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1 INTRODUCTION

The analysis of economic and financial time series often needs to deal with situations in

which a variable is not directly observable because it suffers contamination from some noise.

The variable of interest in this case is a latent signal and the contaminating noise is usually

incorporated in an additive form (perhaps after a logarithmic transformation) such that the

observed series is of the form

zt = yt + ut (1)

where yt is the latent signal and ut is the perturbing noise, usually considered to be weak

dependent or even white noise. It is assumed without loss of generality that zt has a zero

mean since the results described hereafter would not be altered by the addition of a non

zero constant.

This situation is quite common in economic time series where the latent variable often

shows strong persistence (Granger, 1966). For example economic mechanisms where the

short run and long run behaviour of the series are affected by different factors may give rise

to a series such as (1) where yt and ut represent the short and long run effects respectively. A

second example is the measurement error which is concomitant to many economic variables

and makes the variable of interest into a latent signal. A similar situation arises also in

rational expectation models where the ex ante variable yt may exhibit long range dependence

(e.g. Sun and Phillips, 2004, for the analysis of the long run Fisher equation).

In financial time series the noise may emerge in stock price series as a result of price

discreteness or microstructure effects. In this case the noise represents the discrepancy

between transaction prices and implicit efficient prices (Hasbrouck, 1993) and causes the

weak autocorrelation empirically observed in many financial return series. This weak linear

dependence of the returns is far from strong persistent. However, the noise in prices brings

about a noisy series of squared returns, often used as proxies of the volatility, that masks

the strong persistence in the (latent) volatility dynamics (Andersen and Bollerslev, 1998).

The realized volatility (RV), built upon a summation of high frequency squared returns over

a specified period, inherits the effects of this microstructure noise and can be considered

to conform the specification in (1) with yt the latent volatility and ut emerging because of

the microstructure noise. In fact a strong persistence has been often found in RV series,
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so that ARFIMA models are usually employed (see Andersen et al, 2003, Deo et al, 2006,

or Lieberman and Phillips, 2008). Alternatively, the strong persistence empirically found

in the volatility of financial series can be modeled by means of stochastic volatility models.

The Long Memory in Stochastic Volatility (LMSV) introduced independently by Harvey

(1998) and Breidt et al. (1998) characterizes the returns as rt = exp(yt/2)εt with yt the

long memory component and εt an independent white noise. The logs of the squared returns

are of the form in (1) with a noise ut = log ε2
t . In this context long and short-lived shocks are

jointly considered in yt. However, different types of news may affect volatility in different

ways such that short and long run effects could be separately incorporated in the volatility

specification as rt = exp((a1yt+a2gt)/2)εt for some weak dependent gt and constants a1 and

a2 (Bollerslev and Jubinski, 1999, Veiga 2006). In this case log r2
t is the sum of a long memory

process and a weak dependent noise gt + ut, rather than a white noise perturbing variable.

Other log ARCH type models are also of this form with a latent signal corresponding to the

persistent underlying volatility component.

Independence between signal and noise is usually assumed in the analysis of these series.

However, this hypothesis is in many cases hard to sustain. The factors that affect the

short run behaviour of a series might have also some effect on its long run behaviour and

viceversa. Additionally, the potential correlation between a true economic variable and a

measurement error has been demonstrated in a number of papers. For example, Bound et

al. (1994) mention that the assumption of uncorrelation between the latent variable and

the measurement error in labour market data “reflects convenience rather than conviction”.

Similarly, De Jong et al. (1998) show that transaction costs and lagged adjustment to

information give rise to correlation between the underlying price and noise in stock price

series that may transfer to the RV such that correlation between noise and latent volatility is

expected in RV series. If the volatility is considered by means of stochastic volatility models,

the leverage effect typically found in financial time series may introduce correlation between

the latent volatility and the added noise. Additionally, if short and long-lived shocks to

volatility are modeled separately their independence is at least debatable because there may

exist shocks with both short and long run effects.

Independence of signal and noise is at least a debatable issue and the specification in (1)

with correlated yt and ut can be considered as appropriate for many economic and financial
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series. Ignoring either the presence of the noise or the correlation between signal and noise in

the estimation procedure may mask the strong persistence of the latent signal. Considering

both the noise and the correlation, the spectral density of zt in (1) can be expressed in terms

of the spectral and cross-spectral densities of yt and ut such that

fz(λ) = fy(λ) + fu(λ) + 2Refyu(λ) (2)

where Re(a) denotes the real part of a. The cross spectral density only arises in the case of

non null correlation of signal and noise.

The long memory of yt determines the behaviour of the spectral density at the origin

such that fy(λ) ∼ Cyλ
−2d as λ → 0 for a positive constant Cy. If the added noise does not

show persistence or has less memory than yt, and under a reasonable correlation structure

between yt and ut (see the assumptions below), the long memory property of yt transmits to

zt and the spectral density of the observable zt shares the divergency of fy(λ) at the origin

with the same memory parameter d > 0. This spectral property entitles the estimation of the

memory parameter of the latent signal using semiparametric or local techniques originally

proposed for fully observable long memory series, which only consider spectral behaviour

around frequency zero. However, the added noise affects the properties of these estimators,

inducing a large bias which limits the efficiency by compelling the use of frequencies very

close to the origin. This effect has been analyzed by Deo and Hurvich (2001) and Arteche

(2004) for the log-periodogram regression and the local Whittle estimators respectively. To

reduce this bias Sun and Phillips (2003), Hurvich et al. (2005) and Arteche (2006) propose

modifications of both estimators that include the added noise in the estimation procedures.

Sun and Phillips (2003) and Arteche (2006) consider only the case of independent signal

and noise in a log periodogram regression context. Hurvich et al. (2005) extend the local

Whittle estimator by including explicitly in the estimation procedure both the added white

noise and the potential correlation between signal and noise by incorporating terms that

account for the spectral density of ut and the non null cross spectral density of yt and

ut. However, their proposal does not account fully for the correlation of signal and noise,

which limits the asymptotic efficiency and rate of convergence further than claimed (see the

corrigendum Hurvich et al., 2008).

Here we extend the log periodogram regression in analogous directions but account for

more general correlation structures. As in other similar extensions, the local Whittle type
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estimators dominate those based on a log periodogram regression in an asymptotic mean

squared error sense. However, the local Whittle extension of Hurvich et al. (2005) is

here improved in three directions. First, we allow for a more general specification of the

correlation of signal and noise, covering more realistic situations. Second, the possibility

of non contemporaneous correlation is also considered. Finally, weak dependence of the

noise is allowed, which is particularly relevant not only in economic series but even in some

extensions of the LMSV such as those in Bollerslev and Jubinski (1999) and Veiga (2006).

We also consider the nonstationary case as in Velasco (1999) and Hurvich et al. (2005).

For that purpose we define the nonstationary yt as yt = y0 +
∑t

t=1 vt where y0 is a random

variable not depending on t and vt is weakly stationary with memory parameter d − 1 ∈
[−1/2, 0). The pseudo spectral density function of yt is then

fy(λ) = |1− exp(iλ)|−2fv(λ) ∼ Cvλ
−2d as λ → 0

for d ∈ [1/2, 1). The pseudo spectral density function of zt can then be written in terms of

the spectral density function of vt and the cross spectral density of vt and ut as

fz(λ) = |1− exp(iλ)|−2fv(λ) + fu(λ) + 2Re
{
(1− exp(iλ))−1fvu(λ)

}

or in terms of pseudo spectral and cross spectral densities as in (2) with fyu(λ) = (1 −
exp(iλ))−1fvu(λ).

The rest of the paper is organized as follows. Section 2 describes the assumptions needed

in our analysis and illustrates them with some primary examples. Section 3 introduces the

proposed estimator and Section 4 shows its asymptotic properties, particularly consistency

and asymptotic normality. Section 5 proposes Wald, Lagrange Multiplier and Hausman

type tests of the hypothesis of no correlation between signal and noise. The finite sample

performance of the proposed estimators and testing procedures are examined in Section 6

and in Section 7 they are applied to a series of daily RV of S&P500 futures index. The

technical details are relegated to the Appendices.

2 BASIC ASSUMPTIONS AND EXAMPLES

Assumption 1: The signal yt is a Gaussian process with a (pseudo) spectral density
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satisfying

a) fy(λ) = Cyλ
−2d0(1 + O(λβ1))

b) fy(λ) = Cyλ
−2d0(1 + Gyλ

β1 + O(λβ1+ι))

as λ → 0+, for some ι > 0, finite positive Cy, finite Gy, 0 < d0 < 1, β1 > 1 + d0 and in a

neighbourhood of the origin fy(λ) is differentiable with first derivative O(λ−1−2d0).

Assumption 2: The added noise ut is Gaussian with a spectral density satisfying

fu(λ) = fu(0)(1 + O(λβ2))

as λ → 0+, β2 > β1 − 2d0, for a positive finite fu(0) and in a neighbourhood of the origin

fu(λ) is differentiable with first derivative O(λ−1).

Assumption 3: As λ → 0+, the (pseudo) cross spectral density function of yt and ut

satisfies

Re(fyu(λ)) = λ−d0

(
Cyu cos

[
d0

(
λ

2
− π

2

)]
+ Gyuλ sin

[
d0

(
λ

2
− π

2

)]
+ O(λβ3)

)

for finite constants Cyu and Gyu, β3 > β1 − d0 and in a neighbourhood of the origin fyu(λ)

is differentiable with first derivative O(λ−1−d0).

Assumption 1 imposes a particular spectral behaviour of yt around zero, slightly relaxing

Assumption 2 in Sun and Phillips (2003) and allowing for a non stationary yt. The local

specification in a) is required for consistency and b) is needed for the asymptotic normality.

As in Henry and Robinson (1996) this local specification permits us to obtain the leading

part of the asymptotic bias of local estimators of d0 in terms of Gy. Only positive values of

d0 are considered. The condition d0 > 0 guarantees that the long memory of yt is transferred

to zt since by Assumption 2 ut is weak dependent (e.g. stationary ARMA), which in view

of the economic and financial examples given in the introduction is the empirically most

interesting case. For d0 ≤ 0 the persistence of zt would be that of ut with a zero memory

parameter. Finally, Gaussianity is required for the sake of simplicity of the proofs as in Sun

and Phillips (2003). Gaussianity of the noise precludes the possibility of LMSV where the

noise is not Gaussian. However, Gaussianity of RV series has been supported by Andersen

et al. (2003) and Lieberman and Phillips (2008) among others. LMSV has been allowed by

Deo and Hurvich (2001) and Hurvich and Soulier (2002) for the original log periodogram
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regression when the ut is a white noise (note that we allow for a weak dependent ut) that

is not accounted for in the estimation procedure. Gaussianity of ut is more difficult to

relax if the noise is included in the estimation procedure since in that case a non linear

transformation of its periodogram has to be considered for the asymptotics of the estimator.

Gaussianity of the signal is even more difficult to avoid and only Velasco (2000) for the

original log periodogram regression in a fully observable series has replaced that assumption

by restrictions in higher order moments, but even in that simplest context the asymptotic

properties are only obtained if tapering is previously applied, with the consequent loss of

efficiency.

Assumption 3 imposes a local behaviour of the (pseudo) cross spectral density of signal

and noise. We call Cyu and Gyu the low and high frequency correlation parameters respec-

tively since the latter is multiplied by the frequency and is thus negligible with respect to

the low frequency correlation for frequencies close to zero. It is based on the extended use

of the fractional difference operator (1− L)d such that in its phasor form

(1− e±iλ)d = (2 sin
λ

2
)d exp

{
±id

(
λ

2
− π

2

)}
(3)

= λd(1 + O(λ2)) exp
{
±id

(
λ

2
− π

2

)}

Hurvich et al. (2005) consider only the cosine term, ignoring the sine imaginary part so

that only the low frequency correlation is accounted for. In some situations this omission

generates a bias that would limit the number of frequencies or bandwidth used in their

estimation further than claimed (see Remarks 3 and 4 below). We found it necessary also

to include the sine imaginary part to fully account for the correlation of signal and noise.

