out a comparison.
The first algorithm is the proportional ILC (P-ILC) which is the most common
algorithm used in industrial application due to its simplicity.

The second algorithm is the model inverse based ILC algorithm proposed
in [56, 57, 58, 59], so a comparison can be made with other model inverse
approaches. For ease of notation, the model inverse algorithm proposed in
the previous sections will be referred to as MIC-ILC.

3.6.1 SISO P-ILC algorithm

The P-ILC is one of the most used ILC algorithms in the literature due to its
simplicity, as it calculates an input signal proportional to the error. It was
first proposed by Arimoto in [30], the learning law is as follows:
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Fig. 3.8: Pressure and input signal for a 60 bar reference.

Uj+1(s) = Uj(s) +KPEj(s), (3.13)

where KP is a proportional gain that multiplies the error to update the input
for the next iteration.

From (3.13), the P-type algorithm is conservative in the sense that by choos-
ing a sufficiently small KP learning gain, the convergence rate property can
be guaranteed. However, this can result in slow convergence.

Therefore, KP must be picked conservatively to guarantee the stability of the
algorithm and fulfill (3.3). However, its value can be tunned to maximize
the convergence rate of the algorithm. Setting a KP = 0.0002 1/bar, the
frequency response (3.4) of the P-ILC algorithm is shown in Fig. 3.10. Q is
set to 0.98, so the frequency response lies inside the stability circle.

In Fig. 3.10, at zero frequency the response lies at (+1.02,0), whereas with
the MIC-ILC algorithm at zero frequency the response lies at the origin (Fig.
3.4). This is due to the cancellation of the model dynamics at low frequencies,
that optimizes the convergence rate of the ILC algorithm.

The closer to the origin the frequency response lies, the faster those frequen-
cies will be corrected by the ILC algorithm. In Fig. 3.10 we have pointed out
the 5 rad/s point, which lies far from the origin because of the KP design.
As frequency increases, the response gets away from the origin faster than
the MIC-ILC, see the 100 rad/s point in Fig. 3.10.

In Fig. 3.11, the pressure signals and control inputs for a 240 bar reference
tracking are shown. The P-ILC improves the FF controller behavior consid-
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Fig. 3.9: RMSE between the cylinder pressure and the 60 bar reference over itera-
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Fig. 3.10: |1−G(jw)S(jw)L(jw)| frequency response with KP = 0.0002 1/bar for
the P-ILC algorithm.

erably, yet once the learning has finished, after 12 iterations, it takes from
t ≈ 2.5s to t ≈ 3.2s to reach the reference.
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Fig. 3.11: Pressure and input signal for a 240 bar reference with the P-ILC algorithm.

A comparison of the pressure RMSE between the P-ILC and the MIC-ILC
algorithms is shown in Fig. 3.12. A very low convergence rate is obtained
with the P-ILC algorithm, as the learning between iterations is small. Further-
more, the steady-state error towards which the RMSE converges is high, with
respect to the MIC-ILC. This is because the initial overshoot at the beginning
of the step, that it is not eliminated.
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Fig. 3.12: RMSE between the cylinder pressure and the 240 bar reference over
iterations with the P-ILC and the MIC-ILC algorithms.

We can analyze the pressure error signal in the frequency domain, with the
Fast Fourier transform, to obtain the frequency components of the error and
see their behavior as iterations go on. The single-sided power spectrum of
the error signal is shown in Fig. 3.13, for the FF controller, the P-ILC and
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MIC-ILC algorithms. The evolution of the iterations is shown, to see how
the low frequencies are attenuated faster with the MIC-ILC than the P-ILC
at the first iterations. From iteration 10 on, the MIC-ILC remains constant,
while the P-ILC continues decreasing, though it does not decrease the error
as much as the MIC-ILC.
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Fig. 3.13: Single-sided power spectrum of the pressure error signal, for the three
different controllers.

We could try to improve the convergence rate of the P-ILC algorithm increas-
ing the learning gain value in (3.13). Increasing KP from 0.0002 to 0.0006,
yields the frequency response shown in Fig. 3.14. As it has been pointed
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out in the figure, at the frequency 83.4 rad/s the response gets out of the
unit circle. Therefore, the frequencies bigger than 83.4 rad/s will not get
attenuated and the system will get unstable.

Fig. 3.14: |1 − G(jw)S(jw)L(jw)| frequency response with KP = 0.0006 for the
P-ILC algorithm.

We could make use of Q to enlarge the stability circle so the frequency
response of the P-ILC algorithm remains stable. By setting a Q = 0.94, the
stability circle would be large enough so the algorithm response is stable at
all frequencies. However, we want to see how the frequency response of the
algorithm out of the unit circle affects the pressure tracking.

To that end, the same scenario than before is considered, a 240 bar reference
tracking, but with a KP = 0.006 1/bar. The test outcomes can be seen in
Fig. 3.15a, as iterations go on the amplifications at the beginning of the step
increase, yielding an unstable response. This is a consequence of the ILC
input to the valve, shown in Fig. 3.15b, that gets unstable and introduces
oscillations into the valve total input.

If we analyze the pressure signal amplifications, the frequency of excitation
of the oscillations is the same as the frequency at which the response of the
P-ILC gets out of the unit circle. The oscillations cycle time is 0.0739s with
a fundamental frequency of 13.54 Hz, which converted to rad/s results in
85 rad/s. This frequency coincides with the value at which the frequency
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response of the P-ILC gets out of the unit circle, as it is pointed out in Fig.
3.14.
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Fig. 3.15: Pressure and input signal for a 240 bar reference with the P-ILC algorithm.

The RMSE between the P-ILC and the MIC-ILC for a 240 bar reference is
shown in Fig. 3.16. At the beginning, the P-ILC converges faster than in Fig.
3.12, however it gets unstable from iteration 10 on, due to the bad learning
gain design.
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Fig. 3.16: RMSE between the cylinder pressure and the 240 bar reference over
iterations with the P-ILC and the MIC-ILC algorithms.

From the above, we can see that the graphical frequency response analysis
can help us in the design of the leaning filter, not only to increase the
convergence rate but also to avoid algorithm instability.

3.6 SISO ILC performance comparison 51



3.6.2 Conventional SISO model inverse ILC

It has been shown that the MIC-ILC outperforms the P-ILC algorithm. Now,
through this section we compare the MIC-ILC algorithm with the model
inverse ILC (MI-ILC) approach proposed by [56, 57, 58, 59].

Following the design procedure in the above mentioned studies, the learning
filter is thus:

LMI(s) = (G−1
zpf (s) + C(s)) ω2

n

(s− ωn)2
ω2

n

(s+ ωn)2 , (3.14)

a fourth-order low-pass filter is added to LMI(s), and ZPF is applied to avoid
phase-loss.

Note the difference with the MIC-ILC design in (3.12), where the low-pass
filter is only applied to the plant inverse, and not to the sum of the plant
and the controller. This variation affects directly the convergence rate of the
algorithm, as the model differences are bigger and the frequency response at
low frequencies lies further from the origin.

The above can be seen in Fig. 3.17, where the frequency responses of both
algorithms are shown. The 50 rad/s frequency point has been pointed out in
both frequency responses. In the MIC-ILC response, the frequency point lies
at a radial distance from the origin of 0.2402, and in the MI-ILC response,
the point lies at a radial distance of 0.3606. Although the MI-ILC design has
a good frequency response at low frequencies, it will not achieve as good a
convergence rate as that of the MIC-ILC.

In Fig. 3.18, the pressure signals and control inputs for a 240 bar reference
tracking are shown. The MI-ILC achieves good convergence rate, as at
iteration eight good pressure tracking is obtained.

A comparison of the RMSE between the MI-ILC and the MIC-ILC algorithm is
shown in Fig. 3.19. The MI-ILC achives similar convergence rate than the
MIC-ILC, however, the value towards which the MI-ILC converges is slightly
bigger than with the MIC-ILC.

Although both algorithms look similar in terms of RMSE value and conver-
gence rate, we may look at the settling time the pressure signal takes to
stabilize within ±1 bar difference with respect to the reference. Figure 3.20,
shows the settling time value at each iteration for both algorithms. The
settling time obtained with the MIC-ILC is 200ms whereas with the MI-ILC is
of 250ms. It is improved by 20%.
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Fig. 3.17: |1−G(jw)S(jw)L(jw)| frequency response comparison for MI-ILC and
MIC-ILC algorithms.
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Fig. 3.18: Pressure and input signal for a 240 bar reference with the MI-ILC algo-
rithm.

The pressure error signal power spectrum is shown in Fig. 3.21 with the
three ILC algorithms. In line with the results obtained throughout the section,
the MI-ILC outperforms the P-ILC, due to its design at low frequencies, but
the MIC-ILC reduces faster those frequencies.

3.6 SISO ILC performance comparison 53



0 5 10 15 20 25 30 35 40

Iteration number

0

1

2

3

4

5

6

7

8

R
M

S
E

 (
b
a
r)

MI-ILC

MIC-ILC

Fig. 3.19: RMSE between the cylinder pressure and the 240 bar reference over
iterations with the MI-ILC and the MIC-ILC algorithms.
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Fig. 3.20: Settling time to within 1 bar with respect to the reference for the MI-ILC
and the MIC-ILC algorithms.

3.7 Conclusions to Chapter 3

To improve the force control of a hydraulic actuator and meet the specifi-
cations set by the costumers, an ILC algorithm is proposed. Regarding the
application of ILC in the hydraulic system, as far as this author has been able
to find, no work exists providing a convergence rate and stability analysis for
ILC in hydraulic systems.

In this chapter, we have proposed a design methodology for a model-based
ILC, to speed up the learning process. The design is based on the known
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Fig. 3.21: Single-sided power spectrum of the pressure error signal, for the three
ILC algorithms and FF controller.

plant dynamics, from which the unknown high frequency components have
been discarded. A low-pass filter has been included to achieve robustness
towards plant uncertainty, and ZPF has been applied to avoid phase loss.

The proposed graphical analysis for the algorithm performance has proved
effective to achieve fast convergence rate and stability. The closer the algo-
rithm frequency response to the origin, the faster those frequencies will be
corrected, and a faster convergence rate will be achieved. Furthermore, in
the case the algorithm frequency response gets out of the stability circle, one
can detect which frequencies will be unstable, in order to attenuate them.

A performance and stability comparison has been provided with other ILC
algorithms. A proportional-ILC has been used as it is the most common
ILC algorithm used in industry. To compare the proposed design with other
model-based approaches, the model-based ILC algorithm proposed by [56,
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57, 58, 59] has been designed. The proposed MIC-ILC algorithm achieves
better convergence rate and stability than other methods. The algorithm
has been implemented in high-fidelity simulations of a mechanical press, in
which precise force reference tracking has been obtained.
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Hydraulic press MIMO
position control

4

4.1 Introduction
A hydraulic press is a device that uses hydraulic cylinders to generate a
compressive force. It has traditionally been used for high-force applications
due to its easy operation and adaptability to suit a wide range of forming
conditions. One of the advantages of hydraulic presses is that the force can
be applied throughout the stroke, unlike mechanical presses where the force
is maximum at the bottom.

Figure 4.1 shows the drawing of a hydraulic press comprising a hydraulic
slide and a cushion. Unlike mechanical presses, the forming force that the
slide applies to the workpiece is carried out by a hydraulic circuit that controls
the slide position and force.

A typical hydraulic press operation is shown in Fig. 4.2, which consists of
four main phases. During the Free Fall phase, the slide rapidly descends
under its own weight. During the Drawing phase, the stroke of the slide
with the workpiece takes place and the slide should maintain the specified
position reference until it reaches the BDC. In the Making force phase, force
control instead of position control is done. To guarantee the correct forming
of the workpiece, a specific pressure is held during the entire Making force
phase. After the forming is completed, the slide quickly returns to its initial
position at TDC during the Fast Rise phase.

4.2 Hydraulic press control
Traditionally, the position and force control of a hydraulic slide has been
carried out via valve-controlled or pump-controlled circuits. Valve-controlled
hydraulic circuits provide fast and high frequency response behavior and
accurate performance. Pump-controlled hydraulic systems provide efficient
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Fig. 4.1: Hydraulic press drawing, with a hydraulic slide.

operation, as the delivered flow rate is defined by the adjustable displacement
of the pump [67].

The working operation of valve-controlled and pump-controlled hydraulic
circuits will be explained in the subsequents subsections. This will lead to
an analysis of the current limitations of both controllers, from which a new
position control approach will be proposed.

4.2.1 Valve-controlled hydraulic press

The explanation of a valve-controlled hydraulic slide is based on a typical
hydraulic circuit, shown in Fig. 4.3. It consists of a double-acting cylinder
with both chambers connected to pressure relief valves, to limit the pressure
in the system. Two proportional valves are installed to control the pressure
inside the cylinder chambers and the piston position. As the piston rod is
connected to the slide, by controlling the piston position we directly control
the slide. The variable displacement axial piston pump provides the necessary
flow rate to control the cylinder pressure and position.

At the TDC position, the piston is completely retracted, and both proportional
valves are kept closed and the pump delivers no flow. It is the rod-side
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Fig. 4.2: Hydraulic slide press cycle.

cylinder chamber that holds the slide weight to keep it at the TDC. The
rod-side relief valve cracking pressure is set to be slightly bigger than the
maximum design weight of the slide. Else, the relief valve would open due to
the pressure resulting from the slide weight, channeling the hydraulic fluid
from the rod-side chamber to the tank, extending the cylinder piston.

During the Free fall phase, the rod-side proportional valve controls the slide
velocity. A constant spool position is set, which depends on the desired
falling velocity. The bigger the valve opening the faster the slide will fall and,
on the contrary, the smaller the valve opening the slower the slide falling
velocity. The valve spool position that determines the slide falling velocity is
set manually.

The transition between the Free fall and Drawing phases is carried out by
progressively closing the rod-side proportional valve. A closing ramp is
specified to the valve that slows down the slide. Care has to be taken in
the design of the closing ramp, as the slide slowing down could yield a
rebound which, if increased excessively, could prolong the cycling time of the
hydraulic press.

In the Drawing phase, after the progressive closing of the rod-side propor-
tional valve, the piston-side proportional valve controls the slide position.
As the rod-side proportional valve is closed and the slide continues falling,
the pressure in the rod-side chamber increases until the pressure relief valve
cracking pressure is reached. At this point, the oil is channeled through the
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rod-side relief valve. The Free fall and Drawing phases of a valve-controlled
hydraulic slide and every signal discussed above are shown in Fig. 4.4.

