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abstract 
 

How does learning cultural systems like language affect perception and cognition? The last 

few years have seen increased interest into this topic, yet with little theoretical advance. One 

fundamental question concerns the nature of the neural mechanism through which language 

affects perceptual processes. Some accounts suggest that effects of language are “high-

level”, meaning that language does not affect early perceptual processes, but rather interact 

at later conceptual or decision-making stages. More recent proposals posit that language 

can alter perceptual processes at early sensory levels. This latter account is in line with 

current predictive processing theories of perception, which suggest that sensory processes 

are largely influenced by prior knowledge and expectation. The present thesis aims at 

investigating whether and how language shapes perceptual processing. We focus on two 

specific types of language-perception interactions: (i) the effect of linguistic labels on the 

recognition of visual object categories; and (ii) the effect of linguistic knowledge on neural 

processing of rhythmic sounds. We address these questions by taking advantage of time-

resolved electrophysiological measures like electroencephalography (EEG) and 

magnetoencephalography (MEG). We use these tools to investigate the interplay between 

language and perception by focusing on neural indices putatively associated to perceptual 

prediction (i.e., neural oscillations in the alpha/beta frequency bands) and prediction error 

signal (i.e., the Mismatch Negativity).  

In the first study, we show that language boosts visual perception of congruent object 

categories to a larger extent than equally familiar natural sounds. Using EEG, we 

demonstrate that language impacts visual perception by preparing the brain for incoming 

input via the selective modulation of alpha and beta oscillations. These oscillatory indices 

carry content-specific representations, emerge in sensory regions before stimulus 

presentation, and are predictive of later recognition performance.  
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The second study investigates whether life-long exposure to certain linguistic 

patterns impacts neural processing of rhythmic sounds. By comparing MEG data from native 

speakers of typologically different languages (Basque vs. Spanish), we show that the 

auditory system relies on syntactic/prosodic patterns of native language to generate 

hierarchical predictions about incoming (non-linguistic) sounds. When an expected event 

disrupts a rhythmic sequence of sounds, the amplitude of the Mismatch Negativity varies 

orthogonally depending on the individual’s linguistic background. This prediction error 

response occurs around 100 ms from deviant onset, and has its locus in auditory regions. 

This finding indicates that coding schemes employed to parse linguistic material are recycled 

by the auditory system to implement predictive models of the environment. This study also 

offers novel insights into the hierarchical organization of auditory predictions.  

The study of the interaction between language and perception can provide novel 

insights into different domains of cognitive neuroscience, including the nature of conceptual 

representations activated during language processing, as well as the effect of high-level 

knowledge on lower-level processes. By identifying oscillatory and ERP components that 

characterize such interactions, we hope that these results will help to further define the 

implications of learning symbolic systems in sculping our knowledge of the world. 
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1.2 Perception as inference 
 
The history of science includes numerous challenging questions, including the question 

about the origin of our perception of the world. Before scientists could record brain activity 

and measure reaction times, philosophers have long reflected on this question. A common 

intuition is that perception provides us with a veridical representation of what is there in the 

external world. This position takes the name of direct realism. Philosophers like Aristotle and 

Thomas Aquinas were supporters of this position, with the former proposing that the forms 

of the objects in the world are the same of our concepts and percepts. An alternative position 

is called representationalism (also known as indirect realism or representative realism), and 

posits that our conscious perception does not reflect the real world itself, but a mere internal 

representation generated by the mind/brain in the attempts to find the causes of the external 

world. Among philosophers, Lock and Descartes (and maybe Kant) were the main 

supporters of this position. 

Phenomena like dreams, hallucinations and visual illusions suggest the reality and our 

experience of it are not exactly the same thing. Take for instance the left-side of the image 

in Figure 1. The majority of people perceive the central paired tiles to have different tonalities 

of grey. However, as the image on the right-side of Figure 1 shows, this perception is illusory. 

This is the so called “Cornsweet illusion” and shows how our visual experience is not always 

veridical but can be biased by prior beliefs. In this example, the prior belief concerns the fact 

that the color of objects’ surface does not usually change its tonality but rather keeps a 

uniform tone. Thus, what we know about illuminance and reflectance may bias our 

perception of reality. 
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Figure 1. The image reflects a typical Cornsweet illusion (figure taken from Clark and Lupyan, 2015). 

 

The idea of perception as a process of construction was further developed by German 

polymath Hermann von Helmholtz (1867), who proposed the “perception-as-inference” view. 

Helmholtz pondered on the problem of how we can generate accurate percepts given the 

ambiguity of sensory signals. He proposed that such problem could be solved via 

“unconscious inference”, that is, the use prior knowledge to generate meaningful 

representations over noise data. This idea became later a building block of cognitive 

psychology. One prominent figure that contributed to the transition from representational 

realism as philosophical argument towards scientific theory was Richard Gregoory (1980). 

Gregoory compared the problem that our perceptual system has to face with the process of 

hypothesis in science: in the same way that scientists develop hypotheses to understand 

natural phenomena, the perceptual system tries to develop hypotheses about the 

ambiguous data it receives, in order to make meaningful models of reality. These theoretical 

approaches have been formalized more recently with the idea of the “Bayesian brain”. This 

idea has its roots in the theorem of the British statistician Thomas Bayes, which provided a 

mathematical implementation of how to generate inferences by combining new data with 

prior knowledge. According to the Bayesian brain hypothesis, this type of probabilistic 

inferences emerges by using (“top-down”) prior knowledge to interpret (“bottom-up”) sensory 

information. The idea that the brain implements bayesian inference to support perceptual 
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processing is now a key assumption of predictive processing views of perception, a 

framework that is becoming extremely influential in cognitive neuroscience. 

1.3 Predictive processing 
 
For many years, the classical view in neuroscience has been provided by feedforward 

models. These models conceive the brain as a device that passively processes and registers 

external inputs. In contrast, the hypothesis of the brain as a predictive machine postulates 

that one of the fundamental functions of the brain consists in the anticipation of future events. 

This hypothesis is becoming increasingly influential in cognitive neuroscience. Different 

theoretical models have proposed different cortical architectures of how the predictive brain 

machinery can be implemented in cortical circuits, such as predictive coding, hierarchical 

temporal memory, and Bayesian inference (Friston, 2005; Hawkins and Blakeslee, 2004; 

Kording and Wolpert, 2004; Rao and Ballard, 1999; Spratling, 2010). Despite differing in 

their details, all predictive processing theories share the idea that the brain develops 

generative models of reality and uses such models to generate predictions about incoming 

events (Clark, 2016). Such generative models are conceived as a processing hierarchy: 

predictions are proposed to be conveyed through feedback signal stemming from higher to 

lower cortical areas, which are expected to have a suppressing effect onto incoming signals 

(see Figure 2). Predictions are then compared to bottom-up sensory signals at each level of 

the hierarchy. Only the difference, called prediction error (PE), is postulated to propagate 

through feedforward connections from lower to higher cortical areas in order to update 

internal models.  
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Figure 2. How information flows through the cortical hierarchy in predictive processing. 

According to predictive processing models of perception, sensory information is trasmitted up through the 

hierarchy by prediction error signals (red) to adjust prediction (blue). Each processing stage of the hierarchy 

uses prediction error signals to adjust the internal model in order to minimise prediction errors (i.e., prediction 

activity at timepoint t reflects predictions and error signals from timepoint t-1). (adapted from Yon & De Lange, 

2018). 

 

 

Two neural units are needed to allow such implementation: prediction neurons trying to 

predict bottom-up activity in lower-level stages of the cortex via feedback signals; and 

prediction error units transmitting the difference between the predicted and incoming signals 

upward in the hierarchy. If prediction is accurate, prediction error signals are reduced. Both 

prediction and prediction-error signals are postulated to be, at least in sensory regions, 

feature-specific, meaning that they encode specific dimensions of a percept (e.g., the length 

of a tone in audition or the shape of an object in vision). Predictive processing can potentially 

bring different advantages to an organism. First, from a behavioral/cognitive perspective, 

being able to use prior knowledge to generate appropriate models of reality allows an 

organism to predict the future, thus facilitating the interaction with the environment. It does 

not only allow to predict the motor and sensory consequences of its action, but also the 

dynamics underlying the relations between objects and agents in certain contexts. For 

instance, after learning the association between two sensory stimuli like roaring with the 
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presence of a lion, just hearing a roaring would allow an animal to predict the likely presence 

of a predator. This would enable the animal to immediately select the most appropriate 

action scheme to interact with the environment (e.g., roaring → lion → run away). This and 

many other examples give intuitive support for the hypothesis that the brain is a predictive 

machine. However, predictive processing theories also fit nicely with the computational and 

anatomical properties of the mammalian brain. Studies on cortical computation have often 

highlighted the fact that computations using spikes are expensive in terms of metabolic costs 

(Lennie 2003). Thus, the brain must arguably select an appropriate strategy to reduce such 

costs. Using prior knowledge to predict activity related to incoming stimuli might offer a 

solution: a cortical mechanism that allows an expected stimulus to elicit a weaker response 

(that is, a smaller prediction error signal) than the same stimulus presented in an unpredicted 

context would allow to reduce redundant information, and as a consequence, a reduction of 

metabolic costs. That is, transferring only the unpredicted part of the signal is more efficient 

than transferring the whole bottom-up signal because fewer spikes are needed. 

 

1.4 Language priors bias categorical perception 
 
Considering perception as a predictive process implies considering perception as a 

“penetrable” process that can be influenced by prior knowledge and expectation, as far as 

such penetration is effective in reducing the prediction error. But what does count as prior 

knowledge? In humans, one form of prior knowledge is language. Several studies have 

shown that language can influence other non-linguistic systems such categorization, 

memory and perception. Rather than being naive or exotic as it is sometimes portrayed, the 

study of the interaction between language and perception offers a unique model to address 

several unanswered questions about the predictive nature of experience in the human brain. 

Language is indeed a high-level cognitive function unique to humans, arising from the 
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interaction of different brain networks. Language processing is highly hierarchical: 

information coming from early sensory regions is transformed into semantic representations 

across a series of processing steps. At the same time, syntactic/semantic information from 

higher stages of the hierarchy can affect low-level processes (e.g., Kuperberg & Jaeger, 

2015). As such, language provides a perfect model to study the interaction between top-

down prediction and bottom-up activity. Moreover, language is acquired at birth and 

develops over the whole life-spam of an individual. As such, it provides a good model to 

study the impact of life-long exposure to regularities on predictive processing. 

At the most basic level, experience with language affects perception of language. 

When learning a linguistic system, we learn to map certain speech sounds into categorically 

distinct units. As a consequence, speakers of different languages categorize the same 

physical speech inputs (e.g., phonemes) in different ways depending on their linguistic 

background, thus changing their categorical perception of auditory events. For instance, 

speech sounds sharing the same voice onset time (in between 0 and 30ms) are perceived 

as voiced plosive (b, d, g) in English but as voiceless plosive (p, t, k) in Spanish. 

Language-based prior knowledge can also affect visual processes such as object 

recognition, discrimination and detection (see Lupyan et al., 2020 for a review). Let’s 

consider object recognition as example. The process of object recognition consists in 

relating the structure of an incoming visual stimulus to an internal, previously learned 

category or state. A typical paradigm that have been used to study the effect of prior 

knowledge on object concerns the use of ambiguous “Mooney” images (see Figure 3 below). 

The objects behind these images are difficult to recognize for 75% of people, as the sensory 

evidence does not provide unambiguous information to recognize them i.e., the perceptual 

system fails to assign meaning to these images. In a recent study, Samaha et al., (2018) 

demonstrated that priming “Mooney” images with linguistic material can disambiguate object 

recognition, resulting in an increase of 89% of recognition performance. Within a predictive 
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processing perspective, such effect can be explained by labels helping to form precise 

expectation against which the stimulus can be confronted, thus making an ambiguous 

perceptual stimulus completely interpretable.  

 

 

Figure 3. Examples of ambiguous “Mooney” images. The images on left refer to a camel (top) and a cow 

(bottom) respectively. The images on right refer to an elephant (top) and a fish (bottom) respectively. Images 

adapted from Hsieh et al. (2010). 

 

Language can also affect low-level auditory processes, such as the categorization of 

simple sequences of non-linguistic sound. One example comes from auditory rhythm 

perception. When perceiving sequences of sounds, a basic operation of the auditory system 

consists in merging short sequences of tones into higher-level events – a phenomenon 
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known as perceptual grouping. In a seminal study, Iversen et al., (2008) showed that the 

way we group sequences of non-linguistic sounds is largely influenced by our native 

language. He tested how English and Japanese listeners perceive simple sequences of two 

tones alternating in duration (one short, one long, one short, etc) by asking them their 

preferential grouping pattern. They found out that the two groups provided asymmetrical 

responses: English speakers had a preference for a short-long pattern, while Japanese 

reported a long-short grouping bias. Crucially, these patterns mirrored the rhythmic/prosodic 

structures of the two languages. This study was subsequently replicated with Basque-

dominant and Spanish-dominant speakers (Molnar et al., 2016). A possible mechanism 

explaining this effect is that regularities governing the rhythmic structure of a language 

become encoded in the tuning properties of the auditory system in the form of long-term 

priors, which are then used to generate expectation during auditory processing of rhythmic 

sounds. The studies on perceptual grouping show how life-long exposure to certain linguistic 

patterns can affect auditory perception at very early stages. 

 

Despite the studies reported so far have been interpreted within a predictive processing 

perspective, there is not general consensus that this interpretation is correct. Indeed, many 

argue that language does not bias perception itself in a predictive way, but only interacts 

with later processes like working memory or categorical decision-making, which arise after 

visual processes (Pylyshyn, 1999; Klemfuss et al., 2012). On this account, the effect of 

language on perception are primarily post-perceptual. An example of bias on perception 

driven by decision responses is the Stroop effect, where the response about the stimulus 

color could overlap with the automatic response activated by the (irrelevant) lexical item, 

thus resulting in interference. Similarly, in the study by Samaha et al., (2018) mentioned 

above, the effect of linguistic hints on the recognition of ambiguous “Mooney” images could 

be coherent with an interaction at categorical decision-making stages. Linguistic hints could 



 22 

have activated perceptual decision at higher-order stages rather that providing top-down 

guidance to the visual system. Predictive and the post-perceptual accounts of the effect of 

language on perception make often similar predictions at the behavioral level. In the next 

section, we discuss a possible solution on how to disentangle the two accounts. 