Assumption 3 implies that the phase at zero frequency is fixed to be d0π/2, which

is related to the use of the one sided fractional filter (1 − L)d, but other semiparametric

estructures give also rise to such a phase (see Robinson 2008 and the examples below). We

found this assumption necessary for identifiability of the low and high frequency correlation

parameters. Consider instead an unknown phase parameter γ0 and modify correspondingly

Assumption 3 as in Robinson (2008) such that, as λ → 0+

Re(fyu(λ)) = λ−d0

(
Cyu cos γ0 + Gyuλ sin γ0 + O(λβ3)

)
. (4)

In this framework Cyu and γ0 are not jointly identifiable (the effect is similar to an unknown

memory of the added noise discussed in Remark 10 below) and knowledge of one of them is
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needed to allow for the estimation of the other since the information on both parameters is

concentrated in a single term Cyu cos γ0. Assumption 3 imposes a particular behaviour of the

phase not only at zero frequency but also at neighbouring frequencies. Another possibility

is to specify the real part of the (pseudo) cross spectral density as in (4) with d0π/2 instead

of γ0 but in this case Gyu loses its correlation interpretation because it includes a term

depending on d0 and generated by the approximation of the cosine.

Different spectral smoothness parameters are permitted in the (pseudo) spectral and

cross spectral densities of yt and ut. The restrictions β1 > 1 + d0, β2 > β1 − 2d0 and

β3 > β1 − d0 guarantee that the asymptotic bias of the proposed estimator is O(λβ1) and

also ensure identifiability of all the parameters to be estimated. For that β1 > 1 + d0,

β2 > 1− d0 and β3 > 1 because otherwise the remainder in our regression model would be

of an order of magnitude larger than O(λ1+d0) and at least Gyu would not be identifiable.

These conditions are not very restrictive because in a wide range of situations, such as in

ARMA and ARFIMA models, β1 = β2 = β3 = 2.

For the purpose of illustration consider the two following cases (non stationary signals

can be defined as explained in the Introduction).

Case 1: Let

yt = (1− L)−d0α(L)wt for wt ∼ NID(0, σ2
w)

ut = β(L)εt for εt ∼ NID(0, σ2
ε)

E(wtεt) = ρ and E(wtεs) = 0 t 6= s

where L is the lag operator, α(L) =
∑∞

j=0 αjL
j and β(L) =

∑∞
j=0 βjL

j such that α(x) is

twice differentiable with the second derivative satisfying a Lipschitz condition of order ι at

one (implying β1 = 2) and β(x) is twice differentiable with a bounded second derivative

in the neighbourhood of one (such that β2 = 2). For example ut can be a weak depen-

dent ARMA and yt a stationary fractional ARIMA, but other models such as the Bloom-

field exponential and fractionally integrated Bloomfield exponential are also covered. Here

fu(0) = σ2
εβ(1)2/2π, Cy = σ2

wα(1)2/2π, Gy = d0/12 + {α′(1)2 − [α′′(1) + α′(1)]α(1)}/α(1)2

and the cross spectral density is

fyu(λ) =
ρ

2π
(1− e−iλ)−d0α(e−iλ)β(e−iλ)
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where the overline denotes complex conjugation. Using (3) we have that fyu(λ) satisfies

Assumption 3 with β3 = 2 and

Cyu =
ρ

2π
α(1)β(1) , Gyu =

ρ

2π
[α′(1)β(1)− β′(1)α(1)]

A particular situation arises when yt is a fractional noise and ut is white noise such

that α(L) = β(L) = 1 and Assumptions 1 and 2 hold with fu(0) = σ2
ε/2π, Cy = σ2

w/2π and

Gy = d0/12. Regarding the cross spectral density, Assumption 3 holds with Cyu = ρ/2π and

Gyu = 0. More generally, Gyu = 0 whenever α′(1)β(1) − β′(1)α(1) = 0 and the imaginary

part of (1− eiλ)−d plays no role in the local specification of the cross spectral density such

that the high frequency correlation in Assumption 3 can be discarded. This particular case

represents the context covered by the extension of the local Whittle estimator in Hurvich

et al. (2005).

Case 2: It is sometimes of interest to permit non contemporaneous correlation of signal

and noise innovations such that

E(wtεt−s) = ρ and E(wtεt−k) = 0 k 6= s

for some s 6= 0, to allow for example for lagged adjustment to information. In this case the

cross spectral density function is

fyu(λ) =
ρ

2π
e−iλs(1− e−iλ)−d0α(e−iλ)β(e−iλ)

which satisfies

Re(fyu(λ)) = λ−d0

{
C∗

yu cos
[
d0

(
λ

2
− π

2

)
+ λs

]
+ G∗

yuλ sin
[
d0

(
λ

2
− π

2

)
+ λs

]
+ O(λ2)

}

where

C∗
yu =

ρ

2π
α(1)β(1) , G∗

yu =
ρ

2π
(α′(1)β(1)− β′(1)α(1))

Since

cos
[
d0

(
λ

2
− π

2

)
+ λs

]
= cos

[
d0

(
λ

2
− π

2

)]
− λs sin

[
d0

(
λ

2
− π

2

)]
+ O(λ2)

sin
[
d0

(
λ

2
− π

2

)
+ λs

]
= sin

[
d0

(
λ

2
− π

2

)]
+ λs cos

[
d0

(
λ

2
− π

2

)]
+ O(λ2)

fyu(λ) satisfies Assumption 3 with

Cyu = C∗
yu and Gyu = G∗

yu − sCyu

The intertemporal correlation precludes the possibility of a null Gyu even when yt is a

fractional noise and ut is white noise.
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3 ESTIMATION UNDER CORRELATION OF SIGNAL AND
NOISE

Under Assumptions 1, 2 and 3, the (pseudo) spectral density of zt at frequency λj satisfies

fz(λj) = Cyλ
−2d0
j

(
1 + θ′0Xj(d0) + ςj

)
(5)

where θ0 = (θ10, θ20, θ30)′, Xj(d) = (Aj(d)λd
j , λ2d

j , Bj(d)λ1+d
j )′, Aj(d) = cos

[
d

(
λj

2 − π
2

)]
,

Bj(d) = sin
[
d

(
λj

2 − π
2

)]
, ςj = O(λβ1

j ) under Assumption 1a) and ςj = Gyλ
β1
j + O(λβ1+l

j )

for l = min(ι, d0) under Assumption 1b) and

θ10 =
2Cyu

Cy
, θ20 =

fu(0)
Cy

, θ30 =
2Gyu

Cy

Taking logarithms of (5) and considering only Fourier frequencies λj = 2πj/n, j =

1, 2, ...[n/2] for n the sample size, we have

log Izj = a0 + d0(−2 log λj) + log
(
1 + θ′0Xj(d0)

)
+ ςj + Uzj (6)

where a0 = log Cy − c, c = 0, 577216 is Euler’s constant, Uzj = log(Izjf
−1
z (λj)) + c and Izj

is the periodogram of zt, t = 1, 2, ..., n, at frequency λj

Izj = Iz(λj) = |wzj |2 for wzj = wz(λj) =
1√
2πn

n∑

t=1

zt exp(−iλjt)

The ςj in (6) is different from that in (5) but we use the same notation because they are

asymptotically equivalent in the sense that they coincide up to an o(λβ1
j ) term.

Our main interest is to estimate the memory parameter d0 of the latent signal yt, al-

though the rest of parameters θ10, θ20 and θ30 may also play an important role and their

joint estimation not only reduces the bias of the estimates of d0 but is also of interest in

itself. The parameter θ20 is the long run noise to signal ratio and θ10 and θ30 correspond

to the low frequency and high frequency correlations respectively between signal and noise.

Any correlation between innovations of signal and noise entails θ10 6= 0. It also generally

implies θ30 6= 0 but there are some particular cases where θ30 = 0, as indicated in the

previous section. Non contemporaneous correlation, however, always implies θ30 6= 0.

In order to avoid possible inconsistencies caused by spectral misspecifications at frequen-

cies far from the origin, we focus only on the m Fourier frequencies closest to zero, as is usual
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in other semiparametric or local estimators of d0. The Augmented Log-Periodogram regres-

sion Estimator (ALPE) is obtained by applying least squares to the non linear regression

model

log Izj = a + d(−2 log λj) + log
(
1 + θ′Xj(d)

)
+ Uzj j = 1, 2, ...,m, (7)

where the ςj term that is omitted will lead the bias of the estimates. This is an extension of

the ALPE of Arteche (2006) to account for possible correlation between yt and ut covering

also non stationary values of d0. Approximating log(1 + θ′Xj(d)) locally by θ′Xj(d) as in

Sun and Phillips (2003) results in a regression model that is linear on θ but still non linear

on d, giving rise to an extra bias term of order O(λ2d0
m ) (Arteche, 2006) and making θ20

and θ30 unidentifiable if signal and noise are correlated. Also, ignoring the high frequency

correlation as in Hurvich et al. (2005) would create an extra bias term of order O(λ1+d0
m ) -

except in those particular cases where θ30 = 0 mentioned in the previous section- that would

limit the size of m, requiring a more restrictive bandwidth than that allowed in Assumption

4 below. In consequence the assumption in equation (3.9) in Hurvich et al. (2005) seems

insufficient to make the effect of this omitted term asymptotically negligible and a more

restrictive assumption on the evolution of m seems necessary as mentioned in Remark 1

below and acknowledged by the authors in their corrigendum (Hurvich et al., 2008).

The ALPE is formally defined as

(d̂ALP , θ̂ALP ) = arg min
∆×Θ

Q(d, θ) (8)

where ∆ = [∆1, ∆2], 0 < ∆1 < ∆2 < 1, Θ = Θ1 × Θ2 × Θ3 for Θ1 = [Θ11, Θ12], −∞ <

Θ11 < Θ12 < ∞, Θ2 = [0, Θ22], 0 < Θ22 < ∞, Θ3 = [Θ31, Θ32], −∞ < Θ31 < Θ32 < ∞, and

Q(d, θ) =
1
m

m∑

j=1

{
log† Izj + d(2 log λj)† − log†

(
1 + θ′Xj(d)

)}2

where for a general ξj we use the notation ξ†j = ξj − ξ̄ where ξ̄ =
∑

ξj/m.

4 ASYMPTOTIC PROPERTIES OF THE ALPE

Theorem 1 Under Assumptions 1a)-3, d̂ALP − d0 = op(1) if m−1 + mn−1 → 0 as n →
∞ and d̂ALP − d0 = Op(λ1+d0

m ), θ̂1ALP − θ10 = Op(λm), θ̂2ALP − θ20 = op(λ1−d0
m ) and

θ̂3ALP − θ30 = op(1) if mn−1 + n2(1+d0)(1+δ)m−2(1+d0)(1+δ)−1 → 0 as n → ∞ for some

arbitrarily small δ > 0 and d0 < 3/4.
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Theorem 1 shows the consistency of d̂ALP as long as 0 < d0 < 1. For the consistency of

θ̂ALP we need a more refined rate of convergence of d̂ALP to avoid the flatness of Q(d, θ) as

a function of θ. This is only achieved for d0 < 3/4, when the m2d0−2 terms in the bounds

in Corollary 2 are dominated by the m−1/2 terms. With that bounds we get consistency (at

different rates) of the estimators of all the parameters.