During the Free fall phase, the piston-side proportional valve is opened
completely so the pump flow extends the piston. The desired falling velocity
is obtained with a constant -50% position of the rod-side proportional valve.
At this position, the fluid from the rod-side chamber is channeled through
port A to port T .

The transition between the Free fall and Drawing phases is done with a pre-
defined closing ramp of the rod-side proportional valve. This closing results
in a deceleration of the slide velocity causing a small rebounding in the slide
position signal at t ≈ 1.2s.

During the Drawing phase, once the rod-side proportional valve is closed,
the pressure in the rod-side chamber increases until it reaches the relief
valve cracking pressure of 180 bar. The slide position is controlled with the
piston-side proportional valve, which is opened by the controller at a +10%
spool position to obtain a constant falling velocity of -56 mm/s.

Once the slide reaches the BDC, the Making Force phase starts. During this
phase, as the cylinder remains completely extended, the force control is
carried out in the piston-side chamber. The flow delivered by the pump is
accumulated in the piston-side chamber and the chamber pressure increases.
As soon as the desired pressure is reached, the piston-side proportional valve
is closed, causing a severe pressure increase in the valve inflow, which can
damage the actuator.
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In the Fast Rise phase, the rod-side proportional valve is opened completely,
moving the spool to the left position, connecting port P with A and port B
with T . The fluid from the pump line retracts the cylinder piston back to
the initial position, TDC. The Making Force and Fast Rise phases of a valve-
controlled hydraulic slide and every signal discussed above are shown in Fig.
4.5.

During the Making Force phase, the piston-side proportional valve opens
completely so the pump flow goes to the piston-side chamber and pressurizes
it. When the pressure reference of 230 bar is reached, the valve closes
completely, and the pressure is maintained until t ≈ 9.8s, when the Making
Force phase finishes.

Note that the abrupt closing of the proportional valve results in a pressure
increase in the valve inflow that reaches 314 bar. This can cause damage or
malfunctioning of the actuator.

In the Fast Rise phase, the rod-side valve opens completely, connecting port
P with port A, to retract the piston to the initial position TDC.
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Fig. 4.5: Making Force and Fast rise phases of a valve-controlled hydraulic slide.

4.2.2 Pump-controlled hydraulic press

In the same way as in Section 4.2.1, the pump-controlled hydraulic slide
explanation is based on the hydraulic circuit shown in Fig. 4.3. Pump and
valve-controlled hydraulic slides follow the same procedure during the Free
Fall phase and the transition between the Free Fall and Drawing phases.

In the Drawing phase, however, the piston-side proportional valve is opened
completely and the slide position is controlled by the pump. A position
reference is set to the pump controller, which modifies the pump swash angle
according to the desired slide position.

The Free fall and Drawing phases of a pump-controlled hydraulic slide and
the signal discussed above are shown in Fig. 4.6.

The rod-side proportional valve controls the Free Fall phase and the transition
between the Free Fall and Drawing phases. A constant spool position is set
that is closed progressively during the two phases transition.

In the Drawing phase, the piston-side proportional valve is opened completely,
while the rod-side valve is closed. The pump controller opens the swash
angle around 70%, to control the slide position. Similar to valve control, at
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Fig. 4.6: Free Fall and Drawing phases of a pump-controlled hydraulic slide.

t ≈ 9.8s the relief valve cracking pressure of 180 bar is reached and the fluid
in the rod-side chamber is channeled to the tank.

At the BDC the Making Force phase starts, the pump controller opens the
swash plate angle completely to reach the 230 bar reference as fast as possible.
Once the desired pressure reference is reached the pump stops delivering
flow. However, due to the slow dynamics of the pump, until the pump swash
angle is completely closed it continues delivering oil resulting in an overshoot
of the pressure reference tracking.

The Making Force and Fast Rise phases of a pump-controlled hydraulic slide
and the above mentioned signals are shown in Fig. 4.7.

The pump controller switches from position control during the Drawing
phase to force control in the Making Force phase. The pump swash angle is
opened completely, until the piston-side chamber pressure reaches 230 bar,
at t ≈ 6.7s. The pump swash angle is closed, but as it has been pointed out
in Fig. 4.7, due to the pump slow dynamics there exists a pressure overshoot.
This overshoot should be controlled within a limit, else the workpiece could
be damaged.
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Once the Making Force is finished, the piston-side valve closes and the rod-
side valve opens. The pump delivers the necessary flow to return the slide to
the initial TDC position.

4.2.3 Enhanced hydraulic press control

Two control approaches have been presented, which illustrate the design
and performance of the control schemes used nowadays for the working
operation of a hydraulic press. Both control approaches are subjected to
manually define control signals to the rod-side proportional valve during the
Free Fall and Drawing phases position control. First, a constant spool position
has to be set for the Free Fall phase falling velocity. Then, a progressive
closing has to be specified for the Free Fall and Drawing phases transition.
This process could turn tedious, as every time the position reference is
changed the control signals need to be modified accordingly.

The analysis of the two control approaches brings up a major challenge,
the possibility to automate the position control process during the Free Fall
and the Drawing phases. To automate the rather tedious hydraulic slide
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position control, we propose to control the rod-side chamber pressure with
the variable axial piston pump, while controlling the slide position with the
rod-side proportional valve. The position controller will not differentiate
between phases, as the control will be carried out continuously from the
start of the Free Fall phase to the end of the Drawing phase, regardless of the
position reference.

It is necessary to guarantee a certain pressure level in the auxiliary chamber
during the Drawing phase, as the forming of the workpiece is carried out in
this phase. In the event that more force is required for the workpiece forming,
if the auxiliary chamber is pressurized at a certain level it will take less effort
for the pump to supply said force. Else, if no pressure existed in the auxiliary
chamber, the main chamber would have to be pressurized completely before
more force could be applied.

This control proposal eliminates the need to manually define any control
signal and adapts automatically to every position reference required. Such
a controller needs a MIMO structure, as the cylinder position and rod-side
chamber pressure need to be controlled at the same time.

As a first approach to the position MIMO control problem, two PI controllers
are designed to control the slide position and the rod-side chamber pressure.
However, the regulation of these controls is not straightforward as both
control loops are coupled.

Figure 4.8 shows the proposed MIMO position control with two PI controllers
during the Free Fall and the Drawing phases. The position control is poor, as
the two control loops are highly coupled.

During the Free Fall phase, no pressure control is carried out as the rod-
side chamber pressure is given by the slide weight, therefore, good position
control is obtained. However, in the two phases transition, the controller
closes the valve to reduce the slide velocity, which produces a pressure
increase in the rod-side chamber. To counteract this pressure increase, the
pump controller reduces the swash angle, which results in a slowing down of
the slide at t ≈ 2.5s and a pressure decrease.

To reach the pressure reference, the pump swash angle is opened completely
to deliver more flow. This flow increase speeds up the slide falling velocity
and the valve controller reacts, closing the valve to slow down the slide and
reach the position reference, from t = 2.5s to t = 4s.
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Fig. 4.8: Position control during the Free Fall and the Drawing phases with MIMO
PI control.

4.3 Conclusions to Chapter 4

The working operation of hydraulic presses via valve-controlled and pump-
controlled circuits has been analyzed. From the analysis, some limitations
have been pointed out, such as the requirement to manually define control
signals to the rod-side proportional valve, during the Free Fall and Drawing
phases. The control signals are subjected to a specific position reference, and
every time the position reference is modified the manually defined signals
need to be redefined accordingly.

We have proposed an enhanced hydraulic press control, to automate position
control and avoid defining signals manually. We propose to control the rod-
side chamber pressure with the variable axial piston pump while controlling
the slide position with the rod-side proportional valve. As a first approach we
try to control the pump and the valve with two PI controllers. However, as
we have seen in Section 4.2.3, the pump and valve control loops are highly
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coupled and, together with the nonlinear behavior of the hydraulic system,
yield poor position control of the hydraulic press.

Therefore, in order to improve the performance of the PI controllers in the
position MIMO control problem, in Chapter 5, a revision of the existing
MIMO controllers is carried out, which yields an innovative MIMO position
controller scheme based on ILC.
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Iterative Learning
Control in hydraulic
press position control

5

5.1 Introduction

Nowadays, the working operation of a hydraulic press requires the need of
manually define constant spool positions and closing ramps to a proportional
valve. In Section 4.2.3, we have proposed a new MIMO position control, so
the hydraulic press operation can be automated, by controlling the pump
and the valve simultaneously. However, as already concluded in Section
4.2.3, the control is not straightforward, as pump and valve control loops are
coupled.

Literature has already investigated the problem of hydraulic coupling control.
In [68], a pump and a pressure relief valve are used to implement the
pressure control of a compression machine, to reduce the power consumption
based on fuzzy logic. In [69], a MIMO fuzzy controller is proposed for the
position and force control of an electro-hydraulic system. In these two
studies, compared to a PID controller, the results obtained achieved better
performance. However, we aim to automatize the hydraulic press operation
so it can automatically adapt to every force and position scenario. This
opposes the idea of heuristic strategies, typical of the fuzzy control.

In the same line of manually defining control parameters, in [70], four
single-input-multiple-output (SIMO) PI controllers are designed for the force
reference trajectory tracking of a stamping machine. The SIMO PI controller
gains are designed based on the estimated perturbation model, however,
as the authors point out, the fine-tuning of the controller could result in a
time-consuming and expensive process.

To counteract the coupling effect, FF and feedback control have been widely
studied in the literature for the hydraulic systems decoupling. In [71] the
pressure and velocity of a hydraulic actuator are decoupled to eliminate
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unstable valve behavior by velocity feedback. In [72], a FF control scheme is
presented for decoupled pressure control in an actuator. In [73], a MIMO
inversion-based FF controller designed by input-output linearization is imple-
mented for a hydraulic test bed. However, these works focus on the energy
efficiency of the hydraulic system rather than on the control performance.
Furthermore, as concluded through Section 2.3, FF control performs correctly
only to the extent the system is accurately known.

Considering the existing limitations of the MIMO control approaches in
hydraulic circuits, we propose ILC as a solution to the MIMO position control
problem. We design the ILC algorithm to decouple the pump and valve
control loops and, obtain precise position and force tracking. Therefore,
the challenge remains to guarantee stability and high convergence rate for
multiple variables.

Several studies have been realized regarding the design of MIMO ILC algo-
rithms. In [74], a conjugate-gradient ILC was proposed to guarantee fast
monotonic convergence without the need to calculate the inverse of the
system matrix. This method converged fast at the first iterations, but the algo-
rithm performance suffered from the control loop couplings, penalizing the
convergence rate later on. This was improved in [75], with a Quasi-Newton
optimized ILC. However, to guarantee stability in nonlinear systems with
modeling uncertainties, a small gain was included in the learning function,
which required more iterations to converge.

In fact, several optimization-based MIMO ILC algorithms have been proposed
recently, in which the learning function is based on an error minimization
function [76, 77, 78]. These approaches rely on the tuning of the weighting
matrix in order to obtain a global minimum in the minimization problem. It is
hard to explicitly define the ILC multiple objectives in a cost function. In such
a cost function we would have to include a condition for fast convergence,
robustness towards uncertainties, long-term stability and satisfy the input
constraints. This approach requires a too complex optimization problem.

To avoid the dependency on tuning parameters, model-free MIMO ILC ap-
proaches were proposed in [79, 80, 81], to reduce the modeling requirement.
However, not including the system dynamics in the learning design decreases
the convergence rate of the system, as in order to achieve good performance,
knowledge of the plant must be assumed [82].

In [83], an overview of which MIMO ILC design approach to use, illustrated
on an industrial printer, is given. It concludes that the centralized, model-
based, approach achieves the better performance in terms on convergence,
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however it requires more designing and computation effort, in comparison
to the decentralized, model-free, approach.

In line with [83], we have shown in Chapter 3 that the model-based ILC
outperforms other ILC algorithms, when the known dynamics and the feed-
back controller are included in the learning model design. We can manage
the modeling design effort better than a slow convergence. Investing in
an accurate plant model design can optimize the convergence of the algo-
rithm, which results in commissioning cost savings. Else, the slower the
convergence, the more iterations will be required to obtain an appropriate
workpiece forming that fulfills all the design requisites.

In the following section, the MIC-ILC algorithm proposed in Chapter 3 will
be extended to the MIMO case, to obtain precise hydraulic press position
control.

5.2 MIMO ILC design
The hydraulic slide circuit can be regarded as a general time invariant MIMO
linear system:

ẋ(t) = Acx(t) + Bcu(t) y(t) = Ccx(t), (5.1)

where x is the four-dimensional state vector, consisting of the piston position
and velocity, and the pressure inside the two cylinder chambers. u is the two-
dimensional control input vector, consisting of the pump swash angle and
the valve spool position. y is the two-dimensional output vector, consisting
of the piston position and the cylinder rod-side chamber pressure. Ac, Bc

and Cc are matrices with appropriate dimensions.

In this section, signals in the time domain denoted with bold style, denote
vectors. In the same way, capital Laplace transforms in bold style, denote
transfer matrices.

The Laplace transformed system transfer matrix is:

G(s) = Cc(sI −Ac)−1Bc. (5.2)

Note that G(s) is a two-by-two transfer matrix.

The error propagation equation, that relates the current error vector with the
next, is derived in Appendix A and shown in (5.3):
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Ej+1(s) = (I − S(s)G(s)L(s))Ej(s), (5.3)

where S(s) is the sensitivity transfer matrix S(s) = (I + G(s)C(s))−1, and
L(s) the learning transfer matrix.

As explained in Section 4.2, the hydraulic press circuit consists of two control
loops, each of them containing a PI controller. C(s) is the controller transfer
matrix containing the pump PI controller, CP (s), and the valve PI controller,
CV (s), transfer functions:

C(s) =
[
CP (s) 0

0 CV (s)

]
. (5.4)

From equation (5.3), if the term Λ(s) = I − S(s)G(s)L(s) is less than one,
then the error vector at the next iteration will be smaller than the error at
the current iteration. Otherwise, the error would diverge.

The analysis of the convergence properties of Λ(s) is a key focus to guarantee
the stability of the algorithm. According to [1], there are two convergence
conditions: monotonic stability (MS) and asymptotic stability (AS). The
former refers to the error getting smaller from trial to trial. The latter, refers
to whether the algorithm will converge as the number of iterations goes to
infinity. AS is a necessary and sufficient condition, whereas MS is a sufficient
condition to ensure the error gets smaller on each trial.