1.5 How to measure predictive processing 
 
As I mentioned above, it is often difficult to understand the mechanism underlying the effect 

of language on perception based only on behavioral data. However, time-resolved 

electrophysiological tools like electroencephalogram (EEG) and magnetoencephalogram 

(MEG) might provide some advantages over behavioral measures. Here we discuss two 

unique assumptions of predictive processing models that can be tested using neuroimaging 

tools which would help to understand the origin of the effect of language on perception.  

 

1.5.1 The Mismatch Negativity: an index of cortical prediction error 
 
The first assumption concerns the fact that predictive signals should modulate responses at 

each level of the cortical hierarchy, including early sensory areas. This can be measured, 

among others, by targeting event related potentials (ERPs). ERPs are positive- or negative-

going waves that emerge in the electroencephalogram in response to certain events (for a 

more detailed discussion on the nature of ERPs, see the Methods chapter). Some ERPs 

components are putatively associated to low-level processes. For instance, in the visual 

domain, the P1 component (peaking around 100ms after the onset of the visual stimulus) is 

known to be generated in early visual cortices and being sensitive to low-level visual features 

like lightness and contrast (Luck, 2014). Similarly, in the auditory modality, a component that 

has been typically associated to low-level auditory processing is the mismatch negativity 

(MMN) and its neuromagnetic analog called MMNm. This ERP/MEG component is elicited 

by sudden changes in the acoustic environment. It is usually investigated using the Oddball 
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Paradigm or its variations, where a regular sequence of tones is disrupted by a novel 

unexpected event. It peaks at around 100-250ms from the event onset and shows a strong 

intensity in frontal and temporal regions, although it is generated in auditory areas. The MMN 

is usually calculated by subtracting the event-related response elicited by a standard event 

from the response of a deviant event. A large number of studies have shown that this 

component is strongly modulated by predictability of incoming input and transition 

probabilities (i.e., prior probabilistic knowledge; Garrido et al., 2009). Indeed, many studies 

have shown that the same auditory event presented in different contexts (e.g., predictable 

vs non-predictable) can generate a strikingly different MMN response. Because of its 

sensitivity to predictability and prior knowledge, the auditory MMN is considered a lower-

level prediction error signal (Friston, 2005; Garrido et al., 2009), reflecting the difference 

between the brain response to an actual input and its prediction. It has been found to be 

generated even in non-attentive states, as well as during sleep, states of coma and 

anesthesia (Dehaene & Changeux, 2011; Bekinschtein, et al., 2009). Given its automatic 

nature, the MMN has been suggested by some to reflect a “primitive intelligence” of the 

auditory system (Näätänen et al., 2001). 

 

1.5.2 Alpha and beta oscillations: an index of prediction 
 
Another unique assumption of predictive processing models is that top-down prediction 

modulates brain activity before the presentation of a stimulus. For instance, if the barking of 

a dog could lead an individual to generate an expectation about the likely presence of a dog, 

then a neural signature of such content-specific expectation should be detected in brain 

activity before the individual identifies the actual dog in a scene. Based on several human 

and monkey studies, a candidate mechanism to carry this type of expectation are neural 

oscillations in the alpha and beta frequency bands.  
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Neural oscillations are electromagnetic signals that reflect the on-going rhythmic 

behavior of neural populations at different spatial and temporal scales. Despite their 

existence is known since the discovery of the alpha rhythm by Hans Berger in the 1930s, it 

is only recently that these rhythms have been suggested to play an important role in 

perception and cognition (Klimesch, 1999).These signals can be detected, among other, 

using non-invasive EEG and MEG, and are categorized based on their frequency: delta (2–

4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12– 30 Hz), and gamma bands (30–100 Hz). 

For a more detailed explanation on how this type of activity can be detected in the EEG, see 

the Methods chapter. Distinct oscillatory-frequency bands have been associated to different 

processes. For instance, gamma oscillations have been largely associated to feedforward 

signals, while alpha and beta traditionally reflect endogenous feedback projections (van 

Kerkoerle et al., 2014). Within the predictive processing framework, this frequency 

asymmetry reflects a functional asymmetry between top-down prediction and bottom-up 

prediction error. 

As I mentioned above, one candidate mechanism to carry sensory predictions is the 

oscillatory activity in the alpha frequency band (8-12Hz). Alpha oscillations have been linked 

to different aspects of top-down processing, such as prediction, attention and working 

memory. Enhancement in alpha frequency have been reported for instance when attention 

is directed by a cue towards a specific feature or direction (Worden et al., 2000; Snyder and 

Foxe, 2010), or when a sequence of events is retained in memory (Jensen et al., 2002). 

There are currently two main non-inclusive accounts about the alpha rhythm. The first one 

considers alpha as reflecting states of inhibition and filtering of task irrelevant information 

(Jensen and Mazaheri, 2010; Klimesch et al., 2007). Such an inhibitory function of the alpha 

rhythm has been reported in different fields of attention, including spatial, feature- and 

object-based attentional selection (Thut et al., 2006; Snyder and Foxe, 2010; Knakker et al., 

2015). For instance, when attention is directed towards a target in one side of space, 
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posterior alpha-band power increases at electrodes over the hemisphere ipsilateral to the 

target (Worden et al., 2000; Thut et al., 2006). Alpha has also been found to correlate with 

working memory load, which has been suggested to reflect inhibition of task-irrelevant 

information in order to “protect” task-relevant representations (Jensen et al., 2002). More 

recent proposals ascribe to neural alpha synchronization a variety of roles in top-down 

processing (Palva & Palva 2007; Klimesch 2012; van Kerkoerle et al. 2014). Enhancement 

of alpha waves in task-relevant regions may have excitatory effects reflecting selective 

amplification of neural representations of object categories (Mo et al., 2011). For instance, 

monkey studies demonstrated that sustained alpha power in the inferotemporal cortex 

increases before the onset of a cued target image, and that such increases are associated 

to a facilitation in the processing of a subsequent visual stimulus (Mo et al., 2011). These 

and many other findings suggest that alpha may support, among many cognitive functions, 

the endogenous deployment of perceptual knowledge in task relevant circuits. 

Another brain rhythm which represents a candidate mechanism to carry perceptual 

prediction is the beta wave. Together with alpha waves, beta oscillations are ubiquitous in 

the brain. Initially implicated in sensorimotor planning and processing (Hari and Salmelin, 

1997), beta oscillations have been recently associated to different top-down processing. For 

instance, beta waves have been proposed to mediate the balancing between internal states 

and response to external stimuli (Engel and Fries, 2010), the binding of neurocognitive 

network elements underling a given neural representation (Bressler and Richter, 2015), and 

the endogenously driven transitioning from latent to active cortical representations of 

categories (Spitzer and Haegens; 2017). Modulations of beta oscillations have been also 

associated to prediction of the timing and content of sensory events (Arnal and Giraud, 

2012). For instance, some studies have shown that during processing of rhythmic 

sequences of sounds, beta power increases before the onset of each auditory event (Fujioka 

et al., 2012). Given its anticipatory nature, such beta bursts have been suggested to reflect 
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endogenous predictive signals. Interestingly, in contrast to alpha that has been traditionally 

associated to perceptual processes, beta oscillations have been suggested to encode also 

supramodal aspects of events. Several human and monkey studies reported that beta 

synchronization over parietal and frontal regions carry information about object categories 

(Antzoulatos and Miller, 2014, 2016). In particular, recent studies using categorization tasks 

have proposed that beta may encode abstract, supramodal properties of object categories 

(Wutz et al., 2018; Haegens et al., 2017). Similarly, working memory experiments on scalar 

magnitudes like stimulus duration, motion speed or approximate number showed that beta 

power modulations are sensitive not only to concrete sensory features of the stimuli, but 

also to high-level abstractions of the task-relevant magnitude (e.g., “being higher/lower 

than”; Spitzer et al., 2014).  

Despite the precise role and functioning of the two neighboring bands is still unclear, 

these studies suggest a possible division of labor between alpha and beta in top-down 

predictive processing.  
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Chapter - 2 Methods 
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2.1 Introduction to magnetoencephalography (MEG) 
and electroencephalography (EEG)    

 

EEG and MEG are neuroimaging tools used to map brain activity. EEG measures the 

electrical fields generated by brain cells (Berger, 1929), while the MEG allows the recording 

of brain magnetic fields (Cohen, 1972). The EEG and MEG are considered similar 

techniques as they both record the same type of signal, that is, ionic currents generated by 

biochemical processes at the cellular level. Together with electrocorticography (ECoG), 

these techniques belong to the group of electrophysiological tools that provide a direct 

measure of neural activity.  

A main advantage of these techniques concerns the excellent temporal resolution. 

Indeed, these methods are able to track the temporal unfolding of brain activity in a 

milliseconds scale (Hämäläinen et  al., 1993). These features complement those of other 

neuroimaging tools like functional magnetic resonance imaging (fMRI) or positron emission 

tomography (PET), which have an excellent spatial resolution (in the order of millimeters) 

but limited temporal resolution.  

EEG and MEG are non-invasive techniques. Indeed, they can record the neural 

electrical activity via electrodes placed on the scalp surface. On the contrary, ECoG, 

electrodes are placed directly on the brain surface of patients with epilepsy. However, given 

their distance from the sources generating the brain signal, EEG and MEG can only detect 

the synchronized activity of thousands of neurons acting in synchrony (Hämäläinen and 

Hari, 2002). Despite this limitation, MEG and EEG still represent a valid tool to investigate 

brain and cognitive phenomena arising at the network level.  

The main difference between EEG and MEG lies in their spatial resolution. While 

EEG has a relatively poor spatial resolution, MEG methods allow to reconstruct brain source 

with a precision in the order of millimeters for cortical regions. The main reason behind this 

difference is that the scalp is a poor conductor of electrical signal. Thus, it is very challenging 
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to reconstruct the origin of the current from their topographical distribution. Moreover, the 

currents recorded by EEG electrodes come from different directions. This makes the 

isolation and source reconstruction of EEG signal recorded from the scalp even more 

challenging. On the other hand, magnetic fields are minimally distorted by the scalp, skull 

and other tissues, thus allowing to infer the origin of brain patterns with higher precision. 

 

2.2 Brain activity recorded with MEG and EEG 
 

Electrical activity generated by a single neuron cannot be recorded from the scalp. MEG 

and EEG techniques can indeed record only activity generated by large populations of 

neurons forming functional units. Concretely, this means that neurons within an assembly 

should fire in temporal synchrony. However, temporal synchrony is not enough for allowing 

neural recording from distant location: if neurons are not spatially oriented in a similar 

manner, their currents cancel out each other. Thus, in order to produce brain activity patterns 

that can be measured from the scalp, neural assemblies should also have a similar spatial 

orientation. A typology of neurons that provides all this set of features are pyramidal 

neurons. These neurons are organized in a sort of palisade structure, with the axes of their 

dendrites parallelly aligned, and their body perpendicular to the cortical surface. The 

synchronized activity generated by populations of pyramidal neurons produce laminar 

currents. Such currents give rise to electrical fields. In parallel, magnetic fields are generated 

around the electrical fields. Electrical and magnetic fields generated by neural populations 

of pyramidal neurons can be measured from the scalp, thus forming the basis of EEG and 

MEG signals.  

The electrophysiological signal recorded from time-resolved techniques such as EEG 

and MEG is multidimensional, meaning that it contains different aspects of neural activity 

such as time, space, amplitude and frequency. Time-resolved analytical approaches such 
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as time-domain and time-frequency-domain analyses allows to extrapolate and analyze 

different dimensions of the signal. 

2.2.1 Evoked activity: time domain 
 
Time-domain analyses, such as ERP analyses (and their MEG equivalent, the ERF or 

Event-Related Fields), have been largely employed to study different aspects of perceptual 

and cognitive processes. The typical way to study ERP/F is by averaging single trials time-

locked to different experimental conditions. The output of such averaging is then expressed 

in relation to a baseline period. By averaging brain activity time-locked to a specific event 

over multiple repetitions, brain patterns which are systematic in time and amplitude emerge 

in the signal over brain activity patterns not directly associated to the experimental condition. 

The output of such process results in a smooth positive or negative deflection in voltage or 

magnetic field, which reflects the so called ERP/F.  

ERP/F are usually categorized based on their spatio-temporal properties. The main 

advantage of this approach is that it allows to study perceptual and cognitive processes with 

high temporal resolution. However, it also has certain limitations. By adopting a univariate 

approach based on an averaged-response procedure, this method reduces the complexity 

of the electrophysiological signal to a single variable (i.e., an ERP/F component). This 

means that this data analysis technique does not allow to track multiple processes occurring 

in parallel.  

2.2.2 Oscillatory activity: time-frequency domain 
 
A different approach to analyze the electrophysiological signal is by using time-frequency 

domain approaches. Compared to time-domain analyses, this approach takes into account 

the oscillatory nature of neural activity as an additional variable. Technically speaking, this 

approach captures neural activity that is time-locked (like ERPs) but not necessarily phase-

locked to a specific event. Instead of reducing the brain signal in a single variable, this 
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method allows to decompose the brain signal into different components based on different 

frequencies i.e., neural oscillations. These oscillations are usually categorized according to 

their frequency bands: delta (< 4 Hz), theta (4-8 Hz), alpha (9-12 Hz), beta (13-30 Hz) and 

gamma (> 30 Hz). Indices of oscillatory activity are obtained by decomposing the brain signal 

via mathematical methods based on Fourier analysis. This method, applied to a sliding 

window, allows to obtain a time-varying power spectra. The resulting data can be then 

multiplied using Hanning taper in order to control spectral leakage and the amount of 

frequency smoothing. The length of the time window has an impact on the temporal and 

frequency resolution of the condition of interest. Longer time windows provide a higher 

frequency resolution at the expense of temporal resolution. 

This frequency decomposition allows to differentiate distinct oscillatory patterns 

occurring at different timescales. Brain oscillations are often organized hierarchically, with 

oscillations in higher frequencies being nested within slower frequency oscillations. Being a 

multivariate approach, time-frequency decomposition allows to investigate parallel 

processes, that is, brain/cognitive dynamics carried at different frequency scales but 

occurring in the same temporal window. It must be noticed, however, that time-frequency 

methods provide a lower temporal resolution than time-based approaches such as ERP/F. 

Time-frequency and time-domain approaches thus provide complementary insights into the 

neural profile of cognitive dynamics, favoring the investigation of both top-down mechanisms 

and bottom-up responses. 