For the asymptotic normality of (d̂ALP , θ̂ALP ) a more restrictive assumption on the rate

of increase of the bandwidth is required.

Assumption 4(K): For δ > 0 arbitrarily small and 0 < d0 < 3/4, as n →∞,

n2(d0+1)(1+δ)

m1+2(d0+1)(1+δ)
→ 0 and

mβ1+1/2

nβ1
→ K

for a finite constant K.

The first condition in Assumption 4(K) imposes a lower bound on the growth rate of

m, ensuring the consistency of the ALPE. A larger bandwidth is required as the value of d0

increases to guarantee consistency of all the estimators of the elements in θ. It ensures that

all the elements in the diagonal of the normalizing matrix Dn of the gradient and Hessian

defined in Theorem 2 go to infinity. The upper bound is imposed by the second condition

and is the conventional O(n2β1/(2β1+1)) rate in the log periodogram regression when applied

to a fully observable long memory series. These two restrictions are always compatible

because β1 > d0 + 1 and δ is arbitrarily small.

The asymptotic distribution depends on the location of θ0 in the parameter space. We

first consider the case of existence of added noise such that all the parameters to be estimated

are in the interior of the parameter set.

Assumption 5: (d0, θ0) = (d0, θ10, θ20, θ30) is an interior point of the parameter space,

(d0, θ10, θ20, θ30) ∈ (∆1, ∆2)× (0, Θ11)× (Θ21, Θ22)× (Θ31,Θ32).

Theorem 2 Under Assumptions 1b)-4(K) and 5

Dn

(
d̂ALPE − d0

θ̂ALP − θ0

)
d−→ N

(
Ω−1b,

π2

6
Ω−1

)

for Dn = Dn(d0) and Dn(d) =
√

m diag(1, λd
m cos(πd/2), λ2d

m , λ1+d
m sin(πd/2)), b = b(d0)
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with

b(d) =




− 2β1

(β1+1)2
β1d

(β1+1)(d+β1+1)(d+1)
2dβ1

(β1+1)(2d+β1+1)(2d+1)

− β1(1+d)
(β1+1)(d+β1+2)(d+2)




K(2π)β1Gy

and Ω = Ω(d0) for

Ω(d) =




4 − 2d
(1+d)2

− 4d
(1+2d)2

2(1+d)
(2+d)2

d2

(2d+1)(1+d)2
2d2

(2d+1)(1+d)(3d+1) − d
2(d+1)(2+d)

4d2

(4d+1)(1+2d)2
− 2d(d+1)

(3d+2)(2d+1)(d+2)
(1+d)2

(2d+3)(2+d)2




Remark 1: Theorems 1 and 2 show that the ALPE is consistent for 0 < d0 < 1 and

asymptotically normal as long as d0 < 3/4. Lemmas 3 and 6 in Appendix B can similarly

be used to show consistency (for d0 < 1) and asymptotic normality (for d0 < 3/4) of

the estimators proposed by Sun and Phillips (2003) and Arteche (2006) when signal and

noise are independent, extending the work by Velasco (1999) for nonstationary series. Note

that Velasco required to trim out l frequencies close to the origin. However, bounding the

contributions of the low frequencies as advocated by Hurvich et al. (1998) and used in

the proof of Theorem 2 results in that this trimming is not necessary for the classical log

periodogram regression nor the extensions here considered.

Remark 2: The inclusion of regressors in the estimation procedure inflates the asymptotic

variance of the estimator of d0 by a multiplicative constant that is higher the lower d0 is.

Table 1 shows the asymptotic variances of
√

md̂ALP ,
√

md̂1 and
√

md̂2 for d0 = 0.2, 0.36

and 0.48, where d̂1 is obtained by nonlinear log-periodogram regression with no correlation

between signal and noise (that is omitting θ1 and θ3 in the estimation procedure, see Sun

and Phillips, 2003 and Arteche, 2006) and d̂2 ignores the high frequency correlation (omits

θ3) as in Hurvich et al. (2005). The inclusion of these regressors reduces the bias and allows

a broader bandwidth such that, although the variance increases significantly, the asymptotic

efficiency can be improved by using a larger m.

Remark 3: If θ30 = 0 the asymptotic covariance matrix of the correspondingly restricted

ALPE is π2/6 times the inverse of the (3 × 3) left upper submatrix of Ω. This is the

covariance matrix of the local Whittle estimator of Hurvich et al. (2005), denoted by

Γ∗ in their Proposition 4.11, apart from the multiplicative constant, which is π2/6 here
1Proposition 4.1 of Hurvich et al. (2005) contains two typos. The element (2,2) of Γ∗ should be divided
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Table 1: Asymptotic variances of
√

md̂1,
√

md̂2 and
√

md̂ALP

d̂1 d̂2 d̂ALP

d0 = 0.2 5.038 181.354 609.551
d0 = 0.36 2.347 33.493 100.855
d0 = 0.48 1.714 16.297 45.759

due to the different estimation procedure. This is the typical discrepancy between other

local Whittle and log-periodogram regression based estimators. However, if θ30 6= 0, the

omission of θ3 in the restricted estimation generates an extra bias due to the O(λ1+d0
j )

high frequency correlation component in the (pseudo) cross spectral density, which is not

explicitly considered in the estimation. A more restrictive assumption on the growth rate of

m should then be imposed for asymptotic normality. Precisely m2(1+d0)+1n−2(d0+1) = O(1)

as n → ∞ should hold instead of the second part of Assumption 4. A similar condition

seems also to be necessary in Hurvich et al. (2005) (see the corrigendum by Hurvich et al.

2008).

Remark 4: The analogue local Whittle type estimator of our ALPE is the Modified

Gaussian Semiparametric Estimator (MGSE) defined as

(d̃, θ̃) = arg min
∆×Θ



log


 1

m

m∑

j=1

λ2d
j Izj

1 + θ′Xj(d)


 +

1
m

m∑

j=1

log{λ−2d
j (1 + θ′Xj(d))}



 (9)

which corresponds to the estimator of Hurvich et al. (2005) but including the high frequency

correlation. This case represents a new parametrization (P3) in Hurvich et al. (2005)

and under a similar set of assumptions their results cover also this possibility such that

consistency and asymptotic normality are expected to hold with an asymptotic covariance

matrix as that in Theorem 2 with π2/6 replaced by one. Comparing their assumptions

with those needed here for the ALPE, the main advantage of the local Whittle extension

is that Gaussianity of signal and noise are not required and instead it is assumed that the

stationary part of the signal admits an infinite moving order representation with respect

to a martingale difference sequence with bounded fourth moment and ut is a zero mean

white noise with finite fourth moment. The assumptions required for the short memory

part of the signal are implied by our Assumption 1. Note also that the ALPE covers

a more general situation because it allows for weak dependence in the added noise and

by two and cos(d0π/2) should be multiplying in their normalizing matrix as in our Dn.
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non contemporaneous correlation. Finally the upper bound in the rate of increase of the

bandwidth for the asymptotic normality of the MGSE is slightly more restrictive due to

a log m term that appears in formula (3.9) of Hurvich et al (2005) and is avoided in our

Assumption 4.

From an empirical perspective, the main advantage of the standard LPE over the local

Whittle lies in its simple implementation as a linear regression. This property however

is lost in the ALPE as well as in other log periodogram regression based estimators that

account for the added noise (Sun and Phillips, 2003, Arteche, 2006), which require nonlinear

optimization. Nevertheless the ALPE seems to be superior in finite samples to the MGSE,

at least in the cases analyzed in the Monte Carlo in Section 7. This can be partly explained

by the fact that the empirical implementation of both estimators need to restrict 1+θ′Xj(d)

to be positive and this expression appears twice in the contrast function of the MGSE and

only once in the ALPE.

Remark 5: If the (pseudo) cross spectral density is not considered explicitly in the

estimation procedure when in fact θ10 6= 0, the wrongly restricted estimator of d0 remains

consistent with an appropriate bandwidth choice but θ20 is not identifiable because the

remainder is of order O(λd0
m ), i.e. higher than the order of the regressor corresponding to

θ20. In consequence θ20 can not be estimated consistently. Based on this characteristic, a

Hausman type test for correlation between signal and noise is introduced in Section 5.

Remark 6: If the high frequency correlation is not included in the estimation when actu-

ally θ30 6= 0, the restricted estimators of d0, θ10 and θ20 are consistent if n4d0(1+δ)m−1−4d0(1+δ) →
0 for some small δ > 0. The asymptotic bias of the restricted ALPE of d0 can be approxi-

mated in this case by θ30λ
1+d0
m sin(πd0/2)H(d0) where H(d0) > 0 is a constant function of

d0. The same expression approximates the asymptotic bias of the local Whittle estimator

of Hurvich et al. (2005).

Remark 7: The asymptotic bias of d̂ALP can be approximated by

Abias(d̂ALP ) =
(m

n

)β1

Ω̃1bK

where Ω̃1 is the first row of Ω−1 and bK = b/K. The asymptotic variance is

Avar(d̂ALP ) =
π2

6m
Ω̃11
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and consequently the asymptotic mean squared error can be approximated by

AMSE(d̂ALP ) =
π2

6m
Ω̃11 +

(m

n

)2β1

(Ω̃1bK)2

The “optimal” bandwidth that minimizes AMSE(d̂ALP ) is

mopt
ALPE = n2β1/(2β1+1)

[
π2Ω̃11

24(Ω̃1bK)2

]1/(2β1+1)

such that AMSE(d̂ALP ) = O(n−2β1/(2β1+1)) if m = mopt
ALPE . The ALPE then achieves

the same rate of mean square error convergence as the standard LPE applied to a fully

observable long memory series.

Remark 8: The bandwidths that minimize the AMSE of θ̂i,ALPE are O(n2β1/(2β1+1)) for

all i = 1, 2, 3, although with different multiplicative constants in each case. The optimal

rates of convergence of θ̂i,ALPE in a mean squared error sense are then O(n−(β1−d0)/(2β1+1)),

O(n−(β1−2d0)/(2β1+1)) and O(n−(β1−1−d0)/(2β1+1)) for i = 1, 2, 3 respectively, which can be

quite slow for large d0.

Remark 9: We do not consider the possibility of d0 = 0, so that the asymptotic distri-

bution in Theorem 2 can not be used to test the hypothesis of short memory. However if

d0 = 0 there is not need to extend the original LPE and GSE since such an extension does

not imply a bias reduction. The classical LPE and GSE can then be used for that purpose

as suggested by Hurvich and Soulier (2002) and Hurvich et al. (2005) since both maintain

the asymptotic properties as if no added noise were present. In particular both are asymp-

totically normal and nβ1/(2β1+1)-consistent with an optimal bandwidth choice. Note also

that if d0 = 0 the vector of parameters θ need not be identifiable. Thus, if we suspect that

the value of d0 could be zero, we should test that possibility by means of the standard LPE

or GSE. If we find evidence of a positive d0 then some extension accounting for the possible

existence of noise should be applied. The results in Theorem 2 can be used however to test

the stationarity of the series by means of the null hypothesis d0 = 1/2 against d0 < 1/2.