Clearly, MS is a stronger condition to achieve, and not easy to verify in real
applications, as it was shown in [84]. The MS condition was given by [85],
and implies:

σ̄(Λ(s)) < 1, (5.5)

where σ̄(·) denotes the maximum singular value of a matrix.

A more relaxed condition is given for the AS in [85], and implies:

|λi(Λ(s))| ≤ 1. (5.6)

The tracking error will converge to zero as iterations go on if Λ(s) has all its
eigenvalues, λi, within the unit circle.

We design the learning transfer matrix L(s) so the eigenvalues of Λ(s) are
less than one in module following the AS condition. For the hydraulic press
working operation, we will control the rod-side chamber pressure and the

72 Chapter 5 Iterative Learning Control in hydraulic press position control



piston position, with the pump and valve, respectively. Thererefore, the L(s)
will have the following two-by-two structure:

L(s) =
[
L11(s) L12(s)
L21(s) L22(s)

]
. (5.7)

For the model inverse L(s) design, the same approach as in Section 3.2
will be followed. For MIMO systems with parallel structure with feedback
controller and ILC algorithm, the following model inverse L(s) design is
proposed:

L(s) =G−1(s)S−1(s) = G−1(s)(I + G(s)C(s))
=G−1(s) + C(s), (5.8)

note that (5.8) is a MIMO extension of the design shown in (3.6).

5.3 MIMO ILC learning filter design

In order to carry out the model inverse design, first, the system modeling
needs to be derived. The slide hydraulic circuit is shown in Fig. 4.3, from
which the linearized state-space system will be obtained.

First, in order to derive the complete hydraulic circuit model, the cylinder
and pump dynamic equations need to be defined. Unlike in Chapter 2, the
cylinder in Fig. 4.3 is a double-acting cylinder, the operation of which is
similar to that of the single-acting cylinder except for the retraction, which is
done hydraulically. Therefore, the volumetric flow rate out of the rod-side
chamber need to be defined, which is as follows:

qB(t) = −ABẋ(t) + (VBd + AB(l − x(t)))βṖB(t), (5.9)

where qB(t) is the volumetric flow rate out of the rod-side chamber (m3/s),
AB is the rod-side chamber area (m2), Vd is the rod-side chamber dead
volume (m3) and PB(t) is the pressure in the rod-side chamber.

The force balance equation of the cylinder, that relates both cylinder chamber
pressures is:
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F (t) = mẍ(t) = PA(t)AA − PB(t)AB, (5.10)

where m is the cylinder moving mass (kg) and F (t) is the output force of the
rod (N).

The relationship between the axial piston pump outflow rate and the swash
plate angle is as follows:

q(t) = qN
ω

ωN

α(t), (5.11)

where q(t) is the volumetric flow rate out of the pump (m3/s), qN is the
nominal flow rate (m3/s), α(t) is the swash plate angle (-), ω is the shaft
rational speed (rad/s) and ωN is the nominal shaft rational speed (rad/s)

We are interested in the position control, which takes place during the Free
Fall and Drawing phases. During these phases, the flow rate out of the pump
will be equal to the cylinder piston-side chamber flow rate. Likewise, the
flow rate out of the rod-side chamber will be equal to the flow rate through
the proportional valve.

We can rearrange equation (2.1) with (5.11), to match the cylinder and
the pump flows. Rearranging equation (5.9) with (2.2) we can match the
cylinder and valve flow rates. From these considerations, and using (5.10)
to relate both cylinder chamber pressures, we can obtain the slide hydraulic
circuit system equations, from which the linearized state-space system is
derived in (5.12):


δẍ

δẋ

δṖA
δṖB

 =


0 0A13A14
1 0 0 0
A31 0 0 0
A41 0 0 A44



δẋ

δx

δPA
δPB

+


0 0
0 0
B31 0
0 B42


[
δα

δyv

]

[
δx

δPB

]
=
[
0 1 0 0
0 0 0 1

] [
δẋ δx δPA δPB

]T
. (5.12)

The cylinder piston position and velocity, and the pressure in both chambers
are chosen as state variables. The swash plate angle and the valve spool
position are the system inputs; the piston position and the rod-side chamber
pressure are the system outputs.

δPx = Px− P̄x, δx = x− x̄, δyv = yv− ȳv and δα = α− ᾱ, are the small-signal
deviations from an operating point obtained in steady-state conditions, P̄x, x̄,

74 Chapter 5 Iterative Learning Control in hydraulic press position control



ȳv and ᾱ respectively. The definition of every term Axx, based on the system
parameters, is shown in Appendix C.

Laplace transforming the linearized state space system in (5.12), we can
obtain G(s) to use it in the L(s) = G−1(s) + C(s) design. In the G(s)
inversion, we need to be cautious, as there could be unstable zeros in the
system or some dynamics could become unstable. Therefore, we first analyze
G(s) poles and zeros.

G(s) is a two-by-two transfer matrix with four transfer functions with a
common denominator. The denominator is a fourth-order polynomial which
coefficients are shown in Table 5.1, where V1 = VA + AAx̄ and V2 = VB +
AB(l − x̄).

Tab. 5.1: G(s) system denominator coefficients.

Order Coefficient

4 4V 2
1 V

2
2 β

2mωN

√
P̄B∆Pref

3 −V 2
1 V2βmωNKv(ȳv)qref

2 4AAV1βωn

√
P̄B∆Pref (AAV

2
2 + A2

BV1VB)
1 4A2

AV
2

2 βqNω
√
P̄B∆Pref − A2

AV1V2ωNKv(ȳv)qref

+2A2
BV

2
1 βωNKv(ȳv)P̄B∆Pref

0 0

From Table 5.1 we can see that the zero-order coefficient is zero, thus we
will have a pole at zero. In order to see how the system behaves, we can
put Table 5.1 into numbers, using the parameters shown in Appendix C.0.2,
to obtain the poles of the hydraulic slide system. These are shown in Table
5.2.

Tab. 5.2: G(s) system poles.

Pole Damping Frequency (rad/s)
0.00 -1.00 0.00
-2.09e-01 1.00 2.09e-01
-4.26e-03 + 5.86e+01i 7.28e-05 5.86e+01
-4.26e-03 - 5.86e+01i 7.28e-05 5.86e+01

From Table 5.2, the system has a pole at zero, a low-frequency pole and a
pair of high-frequency conjugates poles. In the case there exists a mismatch
between the cylinder velocity and the flow rates the pressure will move, see
(2.1) and (5.9), that is why the zero pole appears. Then, the low-frequency
real pole exists as, in order to change the cylinder velocity, the pressure needs
to be changed first. The high-frequency complex poles have small damping,
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as no friction model has been included in the slide system. These frictions
usually appear between the slide and the press frame rails, and between the
cylinder and piston. Some authors have included these frictions in the force
balance cylinder equation, see [86, 87]. We will not consider them as they
are unknown and will only affect our system at high frequencies.

We are not interested in the high-frequency poles, as these frequencies are
where the uncertainties of the slide hydraulic system abound, e.g. pump and
valve dynamics. From Table 5.1, we can see that the high-frequency poles
result from the oil compressibility. Indeed, the effects of the oil compressibility
appear only at high frequencies. Therefore, discarding β we will get rid of
those frequencies.

As β is small PB(t) is large, we can neglect those terms with a larger order in
β than in PB(t). In the fourth-order coefficient, β appears squared, thus the
contribution of the fourth-order coefficient will be minimal. In the third-order
coefficient, β does not multiply any pressure signal, the resulting term will
be very small and, therefore, negligible.

After these considerations, the resulting simplified polynomial with the low-
frequency poles is shown in Table 5.3.

Tab. 5.3: Low-frequency G(s) system denominator coefficients.

Order Coefficient

2 4AAV1βωn

√
P̄B∆Pref (AAV

2
2 + A2

BV1VB)
1 4A2

AV
2

2 βqNω
√
P̄B∆Pref − A2

AV1V2ωNKv(ȳv)qref

+2A2
BV

2
1 βωNKv(ȳv)P̄B∆Pref

0 0

Regarding the zeros of G(s) we carry out the same procedure, see if there
exists any term that can be neglected due to its small value. The numerators,
bgxx , corresponding to each transfer function of G(s) = [g11(s) g12(s); g21(s) g22(s)]
are shown in (5.13):

bg11(s) = −AAV1V2qNω(qrefKv(ȳv)− 4V2β
√
P̄B∆Prefs)

bg12(s) = −2ABP̄BV
2

1 V2βωNqref

√
∆Prefs

bg21(s) = AAABqNω
√
P̄B∆Pref

(
2V2s+Kv(ȳv)qref

√
P̄B

)
bg22(s) = 2P̄BV2qref

√
∆Pref (ωNA

2
AV1s

+ qNωA
2
A + βmωNV

2
1 s

3)

(5.13)
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In the g22(s) numerator, bg22(s), a high-frequency zero appears from the term
βmωNV

2
1 s

3. In this term, β does not multiply any pressure variable, thus, it
is discarded. Resulting in:

b̂g22(s) = 2P̄BV2qref

√
∆Pref

(
ωNA

2
AV1s+ qNωA

2
A

)
. (5.14)

In Fig. 5.1, the Bode diagram of G(s) and the simplified system without the
high-frequency zeros and poles, Ĝ(s), is shown. At low frequencies, both
systems responses are identical and, as expected, the responses deviate at
high frequencies.
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Fig. 5.1: Bode diagram of G(s) and the simplified system, Ĝ(s), without the high
frequency poles and zeros.

The new design of the learning gain matrix L(s) will be:

L(s) = Ĝ
−1(s) + C(s), (5.15)

with the simplified system inverse.

Clearly, by including a simplified system in the learning matrix design, the
convergence rate of the ILC algorithm will get affected, as some dynamics will
not get simplified. To attenuate the uncertain high frequencies we include a
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low-pass filter in Ĝ
−1(s), and carry out ZPF, in the same way as in Section

3.3. In this way, we can filter the uncertain and undesired high frequencies
without losing phase. The resulting learning gain matrix with the ZPF is:

L(s) = Ĝ
−1(s) ω2

c

(s+ ωc)2
ω2

c

(s− ωc)2︸ ︷︷ ︸
Ĝ

−1
zpf

+C(s), (5.16)

where ωc is the filter cutoff frequency in rad/s.

In Fig. 5.2, the Bode diagram of the system with ZPF is shown. The unknown
high frequencies are attenuated without losing phase.
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Fig. 5.2: Bode diagram of the plant inverse G−1(s) and the simplified plant system
with ZPF Ĝ

−1
zpf (s).

In order to show the advantages of not affecting C(s) with the low-pass filter,
we compare the plant inverse design proposed in (5.16), LMIC(s), and the
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traditional model inverse design used in literature [56, 57, 58, 59], LMI(s),
with the inverse design without system simplifications nor low-pass filter
introduction LD(s). The learning filters are defined as follows:

LMIC(s) = Ĝ
−1(s) ω2

c

(s+ ωc)2
ω2

c

(s− ωc)2 + C(s)

LMI(s) =
(

Ĝ
−1(s) + C(s)

)
ω2

c

(s+ ωc)2
ω2

c

(s− ωc)2

LD(s) = G−1(s) + C(s)

(5.17)

The Bode diagrams of the three different model inverse approaches are
shown in Fig. 5.3. It can be seen that LD(s) contains the high frequency
dynamics of the slide hydraulic system, as no simplifications have been done
and no low-pass filter has been applied.

In Fig. 5.3, the Bode diagrams (b) and (c) are not affected by the low-pass
filter placement, as C(s) only consists of elements in the diagonal. However,
in (a) and (d) both systems LMIC(s) and LMI(s) have different frequency
responses from 0.2 rad/s on. In (d), it is more visible how LMIC(s) is closer
to the exact model than LMI(s). Indeed, from frequency 0.2 rad/s to 100
rad/s, LMIC(s) behaves in the same way as LD(s).

This is a consequence of applying a really low cutoff frequency in the low-
pass filter introduced, as we want to get rid of most of the high frequencies
and just kept those very low frequencies that we are interested in. In case
we applied a higher cutoff frequency, the differences between LMIC(s) and
LMI(s) would reduce at low frequencies, there would only be differences at
the high frequency regions.

5.4 MIMO ILC stability analysis

In Section 3.4, the stability analysis has been done by interpreting the fre-
quency response of the SISO ILC algorithm in a Nyquist plot. However, in the
MIMO ILC, the convergence condition is not given directly by the frequency
response, but by the eigenvalues of the frequency response matrix.

We introduce the MIMO AS convergence condition with the new L(s) de-
sign:
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Fig. 5.3: Bode diagram of LMIC(s), LMI(s) and L(s).

|λi(I − S(s)G(s)(Ĝ−1
zpf (s) + C(s)))| ≤ |Q−1(s)|. (5.18)

So far, no studies have been done regarding the graphical analysis of the
convergence condition of a MIMO ILC algorithm. Therefore, in order to
carry out an intuitive and a graphical approach we propose to apply the
same procedure as in the SISO ILC, however, instead of looking to a Nyquist
plot of the frequency response, we analyze the eigenvalues of (5.18) at all
frequencies.

As it has been explained in Section 5.2, if every eigenvalue of the term
Λ2(s) = I − S(s)G(s)(Ĝ−1

zpf (s) + C(s)) is less than one in module, then AS
of the MIMO ILC algorithm will be guaranteed.
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Ideally, with an exact model inverse in L(s), Λ2(s) would be a zero matrix
with every eigenvalue at zero for all frequencies. However, due to the sim-
plifications at high frequencies included in Ĝ

−1
zpf (s) and the incorporation of

low-pass filters, the eigenvalues will be close to the origin at low frequencies
and deviate from the origin as frequency increases. In the same manner as
in SISO ILC, the closer the eigenvalues to the origin, the faster those error
frequencies will be corrected by the ILC algorithm.

Λ2(s) is a two-by-two transfer matrix from which two eigenvalues can be
obtained at each frequency point. Figure 5.4 shows each eigenvalue obtained
from Λ2(s) at each frequency.

At low frequencies, the eigenvalues are close to zero, as it has been pointed
out in Fig. 5.4 for a frequency of ω = 2 rad/s. At high frequencies the
eigenvalues value increases, therefore, penalizing the convergence rate at
those frequencies. Although the eigenvalues increase, none of them get out
of the unit circle, which guarantees the stability of the algorithm at high
frequencies.
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Fig. 5.4: Λ2(s) eigenvalues plot at each frequency.