 

2.3 Overview of content 
 

In what follows, I will address some critical issues about the effect of language on perception 

from a predictive processing perspective. Chapter 3 concerns an EEG and behavioral study 

on highly proficient Basque-Spanish bilinguals. It focuses on a well-known behavioral effect, 
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the label-advantage in object recognition i.e., the fact that objects are recognized faster 

when cued by a word compared to an equally familiar natural sound. I will address whether 

such label-advantage arises at the perceptual versus semantic/decision-making level by 

exploring whether words facilitate object recognition by modulating prestimulus activity 

before the appearance of the actual object. Specifically, I will test whether neural oscillations 

play any role in deploying top-down priors during language-mediated visual object 

recognition. The bilingual component of the experiment will allow to extend the conclusions 

of this study to a second language, and to address some questions about semantic and top-

down processing in bilinguals. In chapter 4, I will use language as a model to test whether 

the human brain generates predictions based on long-term priors during musical beat 

perception. Here I will take a different approach: I will compare MEG data from people with 

different linguistic backgrounds (Basque dominant bilinguals vs Spanish monolinguals) 

listening to rhythmic sounds intermitted by rare violations. The objective is to investigate 

whether the auditory system learns structural rules encoded in the rhythmic structure of 

language and uses them to generate predictions in other (non-linguistic) domain. Here I will 

focus on the MMN – an early ERP/F component putatively associated to prediction error 

signals.  
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Chapter - 3 Alpha and beta rhythms 
differentially support the effect of 
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3.1 Introduction 
 
Hearing certain natural sounds (e.g., the croak of a frog) appears to automatically activate 

conceptual knowledge, enabling the perceptual system to quickly identify objects in the 

surroundings (e.g., the presence of a frog). Learning such cross-modal associations 

represents a crucial prerequisite for mediating interactions with the environment. In humans, 

conceptual representations can also be activated via language (e.g., “frog”). However, unlike 

natural sounds, linguistic symbols are categorical, making them uniquely suited to activate 

semantic information in a format that transcends within-category differences. Whether 

phylogenetically young systems like language exert similar effects on perception as natural 

sounds do, and which brain dynamics support such effects is still incompletely understood. 

In the present study, we test the hypothesis that language boosts visual processes by 

sharpening categorical priors via the modulation of alpha/beta oscillations. 

Conceptual representations activated by auditory cues have been shown to interact 

with the visual system in different ways. For instance, hearing words and natural sounds can 

rapidly drive visual attention towards specific entities in a scene (Huettig and Altmann, 

2007); facilitate the recognition and discrimination of congruent object categories (Edmiston 

and Lupyan, 2015; Boutonnet and Lupyan, 2015); lower the detection threshold for 

ambiguous objects (Lupyan and Ward, 2013); and even cause sensory illusions (Toskos 

Dils and Boroditsky, 2010). While this body of evidence suggests that both linguistic and 

non-linguistic cues activate content-specific representations, it is currently less clear whether 

these cues activate the same representations. Studies directly targeting this issue have 

often reported a “label-advantage” effect – that is, a facilitation in the recognition of objects 

when preceded by words compared to non-linguistic cues (Edmiston and Lupyan, 2015) – 

suggesting that language represents a more powerful tool to enhance visual processing.  
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To achieve these facilitatory effects on visual perception, linguistic categories could 

theoretically follow two possible pathways. On one account, language would not bias 

perceptual processes at early levels, but rather interact with later processing stages such 

as categorical decision-making. On an alternative account, words can affect visual 

processing by setting categorical priors with the effect of altering early perceptual processing 

(Simanova et al., 2016). Support for the latter account comes primarily from EEG studies 

showing that the better recognition of images preceded by congruent words was associated 

with modulations of early ERP such as the P1 (Boutonnet and Lupyan, 2015, Noorman et 

al., 2018) – putatively considered an electrophysiological index of low-level visual processes 

(Spehlmann, 1965). Yet, these experiments targeted the perceptual consequences that 

language has on visual behavior i.e., they focused on the post-stimulus time interval. The 

mechanisms that underlie prestimulus effects of language on visual perception are currently 

poorly understood. 

Analysis of oscillatory activity provides an excellent opportunity to study prestimulus 

language-driven modulations in sensory areas. Based on previous human and animal 

studies, a candidate mechanism to carry perceptual priors are oscillations in the alpha/beta 

frequency range. Rhythmic brain activity in these bands has been repeatedly associated 

with top-down processes (Michalareas et al., 2016, Bressler and Richter, 2015; Arnal and 

Giraud, 2012).  

In the present study, we used a cue-picture matching task to test the hypothesis that 

language enhances visual object recognition by setting categorical priors via the modulation 

of alpha/beta oscillations. In contrast to previous studies, we (i) focused on the time interval 

preceding the onset of the visual object, targeting top-down signaling directly; and (ii) 

included words in both first (L1) and second language (L2), in order to assess whether the 

previously reported label-advantage extends to language systems acquired later in 

development. We hypothesized that, if the label-advantage arises because words provide 
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refined categorical priors to the visual system, then differences in recognizing objects when 

cued by words vs. natural sounds should be associated with modulations of oscillatory 

alpha/beta dynamics before the onset of the target picture. Importantly, we should also 

expect such an oscillatory index to be linked to behavioral performance.  

 

3.2 Materials and methods 
 

Participants 

We tested a total of twenty-five Basque-Spanish bilingual speakers. Notice that in earlier 

studies investigating the label-advantage in object recognition, a sample size of 15 

participants was sufficient to detect the behavioral label-advantage effect (Boutonnet and 

Lupyan, 2015). Participants were native speakers of Basque who began acquisition of 

Spanish after three years of age (13 females; age range 18-33, mean: 25.66, SD: 5.45, age 

of acquisition of Spanish: 4.23 y.o., SD: 1.33). All participants were right-handed, with no 

history of neurological disorders. Their vision was normal or corrected to normal and 

received a payment of 10€ per hour for their participation. Before taking part in the 

experiment, all participants signed an informed consent form. The study was approved by 

the Basque Center on Cognition, Brain and Language (BCBL) ethics committee in 

compliance with the Declaration of Helsinki. Participants completed several language 

proficiency tests in both Spanish and Basque (see Table 1). First, participants were asked 

to self-rate their language comprehension (on a scale from 1 to 10, where 10 is a native-like 

level). All participants rated themselves as highly proficient in both Basque and Spanish. 

Participants also performed “LexTALE”, a lexical decision task (Izura et al., 2014; Lemhofer 

and Broersma, 2012) that tested their vocabulary knowledge. They displayed similarly high 

scores in both Spanish and Basque. In addition, participants had to name a series of pictures 
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of increasing difficulty in both languages (65 pictures in total). Here as well, participants 

achieved native-range scores in both languages. Finally, all participants were interviewed 

by balanced bilingual linguists who rated them on a scale from 0 to 5: no participants had a 

score below 4 in either language.  

 

Measure  Basque Spanish 

Self-evaluation  

(0-10)  

9.04 (0.16) 9.39 (0.24) 

LexTALE  

Basque (0-50); Spanish (0-60) 

46.04 (2.67)  54.09 (4.13)  

Picture naming  

(0-65)  

64.19 (1.47)  63.38 (1.62)  

Interview 

(0-5)  

5 (0)  4.95 (1.33) 

 
 
Table 1. General proficiency assessment of the participants’ linguistic profile. 

 

Stimuli 

The visual stimuli included 50 pictures from 10 object categories, referring to both animate 

(e.g., bird) or inanimate entities (e.g., camera). Each of the 10 categories was represented 

by 5 different highly recognizable images (.png extension, white background, 2000x2000 

pixels): three color photographs obtained from online image collections, one normed color 

drawing (Rossion and Pourtois, 2004), and one “cartoon” image (Lupyan and Thompson- 

Schill, 2012). We selected different instances for each category in order to provide visual 

heterogeneity.  
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The audio stimuli included 10 words in Basque (L1), 10 in words Spanish (L2) and 10 

natural sounds, each referring to one of the object categories. Words, both in Basque (L1) 

and in Spanish (L2), were recorded by a Spanish-Basque female speaker. Natural sound 

stimuli were downloaded from online libraries. Overall, the mean length of the audio stimuli 

was 0.8 ± 0.05 seconds (Word in L2, mean: 0.81 s, SD: 0.21; Word in L1, mean: 0.77 s, SD: 

0.23; Natural Sounds, mean: 0.84 s, SD: 0.2).   

In order to test that sounds and images were unequivocally identifiable, a side test 

was performed. A group of Basque-Spanish bilinguals (N=20) who did not take part in the 

experiment viewed several images and listened to different sounds. They were told to name 

the visual and audio stimuli they perceived with the first noun that came to their mind. For 

the present experiment, we only chose the images and sounds whose names were 

expressed by all 20 participants. In total, we selected 50 images from 10 categories, 10 

words in Basque, 10 words in Spanish, and 10 natural sounds.  

 

Procedure 
 
The EEG study was run in a soundproof electrically shielded chamber with dim light. 

Participants sat on a chair, about sixty centimeters in front of the computer screen. Stimuli 

were delivered using PsychoPy software (Peirce, 2007). We followed the procedure 

illustrated by Boutonnet and Lupyan (2015). Participants completed a cued-picture 

recognition task composed of 300 trials (see Fig. 4). On each trial, a fixation point appeared 

on the center of the screen for one second, then participants heard an auditory cue: either 

a word in L1, (e.g., igela, “frog), a word in L2 (e.g., rana, “frog”) or a natural sound (e.g., a 

croak).  

After 1s from the offset of the cue, a picture appeared on the screen, and participants 

had to respond “yes” or “no” by pressing one of two buttons on a keyboard to indicate 

whether the picture did or did not match the auditory cue at the category level. The picture 
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remained on the screen until the participant’s response. In 50% of the trials the picture 

matched the auditory cue (congruent trials), while the other 50% was a mismatch 

(incongruent trials). In the case of incongruent trials, a picture belonging to a different 

category appeared on the screen. Stimuli presentation was randomized for each participant. 

The entire experiment lasted 40 minutes on average. 

 

 

 

Figure 4. Illustration of the design and trial structure with an example for each possible auditory cue (words in 

L1, words in L2, natural sounds) and target object condition (Match, Mismatch). 

 

EEG recording 

Electrophysiological activity was recorded from 27 electrodes (Fp1/2, F7/8, F3/4, FC5/6, 

FC1/2, T7/8, C3/4, CP1/2, CP5/6, P3/4, P7/8, O1/2, F/C/Pz) positioned in an elastic cap 

(Easycap) according to the extended 10–20 international system. All sites were referenced 

to the left mastoid (A1). Additional external electrodes were placed on the right mastoid (A2) 

and around the eyes (VEOL, VEOR, HEOL, HEOR) to detect blinks and eye movements. 

+
1 s

0-to response

Auditory cue

Auditory cues:

• Words in L1 (e.g., txakurra, “dog”)
• Words in L2 (e.g., perro, “dog”)
• Natural Sounds (e.g., barking)

ca. 0.8 s

+
+
1 s

Visual target:

Match

Mismatch

Visual target

or
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Data were amplified (Brain Amp DC) with a filter bandwidth of 0.01-100 Hz, at a sampling 

rate of 250 Hz. The impedance of the scalp electrodes was kept below 5 kΩ, while eye 

electrode impedance was kept below 10 kΩ. 

 

EEG preprocessing 

All EEG data analysis was performed using Matlab 2014 with the Fieldtrip toolbox 

(Oostenveld et al., 2011; http: www.fieldtriptoolbox.org) and R (R Core Team, 2015; https: 

www.r-project.org). For data visualization, we used Matlab or FieldTrip plotting functions, R 

and the RainCloud plots tool (Allen et al., 2019). The recordings were re-referenced off-line 

to the average activity of the two mastoids. Epochs of interest were selected based on cue 

type (word in L1, word in L2, natural sounds) and congruency (match, mismatch), resulting 

in six different sets of epochs. They were computed from −3 s to 1.5 s with respect to image 

onset. 

Trials in which subjects provided incorrect responses in the behavioral task were 

removed from the analysis. Spatial-temporal components of the data containing eye and 

heart artifacts were identified using independent component analysis and subsequently 

removed. Overall, we removed an average of 2.14 components per subject. We then 

identified epochs containing additional ‘muscle’ and ‘eye blink’ artifacts using an automatic 

artifact detection procedure (z-value threshold = 12). Trials selected as possibly 

contaminated by artifacts were visually inspected and removed (~8%). Finally, we removed 

a few additional trials containing artifacts using a visual inspection procedure (~0.11%). 

Three participants were excluded from the analysis because more than 25 % of the trials 

were rejected.  

 

Statistical analysis 
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Behavior. We used the R environment (version 4.0.0; R Core Team 2020) and lme4 package 

(Bates et al., 2014) to perform mixed effect regression on reaction time data, following a 

procedure similar to that illustrated in Boutonnet and Lupyan (2015). Predicted reaction 

times (calculated from the onset of the target image up to the participant’s response) were 

computed by fitting the model with cue-type (words in L1, words in L2, natural sounds), 

congruency (match, mismatch) and their interaction as fixed factors, and by adding by 

subject random slopes for the effect of cue type and congruency. Subsequent pairwise 

comparisons were performed using estimated marginal means (Bonferroni-corrected for 

multiple comparisons) with emmeans (Lenth, 2018). Because no reliable interaction was 

detected, post-hoc comparisons were based on a model with the same syntax as the one 

presented above but without including the interaction term, in order to facilitate the 

interpretability of post-hoc analysis. Accuracy was not analyzed statistically because it was 

near ceiling (98%). For the analysis of behavioral data, we excluded the same three 

participants that were excluded from the EEG analysis. Moreover, we excluded all incorrect 

trials (1.88%), as well as a few trials in which participants’ responses exceeded 3 s (0.28%). 

These trials were also excluded from the EEG analysis. Before entering the statistical 

models, reaction times were log-transformed to improve normality. 

Spectral power. A time-frequency analysis of artifact-free EEG trials was performed. 

Before applying spectral decomposition, the latency of each epoch was reduced to −1.5 s 

to 0.5 s with respect to image onset. The time-varying power spectrum of single trials was 

obtained using a Hann sliding window approach (0.5 s window, 0.05 s time steps) for the 

frequency range between 0 and 30 Hz, zero-padded to 1 s providing a frequency resolution 

of 1 Hz.  Our focus on oscillatory activity up to 30 Hz was motivated by the fact that top-

down processes are often associated with oscillations within this frequency band, while 

higher frequencies have been traditionally linked to bottom-up processing (e.g., Bosman et 

al., 2012). For the statistical analysis, we computed a single power spectral density estimate 
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for each participant, channel, frequency and epoch by averaging the spectral estimates 

centered on the -0.75 s to -0.25 s time interval. We selected this time-interval in order to 

yield more accurate spectral estimates, as activity here is largely uncontaminated by activity 

evoked by the preceding auditory event or the subsequent visual stimulus.  