Remark 10: The literature on perturbed long memory has focused on a weak dependent

added noise, which is the main case of interest in economics and finance, as illustrated in the

introduction. Consider however that, instead of Assumption 2, ut is a long memory process

with a spectral density satisfying

fu(λ) = Cuλ−2du0(1 + O(λβ2))
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as λ → 0+, for a positive finite constant Cu and −0.5 < du0 < d0 where du0 is a new

parameter to be estimated. In this context the (pseudo) cross spectral density function of

yt and ut satisfies as λ → 0+,

Re(fyu(λ)) = λ−d0−du0

(
Cyu cos

[
(d0 − du0)

(
λ

2
− π

2

)]
+ Gyuλ sin

[
(d0 − du0)

(
λ

2
− π

2

)]
+ O(λβ3)

)

for finite constants Cyu and Gyu. The two examples given in Section 2 with the added noise

replaced by ut = (1−L)−du0β(L)εt satisfy this specification. The (pseudo) spectral density

function of zt is then

fz(λj) = Cyλ
−2d0
j

(
1 + θ′0Xj(d0 − du0) + ςj

)

and the regression model is

log Izj = a + d(−2 log λj) + log
(
1 + θ′Xj(d− du)

)
+ Uzj j = 1, 2, ...,m (10)

There is here a problem of asymptotic identification. Denote by ψ0 = (d0, θ
′
0, du0)′ the

parameters to be estimated and let

qj(ψ) = d(−2 log λj)† + log
(
1 + θ′Xj(d− du)

)†

Denote by X0 the m×5 matrix with elements [X0]ji = ∂qj(ψ0)/∂ψi and D⊥
n = D⊥

n (d0−du0)

where D⊥
n (d) =

√
m diag(1, λd

m cos(πd/2), λ2d
m , λ1+d

m sin(πd/2), λd
m cos(πd/2) log λm). Ap-

proximating sums by integrals it can be shown that

lim
n→∞D⊥−1

n X ′
0X0D

⊥−1
n = Ω⊥

where Ω⊥ = Ω⊥(d0 − du0) such that Ω⊥(d) is a 5 × 5 symmetric matrix with the first

submatrix of order 4 equal to Ω(d) in Theorem 2 and the fifth column (row) equal to the

vector

θ10




2d
(1+d)2

− d2

(2d+1)(1+d)2

− 2d2

(2d+1)(1+d)(3d+1)
d

2(d+1)(2+d)
d2θ10

(2d+1)(1+d)2




The matrix Ω⊥ is also the limit of the properly normalized Hessian matrix and is singular

since the last column is just −θ10 times the second one, so the strong asymptotic identifia-

bility condition is not satisfied (Davidson and MacKinnon, 2004, Chapter 6). Note that the
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information of the regression model on du is asymptotically dominated by θ1Aj(d−du)λd−du
j

such that both du and θ1 cannot be identified.

A long memory added noise precludes identifiability in the estimation techniques that

account for it, whereas it only affects the rate of convergence of the basic local Whittle and

LPE estimators that ignore the noise by constraining the rate of increase of the bandwidth

(Arteche, 2004). For identifiability du0 should be known but this is not realistic unless

du0 = 0 as assumed before, where such an imposition relies on the characteristics of the

noise in the different situations mentioned in the introduction.

In practice we are unlikely to be able to discern a priori whether the series is perturbed

by an added noise or not. It is then interesting to analyze also the case of no added noise

such that θ20 = 0 lies on the boundary of the parameter space, which affects the limiting

distribution of the estimators. Note also that θ20 = 0 precludes the possibility of correlation

since it obviously implies θ10 = θ30 = 0.

Theorem 3 Let Assumption 1b)-4(K) hold and let d0 ∈ (∆1, ∆2) and θ0 = 0. Then

√
m(d̂ALP − d0)

d−→ −Ω̃1 η {Ω̃3 η ≤ 0} − Ω−1
11 η1 {Ω̃3 η > 0}

D∗∗
n (θ̂ALP − θ0)

d−→ −Ω̃∗∗η {Ω̃3 η ≤ 0}

where Ω̃i is the i-th row of the matrix Ω̃ = Ω−1, D∗∗
n is the 3× 3 low right submatrix of Dn,

Ω̃∗∗ is the low 3× 4 submatrix of Ω−1 and η = (η1, η2, η3, η4)′ ∼ N(−b, π2Ω/6).

The proof of Theorem 3 is a straightforward extension of that in Theorem 4 in Sun and

Phillips (2003) and is thus omitted.

5 TESTS FOR CORRELATION BETWEEN SIGNAL AND
NOISE

The asymptotic distribution of the ALPE makes easy implementation of standard asymp-

totic inference conceivable not only on d0 but also on the components of the vector θ0. In

particular, it is of special interest to test the hypothesis of no correlation between signal

and noise for two reasons. First, it is of interest per se because the existence of correlation
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influences subsequent analysis, for example for forecasting RVs or for estimating economic

mechanisms involving series with a measurement error correlated with the latent variable.

Second, it is of technical interest because it can be used as a tool for prior selection of a

suitable estimation strategy. If no evidence of correlation is found the ALPE and MGSE

should be adapted to this information because in that case introducing terms to account

for the correlation in the estimation procedure inflates unnecessarily the variance with the

consequent loss of efficiency.

However, testing such a hypothesis is not a trivial issue since it involves assessing the cor-

relation between two unobservable series whose spectral behaviour is only locally restricted.

Uncorrelation between signal and noise corresponds in our local setup to the null hypothesis

H0 : θ10 = θ30 = 0 (11)

The Wald test statistic for this hypothesis is

W =
6
π2

θ̂∗
′

ALP D∗
n(d̂ALP )Ω∗(d̂ALP )D∗

n(d̂ALP )θ̂∗ALP

where θ̂∗ALP = (θ̂1,ALP , θ̂3,ALP )′, D∗
n(d) =

√
m(λd

m cos(πd/2), λ1+d
m sin(πd/2)) and Ω∗(d) =

Ω1(d)−Ω3(d)Ω−1
2 (d)Ω3(d)′ where Ω1, Ω2 and Ω3 are 2× 2 matrices with elements (by row)

the (2,2), (2,4), (4,2) and (4,4) (for Ω1), (2,1), (2,3), (4,1) and (4,3) (for Ω3) and (1,1),

(1,3), (3,1) and (3,3) (for Ω2) of the matrix Ω(d) in Theorem 2. The following corollary

establishes the typical properties of the Wald type testing procedure based on W . The proof

is straightforward and is omitted.

Corollary 1 Let Assumptions 1b)-3, 4(0) and 5 hold. Under H0 in (11), W
d−→ χ2

2. By

contrast W
p−→∞ if θ10 6= and/or θ30 6= 0. Also under the local alternative H1 : (θ10, θ30)′ =

D∗
n
−1(d0)δ for a non null vector δ = (δ1, δ3)′, W has a non central chi-squared asymptotic

distribution, χ2
2(6δ

′(π2Ω̃∗(d0))−1δ).

Note that in the examples described in Section 2 θ30 6= 0 implies θ10 6= 0 but θ30 = 0 and

θ10 6= 0 is also a possibility under the alternative. The slow convergence of the estimators of

θ10 and θ30 affects the finite sample performance of this test. In fact, we have found through

simulations (not reported but available upon request) that the finite sample performance

is rather poor. In order to avoid estimation of θ10 and θ30 an asymptotically equivalent
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Lagrange Multiplier (LM) type test can be used. For the null hypothesis in (11) the LM

test statistic has the form

LM = S∗(d̂R
ALP , θ̂R

ALP )′D∗
n(d̂R

ALP )−1

[
π2

6
Ω∗(d̂R

ALP )
]−1

D∗
n(d̂R

ALP )−1S∗(d̂R
ALP , θ̂R

ALP ) (12)

where S∗(d, θ) = (S2(d, θ), S4(d, θ)) is the vector of the second and fourth elements of the

score S(d, θ) in the proof of Theorem 2 in Appendix A and d̂R
ALP , θ̂R

ALP are the ALPE un-

der the restriction of the null. These estimators correspond to those analyzed in Arteche

(2006) under independence of signal and noise. The asymptotic properties of the test-

ing procedure based on this statistic are those of the Wald type test in Corollary 1. The

matrix Ω∗(d̂R
ALP ) can be replaced by consistent estimates. In particular we can form sim-

ilar matrices with the elements of the Hessian estimates of Ω in the proof of Theorem 2,

Dn(d̂R
ALP )−1H(d̂R

ALP , θ̂R
ALP )Dn(d̂R

ALP )−1 or Dn(d̂R
ALP )−1J(d̂R

ALP , θ̂R
ALP )Dn(d̂R

ALP )−1. Using

these alternatives the LM statistic has a simpler expression since there is no need to use the

normalizing matrix Dn whose elements cancel out in (12), so no information is needed on

the non standard rates of convergence of the estimators of the different parameters. The

form of the statistic in this case is

LM = S∗(d̂R
ALP , θ̂R

ALP )′
[
π2

6
Ξ∗(d̂R

ALP , θ̂R
ALP )

]−1

S∗(d̂R
ALP , θ̂R

ALP ) (13)

with Ξ∗ defined similarly to Ω∗ with respect to Ξ = H or J .

Considering that under correlation between signal and noise θ20 cannot be identified

unless the correlation is explicitly considered in the estimation procedure, a Hausman type

test for correlation can be easily designed based on the difference between θ̂2,ALPE , consistent

under null and alternative hypotheses but less efficient than θ̂R
2,ALPE if no correlation exists,

and θ̂R
2,ALPE which is not consistent under the alternative of correlated signal and noise.

Theorem 4 Under Assumptions 1b)-3, 4(0), 5 and if H0 in (11) holds, then as n →∞

H = Υ−1mλ4d̂ALP
m (θ̂2,ALPE − θ̂R

2,ALPE)2 d→ χ2
1

where

Υ =
π2

6
[L1Ω(d̂ALP )−1L′1 − L2Ω2(d̂ALP )−1L′2]

for L1 = (0, 0, 1, 0) and L2 = (0, 1).
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The proof of this theorem relies on the consistency of d̂ALP and the fact that
√

mλ2d0(θ̂2,ALPE−
θ̂R
2,ALPE) d→ N(0,Υ), which can be shown using the details in the proofs of Theorem 2 (for

θ̂2,ALPE) and of Theorem 3 in Arteche (2006) (for θ̂R
2,ALPE) on the convergence of the re-

spective Hessians and scores, extended to the nonstationary case (see the proof in Appendix

A for details). This implies that the asymptotic covariance between θ̂R
2,ALPE and θ̂2,ALPE is

equal to the variance of θ̂R
2,ALPE , which is efficient in the class of augmented log periodogram

regression estimators under uncorrelation of signal and noise. This structure is similar to

other Hausman type tests.

The restricted d̂R
ALP could have been used instead of d̂ALP in the normalizing factor since

it is also consistent under the null, but we use d̂ALP due to its consistency under the null and

the alternative. As before, m−1λ−4d̂ALP L1Ω(d̂ALP )−1L′1 and m−1λ−4d̂ALP L2Ω2(d̂ALP )−1L′2

can be replaced by finite sample Hessian based approximations L1Ξ(d̂ALP , θ̂ALP )−1L′1 and

L2Ξ2(d̂ALP , θ̂ALP )−1L′2. In this case there is no need for the normalizing factor m−1λ−4d0

in the construction of the H statistic.

6 FINITE SAMPLE PERFORMANCE

The finite sample performance of the proposed ALPE, which is denoted here by ALPEsin,

is compared with the following estimators:

• The modified Gaussian semiparametric or local Whittle estimator of Hurvich et al.

(2005) in their (P1) specification, i.e. ignoring the correlation between signal and

noise. This estimator is denoted by MGSE.

• The modified Gaussian semiparametric or local Whittle estimator of Hurvich et al.

(2005) in their (P2) specification, i.e. accounting only for the low frequency correlation

and ignoring the high frequency correlation as if θ30 = 0. This estimator is denoted

by MGSEcos.

• The modified Gaussian semiparametric estimator accounting for both the low and high

frequency correlation as in formula (9). We denote this estimator by MGSEsin.

• The ALPE ignoring the correlation as suggested by Arteche (2006).