If the eigenvalues got out of the unit circle at a specific frequency, we could
make use of Q(s) to enlarge the stability circle so the eigenvalues at all
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frequencies remain inside the new stability circle. By setting a |Q(s)| < |I|
the stability circle increases accordingly, see in (5.18) that the smaller the
value of Q(s) the bigger the value of the right-hand side. However, one
should be cautious in the Q(s) design, as a Q(s) value different from one
affects the convergence performance of the ILC algorithm, as it was shown
in [40].

Some authors design Q(s) as a low-pass filter, to ensure the condition for
stability is met [34, 40]. Using this Q(s) design approach, one can determine
which frequencies are emphasized in the learning process. However, perfect
tracking will not be achieved.

5.5 Simulation study: MIMO ILC
implementation in a hydraulic press

The designed MIMO control ILC algorithm has been implemented in a non-
linear model of a hydraulic press in Matlab/Simulink. In the same way as
in the SISO case, the implementation has been done in Ikerlan’s library, to
guarantee the reproduction of industrial components with high precision.
The system implementation can been seen in Fig. 5.5.

The position control MIMO ILC algorithm is compared to the performance of
a PI controller, which is the most prevalent controller applied in hydraulic
circuits. Two different PI controllers have been designed for the pump swash
plate angle and the rod-side chamber proportional valve spool position.
The proportional valve PI controller gains have been set to KP v = 3 and
KIv = 3. The pump PI controller gains have been set to KP p = 0.0569 and
KIp = 0.3129. Both PI controllers have been discretized by applying Tustin
approximation as the hydraulic press models run in discrete time with a fixed
step-size of 0.002s.

The control aim is to track the position reference during the Free Fall and
Drawing phases accurately. The position control is shown in Fig. 5.6a. The PI
controller tracks accurately the first part of the Free Fall phase, however, in
the transition between phases the performance deteriorates.
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Fig. 5.5: Simscape implementation of the hydraulic press circuit.
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Fig. 5.6: Position and valve input signal during Free Fall and Drawing phases.
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In Fig. 5.6a, at the first iteration with the PI controllers and no ILC input
signal, there is an obvious rebounding at t ≈ 1.25s. This rebounding results
from the pump swash plate closing. At that moment, the PI controller opens
the valve to speed up the slide and to track the reference trajectory. However,
it is not until t ≈ 3.5s that the reference is reached.

The ILC signal is introduced at t ≈ 0.5s, before the transition between the
two phases. With the introduction of the ILC algorithm, as iterations go on,
both the valve spool position and the pump swash angle are corrected to get
a precise position tracking. At iteration 10, the ILC algorithm closes the valve
faster in order to prepare for the two phases transition. This can be seen in
Fig. 5.6b at t ≈ 1.0s, comparing the valve closing speed of the PI controller
with the ILC algorithm.

Once in the Drawing phase, the ILC maintains the spool position around -0.2
value to reach a constant falling velocity. This effect can be seen in the slide
velocity progress through iterations in Fig. 5.7. At the first iteration, there is
a significant overshoot in the velocity signal which is attenuated as iterations
go on. Introducing the ILC signal, once the slide reaches -100 mm/s speed, it
is maintained at this speed.
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Fig. 5.7: Slide velocity during Free Fall and Drawing phases.

The pressure control for a 180 bar reference is shown in Fig. 5.8a. During
the Free Fall phase, no pressure control is carried out as the rod-side chamber
pressure is given by the slide weight. During the Drawing phase, from t ≈ 1.5s
on, with the PI controller the pressure tracking oscillates considerably around
the reference. This results from the swash plate angle, see Fig. 5.8b, that
saturates in one and then oscillates harshly.
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Fig. 5.8: Pressure tracking for a 180 bar reference and pump swash angle during
Free Fall and Drawing phases.

Introducing the ILC algorithm, the swash plate oscillations are reduced until,
at iteration 10, a constant swash plate is achieved to keep the pressure
around the reference. With this improvement, the pressure reference signal
is reached faster and the oscillations are considerably reduced.

It should be pointed out that perfect pressure tracking is not needed, it is
sufficient to keep the auxiliary chamber pressure close to the reference so,
when the slide strikes the workpiece during the Drawing phase and extra
force is needed, the remaining force can supplied faster.

As a performance index for the proposed MIMO ILC algorithm, the RMSE
between the position reference and the slide position signal is shown in
Fig. 5.9. The RMSE is reduced by a factor of 6 in the position tracking,
and a fast convergence rate is obtained as at the seventh iteration the error
is considerably reduced, with respect to the first iteration with the two PI
controllers.

The RMSE between the 180 bar pressure reference and the rod-side chamber
pressure signal is shown in Fig. 5.10. Note that only the RMSE for the
Drawing phase has been obtained, the Free Fall phase has not been considered.
The error is reduced by a factor of seven regarding the first iteration with the
two PI controllers.
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Fig. 5.9: RMSE between the position reference and slide position over iterations.
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Fig. 5.10: RMSE between 180 bar pressure reference and rod-side chamber pressure
over iterations.

5.6 MIMO ILC performance comparison

To validate the proposed MIMO ILC design, a performance comparison is
carried out with a P-ILC and MI-ILC, as already done in Section 3.6 for the
SISO case. We extend the P-ILC and MI-ILC to the MIMO case and the RMSE
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between the position reference and the slide position will be used as the
performance index.

5.6.1 MIMO P-ILC algorithm

The P-ILC algorithm proposed by Arimoto in [30] is extended in this section
to the MIMO case. The MIMO P-ILC learning law is as follows:

U j+1(s) = U j(s) + KP Ej(s), (5.19)

where KP is the proportional learning matrix, which is used to maximize the
convergence rate of the algorithm. The following KP design is proposed:

KP =
[

0.001 0.2
0.0001 2.5

]
. (5.20)

KP is chosen to optimize the convergence rate of the P-ILC algorithm, so the
frequency matrix eigenvalues lie as close as possible to the origin.

At low frequencies the eigenvalues lie far from the origin, but by means of
KP we can move closer the high frequencies to the origin, as it is pointed out
for 50 rad/s in Fig. 5.11. However, there exists a stability limit for increasing
the values in (5.20) as, by moving closer to the origin the high frequencies,
the low frequencies get out of the stability circle, see Fig. 5.11. With the
MIC-ILC, at zero frequency, the eigenvalues lie at the origin. This is because
of the cancellation of the model dynamics at low frequencies, that optimizes
the convergence rate of the ILC algorithm.

The RMSE between the position reference and the slide position with the
P-ILC and the MIC-ILC algorithm is shown in Fig. 5.12. The P-ILC converges
at the first 20 iterations, however, as iterations go on, the RMSE increases.
This is due to the stability design in Fig. 5.11, that at low frequencies the
eigenvalues of the P-ILC algorithm get out of the unit circle. The MIC-ILC
not only achieves faster convergence rate, but also remains stable.

We know, from Section 5.4, that we can make use of the Q matrix to enlarge
the stability circle so the algorithm remains stable for all frequencies. With
Q = [0.93 0; 0 0.93], the resulting eigenvalues response with the new
stability circle is shown in Fig. 5.13.

By decreasing Q the stability circle has been enlarged and all the eigenvalues
lie inside it. However, as shown in [40], decreasing Q the convergence of
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Fig. 5.11: Eigenvalues plot at each frequency for the P-ILC and MIC-ILC algorithms.
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Fig. 5.12: Position control RMSE comparison with P-ILC and the MIC-ILC algorithm.

the algorithm is penalized and the error converges to a larger steady state
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Fig. 5.13: Eigenvalues plot at each frequency for the P-ILC and MIC-ILC algorithms.

error. This can be seen in the RMSE analysis over iterations with the new
value for Q, in Fig. 5.14.
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Fig. 5.14: Position control RMSE comparison with P-ILC and the MIC-ILC algorithm
for Q = [0.93 0; 0 0.93].
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With the MIC-ILC a Q = I is used, and the convergence is not penalized, the
RMSE reaches a 5 mm value. However, with the P-ILC algorithm, the value
towards the RMSE converges is 10 mm, double the value of the MIC-ILC.

5.6.2 Conventional MIMO model inverse ILC

The conventional model-inverse approach used in the literature will be
designed in this section. It follows the same design as the one followed in
Section 3.6, but extended to the MIMO application.

The model inverse learning filter design is as follows:

LMI(s) = Ĝ
−1(s) (I + Ĝ(s)C(s))︸ ︷︷ ︸

S−1(s)

. (5.21)

Ĝ is the linearized hydraulic slide circuit derived in Section 5.2. In the
same way as for the MIC-ILC algorithm, we need to include low-pass filters
to attenuate the unknown high frequencies not included in model inverse
modeling. A fourth-order low-pass filter is added to LMI(s) and ZPF is carried
out to avoid the phase loss. Following the conventional model-inverse ILC
design (MI-ILC), the filter is added to the entire LMI(s) transfer matrix as
following:

LMI(s) = Ĝ
−1(s)(I + Ĝ(s)C(s)) ω2

c

(s+ ωc)2
ω2

c

(s− ωc)2 . (5.22)

The placement of the low-pass filter varies with respect to the proposed
MIC-ILC, where the low-pass filter is only applied to Ĝ

−1(s), see (5.16). This
variation directly affects the convergence rate of the MI-ILC algorithm, as the
model differences are bigger and the eigenvalues lie further from the origin,
see Fig. 5.15.

In Fig. 5.15, although in the MI-ILC algorithm at zero frequency the eigenval-
ues lie at the origin, they rapidly diverge from it. Comparing both algorithms
response, in the MIC-ILC the eigenvalues deviate from the origin at a slower
pace than in the MI-ILC. This can be seen comparing the distance from the
origin of the eigenvalues at 2 rad/s frequency point.

In Fig. 5.16 a faster convergence rate is obtained with the MIC-ILC com-
pared to the MI-ILC. The former converges in 15 iterations and the latter
converges rapidly at the first 10 iterations. As iterations go on, the MI-ILC
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Fig. 5.15: Eigenvalues plot at each frequency for the MI-ILC and MIC-ILC algo-
rithms.

gradually minimizes the RMSE at each iteration. This is a consequence of
the eigenvalues’ distance from the origin as the frequency increases, as the
low frequencies are corrected faster than the high frequencies. With the MIC-
ILC, the eigenvalues are closer to the origin, so the low and high frequency
components of the error are corrected faster.

Apart from the RMSE as a performance indicator, the Power Spectral Density
(PSD) also provides useful insights for the comparison between ILC algo-
rithms. In Fig. 5.17, the PSD of the error signal over iterations is shown. It
can be seen that the energy is concentrated on the frequency band [0 ∼ +30]
Hz.

At the first 10 iterations, the MIC-ILC reduces faster the low frequency
components of the error. Specially, the frequency band from 0 Hz to 5 Hz
is decreased considerably, as those frequencies are where the eigenvalues
lie close to the origin. At high frequencies, the error reduction is slower,
however, the MIC-ILC still achieves faster correction rate. In line with
the results obtained with the RMSE, at iteration 20, the three algorithms
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Fig. 5.16: RMSE comparison with MI-ILC and the MIC-ILC algorithm under noisy
conditions.

learning process has already converged and the difference between iterations
is minimal, the frequency component of the error remains similar.

5.7 Conclusions to Chapter 5

In order to accomplish the MIMO position control proposed in Chapter 4, we
propose a MIMO ILC algorithm, to take advantage of the repetitive behavior
of a hydraulic slide and overcome the coupling of the pump and valve control
loops.

The proposed MIMO ILC follows the same design procedure as the one shown
for the SISO ILC in Chapter 3. However, it has been extended to the MIMO
case, in which a simplified multivariable model inverse of the hydraulic press,
and the two existing feedback controllers have been considered.

For the MIMO ILC stability and convergence analysis, no graphical evaluation
has been found in the literature, in order to intuitively design the learning
matrix and seek for the algorithm stability. Therefore, we propose a graphical
approach based on the eigenvalues of the frequency response matrix. In
this way, the same procedure as in the SISO ILC can be followed, however,
instead of looking at the frequency response we look at the eigenvalues.
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Fig. 5.17: Power spectrum of the pressure error signal, for the four different con-
trollers.

With this method, the stability of the algorithm is fulfilled if the learning
filter eigenvalues lie inside the unit circle. The closer the eigenvalues lie to
the origin, the faster the MIMO ILC algorithm will converge.

The proposed MIC-ILC algorithm has been implemented in a nonlinear
hydraulic press model in Matlab/Simulink, for which satisfactory results have
been obtained. Furthermore, the MIC-ILC has been compared to other ILC
designs and a performance analysis has been carried out.

Following the proposed graphical design approach, the MIC-ILC eigenvalues
lie closer to the origin than the other ILC algorithms, which yields faster
convergence rate, as well as stability.
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This is one of the main contributions of the MIC-ILC, the ability of correcting
the low frequency components faster than the existing ILC algorithms in
the literature. The enhancement of the MIC-ILC has been verified in the
frequency domain, with the Power Spectral Density, analyzing the error signal
at each iteration for each ILC algorithm. The evolution of the error signal in
the frequency domain also shows that the MIC-ILC outperforms other ILC
methods in terms of stability and convergence rate.

The next section discusses the implementation of the ILC algorithms in two
industrial scenarios: a hydraulic press test rig and a Digital Twin platform
with real industrial hydraulic press controllers.
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Experimental Results
6

6.1 Introduction

This thesis has analyzed two control problems, the force control of mechanical
presses and the position control of hydraulic presses. Two novel schemes
have been proposed, based on ILC, and their superiority over the available
control schemes has been shown in a simulation environment.

At this point is where we ask: how ready are the proposed algorithms to be
implemented in a real hydraulic or mechanical press? This can be answered
by looking at the Technology Readiness Level (TRL) scale that was originated
at NASA, to measure how far a technology is from being deployed in space
[88]. This definition was afterwards adopted by the European Commission,
and was extended to any technology. The summary of the 9 stages that form
the TRL scale made by the European Commission were given in [89] and are
shown in Table 6.1.

Tab. 6.1: Horizon 2020 Technological Readiness Levels [89].