Grand-average power spectrum. In order to compute the power spectrum, spectral 

estimates corresponding to congruent and incongruent trials for each cue-type condition 

were combined, resulting in three different data sets for each cue-type (words in L1, words 

in L2, natural sounds). Note that subjects were not aware of incongruency in the prestimulus 

time window, thus the time-frequency representations at this stage should be 

indistinguishable for the congruent and incongruent conditions. Then, spectral estimates 

were averaged over trials, participants, channels and cue-type conditions, resulting in a 

single value for each of the 30 frequency bins (i.e., the grand-average power spectrum). A 

peak finding algorithm was used to identify spectral peaks as local maxima in the grand-

averaged power spectrum. Two peaks, one at 10 Hz and one at 18 Hz emerged from this 

analysis (Fig. 5A). Based on these peaks, frequencies of interest (FOI) were obtained as 

the average of the frequency peaks ±1 Hz: that is, 9-11 Hz and 17-19 Hz respectively (Fig. 

5B). We refer to these band estimates as the alpha and beta band power.  
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Figure 5. A) Alpha and beta peaks in the grand-average raw power spectrum of all epochs across conditions, 

during the -0.75 -0.25 pre-target time-interval. The blues lines indicate the power peak as local maxima. B) 

Time-frequency representation of grand-averaged data for the alpha and beta-band, in the 1 s time window 

between the offset of the auditory cue and the onset of the image. The black rectangle denotes the time-

frequency interval selected for the statistical analysis. C) Topography of the time-frequency interval of interest. 

 

Prestimulus spectral differences between cues. Spectral estimates for each cue-type 

(words in L1, words in L2, natural sounds) were averaged over trials. To reduce individual 

differences in overall EEG power, normalization was applied by converting the time-

frequency power for each condition into percent signal change relative to the average power 

over all three conditions and channels, as performed by Bogaerts et al., (2020). This 

procedure removes individual differences in signal power, without distorting the relative 

magnitudes of the conditions, i.e. it functions as a baseline correction, when an appropriate 

baseline interval is not available. In order to test whether time-frequency representations in 

the prestimulus time-window differed across cue types, a non-parametric approach was 

selected (Maris and Oostenveld, 2007). For each FOI, we implemented a cluster-based 

permutation test based on a dependent sample F-test with the spectral data for each type 
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of cue (words in L1, words in L2, natural sounds) as the dependent variable. This approach 

is equivalent to a one-way ANOVA but allows to account for the spatial correlation between 

electrodes (i.e., no a priori region of interest needs to be defined). The minimum number of 

neighboring electrodes required for a sample to be included in the clustering algorithm was 

set at 2. The cluster threshold F-value (or t-value) was set at an alpha value at the 85th 

percentile of their respective distributions. Note that this parameter does not impact the false 

alarm rate of the test. Rather, it sets a cluster threshold for determining when a sample 

should be considered as a candidate member of a cluster. Small cluster thresholds usually 

favor the detection of highly localized clusters with large effect size, while larger cluster 

thresholds favor clusters with large spatio-temporal extent, and more diffusion of the effect 

(Maris and Oostenveld, 2007). Because alpha and beta rhythms usually emerge at the 

network level, we selected a relatively large cluster threshold, i.e. capturing what appears to 

be quite a globally distributed effect. The number of permutations for the randomization 

procedure was set at 100000. The critical alpha-level to control the false alarm rate was the 

standard α = 0.05. All resulting p-values were Bonferroni corrected for the number of FOIs. 

For each FOI, one significant cluster was detected. In order to assess the directionality of 

the effect, post-hoc non-parametric pairwise comparisons were applied. Specifically, power 

values for each cue-type condition were averaged over all electrodes belonging to the 

significant cluster and compared pairwise using paired t-tests. The alpha-level for the three 

post-hoc t-tests was Bonferroni corrected for the number of comparisons. This procedure 

was applied to each FOI separately. 

For both the alpha and beta band, post-hoc t-tests revealed that brain data elicited 

by symbolic cues (words in L1 and L2) come from a similar probability distribution, while 

both significantly differed from brain activity elicited by natural sounds. This motivated us to 

pool the data from the spoken word conditions together and contrast this average with that 

from the natural sound condition using a dependent sample cluster-based t-test (using the 
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same parameters as for the test based on the F-statistic). One significant cluster for each 

FOI emerged from this comparison: one including 23 (alpha) and 21 (beta) out of 27 

electrodes respectively. The power over these clusters served for the analysis of brain-

behavior correlation. 

Brain-behavior correlation. In order to investigate the link between prestimulus brain 

rhythms and behavior, correlation analyses were performed over participants. For the 

correlation analyses reported below, only the trials belonging to the congruent condition 

were selected; i.e., those trials where the auditory cue matched the object picture. The same 

analysis pipeline was applied for each FOI. 

Trials were averaged, providing an alpha, beta and RT for each participant and 

condition. To ensure the correlation was not driven by differences between conditions, 

participants’ values were z-scored within conditions. The three conditions were then 

averaged, providing an alpha-RT and beta-RT pair for each participant. The Spearman 

correlation was then computed for these pairs for each FOI. To assess the statistical 

properties of the alpha and beta correlations, we bootstrapped the data over participants. 

We performed this 100000 times, generating a distribution of bootstrap values. Following 

Efron and Tibshirani (1986), we computed the percentile bootstrap 95% confidence 

intervals, and used this distribution to perform statistical tests to determine the difference 

between the observed correlation coefficients and zero. We finally conducted a two-sample 

bootstrap test to evaluate the difference between the alpha-RT and beta-RT correlation 

coefficients (Efron and Tibshirani, 1986). 

3.3 Results 
 
Effect of cues on visual object recognition. We first analyzed the accuracy. Overall, accuracy 

was high (98%) and similarly distributed across the three conditions (words in L1 = 98%; 

words in L2 = 99%, natural sounds = 97%). Participants were clearly at ceiling here; thus, 
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we focused on the analysis of the reaction times. Analysis of reaction times showed a main 

effect of Cue-Type (χ2(2) = 31.9500, p < 0.001) (Fig. 6). This was subsequently unpacked 

via post-hoc comparisons. Pairwise comparisons using estimated marginal means showed 

that object images preceded by symbolic cues in both L1 and L2 were identified faster 

compared to images preceded by natural sounds (words in L1 – natural sounds: Δ = -0.08, 

SE = 0.01, p < 0.001; natural sounds – words in L2: Δ = 0.06, SE = 0.01, p < 0.001). On the 

other hand, the pairwise effect between words in L1 and words in L2 did not reach the 

significance threshold (words in L1 – words in L2: Δ = -0.02, SE = 0.01, p = 0.06). As in 

previous studies, we also observed a main effect Congruency (χ2(1) = 7.0329, p < 0.01), 

with matching cue-pictures pairs leading to faster responses compared to mismatching 

pairs. No reliable Cue-Type by Congruency interaction was detected (χ2(2) = 1.5310, p = 

0.46).  

 

 

Figure 6. Mean reaction times (correct trials only) showing the main effect of cue-type on visual object 

recognition performance. Raincloud plots show probability density. The center of the boxplot indicates the 

median, and the limits of the box define the interquartile range (IQR = middle 50% of the data). The notches 

indicate the 95% confidence interval around the median. Dots reflect individual subjects. 
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Effect of cues on prestimulus alpha rhythms. Differences between spectral power 

elicited by the three cue-type conditions were assessed using a cluster-based F-test for 

alpha and beta FOIs separately, focusing on the prestimulus interval. From the analysis of 

the alpha rhythm, one significant cluster was detected (p < 0.01, Bonferroni-corrected for 

the two FOIs) including several electrodes across the entire scalp (Fig. 7A). In order to 

assess the directionality of the effect, spectral power for each type of cue was averaged 

over all the electrodes belonging to the significant cluster and compared pairwise via t-tests. 

Pairwise comparisons showed that both words in L1 and L2 led to increased alpha power 

compared to natural sounds (t(21) = 4.57, p < 0.001 Bonferroni-corrected; t(21) = 5.48, p < 

0.001 Bonferroni-corrected, respectively). No significant difference was detected between 

words in L1 and L2 (t(21) = -1.70, p = 1 Bonferroni-corrected).  

 

 

Figure 7. Effect of cues on pre-target alpha (A) and beta power (B) averaged over the electrodes belonging 

to the significant cluster. Conventions for the plot are the same of Figure 2. The electrodes belonging to the 

cluster are illustrated on the top-right of each figure. 

 

Effect of cues on prestimulus beta rhythms. Analysis of the beta band revealed a 

pattern of results similar to the one that emerged from the analysis of the alpha rhythm. The 
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cluster-based F-test detected one cluster (p < 0.01, Bonferroni-corrected for number of 

FOIs) (Fig. 7B). Spectral power in the beta frequency range was averaged over the 

electrodes of the significant cluster for each type of cue separately and compared pairwise 

via t-tests. Beta power was larger when images were preceded by words in L1 and L2 

compared to natural sounds (t(21) = 2.68, p = 0.04 Bonferroni-corrected; t(21) = 4.68, p < 

0.001 Bonferroni-corrected, respectively), while no significant difference emerged when 

comparing words in L1 and L2 (t(21) = -1.67, p = 0.33 Bonferroni-corrected) (see Fig. 7B).  

Relation between prestimulus alpha/beta rhythms and visual object recognition. The 

results reported so far point to a possible role of alpha and beta rhythms in supporting the 

label-advantage in object recognition. We further explored the relation between prestimulus 

alpha/beta oscillations and visual object recognition by correlating prestimulus spectral 

power and reaction times across participants.  

Individual estimates for power and reaction times were correlated using the 

Spearman rank correlation. This method was selected because reaction time and beta 

power data significantly deviated from normality, as emerged from a Shapiro-Wilk normality 

test (reaction time: W = 0.88, p = 0.01; alpha power: W = 0.92, p = 0.09; beta power: W = 

0.89, p = 0.02). We observed that both prestimulus alpha and beta power had a relation with 

reaction time performance (Fig. 8A). Yet, the directionality of the effect was opposite: alpha 

estimates were negatively correlated with reaction time performance in object recognition 

(Spearman’s rho = -0.34, p = 0.13), while the relation between beta power and reaction time 

was positive (Spearman’s rho = 0.33, p = 0.13). Though these correlations are not 

significant, the bootstrap percentile confidence intervals (Fig. 8B) provide marginal evidence 

that supports that the alpha correlation is less than zero, as shown by the 95% confidence 

interval only minimally exceeding zero (zero lies at the 93rd-percentile of the alpha bootstrap 

distribution). This can be expressed as a p-value using the bootstrap distribution to test the 

one-tailed hypothesis that the alpha-RT correlation is less than 0 (p = 0.067), which again 
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provides marginal evidence that the alpha-RT correlation is negative. Similarly, the bootstrap 

analysis shows evidence supporting the beta-RT relationship to be positive, with zero 

appearing at the 4.9th-percentile, which lies close to the border of the 95% confidence 

interval (Fig. 8B), and showing a significant difference from zero using the one-tailed 

hypothesis test (p = 0.049). Building on this evidence for opposing effects of alpha and beta 

power on RT, we explicitly tested that these correlations were in fact different. Figure 8B 

shows that the observed rho values for the alpha-RT and beta-RT correlations fall outside 

each others 95% confidence intervals. A two-tailed two sample bootstrap test was applied, 

which revealed that indeed the alpha-RT and beta-RT correlations are significantly different 

(p = 0.012), thus supporting the interpretation that these oscillations affect behavior 

differentially.   

 

 
 

Figure 8. A) Correlation between alpha/beta power and reaction time (RT). Error bars represent 95% 

confidence interval. B) Bootstrap distributions of alpha/beta Spearman rho values. 

 

3.4 Discussion 
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Spoken words are known to have facilitatory effects on visual object recognition, yet the 

mechanisms underlying such facilitation are incompletely understood. On one account, 

language does not influence perception itself but only later processes such as categorical 

decision making. On another account, language would bias perception at early sensory 

stages; specifically, via the amplification of category-specific priors in early sensory regions. 

A prediction of this latter model is that top-down priors evoke changes in neural activity 

before the presentation of visual stimuli. In the present study, we tested the hypothesis that 

neural oscillations can serve as a mechanism to carry language-driven priors about 

incoming object categories.  

To test this hypothesis, we used EEG to measure prestimulus brain activity and 

characterize the oscillatory dynamics underlying the label-advantage in object recognition. 

We reasoned that, if objects are recognized faster because spoken words provide more 

refined categorical priors than natural sounds, then these cues should differentially modulate 

prestimulus oscillatory activity in the alpha/beta bands; and we should expect such an 

oscillatory index to be linked to object recognition performance.  

Our results provide evidence that language affects visual perception by biasing 

prestimulus activity towards the identification of incoming input. We first replicated the 

previously reported label-advantage and showed that this behavioral effect persisted even 

when words were presented in a second language, indicating that the label-advantage relies 

on inherent properties of verbal symbols to deploy precise categorical information. 

Importantly, the reported behavioral advantage for spoken words was associated with an 

increase in the posterior alpha and beta rhythms in the time interval between the offset of 

the cue and the onset of the target object. Correlation analysis revealed that both rhythms 

contribute to visual object recognition performance. Yet, they appeared to operate in 

orthogonal directions: object recognition performance improved when alpha power 

increased, but decreased with the enhancement of beta rhythms. This finding suggests a 
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division of labor between alpha and beta rhythms in orchestrating language-mediated top-

down guidance of visual behavior. 

Enhancement of alpha oscillations have been largely reported in visual brain regions 

when top-down knowledge is directed by a cue towards a specific feature or direction 

(Worden et al., 2000; Snyder and Foxe, 2010). Two non-inclusive theoretical interpretations 

have been advanced to explain this effect. One prominent view is that enhanced alpha 

power reflects states of inhibition and filtering of task irrelevant information (Jensen and 

Mazaheri, 2010; Klimesch et al., 2007). More recent proposals however ascribe to neural 

alpha synchronization a large variety of roles in top-down processing (Palva and Palva 2007; 

Klimesch 2012; van Kerkoerle et al. 2014). Enhancement of alpha waves in task-relevant 

regions have been suggested to have excitatory effects reflecting selective amplification of 

neural representations of object categories (Mo et al., 2011). For instance, M/EEG studies 

have reported that alpha power increases in grapheme-processing regions as a function of 

predictability about the identity of letters (Mayer el al., 2016) or in the posterior cortex when 

meaningful hints precede the discrimination of ambiguous images (Samaha et al., 2018). 