• The ALPE accounting only for the low frequency correlation as the MGSEcos (ALPEcos).
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Under independence of signal and noise Arteche (2006) shows that the MGSE and the

ALPE outperforms the estimators that do not account for the added noise (see also Hurvich

and Ray, 2003). No results exist however on the correlated signal and noise case. Although

this situation is partially covered in Hurvich et al. (2005) with the MGSEcos estimator, their

Monte Carlo only considers MGSE in the independent case. The ALPEsin and MGSEsin

are then new proposals and are expected to have a lower bias under general correlation

structures. This assertion is confirmed by analyzing different situations. We first consider

zt = σyyt + ut (14)

where (1 − L)dyt = wt and σy is chosen such that the long run noise to signal ratio is

nsr = 2π2, (similar results, available upon request, are obtained for nsr = π2), which is

close to the ratios considered by Arteche (2006), Deo and Hurvich (2001), Hurvich and Ray

(2003) and Sun and Phillips (2003). We only show the results for d = 0.4. Qualitatively

similar conclusions derive for other values of the memory parameter. We have in particular

analyzed also d0 = 0.2 and d0 = 0.7 (results available upon request) and the only difference

is that, as expected, the larger d0 the larger the bandwidth allowed in every estimator but

the effects here discussed for d = 0.4 remain unaltered. With this definition of zt two

different scenarios are explored

Model 1: ut = εt and

Model 2: ut = εt + 0.8εt−1

for (
εt

wt

)
∼ NID

((
0
0

)
,

(
1 ρ
ρ 1

))

and ρ = 0,−0.8.

Finally a non contemporaneous correlation example corresponding to an LMSV model

is discussed. In this case the Gaussianity assumption of the added noise does not hold but

we consider it relevant to analyze the applicability of the ALPE also in this context for its

empirical interest. Its performance is compared with the local Whittle extensions whose

asymptotic properties do not rely on the Gaussianity neither of the signal nor the noise.

Model 3: zt = σyyt−1 +ut with yt defined as in Model 1 and ut = log ε2
t for εt standard

normal. For the sake of brevity we only show the results for the case of a correlation between
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wt and ut equal to−0.8. The results with null correlation (available upon request) are similar

to those in Model 1. Note that correlation between wt and εt is possible maintaining the

null correlation between wt and ut.

For Models 1, 2 and 3, σ2
y = nsr−1, (1 + 0.8)2nsr−1 and nsr−1π2/2 respectively such

that the signal to noise ratio is the same in all three models. In Model 1 θ30 = 0 and the

MGSEcos and ALPEcos are expected to perform better than the ALPEsin. However, in

Models 2 and 3 with ρ 6= 0 there is a non null θ30 such that its omission increases the bias

for large bandwidths and the ALPEsin and MGSEsin are expected to have a lower bias.

The ALPE and MGSE are explicitly designed for ρ = 0 and their behaviour when ρ = −0.8

is expected to be worse than the other estimators, at least in terms of bias.

A negative correlation raises a practical complication in the application of the different

correlation corrected estimators. Whereas 1+θ′0Xj(d0) is always positive for a large enough

sample size, in finite samples it can be negative, even when evaluated at the true set of

parameter values, which prevents the logarithms from being taken in the objective functions.

To circumvent this problem we truncate the argument in the logarithms by considering

instead max(1 + θ′Xj(d), 10−200), which is asymptotically equivalent to 1 + θ′Xj(d) for a

large enough n. Note also that a negative ρ implies that the real part of the cross spectral

density diverges to −∞ as λ approaches the origin, greatly affecting the spectral behaviour

of zt and the estimation of the parameters. We have also performed a similar analysis with a

positive ρ and the results (not reported but available upon request) show that the benefits of

the correlation correction are not as evident as with a negative correlation; the bias decreases

significantly but the variance inflation often gives rise to a higher mean square error.

The Monte Carlo consists of 1000 replications of series composed of 4096 observations.

We choose such a large sample size to minimize the effect of the truncation of 1+θ′Xj(d) and

because it is similar to the sample sizes of many of the financial time series which have formed

the basis of several empirical applications on perturbed long memory as that analyzed in

the next section. We analyze three different bandwidths, m = n0.4, n0.6, n0.8. The latter

increases at the same rate as the unfeasible ALPE optimal bandwidth but it can actually be

far from this quantity due to the unknown multiplicative constant in mopt
ALPE . There does

not exist however a feasible version of mopt
ALPE and we do not pursue the issue here. Plug-in

versions cannot be justified because they need an appropriate estimate of Gy, which is so
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far not available. Criteria based on the minimization of an objective function may be a

better choice but their performance is often unsatisfactory (Arteche, 2004). Other adaptive

procedures such as that in Giraitis et al. (2000), which adapt to the spectral smoothness of

zt could also be used, but any other bandwidth computed as the adaptive bandwidth times

a constant would be equally (asymptotically) efficient. Recent results (Arteche and Orbe,

2009) using the bootstrap seem promising and can be easily extended to the ALPE based

estimators but further research is required.

Table 2 shows the Monte Carlo biases and mean squared errors (MSE) in each of the

different situations considered. For the minimization of the objective functions we have used

the option nlminb in R, with the following restrictions: 0.01 < d < 0.9, − exp(6) < θ1, θ3 <

exp(6) and exp(−20) < θ2 < exp(6).

When ρ = 0 MGSE and ALPE tend to perform better and the inclusion of the terms

accounting for correlation inevitably inflates the variance. The bias is however reduced if the

noise is an MA(1) because the regressors for the correlation account indirectly for the weak

dependence of the noise when a large bandwidth is used. When the signal and noise are

correlated the ALPE and MGSE have lower MSE if a small bandwidth is used but the bias

in both cases is quite large and tends to increase with m. The bias significantly decreases

with the correlation correction such that for m = n0.8 the ALPEsin tends to be the best

option, not only in terms of bias but also in MSE.

The MGSE based estimators tend to perform poorly when correlation exists and a large

bandwidth is used, even if the correlation is accounted for. This may be caused by the

truncation of 1 + θ′Xj(d) since it is at high frequencies that it is expected to have more

impact and it plays its role in two terms of the contrast function in the MGSEcos and

MGSEsin but only in one in the corresponding functions of the ALPEsin and ALPEcos.2

Finally, we analyze the performance of the different testing procedures for the hypothesis

of no correlation between signal and noise. In the context considered in this paper the

possible correlation is quite hard to detect because both series are unobservable. Moreover

only the local spectral behaviour around the origin is restricted, thus permitting a great

deal of flexibility. Table 3 shows the rejection frequencies of the Lagrange multiplier and
2A limited Monte Carlo, not reported but available upon request, confirm that the performance of the

MGSE improves significantly in those cases where truncation is not needed and the parameter space is
correspondingly adjusted, e.g. positive correlation and the elements in θ restricted to be positive.
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Table 2: Bias and MSE with nsr = 2π2

ALPE ALPEcos ALPEsin MGSE MGSEcos MGSEsin
ut white noise

ρ = 0
m = n0.4

Bias 0.050 -0.127 -0.152 0.000 -0.130 -0.121
MSE 0.042 0.093 0.094 0.036 0.095 0.091

m = n0.6

Bias 0.019 -0.076 -0.128 -0.013 -0.072 -0.076
MSE 0.038 0.080 0.083 0.030 0.070 0.073

m = n0.8

Bias 0.021 -0.026 -0.062 -0.001 -0.023 -0.037
MSE 0.024 0.057 0.074 0.016 0.033 0.042

ρ = −0.8
m = n0.4

Bias 0.136 -0.073 -0.100 0.098 -0.041 -0.038
MSE 0.054 0.088 0.093 0.041 0.090 0.092

m = n0.6

Bias 0.165 0.008 -0.070 0.166 0.174 0.162
MSE 0.056 0.071 0.078 0.049 0.068 0.070

m = n0.8

Bias 0.135 -0.107 0.064 0.113 0.186 0.182
MSE 0.097 0.091 0.059 0.067 0.091 0.088

ut ∼ MA(1)
ρ = 0

m = n0.4

Bias 0.047 -0.128 -0.153 0.003 -0.149 -0.147
MSE 0.043 0.093 0.094 0.036 0.098 0.096

m = n0.6

Bias 0.017 -0.076 -0.135 -0.015 -0.092 -0.112
MSE 0.036 0.080 0.084 0.031 0.076 0.082

m = n0.8

Bias -0.149 -0.050 -0.065 -0.166 -0.053 -0.015
MSE 0.038 0.047 0.066 0.038 0.037 0.043

ρ = −0.8
m = n0.4

Bias 0.129 -0.069 -0.103 0.096 -0.051 -0.051
MSE 0.053 0.088 0.091 0.042 0.092 0.093

m = n0.6

Bias 0.160 0.020 -0.060 0.162 0.157 0.130
MSE 0.056 0.070 0.074 0.049 0.070 0.073

m = n0.8

Bias 0.125 0.152 -0.016 0.130 0.148 0.158
MSE 0.058 0.064 0.055 0.051 0.054 0.063

zt = σyyt−1 + log χ2
1

ρ = −0.8
m = n0.4

Bias 0.123 -0.068 -0.100 0.093 -0.080 -0.081
MSE 0.051 0.089 0.093 0.043 0.092 0.094

m = n0.6

Bias 0.163 0.005 -0.068 0.167 0.160 0.120
MSE 0.054 0.071 0.078 0.047 0.071 0.074

m = n0.8

Bias -0.358 -0.369 0.116 -0.164 -0.124 -0.098
MSE 0.148 0.146 0.046 0.112 0.131 0.114
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Hausman test statistics for the null hypothesis of no correlation in (11). The nominal

significance level is 5% (compared with the critical values of χ2
2 and χ2

1 distributions) and a

bandwidth m = n0.8 is used (we have found that this large bandwidth gives better results).

Wald type tests are not considered because their performance is rather poor as mentioned

in the previous section. The Lagrange multiplier has two important advantages over the

Wald and Hausman type tests. First, no estimation of θ10 and θ30 is required. Second, since

everything is calculated under the null of no correlation no truncation of the arguments of

the logarithms is needed in the contrast functions.

To construct the test statistics a feasible approximation of Ω(d0) and Ω2(d0) is needed.

Two options can be considered: First a plug-in version replacing d0 by the corresponding

consistent estimate has the advantage of requiring only estimation of d0, which gives rise

to greater stability. Second we can use finite sample Hessian based approximations, as

suggested by Sun and Phillips (2003) and Hurvich and Ray (2003), in two different forms:

J(d, θ)+ (H(d, θ)−J(d, θ))I(H(d, θ) > 0) or just J(d, θ) as defined in the proof of Theorem

2 in Appendix A, with d, θ = d̂R
ALP , θ̂R

ALP for the LM test and d, θ = d̂ALP , θ̂ALP for the

Hausman test statistic. In this case we need to estimate not only d0 but also θ0 (only θ20

in the LM test), which makes the approximation less stable. However, when using either

of them in the construction of the test statistics, the normalizing matrix D∗
n in the LM

and mλ4d0
m in the Hausman statistic are not needed due to the normalized convergence of

both approximations to Ω(d0) and Ω2(d0). Moreover we have found a better finite sample

performance if either of these Hessian based approximation is used instead of the plug-in

version and the rejection frequencies in Table 3 are obtained with both of them. The LM

performs quite well if the added noise is white noise, particularly in the non-contemporaneous

case. However, if the added noise shows some weak dependence, the LM testing procedure

is not able to discriminate between the weak dependence of the noise and the correlation

of signal and noise, since both arise as extra terms in the spectral density function. This

situation could be corrected by approximating the spectral densities of the weak dependent

innovations of signal and noise by local polynomials of finite orders, instead of constants.