TRL 9 Actual system proven in operational environment
TRL 8 System complete and qualified
TRL 7 System prototype demonstration in operational environment
TRL 6 Technology demonstrated in relevant environment
TRL 5 Technology validated in relevant environment
TRL 4 Technology validated in lab
TRL 3 Experimental proof of concept
TRL 2 Technology concept formulated
TRL 1 Basic principles observed

The TRL scale can be separated in four levels: TRL 1-3 is where the fun-
damental research takes place, the proof concept. TRL 4-5 is where the
validation is done in lab and the results presented should be statistically
relevant. TRL 6-7 is the demonstration that the concept actually works in a
industrially relevant environment. Finally, TRL 8-9 is where the technology
is put into production.
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We can state that, up to this section, the proposed position and force con-
trollers lie under TRL-5, as the controllers have been implemented in high-
fidelity press simulations in MATLAB/SIMULINK. According to [89], high-
fidelity addresses the concept of a laboratory environment that can simulate
and validate all system specifications within a laboratory setting. This brings
us to the novel hydraulic library made by Ikerlan, used to model the hydraulic
and mechanic press models, which validation under laboratory conditions
and reproduction of physical behaviors was proven in [66].

Through Chapters 3 and 5, we have validated under simulation conditions
both force and position controllers. Now, once TRL-5 is complete, we may
advance to TRL-6 and TRL-7. To that end, two experimental scenarios are
presented. On the one hand, the force and position control are implemented
in a hydraulic test rig, that allows experimental testing of the controllers
under actual conditions. On the other hand, in a Digital Twin platform, the
force controller will be implemented in a Simotion D445-2 industrial press
controller. This enables Real-Time (RT) representation of the mechanical
press operation under industrial control platforms.

With the implementation in the hydraulic test rig, we will jump into TRL-6.
The hydraulic test rig can be regarded as a representative prototype of a
hydraulic press, as it consists of every hydraulic element that we can find in
a hydraulic press. Therefore, as the controllers will be tested in a relevant
environment, it represents a major step up in a technology’s demonstrated
readiness.

With the implementation in the Digital Twin environment, we test the pro-
posed force control algorithm in an operational environment, i.e. the Simo-
tion controllers that are used in real industrial presses. In the Digital Twin
platform, the press models have been embedded into a control system that
supports RT communications. Therefore, this is a step up with respect to
TRL-6, as the press model prototypes will be implemented in a real oper-
ational environment, with real industrial controllers, and not in a custom
made controller.

6.2 Hydraulic test rig setup

The proposed force and position ILC control algorithms are implemented in
the hydraulic test rig shown in Fig 6.1. It consists of two identical hydraulic
circuits and each circuit comprises: a double-acting cylinder, a proportional
valve, a hydraulic pump, a pressure relief valve, an accumulator, pressure
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sensors at each cylinder chamber and a flow rate sensor. The hydraulic
scheme of the test rig is shown in Appendix C.0.4 and the parameter values
are depicted in Appendix C.0.3.

Fig. 6.1: The available hydraulic test rig at Ikerlan Technology Research Center.
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Figure 6.2 shows the detailed view corresponding to a hydraulic circuit, note
that the other hydraulic circuit is identical. The proportional valve is a Moog
D633 4-way valve, which spool position is controlled electronically. At ports
A and B the valve has two stopcock valves which, if closed, limit the flow
rate to the cylinder. Two pressure sensors have been installed at ports A and
B, so the pressure at each cylinder chamber can be measured.

The gas accumulator has been pre-charged with nitrogen to 100 bar. It has
a stopcock valve so, if desired, it can be isolated from the circuit. For the
experimental tests in this document, the accumulator will be isolated from
the hydraulic circuit.

Several needle valves have been installed in the circuit to reproduce flow
losses in the circuit, e.g. cylinder chamber losses, valve losses, pump losses.
A flow rate sensor has been installed between the hydraulic pump and the
proportional valve, which corresponds to element 12.2 in Appendix C.0.4.
The maximum working pressure of the flow rate sensor is 160 bar, therefore,
the pressure relief valve cracking pressure has been set to 160 bar for security
reasons. A contact-less magnetostrictive linear position transducer has been
included to measure the cylinder piston position.

Fig. 6.2: Detailed view of one of the hydraulic circuits of the hydraulic test rig.

The detailed view of both hydraulic pumps and both Unidrive M300 is shown
in Fig. 6.3. A helical gear rotor pump has been installed, which is ideal for
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high pressures and low noise. The pump flow rate varies depending on the
rotational speed of the pump.

(a) (b)

Fig. 6.3: Hydraulic pumps and Unidrive M300.

The hydraulic pump is driven by an induction motor. The motor is connected
to an Unidrive M300, which is a variable speed AC drive for induction motors.
The Unidrive M300 has an onboard PLC and SI-interface that allows the
communication with the driver via EtherCAT protocols.

Each hydraulic circuit has two actuators and four sensors. The actuators are
the proportional valve and the hydraulic pump. The sensors are: a pressure
sensor for each cylinder chamber, a transducer sensor for the cylinder piston
position and a flow rate sensor.

Every system actuator and sensor is connected via EtherCAT communication
to a Beckhoff 6930-0050. The Beckhoff Industrial PC (IPC) receives and
processes the sensor signals, and delivers back the corresponding control
inputs to the actuators.

The position and control ILC algorithms are implemented in TwinCAT 3,
which is a platform developed by Beckhoff, where PLC programming is
carried out. The integration into Beckhoff’s industrial environment allows
RT communications through EtherCAT deterministic protocol.

To validate the proposed force and position control ILC algorithms, two
different cylinder configurations are used. On the one hand, with the two
cylinders separated, we can reproduce the working operation of a mechanical
press, see Fig. 6.4a. The upper-cylinder acts as the press slide, with the
up and down motion, whereas the lower-cylinder acts as the press cushion,
which waits for the slide stroke.

On the other hand, connecting both cylinders by their piston rods by means
of two bolts, we can reproduce the hydraulic press working operation, see
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Fig. 6.4b. With this arrangement, both cylinders move together, as they are
coupled, which allows us to control the position trajectory of the joint.

(a) (b)

Fig. 6.4: Cylinder decoupled and coupled in hydraulic test rig.

6.3 Force Control in hydraulic test rig

Here, the force control tests will be carried out, with the setup shown in
Fig. 6.4a. The upper-cylinder acts as the press slide, for which a position
trajectory is defined. The lower-cylinder acts as the press cushion, and waits
in a stand-still position for the upper-cylinder’s stroke. When the stroke takes
place, the pressure in the piston-side chamber of the lower-cylinder must be
controlled.

A 750 rpm rotational velocity is set to the upper-cylinder hydraulic pump,
to obtain a constant falling velocity during the Drawing phase. The lower-
cylinder hydraulic pump is only used to return the lower-cylinder to the TDC
position once the Drawing phase is finished.
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The trajectory that both cylinders follow is shown in Fig 6.5. The upper-
cylinder starts at the TDC position at x ≈ 18 cm and the stroke takes place
at x ≈ 6 cm, where the Drawing phase starts. After the Drawing phase, both
cylinders are moved back to their respective TDC positions. Note that the
lower-cylinder moves upward at a slower pace, as the piston-side chamber
needs to be pressurized in advance, to move up the piston. In the upper-
cylinder, however, the rod-side chamber needs to be pressurized, this process
is faster as the rod-side area is smaller.
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Fig. 6.5: Cylinder position trajectories during hydraulic rig test.

First, for the force control, a PI controller is designed to control the pressure
during the stroke. The PI controller gain values are: KP c = 25 and KIc = 5.
For a pressure reference of 110 bar, the PI controller gives the force reference
tracking shown in Fig. 6.6.

From Fig. 6.6, it can be seen that there is a considerable overshoot in the
pressure signal, that reaches 128 bar. In order to reduce that overshoot, we
introduce the SISO MIC-ILC algorithm designed through Chapter 3, in the
hydraulic rig.

The plant inverse design for the learning filter is as follows:

L(s) = s− A11

A12

ω2
n

(s+ ωn)2
ω2

n

(s− ωn)2︸ ︷︷ ︸
Ĝ−1

zpf

+C(s). (6.1)
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Fig. 6.6: 110 bar pressure reference tracking with PI controller.

Now, A11 andA12 are based on the hydraulic rig system parameters, which are
shown in Appendix C.0.3. The controller, C(s), consists of the PI controller
shown above.

The frequency response of the system is shown in Fig. 6.7. A Q = 0.92 has
been set, so the response of all the frequencies remains inside the stability
circle, guaranteeing the algorithm stability.

As it has been pointed out in Fig. 6.7, at low frequencies the response of the
ILC algorithm remains close to the origin, which ensures high convergence
rate. As frequency increases, the response deviates at a slow pace from the
origin towards the point (+1,0).

In the following sections, several tests are carried out, to analyze the SISO
MIC-ILC performance towards different scenarios that can arise during the
working operation of an actual hydraulic cushion circuit.

6.3.1 Robustness towards modeling mismatch

In the A11 and A12 terms used for the L(s) design. In (6.1) β appears, which
provides information about how much pressure must be applied to the oil to
compress it. The definition of the terms can be seen in (6.2):
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Fig. 6.7: |1 − G(s)S(s)L(s)| frequency response with L(s) = Ĝ−1
zpf (s) + C(s) for

hydraulic rig.

A11 = −
Kv(ȳv)

√
∆Pref

VTβqref

1
2
√
P̄A

A12 = −

√
P̄Aqref

VTβ
√

∆Pref

K̇v(ȳv).

(6.2)

As it has been shown in Appendix D, the value of the term VTβ in the test rig
is 22% smaller than the theoretical value. This means that in the hydraulic
test rig, the volume change of the hydraulic oil as a response to a pressure
change will be less.

We have seen in Section 2.3, that in the FF controller any model mismatch
affected considerably its performance, yielding a poor force control. In
order to analyze the SISO MIC-ILC algorithm robustness towards model
uncertainties, in the L(s) design in (6.1), we use the theoretical value of VTβ

used through Chapter 4, instead of using the actual value corresponding to
the hydraulic rig. In this way, we will see how it affects the convergence and
stability of the algorithm.

The performance of the designed SISO MIC-ILC algorithm is demonstrated
under a 110 bar pressure reference scenario. The pressure signal tracking for
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a 110 bar step reference is shown in Fig. 6.8a. The ILC signal is activated for
a limited range, from t ≈ 0.53s to t ≈ 0.6s, just where the overshoot signal
exists. From t ≈ 0.6s on, the PI controller maintains the pressure around the
reference.

It should be pointed out that once the ILC is deactivated, the last input from
the ILC is assigned to the PI controller. Else, a pressure bump would appear
due to a large change in the PI input. To avoid it, the last ILC input signal is
assigned to the PI controller integral action, to achieve a bumpless switching
of controllers.

Instead of opening the valve spool position further to eliminate the pressure
overshoot, the MIC-ILC opens the valve faster as it can be seen in Fig. 6.8b.
With the PI controller, the maximum spool position is obtained at t ≈ 0.55s,
however, with the MIC-ILC the maximum spool position is at t ≈ 0.54s. This
anticipation is sufficient to eliminate the overshoot in the pressure signal.
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Fig. 6.8: Pressure and input signal for a 110 step bar reference.

As a performance index for the proposed MIC-ILC algorithm, the overshoot
of the pressure signal at each iteration is shown in Fig. 6.9. Convergence
of the pressure overshoot towards the reference is reached in 10 iterations,
eliminating the overshoot. The overshoot at the first iterations is 17 bar
and, at the tenth iteration, the overshoot is 3 bar. Therefore, the overshoot
is reduced by a 82% with respect to a PI controller, which is a enormous
improvement.
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Fig. 6.9: Convergence to 110 bar pressure reference.

6.3.2 Actuator Fault

As we have explained in Section 6.2, in the hydraulic test rig there exist
needle valves that simulate flow losses in the circuit. The adjustment of the
needle valves is gradual and smooth for controlling the flow rate. The open
position can be regulated manually to any opening degree.

If we look at Fig. C.1, by opening the needle valve 32.2 in the lower-cylinder,
during the piston retraction a certain amount of the flow out of the cylinder
piston-side will be delivered to the tank through said valve. This will result
in a pressure decrease in the cylinder chamber, therefore the valve will have
to close the spool more than in a normal scenario to obtain the desired
pressure.

This flow loss can be regarded as a variation in the hydraulic conductivity,
Kv(yv), of the valve, as a specific spool position will result in a different
pressure level than before. Therefore, with this flow loss, a similar scenario
than the one carried out for the FF controller in Section 2.3.2, is tested.
Where the Kv(yv) nonlinearity introduced in Fig. 2.12, penalized the FF
controller performance considerably.

For a pressure step reference of 110 bar, in Fig. 6.10 the difference in the PI
controller response for a normal scenario and with the flow loss introduced
can be seen. As the needle valve has been opened to a 10◦, it yields a pressure
level decrease in the cylinder piston-side chamber.
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Fig. 6.10: Piston-side chamber pressure with and without flow losses, during Free
Fall and Drawing phases.

We introduce the SISO MIC-ILC to see its robustness towards unmodeled
losses. This can be seen in Fig. 6.11a, the MIC-ILC corrects the existing
overshoot, and the oscillations are removed. See in Fig. 6.11b that now the
total input to the valve is smaller than in a normal scenario in Fig. 6.8b, as
due to the flow losses the valve has to be closed more to reach the same
pressure level than before. The MIC-ILC automatically learns the new valve
input.
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Fig. 6.11: Pressure and input signal for a 110 bar step reference with flow losses.
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The overshoot of the pressure signal at each iteration is shown in Fig. 6.12.
At the first iteration, with a PI controller, the overshoot is smaller than in
Fig. 6.9. The MIC-ILC adjusts rapidly and at iteration 10 the overshoot
is decreased considerably. At the first iteration, with the PI controller, the
overshoot is 12.5 bar and, at the tenth iteration, the overshoot is 3.5 bar, a
reduction of a 72% is achieved.
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Fig. 6.12: Convergence to 110 bar pressure reference.

6.3.3 Actuator drifting

Sensors can be characterized by two fundamental attributes: precision and
accuracy. Precision refers to how close are the values to each other, i.e. the
ability to reproduce consistently a measurement. Accuracy refers to how
close are the obtained measurements to the actual value.

Generally, sensor precision remains high. However, the sensor accuracy is
often affected by drifting, which causes the measurement error to get worse
over time. It is a natural phenomenon that affects all the sensors, regardless
of the type.