Our results are in line with this interpretation, and suggests that alpha oscillations carry 

language-generated representations about the structure of visual objects. The functional 

role of prestimulus alpha waves in carrying object representations is also supported by the 

negative correlation between individual alpha power and reaction times, showing that 

participants with higher alpha power were overall faster in recognizing visual objects. Under 

this account, processing verbal symbols may help to form more precise object-

representations than natural sounds against which the incoming visual input can be 

compared, thus resulting in a facilitation in subsequent object recognition.  

A novel aspect in our results in contrast to previous similar studies concerns the cue-

related differences in the beta rhythm between spoken words and natural sounds. Recent 

proposals suggest that beta oscillatory activity reflects endogenously driven transitions from 
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latent to active cortical representations of objects categories (Spitzer and Haegens; 2017), 

as well as the binding of neurocognitive network elements underling a given neural 

representation (Bressler and Richter, 2016). We speculate that the difference in beta 

modulations for spoken words vs. natural sounds may reflect a difference in the content of 

the activated states – and more importantly, in the amount of retrieved conceptual 

dimensions, e.g. the size of the neurocognitive network state, or load (Bressler and Tognoli, 

2006). Behavioral and eye tracking experiments have indeed showed that spoken words 

activate a rich network of concepts during lexical processing (e.g., Huettig and Altmann, 

2005). As a consequence, processing words might lead to the retrieval of knowledge 

dimensions far beyond purely sensory features of objects, such as conceptual, grammatical 

and lexical information. This is partially in line with human and monkey studies showing that 

beta synchronization over parietal and frontal regions carry supramodal information about 

object categories (Antzoulatos and Miller, 2014, 2016; Wutz et al., 2018). On this account, 

the positive correlation between beta power and reaction times may reflect the fact that 

activating a large space of possibilities is detrimental to successfully performing the current 

task, as it requires primarily the potentiation of visual features for faster recognition. Overall, 

these results suggest a division of labor between alpha and beta rhythms in top-down 

signaling during language-mediated visual object recognition, where alpha rhythms might 

function to amplify neural representations of object categories, while beta-frequency 

synchronization may maintain the neurocognitive network states elicited by the auditory cue. 

The present findings inform the broad debate on whether language shapes 

perception at early or late stages of perceptual processing. At least to what concerns the 

effect of single words on visual object recognition, it seems unlikely that such biases arise 

at later semantic levels. Previous EEG studies showed that words affect visual processes 

by modulating ERP components such as the P1 (Boutonnet and Lupyan 2015; Noorman et 

al., 2018), which are traditionally associated with early visual processing. Similarly, fMRI 
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studies showed that language sharpens neural activity in visual regions associated with the 

processing of visual features, such as V4 for colors (Brouwer and Heeger, 2013); and object 

categories, such as the fusiform face area and parahippocampal place area (Puri et al., 

2009). These results, together with our current study, suggest that the effect of words on 

visual perception arises at an early, sensory stage of processing – specifically, via the 

modulation of prestimulus activity in the alpha/beta frequency band.  

Finally, a novelty in our study compared with previous categorization studies 

concerns the inclusion of words in L2 as an auditory cue. Our participants were indeed highly 

proficient Basque-Spanish bilinguals, with comparable levels of proficiency for the two 

languages, but with the L2 acquired later in development. The effect of top-down processing 

in bilinguals is currently debated, and largely dependent on factors like proficiency (Kaan, 

2014; Hopp, 2013) and age of acquisition (Molinaro et al., 2017). Concerning semantic 

processing, despite that it is commonly believed that bilinguals access a common semantic 

system in both languages (e.g., Caramazza and Brones, 1980), recent studies have 

suggested that top-down processing may be reduced in a second language because of 

reduced access to perceptual memory resources (e.g., Hayakawa and Keysar, 2018), which 

are known to play an important role in the generation of visual expectation (Hindy et al., 

2016). The reported comparable behavioral and neural responses on the effect of words in 

L1 and L2 on visual object recognition are in line with the idea that both languages access 

common conceptual representations, and deploy top-down guidance to the visual system in 

a similar manner.  

On the contrary, the divergent effects of words and natural sounds challenges the 

hypothesis that these types of cues access a common nonverbal conceptual system. It is 

relevant to consider why cuing an object with a word results in enhanced visual recognition 

compared to a natural sound. Symbols have been proposed to be extremely effective in 

compressing semantic information in a format that transcends within-category differences, 
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thus leading to the amplification of those features which are relevant for distinguishing 

between exemplars of different categories. On the contrary, natural sounds are inevitably 

linked to their sources (e.g., the barking of a dog may trigger the representation of a specific 

exemplar of dog), thus being less effective at cuing a categorical state (Edmiston and 

Lupyan, 2015). Interestingly, ascribing labels to experience have been shown to also 

enhance other cognitive functions, such as the retention of items in visual working memory 

(Souza and Skóra, 2017), learning of novel categories (Lupyan et al., 2008), perceptual 

categorization across sensory modalities (Miller et al., 2018). These findings indicate that 

language acts as a powerful tool for compressing information, facilitating different operations 

important to a multitude of human cognitive processes (Clark 2012).



Chapter - 4 Language experience affects 
predictive processing during auditory 
rhythm perception  



 
 

 
 

58 

 
 

  



 
 

 
 

59 

4.1 Introduction 
 

Predictive coding (PC) (Friston, 2005, Rao and Ballard, 1999) is becoming a popular theory 

of perception. It assumes that each cortical areas extrapolates statistical regularities 

governing sensory input and uses them to build internal models of the environment. Such 

models are then used to generate top-down predictions about incoming sensory events. 

Predictions feedback from higher to lower cortical areas where they are compared with 

activity related to novel inputs. Only the difference, called the “prediction error” (PE), is 

transmitted via feedforward connections to higher cortical stages, where it can be used to 

adjust the internal model. The output is a bidirectional message-passing system that 

constantly updates its internal models at multiple hierarchical levels of processing. 

In the auditory domain, great progress in the understanding of predictive capabilities 

of the auditory system has been made using variations of the Oddball design (see Heilbron 

and Chait, 2018 for a review). In these studies, subjects are usually presented with 

sequences of stimuli encoding some specific regularity (typically a repetition of tones sharing 

some physical features like pitch, duration or intensity), that is then violated by a ‘deviant’ 

event. Such deviant event elicits a novelty response in the EEG which has been defined 

“mismatch negativity” (or MMN), that arises around 100–250ms post-stimulus. Within the 

predictive coding framework, the MMN wave is suggested to reflect the violation of a 

prediction, that is, the cortical PE signal.  

Interestingly, such error signals arise even when an expected input is omitted from a 

regular sequence of sounds. Such “omission responses” are difficult to reconcile with 

feedforward models, as they cannot be explained by the presence of incoming bottom-up 

sensory signals. As such, omission responses provide an elegant tool to investigate the 

implementation of top-down prediction decoupled from bottom-up input. 
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Experimental designs using variations of Oddball design – or similar designs such as 

optimum-1 (Näätänen et al., 2004), omission (Yabe et al., 1997), and roving-standard 

(Garrido et al., 2008) – have been important to unveil the sensitivity of the predictive system 

to local transition probabilities. However, these studies have primarily examined predictions 

generated over rules acquired in the context of an experimental task i.e., rules linked to 

short-term memories. These local, context-dependent predictions are known to be flexible, 

meaning that they can be easily updated or canceled out based on new sensory evidence. 

However, one core assumption of PC models is that the brain deploys also certain long-term 

predictions (Yon & De Lange, 2018), which are typically resistant to evidence-based 

updating. Such predictions may emerge via learning, through the extrapolation of regularities 

and physical patterns that are relatively constant throughout the lifespan of an individual. 

Because arising over long timescales, these priors become encoded into the tuning 

properties of early sensory cortices. Their being resistant to evidence-based updating 

reflects their overall computational goal: the optimization of the (long-term) PE (Friston, 

2018; Lupyan and Clark, 2015).  

The goal of the present MEG study was to investigate whether the auditory system 

generates predictions based on life-long exposure to auditory regularities, using patterns 

that extend beyond those acquired in the recent past. To that end, we compared MEG data 

from native speakers of Basque and Spanish performing a rhythmic version of the 

alternation paradigm with omission responses (see Fig. 9). In this paradigm, rhythmic 

sequences of tones alternating in duration are presented to participants, with rare tone 

omissions occurring randomly. 
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Figure 9. Experimental design 

(a–b) Stimulus sequences of alternating long (437ms) and short tones (250ms) with intervals of 20ms. (c–d) 

Omission of a short and a long sound (500ms), respectively. 

 

Importantly, Basque and Spanish are two languages that differ in their 

syntactic/prosodic structure, providing a unique testbed to study the effect of experience on 

auditory predictive processing. Spanish is a functor-initial language, in which short sounds 

(i.e., function words; e.g., “la”) usually precede long sounds (i.e., content words; e.g., 

“habitación”), whereas Basque is a functor-final language, in which short sounds (i.e., 

function words; e.g., “bat”) usually follow long sounds (i.e., content words; e.g., “logel”). 

Previous behavioral studies have shown that regular exposure to rhythmic regularities 

related to language syntax/prosody influences the automatic grouping biases of non-

linguistic sounds (Iversen et al., 2008, Molnar et al., 2016), suggesting that such long-term, 

language-induced patterns may affect basic auditory processing in a top-down fashion.  

We hypothesize that the auditory system partially builds long-term priors based on 

the regular patterns embedded in the prosodic structure of the language, and uses such 

knowledge to generate hierarchical predictions about incoming sounds. Based on this, we 

predict an interaction between language dominance of participants and the type of event 
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that is violated. This means that the same violation would elicit different MMN responses 

depending on language background. Because in Spanish’s prosody long sounds usually 

follow short sounds, we predict that the omission of a long tone will elicit a larger MMN in 

Spanish dominant speakers as compared to Basque dominant speakers, as it represents 

the violation of two predictions in Spanish, but not in  Basque: (i) a context-dependent (short-

term or local) prediction based on the statistical regularities of previous stimuli (i.e., 

prediction of hearing a long tone after a short one in the specific context of the experiment), 

and (ii) an experience-dependent (long-term) prediction based on the statistical regularities 

of Spanish prosody. The same pattern is expected in Basque dominant speakers, when a 

short tone is omitted.  

There is also another possible scenario that can be compatible with a hierarchical 

predictive processing account. Because during musical beat perception sounds separated 

by a short time interval tend to be merged into higher-level units (Litovsky et al., 1999), it 

may be that the auditory cortex is tuned to invest major predictive power on the onset of 

each higher-level event (thus on the onset of the first element of the chunk). For instance, 

when presented with a rhythmic sequence of two tones alternating in duration, Spanish 

speakers tend to chunk the sequence into “short-long” higher-level units. In this context, the 

auditory cortex may generate a long-term prediction about the onset of such higher-level 

unit (i.e., the “short” tone). This scenario would predict the opposite pattern of results as 

compared to the scenario presented above, with the omission of a short tone generating a 

larger MMN in Spanish compared to Basque dominant speakers (and the opposite pattern 

when a long tone is omitted). Despite making different predictions about the directionality of 

the effect, this second scenario still predicts that the amplitude of the MMN should be 

modulated orthogonally by the linguistic background of the participants, which is the core 

manipulation of the study.  
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We also provided participants with a control condition that has the same design than 

the test condition, but with the two tones differing in frequency and not in length. Here, no 

difference between the two populations is expected, as they should both rely on local (short-

term) predictions, with no specific experience-dependent (long-term) prediction. Overall, the 

experiment takes the structure of a 2x2 design, with omission-type (long omission vs short 

omission) as within factor and language background (Basque vs Spanish group) as between 

factors. 

4.2 Materials and Methods 
 
Participants. In total, 20 Spanish dominant (mean age: 25.96 years, range: 20–33, 16 

females) and 20 Basque dominants participants (mean age: 27.11 years, range: 21–40, 17 

females) took part in the experiment. Participants were selected using a measure similar to 

that used in Molnar et al., (2016). The proficiency levels for each language were evaluated 

based on self-reported scores on a scale from 0 (=no knowledge) to 10 (=native proficiency). 

The exposure measures reflect the participants’ self-report of the average exposure to the 

given language at the time of testing. In addition, most participants reported to have learned 

a second and third language in school settings (e.g., Basque, English, French, and Catalan 

for Spanish speakers; Spanish, English, French for Basque speakers).  
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Table 2. General linguistic profile of participants in the two groups. Statistics on Basque knowledge in the 

Spanish group are not provided because only six participants reported to have learnt Basque as second or 

third language. 

 

Stimuli and experimental design. Stimuli were created using Matlab Psychtoolbox 

and presented binaurally via MEG-compatible headphone. Experimental stimuli consisted 

of 60 sequences of two tones alternating in duration (short-tone: 0.250 s; long-tone: 0.437 s 

respectively) with fixed intervals (0.02 s). Tones had a frequency of 500Hz. The beginning 

and end of each tone were fade in and out of 0.015 s. Overall, each sequence consisted of 

40 short-long tone pairs, for a total of 80 elements per sequence, and lasted around 30 s. 

The beginning and the end of each sequence was fade in and fade out of 2.5 s in order to 

mask possible grouping biases. Further, half of the sequences started with a long tone, and 

half with a short tone. In each sequence, 2 to 6 tones were omitted and substituted with a 

0.5 s silence gap. The larger gap was introduced in order to avoid that activity related to the 

onset of the tone following the omission may overlap with the activity generated by the 

Measure Basque natives (N = 20) Spanish natives (N = 20)

Proficiency (0-100) Span 8.73 (0.78) 9.73 (0.54)

Basq 9.6 (0.48) //

Exposure (0-100) Span 22.63 (10.45) 79.5 (9.98)

Basq 70 (14) //

Age of acquisition Span 2.55 (2.87) 0.5 (0.85)

Basq 0.15 (0.48) //

Picture naming (0-65) Span 57.8 (19.79) 64.82 (0.39)

Basq 64.22 (1.11) //
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omitted tone. Tone omissions occurred pseudorandomly, for a total of 240 omissions (120 

short and 120 long). In the control condition, sequences consisted of tones alternating in 

frequency at fixed intervals (0.02 s). High frequency tones had a frequency of 700Hz, while 

low frequency tones had a frequency of 300Hz. Both high and low frequency tones had an 

overall duration of 0.343 s. This duration was selected in order to keep the overall length of 

the sequences equal to that of the test condition. As in the test condition, in each sequence 

2 to 6 tones were omitted and substituted with a 0.5 s silence gap.  