This would imply extending the nonlinear log periodogram regression with further elements

to account for the weak dependence. By contrast, the Hausman test seems to be quite

robust to weak dependence of the noise but is more conservative than the LM with low

power in every situation.
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Table 3: Rejection frequencies of H0 : θ10 = θ30 = 0 (5 % sig. level) with nsr = 2π2

ρ ut white noise ut ∼ MA(1) zt = σyyt−1 + log χ2
1

LM
0 0.095 (0.096) 0.340 (0.341) 0.076 (0.077)

−0.8 0.889 (0.889 ) 0.554 (0.554) 0.999 (0.999)
Hausman

0 0.090 (0.069) 0.017 (0.020) 0.109 (0.078)
−0.8 0.339 (0.266) 0.330 (0.261) 0.387 (0.253)

Rejection frequencies with m = n0.8 using Hessian approximations (using J between brackets).

7 EMPIRICAL EXAMPLE: S&P500 REALIZED VOLATIL-
ITY

We analyze the persistence of the daily realized volatility (RV) for the S&P500 future index.

We construct the RV series using intraday transaction prices of futures contracts as traded

on the Chicago Mercantile Exchange (CME) from 8:30AM to 3:15PM. As in Martens et

al. (2009) the series is computed as the sum of squared intraday returns plus the squared

overnight return between closing price and opening price next day, with a five minute sam-

pling frequency. The sample period is from January 3, 1994 until May 29, 2009, extending

the series analyzed by Martens et al. (2009), which runs until December 29, 2006. We also

omit incomplete days and the large negative return for the period September 11-17, 2001.

The series comprises a total of 3837 days. As shown by De Jong et al. (1998) transaction

costs and lagged adjustment to information give rise to correlation between the underlying

price and noise in stock price series that can transfer to the RV. We analyze here if such a

correlation between the latent volatility and the noise persists in the S&P500 RV and its

effects on the estimation of the memory of the series.

Martens et al. (2009) use parametric techniques to get an estimate of the memory

parameter around 0.5. Table 4 shows the estimates for bandwidths m = 100, 200 and

300 using the six semiparametric estimation techniques considered in the Monte Carlo,

together with the standard errors calculated by means of the matrix J(d, θ) as expalined

in the previous section.3. There is a large discrepancy between the estimates accounting

for the correlation and those ignoring it. Whereas the ALPE and the MGSE lies on the

nonstationary region, the estimates accounting for the correlation shed some doubt even on
3Note that there is no theoretical justification for the standard error of MGSEsin since Hurvich et al.

(2005) only covers MGSE and MGSEcos. The approximation for the standard error of MGSEsin is used
appealing to the comments in Remark 4.
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the strong persistence of the series. As shown in the Monte Carlo the correlation between

signal and noise may induce a positive bias in the ALPE and MGSE and also in the ALPEcos

and MGSEcos if a large bandwidth is used. We observe such a behaviour in Table 4 where

estimates that account for correlation are similarly low with m = 100 but the ALPEcos and

MGSEcos increase significantly with the bandwidth whereas the ALPEsin and MGSEsin

remain close to zero. The possible existence of correlation between signal and noise is

corroborated by the LM and Hausman type tests statistics, which often give values larger

than 105, clearly supporting the existence of such correlation.

Table 4: Memory parameter estimates of S&P500 RV and tests of correlation
m ALPE ALPEcos ALPEsin MGSE MGSEcos MGSEsin LM H
100 0.703 0.027 0.027 0.695 0.023 0.023 > 105 (> 105) > 105 (> 105)
s.e. 0.129 0.295 1.237 0.101 0.272 1.116
200 0.626 0.289 0.107 0.609 0.281 0.082 3933.9 (3933.9) > 105 (> 105)
s.e. 0.091 0.184 0.162 0.072 0.153 0.179
300 0.700 0.299 0.082 0.705 0.308 0.092 21.087 (21.087) > 105 (> 105)
s.e. 0.085 0.136 0.218 0.064 0.116 0.211

LM and H are Lagrange Multiplier and Hausman test statistics for the null hypothesis of no
correlation using Hessian approximations (using J between brackets).

APPENDIX A: PROOFS

Proof of Theorem 1: The method of proof in Sun and Phillips (2003) is used to

avoid the flatness of Q(d, θ) as a function of θ. Here we need the lemmas in Appendix

B to correctly account for the correlation between signal and noise and also to avoid the

linearization of the logarithm term in the contrast function, which, as explained in the text,

would introduce a higher order bias. Write

Q(d, θ)−Q(d0, θ0) =
1
m

m∑

j=1

(V †
j )2 +

2
m

m∑

j=1

V †
j (Uzj + ςj) (15)

where

Vj = Vj(d, θ) = 2(d− d0) log λj + log(1 + C0
j )− log(1 + Cj)

Cj = Cj(d, θ) = θ′Xj(d)

C0
j = Cj(d0, θ0)

The consistency of d̂ALP is established first. Since 1
m

∑m
j=1(V

†
j )2 = 4(d − d0)2(1 + o(1)),

where o() holds uniformly in ∆ × Θ, we have to show that 2
m

∑m
j=1 V †

j (Uzj + ςj) = op(1)
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uniformly. First, by Lemmas 3 and 4 below

sup
∆×Θ

∣∣∣∣∣∣

m∑

j=1

V †
j Uzj

∣∣∣∣∣∣
= Op

[(
1√
m

+
log2 m

m2(1−d0)

)
[sup

∆
|d− d0|+ sup

∆
λd

m]
]

= op(1)

Also by the definition of ςj and by summation by parts

sup
∆×Θ

1
m

∣∣∣∣∣∣

m∑

j=1

V †
j ςj

∣∣∣∣∣∣
= O(λβ1

m ) = o(1)

which, together with the previous results, implies d̂ALP − d0 = op(1).

Next, consider d0 < 3/4. Since Q(d̂ALP , θ̂ALP )−Q(d0, θ0) ≤ 0 then

1
m

∑
V̂ †2

j ≤ − 2
m

∑
V̂ †

j(Uzj + ςj) (16)

where V̂ †
j = V †

j (d̂ALP , θ̂ALP ). By Lemmas 3 and 4 and summation by parts the right hand

side is bounded in probability by

Op

(
1√
m

+ λβ1
m

)
= op(λ2∆1

m )

where the second bound comes from the assumption n2(d0+1)(1+δ)m−2(d0+1)(1+δ)−1 = o(1).

Since m−1
∑

V̂ †2
j = 4(d̂ALP −d0)2(1+o(1))+O(λ2∆1

m ) we have that d̂ALP −d0 = Op(λ∆1
m ) =

op(λ
∆1/2
m ). Consider now d ∈ ∆1

n = {d : |d− d0| < κλ
∆1/2
m } for some generic constant κ > 0

and (d, θ) ∈ ∆1
n ×Θ. Since by summation by parts 1

m

∑m
j=1 V †

j ςj equals

2(d− d0)
m

∑(
log j − 1

m

∑
log k

)
ςj +

1
m

∑
log†

(
1 + C0

j

1 + Cj

)
ςj

= O
(
|d− d0|λ2

m + |θ10 − θ1|λ2+d0
m + |θ20 − θ2|λ2+2d0

m + |θ30 − θ3|λ3+d0
m

)
(17)

uniformly over (d, θ) ∈ ∆1
n ×Θ, we have that by (16), (17) and Corollary 2

1
m

m∑

j=1

(V̂ †
j)2 ≤ Op

(
1√
m

λ∆1/2
m

)
+ O

(
λ∆1/2+β1

m

)
= op(λa(1+δ)

m )

for a = 1 + d0, because n2a(1+δ)m−2a(1+δ)−1 = o(1). Then, using Lemma 5, d̂ALP − d0 =

op(λ
a(1+δ)/2
m ), θ̂1,ALP−θ10 = op(λ

a(1+δ)/2−d0
m ) and θ̂2,ALP−θ20 = Op(λb

m) for b = max(0, a(1+

δ)/2− 2d0). The rest of the proof is made sequentially as in the proof of Theorem 2 in Sun

and Phillips (2003) noting Corollary 2 and Lemma 5 below. 2

Proof of Theorem 2: The first order conditions are

S(d̂ALP , θ̂ALP ) = 0
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where, omitting the dependence on (d, θ) and n for easy of notation, and denoting the vector

xj = (x0j , x1j , x2j , x3j)′

S(d, θ) =
m∑

j=1

x†jWj

with

x0j = x0j(d, θ) =

(
2 log λj −

Cd
j

1 + Cj

)
,

xij = xij(d, θ) = − Cθi
j

1 + Cj
, i = 1, 2, 3

Wj = Wj(d, θ) = log Izj + d(2 log λj)− log(1 + Cj)

for

Cd
j =

∂Cj(d, θ)
∂d

= θ1λ
d
j [Aj(d) log λj + Ad

j (d)] + 2θ2λ
2d
j log λj + θ3λ

1+d
j [Bj(d) log λj + Bd

j (d)]

Cθ1
j =

∂Cj(d, θ)
∂θ1

= Aj(d)λd
j

Cθ2
j =

∂Cj(d, θ)
∂θ2

= λ2d
j

Cθ3
j =

∂Cj(d, θ)
∂θ3

= Bj(d)λ1+d
j

with Ad
j (d) = −(λj − π)Bj(d)/2 and Bd

j (d) = (λj − π)Aj(d)/2.

The elements of the Hessian matrix, H = H(d, θ) are:

H1,1 =
m∑

j=1

(x†0j)
2 −

m∑

j=1

(
Cdd

j

1 + Cj
− (Cd

j )2

(1 + Cj)2

)†
Wj

H1,(i+1) = H(i+1),1 =
m∑

j=1

x†0jx
†
ij −

m∑

j=1

(
Cdθi

j

1 + Cj
− Cd

j Cθi
j

(1 + Cj)2

)†
Wj for i = 1, 2, 3

H(i+1),(k+1) =
m∑

j=1

x†ijx
†
kj +

m∑

j=1

(
Cθi

j Cθk
j

(1 + Cj)2

)†
Wj for i, k = 1, 2, 3

where

Cdd
j = θ1Aj(d)λd

j log2 λj + 2θ1A
d
j (d)λd

j log λj + θ1A
dd
j (d)λd

j + 4θ2λ
2d
j log2 λj

+ θ3Bj(d)λ1+d
j log2 λj + 2θ3B

d
j (d)λ1+d

j log λj + θ3B
dd
j (d)λ1+d

j

Cdθ1
j = Aj(d)λd

j log λj + λd
jA

d
j (d)

Cdθ2
j = 2λ2d

j log λj

Cdθ3
j = Bj(d)λ1+d

j log λj + λ1+d
j Bd

j (d)
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for Add
j (d) = −(λj − π)2Aj(d)/4 and Bdd

j (d) = −(λj − π)2Bj(d)/4. Then

(d̂ALPE , θ̂′ALP )′ − (d0, θ
′
0)
′ = −H−1(d̄, θ̄)S(d0, θ0)

for |(d̄, θ̄′)′ − (d0, θ
′
0)
′| ≤ |(d̂ALPE , θ̂′ALP )′ − (d0, θ

′
0)
′|. Considering the parameter set ∆n ×

Θn = {(d, θ) : |λ−(1+d0)/2
m (d − d0)| < ε , |λ−1/2

m (θ1 − θ10)| < ε , |λ−(1−d0)/2
m (θ2 − θ20)| <

ε and |θ3 − θ30| < ε} for an arbitrary small ε > 0, the asymptotic normality is proved by

showing that:

a) sup
(d,θ)∈∆n×Θn

||D−1
n [H(d, θ)− J(d, θ)]D−1

n || = op(1) ,

b) sup
(d,θ)∈∆n×Θn

||D−1
n [J(d, θ)− J(d0, θ0)]D−1

n || = op(1) ,

c) D−1
n J(d0, θ0)D−1

n −→ Ω

d) D−1
n S(d0, θ0)

d−→ N

(
−b,

π2

6
Ω

)

where J(d, θ) is a 4 × 4 matrix with elements [J(d, θ)](i+1),(k+1) =
∑m

j=1 x†ijx
†
kj , for i, k =

0, 1, 2, 3. The (1,1) element of the left hand side of a) is

− sup
∆n×Θn

m∑

j=1

(
Cdd

j

1 + Cj
− (Cd

j )2

(1 + Cj)2

)†
(Vj + Uzj + ςj)

The term involving Vj is bounded by

O


 1

m
sup

∆n×Θn

m∑

j=1

λd
j log2 n[(d− d0) log n + λd0

j ]


 =

(
log3 nλ2d0

m

)
= o(1)

under Assumption 4. Similarly the summand with ςj is also o(1) since ςj = O(λβ1
j ). Finally

the term involving Uzj is op(1) using Lemma 3. The other elements are proved to be op(1)

similarly. b) and c) are easily proved noting the restrictions in the parameter space ∆n×Θn

and approximating sums by integrals.