Drift can also affect actuators and can turn into a tricky problem in the control
of hydraulic circuits. For instance, if there exists a drift in the proportional
valve, the control of the system will get affected. If the valve has a drift in the
control signal, the valve at the centered position will be opened. This means
the valve is not centered due to bad calibration, and the cylinder piston will
creep, although no control signal exists.
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This is a common issue in hydraulic actuators and it can be solved by turn-
ing a screw on the proportional valve solenoid to calibrate correctly the
valve. However, the calibration should be done frequently and each actuator
requires a different calibration.

To see if the MIC-ILC algorithm automatically adapts to an actuator drift, we
introduce a manual drift to the lower-cylinder proportional valve input of a
±5%. A negative drift will cause the valve to close the spool more, therefore
less oil will be channeled through the valve to the tank, and the pressure
inside the cylinder piston-side chamber will increase. On the contrary, a
positive drift will cause the valve to open more the spool, and the pressure
inside the piston-side chamber will decrease, benefiting the pressure control.
Both scenarios can be seen in Fig. 6.13.
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Fig. 6.13: PI controller 110 bar step for different drift scenarios.

As the positive drift results in a favorable scenario, we will test the MIC-ILC
algorithm for the negative drift case. The pressure reference tracking over
iterations is shown in Fig. 6.14a. The overshoot increase due to the drift
introduced is counteract by the MIC-ILC by opening the valve spool position
to a higher value, see Fig. 6.14b. In the normal scenario in Fig. 6.8b, the
ILC input signal reached -0.13 spool position, and in this case it reaches -0.2
value, to counteracted the extra overshoot.

In order to see the error decrease evolution, we show the RMSE and the
overshoot over iterations in Fig. 6.15. The overshoot is reduced a 86% with
respect to the first iteration with a PI controller. The RMSE is reduced a 50%
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Fig. 6.14: Pressure and input signal for a 110 bar step reference with -5% drift.

with respect to the first iteration. Note that due to the compressibility of the
oil, it is physically impossible to obtain a RMSE lower that 2.17.
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Fig. 6.15: RMSE and overshoot for a 110 bar step reference for -5% drift.

6.4 Position Control in hydraulic test rig
Here, the position control tests will be carried out, with the setup shown in
Fig. 6.4b. We cannot test the same scenario as in Chapter 4, as we do not
have two proportional valves to control the cylinder position and rod-side
chamber pressure simultaneously. However, with the cylinders connected,
we can still carry out a similar test to validate the MIMO MIC-ILC position
control.
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As both cylinders are coupled, both rod-side chambers are opened to the tank,
they do not contribute to the operation. With the upper-cylinder’s hydraulic
pump, we control the lower-cylinder piston-side chamber pressure, while
controlling both cylinders’ joint position with the lower-cylinder proportional
valve. This is a realistic scenario, as there exists the coupling of the pump
and valve control loops.

Unlike the hydraulic pump used through Chapter 4, in the hydraulic test rig,
the displacement of the pump is defined by the volume the pistons displace
in one revolution. Therefore, instead of controlling the swash angle, the
angular velocity of the pump is controlled.

The relationship between the fixed displacement axial piston pump outflow
rate and the shaft speed is as follows:

q(t) = qN

ωN

ω(t), (6.3)

where ω(t) is the shaft rational speed (rad/s).

The position reference during the Free Fall and Drawing phases is shown
in Fig. 6.16. This is the position the cylinders’ joint position, from now on
referred to as the slide, must follow. The transition between the two phases
takes place at t ≈ 2s, where the slide falling velocity is reduced.
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Fig. 6.16: Slide trajectory, Free Fall and Drawing phases.

We first design two PI controllers, to control the pump angular velocity and
the valve spool position, and to follow the previously defined slide trajectory.
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The pump PI controller gains values are: KP p = 4 and KI p = 3.8. The valve
PI controller gains values are: KP v = 1.5 and KI v = 0.25. The resulting
position and force control is shown in Fig. 6.17. When the pressure is higher
that the reference is due to an excessive pump velocity, which yields faster
falling velocity of the slide. On the contrary, when the pressure is lower than
the reference, is due to insufficient pump velocity, which translates into a
slide velocity slowing down.
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Fig. 6.17: Position and pressure signal during the press operation with PI controller.

In order to improve the position and force tracking, we implement the MIMO
MIC-ILC algorithm designed in Chapter 5 in the hydraulic test rig. To that
end, we introduce again the proposed plant inverse design for the learning
matrix:

L(s) = Ĝ
−1(s) ω2

c

(s+ ωc)2
ω2

c

(s− ωc)2︸ ︷︷ ︸
Ĝ

−1
zpf

+C(s). (6.4)

Now, C(s) consist of the pump and valve PI controllers introduced above,
and Ĝ

−1(s) is the simplified hydraulic test rig system with the parameters
shown in Appendix C.0.3. To analyze the stability and convergence rate of
the algorithm, we obtain the eigenvalues at each frequency, shown in Fig.
6.18.

At low frequencies, the eigenvalues are close to zero, as it has been pointed
out in Fig. 6.18 for a frequency of ω = 2 rad/s. At high frequencies the
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Fig. 6.18: Eigenvalues plot at each frequency for the hydraulic test rig model inverse
design.

eigenvalues value increases, therefore, penalizing the convergence rate at
those frequencies.

In the following section, several tests are carried out, to analyze the MIMO
MIC-ILC performance towards different scenarios that can arise during the
working operation of an actual hydraulic slide circuit.

6.4.1 Robustness towards modeling mismatch

In the L(s) design, the plant model inverse with the low frequency poles and
zeros is included, which are shown in Table 5.3 and in (5.13), respectively.
As we have explained in Section 5.3, the terms containing β and PB provide
us with information on the rate the pressure increases. However, as shown
in Appendix D, the β value from the hydraulic test rig differs from the one
used in the theoretical analysis, which is less compressible.

The value of β has great importance in the modeling of the system dynamics,
therefore, a model mismatch will considerably influence the control input
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value obtained from L(s). In the same manner as for the SISO MIC-ILC
implementation in Section 6.3.1, we use the theoretical β value in the L(s)
design, to analyze the robustness of the MIMO MIC-ILC algorithm towards
modeling differences.

From Fig. 6.17, we have seen that the PI controller performance is poor all
along the two phases, therefore, we introduce the ILC signal during the Free
Fall and Drawing phases. The oscillations in the position tracking are reduced
considerably and a good position control is achieved, see Fig. 6.19a.

In Fig. 6.19b, how the MIC-ILC algorithm has adjusted the valve spool
position to the slide velocity change can be seen. At iteration 10, from t ≈ 0s
to t ≈ 2.2s, the valve spool position is reduced progressively from -0.2 to -0.1.
This progressive valve closing is introduced to achieve fast velocity during
the Free Fall phase and to prepare for the two phases transition where the
velocity is reduced. Once in the Drawing phase, the valve spool position is
already at a -0.1 value, which is maintained so constant falling velocity is
achieved.
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Fig. 6.19: Position and valve input signal during Free Fall and Drawing phases in
hydraulic test rig.

The pressure reference tracking is shown in Fig. 6.20a. The oscillations of the
PI controller are reduced and the overshoot and undershoot are improved
as well. The MIC-ILC first introduces a positive angular velocity to reach
the pressure reference as fast as possible, see Fig. 6.20b. Once the pressure
reaches the reference, the MIC-ILC introduces a negative angular velocity to
reduce the signal overshoot. Once the signal is stable around the reference,
the MIC-ILC introduces a positive angular velocity to keep the pressure
constant.
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Fig. 6.20: Pressure tracking for a 60 bar reference and pump velocity during Free
Fall and Drawing phases in hydraulic test rig.

As a performance index for the proposed MIMO MIC-ILC algorithm, the
RMSE between the position reference and the slide position signal is shown
in Fig. 6.21. The RMSE is reduced by a factor of 4 in the position tracking,
and a fast convergence rate is obtained as at the seventh iteration the error
is considerably reduced, with respect to the first iteration with the two PI
controllers.
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Fig. 6.21: RMSE between the position reference and the slide position over itera-
tions.

The RMSE between the 60 bar pressure reference and the lower-cylinder
piston-side chamber pressure signal is shown in Fig. 6.22. The error is
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reduced by a factor of 2.6 regarding the first iteration with the two PI
controllers.
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Fig. 6.22: RMSE between the pressure reference and the piston-side pressure over
iterations.

6.4.2 Actuator Fault

In this section, we introduce a pump leakage into the pump with which the
cylinder pressure is controlled. This scenario can be regarded as a faulty
scenario, as the pump requires more oil flow rate to reach a specific pressure
level than in a normal scenario. In this way, we can see how the MIC-ILC
automatically adapts to a leakage in an actuator.

In order to simulate a pump leakage, we open 40◦ the 7.1 needle valve, see
Fig. C.1. By opening this valve, a certain amount of the oil flow rate displaced
by the pump will go through needle valve 7.1 to the tank. Therefore, more
flow rate will be needed from the pump to reach a specific pressure level in
the lower-cylinder piston-side chamber.

In Fig. 6.23, the comparison of the pressure control in a faulty scenario and
a non-faulty scenario is shown. In the pump leakage scenario, the pressure
overshoot is less and the pressure tracking is slightly better than in the
leakage scenario. This is a consequence of the leakage introduced, most of
the oil returns to the tank through the needle valve 7.1, and less oil flow rate
reaches the cylinder chamber, resulting in a less pressure increase. However,
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note that in order to reach the same pressure level of 60 bar, the pump has
to run faster, thus increasing the pump’s energy consumption.
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Fig. 6.23: Pressure control and pump velocity for a normal scenario and a pump
leakage scenario.

We introduce the MIMO MIC-ILC to analyze its performance under a faulty
pump scenario. The position tracking, see Fig. 6.24a, is similar to that shown
in the previous section with the hydraulic compressibility mismatch, as a less
aggressive and oscillating pressure control favors the position control.

The pressure reference tracking, however, gets considerably affected by the
leakage introduced, as more pump power is required to reach the same
pressure level. In Fig. 6.25a, the pressure reference tracking over iterations
is shown. As iterations go on, the oscillations existing with the PI controller
are removed, and a precise pressure reference tracking is achieved.

The MIC-ILC contribution to the pump velocity is shown in Fig. 6.25b.
In comparison to the previous section with the hydraulic compressibility
mismatch, see Fig. 6.20b, the ILC introduces a higher pump velocity, in order
to counteract the pump leakage. See that the first oscillation of ILC input
reaches 200 rpm, whereas in Fig 6.20b, it reached 170 rpm.

For the performance index, the RMSE between the 60 bar pressure reference
and the lower-cylinder piston-side pressure signal is shown in Fig. 6.26. The
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Fig. 6.24: Position and valve input signal during Free Fall and Drawing phases in
hydraulic test rig.
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Fig. 6.25: Pressure tracking for a 60 bar reference and pump velocity during Free
Fall and Drawing phases in hydraulic test rig with pump leakage.

RMSE for the position control is not shown, as the result is similar to that
obtained in Fig. 6.21.

As the pressure overshoot at the first iteration is smaller due to the leakage
introduced, the RMSE value is smaller too. Still, the RMSE is improved by a
factor of 2.5, with respect to the first iteration with the PI controller.

6.4.3 Actuator drifting

In the same way as in Section 6.3.3, we will test the MIMO MIC-ILC for an
actuator drift scenario. For the MIMO control problem, as both control loops
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Fig. 6.26: RMSE between the pressure reference and the piston-side pressure over
iterations.

are coupled, the actuator drift will affect both the position and the pressure
control.

The slide position and the valve input signals are shown in Fig. 6.27. With
the -5% drift, the valve spool signal reaches negative values as the centered
position is not at 0 anymore. The -5% drift case has the higher amplitude
in the oscillations of the valve input which results in a very poor position
tracking.

Although the drift has been introduced in the valve and not in the pump, the
pressure tracking gets affected by the control loops coupling, as it is shown
in Fig. 6.28. The worts case, similar to the position signal, is with -5% drift,
where the oscillations in the valve input affect the pressure control, which
oscillates considerably around the reference as well.

We introduce the MIMO MIC-ILC to the -5% drift case, as it is the worst
scenario, to analyze the algorithm performance. The position tracking over
iterations is shown in Fig. 6.29a, although the initial iteration is worse due
to the drift introduced, the MIC-ILC is able to correct it as iterations go on.
The MIC-ILC input signals are shown in Fig. 6.29b.

In Fig. 6.30 we can see the position error evolution with the RMSE over
iterations. The first iteration RMSE is higher than in a non-drift scenario,
however, it does not affect the MIC-ILC performance and the same steady-
state RMSE value of one is obtained after 10 iterations. The position error is
reduced by a factor of 10.
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Fig. 6.27: Position and valve input signal with ±5% drift, during Free Fall and
Drawing phases.
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Fig. 6.28: Lower-cylinder piston-side pressure and pump velocity with ±5% drift,
during Free Fall and Drawing phases.

The pressure reference tracking is shown in Fig. 6.31a, the oscillations and
overshoot of the first iteration with the PI controller are reduced considerably
over iterations. The MIC-ILC contribution to the pump velocity is shown in
Fig. 6.31b.
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Fig. 6.29: Position and valve input signal during Free Fall and Drawing phases in
hydraulic test rig with -5% drift.
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Fig. 6.30: RMSE between the position reference and slide position over iterations.

As a performance index of the pressure error reduction the RMSE over
iterations is shown in Fig. 6.32. The initial RMSE pressure error is reduced
a 80%. Despite the drift introduced in the valve, fast convergence rate is
obtained, and at iteration 15 the RMSE already converges.
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Fig. 6.31: Pressure tracking for a 60 bar reference and pump velocity during Free
Fall and Drawing phases in hydraulic test rig.
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Fig. 6.32: RMSE between the pressure reference and the piston-side pressure over
iterations.

6.5 ILC implementation in Digital Twin

One of the main technological trends highlighted in the recent years in
the industry is the creation of Digital Twins. The Digital Twin is a virtual
replica of a system that simulates the behavior of its real counterpart. This
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technology allows the possibility to develop new and innovative control
strategies without having a real machine.

Figure 6.33 shows the Digital Twin platform used for implementing the
proposed ILC algorithms. It consists of two main parts: a digital model of
a mechanical press embedded in a Beckhoff IPC and a mechanical press
real control hardware embedded in Siemens Simotion Industrial Controller
provided by FAGOR ARRASATE.

Simo�on Slide

Simo�on Cushion

Press PLC

Press and Cushion

Digital Model

Virtual Machine

     Monitor

Operator Screen

Fig. 6.33: Digital Twin platform at Ikerlan Technology Research Center.