Overall, the experiment was divided into two main blocks: test and control. The order 

in which the blocks were presented was counterbalanced across participants. Each block 

consisted of 60 sequences and lasted around 35 minutes. Each sequence was separated 

by an 8 s silence gap. Every twenty sequences, a short pause was introduced. Further, the 

end of each block was followed by a longer pause.  

Participants were requested to minimize movement throughout the experiment, 

except during pauses. Subjects were asked to keep their eyes open, to avoid eyes 

movements by fixating a cross. Similarly to previous studies, the only task that was asked 

to subjects was to count how many omissions were present in each sequence (e.g., 

Bekinschtein et al., 2009) - and report it at the end of the sequence during the 8 s silence 

gap. Participants only received instructions at the very beginning of the task (in their native 

language), and no verbal or written instructions was introduced during the task. 

MEG Recordings. Measurements were carried out with the Elekta Neuromag 

NeuroSpin system (Elekta Neuromag), which comprises 204 planar gradiometers and 102 

magnetometers in a helmet-shaped array. ECG and electrooculogram (EOG) (horizontal 

and vertical) were recorded simultaneously as auxiliary channels. MEG and auxiliary 

channels were low-pass filtered at 330 Hz, high-pass filtered at 0.1 Hz, and sampled at 1 

KHz. The head position with respect to the sensor array was determined by four head-

position indicator coils attached to the scalp. The locations of the coils were digitized with 



 
 

 
 

66 

respect to three anatomical landmarks (nasion and preauricular points) with a 3D digitizer 

(Polhemus Isotrak system). Then, the head position with respect to the device origin was 

acquired before each block.  

Preprocessing. Signal space separation correction, head movement compensation, 

and bad channels correction were applied using the MaxFilter Software (Elekta Neuromag). 

After that, data were analyzed using the FieldTrip toolbox (Oostenveld et al., 2011) in Matlab 

(MathWorks). Trials were epoched from 1.2 s before to 1.2 s after the onset of each tone or 

omitted tone. Trials containing muscle artifacts and jumps in the MEG signal were detected 

and removed using a semiautomatic routine. Subsequently, independent component 

analysis (Bell and Sejnowski, 1995) was performed to partially remove artifacts attributable 

to eye blinks and heartbeat artifacts (Jung et al., 2000). To facilitate the detection of 

components reflecting eye blinks and heartbeat artifacts, the coherence between all 

components and the ECG/EOG electrodes was computed. Components were still checked 

visually before rejection. After artifact rejection, trials were low-pass filtered at 40 Hz and 

averaged per condition and per subject. ERFs were baseline corrected using the 0,05 s 

preceding trial onset. The latitudinal and longitudinal gradiometers were combined by 

computing the root mean square of the signals at each sensor position in order to facilitate 

the interpretation of the sensor-level data.   

Statistical analysis. Statistical analyses and data visualization were performed using 

FieldTrip toolbox (Oostenveld et al., 2011) in Matlab (MathWorks) and R studio for post-hoc 

analysis and visualization. All comparisons were performed on combined gradiometer data. 

For statistical analyses we used a univariate approach in combination with cluster-based 

permutations (Maris & Oostenveld, 2007) for family-wise error correction. This type of test 

controls the type I error rate in the context of multiple comparisons by identifying clusters of 

significant differences over space and time, instead of performing a separate test on each 

sensor and sample pair. Two-sided paired- and independent-samples t-tests were used for 
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within- and between-subjects contrasts, respectively. The minimum number of neighboring 

channels required for a sample to be included in the clustering algorithm was set at 2. The 

cluster-forming alpha level was set at .05. The cluster-level statistic was the maximum sum 

of t-values (maxsum) and the number of permutations was set to 10000. To control for the 

false alarm rate, we selected the standard α = 0.05. For the first analysis only in which we 

compared ERF generated by omission vs pure tones, we used a time-window between 0 

and 0.250 s, and took into account the temporal dimension in the cluster-based permutation 

test. This explorative analysis was performed to assess the difference between activity 

elicited by a tone vs omission, as well as its temporal unfolding. In all the remaining analyses, 

MMN-responses were calculated by subtracting the ERFs of tones from the ERFs of 

omissions. Moreover, all analysis were conducted by averaging values in a time window 

between 0.100 and 0.250 s, which covers the typical latency of the MMN (Näätänen et al., 

2007; Garrido et al., 2009). When multiple clusters emerged from a comparison, only the 

most significant cluster was reported. 

Using this approach, we first assessed the elicitation of the omission responses by 

comparing the ERFs elicited by standard tones vs the ERFs elicited by omissions. Second, 

to assess for the presence of main effect of omission type we compared the MMNm 

responses elicited by omissions of short tones vs omissions of long tones. Third, we assess 

for a main effect of language background (Basque vs Spanish) by comparing the average 

of short omission and long omissions responses between groups. Finally, we assessed for 

the presence of an omission-type by language background interaction. As the cluster-based 

permutation test is designed to compare two conditions at a time, we tested for an interaction 

by subtracting the MMNm elicited by long omission from the MMNm elicited by short 

omission responses for each participant, and compared the resulting differences between 

groups. A significant cluster emerged from this contrast. In order to assess what drives this 

interaction, we ran post hoc t-tests on ERF data averaged over all the channels belonging 
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to the significant cluster and time points (0.100 – 0.250 s). All p-values resulting from these 

comparisons were FDR corrected. The same analysis pipeline was applied to the analysis 

of the control condition. 

 

4.3 Results 
 
We first look at responses evoked by the omissions of tones. Statistical analyses were ran 

by comparing the amplitude of the ERF elicited by tones vs omissions. Cluster analysis, as 

implemented in FieldTrip software, was used to identify clusters of neighboring sensors 

where a significant difference between the activity elicited by the two conditions. For this 

analysis only, we looked for spatiotemporal clusters in the 0 – 0.250 s time window. This 

analysis revealed the presence of a significant cluster (p < .001), indicating that, despite the 

absence of a physical stimulus, omissions generated a much larger ERF compared tones 

(see Fig. 10 A). Such difference emerged around 0.100 s after stimulus onset, and included 

several channels over the entire scalp (Fig. 10 B). ERF elicited by tones and omissions had 

similar topographes, with bilateral activations over the temporal regions. The ERF elicited 

by tones was more pronounced over the left hemisphere, while the one elicited by omissions 

was more pronounced on the right hemisphere. 
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Figure 10. Panel A shows ERFs elicited by tone and omission responses. Dotted lines indicate the peak of 

each ERF. Topographies of the two conditions time-locked to the peaks are shown on right side. The marked 

channel indicates a representative sensor selected for visualizing the ERFs. Panel B shows the temporal 

unfolding of the topographical distribution of the cluster depicting the difference between ERFs elicited by 

tones vs. omissions. Channels contributing to the cluster are marked. 

 

We then assess for a main effect of omission-type by comparing MMNm responses 

elicited by long tone omissions vs short tone omissions averaged across groups over the 
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0.100 – 0.250 s post (omitted) stimulus onset. Remind that MMNm responses were 

calculated by subtracting the ERF of tones from the ERF of omissions, as standard for the 

analysis of the MMN (Garrido et al., 2009). We found a main effect of long tone omission (p 

< .003) over several fronto-temporal and parietal channels, meaning that omissions of long 

tones generated a larger MMNm compared to omissions of short tones (See figure 11 A). 

The effect was consistent in the Basque (p < .001) but not in the Spanish group (no cluster 

detected). 
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Figure 11. Panel A shows ERFs reflecting the main effect of long tone omission. The grey shadow part 

indicates the time-window of interest (0.100 – 0.250 s). The topographical distribution of the MMN is reported 

on the right, in which the channels contributing to the cluster are marked. Panel B shows ERFs reflecting the 

responses to omission in the Basque vs Spanish group. The grey shadow part indicates the time-window of 

interest (0.100 – 0.250 s). The topographical distribution of the MMN in one representative channel is reported 

on the right. The representative channel is marked.   

 

Third, we assess for the presence of a main effect of language background (Basque 

vs Spanish group) by comparing the average of short tone omission and long tone omission 

responses between groups. No cluster emerged from this comparison (see figure 11 B). 

Finally, we investigate the interaction between omission-type by language background, 

which was the analysis of interest of our study. From this analysis, a significant cluster 

associated with a p-value of .03 was detected over a few channels covering left fronto-

temporal regions (see figure 12 A, B). We then unpack such interaction effect by first 

averaging data for each participant over channels belonging to the significant cluster and 

time points of interest (0.100 – 0.250 s), and then comparing the conditions in the two groups 

using independent sample t-test. Specifically, we compare (i) omissions of long tones in the 

Basque group vs Spanish group, and (ii) omissions of short tones in the Basque group vs 

Spanish group. From these comparisons, it emerged that long tone omissions generated a 

larger MMNm response in the Basque compared Spanish group (p < 0.05 FDR-corrected; 

Fig. 12 A, C), while short tone omissions generated a larger MMNm in the Spanish compared 

to Basque group (p < 0.05 FDR-corrected; Fig. 12 B, D). 
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Figure 12. Panels A and B show ERF elicited by the omission of long (A) and short tones (B) in the Spanish 

and Basque group. Grey shadow part indicates the time-window of interest (0.100 – 0.250 s). The 

topographical distribution of the MMN is reported on the right, in which the electrodes contributing to the cluster 

are marked. Panels C and D show box plots on the effect of language background on long and short tone 

omissions over the channels belonging to the significant cluster and time-window of interest. 

 

The same analysis pipeline was applied to control data. Here we found a main effect 

of omission type (p < .001), with omissions of high frequency tones generating a sharper 

MMNm response than the omission of low ones. Similarly to the test condition, no difference 

emerged when comparing the data from the two groups (no cluster). Crucially, no significant 

omission-type by language background interaction was detected (no cluster). To further 

check that no interaction was present in the control condition, we averaged the data over 

the channels and time points in which we detected a significant interaction in the test 
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condition, and ran independent sample t-test by comparing ERF responses to high and low 

frequency tone omissions in both groups. Even within this subset of channels, no significant 

difference between groups was detected when comparing omission of low (p = 0.84 FDR-

corrected) and high frequency tones (p = 0.19 FDR-corrected). 

A potential concern is that the observed electrophysiological differences between 

conditions may stem from differences in neural activity elicited by the tones preceding the 

omission, rather than from the hypothesized long-term predictions. This is unlikely because 

MMNm responses were calculated as the difference between omission and tone. However, 

to address this potential concern we analyzed the MEG signal before omitted tones for each 

condition and group. Epochs corresponding to 0.05 s of activity preceding omissions were 

averaged over condition (long omission, short omission) and group (Basque, Spanish). 

Differences between omission responses were assessed using a paired two-tailed 

permutation test at all time points of the 0.05 s pre-omission onset activity, first across all 

channels, then by focusing on the channels where the interaction was significant. Both 

analyses of the pre-omission activity – in both groups and in both test and control conditions 

– failed to detect any significant difference at any time points between the activity generated 

by tones preceding long and short tone omissions in the -0.05 to 0 s time window. 

 

4.4 Discussion 
 

In this study, we explored whether the auditory system generates predictions based 

on long-term priors (i.e., linguistic knowledge), using memories that extent beyond the recent 

past. To that end, we compared data from participants with life-long exposure to languages 

differing in their prosodic structure (i.e., Basque and Spanish), performing a rhythmic version 

of the alternation paradigm with omission responses as deviants. These two languages 
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provide an ideal model to study the effect of experience (linguistic in that case) on predictive 

processing. Both Spanish and Basque are part of the same cultural community in Northern 

Spain. These languages share almost the same sharing almost the exact same phonology 

and orthography. However, unlike Spanish, Basque is a non-Indo-European language (an 

isolated language) with no typological relationship with Spanish. It is thus very unlikely that 

cultural factor which are not language-specific (e.g., exposure to different musical traditions 

or educational and writing systems) may play any role in the present findings. We 

hypothesized that the auditory system relies on language-driven regularities to build 

predictive models of the environment and generate predictions about incoming sounds. A 

prediction of this hypothesis is that the same type of violation (i.e., short or long tone 

omission) should generate a different MMN response depending on subjects’ linguistic 

background.  

In line with this prediction, we found that language experience modulates the 

amplitude of the MMN elicited by omission responses – our measure of prediction error 

signal. When a long tone was omitted, the MMN was sharper in the Basque compared to 

the Spanish group. On the contrary, when a short tone was omitted, a sharper MMN 

response was elicited in the Spanish native group.  

These results provide strong evidence that the auditory system relies on long-term 

priors to generate predictions during musical beat perception. Such long-term priors mirror 

abstract patterns present in the syntactic/prosodic structure of language. One possible 

interpretation of this effect is that experience with recurring prosodic patterns of native 

language shapes the tuning properties of early auditory regions. Such tuning is arguably 

important for reducing the prediction error during language processing, as it allows the 

auditory system to generate a functional coding scheme, or auditory template, against which 

the incoming linguistic input can be parsed. Such auditory template may be recycled by the 

auditory system to build top-down predictive models which can be applied to the processing 
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of non-linguistic auditory sequences. Considering the current results from a broader 

perspective, they support the idea that shared auditory top-down resources underlie speech, 

sound, and music processing (Asaridou & McQueen, 2013). 

In the introduction, we hypothesized two possible scenarios in which the effect of 

language could bias low-level predictive processing. On a first scenario, the long-term 

prediction would be mainly deployed on the second element of the chunk. For instance, 

because Spanish speakers have a tendency to chunk a rhythmic sequence of tones 

alternating in duration using short-long grouping pattern, then the omission of a long tone 

would violate the long-term prediction that, according to Spanish’s syntax/prosody, long 

elements usually follow short elements. Thus, the resulting MMN would reflect the 

accumulation of two violations: a context-dependent prediction based on the statistical 

regularities of previous stimuli, and a long-term prediction based on the statistical regularities 

of Spanish syntax/prosody; with the opposite pattern expected in Basque participants when 

a short sound is omitted. The second hypothesized scenario suggests that, since tones tend 

to be merged into higher-level chunks, then the auditory system is tuned to invest major 

predictive power on the onset of each higher-level event (i.e., the first element of the chunk). 

This is consistent with the fact that the onset of an acoustic stimulus always elicits a sharper 

peak in the auditory response (Jewett et al. 1970). For instance, because Spanish natives 

tend to chunk a rhythmic sequence of tones alternating in duration using short-long grouping 

pattern, then the long-term prediction would be deployed on the onset of the short sound. 

This would result in a larger MMN in the Spanish group when a short sound is omitted 

compared to a long sound, with the opposite pattern in the Basque group when long sounds 

are omitted. Our results indicate that the omission of a long tone generates a larger MMN in 

the Basque compared to the Spanish group, while the omission of a short tone generates 

sharper MMN in the Spanish than the Basque group. This pattern of results is thus in line 
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with the second hypothesized scenario, and suggests that long-term, experience-dependent 

priors build on recurring chunks to generate expectations. 