Finally in order to prove d) write D−1
n S(d0, θ0) = m−1/2

∑
Nj(Uzj + ςj) for

Nj =

(
x†0j ,

λ−d0
m

cos(d0π/2)
x†1j , λ−2d0

m x†2j ,
λ
−(1+d0)
m

sin(d0π/2)
x†3j

)′

It is easily shown that m−1/2
∑

Njςj → −b approximating sums by integrals. The proof

is completed by showing that for any vector v = (v1, v2, v3, v4)′, m−1/2
∑

v′NjUzj
d→

N(0, v′Ωvπ2/6). Divide now the sum in three parts

1√
m

m∑

j=1

v′NjUzj = T1 + T2 + T3
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where, for β = max(2, (1− d0)−1) and 1 > α > max{1/2, 1/4(1− d0)}

T1 =
1√
m

[logβ m]∑

j=1

v′NjUzj , T2 =
1√
m

[mα]∑

j=1+[logβ m]

v′NjUzj , T3 =
1√
m

m∑

j=1+[mα]

v′NjUzj

Using Lemma 2 we can proceed as in Hurvich et al (1998) to show that T1 and T2 are both

op(1). Finally, since the elements in the vector Nj satisfy the assumptions in Lemma 6 and

m−1
∑m

j=1+[mα](v
′Nj)2 = v′Ωv(1 + o(1)) we get the desired result. 2

Proof of Theorem 4: Note that

θ̂2,ALP − θ20 = −L1H
−1(d̄, θ̄)S(d0, θ0)

θ̂R
2,ALP − θ20 = −L2G

−1(d̄, θ̄)R(d0, θ20)

where G() and R() are the Hessian matrix and the score of the restricted ALPE in Arteche

(2006, page 2124) respectively. Defining Dn1 = Dn1(d0) =
√

m diag(1, λ2d0
m ) we have that

√
mλ2d0

m (θ̂2,ALP − θ̂R
2,ALP ) = AnBn

where An = (−L1DnH−1(d̄, θ̄)Dn, L2Dn1G
−1(d̄, θ̄)Dn1) and Bn = (D−1

n S(d0, θ0), D−1
n1 R(d0, θ20))′.

The desired result follows from the following convergences under the null hypothesis

An
p→ (−L1Ω(d0)−1, L2Ω2(d0)−1)

Bn
d→ N

(
0,

π2

6
Ω4(d0)

)

for

Ω4(d0) =
(

Ω(d0) Ω5(d0)
Ω5(d0)′ Ω2(d0)

)

and Ω5(d0) containing the first and third columns of Ω(d0). The convergence of An is shown

in a), b) and c) in the proof of Theorem 2 for the part related with H and as in formula

(A.5) in Arteche (2006) for the terms concerning G. The weak convergence of Bn is shown

in d) in the proof of Theorem 2 and as the last formula in the Appendix of Arteche (2006).

Finally

(−L1Ω(d0)−1, L2Ω2(d0)−1) Ω4(d0)
( −Ω(d0)−1L′1

Ω2(d0)−1L′2

)
= L1Ω(d0)−1L′1 − L2Ω2(d0)−1L′2

for the form of the matrix Ω5(d0). 2

APPENDIX B: TECHNICAL LEMMAS

Lemma 1 is a variant of Lemma 1 in Sun and Phillips (2003) for the stationary case

and Theorem 1 in Velasco (1999) for d0 ∈ [1/2, 1) and the proof is thus omitted. Lemma
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2 extends Lemma 2 in Sun and Phillips (2003) to the nonstationary case and the proof is

similar noting the bounds in Lemma 1 to uniformly control for the errors in the approxima-

tion of the covariances between normalized discrete Fourier transforms. Lemma 3 is a more

general version of Lemma 3 in Sun and Phillips (2003), which we found more convenient for

the proofs of the theorems. Its proof is similar using Lemma 2 and it is thus omitted.

Lemma 1 Let vj = wzj = wzj/f
1/2
z (λj). Under assumptions 1-3, for any sequences of

positive integers j and k such that 1 ≤ k < j ≤ m for m/n → 0 as n →∞,

a) E(vj v̄j) = 1 + O
(
j−1 log j + j2d0−2 log j

)
,

b) E(vjvj) = O
(
j−1 log j + j2d0−2 log j

)
,

c) E(vj v̄k) = O
(
k−1 log j + (jk)d0−1 log k

)
,

d) E(vjvk) = O
(
k−1 log j + (jk)d0−1 log k

)
.

Lemma 2 Under assumptions 1-3 for m/n → 0 and β = max(2, (1− d0)−1),

a) Cov(Uzj , Uzk) = O
(
k−2 log2 j + (jk)2d0−2 log2 k

)
, uniformly for logβ m ≤ k < j ≤ m,

b) limn sup1≤j≤m EU2
zj < ∞,

c) EUzj = O(j−1 log j + +j2d0−2 log j), uniformly for logβ m ≤ k < j ≤ m,

d) V ar(Uzj) = π2/6 + O(j−1 log j + j2d0−2 log j), uniformly for logβ m ≤ k < j ≤ m,

Lemma 3 Let {cj(d, θ′}m
j=1 be a sequence of functions such that for some finite b > 0

sup∆×Θ|cj − cj−1| = O(k1mj−1) uniformly for 2 ≤ j ≤ m

sup∆×Θ|cm| = O(k2m) , sup∆×Θ|cj | = O

(
max(k1m, k2m)

√
m

logb m

)

uniformly for 1 ≤ j ≤ m. Then

sup∆×Θ

∣∣∣∣∣∣
1
m

m∑

j=1

cjUzj

∣∣∣∣∣∣
= Op

[
max(k1m, k2m)

(
1√
m

+
log2 m

m2(1−d0)

)]

Lemma 4 For (d, θ) ∈ (∆×Θ) and Vj defined in the proof of Theorem1,
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a) |Vj − Vj−1| = O(j−1[|d− d0|+ λd
j + λd0

j ]), uniformly for 2 ≤ j ≤ m,

b) |V †
j | = O(|d− d0| log m + λd

m + λd0
m ), uniformly for 1 ≤ j < m,

c) |V †
m| = O(|d− d0|+ λd

m + λd0
m ]),

uniformly in ∆ × Θ and if d ∈ ∆′
n = {d : |d − d0| < κλυ

m} for some finite constant κ and

υ > 0 arbitrary small,

d) |Vj−Vj−1| = O(j−1[|d−d0|+ |θ1−θ10|λd0
m + |θ2−θ20|λ2d0

m + |θ3−θ30|λ1+d0
m ), uniformly

for 2 ≤ j ≤ m,

e) |V †
j | = O(|d− d0| log m + |θ1− θ10|λd0

m + |θ2− θ20|λ2d0
m + |θ3− θ30|λ1+d0

m ), uniformly for

1 ≤ j < m,

f) |V †
m| = O(|d− d0|+ |θ1 − θ10|λd0

m + |θ2 − θ20|λ2d0
m + |θ3 − θ30|λ1+d0

m ),

uniformly in ∆′
n ×Θ.

Proof: a) By the definition of Vj

|Vj − Vj−1| =
∣∣∣∣∣2(d− d0) log

(
j

j − 1

)
+ log

(
1 + C0

j

1 + C0
j−1

)
− log

(
1 + Cj

1 + Cj−1

)∣∣∣∣∣ (18)

The first term of the right hand side of (18) is O(|d − d0|j−1) where hereafter the O() are

uniform over 2 ≤ j < m and ∆×Θ or ∆′
n ×Θ where appropriate. Now

log
(

1 + Cj

1 + Cj−1

)
= log

(
1 +

Cj − Cj−1

1 + Cj−1

)
= O(|Cj − Cj−1|) = O

(
1
j
λd

j

)

using the following bounds

|λα
j − λα

j−1| = λα
j

∣∣∣∣1−
(

j − 1
j

)α∣∣∣∣ = O

(
1
j
λα

j

)
for any α 6= 0

cos
[
d

(
λj

2
+

π

2

)]
= cos

[
d

(
λj−1

2
+

π

2

)]
+ O

(
1
n

)

and similarly for the sine term.

d) For the bound in d) note that

|Vj − Vj−1| ≤
∣∣∣∣2(d− d0) log

(
j

j − 1

)∣∣∣∣ +

∣∣∣∣∣log

(
(1 + C0

j )(1 + Cj−1)
(1 + C0

j−1)(1 + Cj)

)∣∣∣∣∣ (19)
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where the first term on the right hand side is O(j−1|d−d0|). The second term is the absolute

value of

log

(
1 +

C0
j − Cj − (C0

j−1 − Cj−1) + C0
j Cj−1 − C0

j−1Cj

(1 + C0
j−1)(1 + Cj)

)

Now C0
j − Cj − (C0

j−1 − Cj−1) is equal to

(θ10 − θ1)
[
λd0

j Aj(d0)− λd0
j−1Aj−1(d0)

]
(20)

+ θ1

[
Aj(d0)(λd0

j − λd
j )−Aj−1(d0)(λd0

j−1 − λd
j−1)

]
(21)

+ θ1

[
λd

j (Aj(d0)−Aj(d))− λd
j−1(Aj−1(d0)−Aj−1(d))

]
(22)

+ (θ20 − θ2)(λ2d0
j − λ2d0

j−1) (23)

+ θ2

[
λ2d0

j − λ2d0
j−1 − (λ2d

j − λ2d
j−1)

]
(24)

+ (θ30 − θ3)
[
λ1+d0

j Bj(d0)− λ1+d0
j−1 Bj−1(d0)

]
(25)

+ θ3

[
Bj(d0)(λ1+d0

j − λ1+d
j )−Bj−1(d0)(λ1+d0

j−1 − λ1+d
j−1)

]
(26)

+ θ3

[
λ1+d

j (Bj(d0)−Bj(d))− λ1+d
j−1(Bj−1(d0)−Bj−1(d))

]
(27)

The expression in (20) is θ10 − θ1 times

(λd0
j − λd0

j−1)Aj(d0) + λd0
j−1(Aj(d0)−Aj−1(d0)) = O

(
1
j
λd0

j

)
+ O

(
1
n

λd0
j−1

)
= O

(
1
j
λd0

j

)

Now, apart from the constant θ1, (21) is

(λd0
j − λd

j )[Aj(d0)−Aj−1(d0)] + Aj−1(d0)[λd0
j − λd

j − (λd0
j−1 − λd

j−1)]

= O

(
|d− d0|λd0

j log λj
1
n

)
+ O

(
|d− d0|λd0

j log λj
1
j

)