In the digital model of the press, in order to reproduce a virtual representation
of the working operation of a mechanical press, the press models designed
with Ikerlan’s library have been integrated on a Beckhoff Industrial Controller.
This is carried out by compiling the Matlab/Simulink press models into
TwinCAT3, which is a platform developed by Beckhoff. The integration
into Beckhoff’s industrial environment allows RT communications through
deterministic protocols such as EtherCAT or ProfiNET. These deterministic
protocols allow the communication between the Simotion control hardwares
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with Beckhoff’s virtual model in real execution time. We will not go further
into details with the integration of the press models into TwinCAT3, for a
thorough explanation refer to [66].

The real control hardware collects the dynamic working signals of the sim-
ulated mechanical press. These signals are processed by the controller and
delivered back to the corresponding actuators of the simulated mechanical
press.

Note that we only have available the real control hardware corresponding
to a mechanical press, therefore, only the SISO ILC algorithm for the force
control is tested in the Digital Twin platform.

The mechanical press control is carried out by two different Siemens Simotion
D445-2, one of which is used to control the press slide position trajectories,
the other one is used to control the cushion force and position. With the slide
controller, we can generate new position trajectories based on the velocity,
drawing distance, number of pumps, etc. With the cushion controller, we can
control the desired cushion blank-holder force. The SISO MIC-ILC algorithm
is integrated in the cushion’s Simotion controller.

The entire process is governed by a PLC (S7-300), which carries out the
communication between the two Simotions and the virtual model in Beckhoff.
There have been installed two screens: an actual operator’s screen which can
be found in a real mechanical press, where the press cycle parametrization is
done. The other one is the virtual machine monitor and gives data of every
variable simulated in the virtual press model.

Every Digital Twin connection is depicted in Fig. 6.34. The communication
between the real press controllers, i.e., slide controller, cushion controller,
and PLC is carried out by Profinet Isochronous Real Time (IRT), which ensures
fast cycle times and that frames are transmitted and received on schedule and
in order [90]. The communications between the press controllers and the
Beckhoff IPC is carried out with Profinet RT [91]. Profinet RT is commonly
used for those applications where standard cyclic data acquisition is enough,
as it is the case in the communication between the controller and Beckhoff
IPC.

The integration of the SISO MIC-ILC into the Digital Twin platform represents
a major step up from TRL 6. We implement the ILC force control algorithm
into a real press controller environment in Simotion. This requires addressing
the RT implementation in the actual control hardware, considering the
computation and memory requirements.
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Fig. 6.34: Digital Twin platform elements and their connections.

In order to design the ILC algorithm in Simotion hardware, Simotion SCOUT
has been used, which is an engineering software used to perform hardware
and network configuration, programming and commissioning [92]. The
algorithm is implemented in PLC programming and it is executed in a time-
triggered task.

In Simotion, there exist five levels of execution tasks, see Fig. 6.35, giving
priority to the system execution levels beyond the user’s execution levels.

• System level: DP, Servo and IPO.

• Interruption: Interrupt.

• Users programs: Round Robin.

Each system level is time-triggered, i.e. a sampling time is specified for each
one. During the force control, it is necessary to send an input to the valve
continuously, therefore, the designed algorithm is implemented under the
Servo task, to which a sampling time of 0.002s has been specified. This task
is activated during the force control, and deactivated otherwise.

In the next section, the FF controller proposed in Section 2.3 and the ILC
algorithm proposed in Chapter 3 will be validated in the Digital Twin.
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Fig. 6.35: Simotion execution levels.

6.5.1 Feed-forward control in Digital Twin

The Simotion controllers have been provided by FAGOR ARRASATE press
manufacturer. Generally, the control in Simotion is carried out with hy-
draulic axis technology objects, which provide straightforward functionalities
for a specific controlling element, such as proportional valves in the force
control.

The Simotion axis technology can be regarded as the starting point of the
force control problem, since it is the controller used nowadays in real presses.
Therefore, we can compare in the Digital Twin the controllers developed
through this document, i.e. FF controller and SISO ILC algorithm, with the
actual press controller with the axis technology.

Figure 6.36 shows the typical configuration of a PID controller axis in Simo-
tion. It consist of a PID controller, which gains must be defined manually.
With the pre-control value, an FF input can be added to the PID controller
output signal. Usually, the D-term of the PID controller is set to zero, to
avoid noise problems. Furthermore, to avoid extra designing burden, the
pre-control is not used as it requires the tuning of a weighting factor.

We can carry out a test with the actual PI controller used in real presses
by FAGOR ARRASATE, to analyze its performance and compare it with
the controllers proposed in this document. FAGOR ARRASATE carries out
the force control in [KN] units, therefore in this section the force signal
of the cylinder instead of the piston-chamber pressure signal will be used.
The two chambers pressure and force relate to the following expression:
F = PAAA − PBAB.

Figure 6.37 shows the FAGOR ARRASATE PI controller response to a 500 KN
step reference. There is a force overshoot of 50 KN and at the end of the step
the force signal decays slightly. This force loss results from the slowing down
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Fig. 6.36: Simotion PID controller axis.

of the cushion velocity that, at the end of the step, is close to zero. This decay
must be prevented, as it could affect the workpiece design.
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Fig. 6.37: FAGOR ARRASATE PI controller response to a 500 KN step reference.

We implement the FF controller into the cushion Simotion device to improve
the FAGOR ARRASATE PI controller performance. As the FF controller
consists of an external input proportional to the velocity and a gain that
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multiplies the output of the PI controller, it can be easily implemented in
Simotion. The resulting Simotion control loop is as shown in Fig. 6.38.

FLPI
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PA∑ ∑e
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ŷv
Virtual System

FF

F

SIMOTION

Fig. 6.38: Cushion force control block diagram with FF controller in Digital Twin.

We know, from Section 2.3.1, that in order to successfully implement the FF
controller the force percentage (FP) at which the signal is introduced must be
calculated. Using (2.9), we obtain a FP of 66% for a 500 KN reference, which
yields the force signal response in the Digital Twin shown in Fig. 6.39.
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Fig. 6.39: FF controller response to a 500 KN step reference and valve input signals
in Digital Twin.

The FL input signal contribution is small, however, it maintains the force
signal around the reference so the slowing down of the cushion velocity
does not affect the force tracking at the end of the step. With the FF input
signal the force overshoot is reduced, as it opens the valve spool at a position
proportional to the velocity of the cushion, anticipating it.
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However, as we have shown in Section 2.3, if the FP is not calculated correctly,
the performance of the FF controller deteriorates notably. In Fig. 6.40, two
different scenarios are shown for a 500 KN force reference: in Fig 6.40a,
the FF signal is introduced too late, at a 86% FP. In Fig 6.40b, the FF is
introduced too soon, at a 50% FP. Recall that the correct FP is 66%.
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Fig. 6.40: 500 KN force step reference tracking with FF controller at two different
FP in Digital Twin.

If the FF is introduced ahead of time, the valve opens too early and the
force signal takes a large time to reach the pressure reference. If the FF
is introduced too late, the velocity disturbance is not eliminated and an
overshoot is obtained in the force tracking. Unlike with FAGOR ARRASATE
controller in Fig. 6.37, no force loss exists at the end of the step, as the FL
term corrects it.

Apart from the dependency of the FF controller to the instant at which it is
introduced, as shown in Section 2.3.2, if there exists any model mismatch in
the FF controller design, the performance of the force tracking gets affected
as well.

We consider the same scenario as the one shown in Fig. 2.11, where a linear
valve conductivity function is used in the FF design, but the real valve has a
nonlinear conductivity function. This model discrepancy results in the force
reference tracking shown in Fig. 6.41.
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Fig. 6.41: FF controller force reference tracking under valve model discrepancies in
the Digital Twin.

6.5.2 MIC-ILC in Digital Twin

In the same way as in Chapter 3, we use ILC to overcome the limitations
of the FF controller. The resulting SIMOTION control loop with the ILC
implementation is shown in Fig. 6.42.
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Fig. 6.42: Cushion force control block diagram with ILC controller in Digital Twin.

We analyze how the MIC-ILC behaves in the Digital Twin under two different
scenarios: with the FF controller introduced at an incorrect FP and with the
FF controller with valve model mismatch.
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In Fig. 6.43, we introduce the MIC-ILC algorithm to improve the FF controller
performance under valve model mismatches. At the first iteration, where no
ILC signal exists, the FF performs poorly with an oscillating force reference
tracking. As iterations go on, the ILC reduces those oscillations and the initial
overshoot as well.

In Fig. 6.43b, at iteration eight, the valve spool is opened faster and to a
larger value, so the initial force overshoot is reduced. The oscillations of the
FF control in the total input to the valve are also reduced, obtaining a more
accurate force reference tracking.
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Fig. 6.43: Pressure and input signal for a 240 step bar reference with the P-ILC
algorithm.

The RMSE between the force signal and the 500 KN force reference is shown
in Fig. 6.44. The error is decreased by a factor of three and although perfect
tracking is not achieved, the FF performance is considerably improved.

Now, we evaluate the SISO MIC-ILC performance in the Digital Twin when a
late FP is calculated for the FF controller. This will cause a force overshoot
similar to the one shown in Fig. 6.40a, with a 86% FP. The MIC-ILC perfor-
mance is shown in Fig. 6.45. At the first iteration, where no ILC signal exists,
there exists a considerable overshoot in the force signal, that reaches 600
KN.

As iterations go on, the ILC algorithm corrects the total input to the valve
by opening earlier the valve. See in Fig. 6.45b, that with the FF controller
the valve maximum spool position takes place at t ≈ 0.15s and at the 15th

iteration the valve is already opened at t ≈ 0.1s. This anticipation results in
a considerable reduction of the force overshoot.
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Fig. 6.44: RMSE between cushion force and 500 KN force step reference over
iterations.

The overshoot over iterations is shown in Fig. 6.46. The force overshoot is
reduced by 100 KN, with respect to the first iteration with the FF controller.
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Fig. 6.46: Overshoot of the cushion force signal over iterations.
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Fig. 6.45: Cushion force control with FF controller and ILC algorithm, under late
FP conditions.

6.6 Conclusions to Chapter 6

The SISO and MIMO ILC algorithms proposed in this thesis have been proven
in high-fidelity nonlinear simulations, from which satisfactory results have
been obtained. Based on the TRL scale originated at the NASA, the implemen-
tation of a technology in high-fidelity simulations validates the technology in
a relevant scenario, which corresponds to TRL 5.

In order to show the maturity of the proposed controllers, in this chapter we
have demonstrated that the controllers work in a relevant and operational
environment and not only in simulation. To that end, we have presented two
different scenarios from which we can achieve TRL 6 and 7, for the MIMO
and SISO ILC control algorithms.

Both MIMO and SISO ILC algorithms have been implemented in the hy-
draulic test rig available at Ikerlan. The hydraulic test rig consists of every
hydraulic element that we can find in a real press, therefore, a validation
of the controllers in a relevant environment can be demonstrated, which
corresponds to TRL 6.

The results obtained from both MIMO and SISO MIC-ILC show that the
proposed controllers achieve satisfactory results, as good tracking and fast
convergence rate is got. Different scenarios have been proposed, from a
modeling mismatch introduction in the MIC-ILC design, to actuator faults.
Under every scenario, the MIC-ILC has remained stable, and no instabilities
have appeared.
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The good performance of the MIC-ILC under faulty scenarios, can take one
to think that ILC could possibly be used as a Fault Tolerant Control algorithm,
as its adaptability to both valve and pump actuator faults has been proven
through Sections 6.3 and 6.4.

Additionally, a Digital Twin platform has been built to validate the SISO
MIC-ILC in an operational environment. We have in our possession the real
control hardware of a mechanical press, provided by FAGOR ARRASATE,
in which we have implemented the proposed SISO MIC-ILC. The MIC-ILC
has been embedded in Siemens Industrial Controller platform, for which
PLC programming has been done. The Digital Twin environment enables
RT representation of the mechanical press under actual industrial control
platform operation. This entails a jump into TRL 7.

In the Digital Twin platform we have implemented the FF controller proposed
in Section 2.3 and the SISO MIC-ILC. The FF controller has shown satisfactory
results in ideal conditions, where no model uncertainties exist. However,
its model dependency makes it unsuitable for the hydraulic cushion system,
where uncertainties abound.

The SISO MIC-ILC validation has been proven for two scenarios in the Digital
Twin environment: under FF controller model uncertainties, and with a late
FP in the FF controller. In the former, the oscillations arising due to the model
mismatches are eliminated by the MIC-ILC. In the latter, the late FP results
in a force overshoot which is reduced by the MIC-ILC as iterations go on.
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Conclusions
7

7.1 General conclusions

This thesis analyses the control problems occurring in mechanical and hy-
draulic presses. The analysis is based on the identification of the actual
control limitations in industrial presses, followed by the analytical develop-
ment of the control schemes proposed to counteract those limitations.

On the one hand, regarding mechanical presses, the control of the cushion
plays a fundamental role in deep drawing processes in which customer-
specific force profiles need to be ensured. There usually exist performance
specifications regarding the maximum force peak and the settling time of the
force signal, which should be satisfied to guarantee the correct forming of
the workpiece.

The fast dynamics, nonlinear behavior and external disturbances make it
difficult to ensure said specifications with the actual press controllers. To that
end, we have proposed a single-input-single-output (SISO) Iterative Learning
Control (ILC) algorithm, that allows to improve the press performance by
learning from previous experience.

The SISO ILC algorithm design is based on the known plant dynamics from
which the unknown high frequency components have been discarded. With
this design, fast convergence is obtained as well as the improvement of the
algorithm stability.

In order to analyze the convergence rate and stability of the SISO ILC algo-
rithm, a graphical approach based on Nyquist diagram has been proposed.
By following this intuitive graphical approach, the closer the algorithm fre-
quency response to the origin, the faster those frequencies will be corrected,
improving the convergence rate. Furthermore, in the case the algorithm
frequency response gets out of the stability circle, one can detect which
frequencies will be unstable, in order to attenuate them.

The SISO ILC algorithm has been implemented in high-fidelity simulations
of a mechanical press in Matlab/Simulink, in which precise force reference
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tracking has been obtained. Furthermore, a performance and stability com-
parison with other ILC design methods has been provided. The results have
shown that the proposed algorithm obtains faster convergence than other
ILC algorithms while guaranteeing stability.