Importantly, our study tested a prediction, unique to predictive coding models, that 

expectations are organized hierarchically. When two predictions, one experience-dependent 

and one context-dependent are violated, the amplitude of the MMN is larger compared to a 

scenario when only one stimulus- dependent prediction is violated. This result complements 

previous work showing that the same deviancy presented in different contexts may generate 

both local and global prediction error responses such as the MMN and the P3, generated in 

sensory and frontal/associative cortices, respectively (Wacogne et al., 2011). However, our 

results extend previous work by showing that hierarchical predictive processing emerges 

also within the same cortical system, depending on long-term priors and rules acquired over 

the life span.  

Concerning, the more general debate on the interplay between language and 

perception, such results indicate that off-line effects of language on perception may arise 

via hierarchical predictive coding, with predictive signal coming from higher-level (linguistic) 

levels modulating signals at lower stages. 

Our results also complement previous studies showing modulatory effects of (long-

term) musical expertise on the MMNm (e.g., Vuust et al., 2005; 2009). These studies indicate 

that responses to violation during auditory rhythm perception are larger when the listener is 

an expert musician compared to a non-musician. In our study, we manipulated prediction 

orthogonally, with clear-cut predictions on the effect of language experience on predictive 

processing. Our results thus provide additional support for the idea that the auditory system 

generates top-down predictions based on (multiple) auditory experiences. 

Omission paradigm have been used largely in the study of the behavior (Yabe et al., 

1997; Raij et al., 1997) and predictive capabilities of the auditory cortex (Bendixen et al., 

2009; San Miguel et al., 2013; Chennu et al., 2016; Wacongne et al., 2011; Todorovic and 
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de Lange, 2012). Within the predictive processing framework, omission paradigms offer an 

appealing advantage over classical oddball paradigm, as they allow to detect endogenous 

activity associated to certain cognitive functions without being confounded with activity 

generated by a deviant event. Yet, what reflects the activity elicited by omission responses 

is debated. On one account, such responses may reflect pure predictions: if the evoked 

response generated by a deviant sound within a regular sequence (as in classical oddball 

paradigm) reflects the difference between the top-down prediction and the bottom-up 

sensory signal (i.e., the PE signal), then when the bottom-up sensory stimulus is not present, 

the brain response should reflect a purely top-down predictive signal (Summerfield et al., 

2008; Bendixen et al., 2009). However, recent studies have posited that responses to 

(unpredicted) omissions reflect prediction error signal. Even in the absence of a deviant 

sensory input, omission responses may reflect the detection of unfulfilled expectations 

(Hughes et al., 2001; Wacogne et al., 2011). While it is currently debated whether neural 

responses time-locked to an omitted sound reflect a pure prediction or PE responses, the 

latency and topography of the omission response in our data resemble those of a classical 

MMN (see Fig. 10). This provides some support for a PE interpretation. Indeed, if the 

response to an omission reflected a pure prediction, we should expect its ERF to have the 

same latency than the predicted tone (~0.05 s). However, the ERF response to omission in 

figure 10 peaks around 0.150 s. This suggests that its modulation reflects a novelty-

detection mechanism, rather than a pure predictive signal. It should also be noted that, even 

if the response to an omitted sound would reflect a purely predictive signal, our main 

predictions about the effect of language experience on predictive processing would be the 

same: if subjects rely on both long-term plus contextual prediction when a certain sound is 

omitted, and only contextual prediction when another sound is missing, then the neural 

response should be larger in the first case, as it represents the overlap of two predictive 

signals (instead of two prediction error signal). It is also important to notice that other 
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mechanisms are likely to be at work at the same time when one tone is omitted. Given the 

rhythmic component of the paradigm, part of the evoked response might reflect some sort 

of rebound of cortical oscillators entrained to the previous stimuli (Wacogne et al., 2011). 

This would be in line with some current accounts of the MMN suggesting that its wave 

reflects a combination of active predictive and passive adaptation phenomena (May & 

Tiitinen, 2010). 

One unexpected finding in our data concerns the main effect of tone omission, 

indicating that the MMN generated by the omission of a long tone was larger compared to 

that generated by the omission of a short one. Because such effect was consistent only in 

the Basque group, it is possible that it merely reflects a larger sensitivity of the auditory 

system of this group to long tone omission, as was predicted. Alternatively, we speculate 

that such effect could be driven by the fact that, during language processing, major 

predictive power is invested on long sounds compared to short sounds, as the former usually 

refer to content words i.e., semantically relevant events. As a consequence, the auditory 

system may apply a similar predictive scheme also during processing of non-linguistic 

sounds, independently of language background. 

In summary, our results provide evidence that experience with syntactic/prosodic 

patterns of a certain language affect neural processing of rhythmic auditory sequences 

based on the simple repetitions of two tones alternating in duration. This language-mediated 

bias on perceptual process arises via the generation of predictive signals arguably employed 

to reduce prediction error during language processing. This is in line with hierarchical 

predictive coding view of perception, in which predictions at different levels in the cortical 

hierarchy influence activity at lower stages. Our results show that language biases can reach 

the lower sensory levels of auditory processing, as highlighted by the modulation of the 

MMN. The omission paradigm, by being sensitive to these responses, provides a flexible 

method to assess the hierarchical organization of cortical prediction.  
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Chapter - 5 General discussion   
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5.1 Summary of results 
 

The objective of the current thesis was to investigate whether and how linguistic 

knowledge impacts perceptual processes. We investigated whether some previously 

reported effects of language on perception can be explained by current predictive 

processing models, which assume a bidirectional flow of information between areas at 

higher and lower cortical stages. In chapter 3, we assessed the electrophysiological 

mechanisms through which conceptual representations elicited by spoken words enhance 

visual processes like object recognition. We focused on a well-replicated behavioral effect, 

the label-advantage in object recognition (i.e., the fact that spoken words boost visual 

processes to a larger extent than natural sounds), and used EEG to investigate the 

neurophysiological dynamics underlying this effect. In contrast to previous studies that 

focused on the consequences that language-mediated prediction has on visual processing, 

we focused on the time-interval between the cue and the visual target. This allowed us to 

assess whether the facilitatory effect of words on object recognition arises from modulation 

of prestimulus activity in sensory regions (instead of later semantic or decision-making 

processes). We found that words and natural sounds differentially modulate prestimulus 

activity in posterior alpha and beta oscillations. Importantly, prestimulus alpha and beta 

rhythms correlated with behavioral responses, although showing an inverse relationship to 

behavioral performance. In chapter 4, we took advantage of two groups of Basque-dominant 

speakers and Spanish monolinguals to investigate whether and how life-long experience 

with language regularities can affect neural predictive processing of simple sequences of 

auditory sounds. We hypothesized that parsing strategies employed during sentence 

processing are recycled to process non-linguistic sounds. We recorded MEG activity time-

locked to violations of regular sequences of tones mirroring the syntactic/prosodic structure 

of language (Basque and Spanish). As violation, we used omission responses instead of 
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novel deviant sounds. Brain responses to a violation by omission cannot be explained by 

the bottom-up features of the physical input, thus offering an appealing advantage to assess 

endogenous predictive mechanisms. When a sound was omitted from a regular sequence 

of tones, the amplitude of the MMN – an ERP/F component putatively associated to 

prediction error signal – differed orthogonally depending on subjects’ linguistic background.  

These studies provide some novel insights into the broad debate on the interplay 

between language and perception. In contrast to previous work, we focused on 

electrophysiological components traditionally associated to early sensory/predictive 

processing stages, such prestimulus alpha/beta oscillations and the MMN. This enabled us 

to assess whether the effects of language on perception have a perceptual vs conceptual 

locus, and whether such biases arise in a predictive-like manner. Moreover, we tested 

individuals with different linguistic profiles (i.e., bilinguals; speakers of typologically different 

languages), as only few studies have done so far in this research field. This allowed us to 

(i) make clear-cut predictions about the effects of linguistic experience on perception, as in 

the second study; and (ii) generalize our findings to the faculty of language more broadly, 

instead to the features associated to a specific linguistic system, as in the first study. 

Moreover, these are among the few studies that investigated the impact of language on 

perception at the neural level.  

 

5.2 Discussion of results 
 
Our two studies, despite differing noticeably on their details, provide some evidence that 

linguistic priors can bias perception at early stages. Importantly, these studies show how a 

predictive processing framework can provide an explanatory account of how high-level 

functions like language can influence putatively low-level processes like perception. The 
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current work contributes to the broad debate on the effect of language on perception by 

showing that: (i) language biases of perception may arise via (pre)activation of sensory 

priors in task-relevant regions; (ii) such priors are implemented via hierarchical predictive 

coding, with signal from higher (linguistic) regions affecting predictive processing in lower 

sensory stages. 

The findings from the first study showed that the label-advantage in object recognition 

is associated to modulation of prestimulus activity in the alpha and beta bands. Importantly, 

these electrophysiological indices were correlated with later behavioral responses, 

suggesting that their modulation was not incidental for object recognition. The topography 

of alpha waves was strongly posterior, suggesting that language-mediated priors may be 

instantiated at the sensory level. This pattern is congruent with strong views of predictive 

processing accounts, which argue for the presence of sensory templates even before initial 

stimulation (Kok et al., 2017). Under this view, spoken words would provide more reliable 

predictions to the visual system about the structure of incmoming visual objects, thus being 

more effective in disambiguating whether a certain object belongs or not to a cued category. 

Previous EEG studied already suggested that language could bias perception at the sensory 

level. For instance, Hirschfeld et al. (2011) showed that ERP responses generated by 

incongruent sentence-picture pairs differed from those generated by congruent pairs around 

170 ms and 400 ms after picture onset. Landau et al., (2010) showed that hearing sentences 

about faces influences face processing by modulating the N170 ERP component. Similarly, 

studies using the word-picture matching task showed linguistic modulations on picture 

processing as early as 100ms from the onset of the image (Boutonnet and Lupyan, 2015; 

Noorman et al., 2018). However, studies focusing on post-stimulus activity can also be 

coherent with a later semantic or decision-making account. Indeed, post-stimulus 

differences, even if very early, could still reflect rapid feed-forward integration of visual and 

linguistic information (Thierry et al., 2009). The prestimulus modulations of alpha waves thus 
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provide additional support for the idea that language biases on vision arise at an early 

perceptual level. More importantly, this finding provides a candidate mechanism underlying 

such biases: the activation of sensory priors in perceptual regions via the modulation of 

posterior alpha-band oscillations. 

One open question concerns what features must be activated for successful object 

recognition. A recent ERP study have demonstrated that activation of object’s shape is the 

main force underlying the facilitatory effect of symbols on visual object recognition (Noorman 

et al., 2018). Yet, it is not clear whether such shape template contains a holistic 

representation of the target object (e.g., a prototypical image of a bird’s shape) or a set of 

visual features diagnostic of the target category (e.g., bird’s wings, beak, legs). Future 

studies are needed to unveil what is the specific content of the top-down representations 

that mediate visual object recognition. 

It is important to note that the reported results could be coherent also with other 

cognitive mechanisms that are not necessarily predictive. In our study, prediction is 

confounded with attention. Since in our task participants had to decide whether a certain 

image matches or not a cued category, it is likely that subjects were attending at those 

features which are critical to distinguish the target category. Under an attention account, our 

results can be cast in terms of category-based attention, with words being uniquely effective 

at deploying attentional guidance to visual categories (Lupyan, 2008; Zelinsky & Yang, 

2009).  

The increase of alpha oscillations can also reflect the implementation of visual 

information within a working memory template. Indeed, synchronization in the alpha band 

has been shown to be modulated by the amount of features retained in visual working 

memory (e.g., Jensen et al., 2002). Such an account, we believe, is not in contradiction with 

a predictive or attention-based account, but it may rather reflect a candidate mechanism 

supporting these processes. 
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More difficult in our opinion is the interpretation of prestimulus beta oscillations. 

Despite the fact that beta waves have been often been associated to visual prediction, they 

also have been associated to a large variety of top-down and cognitive processes. 

Moreover, the topographical distribution of beta synchronization is not very informative about 

the type of beta we observed. In chapter 3, we speculated that the different modulation of 

beta waves by sounds and words may reflect a difference in the features associated to these 

types of cues, that is, they size of the neurocognitive network, or load. Indeed, it is well 

established that words activate a larger space of features (e.g., gramamtical, lexical, etc.) 

during processing. An alternative but related interpretation can be that beta oscillations 

reflect the activation of sumpramodal category information associated to a current 

representation. Monkey studies on the neural bases of categorization have often associated 

beta rhythms in parietal and prefrontal cortices to high-level abstraction, i.e. categorization 

of objects’ classes irrespective of their perceptual similarities (Antzoulatos and Miller, 2014, 

2016; Wutz et al., 2018). The difference in beta modulations for spoken words vs natural 

sounds may indicate that words are more effective at activating supramodal-categorical 

states before stimulus presentation. Thus, while alpha rhythm may be responsible for 

carrying sensory features which are diagnostics of physically similar exemplars (e.g., birds), 

beta oscillations may be responsible for activating conceptual states (e.g., animals) about 

category members differing in their physical properties (e.g., birds and sharks). However, 

this interpretation remains merely speculative. Further, studies are needed to clarify the 

specific division of labor between prestimulus alpha and beta waves in language-driven 

object recognition and top-down signaling in general. 

Our second study showed that life-long experience with language affects information 

processing of simple sequences of sounds alternation in duration. Similarly to the previous 

study, we found support for the idea that such biases arise at an early sensory level. Indeed, 
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linguistic schemes have been shown to modulate the auditory MMN – a component 

traditionally associated to low-level sensory processes.  

Our experimental hypotheses were strongly influenced by previous work on 

perceptual grouping in Basque and Spanish (Molnar et al., 2016), showing that these groups 

of speakers have different grouping biases during auditory rhythm perception. Several 

behavioral studies have reported that non-linguistic perceptual grouping, despite showing 

some universal biases, is largely modulated by linguistic experience (Bhatara et al., 2013; 

Iversen et al., 2008; Yoshida et al., 2010). These language-specific influences also apply to 

other domains of auditory perception. For instance, native speakers of languages in which 

pitch carries phonemically meaningful information (i.e., tone languages; e.g., Mandarin 

Chinese) benefit from a behavioral advantage in non-linguistic pitch discrimination tasks as 

compared to speakers of non-tone languages like English (e.g., Bidelman et al., 2013). 