= O

(
|d− d0|λd0

j log λj
1
j

)

Similarly, (22) is, apart from θ1

(λd
j − λd

j−1)[Aj(d0)−Aj(d)] + λd
j−1[Aj(d0)−Aj−1(d0)− (Aj(d)−Aj−1(d))]

= O

(
1
j
λd

j |d− d0|
)

+ λd
j−1

[
d0A

′
j−1(d0)− dA′j−1(d) + O

(
1
n2

)]

= O

(
1
j
λd

j |d− d0|
)

+ λd
j−1

[
O

(
1
n2

)
+ d0[A′j−1(d0)−A′j−1(d)] + (d0 − d)A′j−1(d)

]

= O

(
1
j
λd

j |d− d0|
)

for A′j−1(d) = − sin[d(λj−1/2 − π/2)]π/n. We get similarly the bounds for (25), (26) and

(27) with λ1+d
j instead of λd

j .
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Also (23) is O(|θ20 − θ2|j−1λ2d0
j ) and, apart from the constant θ2, (24) is equal to

λ2d0
j

[(
1− 1

j

)2d

−
(

1− 1
j

)2d0
]

+

[
1−

(
1− 1

j

)2d
]

(λ2d0
j − λ2d

j )

= O

(
λ2d0

j |d− d0|1
j

)
+

(
λ2d0

j |d− d0|1
j

log λj

)

= O

(
|d− d0|1

j

)

Finally C0
j Cj−1 − C0

j−1Cj is equal to

[C0
j − Cj − (C0

j−1 − Cj−1)]C0
j−1 + (C0

j − C0
j−1)(Cj−1 − C0

j−1) (28)

= O

(
C0

j−1

1
j
[|d− d0|+ |θ1 − θ10|λd0

m + |θ2 − θ20|λ2d0
m + |θ3 − θ30|λ1+d0

m

)

from the proof of the bounds in (20)-(27) and because

C0
j − C0

j−1 = θ10λ
d0
j [Aj(d0)−Aj−1(d0)]

+ θ10Aj−1(d0)(λd0
j − λd0

j−1) + θ20(λ2d0
j − λ2d0

j−1)

+ θ30λ
1+d0
j [Bj(d0)−Bj−1(d0)]

+ θ30Bj−1(d0)(λ1+d0
j − λ1+d0

j−1 )

= O

(
1
n

λd0
j

)
+ O

(
1
j
λd0

j

)
+ O

(
1
j
λ2d0

j

)
= O

(
1
j
λd0

j

)

C0
j−1 − Cj−1 = (θ10 − θ1)λd0

j−1Aj−1(d0) + θ1Aj−1(d0)(λd0
j−1 − λd

j−1)

+ θ1λ
d
j−1[Aj−1(d0)−Aj−1(d)] + (θ20 − θ2)λ2d0

j−1 + θ2(λ2d0
j−1 − λd

j−1)

+ (θ30 − θ3)λ1+d0
j−1 Bj−1(d0) + θ3Bj−1(d0)(λ1+d0

j−1 − λ1+d
j−1)

+ θ3λ
1+d
j−1 [Bj−1(d0)−Bj−1(d)]

= O(|θ10 − θ1|λd0
m + λd0

m |d− d0| log λm + |θ20 − θ2|λ2d0
m + |θ30 − θ3|λ1+d0

m )

b) The bound for V †
j in b) uses the following relations

log λj − 1
m

∑
log λk = log j − 1

m

∑
log k = O(log m)

log

(
1 + C0

j

1 + Cj

)
= log

(
1 +

C0
j − Cj

1 + Cj

)
= O(|C0

j − Cj |) = O(λd
m + λd0

m )

e) For d ∈ ∆′
n we get e) using also the following bounds

λd
j = λd0

j (1 + o(1)) , λ2d
j = λ2d0

j (1 + o(1))

Aj(d) = Aj(d0) + O(|d− d0|) , Bj(d) = Bj(d0) + O(|d− d0|)
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The bounds of c) and f) are equally obtained noting that log λm − m−1
∑

log λk =

log m−m−1
∑

log k = 1 + o(1). 2

Corollary 2 By Lemmas 3 and 4 sup∆′n×Θ

∣∣∣m−1
∑m

j=1 V †
j Uzj

∣∣∣ is bounded in probability by

Op

[(
1√
m

+
log2 m

m2(1−d0)

)
sup

∆′n×Θ
[|d− d0|+ |θ10 − θ1|λd0

m + |θ20 − θ2|λ2d0
m + |θ30 − θ3|λ1+d0

m ]

]

Lemma 5 For (d, θ) ∈ ∆′
n ×Θ

1
m

m∑

j=1

(V †
j )2 = 4(d− d0)2(1 + o(1))

+ (θ10 − θ1)2 cos2
(

d0π

2

)
λ2d0

m

d2
0

(2d0 + 1)(1 + d0)2
(1 + o(1))

+ (θ20 − θ2)2λ4d0
m

4d2
0

(4d0 + 1)(1 + 2d0)2
(1 + o(1))

+ (θ30 − θ3)2 sin2

(
d0π

2

)
λ2(d0+1)

m

(1 + d0)2

(2d0 + 3)(2 + d0)2
(1 + o(1))

+ 2(θ10 − θ1)(θ20 − θ2) cos
(

d0π

2

)
λ3d0

m

2d2
0

(3d0 + 1)(d0 + 1)(1 + 2d0)
(1 + o(1))

− 2(θ10 − θ1)(θ30 − θ3) cos
(

d0π

2

)
sin

(
d0π

2

)
λ1+2d0

m

d0

2(d0 + 1)(d0 + 2)
(1 + o(1))

− 2(θ20 − θ2)(θ30 − θ3) sin
(

d0π

2

)
λ1+3d0

m

2d0(1 + d0)
(3d0 + 2)(2d0 + 1)(d0 + 2)

(1 + o(1))

+ 4(d− d0)(θ10 − θ1) cos
(

d0π

2

)
λd0

m

d0

(d0 + 1)2
(1 + o(1))

+ 4(d− d0)(θ20 − θ2)λ2d0
m

2d0

(2d0 + 1)2
(1 + o(1))

+ 4(d− d0)(θ30 − θ3)λ1+d0
m

1 + d0

(d0 + 2)2
(1 + o(1))

where the o(1) terms are uniform over (d, θ) ∈ ∆′
n ×Θ.

Proof:

1
m

m∑

j=1

(V †
j )2 = 4(d− d0)2

1
m

∑
(log† λj)2 (29)

+
1
m

∑[
log†

(
1 + C0

j

1 + Cj

)]2

(30)

+
4(d− d0)

m

∑
log† λj log

(
1 + C0

j

1 + Cj

)
(31)

The right hand side of (29) is 4(d − d0)2(1 + O(m−1 log2 m)) where hereafter the o() and
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O() terms hold uniformly over (d, θ) ∈ ∆′
n ×Θ. Now

log

(
1 + C0

j

1 + Cj

)
= log

(
1 +

C0
j − Cj

1 + Cj

)
= C0

j − Cj −
Cj(C0

j − Cj)
1 + Cj

+ O[(C0
j − Cj)2]

and C0
j − Cj is equal to

(θ10 − θ1)Aj(d0)λd0
j + (θ20 − θ2)λ2d0

j + (θ30 − θ3)Bj(d0)λ1+d0
j + O(|d− d0|λd0

j log λj)

since λd
j = λd0

j + O(|d− d0|λd0
j log λj) such that

log

(
1 + C0

j

1 + Cj

)
= (θ10 − θ1)Aj(d0)λd0

j + (θ20 − θ2)λ2d0
j + (θ30 − θ3)Bj(d0)λ1+d0

j

+ O(|d− d0|λd0
j log λj + |θ10 − θ1|λ2d0

j + |θ20 − θ2|λ3d0
j + |θ30 − θ3|λ1+2d0

j )

Then

1
m

∑
log2

(
1 + C0

j

1 + Cj

)
= (θ10 − θ1)2 cos2

(
d0π

2

)
λ2d0

m

1
2d0 + 1

(1 + o(1))

+ (θ20 − θ2)2λ4d0
m

1
4d0 + 1

(1 + o(1))

+ (θ30 − θ3)2 sin2

(
d0π

2

)
λ2(1+d0)

m

1
2d0 + 3

(1 + o(1))

+ 2(θ10 − θ1)(θ20 − θ2) cos
(

d0π

2

)
λ3d0

m

1
3d0 + 1

(1 + o(1))

− 2(θ10 − θ1)(θ30 − θ3) cos
(

d0π

2

)
sin

(
d0π

2

)
λ1+2d0

m

1
2d0 + 2

(1 + o(1))

− 2(θ20 − θ2)(θ30 − θ3) sin
(

d0π

2

)
λ1+3d0

m

1
3d0 + 2

(1 + o(1))

+ O(λ2d0
m (d− d0)2 log2 λm + |d− d0||θ10 − θ1|λ2d0

m log λm

+ |d− d0||θ20 − θ2|λ3d0
m log λm + |d− d0||θ30 − θ3|λ1+2d0

m log λm)

38



[
1
m

∑
log

(
1 + C0

j

1 + Cj

)]2

= (θ10 − θ1)2 cos2
(

d0π

2

)
λ2d0

m

1
(d0 + 1)2

(1 + o(1))

+ (θ20 − θ2)2λ4d0
m

1
(2d0 + 1)2

(1 + o(1))

+ (θ30 − θ3)2 sin2

(
d0π

2

)
λ2+2d0

m

1
(d0 + 2)2

(1 + o(1))

+ 2(θ10 − θ1)(θ20 − θ2) cos
(

d0π

2

)
λ3d0

m

1
(1 + d0)(2d0 + 1)

(1 + o(1))

− 2(θ10 − θ1)(θ30 − θ3) cos
(

d0π

2

)
sin

(
d0π

2

)
λ1+2d0

m

(1 + o(1))
(1 + d0)(d0 + 2)

− 2(θ20 − θ2)(θ30 − θ3) sin
(

d0π

2

)
λ1+3d0

m

1
(1 + 2d0)(d0 + 2)

(1 + o(1))

+ O(λ2d0
m (d− d0)2 log2 λm + |d− d0||θ10 − θ1|λ2d0

m log λm

+ |d− d0||θ20 − θ2|λ3d0
m log λm + |d− d0||θ30 − θ3|λ1+2d0

m log λm)

since Aj(d) = cos(dπ/2)(1 + O(λj)) and similarly for Bj(d0). The required result for (30)

comes by the difference between both. Finally the last three terms of the right hand side of

the Lemma come similarly from (31). 2

The following lemma adapts Lemma 4 in Sun and Phillips (2003) to the non stationary

case, allowing also for correlation between signal and noise.

Lemma 6 Let 0 < d0 < 3/4 and ckn = ck be a triangular array for which

max
k
|ck| = o(m),

m∑

k=[1+mα]

c2
k ∼ ρm,

m∑

k=[1+mα]

|ck|p = O(m),

for all p ≥ 1 and 1 > α > max{1/2, 1/4(1− d0)}. Then

1√
m

m∑

k=[1+mα]

ckUzk
d−→ N

(
0,

π2

6
ρ

)

Proof: Note first that such and α always exists because d0 < 3/4. The main difference

with respect to Lemma 4 in Sun and Phillips (2003) comes from the possibility of d0 ≥ 1/2.

In view of Lemma 1, in order to have the error terms in the covariance matrix of the

normalized discrete Fourier transforms to be o(m−1/2) we need to consider only Fourier

frequencies λk for mα < k ≤ m (compare with the trimming in Velasco 1999). The result

follows then as in Robinson (1995), Velasco (1999) or Sun and Phillips (2003).
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