On the other hand, regarding hydraulic presses, a new control approach
to improve and automate the position control has been proposed. The
traditional hydraulic press position control approaches depend on hand-
tuned controllers, which need to be modified every time the press operating
conditions change. To that end, we have proposed a multiple-input-multiple-
output (MIMO) ILC algorithm, so the hydraulic press operation can be
automated and the position control improved.

The MIMO ILC design follows the same design procedure as the one proposed
for mechanical presses, nonetheless, it has been extended to the MIMO
case. In order to analyze the convergence rate and stability of a MIMO
ILC algorithm, no graphical approaches have been found in the literature.
Therefore, we have proposed a graphical approach based on the analysis of
the eigenvalues at all frequencies. This procedure allows us to intuitively
analyze the stability and convergence of the MIMO ILC algorithm.

The MIMO ILC algorithm has been tested in a nonlinear high-fidelity simula-
tion of a hydraulic press model in Matlab/Simulink. In the same way as for
the mechanical press, the MIMO ILC algorithm performance has been com-
pared to other ILC designs. The comparison shows that the proposed MIMO
ILC design yields a faster convergence rate than the other algorithms.

Indeed, one of the major contributions of the proposed model based ILC
design, both for the SISO and MIMO cases, is the ability to correct the
low frequency components faster than the existing ILC algorithms in the
literature. This yields a faster convergence rate and, as a consequence, faster
commissioning time of the press, as fewer iterations are needed to obtain the
optimal input.

In order to show the technology readiness level, TRL scale, of the proposed
SISO and MIMO ILC algorithms, we have presented two industrial scenarios
to test the controllers. First, both algorithms have been implemented in
a hydraulic test rig, in which real case scenarios occurring in the working
operation of industrial presses have been tested. These scenarios include
faulty actuators, modeling mismatches, and flow leakages. The proposed
ILC has successfully performed under the faulty and unfavorable scenarios,
obtaining a good position and force control.
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Second, the SISO ILC algorithm has been implemented in an actual industrial
press controller, a Siemens Simotion D445-2, and proved under a Digital
Twin platform. This has allowed us to validate the SISO ILC in an opera-
tional environment, in which the results correspond to those obtained under
simulation.

All in all, as the main conclusion, it can be stated that through this thesis we
have encountered different control problems in mechanical and hydraulic
presses, which have been solved via ILC. Furthermore, a new design method
has been proposed for the ILC design, which outperforms the existing ILC
algorithms in the literature. The proposed ILC designs have been validated
under relevant operational environments.

7.2 Future Work

During this thesis the following new challenges have been identified that
could be suitable for future works:

From a practical point of view, it would be worth researching the possibility
of not starting the learning from scratch every time the reference changes.
Although we have obtained a fast convergence rate, designing an ILC algo-
rithm that uses past learning experience to adapt to the new reference would
reduce considerably the iterations required. There have been several works
studying adaptability of the ILC to non-repetitive references, see [93, 94, 95],
however none of them make use of the already learned input to improve
the learning, they just focus on providing stability towards non-repetitive
uncertainties.

In line with the above, the current ILC algorithm design is limited to the
press operator to wait until the algorithm has learned the optimal input with
which the specifications are satisfied. A more attractive ILC implementation
would be to be able to specify the number of iterations required to reach
the optimal input. In this way, the press operator could impose a maximum
number of iterations in which to learn. This approach would require to know
and analyze the system learning dynamics beforehand. Perhaps the graphical
frequency analysis proposed in this thesis could be of use.

A major step up in the technology readiness level of the proposed ILC al-
gorithm would be to test it in an actual system. This step forward would
not require a lot of effort, as the ILC algorithm is already implemented and
validated in a real press control system hardware, as shown in Chapter 6.
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This control hardware will only have to be installed in a real press, as a plug
and play controller, to finish its validation.
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ILC error propagation
A

In this appendix, from the ILC block diagram shown in Fig. 3.1, the error
propagation equation which yields the stability condition of a MIMO ILC
algorithm will be derived.

We will put the time notation aside, and the Laplace transform of the signals
will be used. For instance, R(s) and Y (s), are the Laplace transforms of the
r(t) and y(t) vector signals, respectively.

From Fig. 3.1, the input-output relationship is as follows:

Y j(s) = G(s)(C(s)Ej(s) + U j(s)), (A.1)

where Y j(s), U j(s), G(s), C(s) and Ej(s), are the system output, the system
input, the controller and the error, respectively.

Substituting Y j(s) = R(s)−Ej(s) and isolating the error, we obtain:

Ej(s) = S(s)R(s)− S(s)G(s)U j(s), (A.2)

where S(s) = (I + G(s)C(s))−1 is the system sensitivity function.

From Fig. 3.1, the input at the iteration j + 1 is defined as:

U j+1(s) = U j(s) + L(s)Ej(s). (A.3)

Evaluating (A.2) at j + 1, and using (A.3), we obtain:

Ej+1(s) = S(s)R(s)− S(s)G(s)U j+1(s) = S(s)R(s)− S(s)G(s)(U j(s) + L(s)Ej(s))
= S(s)R(s)− S(s)G(s)U j(s)︸ ︷︷ ︸

Ej(s)

−S(s)G(s)L(s)Ej(s) .

(A.4)
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Rearranging the terms in (A.4), we obtain the relationship of the error
propagation from iteration to iteration, which has been already shown in
[96, 55]:

Ej+1(s) = (I − S(s)G(s)L(s))Ej(s). (A.5)
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Zero-phase filtering
algorithm

B

Zero-phase filtering (ZPF) is applied in the model inverse design to avoid any
phase lag and to filter the undesired high frequency dynamics. From the ILC
block diagram shown in Fig. 3.1, the signal out of the ILC scheme is summed
to the feedback controller signal. In our case, the controller signals are the
proportional valve spool position input and the pump swash angle, which
have a physical limitation, the spool position must not exceed the range [-1,
0] and the pump swash angle [0,+1]. Therefore, the signal obtained from
the ZPF must not exceed said ranges, to that end, an anti-windup has been
included in the filtering process.

The general recursive formulation for discrete-time filters in z-transform
holds as follows:

H(z) = Y (z)
X(z) = b0 + b1z

−1 + b2z
−2 + · · ·+ bMz

−M

a0 + a1z−1 + a2z−2 + · · ·+ aJz−J
. (B.1)

In (3.10) a fourth-order filter has been included in the model inverse design,
to carry out ZPF the filter is divided into two second-order low-pass filters.
Therefore, we set M = J = 2 and the resulting linear differential equation
is:

y(n) = b0

a0
x(n) + b1

a0
x(n− 1) + b2

a0
x(n− 2)

− a1

a0
y(n− 1)− a2

a0
y(n− 2),

(B.2)

where n is a nonnegative integer.

The static gain of the filters is given as:

Ks =
∑M

i=1 bi∑J
i=1 ai

. (B.3)
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The filter output is given by (B.2). However, as explained above, the ZPF
output must not exceed the valve and pump limitations, else the actuators
inputs will saturate.

If the output of the filter exceeds the ranges of interest, the anti-windup is
applied to the recursive filter for the last J outputs and M inputs. In this way,
we avoid the integration of the error for the recursive outputs and inputs,
increasing the performance of the filter.

The resulting filter algorithm including the anti-windup is shown in Algorithm
1.

Algorithm 1 Recursive Filtering with Anti-windup
input: b (numerator coefficients vector), a (denominator coefficients
vector), u (input vector), ymax (upper saturation), ymin (lower saturation),
Ks static gain

1: for k = 1→ length(u) do
2: y(k) = b0

a0
x(k) + b1

a0
x(k − 1) + b2

a0
x(k − 2)− a1

a0
y(k − 1)− a2

a0
y(k − 2) .

Filter the inputs signal sample by sample using (B.2)
3: if y(k) ≤ ymin then
4: for i = 1→ length(a) do
5: y(i) = ymin . Saturate previous outputs
6: end for
7: for i = 1→ length(b) do
8: u(i) = ymin(i) ∗ 1

Ks
. Saturate previous inputs by multiplying

the minimum value by the inverse of the static gain
9: end for

10: end if
11: if y(k) ≥ ymax then
12: for i = 1→ length(a) do
13: y(i) = ymax . Saturate previous outputs
14: end for
15: for i = 1→ length(b) do
16: u(i) = ymax(i) ∗ 1

Ks
. Saturate previous inputs by multiplying

the maximum value by the inverse of the static gain
17: end for
18: end if
19: end for
20: return: y . The entire filtered signal is returned
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System parameters
C

C.0.1 Linearized System Parameters

The complete expressions of the terms introduced in the linearized state-
space model, shown in (5.12), are shown:

A13 = AA

m

A14 = −AB

m

A31 = − A1

(VA + AAx̄)β

A41 = A2

(VB + AB(l − x̄))β

A44 = Kv(ȳv)qref

(VB + AB(l − x̄))β
1

2
√
P̄B/∆Pref

B31 =
qN

ωN
ω

(VA + AAx̄)β

B42 =

√
P̄B/∆Pref

(VB + AB(l − x̄))β K̇v(ȳv)qref

(C.1)

C.0.2 Nominal values for Simulink hydraulic circuit
parameters

The system parameters appearing in the terms introduced in the linearized
state-space model, shown in (5.12), are shown:

• Cylinder moving mass: m = 26500 kg.

• Cylinder piston-side chamber area: AA = 0.16 m2.

• Cylinder rod-side chamber area: AB = 0.02 m2.
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• Piston-side chamber dead volume: V1 = 0.35 m3.

• Rod-side chamber dead volume: V2 = 0.14 m3.

• Cylinder stroke length: l = 1.2 m.

• Hydraulic compressibility: β = 1.23 · 10−4 1/bar.

• Pump nominal flow rate: qN = 0.0088 m3/s.

• Shaft rotational speed: ω = 150 rad/s.

• Nominal shaft rotational speed: ωN = 138.23 rad/s.

• Auxiliary chamber operating point: P̄B = 180 bar.

• Hydraulic conductance operating point: Kv(ȳv) m3/s.

C.0.3 Hydraulic test rig parameters

The hydraulic rig system parameters are shown:

• Cylinder main chamber area: AA = 0.000804 m2.

• Cylinder auxiliary chamber area: AB = 0.000424 m2.

• Cylinder stroke length: l = 0.2 m.

• Valve nominal pressure: ∆Pref = 35 bar.

• Valve nominal flow rate qref = 1.667 · 10−4 m3/s.

• Hydraulic compressibility: β = 1.23 · 10−4 1/bar.

• Nominal shaft rotational speed: ωN = 1000 rad/s.

C.0.4 Test rig hydraulic representation
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Fig. C.1: Test rig hydraulic circuit.
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Hydraulic
Compressibility Test

D

In the design of the learning filter for the SISO and MIMO ILC algorithms,
the hydraulic compressibility, β, plays a fundamental role, as it gives us
information of the rate at which the pressure is increasing. The default value
used in the literature for the compressibility is β = 1.23 · 10−4 1/bar, as it was
shown in [97, 98]. This value has been used both in the Matlab/Simulink
models parametrization and in the ILC learning gain design, therefore, both
designs are equivalent and no model difference exists.

However, the default hydraulic oil compressibility value may differ from that
in the hydraulic test rig. This deviation can affect the ILC implementation
in relation to response time, stability, and performance. To that end, we
conduct a test to measure the compressibility of the hydraulic fluid.

During the test, only the lower-cylinder is used. The stopcock 34.3, see
Fig. C.1, is closed so the oil in the piston-side chamber is enclosed. The
lower-cylinder proportional valve is opened completely, moving the spool to
the right, connecting port P with port B, and port A with port T .

With this arrangement, we can supply pressure to the rod-side chamber
with the pump and analyze how much the oil in the piston-side chamber
compresses. We cannot use the pressure sensor 33.3 to see the pressure
variation in the piston-side chamber as the stopcock 34.3 is closed. However,
we can use the pressure sensor 33.4 and the relationship between the cylinder
areas to obtain a good estimation of the piston-side pressure.

Known the pressure variation in the piston-side chamber and the piston
displacement from the position sensor, we can make use of the isothermal
compressibility equation shown in (2.8), to obtain a value of the compress-
ibility. Isolating for β, we obtain:

β = ∆xAA

VT ∆P , (D.1)
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where AA is the cushion piston-side chamber area, and VT is the total oil
volume from the cylinder piston-side chamber to the stopcock 34.3.

The pipes provide a flexibility to absorb the thermal expansion, which yields
a volume increase inside the pipes during the test operation. This volume
increase calculation is deemed too complex and out of the scope of this study.
Therefore, both β and VT are combined and instead of obtaining a value for
β, we obtain a value for βVT .

In Fig. D.1, the lower-cylinder rod-side chamber pressure and the piston
position are shown. At t ≈ 2.5s pressure is applied from the pump and
the piston-side chamber pressure reaches 156 bar. At this moment, there
exists a slight displacement in the cylinder piston from x = 63.47 mm to
x = 62.32 mm, which yields ∆x = 1.149 mm. These values are obtained with
an average value of 200 data points, due to the existing noise in the position
signal.
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Fig. D.1: Lower-cylinder piston position and rod-side chamber pressure.

The pressure in the rod-side chamber suffers a variation of ∆PB = 134.01
bar. From the hydraulic test rig parameters shown in Appendix C.0.3, we can
obtain the pressure variation in the piston-side chamber:

∆PA = ∆PBAB

AA

= 134.01 · 4.24 · 10−4

8.04 · 10−4 = 70.67 bar. (D.2)

Solving (D.1) for βVT , we obtain the following:
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βVt = 1.15 · 10−3 · 8.04 · 10−4

70.67 = 1.31 · 10−8 m3/bar. (D.3)

Therefore, 1.31 · 10−8 m3/bar is the real value of the compressibility and the
total volume in the hydraulic test rig. We compare it to the theoretical value
used for the design of the learning gain. In theory, we assume the pipes are
rigid, therefore we can obtain an approximation of the total oil volume from
the piston-side chamber to the stopcock 34.3. With VP as the pipes volume,
we obtain:

VT = AAx+Vp = 8.04 ·10−4 ·63.47 ·10−3 +8.54 ·10−5 = 1.36 ·10−4 m3. (D.4)

Therefore, the theoretical value for βVT is as follows:

βVT = 1.23 · 10−4 · 1.36 · 10−4 = 1.67 · 10−8 m3/bar. (D.5)

We can see that the real value for βVT is a 22% smaller than the theoretical
value. This means that in the hydraulic test rig, the volume change of the
hydraulic oil as a response to a pressure change will be less.
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