Similarly, experience with languages that use duration to differentiate between phonemes 

(e.g., Finnish, Japanese) can boost the ability to discriminate the duration of non-linguistic 

sounds (Tervaniemi et al., 2006). Despite the fact that our study lacks a behavioral part, it 

strongly suggests that these previously reported effects of language on perception may arise 

from a hierarchical predictive coding mechanism, with predictive signal coming from higher-

levels (linguistic) levels interacting with predictions generated at lower stages. Specifically, 

the auditory system increases the weighting of low-level acoustic features which are relevant 

to parse language material, and re-applies such coding strategy to the processing on non-

linguistic sounds. This interpretation is in line with the idea that shared auditory and 

computational resources underlie speech, sound, and music processing (Asaridou & 

McQueen, 2013). By differentiating between context-based and (linguistic) experience-

based prediction, our experiment also demonstrates how the study of the interplay between 

language and perception can provide an excellent model to investigate the hierarchical 

organization of predictive processing in the neocortex.   
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One question for the future concerns whether these effects generalize also to other 

sensory modalities. Similar grouping patterns may emerge during natural reading. Speakers 

of functor-initial vs functor-final languages may chunk visual linguistic material differently 

depending on the phrasal properties of their native language. This may in turn affect how 

non-linguistic visual material is segmented into meaningful units. However, the effect of 

reading-based chunking on visual grouping is a largely unexplored topic, both at the 

behavioral and neural level. Future studies are thus needed to elucidate the impact of 

reading on visual grouping. 

It is important to note that our two studies differ each other in many meaningful ways.  

For instance, in the first study the linguistic priors are implemented online, since the 

hypothesized predictive representations are triggered by a language cue (i.e., a word). In 

the second study, the effects of language on perception are off-line. The biases of linguistic 

experience on perception arise automatically, with no need to activate a language context. 

Despite these qualitative differences, both studies converge in showing that linguistic priors 

shape perceptual processes at early stages and in a predictive-like manner. However, it is 

important to note that some previous studies did not find evidence for such early 

modulations. For instance, Francken et al., (2015) used motion words to cue motion stimuli 

during a motion detection task. They reported a priming effect when the motion words and 

the motion stimuli were congruent. Such congruency effect was accompanied by a larger 

activation in the fMRI signal over the left middle temporal cortex, but not in motion-specific 

regions of the visual stream. Similarly, Tan et al. (2008) presented participants with a 

perceptual discrimination task on easy-to-name and hard-to-name coloured squares. Using 

fMRI, they found that color discrimination recruited regions selective for color knowledge 

and regions in the bilateral frontal gyrus. However, easy-to-name colors elicited stronger 

activation in the left posterior superior temporal gyrus and inferior parietal lobe compared to 

hard-to-name coloured squares, but no meaningful difference was found in occipital regions. 
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The left posterior superior temporal gyrus and inferior parietal lobe are regions typically 

associated to color naming, thus suggesting that the interaction between language and 

perception emerged in higher-level linguistic areas. These findings indicate that the 

interaction between language and perception may follow different routes depending on 

contexts and task demand. More studies are thus needed to unveil when and how linguistic 

biases on perception follow a certain route or another. 

 

5.3 Concluding remarks 
 

In the present thesis, we showed how the predictive processing framework can 

provide a valid account to investigate the impact of cultural systems like language on 

putatively low-level mechanisms like perception. The study of such interactions can provide 

novel insights into different domains of cognitive (neuro)science, including the broad debate 

on how culture shapes cognition and brain wiring. Beyond providing a research framework 

to investigate such empirical questions, the study of language-perception interaction offers 

a flexible model to study the influence of experience-based prediction on lower-level sensory 

processes. Understanding how brain circuits at different stages implement predictive 

algorithm might provide a solid grounding to understand disorders characterized by a 

disruption of the predictive machinery, such as dyslexia, schizophrenia or autism.  
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Chapter - 6 III Appendices 
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6.1 Appendix A: List of publications derived from the 
thesis 

 

 

 

Morucci, P., Giannelli, F., Richter, C., Molinaro, N., (under review), Alpha and Beta 

Rhythms Differentially Support the Effect of Symbols on Visual Object Recognition. 

Morucci, P., Martin, C., Molinaro, N., (in prep) Language Experience Affects Predictive 

Coding during Musical Beat Perception.  
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6.2 Appendix B: Resumen en Castellano 
 
 

La historia de la ciencia abarca numerosas preguntas desafiantes, incluida la 

pregunta sobre el origen de nuestra percepción sobre el mundo: Cómo las poblaciones de 

neuronas dan lugar a percepciones. Antes de que los científicos pudieran registrar la 

actividad cerebral, los filósofos llevan planteando esta cuestión desde hace tiempo. Una 

idea común es que la percepción nos proporciona una representación verídica de lo que 

hay en el mundo externo —una postura conocida como realismo directo o ingenuo. Otra 

alternativa se denomina representacionalismo, y sugiere que nuestra percepción 

consciente no refleja el mundo real en sí, sino una mera representación interna generada 

por la mente/cerebro en un intento por encontrar las causas del mundo externo.  

Fenómenos como los sueños, las alucinaciones y las ilusiones perceptuales 

sugieren que la realidad y nuestra experiencia con ella no son exactamente lo mismo. Más 

bien, estos fenómenos sugieren que nuestra percepción se asemeja más al proceso de 

construcción o inferencia, en el cual las creencias y expectativas previas moldean en gran 

medida la forma en la que experimentamos el mundo exterior.  

La idea de la percepción como proceso de inferencia (von Helmholtz, 1867) es ahora 

un supuesto clave sobre las perspectivas de procesamiento predictivo sobre la percepción 

(Clark 2016; Friston, 2005; Rao and Ballard, 1999). En comparación con las teorías clásicas 

que conciben el cerebro como un dispositivo que procesa y registra de forma pasiva la 

información externa, la hipótesis del cerebro como máquina predictiva sugiere que una de 

las funciones fundamentales del cerebro consiste en la anticipación de futuros eventos. 

Esta hipótesis influye cada vez más en la Neurociencia Cognitiva. Las teorías sobre el 

procesamiento predictivo comparten la idea de que el cerebro desarrolla modelos 

generativos de la realidad y utiliza dichos modelos para inferir las causas que rigen el 

entorno externo (Clark, 2016). Tales modelos generativos se conciben como una jerarquía 
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de procesamiento: sugieren que las predicciones se transmiten a través de la señal de 

feedback o retroalimentación derivada de las áreas corticales superiores a las inferiores, 

las cuales se espera que tengan un efecto supresor en las señales entrantes. A 

continuación, las predicciones se comparan con señales sensoriales bottom-up en cada 

nivel de la jerarquía. Se postula que solo la diferencia llamada error de predicción podría 

propagarse a través de conexiones feedforward de las áreas corticales inferiores a las 

superiores para actualizar los modelos internos. Se cree que este tipo de computación 

podría ser canónica, lo que significa que cada parte de la corteza implementa este tipo de 

algoritmo predictivo.  

Más allá de proporcionar un marco de investigación para estudiar una pregunta 

existencial milenaria, entender cómo surge el procesamiento predictivo de los circuitos 

corticales conlleva implicaciones médicas y éticas considerables. Entender cómo los 

circuitos cerebrales en distintas fases implementan algoritmos predictivos podría ofrecer 

una base sólida para comprender los trastornos caracterizados por una alteración de la 

maquinaria predictiva, como la dislexia, la esquizofrenia o el autismo.  

Considerar la percepción como proceso predictivo implica considerar la percepción 

como un proceso «penetrable» que puede ser influido tanto por el conocimiento previo 

como por la expectación, en la medida en que dicha penetración sea efectiva a la hora de 

reducir el error de predicción. Sin embargo, ¿qué cuenta como conocimiento previo? En los 

seres humanos, una forma de conocimiento previo es el lenguaje. Diversos estudios han 

demostrado que el lenguaje puede influir en otros sistemas no lingüísticos, como la 

categorización, la memoria y la percepción. El estudio de la interacción entre el lenguaje y 

la percepción ofrece un modelo único para abordar varias cuestiones sin respuesta sobre 

la naturaleza predictiva de la experiencia en el cerebro humano, así como el efecto de la 

cultura en la cognición.  
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Una cuestión fundamental está relacionada con la naturaleza del mecanismo neural 

a través del cual el lenguaje afecta a los procesos perceptuales. Algunas hipótesis sugieren 

que los efectos del lenguaje son de «alto nivel», lo que significa que el lenguaje no afecta 

a los procesos perceptuales tempranos, sino que interactúan en las etapas conceptuales o 

de toma de decisiones más tardías. Propuestas más recientes sugieren que el lenguaje 

puede alterar los procesos perceptuales a niveles sensoriales tempranos. Esta última idea 

coincide con las teorías actuales sobre el procesamiento predictivo de la percepción, lo que 

sugiere que los procesos sensoriales están ampliamente influenciados por el conocimiento 

previo y la expectación.  

La presente tesis tiene como objetivo investigar los mecanismos neurofisiológicos 

subyacentes a la interacción entre lenguaje y percepción. Nos centramos en dos tipos 

específicos de interacción lenguaje-percepción: i) el efecto de las etiquetas lingüísticas en 

el reconocimiento de las categorías de objetos visuales; y ii) el efecto del conocimiento 

lingüístico en el procesamiento neural de los sonidos rítmicos. Abordamos estas cuestiones 

mediante un enfoque interdisciplinar combinando medidas conductuales, de 

electrofisiología humana y enfoques estadísticos avanzados. Utilizamos medidas 

electrofisiológicas de resolución temporal como la electroencefalografía (EEG) y la 

magnetoencefalografía (MEG). Estas técnicas permiten registrar la actividad cerebral con 

excelente resolución temporal, por lo que nos ayuda a monitorizar los procesos cognitivos 

en desarrollo con una precisión temporal única. Con el fin de evaluar la naturaleza de los 

mecanismos computacionales subyacentes a las interacciones lenguaje-percepción, nos 

enfocamos en los índices neurales presuntamente asociados al procesamiento predictivo. 

Dentro del marco del procesamiento predictivo, la actividad oscilatoria en las bandas alfa y 

beta se han asociado tradicionalmente con los procesos top-down, por lo que representan 

un mecanismo que es candidato a contener predicción perceptual. De igual forma, algunos 

Potenciales/Campos Relacionados con Eventos tempranos, como el potencial de 
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disparidad auditivo, se han considerado en gran medida como indicadores de error de 

predicción cortical.  

En el primer estudio investigamos cómo las etiquetas lingüísticas afectan al 

reconocimiento de las categorías de objetos visuales. Aprovechamos el hecho de que las 

palabras habladas incremental el reconocimiento de objetos visuales en mayor medida que 

los sonidos naturales —un efecto llamado label-advantage. Utilizamos la técnica EEG y el 

análisis tiempo-frecuencia para evaluar las dinámicas electrofisiológicas subyacentes a 

este efecto conductual. Al contrario que estudios anteriores, nos centramos en el intervalo 

de tiempo precedente a la aparición del objeto visual, estableciendo directamente como 

objetivo la predicción de arriba a abajo. Primero replicamos la ventaja de la etiqueta 

mencionada previamente y demostramos que este efecto conductual persiste incluso 

cuando las palabras se presentan en un segundo idioma, lo que indica que la ventaja de la 

etiqueta depende de propiedades inherentes de los símbolos verbales para implementar 

información precisa sobre la categoría. Cabe destacar que la ventaja conductual 

mencionada para las palabras habladas se asoció con un incremento en los ritmos alfa y 

beta posteriores en el intervalo de tiempo entre la desaparición de la pista y la aparición del 

objeto meta. El análisis de correlación desveló que ambos ritmos contribuyen al rendimiento 

en el reconocimiento del objeto visual. Sin embargo, parecía que operaban en direcciones 

ortogonales: el rendimiento en el reconocimiento de objetos mejoró cuando aumentaba la 

sincronización en alfa, pero disminuyó con la mejora de los ritmos beta. Este hallazgo 

sugiere una división de tarea entre los ritmos alfa y beta a la hora de orquestar la orientación 

lingüística top-down al sistema visual. Por tanto, las modulaciones pre-estímulo 

mencionadas de las ondas occipitales alfa y beta apoyan la idea de que las influencias 

lingüísticas sobre la percepción surgen de maniera top-down, y arrojan luz sobre un 

mecanismo candidato a subyacer dichas influencias: la amplificación de precedentes 
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sensoriales en regiones occipitales a través de la modulación de las oscilaciones de las 

bandas alfa y beta.  

El segundo estudio investiga si la exposición vital a ciertos patrones lingüísticos 

impacta en el procesamiento neural de sonidos rítmicos. Comparamos los datos 

magnetoencefalográficos de hablantes nativos de euskera y castellano, que escucharon 

secuencias rítmicas de sonidos. Estas dos lenguas difieren en su estructura 

sintáctica/prosódica, por lo que era un modelo ideal para estudiar el efecto de la experiencia 

lingüística en el procesamiento predictivo auditivo. Nuestra hipótesis sugiere que el sistema 

auditivo extrapola diseños abstractos que subyacen a la estructura oracional del lenguaje, 

y utiliza este conocimiento para generar predicciones a largo plazo sobre los sonidos 

entrantes. Cabe destacar que, en nuestra manipulación, las secuencias de sonido 

codificaban patrones abstractos que reproducían la estructura sintáctica y prosódica del 

euskera y el castellano. Cuando un evento esperado interrumpe una secuencia rítmica de 

sonidos, la amplitud del potencial de disparidad varía ortogonalmente dependiendo de los 

antecedentes lingüísticos del individuo. Esta respuesta de error de predicción ocurre 

alrededor de los 100 ms del inicio del evento desviado, y su magnitud es mayor en regiones 

auditivas. Este hallazgo indica que los sistemas de codificación empleados para analizar el 

material lingüístico son reciclados por el sistema auditivo para implementar modelos 

predictivos del entorno. Asimismo, este estudio también ofrece perspectivas novedosas 

sobre la organización jerárquica de las predicciones auditivas.  

El estudio de la interacción entre lenguaje y percepción puede aportar enfoques 

novedosos sobre diversos campos de la neurociencia cognitiva, incluyendo cómo la cultura 

modela la cognición, así como el efecto del conocimiento de alto nivel sobre los procesos 

de bajo nivel. Mediante la identificación de los componentes electrofisiológicos que 

caracterizan dichas interacciones, esperamos que estos resultados ayuden a definir con 
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mayor precisión las implicaciones de estudiar sistemas simbólicos a la hora de esculpir 

nuestro conocimiento del mundo.  
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